Merge tag 'linux-kselftest-kunit-6.6-rc1' of git://git.kernel.org/pub/scm/linux/kerne...
[platform/kernel/linux-starfive.git] / mm / compaction.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * linux/mm/compaction.c
4  *
5  * Memory compaction for the reduction of external fragmentation. Note that
6  * this heavily depends upon page migration to do all the real heavy
7  * lifting
8  *
9  * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
10  */
11 #include <linux/cpu.h>
12 #include <linux/swap.h>
13 #include <linux/migrate.h>
14 #include <linux/compaction.h>
15 #include <linux/mm_inline.h>
16 #include <linux/sched/signal.h>
17 #include <linux/backing-dev.h>
18 #include <linux/sysctl.h>
19 #include <linux/sysfs.h>
20 #include <linux/page-isolation.h>
21 #include <linux/kasan.h>
22 #include <linux/kthread.h>
23 #include <linux/freezer.h>
24 #include <linux/page_owner.h>
25 #include <linux/psi.h>
26 #include "internal.h"
27
28 #ifdef CONFIG_COMPACTION
29 /*
30  * Fragmentation score check interval for proactive compaction purposes.
31  */
32 #define HPAGE_FRAG_CHECK_INTERVAL_MSEC  (500)
33
34 static inline void count_compact_event(enum vm_event_item item)
35 {
36         count_vm_event(item);
37 }
38
39 static inline void count_compact_events(enum vm_event_item item, long delta)
40 {
41         count_vm_events(item, delta);
42 }
43 #else
44 #define count_compact_event(item) do { } while (0)
45 #define count_compact_events(item, delta) do { } while (0)
46 #endif
47
48 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
49
50 #define CREATE_TRACE_POINTS
51 #include <trace/events/compaction.h>
52
53 #define block_start_pfn(pfn, order)     round_down(pfn, 1UL << (order))
54 #define block_end_pfn(pfn, order)       ALIGN((pfn) + 1, 1UL << (order))
55
56 /*
57  * Page order with-respect-to which proactive compaction
58  * calculates external fragmentation, which is used as
59  * the "fragmentation score" of a node/zone.
60  */
61 #if defined CONFIG_TRANSPARENT_HUGEPAGE
62 #define COMPACTION_HPAGE_ORDER  HPAGE_PMD_ORDER
63 #elif defined CONFIG_HUGETLBFS
64 #define COMPACTION_HPAGE_ORDER  HUGETLB_PAGE_ORDER
65 #else
66 #define COMPACTION_HPAGE_ORDER  (PMD_SHIFT - PAGE_SHIFT)
67 #endif
68
69 static unsigned long release_freepages(struct list_head *freelist)
70 {
71         struct page *page, *next;
72         unsigned long high_pfn = 0;
73
74         list_for_each_entry_safe(page, next, freelist, lru) {
75                 unsigned long pfn = page_to_pfn(page);
76                 list_del(&page->lru);
77                 __free_page(page);
78                 if (pfn > high_pfn)
79                         high_pfn = pfn;
80         }
81
82         return high_pfn;
83 }
84
85 static void split_map_pages(struct list_head *list)
86 {
87         unsigned int i, order, nr_pages;
88         struct page *page, *next;
89         LIST_HEAD(tmp_list);
90
91         list_for_each_entry_safe(page, next, list, lru) {
92                 list_del(&page->lru);
93
94                 order = page_private(page);
95                 nr_pages = 1 << order;
96
97                 post_alloc_hook(page, order, __GFP_MOVABLE);
98                 if (order)
99                         split_page(page, order);
100
101                 for (i = 0; i < nr_pages; i++) {
102                         list_add(&page->lru, &tmp_list);
103                         page++;
104                 }
105         }
106
107         list_splice(&tmp_list, list);
108 }
109
110 #ifdef CONFIG_COMPACTION
111 bool PageMovable(struct page *page)
112 {
113         const struct movable_operations *mops;
114
115         VM_BUG_ON_PAGE(!PageLocked(page), page);
116         if (!__PageMovable(page))
117                 return false;
118
119         mops = page_movable_ops(page);
120         if (mops)
121                 return true;
122
123         return false;
124 }
125
126 void __SetPageMovable(struct page *page, const struct movable_operations *mops)
127 {
128         VM_BUG_ON_PAGE(!PageLocked(page), page);
129         VM_BUG_ON_PAGE((unsigned long)mops & PAGE_MAPPING_MOVABLE, page);
130         page->mapping = (void *)((unsigned long)mops | PAGE_MAPPING_MOVABLE);
131 }
132 EXPORT_SYMBOL(__SetPageMovable);
133
134 void __ClearPageMovable(struct page *page)
135 {
136         VM_BUG_ON_PAGE(!PageMovable(page), page);
137         /*
138          * This page still has the type of a movable page, but it's
139          * actually not movable any more.
140          */
141         page->mapping = (void *)PAGE_MAPPING_MOVABLE;
142 }
143 EXPORT_SYMBOL(__ClearPageMovable);
144
145 /* Do not skip compaction more than 64 times */
146 #define COMPACT_MAX_DEFER_SHIFT 6
147
148 /*
149  * Compaction is deferred when compaction fails to result in a page
150  * allocation success. 1 << compact_defer_shift, compactions are skipped up
151  * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
152  */
153 static void defer_compaction(struct zone *zone, int order)
154 {
155         zone->compact_considered = 0;
156         zone->compact_defer_shift++;
157
158         if (order < zone->compact_order_failed)
159                 zone->compact_order_failed = order;
160
161         if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
162                 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
163
164         trace_mm_compaction_defer_compaction(zone, order);
165 }
166
167 /* Returns true if compaction should be skipped this time */
168 static bool compaction_deferred(struct zone *zone, int order)
169 {
170         unsigned long defer_limit = 1UL << zone->compact_defer_shift;
171
172         if (order < zone->compact_order_failed)
173                 return false;
174
175         /* Avoid possible overflow */
176         if (++zone->compact_considered >= defer_limit) {
177                 zone->compact_considered = defer_limit;
178                 return false;
179         }
180
181         trace_mm_compaction_deferred(zone, order);
182
183         return true;
184 }
185
186 /*
187  * Update defer tracking counters after successful compaction of given order,
188  * which means an allocation either succeeded (alloc_success == true) or is
189  * expected to succeed.
190  */
191 void compaction_defer_reset(struct zone *zone, int order,
192                 bool alloc_success)
193 {
194         if (alloc_success) {
195                 zone->compact_considered = 0;
196                 zone->compact_defer_shift = 0;
197         }
198         if (order >= zone->compact_order_failed)
199                 zone->compact_order_failed = order + 1;
200
201         trace_mm_compaction_defer_reset(zone, order);
202 }
203
204 /* Returns true if restarting compaction after many failures */
205 static bool compaction_restarting(struct zone *zone, int order)
206 {
207         if (order < zone->compact_order_failed)
208                 return false;
209
210         return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
211                 zone->compact_considered >= 1UL << zone->compact_defer_shift;
212 }
213
214 /* Returns true if the pageblock should be scanned for pages to isolate. */
215 static inline bool isolation_suitable(struct compact_control *cc,
216                                         struct page *page)
217 {
218         if (cc->ignore_skip_hint)
219                 return true;
220
221         return !get_pageblock_skip(page);
222 }
223
224 static void reset_cached_positions(struct zone *zone)
225 {
226         zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
227         zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
228         zone->compact_cached_free_pfn =
229                                 pageblock_start_pfn(zone_end_pfn(zone) - 1);
230 }
231
232 #ifdef CONFIG_SPARSEMEM
233 /*
234  * If the PFN falls into an offline section, return the start PFN of the
235  * next online section. If the PFN falls into an online section or if
236  * there is no next online section, return 0.
237  */
238 static unsigned long skip_offline_sections(unsigned long start_pfn)
239 {
240         unsigned long start_nr = pfn_to_section_nr(start_pfn);
241
242         if (online_section_nr(start_nr))
243                 return 0;
244
245         while (++start_nr <= __highest_present_section_nr) {
246                 if (online_section_nr(start_nr))
247                         return section_nr_to_pfn(start_nr);
248         }
249
250         return 0;
251 }
252 #else
253 static unsigned long skip_offline_sections(unsigned long start_pfn)
254 {
255         return 0;
256 }
257 #endif
258
259 /*
260  * Compound pages of >= pageblock_order should consistently be skipped until
261  * released. It is always pointless to compact pages of such order (if they are
262  * migratable), and the pageblocks they occupy cannot contain any free pages.
263  */
264 static bool pageblock_skip_persistent(struct page *page)
265 {
266         if (!PageCompound(page))
267                 return false;
268
269         page = compound_head(page);
270
271         if (compound_order(page) >= pageblock_order)
272                 return true;
273
274         return false;
275 }
276
277 static bool
278 __reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source,
279                                                         bool check_target)
280 {
281         struct page *page = pfn_to_online_page(pfn);
282         struct page *block_page;
283         struct page *end_page;
284         unsigned long block_pfn;
285
286         if (!page)
287                 return false;
288         if (zone != page_zone(page))
289                 return false;
290         if (pageblock_skip_persistent(page))
291                 return false;
292
293         /*
294          * If skip is already cleared do no further checking once the
295          * restart points have been set.
296          */
297         if (check_source && check_target && !get_pageblock_skip(page))
298                 return true;
299
300         /*
301          * If clearing skip for the target scanner, do not select a
302          * non-movable pageblock as the starting point.
303          */
304         if (!check_source && check_target &&
305             get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
306                 return false;
307
308         /* Ensure the start of the pageblock or zone is online and valid */
309         block_pfn = pageblock_start_pfn(pfn);
310         block_pfn = max(block_pfn, zone->zone_start_pfn);
311         block_page = pfn_to_online_page(block_pfn);
312         if (block_page) {
313                 page = block_page;
314                 pfn = block_pfn;
315         }
316
317         /* Ensure the end of the pageblock or zone is online and valid */
318         block_pfn = pageblock_end_pfn(pfn) - 1;
319         block_pfn = min(block_pfn, zone_end_pfn(zone) - 1);
320         end_page = pfn_to_online_page(block_pfn);
321         if (!end_page)
322                 return false;
323
324         /*
325          * Only clear the hint if a sample indicates there is either a
326          * free page or an LRU page in the block. One or other condition
327          * is necessary for the block to be a migration source/target.
328          */
329         do {
330                 if (check_source && PageLRU(page)) {
331                         clear_pageblock_skip(page);
332                         return true;
333                 }
334
335                 if (check_target && PageBuddy(page)) {
336                         clear_pageblock_skip(page);
337                         return true;
338                 }
339
340                 page += (1 << PAGE_ALLOC_COSTLY_ORDER);
341         } while (page <= end_page);
342
343         return false;
344 }
345
346 /*
347  * This function is called to clear all cached information on pageblocks that
348  * should be skipped for page isolation when the migrate and free page scanner
349  * meet.
350  */
351 static void __reset_isolation_suitable(struct zone *zone)
352 {
353         unsigned long migrate_pfn = zone->zone_start_pfn;
354         unsigned long free_pfn = zone_end_pfn(zone) - 1;
355         unsigned long reset_migrate = free_pfn;
356         unsigned long reset_free = migrate_pfn;
357         bool source_set = false;
358         bool free_set = false;
359
360         if (!zone->compact_blockskip_flush)
361                 return;
362
363         zone->compact_blockskip_flush = false;
364
365         /*
366          * Walk the zone and update pageblock skip information. Source looks
367          * for PageLRU while target looks for PageBuddy. When the scanner
368          * is found, both PageBuddy and PageLRU are checked as the pageblock
369          * is suitable as both source and target.
370          */
371         for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages,
372                                         free_pfn -= pageblock_nr_pages) {
373                 cond_resched();
374
375                 /* Update the migrate PFN */
376                 if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) &&
377                     migrate_pfn < reset_migrate) {
378                         source_set = true;
379                         reset_migrate = migrate_pfn;
380                         zone->compact_init_migrate_pfn = reset_migrate;
381                         zone->compact_cached_migrate_pfn[0] = reset_migrate;
382                         zone->compact_cached_migrate_pfn[1] = reset_migrate;
383                 }
384
385                 /* Update the free PFN */
386                 if (__reset_isolation_pfn(zone, free_pfn, free_set, true) &&
387                     free_pfn > reset_free) {
388                         free_set = true;
389                         reset_free = free_pfn;
390                         zone->compact_init_free_pfn = reset_free;
391                         zone->compact_cached_free_pfn = reset_free;
392                 }
393         }
394
395         /* Leave no distance if no suitable block was reset */
396         if (reset_migrate >= reset_free) {
397                 zone->compact_cached_migrate_pfn[0] = migrate_pfn;
398                 zone->compact_cached_migrate_pfn[1] = migrate_pfn;
399                 zone->compact_cached_free_pfn = free_pfn;
400         }
401 }
402
403 void reset_isolation_suitable(pg_data_t *pgdat)
404 {
405         int zoneid;
406
407         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
408                 struct zone *zone = &pgdat->node_zones[zoneid];
409                 if (!populated_zone(zone))
410                         continue;
411
412                 /* Only flush if a full compaction finished recently */
413                 if (zone->compact_blockskip_flush)
414                         __reset_isolation_suitable(zone);
415         }
416 }
417
418 /*
419  * Sets the pageblock skip bit if it was clear. Note that this is a hint as
420  * locks are not required for read/writers. Returns true if it was already set.
421  */
422 static bool test_and_set_skip(struct compact_control *cc, struct page *page)
423 {
424         bool skip;
425
426         /* Do not update if skip hint is being ignored */
427         if (cc->ignore_skip_hint)
428                 return false;
429
430         skip = get_pageblock_skip(page);
431         if (!skip && !cc->no_set_skip_hint)
432                 set_pageblock_skip(page);
433
434         return skip;
435 }
436
437 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
438 {
439         struct zone *zone = cc->zone;
440
441         pfn = pageblock_end_pfn(pfn);
442
443         /* Set for isolation rather than compaction */
444         if (cc->no_set_skip_hint)
445                 return;
446
447         if (pfn > zone->compact_cached_migrate_pfn[0])
448                 zone->compact_cached_migrate_pfn[0] = pfn;
449         if (cc->mode != MIGRATE_ASYNC &&
450             pfn > zone->compact_cached_migrate_pfn[1])
451                 zone->compact_cached_migrate_pfn[1] = pfn;
452 }
453
454 /*
455  * If no pages were isolated then mark this pageblock to be skipped in the
456  * future. The information is later cleared by __reset_isolation_suitable().
457  */
458 static void update_pageblock_skip(struct compact_control *cc,
459                         struct page *page, unsigned long pfn)
460 {
461         struct zone *zone = cc->zone;
462
463         if (cc->no_set_skip_hint)
464                 return;
465
466         set_pageblock_skip(page);
467
468         /* Update where async and sync compaction should restart */
469         if (pfn < zone->compact_cached_free_pfn)
470                 zone->compact_cached_free_pfn = pfn;
471 }
472 #else
473 static inline bool isolation_suitable(struct compact_control *cc,
474                                         struct page *page)
475 {
476         return true;
477 }
478
479 static inline bool pageblock_skip_persistent(struct page *page)
480 {
481         return false;
482 }
483
484 static inline void update_pageblock_skip(struct compact_control *cc,
485                         struct page *page, unsigned long pfn)
486 {
487 }
488
489 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
490 {
491 }
492
493 static bool test_and_set_skip(struct compact_control *cc, struct page *page)
494 {
495         return false;
496 }
497 #endif /* CONFIG_COMPACTION */
498
499 /*
500  * Compaction requires the taking of some coarse locks that are potentially
501  * very heavily contended. For async compaction, trylock and record if the
502  * lock is contended. The lock will still be acquired but compaction will
503  * abort when the current block is finished regardless of success rate.
504  * Sync compaction acquires the lock.
505  *
506  * Always returns true which makes it easier to track lock state in callers.
507  */
508 static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags,
509                                                 struct compact_control *cc)
510         __acquires(lock)
511 {
512         /* Track if the lock is contended in async mode */
513         if (cc->mode == MIGRATE_ASYNC && !cc->contended) {
514                 if (spin_trylock_irqsave(lock, *flags))
515                         return true;
516
517                 cc->contended = true;
518         }
519
520         spin_lock_irqsave(lock, *flags);
521         return true;
522 }
523
524 /*
525  * Compaction requires the taking of some coarse locks that are potentially
526  * very heavily contended. The lock should be periodically unlocked to avoid
527  * having disabled IRQs for a long time, even when there is nobody waiting on
528  * the lock. It might also be that allowing the IRQs will result in
529  * need_resched() becoming true. If scheduling is needed, compaction schedules.
530  * Either compaction type will also abort if a fatal signal is pending.
531  * In either case if the lock was locked, it is dropped and not regained.
532  *
533  * Returns true if compaction should abort due to fatal signal pending.
534  * Returns false when compaction can continue.
535  */
536 static bool compact_unlock_should_abort(spinlock_t *lock,
537                 unsigned long flags, bool *locked, struct compact_control *cc)
538 {
539         if (*locked) {
540                 spin_unlock_irqrestore(lock, flags);
541                 *locked = false;
542         }
543
544         if (fatal_signal_pending(current)) {
545                 cc->contended = true;
546                 return true;
547         }
548
549         cond_resched();
550
551         return false;
552 }
553
554 /*
555  * Isolate free pages onto a private freelist. If @strict is true, will abort
556  * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
557  * (even though it may still end up isolating some pages).
558  */
559 static unsigned long isolate_freepages_block(struct compact_control *cc,
560                                 unsigned long *start_pfn,
561                                 unsigned long end_pfn,
562                                 struct list_head *freelist,
563                                 unsigned int stride,
564                                 bool strict)
565 {
566         int nr_scanned = 0, total_isolated = 0;
567         struct page *cursor;
568         unsigned long flags = 0;
569         bool locked = false;
570         unsigned long blockpfn = *start_pfn;
571         unsigned int order;
572
573         /* Strict mode is for isolation, speed is secondary */
574         if (strict)
575                 stride = 1;
576
577         cursor = pfn_to_page(blockpfn);
578
579         /* Isolate free pages. */
580         for (; blockpfn < end_pfn; blockpfn += stride, cursor += stride) {
581                 int isolated;
582                 struct page *page = cursor;
583
584                 /*
585                  * Periodically drop the lock (if held) regardless of its
586                  * contention, to give chance to IRQs. Abort if fatal signal
587                  * pending.
588                  */
589                 if (!(blockpfn % COMPACT_CLUSTER_MAX)
590                     && compact_unlock_should_abort(&cc->zone->lock, flags,
591                                                                 &locked, cc))
592                         break;
593
594                 nr_scanned++;
595
596                 /*
597                  * For compound pages such as THP and hugetlbfs, we can save
598                  * potentially a lot of iterations if we skip them at once.
599                  * The check is racy, but we can consider only valid values
600                  * and the only danger is skipping too much.
601                  */
602                 if (PageCompound(page)) {
603                         const unsigned int order = compound_order(page);
604
605                         if (likely(order <= MAX_ORDER)) {
606                                 blockpfn += (1UL << order) - 1;
607                                 cursor += (1UL << order) - 1;
608                                 nr_scanned += (1UL << order) - 1;
609                         }
610                         goto isolate_fail;
611                 }
612
613                 if (!PageBuddy(page))
614                         goto isolate_fail;
615
616                 /* If we already hold the lock, we can skip some rechecking. */
617                 if (!locked) {
618                         locked = compact_lock_irqsave(&cc->zone->lock,
619                                                                 &flags, cc);
620
621                         /* Recheck this is a buddy page under lock */
622                         if (!PageBuddy(page))
623                                 goto isolate_fail;
624                 }
625
626                 /* Found a free page, will break it into order-0 pages */
627                 order = buddy_order(page);
628                 isolated = __isolate_free_page(page, order);
629                 if (!isolated)
630                         break;
631                 set_page_private(page, order);
632
633                 nr_scanned += isolated - 1;
634                 total_isolated += isolated;
635                 cc->nr_freepages += isolated;
636                 list_add_tail(&page->lru, freelist);
637
638                 if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
639                         blockpfn += isolated;
640                         break;
641                 }
642                 /* Advance to the end of split page */
643                 blockpfn += isolated - 1;
644                 cursor += isolated - 1;
645                 continue;
646
647 isolate_fail:
648                 if (strict)
649                         break;
650                 else
651                         continue;
652
653         }
654
655         if (locked)
656                 spin_unlock_irqrestore(&cc->zone->lock, flags);
657
658         /*
659          * There is a tiny chance that we have read bogus compound_order(),
660          * so be careful to not go outside of the pageblock.
661          */
662         if (unlikely(blockpfn > end_pfn))
663                 blockpfn = end_pfn;
664
665         trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
666                                         nr_scanned, total_isolated);
667
668         /* Record how far we have got within the block */
669         *start_pfn = blockpfn;
670
671         /*
672          * If strict isolation is requested by CMA then check that all the
673          * pages requested were isolated. If there were any failures, 0 is
674          * returned and CMA will fail.
675          */
676         if (strict && blockpfn < end_pfn)
677                 total_isolated = 0;
678
679         cc->total_free_scanned += nr_scanned;
680         if (total_isolated)
681                 count_compact_events(COMPACTISOLATED, total_isolated);
682         return total_isolated;
683 }
684
685 /**
686  * isolate_freepages_range() - isolate free pages.
687  * @cc:        Compaction control structure.
688  * @start_pfn: The first PFN to start isolating.
689  * @end_pfn:   The one-past-last PFN.
690  *
691  * Non-free pages, invalid PFNs, or zone boundaries within the
692  * [start_pfn, end_pfn) range are considered errors, cause function to
693  * undo its actions and return zero.
694  *
695  * Otherwise, function returns one-past-the-last PFN of isolated page
696  * (which may be greater then end_pfn if end fell in a middle of
697  * a free page).
698  */
699 unsigned long
700 isolate_freepages_range(struct compact_control *cc,
701                         unsigned long start_pfn, unsigned long end_pfn)
702 {
703         unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
704         LIST_HEAD(freelist);
705
706         pfn = start_pfn;
707         block_start_pfn = pageblock_start_pfn(pfn);
708         if (block_start_pfn < cc->zone->zone_start_pfn)
709                 block_start_pfn = cc->zone->zone_start_pfn;
710         block_end_pfn = pageblock_end_pfn(pfn);
711
712         for (; pfn < end_pfn; pfn += isolated,
713                                 block_start_pfn = block_end_pfn,
714                                 block_end_pfn += pageblock_nr_pages) {
715                 /* Protect pfn from changing by isolate_freepages_block */
716                 unsigned long isolate_start_pfn = pfn;
717
718                 block_end_pfn = min(block_end_pfn, end_pfn);
719
720                 /*
721                  * pfn could pass the block_end_pfn if isolated freepage
722                  * is more than pageblock order. In this case, we adjust
723                  * scanning range to right one.
724                  */
725                 if (pfn >= block_end_pfn) {
726                         block_start_pfn = pageblock_start_pfn(pfn);
727                         block_end_pfn = pageblock_end_pfn(pfn);
728                         block_end_pfn = min(block_end_pfn, end_pfn);
729                 }
730
731                 if (!pageblock_pfn_to_page(block_start_pfn,
732                                         block_end_pfn, cc->zone))
733                         break;
734
735                 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
736                                         block_end_pfn, &freelist, 0, true);
737
738                 /*
739                  * In strict mode, isolate_freepages_block() returns 0 if
740                  * there are any holes in the block (ie. invalid PFNs or
741                  * non-free pages).
742                  */
743                 if (!isolated)
744                         break;
745
746                 /*
747                  * If we managed to isolate pages, it is always (1 << n) *
748                  * pageblock_nr_pages for some non-negative n.  (Max order
749                  * page may span two pageblocks).
750                  */
751         }
752
753         /* __isolate_free_page() does not map the pages */
754         split_map_pages(&freelist);
755
756         if (pfn < end_pfn) {
757                 /* Loop terminated early, cleanup. */
758                 release_freepages(&freelist);
759                 return 0;
760         }
761
762         /* We don't use freelists for anything. */
763         return pfn;
764 }
765
766 /* Similar to reclaim, but different enough that they don't share logic */
767 static bool too_many_isolated(struct compact_control *cc)
768 {
769         pg_data_t *pgdat = cc->zone->zone_pgdat;
770         bool too_many;
771
772         unsigned long active, inactive, isolated;
773
774         inactive = node_page_state(pgdat, NR_INACTIVE_FILE) +
775                         node_page_state(pgdat, NR_INACTIVE_ANON);
776         active = node_page_state(pgdat, NR_ACTIVE_FILE) +
777                         node_page_state(pgdat, NR_ACTIVE_ANON);
778         isolated = node_page_state(pgdat, NR_ISOLATED_FILE) +
779                         node_page_state(pgdat, NR_ISOLATED_ANON);
780
781         /*
782          * Allow GFP_NOFS to isolate past the limit set for regular
783          * compaction runs. This prevents an ABBA deadlock when other
784          * compactors have already isolated to the limit, but are
785          * blocked on filesystem locks held by the GFP_NOFS thread.
786          */
787         if (cc->gfp_mask & __GFP_FS) {
788                 inactive >>= 3;
789                 active >>= 3;
790         }
791
792         too_many = isolated > (inactive + active) / 2;
793         if (!too_many)
794                 wake_throttle_isolated(pgdat);
795
796         return too_many;
797 }
798
799 /**
800  * isolate_migratepages_block() - isolate all migrate-able pages within
801  *                                a single pageblock
802  * @cc:         Compaction control structure.
803  * @low_pfn:    The first PFN to isolate
804  * @end_pfn:    The one-past-the-last PFN to isolate, within same pageblock
805  * @mode:       Isolation mode to be used.
806  *
807  * Isolate all pages that can be migrated from the range specified by
808  * [low_pfn, end_pfn). The range is expected to be within same pageblock.
809  * Returns errno, like -EAGAIN or -EINTR in case e.g signal pending or congestion,
810  * -ENOMEM in case we could not allocate a page, or 0.
811  * cc->migrate_pfn will contain the next pfn to scan.
812  *
813  * The pages are isolated on cc->migratepages list (not required to be empty),
814  * and cc->nr_migratepages is updated accordingly.
815  */
816 static int
817 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
818                         unsigned long end_pfn, isolate_mode_t mode)
819 {
820         pg_data_t *pgdat = cc->zone->zone_pgdat;
821         unsigned long nr_scanned = 0, nr_isolated = 0;
822         struct lruvec *lruvec;
823         unsigned long flags = 0;
824         struct lruvec *locked = NULL;
825         struct folio *folio = NULL;
826         struct page *page = NULL, *valid_page = NULL;
827         struct address_space *mapping;
828         unsigned long start_pfn = low_pfn;
829         bool skip_on_failure = false;
830         unsigned long next_skip_pfn = 0;
831         bool skip_updated = false;
832         int ret = 0;
833
834         cc->migrate_pfn = low_pfn;
835
836         /*
837          * Ensure that there are not too many pages isolated from the LRU
838          * list by either parallel reclaimers or compaction. If there are,
839          * delay for some time until fewer pages are isolated
840          */
841         while (unlikely(too_many_isolated(cc))) {
842                 /* stop isolation if there are still pages not migrated */
843                 if (cc->nr_migratepages)
844                         return -EAGAIN;
845
846                 /* async migration should just abort */
847                 if (cc->mode == MIGRATE_ASYNC)
848                         return -EAGAIN;
849
850                 reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
851
852                 if (fatal_signal_pending(current))
853                         return -EINTR;
854         }
855
856         cond_resched();
857
858         if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
859                 skip_on_failure = true;
860                 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
861         }
862
863         /* Time to isolate some pages for migration */
864         for (; low_pfn < end_pfn; low_pfn++) {
865
866                 if (skip_on_failure && low_pfn >= next_skip_pfn) {
867                         /*
868                          * We have isolated all migration candidates in the
869                          * previous order-aligned block, and did not skip it due
870                          * to failure. We should migrate the pages now and
871                          * hopefully succeed compaction.
872                          */
873                         if (nr_isolated)
874                                 break;
875
876                         /*
877                          * We failed to isolate in the previous order-aligned
878                          * block. Set the new boundary to the end of the
879                          * current block. Note we can't simply increase
880                          * next_skip_pfn by 1 << order, as low_pfn might have
881                          * been incremented by a higher number due to skipping
882                          * a compound or a high-order buddy page in the
883                          * previous loop iteration.
884                          */
885                         next_skip_pfn = block_end_pfn(low_pfn, cc->order);
886                 }
887
888                 /*
889                  * Periodically drop the lock (if held) regardless of its
890                  * contention, to give chance to IRQs. Abort completely if
891                  * a fatal signal is pending.
892                  */
893                 if (!(low_pfn % COMPACT_CLUSTER_MAX)) {
894                         if (locked) {
895                                 unlock_page_lruvec_irqrestore(locked, flags);
896                                 locked = NULL;
897                         }
898
899                         if (fatal_signal_pending(current)) {
900                                 cc->contended = true;
901                                 ret = -EINTR;
902
903                                 goto fatal_pending;
904                         }
905
906                         cond_resched();
907                 }
908
909                 nr_scanned++;
910
911                 page = pfn_to_page(low_pfn);
912
913                 /*
914                  * Check if the pageblock has already been marked skipped.
915                  * Only the first PFN is checked as the caller isolates
916                  * COMPACT_CLUSTER_MAX at a time so the second call must
917                  * not falsely conclude that the block should be skipped.
918                  */
919                 if (!valid_page && (pageblock_aligned(low_pfn) ||
920                                     low_pfn == cc->zone->zone_start_pfn)) {
921                         if (!isolation_suitable(cc, page)) {
922                                 low_pfn = end_pfn;
923                                 folio = NULL;
924                                 goto isolate_abort;
925                         }
926                         valid_page = page;
927                 }
928
929                 if (PageHuge(page) && cc->alloc_contig) {
930                         if (locked) {
931                                 unlock_page_lruvec_irqrestore(locked, flags);
932                                 locked = NULL;
933                         }
934
935                         ret = isolate_or_dissolve_huge_page(page, &cc->migratepages);
936
937                         /*
938                          * Fail isolation in case isolate_or_dissolve_huge_page()
939                          * reports an error. In case of -ENOMEM, abort right away.
940                          */
941                         if (ret < 0) {
942                                  /* Do not report -EBUSY down the chain */
943                                 if (ret == -EBUSY)
944                                         ret = 0;
945                                 low_pfn += compound_nr(page) - 1;
946                                 nr_scanned += compound_nr(page) - 1;
947                                 goto isolate_fail;
948                         }
949
950                         if (PageHuge(page)) {
951                                 /*
952                                  * Hugepage was successfully isolated and placed
953                                  * on the cc->migratepages list.
954                                  */
955                                 folio = page_folio(page);
956                                 low_pfn += folio_nr_pages(folio) - 1;
957                                 goto isolate_success_no_list;
958                         }
959
960                         /*
961                          * Ok, the hugepage was dissolved. Now these pages are
962                          * Buddy and cannot be re-allocated because they are
963                          * isolated. Fall-through as the check below handles
964                          * Buddy pages.
965                          */
966                 }
967
968                 /*
969                  * Skip if free. We read page order here without zone lock
970                  * which is generally unsafe, but the race window is small and
971                  * the worst thing that can happen is that we skip some
972                  * potential isolation targets.
973                  */
974                 if (PageBuddy(page)) {
975                         unsigned long freepage_order = buddy_order_unsafe(page);
976
977                         /*
978                          * Without lock, we cannot be sure that what we got is
979                          * a valid page order. Consider only values in the
980                          * valid order range to prevent low_pfn overflow.
981                          */
982                         if (freepage_order > 0 && freepage_order <= MAX_ORDER) {
983                                 low_pfn += (1UL << freepage_order) - 1;
984                                 nr_scanned += (1UL << freepage_order) - 1;
985                         }
986                         continue;
987                 }
988
989                 /*
990                  * Regardless of being on LRU, compound pages such as THP and
991                  * hugetlbfs are not to be compacted unless we are attempting
992                  * an allocation much larger than the huge page size (eg CMA).
993                  * We can potentially save a lot of iterations if we skip them
994                  * at once. The check is racy, but we can consider only valid
995                  * values and the only danger is skipping too much.
996                  */
997                 if (PageCompound(page) && !cc->alloc_contig) {
998                         const unsigned int order = compound_order(page);
999
1000                         if (likely(order <= MAX_ORDER)) {
1001                                 low_pfn += (1UL << order) - 1;
1002                                 nr_scanned += (1UL << order) - 1;
1003                         }
1004                         goto isolate_fail;
1005                 }
1006
1007                 /*
1008                  * Check may be lockless but that's ok as we recheck later.
1009                  * It's possible to migrate LRU and non-lru movable pages.
1010                  * Skip any other type of page
1011                  */
1012                 if (!PageLRU(page)) {
1013                         /*
1014                          * __PageMovable can return false positive so we need
1015                          * to verify it under page_lock.
1016                          */
1017                         if (unlikely(__PageMovable(page)) &&
1018                                         !PageIsolated(page)) {
1019                                 if (locked) {
1020                                         unlock_page_lruvec_irqrestore(locked, flags);
1021                                         locked = NULL;
1022                                 }
1023
1024                                 if (isolate_movable_page(page, mode)) {
1025                                         folio = page_folio(page);
1026                                         goto isolate_success;
1027                                 }
1028                         }
1029
1030                         goto isolate_fail;
1031                 }
1032
1033                 /*
1034                  * Be careful not to clear PageLRU until after we're
1035                  * sure the page is not being freed elsewhere -- the
1036                  * page release code relies on it.
1037                  */
1038                 folio = folio_get_nontail_page(page);
1039                 if (unlikely(!folio))
1040                         goto isolate_fail;
1041
1042                 /*
1043                  * Migration will fail if an anonymous page is pinned in memory,
1044                  * so avoid taking lru_lock and isolating it unnecessarily in an
1045                  * admittedly racy check.
1046                  */
1047                 mapping = folio_mapping(folio);
1048                 if (!mapping && (folio_ref_count(folio) - 1) > folio_mapcount(folio))
1049                         goto isolate_fail_put;
1050
1051                 /*
1052                  * Only allow to migrate anonymous pages in GFP_NOFS context
1053                  * because those do not depend on fs locks.
1054                  */
1055                 if (!(cc->gfp_mask & __GFP_FS) && mapping)
1056                         goto isolate_fail_put;
1057
1058                 /* Only take pages on LRU: a check now makes later tests safe */
1059                 if (!folio_test_lru(folio))
1060                         goto isolate_fail_put;
1061
1062                 /* Compaction might skip unevictable pages but CMA takes them */
1063                 if (!(mode & ISOLATE_UNEVICTABLE) && folio_test_unevictable(folio))
1064                         goto isolate_fail_put;
1065
1066                 /*
1067                  * To minimise LRU disruption, the caller can indicate with
1068                  * ISOLATE_ASYNC_MIGRATE that it only wants to isolate pages
1069                  * it will be able to migrate without blocking - clean pages
1070                  * for the most part.  PageWriteback would require blocking.
1071                  */
1072                 if ((mode & ISOLATE_ASYNC_MIGRATE) && folio_test_writeback(folio))
1073                         goto isolate_fail_put;
1074
1075                 if ((mode & ISOLATE_ASYNC_MIGRATE) && folio_test_dirty(folio)) {
1076                         bool migrate_dirty;
1077
1078                         /*
1079                          * Only pages without mappings or that have a
1080                          * ->migrate_folio callback are possible to migrate
1081                          * without blocking. However, we can be racing with
1082                          * truncation so it's necessary to lock the page
1083                          * to stabilise the mapping as truncation holds
1084                          * the page lock until after the page is removed
1085                          * from the page cache.
1086                          */
1087                         if (!folio_trylock(folio))
1088                                 goto isolate_fail_put;
1089
1090                         mapping = folio_mapping(folio);
1091                         migrate_dirty = !mapping ||
1092                                         mapping->a_ops->migrate_folio;
1093                         folio_unlock(folio);
1094                         if (!migrate_dirty)
1095                                 goto isolate_fail_put;
1096                 }
1097
1098                 /* Try isolate the folio */
1099                 if (!folio_test_clear_lru(folio))
1100                         goto isolate_fail_put;
1101
1102                 lruvec = folio_lruvec(folio);
1103
1104                 /* If we already hold the lock, we can skip some rechecking */
1105                 if (lruvec != locked) {
1106                         if (locked)
1107                                 unlock_page_lruvec_irqrestore(locked, flags);
1108
1109                         compact_lock_irqsave(&lruvec->lru_lock, &flags, cc);
1110                         locked = lruvec;
1111
1112                         lruvec_memcg_debug(lruvec, folio);
1113
1114                         /*
1115                          * Try get exclusive access under lock. If marked for
1116                          * skip, the scan is aborted unless the current context
1117                          * is a rescan to reach the end of the pageblock.
1118                          */
1119                         if (!skip_updated && valid_page) {
1120                                 skip_updated = true;
1121                                 if (test_and_set_skip(cc, valid_page) &&
1122                                     !cc->finish_pageblock) {
1123                                         goto isolate_abort;
1124                                 }
1125                         }
1126
1127                         /*
1128                          * folio become large since the non-locked check,
1129                          * and it's on LRU.
1130                          */
1131                         if (unlikely(folio_test_large(folio) && !cc->alloc_contig)) {
1132                                 low_pfn += folio_nr_pages(folio) - 1;
1133                                 nr_scanned += folio_nr_pages(folio) - 1;
1134                                 folio_set_lru(folio);
1135                                 goto isolate_fail_put;
1136                         }
1137                 }
1138
1139                 /* The folio is taken off the LRU */
1140                 if (folio_test_large(folio))
1141                         low_pfn += folio_nr_pages(folio) - 1;
1142
1143                 /* Successfully isolated */
1144                 lruvec_del_folio(lruvec, folio);
1145                 node_stat_mod_folio(folio,
1146                                 NR_ISOLATED_ANON + folio_is_file_lru(folio),
1147                                 folio_nr_pages(folio));
1148
1149 isolate_success:
1150                 list_add(&folio->lru, &cc->migratepages);
1151 isolate_success_no_list:
1152                 cc->nr_migratepages += folio_nr_pages(folio);
1153                 nr_isolated += folio_nr_pages(folio);
1154                 nr_scanned += folio_nr_pages(folio) - 1;
1155
1156                 /*
1157                  * Avoid isolating too much unless this block is being
1158                  * fully scanned (e.g. dirty/writeback pages, parallel allocation)
1159                  * or a lock is contended. For contention, isolate quickly to
1160                  * potentially remove one source of contention.
1161                  */
1162                 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX &&
1163                     !cc->finish_pageblock && !cc->contended) {
1164                         ++low_pfn;
1165                         break;
1166                 }
1167
1168                 continue;
1169
1170 isolate_fail_put:
1171                 /* Avoid potential deadlock in freeing page under lru_lock */
1172                 if (locked) {
1173                         unlock_page_lruvec_irqrestore(locked, flags);
1174                         locked = NULL;
1175                 }
1176                 folio_put(folio);
1177
1178 isolate_fail:
1179                 if (!skip_on_failure && ret != -ENOMEM)
1180                         continue;
1181
1182                 /*
1183                  * We have isolated some pages, but then failed. Release them
1184                  * instead of migrating, as we cannot form the cc->order buddy
1185                  * page anyway.
1186                  */
1187                 if (nr_isolated) {
1188                         if (locked) {
1189                                 unlock_page_lruvec_irqrestore(locked, flags);
1190                                 locked = NULL;
1191                         }
1192                         putback_movable_pages(&cc->migratepages);
1193                         cc->nr_migratepages = 0;
1194                         nr_isolated = 0;
1195                 }
1196
1197                 if (low_pfn < next_skip_pfn) {
1198                         low_pfn = next_skip_pfn - 1;
1199                         /*
1200                          * The check near the loop beginning would have updated
1201                          * next_skip_pfn too, but this is a bit simpler.
1202                          */
1203                         next_skip_pfn += 1UL << cc->order;
1204                 }
1205
1206                 if (ret == -ENOMEM)
1207                         break;
1208         }
1209
1210         /*
1211          * The PageBuddy() check could have potentially brought us outside
1212          * the range to be scanned.
1213          */
1214         if (unlikely(low_pfn > end_pfn))
1215                 low_pfn = end_pfn;
1216
1217         folio = NULL;
1218
1219 isolate_abort:
1220         if (locked)
1221                 unlock_page_lruvec_irqrestore(locked, flags);
1222         if (folio) {
1223                 folio_set_lru(folio);
1224                 folio_put(folio);
1225         }
1226
1227         /*
1228          * Update the cached scanner pfn once the pageblock has been scanned.
1229          * Pages will either be migrated in which case there is no point
1230          * scanning in the near future or migration failed in which case the
1231          * failure reason may persist. The block is marked for skipping if
1232          * there were no pages isolated in the block or if the block is
1233          * rescanned twice in a row.
1234          */
1235         if (low_pfn == end_pfn && (!nr_isolated || cc->finish_pageblock)) {
1236                 if (!cc->no_set_skip_hint && valid_page && !skip_updated)
1237                         set_pageblock_skip(valid_page);
1238                 update_cached_migrate(cc, low_pfn);
1239         }
1240
1241         trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
1242                                                 nr_scanned, nr_isolated);
1243
1244 fatal_pending:
1245         cc->total_migrate_scanned += nr_scanned;
1246         if (nr_isolated)
1247                 count_compact_events(COMPACTISOLATED, nr_isolated);
1248
1249         cc->migrate_pfn = low_pfn;
1250
1251         return ret;
1252 }
1253
1254 /**
1255  * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
1256  * @cc:        Compaction control structure.
1257  * @start_pfn: The first PFN to start isolating.
1258  * @end_pfn:   The one-past-last PFN.
1259  *
1260  * Returns -EAGAIN when contented, -EINTR in case of a signal pending, -ENOMEM
1261  * in case we could not allocate a page, or 0.
1262  */
1263 int
1264 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
1265                                                         unsigned long end_pfn)
1266 {
1267         unsigned long pfn, block_start_pfn, block_end_pfn;
1268         int ret = 0;
1269
1270         /* Scan block by block. First and last block may be incomplete */
1271         pfn = start_pfn;
1272         block_start_pfn = pageblock_start_pfn(pfn);
1273         if (block_start_pfn < cc->zone->zone_start_pfn)
1274                 block_start_pfn = cc->zone->zone_start_pfn;
1275         block_end_pfn = pageblock_end_pfn(pfn);
1276
1277         for (; pfn < end_pfn; pfn = block_end_pfn,
1278                                 block_start_pfn = block_end_pfn,
1279                                 block_end_pfn += pageblock_nr_pages) {
1280
1281                 block_end_pfn = min(block_end_pfn, end_pfn);
1282
1283                 if (!pageblock_pfn_to_page(block_start_pfn,
1284                                         block_end_pfn, cc->zone))
1285                         continue;
1286
1287                 ret = isolate_migratepages_block(cc, pfn, block_end_pfn,
1288                                                  ISOLATE_UNEVICTABLE);
1289
1290                 if (ret)
1291                         break;
1292
1293                 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX)
1294                         break;
1295         }
1296
1297         return ret;
1298 }
1299
1300 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
1301 #ifdef CONFIG_COMPACTION
1302
1303 static bool suitable_migration_source(struct compact_control *cc,
1304                                                         struct page *page)
1305 {
1306         int block_mt;
1307
1308         if (pageblock_skip_persistent(page))
1309                 return false;
1310
1311         if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
1312                 return true;
1313
1314         block_mt = get_pageblock_migratetype(page);
1315
1316         if (cc->migratetype == MIGRATE_MOVABLE)
1317                 return is_migrate_movable(block_mt);
1318         else
1319                 return block_mt == cc->migratetype;
1320 }
1321
1322 /* Returns true if the page is within a block suitable for migration to */
1323 static bool suitable_migration_target(struct compact_control *cc,
1324                                                         struct page *page)
1325 {
1326         /* If the page is a large free page, then disallow migration */
1327         if (PageBuddy(page)) {
1328                 /*
1329                  * We are checking page_order without zone->lock taken. But
1330                  * the only small danger is that we skip a potentially suitable
1331                  * pageblock, so it's not worth to check order for valid range.
1332                  */
1333                 if (buddy_order_unsafe(page) >= pageblock_order)
1334                         return false;
1335         }
1336
1337         if (cc->ignore_block_suitable)
1338                 return true;
1339
1340         /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1341         if (is_migrate_movable(get_pageblock_migratetype(page)))
1342                 return true;
1343
1344         /* Otherwise skip the block */
1345         return false;
1346 }
1347
1348 static inline unsigned int
1349 freelist_scan_limit(struct compact_control *cc)
1350 {
1351         unsigned short shift = BITS_PER_LONG - 1;
1352
1353         return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1;
1354 }
1355
1356 /*
1357  * Test whether the free scanner has reached the same or lower pageblock than
1358  * the migration scanner, and compaction should thus terminate.
1359  */
1360 static inline bool compact_scanners_met(struct compact_control *cc)
1361 {
1362         return (cc->free_pfn >> pageblock_order)
1363                 <= (cc->migrate_pfn >> pageblock_order);
1364 }
1365
1366 /*
1367  * Used when scanning for a suitable migration target which scans freelists
1368  * in reverse. Reorders the list such as the unscanned pages are scanned
1369  * first on the next iteration of the free scanner
1370  */
1371 static void
1372 move_freelist_head(struct list_head *freelist, struct page *freepage)
1373 {
1374         LIST_HEAD(sublist);
1375
1376         if (!list_is_last(freelist, &freepage->lru)) {
1377                 list_cut_before(&sublist, freelist, &freepage->lru);
1378                 list_splice_tail(&sublist, freelist);
1379         }
1380 }
1381
1382 /*
1383  * Similar to move_freelist_head except used by the migration scanner
1384  * when scanning forward. It's possible for these list operations to
1385  * move against each other if they search the free list exactly in
1386  * lockstep.
1387  */
1388 static void
1389 move_freelist_tail(struct list_head *freelist, struct page *freepage)
1390 {
1391         LIST_HEAD(sublist);
1392
1393         if (!list_is_first(freelist, &freepage->lru)) {
1394                 list_cut_position(&sublist, freelist, &freepage->lru);
1395                 list_splice_tail(&sublist, freelist);
1396         }
1397 }
1398
1399 static void
1400 fast_isolate_around(struct compact_control *cc, unsigned long pfn)
1401 {
1402         unsigned long start_pfn, end_pfn;
1403         struct page *page;
1404
1405         /* Do not search around if there are enough pages already */
1406         if (cc->nr_freepages >= cc->nr_migratepages)
1407                 return;
1408
1409         /* Minimise scanning during async compaction */
1410         if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC)
1411                 return;
1412
1413         /* Pageblock boundaries */
1414         start_pfn = max(pageblock_start_pfn(pfn), cc->zone->zone_start_pfn);
1415         end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone));
1416
1417         page = pageblock_pfn_to_page(start_pfn, end_pfn, cc->zone);
1418         if (!page)
1419                 return;
1420
1421         isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false);
1422
1423         /* Skip this pageblock in the future as it's full or nearly full */
1424         if (start_pfn == end_pfn)
1425                 set_pageblock_skip(page);
1426
1427         return;
1428 }
1429
1430 /* Search orders in round-robin fashion */
1431 static int next_search_order(struct compact_control *cc, int order)
1432 {
1433         order--;
1434         if (order < 0)
1435                 order = cc->order - 1;
1436
1437         /* Search wrapped around? */
1438         if (order == cc->search_order) {
1439                 cc->search_order--;
1440                 if (cc->search_order < 0)
1441                         cc->search_order = cc->order - 1;
1442                 return -1;
1443         }
1444
1445         return order;
1446 }
1447
1448 static void fast_isolate_freepages(struct compact_control *cc)
1449 {
1450         unsigned int limit = max(1U, freelist_scan_limit(cc) >> 1);
1451         unsigned int nr_scanned = 0, total_isolated = 0;
1452         unsigned long low_pfn, min_pfn, highest = 0;
1453         unsigned long nr_isolated = 0;
1454         unsigned long distance;
1455         struct page *page = NULL;
1456         bool scan_start = false;
1457         int order;
1458
1459         /* Full compaction passes in a negative order */
1460         if (cc->order <= 0)
1461                 return;
1462
1463         /*
1464          * If starting the scan, use a deeper search and use the highest
1465          * PFN found if a suitable one is not found.
1466          */
1467         if (cc->free_pfn >= cc->zone->compact_init_free_pfn) {
1468                 limit = pageblock_nr_pages >> 1;
1469                 scan_start = true;
1470         }
1471
1472         /*
1473          * Preferred point is in the top quarter of the scan space but take
1474          * a pfn from the top half if the search is problematic.
1475          */
1476         distance = (cc->free_pfn - cc->migrate_pfn);
1477         low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2));
1478         min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1));
1479
1480         if (WARN_ON_ONCE(min_pfn > low_pfn))
1481                 low_pfn = min_pfn;
1482
1483         /*
1484          * Search starts from the last successful isolation order or the next
1485          * order to search after a previous failure
1486          */
1487         cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order);
1488
1489         for (order = cc->search_order;
1490              !page && order >= 0;
1491              order = next_search_order(cc, order)) {
1492                 struct free_area *area = &cc->zone->free_area[order];
1493                 struct list_head *freelist;
1494                 struct page *freepage;
1495                 unsigned long flags;
1496                 unsigned int order_scanned = 0;
1497                 unsigned long high_pfn = 0;
1498
1499                 if (!area->nr_free)
1500                         continue;
1501
1502                 spin_lock_irqsave(&cc->zone->lock, flags);
1503                 freelist = &area->free_list[MIGRATE_MOVABLE];
1504                 list_for_each_entry_reverse(freepage, freelist, lru) {
1505                         unsigned long pfn;
1506
1507                         order_scanned++;
1508                         nr_scanned++;
1509                         pfn = page_to_pfn(freepage);
1510
1511                         if (pfn >= highest)
1512                                 highest = max(pageblock_start_pfn(pfn),
1513                                               cc->zone->zone_start_pfn);
1514
1515                         if (pfn >= low_pfn) {
1516                                 cc->fast_search_fail = 0;
1517                                 cc->search_order = order;
1518                                 page = freepage;
1519                                 break;
1520                         }
1521
1522                         if (pfn >= min_pfn && pfn > high_pfn) {
1523                                 high_pfn = pfn;
1524
1525                                 /* Shorten the scan if a candidate is found */
1526                                 limit >>= 1;
1527                         }
1528
1529                         if (order_scanned >= limit)
1530                                 break;
1531                 }
1532
1533                 /* Use a minimum pfn if a preferred one was not found */
1534                 if (!page && high_pfn) {
1535                         page = pfn_to_page(high_pfn);
1536
1537                         /* Update freepage for the list reorder below */
1538                         freepage = page;
1539                 }
1540
1541                 /* Reorder to so a future search skips recent pages */
1542                 move_freelist_head(freelist, freepage);
1543
1544                 /* Isolate the page if available */
1545                 if (page) {
1546                         if (__isolate_free_page(page, order)) {
1547                                 set_page_private(page, order);
1548                                 nr_isolated = 1 << order;
1549                                 nr_scanned += nr_isolated - 1;
1550                                 total_isolated += nr_isolated;
1551                                 cc->nr_freepages += nr_isolated;
1552                                 list_add_tail(&page->lru, &cc->freepages);
1553                                 count_compact_events(COMPACTISOLATED, nr_isolated);
1554                         } else {
1555                                 /* If isolation fails, abort the search */
1556                                 order = cc->search_order + 1;
1557                                 page = NULL;
1558                         }
1559                 }
1560
1561                 spin_unlock_irqrestore(&cc->zone->lock, flags);
1562
1563                 /* Skip fast search if enough freepages isolated */
1564                 if (cc->nr_freepages >= cc->nr_migratepages)
1565                         break;
1566
1567                 /*
1568                  * Smaller scan on next order so the total scan is related
1569                  * to freelist_scan_limit.
1570                  */
1571                 if (order_scanned >= limit)
1572                         limit = max(1U, limit >> 1);
1573         }
1574
1575         trace_mm_compaction_fast_isolate_freepages(min_pfn, cc->free_pfn,
1576                                                    nr_scanned, total_isolated);
1577
1578         if (!page) {
1579                 cc->fast_search_fail++;
1580                 if (scan_start) {
1581                         /*
1582                          * Use the highest PFN found above min. If one was
1583                          * not found, be pessimistic for direct compaction
1584                          * and use the min mark.
1585                          */
1586                         if (highest >= min_pfn) {
1587                                 page = pfn_to_page(highest);
1588                                 cc->free_pfn = highest;
1589                         } else {
1590                                 if (cc->direct_compaction && pfn_valid(min_pfn)) {
1591                                         page = pageblock_pfn_to_page(min_pfn,
1592                                                 min(pageblock_end_pfn(min_pfn),
1593                                                     zone_end_pfn(cc->zone)),
1594                                                 cc->zone);
1595                                         cc->free_pfn = min_pfn;
1596                                 }
1597                         }
1598                 }
1599         }
1600
1601         if (highest && highest >= cc->zone->compact_cached_free_pfn) {
1602                 highest -= pageblock_nr_pages;
1603                 cc->zone->compact_cached_free_pfn = highest;
1604         }
1605
1606         cc->total_free_scanned += nr_scanned;
1607         if (!page)
1608                 return;
1609
1610         low_pfn = page_to_pfn(page);
1611         fast_isolate_around(cc, low_pfn);
1612 }
1613
1614 /*
1615  * Based on information in the current compact_control, find blocks
1616  * suitable for isolating free pages from and then isolate them.
1617  */
1618 static void isolate_freepages(struct compact_control *cc)
1619 {
1620         struct zone *zone = cc->zone;
1621         struct page *page;
1622         unsigned long block_start_pfn;  /* start of current pageblock */
1623         unsigned long isolate_start_pfn; /* exact pfn we start at */
1624         unsigned long block_end_pfn;    /* end of current pageblock */
1625         unsigned long low_pfn;       /* lowest pfn scanner is able to scan */
1626         struct list_head *freelist = &cc->freepages;
1627         unsigned int stride;
1628
1629         /* Try a small search of the free lists for a candidate */
1630         fast_isolate_freepages(cc);
1631         if (cc->nr_freepages)
1632                 goto splitmap;
1633
1634         /*
1635          * Initialise the free scanner. The starting point is where we last
1636          * successfully isolated from, zone-cached value, or the end of the
1637          * zone when isolating for the first time. For looping we also need
1638          * this pfn aligned down to the pageblock boundary, because we do
1639          * block_start_pfn -= pageblock_nr_pages in the for loop.
1640          * For ending point, take care when isolating in last pageblock of a
1641          * zone which ends in the middle of a pageblock.
1642          * The low boundary is the end of the pageblock the migration scanner
1643          * is using.
1644          */
1645         isolate_start_pfn = cc->free_pfn;
1646         block_start_pfn = pageblock_start_pfn(isolate_start_pfn);
1647         block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1648                                                 zone_end_pfn(zone));
1649         low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1650         stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1;
1651
1652         /*
1653          * Isolate free pages until enough are available to migrate the
1654          * pages on cc->migratepages. We stop searching if the migrate
1655          * and free page scanners meet or enough free pages are isolated.
1656          */
1657         for (; block_start_pfn >= low_pfn;
1658                                 block_end_pfn = block_start_pfn,
1659                                 block_start_pfn -= pageblock_nr_pages,
1660                                 isolate_start_pfn = block_start_pfn) {
1661                 unsigned long nr_isolated;
1662
1663                 /*
1664                  * This can iterate a massively long zone without finding any
1665                  * suitable migration targets, so periodically check resched.
1666                  */
1667                 if (!(block_start_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages)))
1668                         cond_resched();
1669
1670                 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1671                                                                         zone);
1672                 if (!page)
1673                         continue;
1674
1675                 /* Check the block is suitable for migration */
1676                 if (!suitable_migration_target(cc, page))
1677                         continue;
1678
1679                 /* If isolation recently failed, do not retry */
1680                 if (!isolation_suitable(cc, page))
1681                         continue;
1682
1683                 /* Found a block suitable for isolating free pages from. */
1684                 nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn,
1685                                         block_end_pfn, freelist, stride, false);
1686
1687                 /* Update the skip hint if the full pageblock was scanned */
1688                 if (isolate_start_pfn == block_end_pfn)
1689                         update_pageblock_skip(cc, page, block_start_pfn);
1690
1691                 /* Are enough freepages isolated? */
1692                 if (cc->nr_freepages >= cc->nr_migratepages) {
1693                         if (isolate_start_pfn >= block_end_pfn) {
1694                                 /*
1695                                  * Restart at previous pageblock if more
1696                                  * freepages can be isolated next time.
1697                                  */
1698                                 isolate_start_pfn =
1699                                         block_start_pfn - pageblock_nr_pages;
1700                         }
1701                         break;
1702                 } else if (isolate_start_pfn < block_end_pfn) {
1703                         /*
1704                          * If isolation failed early, do not continue
1705                          * needlessly.
1706                          */
1707                         break;
1708                 }
1709
1710                 /* Adjust stride depending on isolation */
1711                 if (nr_isolated) {
1712                         stride = 1;
1713                         continue;
1714                 }
1715                 stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1);
1716         }
1717
1718         /*
1719          * Record where the free scanner will restart next time. Either we
1720          * broke from the loop and set isolate_start_pfn based on the last
1721          * call to isolate_freepages_block(), or we met the migration scanner
1722          * and the loop terminated due to isolate_start_pfn < low_pfn
1723          */
1724         cc->free_pfn = isolate_start_pfn;
1725
1726 splitmap:
1727         /* __isolate_free_page() does not map the pages */
1728         split_map_pages(freelist);
1729 }
1730
1731 /*
1732  * This is a migrate-callback that "allocates" freepages by taking pages
1733  * from the isolated freelists in the block we are migrating to.
1734  */
1735 static struct folio *compaction_alloc(struct folio *src, unsigned long data)
1736 {
1737         struct compact_control *cc = (struct compact_control *)data;
1738         struct folio *dst;
1739
1740         if (list_empty(&cc->freepages)) {
1741                 isolate_freepages(cc);
1742
1743                 if (list_empty(&cc->freepages))
1744                         return NULL;
1745         }
1746
1747         dst = list_entry(cc->freepages.next, struct folio, lru);
1748         list_del(&dst->lru);
1749         cc->nr_freepages--;
1750
1751         return dst;
1752 }
1753
1754 /*
1755  * This is a migrate-callback that "frees" freepages back to the isolated
1756  * freelist.  All pages on the freelist are from the same zone, so there is no
1757  * special handling needed for NUMA.
1758  */
1759 static void compaction_free(struct folio *dst, unsigned long data)
1760 {
1761         struct compact_control *cc = (struct compact_control *)data;
1762
1763         list_add(&dst->lru, &cc->freepages);
1764         cc->nr_freepages++;
1765 }
1766
1767 /* possible outcome of isolate_migratepages */
1768 typedef enum {
1769         ISOLATE_ABORT,          /* Abort compaction now */
1770         ISOLATE_NONE,           /* No pages isolated, continue scanning */
1771         ISOLATE_SUCCESS,        /* Pages isolated, migrate */
1772 } isolate_migrate_t;
1773
1774 /*
1775  * Allow userspace to control policy on scanning the unevictable LRU for
1776  * compactable pages.
1777  */
1778 static int sysctl_compact_unevictable_allowed __read_mostly = CONFIG_COMPACT_UNEVICTABLE_DEFAULT;
1779 /*
1780  * Tunable for proactive compaction. It determines how
1781  * aggressively the kernel should compact memory in the
1782  * background. It takes values in the range [0, 100].
1783  */
1784 static unsigned int __read_mostly sysctl_compaction_proactiveness = 20;
1785 static int sysctl_extfrag_threshold = 500;
1786 static int __read_mostly sysctl_compact_memory;
1787
1788 static inline void
1789 update_fast_start_pfn(struct compact_control *cc, unsigned long pfn)
1790 {
1791         if (cc->fast_start_pfn == ULONG_MAX)
1792                 return;
1793
1794         if (!cc->fast_start_pfn)
1795                 cc->fast_start_pfn = pfn;
1796
1797         cc->fast_start_pfn = min(cc->fast_start_pfn, pfn);
1798 }
1799
1800 static inline unsigned long
1801 reinit_migrate_pfn(struct compact_control *cc)
1802 {
1803         if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX)
1804                 return cc->migrate_pfn;
1805
1806         cc->migrate_pfn = cc->fast_start_pfn;
1807         cc->fast_start_pfn = ULONG_MAX;
1808
1809         return cc->migrate_pfn;
1810 }
1811
1812 /*
1813  * Briefly search the free lists for a migration source that already has
1814  * some free pages to reduce the number of pages that need migration
1815  * before a pageblock is free.
1816  */
1817 static unsigned long fast_find_migrateblock(struct compact_control *cc)
1818 {
1819         unsigned int limit = freelist_scan_limit(cc);
1820         unsigned int nr_scanned = 0;
1821         unsigned long distance;
1822         unsigned long pfn = cc->migrate_pfn;
1823         unsigned long high_pfn;
1824         int order;
1825         bool found_block = false;
1826
1827         /* Skip hints are relied on to avoid repeats on the fast search */
1828         if (cc->ignore_skip_hint)
1829                 return pfn;
1830
1831         /*
1832          * If the pageblock should be finished then do not select a different
1833          * pageblock.
1834          */
1835         if (cc->finish_pageblock)
1836                 return pfn;
1837
1838         /*
1839          * If the migrate_pfn is not at the start of a zone or the start
1840          * of a pageblock then assume this is a continuation of a previous
1841          * scan restarted due to COMPACT_CLUSTER_MAX.
1842          */
1843         if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn))
1844                 return pfn;
1845
1846         /*
1847          * For smaller orders, just linearly scan as the number of pages
1848          * to migrate should be relatively small and does not necessarily
1849          * justify freeing up a large block for a small allocation.
1850          */
1851         if (cc->order <= PAGE_ALLOC_COSTLY_ORDER)
1852                 return pfn;
1853
1854         /*
1855          * Only allow kcompactd and direct requests for movable pages to
1856          * quickly clear out a MOVABLE pageblock for allocation. This
1857          * reduces the risk that a large movable pageblock is freed for
1858          * an unmovable/reclaimable small allocation.
1859          */
1860         if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE)
1861                 return pfn;
1862
1863         /*
1864          * When starting the migration scanner, pick any pageblock within the
1865          * first half of the search space. Otherwise try and pick a pageblock
1866          * within the first eighth to reduce the chances that a migration
1867          * target later becomes a source.
1868          */
1869         distance = (cc->free_pfn - cc->migrate_pfn) >> 1;
1870         if (cc->migrate_pfn != cc->zone->zone_start_pfn)
1871                 distance >>= 2;
1872         high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance);
1873
1874         for (order = cc->order - 1;
1875              order >= PAGE_ALLOC_COSTLY_ORDER && !found_block && nr_scanned < limit;
1876              order--) {
1877                 struct free_area *area = &cc->zone->free_area[order];
1878                 struct list_head *freelist;
1879                 unsigned long flags;
1880                 struct page *freepage;
1881
1882                 if (!area->nr_free)
1883                         continue;
1884
1885                 spin_lock_irqsave(&cc->zone->lock, flags);
1886                 freelist = &area->free_list[MIGRATE_MOVABLE];
1887                 list_for_each_entry(freepage, freelist, lru) {
1888                         unsigned long free_pfn;
1889
1890                         if (nr_scanned++ >= limit) {
1891                                 move_freelist_tail(freelist, freepage);
1892                                 break;
1893                         }
1894
1895                         free_pfn = page_to_pfn(freepage);
1896                         if (free_pfn < high_pfn) {
1897                                 /*
1898                                  * Avoid if skipped recently. Ideally it would
1899                                  * move to the tail but even safe iteration of
1900                                  * the list assumes an entry is deleted, not
1901                                  * reordered.
1902                                  */
1903                                 if (get_pageblock_skip(freepage))
1904                                         continue;
1905
1906                                 /* Reorder to so a future search skips recent pages */
1907                                 move_freelist_tail(freelist, freepage);
1908
1909                                 update_fast_start_pfn(cc, free_pfn);
1910                                 pfn = pageblock_start_pfn(free_pfn);
1911                                 if (pfn < cc->zone->zone_start_pfn)
1912                                         pfn = cc->zone->zone_start_pfn;
1913                                 cc->fast_search_fail = 0;
1914                                 found_block = true;
1915                                 break;
1916                         }
1917                 }
1918                 spin_unlock_irqrestore(&cc->zone->lock, flags);
1919         }
1920
1921         cc->total_migrate_scanned += nr_scanned;
1922
1923         /*
1924          * If fast scanning failed then use a cached entry for a page block
1925          * that had free pages as the basis for starting a linear scan.
1926          */
1927         if (!found_block) {
1928                 cc->fast_search_fail++;
1929                 pfn = reinit_migrate_pfn(cc);
1930         }
1931         return pfn;
1932 }
1933
1934 /*
1935  * Isolate all pages that can be migrated from the first suitable block,
1936  * starting at the block pointed to by the migrate scanner pfn within
1937  * compact_control.
1938  */
1939 static isolate_migrate_t isolate_migratepages(struct compact_control *cc)
1940 {
1941         unsigned long block_start_pfn;
1942         unsigned long block_end_pfn;
1943         unsigned long low_pfn;
1944         struct page *page;
1945         const isolate_mode_t isolate_mode =
1946                 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1947                 (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1948         bool fast_find_block;
1949
1950         /*
1951          * Start at where we last stopped, or beginning of the zone as
1952          * initialized by compact_zone(). The first failure will use
1953          * the lowest PFN as the starting point for linear scanning.
1954          */
1955         low_pfn = fast_find_migrateblock(cc);
1956         block_start_pfn = pageblock_start_pfn(low_pfn);
1957         if (block_start_pfn < cc->zone->zone_start_pfn)
1958                 block_start_pfn = cc->zone->zone_start_pfn;
1959
1960         /*
1961          * fast_find_migrateblock marks a pageblock skipped so to avoid
1962          * the isolation_suitable check below, check whether the fast
1963          * search was successful.
1964          */
1965         fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail;
1966
1967         /* Only scan within a pageblock boundary */
1968         block_end_pfn = pageblock_end_pfn(low_pfn);
1969
1970         /*
1971          * Iterate over whole pageblocks until we find the first suitable.
1972          * Do not cross the free scanner.
1973          */
1974         for (; block_end_pfn <= cc->free_pfn;
1975                         fast_find_block = false,
1976                         cc->migrate_pfn = low_pfn = block_end_pfn,
1977                         block_start_pfn = block_end_pfn,
1978                         block_end_pfn += pageblock_nr_pages) {
1979
1980                 /*
1981                  * This can potentially iterate a massively long zone with
1982                  * many pageblocks unsuitable, so periodically check if we
1983                  * need to schedule.
1984                  */
1985                 if (!(low_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages)))
1986                         cond_resched();
1987
1988                 page = pageblock_pfn_to_page(block_start_pfn,
1989                                                 block_end_pfn, cc->zone);
1990                 if (!page) {
1991                         unsigned long next_pfn;
1992
1993                         next_pfn = skip_offline_sections(block_start_pfn);
1994                         if (next_pfn)
1995                                 block_end_pfn = min(next_pfn, cc->free_pfn);
1996                         continue;
1997                 }
1998
1999                 /*
2000                  * If isolation recently failed, do not retry. Only check the
2001                  * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock
2002                  * to be visited multiple times. Assume skip was checked
2003                  * before making it "skip" so other compaction instances do
2004                  * not scan the same block.
2005                  */
2006                 if ((pageblock_aligned(low_pfn) ||
2007                      low_pfn == cc->zone->zone_start_pfn) &&
2008                     !fast_find_block && !isolation_suitable(cc, page))
2009                         continue;
2010
2011                 /*
2012                  * For async direct compaction, only scan the pageblocks of the
2013                  * same migratetype without huge pages. Async direct compaction
2014                  * is optimistic to see if the minimum amount of work satisfies
2015                  * the allocation. The cached PFN is updated as it's possible
2016                  * that all remaining blocks between source and target are
2017                  * unsuitable and the compaction scanners fail to meet.
2018                  */
2019                 if (!suitable_migration_source(cc, page)) {
2020                         update_cached_migrate(cc, block_end_pfn);
2021                         continue;
2022                 }
2023
2024                 /* Perform the isolation */
2025                 if (isolate_migratepages_block(cc, low_pfn, block_end_pfn,
2026                                                 isolate_mode))
2027                         return ISOLATE_ABORT;
2028
2029                 /*
2030                  * Either we isolated something and proceed with migration. Or
2031                  * we failed and compact_zone should decide if we should
2032                  * continue or not.
2033                  */
2034                 break;
2035         }
2036
2037         return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
2038 }
2039
2040 /*
2041  * order == -1 is expected when compacting via
2042  * /proc/sys/vm/compact_memory
2043  */
2044 static inline bool is_via_compact_memory(int order)
2045 {
2046         return order == -1;
2047 }
2048
2049 /*
2050  * Determine whether kswapd is (or recently was!) running on this node.
2051  *
2052  * pgdat_kswapd_lock() pins pgdat->kswapd, so a concurrent kswapd_stop() can't
2053  * zero it.
2054  */
2055 static bool kswapd_is_running(pg_data_t *pgdat)
2056 {
2057         bool running;
2058
2059         pgdat_kswapd_lock(pgdat);
2060         running = pgdat->kswapd && task_is_running(pgdat->kswapd);
2061         pgdat_kswapd_unlock(pgdat);
2062
2063         return running;
2064 }
2065
2066 /*
2067  * A zone's fragmentation score is the external fragmentation wrt to the
2068  * COMPACTION_HPAGE_ORDER. It returns a value in the range [0, 100].
2069  */
2070 static unsigned int fragmentation_score_zone(struct zone *zone)
2071 {
2072         return extfrag_for_order(zone, COMPACTION_HPAGE_ORDER);
2073 }
2074
2075 /*
2076  * A weighted zone's fragmentation score is the external fragmentation
2077  * wrt to the COMPACTION_HPAGE_ORDER scaled by the zone's size. It
2078  * returns a value in the range [0, 100].
2079  *
2080  * The scaling factor ensures that proactive compaction focuses on larger
2081  * zones like ZONE_NORMAL, rather than smaller, specialized zones like
2082  * ZONE_DMA32. For smaller zones, the score value remains close to zero,
2083  * and thus never exceeds the high threshold for proactive compaction.
2084  */
2085 static unsigned int fragmentation_score_zone_weighted(struct zone *zone)
2086 {
2087         unsigned long score;
2088
2089         score = zone->present_pages * fragmentation_score_zone(zone);
2090         return div64_ul(score, zone->zone_pgdat->node_present_pages + 1);
2091 }
2092
2093 /*
2094  * The per-node proactive (background) compaction process is started by its
2095  * corresponding kcompactd thread when the node's fragmentation score
2096  * exceeds the high threshold. The compaction process remains active till
2097  * the node's score falls below the low threshold, or one of the back-off
2098  * conditions is met.
2099  */
2100 static unsigned int fragmentation_score_node(pg_data_t *pgdat)
2101 {
2102         unsigned int score = 0;
2103         int zoneid;
2104
2105         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2106                 struct zone *zone;
2107
2108                 zone = &pgdat->node_zones[zoneid];
2109                 if (!populated_zone(zone))
2110                         continue;
2111                 score += fragmentation_score_zone_weighted(zone);
2112         }
2113
2114         return score;
2115 }
2116
2117 static unsigned int fragmentation_score_wmark(pg_data_t *pgdat, bool low)
2118 {
2119         unsigned int wmark_low;
2120
2121         /*
2122          * Cap the low watermark to avoid excessive compaction
2123          * activity in case a user sets the proactiveness tunable
2124          * close to 100 (maximum).
2125          */
2126         wmark_low = max(100U - sysctl_compaction_proactiveness, 5U);
2127         return low ? wmark_low : min(wmark_low + 10, 100U);
2128 }
2129
2130 static bool should_proactive_compact_node(pg_data_t *pgdat)
2131 {
2132         int wmark_high;
2133
2134         if (!sysctl_compaction_proactiveness || kswapd_is_running(pgdat))
2135                 return false;
2136
2137         wmark_high = fragmentation_score_wmark(pgdat, false);
2138         return fragmentation_score_node(pgdat) > wmark_high;
2139 }
2140
2141 static enum compact_result __compact_finished(struct compact_control *cc)
2142 {
2143         unsigned int order;
2144         const int migratetype = cc->migratetype;
2145         int ret;
2146
2147         /* Compaction run completes if the migrate and free scanner meet */
2148         if (compact_scanners_met(cc)) {
2149                 /* Let the next compaction start anew. */
2150                 reset_cached_positions(cc->zone);
2151
2152                 /*
2153                  * Mark that the PG_migrate_skip information should be cleared
2154                  * by kswapd when it goes to sleep. kcompactd does not set the
2155                  * flag itself as the decision to be clear should be directly
2156                  * based on an allocation request.
2157                  */
2158                 if (cc->direct_compaction)
2159                         cc->zone->compact_blockskip_flush = true;
2160
2161                 if (cc->whole_zone)
2162                         return COMPACT_COMPLETE;
2163                 else
2164                         return COMPACT_PARTIAL_SKIPPED;
2165         }
2166
2167         if (cc->proactive_compaction) {
2168                 int score, wmark_low;
2169                 pg_data_t *pgdat;
2170
2171                 pgdat = cc->zone->zone_pgdat;
2172                 if (kswapd_is_running(pgdat))
2173                         return COMPACT_PARTIAL_SKIPPED;
2174
2175                 score = fragmentation_score_zone(cc->zone);
2176                 wmark_low = fragmentation_score_wmark(pgdat, true);
2177
2178                 if (score > wmark_low)
2179                         ret = COMPACT_CONTINUE;
2180                 else
2181                         ret = COMPACT_SUCCESS;
2182
2183                 goto out;
2184         }
2185
2186         if (is_via_compact_memory(cc->order))
2187                 return COMPACT_CONTINUE;
2188
2189         /*
2190          * Always finish scanning a pageblock to reduce the possibility of
2191          * fallbacks in the future. This is particularly important when
2192          * migration source is unmovable/reclaimable but it's not worth
2193          * special casing.
2194          */
2195         if (!pageblock_aligned(cc->migrate_pfn))
2196                 return COMPACT_CONTINUE;
2197
2198         /* Direct compactor: Is a suitable page free? */
2199         ret = COMPACT_NO_SUITABLE_PAGE;
2200         for (order = cc->order; order <= MAX_ORDER; order++) {
2201                 struct free_area *area = &cc->zone->free_area[order];
2202                 bool can_steal;
2203
2204                 /* Job done if page is free of the right migratetype */
2205                 if (!free_area_empty(area, migratetype))
2206                         return COMPACT_SUCCESS;
2207
2208 #ifdef CONFIG_CMA
2209                 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
2210                 if (migratetype == MIGRATE_MOVABLE &&
2211                         !free_area_empty(area, MIGRATE_CMA))
2212                         return COMPACT_SUCCESS;
2213 #endif
2214                 /*
2215                  * Job done if allocation would steal freepages from
2216                  * other migratetype buddy lists.
2217                  */
2218                 if (find_suitable_fallback(area, order, migratetype,
2219                                                 true, &can_steal) != -1)
2220                         /*
2221                          * Movable pages are OK in any pageblock. If we are
2222                          * stealing for a non-movable allocation, make sure
2223                          * we finish compacting the current pageblock first
2224                          * (which is assured by the above migrate_pfn align
2225                          * check) so it is as free as possible and we won't
2226                          * have to steal another one soon.
2227                          */
2228                         return COMPACT_SUCCESS;
2229         }
2230
2231 out:
2232         if (cc->contended || fatal_signal_pending(current))
2233                 ret = COMPACT_CONTENDED;
2234
2235         return ret;
2236 }
2237
2238 static enum compact_result compact_finished(struct compact_control *cc)
2239 {
2240         int ret;
2241
2242         ret = __compact_finished(cc);
2243         trace_mm_compaction_finished(cc->zone, cc->order, ret);
2244         if (ret == COMPACT_NO_SUITABLE_PAGE)
2245                 ret = COMPACT_CONTINUE;
2246
2247         return ret;
2248 }
2249
2250 static bool __compaction_suitable(struct zone *zone, int order,
2251                                   int highest_zoneidx,
2252                                   unsigned long wmark_target)
2253 {
2254         unsigned long watermark;
2255         /*
2256          * Watermarks for order-0 must be met for compaction to be able to
2257          * isolate free pages for migration targets. This means that the
2258          * watermark and alloc_flags have to match, or be more pessimistic than
2259          * the check in __isolate_free_page(). We don't use the direct
2260          * compactor's alloc_flags, as they are not relevant for freepage
2261          * isolation. We however do use the direct compactor's highest_zoneidx
2262          * to skip over zones where lowmem reserves would prevent allocation
2263          * even if compaction succeeds.
2264          * For costly orders, we require low watermark instead of min for
2265          * compaction to proceed to increase its chances.
2266          * ALLOC_CMA is used, as pages in CMA pageblocks are considered
2267          * suitable migration targets
2268          */
2269         watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
2270                                 low_wmark_pages(zone) : min_wmark_pages(zone);
2271         watermark += compact_gap(order);
2272         return __zone_watermark_ok(zone, 0, watermark, highest_zoneidx,
2273                                    ALLOC_CMA, wmark_target);
2274 }
2275
2276 /*
2277  * compaction_suitable: Is this suitable to run compaction on this zone now?
2278  */
2279 bool compaction_suitable(struct zone *zone, int order, int highest_zoneidx)
2280 {
2281         enum compact_result compact_result;
2282         bool suitable;
2283
2284         suitable = __compaction_suitable(zone, order, highest_zoneidx,
2285                                          zone_page_state(zone, NR_FREE_PAGES));
2286         /*
2287          * fragmentation index determines if allocation failures are due to
2288          * low memory or external fragmentation
2289          *
2290          * index of -1000 would imply allocations might succeed depending on
2291          * watermarks, but we already failed the high-order watermark check
2292          * index towards 0 implies failure is due to lack of memory
2293          * index towards 1000 implies failure is due to fragmentation
2294          *
2295          * Only compact if a failure would be due to fragmentation. Also
2296          * ignore fragindex for non-costly orders where the alternative to
2297          * a successful reclaim/compaction is OOM. Fragindex and the
2298          * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
2299          * excessive compaction for costly orders, but it should not be at the
2300          * expense of system stability.
2301          */
2302         if (suitable) {
2303                 compact_result = COMPACT_CONTINUE;
2304                 if (order > PAGE_ALLOC_COSTLY_ORDER) {
2305                         int fragindex = fragmentation_index(zone, order);
2306
2307                         if (fragindex >= 0 &&
2308                             fragindex <= sysctl_extfrag_threshold) {
2309                                 suitable = false;
2310                                 compact_result = COMPACT_NOT_SUITABLE_ZONE;
2311                         }
2312                 }
2313         } else {
2314                 compact_result = COMPACT_SKIPPED;
2315         }
2316
2317         trace_mm_compaction_suitable(zone, order, compact_result);
2318
2319         return suitable;
2320 }
2321
2322 bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
2323                 int alloc_flags)
2324 {
2325         struct zone *zone;
2326         struct zoneref *z;
2327
2328         /*
2329          * Make sure at least one zone would pass __compaction_suitable if we continue
2330          * retrying the reclaim.
2331          */
2332         for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2333                                 ac->highest_zoneidx, ac->nodemask) {
2334                 unsigned long available;
2335
2336                 /*
2337                  * Do not consider all the reclaimable memory because we do not
2338                  * want to trash just for a single high order allocation which
2339                  * is even not guaranteed to appear even if __compaction_suitable
2340                  * is happy about the watermark check.
2341                  */
2342                 available = zone_reclaimable_pages(zone) / order;
2343                 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
2344                 if (__compaction_suitable(zone, order, ac->highest_zoneidx,
2345                                           available))
2346                         return true;
2347         }
2348
2349         return false;
2350 }
2351
2352 static enum compact_result
2353 compact_zone(struct compact_control *cc, struct capture_control *capc)
2354 {
2355         enum compact_result ret;
2356         unsigned long start_pfn = cc->zone->zone_start_pfn;
2357         unsigned long end_pfn = zone_end_pfn(cc->zone);
2358         unsigned long last_migrated_pfn;
2359         const bool sync = cc->mode != MIGRATE_ASYNC;
2360         bool update_cached;
2361         unsigned int nr_succeeded = 0;
2362
2363         /*
2364          * These counters track activities during zone compaction.  Initialize
2365          * them before compacting a new zone.
2366          */
2367         cc->total_migrate_scanned = 0;
2368         cc->total_free_scanned = 0;
2369         cc->nr_migratepages = 0;
2370         cc->nr_freepages = 0;
2371         INIT_LIST_HEAD(&cc->freepages);
2372         INIT_LIST_HEAD(&cc->migratepages);
2373
2374         cc->migratetype = gfp_migratetype(cc->gfp_mask);
2375
2376         if (!is_via_compact_memory(cc->order)) {
2377                 unsigned long watermark;
2378
2379                 /* Allocation can already succeed, nothing to do */
2380                 watermark = wmark_pages(cc->zone,
2381                                         cc->alloc_flags & ALLOC_WMARK_MASK);
2382                 if (zone_watermark_ok(cc->zone, cc->order, watermark,
2383                                       cc->highest_zoneidx, cc->alloc_flags))
2384                         return COMPACT_SUCCESS;
2385
2386                 /* Compaction is likely to fail */
2387                 if (!compaction_suitable(cc->zone, cc->order,
2388                                          cc->highest_zoneidx))
2389                         return COMPACT_SKIPPED;
2390         }
2391
2392         /*
2393          * Clear pageblock skip if there were failures recently and compaction
2394          * is about to be retried after being deferred.
2395          */
2396         if (compaction_restarting(cc->zone, cc->order))
2397                 __reset_isolation_suitable(cc->zone);
2398
2399         /*
2400          * Setup to move all movable pages to the end of the zone. Used cached
2401          * information on where the scanners should start (unless we explicitly
2402          * want to compact the whole zone), but check that it is initialised
2403          * by ensuring the values are within zone boundaries.
2404          */
2405         cc->fast_start_pfn = 0;
2406         if (cc->whole_zone) {
2407                 cc->migrate_pfn = start_pfn;
2408                 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2409         } else {
2410                 cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync];
2411                 cc->free_pfn = cc->zone->compact_cached_free_pfn;
2412                 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
2413                         cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2414                         cc->zone->compact_cached_free_pfn = cc->free_pfn;
2415                 }
2416                 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
2417                         cc->migrate_pfn = start_pfn;
2418                         cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
2419                         cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
2420                 }
2421
2422                 if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn)
2423                         cc->whole_zone = true;
2424         }
2425
2426         last_migrated_pfn = 0;
2427
2428         /*
2429          * Migrate has separate cached PFNs for ASYNC and SYNC* migration on
2430          * the basis that some migrations will fail in ASYNC mode. However,
2431          * if the cached PFNs match and pageblocks are skipped due to having
2432          * no isolation candidates, then the sync state does not matter.
2433          * Until a pageblock with isolation candidates is found, keep the
2434          * cached PFNs in sync to avoid revisiting the same blocks.
2435          */
2436         update_cached = !sync &&
2437                 cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1];
2438
2439         trace_mm_compaction_begin(cc, start_pfn, end_pfn, sync);
2440
2441         /* lru_add_drain_all could be expensive with involving other CPUs */
2442         lru_add_drain();
2443
2444         while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) {
2445                 int err;
2446                 unsigned long iteration_start_pfn = cc->migrate_pfn;
2447
2448                 /*
2449                  * Avoid multiple rescans of the same pageblock which can
2450                  * happen if a page cannot be isolated (dirty/writeback in
2451                  * async mode) or if the migrated pages are being allocated
2452                  * before the pageblock is cleared.  The first rescan will
2453                  * capture the entire pageblock for migration. If it fails,
2454                  * it'll be marked skip and scanning will proceed as normal.
2455                  */
2456                 cc->finish_pageblock = false;
2457                 if (pageblock_start_pfn(last_migrated_pfn) ==
2458                     pageblock_start_pfn(iteration_start_pfn)) {
2459                         cc->finish_pageblock = true;
2460                 }
2461
2462 rescan:
2463                 switch (isolate_migratepages(cc)) {
2464                 case ISOLATE_ABORT:
2465                         ret = COMPACT_CONTENDED;
2466                         putback_movable_pages(&cc->migratepages);
2467                         cc->nr_migratepages = 0;
2468                         goto out;
2469                 case ISOLATE_NONE:
2470                         if (update_cached) {
2471                                 cc->zone->compact_cached_migrate_pfn[1] =
2472                                         cc->zone->compact_cached_migrate_pfn[0];
2473                         }
2474
2475                         /*
2476                          * We haven't isolated and migrated anything, but
2477                          * there might still be unflushed migrations from
2478                          * previous cc->order aligned block.
2479                          */
2480                         goto check_drain;
2481                 case ISOLATE_SUCCESS:
2482                         update_cached = false;
2483                         last_migrated_pfn = iteration_start_pfn;
2484                 }
2485
2486                 err = migrate_pages(&cc->migratepages, compaction_alloc,
2487                                 compaction_free, (unsigned long)cc, cc->mode,
2488                                 MR_COMPACTION, &nr_succeeded);
2489
2490                 trace_mm_compaction_migratepages(cc, nr_succeeded);
2491
2492                 /* All pages were either migrated or will be released */
2493                 cc->nr_migratepages = 0;
2494                 if (err) {
2495                         putback_movable_pages(&cc->migratepages);
2496                         /*
2497                          * migrate_pages() may return -ENOMEM when scanners meet
2498                          * and we want compact_finished() to detect it
2499                          */
2500                         if (err == -ENOMEM && !compact_scanners_met(cc)) {
2501                                 ret = COMPACT_CONTENDED;
2502                                 goto out;
2503                         }
2504                         /*
2505                          * If an ASYNC or SYNC_LIGHT fails to migrate a page
2506                          * within the current order-aligned block and
2507                          * fast_find_migrateblock may be used then scan the
2508                          * remainder of the pageblock. This will mark the
2509                          * pageblock "skip" to avoid rescanning in the near
2510                          * future. This will isolate more pages than necessary
2511                          * for the request but avoid loops due to
2512                          * fast_find_migrateblock revisiting blocks that were
2513                          * recently partially scanned.
2514                          */
2515                         if (!pageblock_aligned(cc->migrate_pfn) &&
2516                             !cc->ignore_skip_hint && !cc->finish_pageblock &&
2517                             (cc->mode < MIGRATE_SYNC)) {
2518                                 cc->finish_pageblock = true;
2519
2520                                 /*
2521                                  * Draining pcplists does not help THP if
2522                                  * any page failed to migrate. Even after
2523                                  * drain, the pageblock will not be free.
2524                                  */
2525                                 if (cc->order == COMPACTION_HPAGE_ORDER)
2526                                         last_migrated_pfn = 0;
2527
2528                                 goto rescan;
2529                         }
2530                 }
2531
2532                 /* Stop if a page has been captured */
2533                 if (capc && capc->page) {
2534                         ret = COMPACT_SUCCESS;
2535                         break;
2536                 }
2537
2538 check_drain:
2539                 /*
2540                  * Has the migration scanner moved away from the previous
2541                  * cc->order aligned block where we migrated from? If yes,
2542                  * flush the pages that were freed, so that they can merge and
2543                  * compact_finished() can detect immediately if allocation
2544                  * would succeed.
2545                  */
2546                 if (cc->order > 0 && last_migrated_pfn) {
2547                         unsigned long current_block_start =
2548                                 block_start_pfn(cc->migrate_pfn, cc->order);
2549
2550                         if (last_migrated_pfn < current_block_start) {
2551                                 lru_add_drain_cpu_zone(cc->zone);
2552                                 /* No more flushing until we migrate again */
2553                                 last_migrated_pfn = 0;
2554                         }
2555                 }
2556         }
2557
2558 out:
2559         /*
2560          * Release free pages and update where the free scanner should restart,
2561          * so we don't leave any returned pages behind in the next attempt.
2562          */
2563         if (cc->nr_freepages > 0) {
2564                 unsigned long free_pfn = release_freepages(&cc->freepages);
2565
2566                 cc->nr_freepages = 0;
2567                 VM_BUG_ON(free_pfn == 0);
2568                 /* The cached pfn is always the first in a pageblock */
2569                 free_pfn = pageblock_start_pfn(free_pfn);
2570                 /*
2571                  * Only go back, not forward. The cached pfn might have been
2572                  * already reset to zone end in compact_finished()
2573                  */
2574                 if (free_pfn > cc->zone->compact_cached_free_pfn)
2575                         cc->zone->compact_cached_free_pfn = free_pfn;
2576         }
2577
2578         count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
2579         count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
2580
2581         trace_mm_compaction_end(cc, start_pfn, end_pfn, sync, ret);
2582
2583         VM_BUG_ON(!list_empty(&cc->freepages));
2584         VM_BUG_ON(!list_empty(&cc->migratepages));
2585
2586         return ret;
2587 }
2588
2589 static enum compact_result compact_zone_order(struct zone *zone, int order,
2590                 gfp_t gfp_mask, enum compact_priority prio,
2591                 unsigned int alloc_flags, int highest_zoneidx,
2592                 struct page **capture)
2593 {
2594         enum compact_result ret;
2595         struct compact_control cc = {
2596                 .order = order,
2597                 .search_order = order,
2598                 .gfp_mask = gfp_mask,
2599                 .zone = zone,
2600                 .mode = (prio == COMPACT_PRIO_ASYNC) ?
2601                                         MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT,
2602                 .alloc_flags = alloc_flags,
2603                 .highest_zoneidx = highest_zoneidx,
2604                 .direct_compaction = true,
2605                 .whole_zone = (prio == MIN_COMPACT_PRIORITY),
2606                 .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
2607                 .ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
2608         };
2609         struct capture_control capc = {
2610                 .cc = &cc,
2611                 .page = NULL,
2612         };
2613
2614         /*
2615          * Make sure the structs are really initialized before we expose the
2616          * capture control, in case we are interrupted and the interrupt handler
2617          * frees a page.
2618          */
2619         barrier();
2620         WRITE_ONCE(current->capture_control, &capc);
2621
2622         ret = compact_zone(&cc, &capc);
2623
2624         /*
2625          * Make sure we hide capture control first before we read the captured
2626          * page pointer, otherwise an interrupt could free and capture a page
2627          * and we would leak it.
2628          */
2629         WRITE_ONCE(current->capture_control, NULL);
2630         *capture = READ_ONCE(capc.page);
2631         /*
2632          * Technically, it is also possible that compaction is skipped but
2633          * the page is still captured out of luck(IRQ came and freed the page).
2634          * Returning COMPACT_SUCCESS in such cases helps in properly accounting
2635          * the COMPACT[STALL|FAIL] when compaction is skipped.
2636          */
2637         if (*capture)
2638                 ret = COMPACT_SUCCESS;
2639
2640         return ret;
2641 }
2642
2643 /**
2644  * try_to_compact_pages - Direct compact to satisfy a high-order allocation
2645  * @gfp_mask: The GFP mask of the current allocation
2646  * @order: The order of the current allocation
2647  * @alloc_flags: The allocation flags of the current allocation
2648  * @ac: The context of current allocation
2649  * @prio: Determines how hard direct compaction should try to succeed
2650  * @capture: Pointer to free page created by compaction will be stored here
2651  *
2652  * This is the main entry point for direct page compaction.
2653  */
2654 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
2655                 unsigned int alloc_flags, const struct alloc_context *ac,
2656                 enum compact_priority prio, struct page **capture)
2657 {
2658         int may_perform_io = (__force int)(gfp_mask & __GFP_IO);
2659         struct zoneref *z;
2660         struct zone *zone;
2661         enum compact_result rc = COMPACT_SKIPPED;
2662
2663         /*
2664          * Check if the GFP flags allow compaction - GFP_NOIO is really
2665          * tricky context because the migration might require IO
2666          */
2667         if (!may_perform_io)
2668                 return COMPACT_SKIPPED;
2669
2670         trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
2671
2672         /* Compact each zone in the list */
2673         for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2674                                         ac->highest_zoneidx, ac->nodemask) {
2675                 enum compact_result status;
2676
2677                 if (prio > MIN_COMPACT_PRIORITY
2678                                         && compaction_deferred(zone, order)) {
2679                         rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
2680                         continue;
2681                 }
2682
2683                 status = compact_zone_order(zone, order, gfp_mask, prio,
2684                                 alloc_flags, ac->highest_zoneidx, capture);
2685                 rc = max(status, rc);
2686
2687                 /* The allocation should succeed, stop compacting */
2688                 if (status == COMPACT_SUCCESS) {
2689                         /*
2690                          * We think the allocation will succeed in this zone,
2691                          * but it is not certain, hence the false. The caller
2692                          * will repeat this with true if allocation indeed
2693                          * succeeds in this zone.
2694                          */
2695                         compaction_defer_reset(zone, order, false);
2696
2697                         break;
2698                 }
2699
2700                 if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
2701                                         status == COMPACT_PARTIAL_SKIPPED))
2702                         /*
2703                          * We think that allocation won't succeed in this zone
2704                          * so we defer compaction there. If it ends up
2705                          * succeeding after all, it will be reset.
2706                          */
2707                         defer_compaction(zone, order);
2708
2709                 /*
2710                  * We might have stopped compacting due to need_resched() in
2711                  * async compaction, or due to a fatal signal detected. In that
2712                  * case do not try further zones
2713                  */
2714                 if ((prio == COMPACT_PRIO_ASYNC && need_resched())
2715                                         || fatal_signal_pending(current))
2716                         break;
2717         }
2718
2719         return rc;
2720 }
2721
2722 /*
2723  * Compact all zones within a node till each zone's fragmentation score
2724  * reaches within proactive compaction thresholds (as determined by the
2725  * proactiveness tunable).
2726  *
2727  * It is possible that the function returns before reaching score targets
2728  * due to various back-off conditions, such as, contention on per-node or
2729  * per-zone locks.
2730  */
2731 static void proactive_compact_node(pg_data_t *pgdat)
2732 {
2733         int zoneid;
2734         struct zone *zone;
2735         struct compact_control cc = {
2736                 .order = -1,
2737                 .mode = MIGRATE_SYNC_LIGHT,
2738                 .ignore_skip_hint = true,
2739                 .whole_zone = true,
2740                 .gfp_mask = GFP_KERNEL,
2741                 .proactive_compaction = true,
2742         };
2743
2744         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2745                 zone = &pgdat->node_zones[zoneid];
2746                 if (!populated_zone(zone))
2747                         continue;
2748
2749                 cc.zone = zone;
2750
2751                 compact_zone(&cc, NULL);
2752
2753                 count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2754                                      cc.total_migrate_scanned);
2755                 count_compact_events(KCOMPACTD_FREE_SCANNED,
2756                                      cc.total_free_scanned);
2757         }
2758 }
2759
2760 /* Compact all zones within a node */
2761 static void compact_node(int nid)
2762 {
2763         pg_data_t *pgdat = NODE_DATA(nid);
2764         int zoneid;
2765         struct zone *zone;
2766         struct compact_control cc = {
2767                 .order = -1,
2768                 .mode = MIGRATE_SYNC,
2769                 .ignore_skip_hint = true,
2770                 .whole_zone = true,
2771                 .gfp_mask = GFP_KERNEL,
2772         };
2773
2774
2775         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2776
2777                 zone = &pgdat->node_zones[zoneid];
2778                 if (!populated_zone(zone))
2779                         continue;
2780
2781                 cc.zone = zone;
2782
2783                 compact_zone(&cc, NULL);
2784         }
2785 }
2786
2787 /* Compact all nodes in the system */
2788 static void compact_nodes(void)
2789 {
2790         int nid;
2791
2792         /* Flush pending updates to the LRU lists */
2793         lru_add_drain_all();
2794
2795         for_each_online_node(nid)
2796                 compact_node(nid);
2797 }
2798
2799 static int compaction_proactiveness_sysctl_handler(struct ctl_table *table, int write,
2800                 void *buffer, size_t *length, loff_t *ppos)
2801 {
2802         int rc, nid;
2803
2804         rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
2805         if (rc)
2806                 return rc;
2807
2808         if (write && sysctl_compaction_proactiveness) {
2809                 for_each_online_node(nid) {
2810                         pg_data_t *pgdat = NODE_DATA(nid);
2811
2812                         if (pgdat->proactive_compact_trigger)
2813                                 continue;
2814
2815                         pgdat->proactive_compact_trigger = true;
2816                         trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, -1,
2817                                                              pgdat->nr_zones - 1);
2818                         wake_up_interruptible(&pgdat->kcompactd_wait);
2819                 }
2820         }
2821
2822         return 0;
2823 }
2824
2825 /*
2826  * This is the entry point for compacting all nodes via
2827  * /proc/sys/vm/compact_memory
2828  */
2829 static int sysctl_compaction_handler(struct ctl_table *table, int write,
2830                         void *buffer, size_t *length, loff_t *ppos)
2831 {
2832         int ret;
2833
2834         ret = proc_dointvec(table, write, buffer, length, ppos);
2835         if (ret)
2836                 return ret;
2837
2838         if (sysctl_compact_memory != 1)
2839                 return -EINVAL;
2840
2841         if (write)
2842                 compact_nodes();
2843
2844         return 0;
2845 }
2846
2847 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
2848 static ssize_t compact_store(struct device *dev,
2849                              struct device_attribute *attr,
2850                              const char *buf, size_t count)
2851 {
2852         int nid = dev->id;
2853
2854         if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
2855                 /* Flush pending updates to the LRU lists */
2856                 lru_add_drain_all();
2857
2858                 compact_node(nid);
2859         }
2860
2861         return count;
2862 }
2863 static DEVICE_ATTR_WO(compact);
2864
2865 int compaction_register_node(struct node *node)
2866 {
2867         return device_create_file(&node->dev, &dev_attr_compact);
2868 }
2869
2870 void compaction_unregister_node(struct node *node)
2871 {
2872         return device_remove_file(&node->dev, &dev_attr_compact);
2873 }
2874 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
2875
2876 static inline bool kcompactd_work_requested(pg_data_t *pgdat)
2877 {
2878         return pgdat->kcompactd_max_order > 0 || kthread_should_stop() ||
2879                 pgdat->proactive_compact_trigger;
2880 }
2881
2882 static bool kcompactd_node_suitable(pg_data_t *pgdat)
2883 {
2884         int zoneid;
2885         struct zone *zone;
2886         enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx;
2887
2888         for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) {
2889                 zone = &pgdat->node_zones[zoneid];
2890
2891                 if (!populated_zone(zone))
2892                         continue;
2893
2894                 /* Allocation can already succeed, check other zones */
2895                 if (zone_watermark_ok(zone, pgdat->kcompactd_max_order,
2896                                       min_wmark_pages(zone),
2897                                       highest_zoneidx, 0))
2898                         continue;
2899
2900                 if (compaction_suitable(zone, pgdat->kcompactd_max_order,
2901                                         highest_zoneidx))
2902                         return true;
2903         }
2904
2905         return false;
2906 }
2907
2908 static void kcompactd_do_work(pg_data_t *pgdat)
2909 {
2910         /*
2911          * With no special task, compact all zones so that a page of requested
2912          * order is allocatable.
2913          */
2914         int zoneid;
2915         struct zone *zone;
2916         struct compact_control cc = {
2917                 .order = pgdat->kcompactd_max_order,
2918                 .search_order = pgdat->kcompactd_max_order,
2919                 .highest_zoneidx = pgdat->kcompactd_highest_zoneidx,
2920                 .mode = MIGRATE_SYNC_LIGHT,
2921                 .ignore_skip_hint = false,
2922                 .gfp_mask = GFP_KERNEL,
2923         };
2924         trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
2925                                                         cc.highest_zoneidx);
2926         count_compact_event(KCOMPACTD_WAKE);
2927
2928         for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) {
2929                 int status;
2930
2931                 zone = &pgdat->node_zones[zoneid];
2932                 if (!populated_zone(zone))
2933                         continue;
2934
2935                 if (compaction_deferred(zone, cc.order))
2936                         continue;
2937
2938                 /* Allocation can already succeed, nothing to do */
2939                 if (zone_watermark_ok(zone, cc.order,
2940                                       min_wmark_pages(zone), zoneid, 0))
2941                         continue;
2942
2943                 if (!compaction_suitable(zone, cc.order, zoneid))
2944                         continue;
2945
2946                 if (kthread_should_stop())
2947                         return;
2948
2949                 cc.zone = zone;
2950                 status = compact_zone(&cc, NULL);
2951
2952                 if (status == COMPACT_SUCCESS) {
2953                         compaction_defer_reset(zone, cc.order, false);
2954                 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
2955                         /*
2956                          * Buddy pages may become stranded on pcps that could
2957                          * otherwise coalesce on the zone's free area for
2958                          * order >= cc.order.  This is ratelimited by the
2959                          * upcoming deferral.
2960                          */
2961                         drain_all_pages(zone);
2962
2963                         /*
2964                          * We use sync migration mode here, so we defer like
2965                          * sync direct compaction does.
2966                          */
2967                         defer_compaction(zone, cc.order);
2968                 }
2969
2970                 count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2971                                      cc.total_migrate_scanned);
2972                 count_compact_events(KCOMPACTD_FREE_SCANNED,
2973                                      cc.total_free_scanned);
2974         }
2975
2976         /*
2977          * Regardless of success, we are done until woken up next. But remember
2978          * the requested order/highest_zoneidx in case it was higher/tighter
2979          * than our current ones
2980          */
2981         if (pgdat->kcompactd_max_order <= cc.order)
2982                 pgdat->kcompactd_max_order = 0;
2983         if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx)
2984                 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
2985 }
2986
2987 void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx)
2988 {
2989         if (!order)
2990                 return;
2991
2992         if (pgdat->kcompactd_max_order < order)
2993                 pgdat->kcompactd_max_order = order;
2994
2995         if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx)
2996                 pgdat->kcompactd_highest_zoneidx = highest_zoneidx;
2997
2998         /*
2999          * Pairs with implicit barrier in wait_event_freezable()
3000          * such that wakeups are not missed.
3001          */
3002         if (!wq_has_sleeper(&pgdat->kcompactd_wait))
3003                 return;
3004
3005         if (!kcompactd_node_suitable(pgdat))
3006                 return;
3007
3008         trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
3009                                                         highest_zoneidx);
3010         wake_up_interruptible(&pgdat->kcompactd_wait);
3011 }
3012
3013 /*
3014  * The background compaction daemon, started as a kernel thread
3015  * from the init process.
3016  */
3017 static int kcompactd(void *p)
3018 {
3019         pg_data_t *pgdat = (pg_data_t *)p;
3020         struct task_struct *tsk = current;
3021         long default_timeout = msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC);
3022         long timeout = default_timeout;
3023
3024         const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3025
3026         if (!cpumask_empty(cpumask))
3027                 set_cpus_allowed_ptr(tsk, cpumask);
3028
3029         set_freezable();
3030
3031         pgdat->kcompactd_max_order = 0;
3032         pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
3033
3034         while (!kthread_should_stop()) {
3035                 unsigned long pflags;
3036
3037                 /*
3038                  * Avoid the unnecessary wakeup for proactive compaction
3039                  * when it is disabled.
3040                  */
3041                 if (!sysctl_compaction_proactiveness)
3042                         timeout = MAX_SCHEDULE_TIMEOUT;
3043                 trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
3044                 if (wait_event_freezable_timeout(pgdat->kcompactd_wait,
3045                         kcompactd_work_requested(pgdat), timeout) &&
3046                         !pgdat->proactive_compact_trigger) {
3047
3048                         psi_memstall_enter(&pflags);
3049                         kcompactd_do_work(pgdat);
3050                         psi_memstall_leave(&pflags);
3051                         /*
3052                          * Reset the timeout value. The defer timeout from
3053                          * proactive compaction is lost here but that is fine
3054                          * as the condition of the zone changing substantionally
3055                          * then carrying on with the previous defer interval is
3056                          * not useful.
3057                          */
3058                         timeout = default_timeout;
3059                         continue;
3060                 }
3061
3062                 /*
3063                  * Start the proactive work with default timeout. Based
3064                  * on the fragmentation score, this timeout is updated.
3065                  */
3066                 timeout = default_timeout;
3067                 if (should_proactive_compact_node(pgdat)) {
3068                         unsigned int prev_score, score;
3069
3070                         prev_score = fragmentation_score_node(pgdat);
3071                         proactive_compact_node(pgdat);
3072                         score = fragmentation_score_node(pgdat);
3073                         /*
3074                          * Defer proactive compaction if the fragmentation
3075                          * score did not go down i.e. no progress made.
3076                          */
3077                         if (unlikely(score >= prev_score))
3078                                 timeout =
3079                                    default_timeout << COMPACT_MAX_DEFER_SHIFT;
3080                 }
3081                 if (unlikely(pgdat->proactive_compact_trigger))
3082                         pgdat->proactive_compact_trigger = false;
3083         }
3084
3085         return 0;
3086 }
3087
3088 /*
3089  * This kcompactd start function will be called by init and node-hot-add.
3090  * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
3091  */
3092 void __meminit kcompactd_run(int nid)
3093 {
3094         pg_data_t *pgdat = NODE_DATA(nid);
3095
3096         if (pgdat->kcompactd)
3097                 return;
3098
3099         pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
3100         if (IS_ERR(pgdat->kcompactd)) {
3101                 pr_err("Failed to start kcompactd on node %d\n", nid);
3102                 pgdat->kcompactd = NULL;
3103         }
3104 }
3105
3106 /*
3107  * Called by memory hotplug when all memory in a node is offlined. Caller must
3108  * be holding mem_hotplug_begin/done().
3109  */
3110 void __meminit kcompactd_stop(int nid)
3111 {
3112         struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
3113
3114         if (kcompactd) {
3115                 kthread_stop(kcompactd);
3116                 NODE_DATA(nid)->kcompactd = NULL;
3117         }
3118 }
3119
3120 /*
3121  * It's optimal to keep kcompactd on the same CPUs as their memory, but
3122  * not required for correctness. So if the last cpu in a node goes
3123  * away, we get changed to run anywhere: as the first one comes back,
3124  * restore their cpu bindings.
3125  */
3126 static int kcompactd_cpu_online(unsigned int cpu)
3127 {
3128         int nid;
3129
3130         for_each_node_state(nid, N_MEMORY) {
3131                 pg_data_t *pgdat = NODE_DATA(nid);
3132                 const struct cpumask *mask;
3133
3134                 mask = cpumask_of_node(pgdat->node_id);
3135
3136                 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3137                         /* One of our CPUs online: restore mask */
3138                         if (pgdat->kcompactd)
3139                                 set_cpus_allowed_ptr(pgdat->kcompactd, mask);
3140         }
3141         return 0;
3142 }
3143
3144 static int proc_dointvec_minmax_warn_RT_change(struct ctl_table *table,
3145                 int write, void *buffer, size_t *lenp, loff_t *ppos)
3146 {
3147         int ret, old;
3148
3149         if (!IS_ENABLED(CONFIG_PREEMPT_RT) || !write)
3150                 return proc_dointvec_minmax(table, write, buffer, lenp, ppos);
3151
3152         old = *(int *)table->data;
3153         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
3154         if (ret)
3155                 return ret;
3156         if (old != *(int *)table->data)
3157                 pr_warn_once("sysctl attribute %s changed by %s[%d]\n",
3158                              table->procname, current->comm,
3159                              task_pid_nr(current));
3160         return ret;
3161 }
3162
3163 static struct ctl_table vm_compaction[] = {
3164         {
3165                 .procname       = "compact_memory",
3166                 .data           = &sysctl_compact_memory,
3167                 .maxlen         = sizeof(int),
3168                 .mode           = 0200,
3169                 .proc_handler   = sysctl_compaction_handler,
3170         },
3171         {
3172                 .procname       = "compaction_proactiveness",
3173                 .data           = &sysctl_compaction_proactiveness,
3174                 .maxlen         = sizeof(sysctl_compaction_proactiveness),
3175                 .mode           = 0644,
3176                 .proc_handler   = compaction_proactiveness_sysctl_handler,
3177                 .extra1         = SYSCTL_ZERO,
3178                 .extra2         = SYSCTL_ONE_HUNDRED,
3179         },
3180         {
3181                 .procname       = "extfrag_threshold",
3182                 .data           = &sysctl_extfrag_threshold,
3183                 .maxlen         = sizeof(int),
3184                 .mode           = 0644,
3185                 .proc_handler   = proc_dointvec_minmax,
3186                 .extra1         = SYSCTL_ZERO,
3187                 .extra2         = SYSCTL_ONE_THOUSAND,
3188         },
3189         {
3190                 .procname       = "compact_unevictable_allowed",
3191                 .data           = &sysctl_compact_unevictable_allowed,
3192                 .maxlen         = sizeof(int),
3193                 .mode           = 0644,
3194                 .proc_handler   = proc_dointvec_minmax_warn_RT_change,
3195                 .extra1         = SYSCTL_ZERO,
3196                 .extra2         = SYSCTL_ONE,
3197         },
3198         { }
3199 };
3200
3201 static int __init kcompactd_init(void)
3202 {
3203         int nid;
3204         int ret;
3205
3206         ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3207                                         "mm/compaction:online",
3208                                         kcompactd_cpu_online, NULL);
3209         if (ret < 0) {
3210                 pr_err("kcompactd: failed to register hotplug callbacks.\n");
3211                 return ret;
3212         }
3213
3214         for_each_node_state(nid, N_MEMORY)
3215                 kcompactd_run(nid);
3216         register_sysctl_init("vm", vm_compaction);
3217         return 0;
3218 }
3219 subsys_initcall(kcompactd_init)
3220
3221 #endif /* CONFIG_COMPACTION */