mm/z3fold: fix potential memory leak in z3fold_destroy_pool()
[platform/kernel/linux-rpi.git] / mm / compaction.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * linux/mm/compaction.c
4  *
5  * Memory compaction for the reduction of external fragmentation. Note that
6  * this heavily depends upon page migration to do all the real heavy
7  * lifting
8  *
9  * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
10  */
11 #include <linux/cpu.h>
12 #include <linux/swap.h>
13 #include <linux/migrate.h>
14 #include <linux/compaction.h>
15 #include <linux/mm_inline.h>
16 #include <linux/sched/signal.h>
17 #include <linux/backing-dev.h>
18 #include <linux/sysctl.h>
19 #include <linux/sysfs.h>
20 #include <linux/page-isolation.h>
21 #include <linux/kasan.h>
22 #include <linux/kthread.h>
23 #include <linux/freezer.h>
24 #include <linux/page_owner.h>
25 #include <linux/psi.h>
26 #include "internal.h"
27
28 #ifdef CONFIG_COMPACTION
29 static inline void count_compact_event(enum vm_event_item item)
30 {
31         count_vm_event(item);
32 }
33
34 static inline void count_compact_events(enum vm_event_item item, long delta)
35 {
36         count_vm_events(item, delta);
37 }
38 #else
39 #define count_compact_event(item) do { } while (0)
40 #define count_compact_events(item, delta) do { } while (0)
41 #endif
42
43 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
44
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/compaction.h>
47
48 #define block_start_pfn(pfn, order)     round_down(pfn, 1UL << (order))
49 #define block_end_pfn(pfn, order)       ALIGN((pfn) + 1, 1UL << (order))
50 #define pageblock_start_pfn(pfn)        block_start_pfn(pfn, pageblock_order)
51 #define pageblock_end_pfn(pfn)          block_end_pfn(pfn, pageblock_order)
52
53 /*
54  * Fragmentation score check interval for proactive compaction purposes.
55  */
56 static const unsigned int HPAGE_FRAG_CHECK_INTERVAL_MSEC = 500;
57
58 /*
59  * Page order with-respect-to which proactive compaction
60  * calculates external fragmentation, which is used as
61  * the "fragmentation score" of a node/zone.
62  */
63 #if defined CONFIG_TRANSPARENT_HUGEPAGE
64 #define COMPACTION_HPAGE_ORDER  HPAGE_PMD_ORDER
65 #elif defined CONFIG_HUGETLBFS
66 #define COMPACTION_HPAGE_ORDER  HUGETLB_PAGE_ORDER
67 #else
68 #define COMPACTION_HPAGE_ORDER  (PMD_SHIFT - PAGE_SHIFT)
69 #endif
70
71 static unsigned long release_freepages(struct list_head *freelist)
72 {
73         struct page *page, *next;
74         unsigned long high_pfn = 0;
75
76         list_for_each_entry_safe(page, next, freelist, lru) {
77                 unsigned long pfn = page_to_pfn(page);
78                 list_del(&page->lru);
79                 __free_page(page);
80                 if (pfn > high_pfn)
81                         high_pfn = pfn;
82         }
83
84         return high_pfn;
85 }
86
87 static void split_map_pages(struct list_head *list)
88 {
89         unsigned int i, order, nr_pages;
90         struct page *page, *next;
91         LIST_HEAD(tmp_list);
92
93         list_for_each_entry_safe(page, next, list, lru) {
94                 list_del(&page->lru);
95
96                 order = page_private(page);
97                 nr_pages = 1 << order;
98
99                 post_alloc_hook(page, order, __GFP_MOVABLE);
100                 if (order)
101                         split_page(page, order);
102
103                 for (i = 0; i < nr_pages; i++) {
104                         list_add(&page->lru, &tmp_list);
105                         page++;
106                 }
107         }
108
109         list_splice(&tmp_list, list);
110 }
111
112 #ifdef CONFIG_COMPACTION
113
114 int PageMovable(struct page *page)
115 {
116         struct address_space *mapping;
117
118         VM_BUG_ON_PAGE(!PageLocked(page), page);
119         if (!__PageMovable(page))
120                 return 0;
121
122         mapping = page_mapping(page);
123         if (mapping && mapping->a_ops && mapping->a_ops->isolate_page)
124                 return 1;
125
126         return 0;
127 }
128 EXPORT_SYMBOL(PageMovable);
129
130 void __SetPageMovable(struct page *page, struct address_space *mapping)
131 {
132         VM_BUG_ON_PAGE(!PageLocked(page), page);
133         VM_BUG_ON_PAGE((unsigned long)mapping & PAGE_MAPPING_MOVABLE, page);
134         page->mapping = (void *)((unsigned long)mapping | PAGE_MAPPING_MOVABLE);
135 }
136 EXPORT_SYMBOL(__SetPageMovable);
137
138 void __ClearPageMovable(struct page *page)
139 {
140         VM_BUG_ON_PAGE(!PageLocked(page), page);
141         VM_BUG_ON_PAGE(!PageMovable(page), page);
142         /*
143          * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE
144          * flag so that VM can catch up released page by driver after isolation.
145          * With it, VM migration doesn't try to put it back.
146          */
147         page->mapping = (void *)((unsigned long)page->mapping &
148                                 PAGE_MAPPING_MOVABLE);
149 }
150 EXPORT_SYMBOL(__ClearPageMovable);
151
152 /* Do not skip compaction more than 64 times */
153 #define COMPACT_MAX_DEFER_SHIFT 6
154
155 /*
156  * Compaction is deferred when compaction fails to result in a page
157  * allocation success. 1 << compact_defer_shift, compactions are skipped up
158  * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
159  */
160 void defer_compaction(struct zone *zone, int order)
161 {
162         zone->compact_considered = 0;
163         zone->compact_defer_shift++;
164
165         if (order < zone->compact_order_failed)
166                 zone->compact_order_failed = order;
167
168         if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
169                 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
170
171         trace_mm_compaction_defer_compaction(zone, order);
172 }
173
174 /* Returns true if compaction should be skipped this time */
175 bool compaction_deferred(struct zone *zone, int order)
176 {
177         unsigned long defer_limit = 1UL << zone->compact_defer_shift;
178
179         if (order < zone->compact_order_failed)
180                 return false;
181
182         /* Avoid possible overflow */
183         if (++zone->compact_considered >= defer_limit) {
184                 zone->compact_considered = defer_limit;
185                 return false;
186         }
187
188         trace_mm_compaction_deferred(zone, order);
189
190         return true;
191 }
192
193 /*
194  * Update defer tracking counters after successful compaction of given order,
195  * which means an allocation either succeeded (alloc_success == true) or is
196  * expected to succeed.
197  */
198 void compaction_defer_reset(struct zone *zone, int order,
199                 bool alloc_success)
200 {
201         if (alloc_success) {
202                 zone->compact_considered = 0;
203                 zone->compact_defer_shift = 0;
204         }
205         if (order >= zone->compact_order_failed)
206                 zone->compact_order_failed = order + 1;
207
208         trace_mm_compaction_defer_reset(zone, order);
209 }
210
211 /* Returns true if restarting compaction after many failures */
212 bool compaction_restarting(struct zone *zone, int order)
213 {
214         if (order < zone->compact_order_failed)
215                 return false;
216
217         return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
218                 zone->compact_considered >= 1UL << zone->compact_defer_shift;
219 }
220
221 /* Returns true if the pageblock should be scanned for pages to isolate. */
222 static inline bool isolation_suitable(struct compact_control *cc,
223                                         struct page *page)
224 {
225         if (cc->ignore_skip_hint)
226                 return true;
227
228         return !get_pageblock_skip(page);
229 }
230
231 static void reset_cached_positions(struct zone *zone)
232 {
233         zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
234         zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
235         zone->compact_cached_free_pfn =
236                                 pageblock_start_pfn(zone_end_pfn(zone) - 1);
237 }
238
239 /*
240  * Compound pages of >= pageblock_order should consistenly be skipped until
241  * released. It is always pointless to compact pages of such order (if they are
242  * migratable), and the pageblocks they occupy cannot contain any free pages.
243  */
244 static bool pageblock_skip_persistent(struct page *page)
245 {
246         if (!PageCompound(page))
247                 return false;
248
249         page = compound_head(page);
250
251         if (compound_order(page) >= pageblock_order)
252                 return true;
253
254         return false;
255 }
256
257 static bool
258 __reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source,
259                                                         bool check_target)
260 {
261         struct page *page = pfn_to_online_page(pfn);
262         struct page *block_page;
263         struct page *end_page;
264         unsigned long block_pfn;
265
266         if (!page)
267                 return false;
268         if (zone != page_zone(page))
269                 return false;
270         if (pageblock_skip_persistent(page))
271                 return false;
272
273         /*
274          * If skip is already cleared do no further checking once the
275          * restart points have been set.
276          */
277         if (check_source && check_target && !get_pageblock_skip(page))
278                 return true;
279
280         /*
281          * If clearing skip for the target scanner, do not select a
282          * non-movable pageblock as the starting point.
283          */
284         if (!check_source && check_target &&
285             get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
286                 return false;
287
288         /* Ensure the start of the pageblock or zone is online and valid */
289         block_pfn = pageblock_start_pfn(pfn);
290         block_pfn = max(block_pfn, zone->zone_start_pfn);
291         block_page = pfn_to_online_page(block_pfn);
292         if (block_page) {
293                 page = block_page;
294                 pfn = block_pfn;
295         }
296
297         /* Ensure the end of the pageblock or zone is online and valid */
298         block_pfn = pageblock_end_pfn(pfn) - 1;
299         block_pfn = min(block_pfn, zone_end_pfn(zone) - 1);
300         end_page = pfn_to_online_page(block_pfn);
301         if (!end_page)
302                 return false;
303
304         /*
305          * Only clear the hint if a sample indicates there is either a
306          * free page or an LRU page in the block. One or other condition
307          * is necessary for the block to be a migration source/target.
308          */
309         do {
310                 if (pfn_valid_within(pfn)) {
311                         if (check_source && PageLRU(page)) {
312                                 clear_pageblock_skip(page);
313                                 return true;
314                         }
315
316                         if (check_target && PageBuddy(page)) {
317                                 clear_pageblock_skip(page);
318                                 return true;
319                         }
320                 }
321
322                 page += (1 << PAGE_ALLOC_COSTLY_ORDER);
323                 pfn += (1 << PAGE_ALLOC_COSTLY_ORDER);
324         } while (page <= end_page);
325
326         return false;
327 }
328
329 /*
330  * This function is called to clear all cached information on pageblocks that
331  * should be skipped for page isolation when the migrate and free page scanner
332  * meet.
333  */
334 static void __reset_isolation_suitable(struct zone *zone)
335 {
336         unsigned long migrate_pfn = zone->zone_start_pfn;
337         unsigned long free_pfn = zone_end_pfn(zone) - 1;
338         unsigned long reset_migrate = free_pfn;
339         unsigned long reset_free = migrate_pfn;
340         bool source_set = false;
341         bool free_set = false;
342
343         if (!zone->compact_blockskip_flush)
344                 return;
345
346         zone->compact_blockskip_flush = false;
347
348         /*
349          * Walk the zone and update pageblock skip information. Source looks
350          * for PageLRU while target looks for PageBuddy. When the scanner
351          * is found, both PageBuddy and PageLRU are checked as the pageblock
352          * is suitable as both source and target.
353          */
354         for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages,
355                                         free_pfn -= pageblock_nr_pages) {
356                 cond_resched();
357
358                 /* Update the migrate PFN */
359                 if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) &&
360                     migrate_pfn < reset_migrate) {
361                         source_set = true;
362                         reset_migrate = migrate_pfn;
363                         zone->compact_init_migrate_pfn = reset_migrate;
364                         zone->compact_cached_migrate_pfn[0] = reset_migrate;
365                         zone->compact_cached_migrate_pfn[1] = reset_migrate;
366                 }
367
368                 /* Update the free PFN */
369                 if (__reset_isolation_pfn(zone, free_pfn, free_set, true) &&
370                     free_pfn > reset_free) {
371                         free_set = true;
372                         reset_free = free_pfn;
373                         zone->compact_init_free_pfn = reset_free;
374                         zone->compact_cached_free_pfn = reset_free;
375                 }
376         }
377
378         /* Leave no distance if no suitable block was reset */
379         if (reset_migrate >= reset_free) {
380                 zone->compact_cached_migrate_pfn[0] = migrate_pfn;
381                 zone->compact_cached_migrate_pfn[1] = migrate_pfn;
382                 zone->compact_cached_free_pfn = free_pfn;
383         }
384 }
385
386 void reset_isolation_suitable(pg_data_t *pgdat)
387 {
388         int zoneid;
389
390         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
391                 struct zone *zone = &pgdat->node_zones[zoneid];
392                 if (!populated_zone(zone))
393                         continue;
394
395                 /* Only flush if a full compaction finished recently */
396                 if (zone->compact_blockskip_flush)
397                         __reset_isolation_suitable(zone);
398         }
399 }
400
401 /*
402  * Sets the pageblock skip bit if it was clear. Note that this is a hint as
403  * locks are not required for read/writers. Returns true if it was already set.
404  */
405 static bool test_and_set_skip(struct compact_control *cc, struct page *page,
406                                                         unsigned long pfn)
407 {
408         bool skip;
409
410         /* Do no update if skip hint is being ignored */
411         if (cc->ignore_skip_hint)
412                 return false;
413
414         if (!IS_ALIGNED(pfn, pageblock_nr_pages))
415                 return false;
416
417         skip = get_pageblock_skip(page);
418         if (!skip && !cc->no_set_skip_hint)
419                 set_pageblock_skip(page);
420
421         return skip;
422 }
423
424 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
425 {
426         struct zone *zone = cc->zone;
427
428         pfn = pageblock_end_pfn(pfn);
429
430         /* Set for isolation rather than compaction */
431         if (cc->no_set_skip_hint)
432                 return;
433
434         if (pfn > zone->compact_cached_migrate_pfn[0])
435                 zone->compact_cached_migrate_pfn[0] = pfn;
436         if (cc->mode != MIGRATE_ASYNC &&
437             pfn > zone->compact_cached_migrate_pfn[1])
438                 zone->compact_cached_migrate_pfn[1] = pfn;
439 }
440
441 /*
442  * If no pages were isolated then mark this pageblock to be skipped in the
443  * future. The information is later cleared by __reset_isolation_suitable().
444  */
445 static void update_pageblock_skip(struct compact_control *cc,
446                         struct page *page, unsigned long pfn)
447 {
448         struct zone *zone = cc->zone;
449
450         if (cc->no_set_skip_hint)
451                 return;
452
453         if (!page)
454                 return;
455
456         set_pageblock_skip(page);
457
458         /* Update where async and sync compaction should restart */
459         if (pfn < zone->compact_cached_free_pfn)
460                 zone->compact_cached_free_pfn = pfn;
461 }
462 #else
463 static inline bool isolation_suitable(struct compact_control *cc,
464                                         struct page *page)
465 {
466         return true;
467 }
468
469 static inline bool pageblock_skip_persistent(struct page *page)
470 {
471         return false;
472 }
473
474 static inline void update_pageblock_skip(struct compact_control *cc,
475                         struct page *page, unsigned long pfn)
476 {
477 }
478
479 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
480 {
481 }
482
483 static bool test_and_set_skip(struct compact_control *cc, struct page *page,
484                                                         unsigned long pfn)
485 {
486         return false;
487 }
488 #endif /* CONFIG_COMPACTION */
489
490 /*
491  * Compaction requires the taking of some coarse locks that are potentially
492  * very heavily contended. For async compaction, trylock and record if the
493  * lock is contended. The lock will still be acquired but compaction will
494  * abort when the current block is finished regardless of success rate.
495  * Sync compaction acquires the lock.
496  *
497  * Always returns true which makes it easier to track lock state in callers.
498  */
499 static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags,
500                                                 struct compact_control *cc)
501         __acquires(lock)
502 {
503         /* Track if the lock is contended in async mode */
504         if (cc->mode == MIGRATE_ASYNC && !cc->contended) {
505                 if (spin_trylock_irqsave(lock, *flags))
506                         return true;
507
508                 cc->contended = true;
509         }
510
511         spin_lock_irqsave(lock, *flags);
512         return true;
513 }
514
515 /*
516  * Compaction requires the taking of some coarse locks that are potentially
517  * very heavily contended. The lock should be periodically unlocked to avoid
518  * having disabled IRQs for a long time, even when there is nobody waiting on
519  * the lock. It might also be that allowing the IRQs will result in
520  * need_resched() becoming true. If scheduling is needed, async compaction
521  * aborts. Sync compaction schedules.
522  * Either compaction type will also abort if a fatal signal is pending.
523  * In either case if the lock was locked, it is dropped and not regained.
524  *
525  * Returns true if compaction should abort due to fatal signal pending, or
526  *              async compaction due to need_resched()
527  * Returns false when compaction can continue (sync compaction might have
528  *              scheduled)
529  */
530 static bool compact_unlock_should_abort(spinlock_t *lock,
531                 unsigned long flags, bool *locked, struct compact_control *cc)
532 {
533         if (*locked) {
534                 spin_unlock_irqrestore(lock, flags);
535                 *locked = false;
536         }
537
538         if (fatal_signal_pending(current)) {
539                 cc->contended = true;
540                 return true;
541         }
542
543         cond_resched();
544
545         return false;
546 }
547
548 /*
549  * Isolate free pages onto a private freelist. If @strict is true, will abort
550  * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
551  * (even though it may still end up isolating some pages).
552  */
553 static unsigned long isolate_freepages_block(struct compact_control *cc,
554                                 unsigned long *start_pfn,
555                                 unsigned long end_pfn,
556                                 struct list_head *freelist,
557                                 unsigned int stride,
558                                 bool strict)
559 {
560         int nr_scanned = 0, total_isolated = 0;
561         struct page *cursor;
562         unsigned long flags = 0;
563         bool locked = false;
564         unsigned long blockpfn = *start_pfn;
565         unsigned int order;
566
567         /* Strict mode is for isolation, speed is secondary */
568         if (strict)
569                 stride = 1;
570
571         cursor = pfn_to_page(blockpfn);
572
573         /* Isolate free pages. */
574         for (; blockpfn < end_pfn; blockpfn += stride, cursor += stride) {
575                 int isolated;
576                 struct page *page = cursor;
577
578                 /*
579                  * Periodically drop the lock (if held) regardless of its
580                  * contention, to give chance to IRQs. Abort if fatal signal
581                  * pending or async compaction detects need_resched()
582                  */
583                 if (!(blockpfn % SWAP_CLUSTER_MAX)
584                     && compact_unlock_should_abort(&cc->zone->lock, flags,
585                                                                 &locked, cc))
586                         break;
587
588                 nr_scanned++;
589                 if (!pfn_valid_within(blockpfn))
590                         goto isolate_fail;
591
592                 /*
593                  * For compound pages such as THP and hugetlbfs, we can save
594                  * potentially a lot of iterations if we skip them at once.
595                  * The check is racy, but we can consider only valid values
596                  * and the only danger is skipping too much.
597                  */
598                 if (PageCompound(page)) {
599                         const unsigned int order = compound_order(page);
600
601                         if (likely(order < MAX_ORDER)) {
602                                 blockpfn += (1UL << order) - 1;
603                                 cursor += (1UL << order) - 1;
604                         }
605                         goto isolate_fail;
606                 }
607
608                 if (!PageBuddy(page))
609                         goto isolate_fail;
610
611                 /*
612                  * If we already hold the lock, we can skip some rechecking.
613                  * Note that if we hold the lock now, checked_pageblock was
614                  * already set in some previous iteration (or strict is true),
615                  * so it is correct to skip the suitable migration target
616                  * recheck as well.
617                  */
618                 if (!locked) {
619                         locked = compact_lock_irqsave(&cc->zone->lock,
620                                                                 &flags, cc);
621
622                         /* Recheck this is a buddy page under lock */
623                         if (!PageBuddy(page))
624                                 goto isolate_fail;
625                 }
626
627                 /* Found a free page, will break it into order-0 pages */
628                 order = buddy_order(page);
629                 isolated = __isolate_free_page(page, order);
630                 if (!isolated)
631                         break;
632                 set_page_private(page, order);
633
634                 total_isolated += isolated;
635                 cc->nr_freepages += isolated;
636                 list_add_tail(&page->lru, freelist);
637
638                 if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
639                         blockpfn += isolated;
640                         break;
641                 }
642                 /* Advance to the end of split page */
643                 blockpfn += isolated - 1;
644                 cursor += isolated - 1;
645                 continue;
646
647 isolate_fail:
648                 if (strict)
649                         break;
650                 else
651                         continue;
652
653         }
654
655         if (locked)
656                 spin_unlock_irqrestore(&cc->zone->lock, flags);
657
658         /*
659          * There is a tiny chance that we have read bogus compound_order(),
660          * so be careful to not go outside of the pageblock.
661          */
662         if (unlikely(blockpfn > end_pfn))
663                 blockpfn = end_pfn;
664
665         trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
666                                         nr_scanned, total_isolated);
667
668         /* Record how far we have got within the block */
669         *start_pfn = blockpfn;
670
671         /*
672          * If strict isolation is requested by CMA then check that all the
673          * pages requested were isolated. If there were any failures, 0 is
674          * returned and CMA will fail.
675          */
676         if (strict && blockpfn < end_pfn)
677                 total_isolated = 0;
678
679         cc->total_free_scanned += nr_scanned;
680         if (total_isolated)
681                 count_compact_events(COMPACTISOLATED, total_isolated);
682         return total_isolated;
683 }
684
685 /**
686  * isolate_freepages_range() - isolate free pages.
687  * @cc:        Compaction control structure.
688  * @start_pfn: The first PFN to start isolating.
689  * @end_pfn:   The one-past-last PFN.
690  *
691  * Non-free pages, invalid PFNs, or zone boundaries within the
692  * [start_pfn, end_pfn) range are considered errors, cause function to
693  * undo its actions and return zero.
694  *
695  * Otherwise, function returns one-past-the-last PFN of isolated page
696  * (which may be greater then end_pfn if end fell in a middle of
697  * a free page).
698  */
699 unsigned long
700 isolate_freepages_range(struct compact_control *cc,
701                         unsigned long start_pfn, unsigned long end_pfn)
702 {
703         unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
704         LIST_HEAD(freelist);
705
706         pfn = start_pfn;
707         block_start_pfn = pageblock_start_pfn(pfn);
708         if (block_start_pfn < cc->zone->zone_start_pfn)
709                 block_start_pfn = cc->zone->zone_start_pfn;
710         block_end_pfn = pageblock_end_pfn(pfn);
711
712         for (; pfn < end_pfn; pfn += isolated,
713                                 block_start_pfn = block_end_pfn,
714                                 block_end_pfn += pageblock_nr_pages) {
715                 /* Protect pfn from changing by isolate_freepages_block */
716                 unsigned long isolate_start_pfn = pfn;
717
718                 block_end_pfn = min(block_end_pfn, end_pfn);
719
720                 /*
721                  * pfn could pass the block_end_pfn if isolated freepage
722                  * is more than pageblock order. In this case, we adjust
723                  * scanning range to right one.
724                  */
725                 if (pfn >= block_end_pfn) {
726                         block_start_pfn = pageblock_start_pfn(pfn);
727                         block_end_pfn = pageblock_end_pfn(pfn);
728                         block_end_pfn = min(block_end_pfn, end_pfn);
729                 }
730
731                 if (!pageblock_pfn_to_page(block_start_pfn,
732                                         block_end_pfn, cc->zone))
733                         break;
734
735                 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
736                                         block_end_pfn, &freelist, 0, true);
737
738                 /*
739                  * In strict mode, isolate_freepages_block() returns 0 if
740                  * there are any holes in the block (ie. invalid PFNs or
741                  * non-free pages).
742                  */
743                 if (!isolated)
744                         break;
745
746                 /*
747                  * If we managed to isolate pages, it is always (1 << n) *
748                  * pageblock_nr_pages for some non-negative n.  (Max order
749                  * page may span two pageblocks).
750                  */
751         }
752
753         /* __isolate_free_page() does not map the pages */
754         split_map_pages(&freelist);
755
756         if (pfn < end_pfn) {
757                 /* Loop terminated early, cleanup. */
758                 release_freepages(&freelist);
759                 return 0;
760         }
761
762         /* We don't use freelists for anything. */
763         return pfn;
764 }
765
766 /* Similar to reclaim, but different enough that they don't share logic */
767 static bool too_many_isolated(pg_data_t *pgdat)
768 {
769         unsigned long active, inactive, isolated;
770
771         inactive = node_page_state(pgdat, NR_INACTIVE_FILE) +
772                         node_page_state(pgdat, NR_INACTIVE_ANON);
773         active = node_page_state(pgdat, NR_ACTIVE_FILE) +
774                         node_page_state(pgdat, NR_ACTIVE_ANON);
775         isolated = node_page_state(pgdat, NR_ISOLATED_FILE) +
776                         node_page_state(pgdat, NR_ISOLATED_ANON);
777
778         return isolated > (inactive + active) / 2;
779 }
780
781 /**
782  * isolate_migratepages_block() - isolate all migrate-able pages within
783  *                                a single pageblock
784  * @cc:         Compaction control structure.
785  * @low_pfn:    The first PFN to isolate
786  * @end_pfn:    The one-past-the-last PFN to isolate, within same pageblock
787  * @isolate_mode: Isolation mode to be used.
788  *
789  * Isolate all pages that can be migrated from the range specified by
790  * [low_pfn, end_pfn). The range is expected to be within same pageblock.
791  * Returns zero if there is a fatal signal pending, otherwise PFN of the
792  * first page that was not scanned (which may be both less, equal to or more
793  * than end_pfn).
794  *
795  * The pages are isolated on cc->migratepages list (not required to be empty),
796  * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
797  * is neither read nor updated.
798  */
799 static unsigned long
800 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
801                         unsigned long end_pfn, isolate_mode_t isolate_mode)
802 {
803         pg_data_t *pgdat = cc->zone->zone_pgdat;
804         unsigned long nr_scanned = 0, nr_isolated = 0;
805         struct lruvec *lruvec;
806         unsigned long flags = 0;
807         bool locked = false;
808         struct page *page = NULL, *valid_page = NULL;
809         unsigned long start_pfn = low_pfn;
810         bool skip_on_failure = false;
811         unsigned long next_skip_pfn = 0;
812         bool skip_updated = false;
813
814         /*
815          * Ensure that there are not too many pages isolated from the LRU
816          * list by either parallel reclaimers or compaction. If there are,
817          * delay for some time until fewer pages are isolated
818          */
819         while (unlikely(too_many_isolated(pgdat))) {
820                 /* stop isolation if there are still pages not migrated */
821                 if (cc->nr_migratepages)
822                         return 0;
823
824                 /* async migration should just abort */
825                 if (cc->mode == MIGRATE_ASYNC)
826                         return 0;
827
828                 congestion_wait(BLK_RW_ASYNC, HZ/10);
829
830                 if (fatal_signal_pending(current))
831                         return 0;
832         }
833
834         cond_resched();
835
836         if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
837                 skip_on_failure = true;
838                 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
839         }
840
841         /* Time to isolate some pages for migration */
842         for (; low_pfn < end_pfn; low_pfn++) {
843
844                 if (skip_on_failure && low_pfn >= next_skip_pfn) {
845                         /*
846                          * We have isolated all migration candidates in the
847                          * previous order-aligned block, and did not skip it due
848                          * to failure. We should migrate the pages now and
849                          * hopefully succeed compaction.
850                          */
851                         if (nr_isolated)
852                                 break;
853
854                         /*
855                          * We failed to isolate in the previous order-aligned
856                          * block. Set the new boundary to the end of the
857                          * current block. Note we can't simply increase
858                          * next_skip_pfn by 1 << order, as low_pfn might have
859                          * been incremented by a higher number due to skipping
860                          * a compound or a high-order buddy page in the
861                          * previous loop iteration.
862                          */
863                         next_skip_pfn = block_end_pfn(low_pfn, cc->order);
864                 }
865
866                 /*
867                  * Periodically drop the lock (if held) regardless of its
868                  * contention, to give chance to IRQs. Abort completely if
869                  * a fatal signal is pending.
870                  */
871                 if (!(low_pfn % SWAP_CLUSTER_MAX)
872                     && compact_unlock_should_abort(&pgdat->lru_lock,
873                                             flags, &locked, cc)) {
874                         low_pfn = 0;
875                         goto fatal_pending;
876                 }
877
878                 if (!pfn_valid_within(low_pfn))
879                         goto isolate_fail;
880                 nr_scanned++;
881
882                 page = pfn_to_page(low_pfn);
883
884                 /*
885                  * Check if the pageblock has already been marked skipped.
886                  * Only the aligned PFN is checked as the caller isolates
887                  * COMPACT_CLUSTER_MAX at a time so the second call must
888                  * not falsely conclude that the block should be skipped.
889                  */
890                 if (!valid_page && IS_ALIGNED(low_pfn, pageblock_nr_pages)) {
891                         if (!cc->ignore_skip_hint && get_pageblock_skip(page)) {
892                                 low_pfn = end_pfn;
893                                 goto isolate_abort;
894                         }
895                         valid_page = page;
896                 }
897
898                 /*
899                  * Skip if free. We read page order here without zone lock
900                  * which is generally unsafe, but the race window is small and
901                  * the worst thing that can happen is that we skip some
902                  * potential isolation targets.
903                  */
904                 if (PageBuddy(page)) {
905                         unsigned long freepage_order = buddy_order_unsafe(page);
906
907                         /*
908                          * Without lock, we cannot be sure that what we got is
909                          * a valid page order. Consider only values in the
910                          * valid order range to prevent low_pfn overflow.
911                          */
912                         if (freepage_order > 0 && freepage_order < MAX_ORDER)
913                                 low_pfn += (1UL << freepage_order) - 1;
914                         continue;
915                 }
916
917                 /*
918                  * Regardless of being on LRU, compound pages such as THP and
919                  * hugetlbfs are not to be compacted unless we are attempting
920                  * an allocation much larger than the huge page size (eg CMA).
921                  * We can potentially save a lot of iterations if we skip them
922                  * at once. The check is racy, but we can consider only valid
923                  * values and the only danger is skipping too much.
924                  */
925                 if (PageCompound(page) && !cc->alloc_contig) {
926                         const unsigned int order = compound_order(page);
927
928                         if (likely(order < MAX_ORDER))
929                                 low_pfn += (1UL << order) - 1;
930                         goto isolate_fail;
931                 }
932
933                 /*
934                  * Check may be lockless but that's ok as we recheck later.
935                  * It's possible to migrate LRU and non-lru movable pages.
936                  * Skip any other type of page
937                  */
938                 if (!PageLRU(page)) {
939                         /*
940                          * __PageMovable can return false positive so we need
941                          * to verify it under page_lock.
942                          */
943                         if (unlikely(__PageMovable(page)) &&
944                                         !PageIsolated(page)) {
945                                 if (locked) {
946                                         spin_unlock_irqrestore(&pgdat->lru_lock,
947                                                                         flags);
948                                         locked = false;
949                                 }
950
951                                 if (!isolate_movable_page(page, isolate_mode))
952                                         goto isolate_success;
953                         }
954
955                         goto isolate_fail;
956                 }
957
958                 /*
959                  * Migration will fail if an anonymous page is pinned in memory,
960                  * so avoid taking lru_lock and isolating it unnecessarily in an
961                  * admittedly racy check.
962                  */
963                 if (!page_mapping(page) &&
964                     page_count(page) > page_mapcount(page))
965                         goto isolate_fail;
966
967                 /*
968                  * Only allow to migrate anonymous pages in GFP_NOFS context
969                  * because those do not depend on fs locks.
970                  */
971                 if (!(cc->gfp_mask & __GFP_FS) && page_mapping(page))
972                         goto isolate_fail;
973
974                 /* If we already hold the lock, we can skip some rechecking */
975                 if (!locked) {
976                         locked = compact_lock_irqsave(&pgdat->lru_lock,
977                                                                 &flags, cc);
978
979                         /* Try get exclusive access under lock */
980                         if (!skip_updated) {
981                                 skip_updated = true;
982                                 if (test_and_set_skip(cc, page, low_pfn))
983                                         goto isolate_abort;
984                         }
985
986                         /* Recheck PageLRU and PageCompound under lock */
987                         if (!PageLRU(page))
988                                 goto isolate_fail;
989
990                         /*
991                          * Page become compound since the non-locked check,
992                          * and it's on LRU. It can only be a THP so the order
993                          * is safe to read and it's 0 for tail pages.
994                          */
995                         if (unlikely(PageCompound(page) && !cc->alloc_contig)) {
996                                 low_pfn += compound_nr(page) - 1;
997                                 goto isolate_fail;
998                         }
999                 }
1000
1001                 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1002
1003                 /* Try isolate the page */
1004                 if (__isolate_lru_page(page, isolate_mode) != 0)
1005                         goto isolate_fail;
1006
1007                 /* The whole page is taken off the LRU; skip the tail pages. */
1008                 if (PageCompound(page))
1009                         low_pfn += compound_nr(page) - 1;
1010
1011                 /* Successfully isolated */
1012                 del_page_from_lru_list(page, lruvec, page_lru(page));
1013                 mod_node_page_state(page_pgdat(page),
1014                                 NR_ISOLATED_ANON + page_is_file_lru(page),
1015                                 thp_nr_pages(page));
1016
1017 isolate_success:
1018                 list_add(&page->lru, &cc->migratepages);
1019                 cc->nr_migratepages += compound_nr(page);
1020                 nr_isolated += compound_nr(page);
1021
1022                 /*
1023                  * Avoid isolating too much unless this block is being
1024                  * rescanned (e.g. dirty/writeback pages, parallel allocation)
1025                  * or a lock is contended. For contention, isolate quickly to
1026                  * potentially remove one source of contention.
1027                  */
1028                 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX &&
1029                     !cc->rescan && !cc->contended) {
1030                         ++low_pfn;
1031                         break;
1032                 }
1033
1034                 continue;
1035 isolate_fail:
1036                 if (!skip_on_failure)
1037                         continue;
1038
1039                 /*
1040                  * We have isolated some pages, but then failed. Release them
1041                  * instead of migrating, as we cannot form the cc->order buddy
1042                  * page anyway.
1043                  */
1044                 if (nr_isolated) {
1045                         if (locked) {
1046                                 spin_unlock_irqrestore(&pgdat->lru_lock, flags);
1047                                 locked = false;
1048                         }
1049                         putback_movable_pages(&cc->migratepages);
1050                         cc->nr_migratepages = 0;
1051                         nr_isolated = 0;
1052                 }
1053
1054                 if (low_pfn < next_skip_pfn) {
1055                         low_pfn = next_skip_pfn - 1;
1056                         /*
1057                          * The check near the loop beginning would have updated
1058                          * next_skip_pfn too, but this is a bit simpler.
1059                          */
1060                         next_skip_pfn += 1UL << cc->order;
1061                 }
1062         }
1063
1064         /*
1065          * The PageBuddy() check could have potentially brought us outside
1066          * the range to be scanned.
1067          */
1068         if (unlikely(low_pfn > end_pfn))
1069                 low_pfn = end_pfn;
1070
1071 isolate_abort:
1072         if (locked)
1073                 spin_unlock_irqrestore(&pgdat->lru_lock, flags);
1074
1075         /*
1076          * Updated the cached scanner pfn once the pageblock has been scanned
1077          * Pages will either be migrated in which case there is no point
1078          * scanning in the near future or migration failed in which case the
1079          * failure reason may persist. The block is marked for skipping if
1080          * there were no pages isolated in the block or if the block is
1081          * rescanned twice in a row.
1082          */
1083         if (low_pfn == end_pfn && (!nr_isolated || cc->rescan)) {
1084                 if (valid_page && !skip_updated)
1085                         set_pageblock_skip(valid_page);
1086                 update_cached_migrate(cc, low_pfn);
1087         }
1088
1089         trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
1090                                                 nr_scanned, nr_isolated);
1091
1092 fatal_pending:
1093         cc->total_migrate_scanned += nr_scanned;
1094         if (nr_isolated)
1095                 count_compact_events(COMPACTISOLATED, nr_isolated);
1096
1097         return low_pfn;
1098 }
1099
1100 /**
1101  * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
1102  * @cc:        Compaction control structure.
1103  * @start_pfn: The first PFN to start isolating.
1104  * @end_pfn:   The one-past-last PFN.
1105  *
1106  * Returns zero if isolation fails fatally due to e.g. pending signal.
1107  * Otherwise, function returns one-past-the-last PFN of isolated page
1108  * (which may be greater than end_pfn if end fell in a middle of a THP page).
1109  */
1110 unsigned long
1111 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
1112                                                         unsigned long end_pfn)
1113 {
1114         unsigned long pfn, block_start_pfn, block_end_pfn;
1115
1116         /* Scan block by block. First and last block may be incomplete */
1117         pfn = start_pfn;
1118         block_start_pfn = pageblock_start_pfn(pfn);
1119         if (block_start_pfn < cc->zone->zone_start_pfn)
1120                 block_start_pfn = cc->zone->zone_start_pfn;
1121         block_end_pfn = pageblock_end_pfn(pfn);
1122
1123         for (; pfn < end_pfn; pfn = block_end_pfn,
1124                                 block_start_pfn = block_end_pfn,
1125                                 block_end_pfn += pageblock_nr_pages) {
1126
1127                 block_end_pfn = min(block_end_pfn, end_pfn);
1128
1129                 if (!pageblock_pfn_to_page(block_start_pfn,
1130                                         block_end_pfn, cc->zone))
1131                         continue;
1132
1133                 pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
1134                                                         ISOLATE_UNEVICTABLE);
1135
1136                 if (!pfn)
1137                         break;
1138
1139                 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX)
1140                         break;
1141         }
1142
1143         return pfn;
1144 }
1145
1146 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
1147 #ifdef CONFIG_COMPACTION
1148
1149 static bool suitable_migration_source(struct compact_control *cc,
1150                                                         struct page *page)
1151 {
1152         int block_mt;
1153
1154         if (pageblock_skip_persistent(page))
1155                 return false;
1156
1157         if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
1158                 return true;
1159
1160         block_mt = get_pageblock_migratetype(page);
1161
1162         if (cc->migratetype == MIGRATE_MOVABLE)
1163                 return is_migrate_movable(block_mt);
1164         else
1165                 return block_mt == cc->migratetype;
1166 }
1167
1168 /* Returns true if the page is within a block suitable for migration to */
1169 static bool suitable_migration_target(struct compact_control *cc,
1170                                                         struct page *page)
1171 {
1172         /* If the page is a large free page, then disallow migration */
1173         if (PageBuddy(page)) {
1174                 /*
1175                  * We are checking page_order without zone->lock taken. But
1176                  * the only small danger is that we skip a potentially suitable
1177                  * pageblock, so it's not worth to check order for valid range.
1178                  */
1179                 if (buddy_order_unsafe(page) >= pageblock_order)
1180                         return false;
1181         }
1182
1183         if (cc->ignore_block_suitable)
1184                 return true;
1185
1186         /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1187         if (is_migrate_movable(get_pageblock_migratetype(page)))
1188                 return true;
1189
1190         /* Otherwise skip the block */
1191         return false;
1192 }
1193
1194 static inline unsigned int
1195 freelist_scan_limit(struct compact_control *cc)
1196 {
1197         unsigned short shift = BITS_PER_LONG - 1;
1198
1199         return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1;
1200 }
1201
1202 /*
1203  * Test whether the free scanner has reached the same or lower pageblock than
1204  * the migration scanner, and compaction should thus terminate.
1205  */
1206 static inline bool compact_scanners_met(struct compact_control *cc)
1207 {
1208         return (cc->free_pfn >> pageblock_order)
1209                 <= (cc->migrate_pfn >> pageblock_order);
1210 }
1211
1212 /*
1213  * Used when scanning for a suitable migration target which scans freelists
1214  * in reverse. Reorders the list such as the unscanned pages are scanned
1215  * first on the next iteration of the free scanner
1216  */
1217 static void
1218 move_freelist_head(struct list_head *freelist, struct page *freepage)
1219 {
1220         LIST_HEAD(sublist);
1221
1222         if (!list_is_last(freelist, &freepage->lru)) {
1223                 list_cut_before(&sublist, freelist, &freepage->lru);
1224                 if (!list_empty(&sublist))
1225                         list_splice_tail(&sublist, freelist);
1226         }
1227 }
1228
1229 /*
1230  * Similar to move_freelist_head except used by the migration scanner
1231  * when scanning forward. It's possible for these list operations to
1232  * move against each other if they search the free list exactly in
1233  * lockstep.
1234  */
1235 static void
1236 move_freelist_tail(struct list_head *freelist, struct page *freepage)
1237 {
1238         LIST_HEAD(sublist);
1239
1240         if (!list_is_first(freelist, &freepage->lru)) {
1241                 list_cut_position(&sublist, freelist, &freepage->lru);
1242                 if (!list_empty(&sublist))
1243                         list_splice_tail(&sublist, freelist);
1244         }
1245 }
1246
1247 static void
1248 fast_isolate_around(struct compact_control *cc, unsigned long pfn, unsigned long nr_isolated)
1249 {
1250         unsigned long start_pfn, end_pfn;
1251         struct page *page;
1252
1253         /* Do not search around if there are enough pages already */
1254         if (cc->nr_freepages >= cc->nr_migratepages)
1255                 return;
1256
1257         /* Minimise scanning during async compaction */
1258         if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC)
1259                 return;
1260
1261         /* Pageblock boundaries */
1262         start_pfn = max(pageblock_start_pfn(pfn), cc->zone->zone_start_pfn);
1263         end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone));
1264
1265         page = pageblock_pfn_to_page(start_pfn, end_pfn, cc->zone);
1266         if (!page)
1267                 return;
1268
1269         /* Scan before */
1270         if (start_pfn != pfn) {
1271                 isolate_freepages_block(cc, &start_pfn, pfn, &cc->freepages, 1, false);
1272                 if (cc->nr_freepages >= cc->nr_migratepages)
1273                         return;
1274         }
1275
1276         /* Scan after */
1277         start_pfn = pfn + nr_isolated;
1278         if (start_pfn < end_pfn)
1279                 isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false);
1280
1281         /* Skip this pageblock in the future as it's full or nearly full */
1282         if (cc->nr_freepages < cc->nr_migratepages)
1283                 set_pageblock_skip(page);
1284 }
1285
1286 /* Search orders in round-robin fashion */
1287 static int next_search_order(struct compact_control *cc, int order)
1288 {
1289         order--;
1290         if (order < 0)
1291                 order = cc->order - 1;
1292
1293         /* Search wrapped around? */
1294         if (order == cc->search_order) {
1295                 cc->search_order--;
1296                 if (cc->search_order < 0)
1297                         cc->search_order = cc->order - 1;
1298                 return -1;
1299         }
1300
1301         return order;
1302 }
1303
1304 static unsigned long
1305 fast_isolate_freepages(struct compact_control *cc)
1306 {
1307         unsigned int limit = min(1U, freelist_scan_limit(cc) >> 1);
1308         unsigned int nr_scanned = 0;
1309         unsigned long low_pfn, min_pfn, highest = 0;
1310         unsigned long nr_isolated = 0;
1311         unsigned long distance;
1312         struct page *page = NULL;
1313         bool scan_start = false;
1314         int order;
1315
1316         /* Full compaction passes in a negative order */
1317         if (cc->order <= 0)
1318                 return cc->free_pfn;
1319
1320         /*
1321          * If starting the scan, use a deeper search and use the highest
1322          * PFN found if a suitable one is not found.
1323          */
1324         if (cc->free_pfn >= cc->zone->compact_init_free_pfn) {
1325                 limit = pageblock_nr_pages >> 1;
1326                 scan_start = true;
1327         }
1328
1329         /*
1330          * Preferred point is in the top quarter of the scan space but take
1331          * a pfn from the top half if the search is problematic.
1332          */
1333         distance = (cc->free_pfn - cc->migrate_pfn);
1334         low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2));
1335         min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1));
1336
1337         if (WARN_ON_ONCE(min_pfn > low_pfn))
1338                 low_pfn = min_pfn;
1339
1340         /*
1341          * Search starts from the last successful isolation order or the next
1342          * order to search after a previous failure
1343          */
1344         cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order);
1345
1346         for (order = cc->search_order;
1347              !page && order >= 0;
1348              order = next_search_order(cc, order)) {
1349                 struct free_area *area = &cc->zone->free_area[order];
1350                 struct list_head *freelist;
1351                 struct page *freepage;
1352                 unsigned long flags;
1353                 unsigned int order_scanned = 0;
1354                 unsigned long high_pfn = 0;
1355
1356                 if (!area->nr_free)
1357                         continue;
1358
1359                 spin_lock_irqsave(&cc->zone->lock, flags);
1360                 freelist = &area->free_list[MIGRATE_MOVABLE];
1361                 list_for_each_entry_reverse(freepage, freelist, lru) {
1362                         unsigned long pfn;
1363
1364                         order_scanned++;
1365                         nr_scanned++;
1366                         pfn = page_to_pfn(freepage);
1367
1368                         if (pfn >= highest)
1369                                 highest = max(pageblock_start_pfn(pfn),
1370                                               cc->zone->zone_start_pfn);
1371
1372                         if (pfn >= low_pfn) {
1373                                 cc->fast_search_fail = 0;
1374                                 cc->search_order = order;
1375                                 page = freepage;
1376                                 break;
1377                         }
1378
1379                         if (pfn >= min_pfn && pfn > high_pfn) {
1380                                 high_pfn = pfn;
1381
1382                                 /* Shorten the scan if a candidate is found */
1383                                 limit >>= 1;
1384                         }
1385
1386                         if (order_scanned >= limit)
1387                                 break;
1388                 }
1389
1390                 /* Use a minimum pfn if a preferred one was not found */
1391                 if (!page && high_pfn) {
1392                         page = pfn_to_page(high_pfn);
1393
1394                         /* Update freepage for the list reorder below */
1395                         freepage = page;
1396                 }
1397
1398                 /* Reorder to so a future search skips recent pages */
1399                 move_freelist_head(freelist, freepage);
1400
1401                 /* Isolate the page if available */
1402                 if (page) {
1403                         if (__isolate_free_page(page, order)) {
1404                                 set_page_private(page, order);
1405                                 nr_isolated = 1 << order;
1406                                 cc->nr_freepages += nr_isolated;
1407                                 list_add_tail(&page->lru, &cc->freepages);
1408                                 count_compact_events(COMPACTISOLATED, nr_isolated);
1409                         } else {
1410                                 /* If isolation fails, abort the search */
1411                                 order = cc->search_order + 1;
1412                                 page = NULL;
1413                         }
1414                 }
1415
1416                 spin_unlock_irqrestore(&cc->zone->lock, flags);
1417
1418                 /*
1419                  * Smaller scan on next order so the total scan ig related
1420                  * to freelist_scan_limit.
1421                  */
1422                 if (order_scanned >= limit)
1423                         limit = min(1U, limit >> 1);
1424         }
1425
1426         if (!page) {
1427                 cc->fast_search_fail++;
1428                 if (scan_start) {
1429                         /*
1430                          * Use the highest PFN found above min. If one was
1431                          * not found, be pessimistic for direct compaction
1432                          * and use the min mark.
1433                          */
1434                         if (highest) {
1435                                 page = pfn_to_page(highest);
1436                                 cc->free_pfn = highest;
1437                         } else {
1438                                 if (cc->direct_compaction && pfn_valid(min_pfn)) {
1439                                         page = pageblock_pfn_to_page(min_pfn,
1440                                                 min(pageblock_end_pfn(min_pfn),
1441                                                     zone_end_pfn(cc->zone)),
1442                                                 cc->zone);
1443                                         cc->free_pfn = min_pfn;
1444                                 }
1445                         }
1446                 }
1447         }
1448
1449         if (highest && highest >= cc->zone->compact_cached_free_pfn) {
1450                 highest -= pageblock_nr_pages;
1451                 cc->zone->compact_cached_free_pfn = highest;
1452         }
1453
1454         cc->total_free_scanned += nr_scanned;
1455         if (!page)
1456                 return cc->free_pfn;
1457
1458         low_pfn = page_to_pfn(page);
1459         fast_isolate_around(cc, low_pfn, nr_isolated);
1460         return low_pfn;
1461 }
1462
1463 /*
1464  * Based on information in the current compact_control, find blocks
1465  * suitable for isolating free pages from and then isolate them.
1466  */
1467 static void isolate_freepages(struct compact_control *cc)
1468 {
1469         struct zone *zone = cc->zone;
1470         struct page *page;
1471         unsigned long block_start_pfn;  /* start of current pageblock */
1472         unsigned long isolate_start_pfn; /* exact pfn we start at */
1473         unsigned long block_end_pfn;    /* end of current pageblock */
1474         unsigned long low_pfn;       /* lowest pfn scanner is able to scan */
1475         struct list_head *freelist = &cc->freepages;
1476         unsigned int stride;
1477
1478         /* Try a small search of the free lists for a candidate */
1479         isolate_start_pfn = fast_isolate_freepages(cc);
1480         if (cc->nr_freepages)
1481                 goto splitmap;
1482
1483         /*
1484          * Initialise the free scanner. The starting point is where we last
1485          * successfully isolated from, zone-cached value, or the end of the
1486          * zone when isolating for the first time. For looping we also need
1487          * this pfn aligned down to the pageblock boundary, because we do
1488          * block_start_pfn -= pageblock_nr_pages in the for loop.
1489          * For ending point, take care when isolating in last pageblock of a
1490          * zone which ends in the middle of a pageblock.
1491          * The low boundary is the end of the pageblock the migration scanner
1492          * is using.
1493          */
1494         isolate_start_pfn = cc->free_pfn;
1495         block_start_pfn = pageblock_start_pfn(isolate_start_pfn);
1496         block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1497                                                 zone_end_pfn(zone));
1498         low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1499         stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1;
1500
1501         /*
1502          * Isolate free pages until enough are available to migrate the
1503          * pages on cc->migratepages. We stop searching if the migrate
1504          * and free page scanners meet or enough free pages are isolated.
1505          */
1506         for (; block_start_pfn >= low_pfn;
1507                                 block_end_pfn = block_start_pfn,
1508                                 block_start_pfn -= pageblock_nr_pages,
1509                                 isolate_start_pfn = block_start_pfn) {
1510                 unsigned long nr_isolated;
1511
1512                 /*
1513                  * This can iterate a massively long zone without finding any
1514                  * suitable migration targets, so periodically check resched.
1515                  */
1516                 if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)))
1517                         cond_resched();
1518
1519                 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1520                                                                         zone);
1521                 if (!page)
1522                         continue;
1523
1524                 /* Check the block is suitable for migration */
1525                 if (!suitable_migration_target(cc, page))
1526                         continue;
1527
1528                 /* If isolation recently failed, do not retry */
1529                 if (!isolation_suitable(cc, page))
1530                         continue;
1531
1532                 /* Found a block suitable for isolating free pages from. */
1533                 nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn,
1534                                         block_end_pfn, freelist, stride, false);
1535
1536                 /* Update the skip hint if the full pageblock was scanned */
1537                 if (isolate_start_pfn == block_end_pfn)
1538                         update_pageblock_skip(cc, page, block_start_pfn);
1539
1540                 /* Are enough freepages isolated? */
1541                 if (cc->nr_freepages >= cc->nr_migratepages) {
1542                         if (isolate_start_pfn >= block_end_pfn) {
1543                                 /*
1544                                  * Restart at previous pageblock if more
1545                                  * freepages can be isolated next time.
1546                                  */
1547                                 isolate_start_pfn =
1548                                         block_start_pfn - pageblock_nr_pages;
1549                         }
1550                         break;
1551                 } else if (isolate_start_pfn < block_end_pfn) {
1552                         /*
1553                          * If isolation failed early, do not continue
1554                          * needlessly.
1555                          */
1556                         break;
1557                 }
1558
1559                 /* Adjust stride depending on isolation */
1560                 if (nr_isolated) {
1561                         stride = 1;
1562                         continue;
1563                 }
1564                 stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1);
1565         }
1566
1567         /*
1568          * Record where the free scanner will restart next time. Either we
1569          * broke from the loop and set isolate_start_pfn based on the last
1570          * call to isolate_freepages_block(), or we met the migration scanner
1571          * and the loop terminated due to isolate_start_pfn < low_pfn
1572          */
1573         cc->free_pfn = isolate_start_pfn;
1574
1575 splitmap:
1576         /* __isolate_free_page() does not map the pages */
1577         split_map_pages(freelist);
1578 }
1579
1580 /*
1581  * This is a migrate-callback that "allocates" freepages by taking pages
1582  * from the isolated freelists in the block we are migrating to.
1583  */
1584 static struct page *compaction_alloc(struct page *migratepage,
1585                                         unsigned long data)
1586 {
1587         struct compact_control *cc = (struct compact_control *)data;
1588         struct page *freepage;
1589
1590         if (list_empty(&cc->freepages)) {
1591                 isolate_freepages(cc);
1592
1593                 if (list_empty(&cc->freepages))
1594                         return NULL;
1595         }
1596
1597         freepage = list_entry(cc->freepages.next, struct page, lru);
1598         list_del(&freepage->lru);
1599         cc->nr_freepages--;
1600
1601         return freepage;
1602 }
1603
1604 /*
1605  * This is a migrate-callback that "frees" freepages back to the isolated
1606  * freelist.  All pages on the freelist are from the same zone, so there is no
1607  * special handling needed for NUMA.
1608  */
1609 static void compaction_free(struct page *page, unsigned long data)
1610 {
1611         struct compact_control *cc = (struct compact_control *)data;
1612
1613         list_add(&page->lru, &cc->freepages);
1614         cc->nr_freepages++;
1615 }
1616
1617 /* possible outcome of isolate_migratepages */
1618 typedef enum {
1619         ISOLATE_ABORT,          /* Abort compaction now */
1620         ISOLATE_NONE,           /* No pages isolated, continue scanning */
1621         ISOLATE_SUCCESS,        /* Pages isolated, migrate */
1622 } isolate_migrate_t;
1623
1624 /*
1625  * Allow userspace to control policy on scanning the unevictable LRU for
1626  * compactable pages.
1627  */
1628 #ifdef CONFIG_PREEMPT_RT
1629 int sysctl_compact_unevictable_allowed __read_mostly = 0;
1630 #else
1631 int sysctl_compact_unevictable_allowed __read_mostly = 1;
1632 #endif
1633
1634 static inline void
1635 update_fast_start_pfn(struct compact_control *cc, unsigned long pfn)
1636 {
1637         if (cc->fast_start_pfn == ULONG_MAX)
1638                 return;
1639
1640         if (!cc->fast_start_pfn)
1641                 cc->fast_start_pfn = pfn;
1642
1643         cc->fast_start_pfn = min(cc->fast_start_pfn, pfn);
1644 }
1645
1646 static inline unsigned long
1647 reinit_migrate_pfn(struct compact_control *cc)
1648 {
1649         if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX)
1650                 return cc->migrate_pfn;
1651
1652         cc->migrate_pfn = cc->fast_start_pfn;
1653         cc->fast_start_pfn = ULONG_MAX;
1654
1655         return cc->migrate_pfn;
1656 }
1657
1658 /*
1659  * Briefly search the free lists for a migration source that already has
1660  * some free pages to reduce the number of pages that need migration
1661  * before a pageblock is free.
1662  */
1663 static unsigned long fast_find_migrateblock(struct compact_control *cc)
1664 {
1665         unsigned int limit = freelist_scan_limit(cc);
1666         unsigned int nr_scanned = 0;
1667         unsigned long distance;
1668         unsigned long pfn = cc->migrate_pfn;
1669         unsigned long high_pfn;
1670         int order;
1671         bool found_block = false;
1672
1673         /* Skip hints are relied on to avoid repeats on the fast search */
1674         if (cc->ignore_skip_hint)
1675                 return pfn;
1676
1677         /*
1678          * If the migrate_pfn is not at the start of a zone or the start
1679          * of a pageblock then assume this is a continuation of a previous
1680          * scan restarted due to COMPACT_CLUSTER_MAX.
1681          */
1682         if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn))
1683                 return pfn;
1684
1685         /*
1686          * For smaller orders, just linearly scan as the number of pages
1687          * to migrate should be relatively small and does not necessarily
1688          * justify freeing up a large block for a small allocation.
1689          */
1690         if (cc->order <= PAGE_ALLOC_COSTLY_ORDER)
1691                 return pfn;
1692
1693         /*
1694          * Only allow kcompactd and direct requests for movable pages to
1695          * quickly clear out a MOVABLE pageblock for allocation. This
1696          * reduces the risk that a large movable pageblock is freed for
1697          * an unmovable/reclaimable small allocation.
1698          */
1699         if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE)
1700                 return pfn;
1701
1702         /*
1703          * When starting the migration scanner, pick any pageblock within the
1704          * first half of the search space. Otherwise try and pick a pageblock
1705          * within the first eighth to reduce the chances that a migration
1706          * target later becomes a source.
1707          */
1708         distance = (cc->free_pfn - cc->migrate_pfn) >> 1;
1709         if (cc->migrate_pfn != cc->zone->zone_start_pfn)
1710                 distance >>= 2;
1711         high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance);
1712
1713         for (order = cc->order - 1;
1714              order >= PAGE_ALLOC_COSTLY_ORDER && !found_block && nr_scanned < limit;
1715              order--) {
1716                 struct free_area *area = &cc->zone->free_area[order];
1717                 struct list_head *freelist;
1718                 unsigned long flags;
1719                 struct page *freepage;
1720
1721                 if (!area->nr_free)
1722                         continue;
1723
1724                 spin_lock_irqsave(&cc->zone->lock, flags);
1725                 freelist = &area->free_list[MIGRATE_MOVABLE];
1726                 list_for_each_entry(freepage, freelist, lru) {
1727                         unsigned long free_pfn;
1728
1729                         if (nr_scanned++ >= limit) {
1730                                 move_freelist_tail(freelist, freepage);
1731                                 break;
1732                         }
1733
1734                         free_pfn = page_to_pfn(freepage);
1735                         if (free_pfn < high_pfn) {
1736                                 /*
1737                                  * Avoid if skipped recently. Ideally it would
1738                                  * move to the tail but even safe iteration of
1739                                  * the list assumes an entry is deleted, not
1740                                  * reordered.
1741                                  */
1742                                 if (get_pageblock_skip(freepage))
1743                                         continue;
1744
1745                                 /* Reorder to so a future search skips recent pages */
1746                                 move_freelist_tail(freelist, freepage);
1747
1748                                 update_fast_start_pfn(cc, free_pfn);
1749                                 pfn = pageblock_start_pfn(free_pfn);
1750                                 cc->fast_search_fail = 0;
1751                                 found_block = true;
1752                                 set_pageblock_skip(freepage);
1753                                 break;
1754                         }
1755                 }
1756                 spin_unlock_irqrestore(&cc->zone->lock, flags);
1757         }
1758
1759         cc->total_migrate_scanned += nr_scanned;
1760
1761         /*
1762          * If fast scanning failed then use a cached entry for a page block
1763          * that had free pages as the basis for starting a linear scan.
1764          */
1765         if (!found_block) {
1766                 cc->fast_search_fail++;
1767                 pfn = reinit_migrate_pfn(cc);
1768         }
1769         return pfn;
1770 }
1771
1772 /*
1773  * Isolate all pages that can be migrated from the first suitable block,
1774  * starting at the block pointed to by the migrate scanner pfn within
1775  * compact_control.
1776  */
1777 static isolate_migrate_t isolate_migratepages(struct compact_control *cc)
1778 {
1779         unsigned long block_start_pfn;
1780         unsigned long block_end_pfn;
1781         unsigned long low_pfn;
1782         struct page *page;
1783         const isolate_mode_t isolate_mode =
1784                 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1785                 (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1786         bool fast_find_block;
1787
1788         /*
1789          * Start at where we last stopped, or beginning of the zone as
1790          * initialized by compact_zone(). The first failure will use
1791          * the lowest PFN as the starting point for linear scanning.
1792          */
1793         low_pfn = fast_find_migrateblock(cc);
1794         block_start_pfn = pageblock_start_pfn(low_pfn);
1795         if (block_start_pfn < cc->zone->zone_start_pfn)
1796                 block_start_pfn = cc->zone->zone_start_pfn;
1797
1798         /*
1799          * fast_find_migrateblock marks a pageblock skipped so to avoid
1800          * the isolation_suitable check below, check whether the fast
1801          * search was successful.
1802          */
1803         fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail;
1804
1805         /* Only scan within a pageblock boundary */
1806         block_end_pfn = pageblock_end_pfn(low_pfn);
1807
1808         /*
1809          * Iterate over whole pageblocks until we find the first suitable.
1810          * Do not cross the free scanner.
1811          */
1812         for (; block_end_pfn <= cc->free_pfn;
1813                         fast_find_block = false,
1814                         low_pfn = block_end_pfn,
1815                         block_start_pfn = block_end_pfn,
1816                         block_end_pfn += pageblock_nr_pages) {
1817
1818                 /*
1819                  * This can potentially iterate a massively long zone with
1820                  * many pageblocks unsuitable, so periodically check if we
1821                  * need to schedule.
1822                  */
1823                 if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)))
1824                         cond_resched();
1825
1826                 page = pageblock_pfn_to_page(block_start_pfn,
1827                                                 block_end_pfn, cc->zone);
1828                 if (!page)
1829                         continue;
1830
1831                 /*
1832                  * If isolation recently failed, do not retry. Only check the
1833                  * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock
1834                  * to be visited multiple times. Assume skip was checked
1835                  * before making it "skip" so other compaction instances do
1836                  * not scan the same block.
1837                  */
1838                 if (IS_ALIGNED(low_pfn, pageblock_nr_pages) &&
1839                     !fast_find_block && !isolation_suitable(cc, page))
1840                         continue;
1841
1842                 /*
1843                  * For async compaction, also only scan in MOVABLE blocks
1844                  * without huge pages. Async compaction is optimistic to see
1845                  * if the minimum amount of work satisfies the allocation.
1846                  * The cached PFN is updated as it's possible that all
1847                  * remaining blocks between source and target are unsuitable
1848                  * and the compaction scanners fail to meet.
1849                  */
1850                 if (!suitable_migration_source(cc, page)) {
1851                         update_cached_migrate(cc, block_end_pfn);
1852                         continue;
1853                 }
1854
1855                 /* Perform the isolation */
1856                 low_pfn = isolate_migratepages_block(cc, low_pfn,
1857                                                 block_end_pfn, isolate_mode);
1858
1859                 if (!low_pfn)
1860                         return ISOLATE_ABORT;
1861
1862                 /*
1863                  * Either we isolated something and proceed with migration. Or
1864                  * we failed and compact_zone should decide if we should
1865                  * continue or not.
1866                  */
1867                 break;
1868         }
1869
1870         /* Record where migration scanner will be restarted. */
1871         cc->migrate_pfn = low_pfn;
1872
1873         return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1874 }
1875
1876 /*
1877  * order == -1 is expected when compacting via
1878  * /proc/sys/vm/compact_memory
1879  */
1880 static inline bool is_via_compact_memory(int order)
1881 {
1882         return order == -1;
1883 }
1884
1885 static bool kswapd_is_running(pg_data_t *pgdat)
1886 {
1887         return pgdat->kswapd && (pgdat->kswapd->state == TASK_RUNNING);
1888 }
1889
1890 /*
1891  * A zone's fragmentation score is the external fragmentation wrt to the
1892  * COMPACTION_HPAGE_ORDER scaled by the zone's size. It returns a value
1893  * in the range [0, 100].
1894  *
1895  * The scaling factor ensures that proactive compaction focuses on larger
1896  * zones like ZONE_NORMAL, rather than smaller, specialized zones like
1897  * ZONE_DMA32. For smaller zones, the score value remains close to zero,
1898  * and thus never exceeds the high threshold for proactive compaction.
1899  */
1900 static unsigned int fragmentation_score_zone(struct zone *zone)
1901 {
1902         unsigned long score;
1903
1904         score = zone->present_pages *
1905                         extfrag_for_order(zone, COMPACTION_HPAGE_ORDER);
1906         return div64_ul(score, zone->zone_pgdat->node_present_pages + 1);
1907 }
1908
1909 /*
1910  * The per-node proactive (background) compaction process is started by its
1911  * corresponding kcompactd thread when the node's fragmentation score
1912  * exceeds the high threshold. The compaction process remains active till
1913  * the node's score falls below the low threshold, or one of the back-off
1914  * conditions is met.
1915  */
1916 static unsigned int fragmentation_score_node(pg_data_t *pgdat)
1917 {
1918         unsigned int score = 0;
1919         int zoneid;
1920
1921         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
1922                 struct zone *zone;
1923
1924                 zone = &pgdat->node_zones[zoneid];
1925                 score += fragmentation_score_zone(zone);
1926         }
1927
1928         return score;
1929 }
1930
1931 static unsigned int fragmentation_score_wmark(pg_data_t *pgdat, bool low)
1932 {
1933         unsigned int wmark_low;
1934
1935         /*
1936          * Cap the low watermak to avoid excessive compaction
1937          * activity in case a user sets the proactivess tunable
1938          * close to 100 (maximum).
1939          */
1940         wmark_low = max(100U - sysctl_compaction_proactiveness, 5U);
1941         return low ? wmark_low : min(wmark_low + 10, 100U);
1942 }
1943
1944 static bool should_proactive_compact_node(pg_data_t *pgdat)
1945 {
1946         int wmark_high;
1947
1948         if (!sysctl_compaction_proactiveness || kswapd_is_running(pgdat))
1949                 return false;
1950
1951         wmark_high = fragmentation_score_wmark(pgdat, false);
1952         return fragmentation_score_node(pgdat) > wmark_high;
1953 }
1954
1955 static enum compact_result __compact_finished(struct compact_control *cc)
1956 {
1957         unsigned int order;
1958         const int migratetype = cc->migratetype;
1959         int ret;
1960
1961         /* Compaction run completes if the migrate and free scanner meet */
1962         if (compact_scanners_met(cc)) {
1963                 /* Let the next compaction start anew. */
1964                 reset_cached_positions(cc->zone);
1965
1966                 /*
1967                  * Mark that the PG_migrate_skip information should be cleared
1968                  * by kswapd when it goes to sleep. kcompactd does not set the
1969                  * flag itself as the decision to be clear should be directly
1970                  * based on an allocation request.
1971                  */
1972                 if (cc->direct_compaction)
1973                         cc->zone->compact_blockskip_flush = true;
1974
1975                 if (cc->whole_zone)
1976                         return COMPACT_COMPLETE;
1977                 else
1978                         return COMPACT_PARTIAL_SKIPPED;
1979         }
1980
1981         if (cc->proactive_compaction) {
1982                 int score, wmark_low;
1983                 pg_data_t *pgdat;
1984
1985                 pgdat = cc->zone->zone_pgdat;
1986                 if (kswapd_is_running(pgdat))
1987                         return COMPACT_PARTIAL_SKIPPED;
1988
1989                 score = fragmentation_score_zone(cc->zone);
1990                 wmark_low = fragmentation_score_wmark(pgdat, true);
1991
1992                 if (score > wmark_low)
1993                         ret = COMPACT_CONTINUE;
1994                 else
1995                         ret = COMPACT_SUCCESS;
1996
1997                 goto out;
1998         }
1999
2000         if (is_via_compact_memory(cc->order))
2001                 return COMPACT_CONTINUE;
2002
2003         /*
2004          * Always finish scanning a pageblock to reduce the possibility of
2005          * fallbacks in the future. This is particularly important when
2006          * migration source is unmovable/reclaimable but it's not worth
2007          * special casing.
2008          */
2009         if (!IS_ALIGNED(cc->migrate_pfn, pageblock_nr_pages))
2010                 return COMPACT_CONTINUE;
2011
2012         /* Direct compactor: Is a suitable page free? */
2013         ret = COMPACT_NO_SUITABLE_PAGE;
2014         for (order = cc->order; order < MAX_ORDER; order++) {
2015                 struct free_area *area = &cc->zone->free_area[order];
2016                 bool can_steal;
2017
2018                 /* Job done if page is free of the right migratetype */
2019                 if (!free_area_empty(area, migratetype))
2020                         return COMPACT_SUCCESS;
2021
2022 #ifdef CONFIG_CMA
2023                 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
2024                 if (migratetype == MIGRATE_MOVABLE &&
2025                         !free_area_empty(area, MIGRATE_CMA))
2026                         return COMPACT_SUCCESS;
2027 #endif
2028                 /*
2029                  * Job done if allocation would steal freepages from
2030                  * other migratetype buddy lists.
2031                  */
2032                 if (find_suitable_fallback(area, order, migratetype,
2033                                                 true, &can_steal) != -1) {
2034
2035                         /* movable pages are OK in any pageblock */
2036                         if (migratetype == MIGRATE_MOVABLE)
2037                                 return COMPACT_SUCCESS;
2038
2039                         /*
2040                          * We are stealing for a non-movable allocation. Make
2041                          * sure we finish compacting the current pageblock
2042                          * first so it is as free as possible and we won't
2043                          * have to steal another one soon. This only applies
2044                          * to sync compaction, as async compaction operates
2045                          * on pageblocks of the same migratetype.
2046                          */
2047                         if (cc->mode == MIGRATE_ASYNC ||
2048                                         IS_ALIGNED(cc->migrate_pfn,
2049                                                         pageblock_nr_pages)) {
2050                                 return COMPACT_SUCCESS;
2051                         }
2052
2053                         ret = COMPACT_CONTINUE;
2054                         break;
2055                 }
2056         }
2057
2058 out:
2059         if (cc->contended || fatal_signal_pending(current))
2060                 ret = COMPACT_CONTENDED;
2061
2062         return ret;
2063 }
2064
2065 static enum compact_result compact_finished(struct compact_control *cc)
2066 {
2067         int ret;
2068
2069         ret = __compact_finished(cc);
2070         trace_mm_compaction_finished(cc->zone, cc->order, ret);
2071         if (ret == COMPACT_NO_SUITABLE_PAGE)
2072                 ret = COMPACT_CONTINUE;
2073
2074         return ret;
2075 }
2076
2077 /*
2078  * compaction_suitable: Is this suitable to run compaction on this zone now?
2079  * Returns
2080  *   COMPACT_SKIPPED  - If there are too few free pages for compaction
2081  *   COMPACT_SUCCESS  - If the allocation would succeed without compaction
2082  *   COMPACT_CONTINUE - If compaction should run now
2083  */
2084 static enum compact_result __compaction_suitable(struct zone *zone, int order,
2085                                         unsigned int alloc_flags,
2086                                         int highest_zoneidx,
2087                                         unsigned long wmark_target)
2088 {
2089         unsigned long watermark;
2090
2091         if (is_via_compact_memory(order))
2092                 return COMPACT_CONTINUE;
2093
2094         watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
2095         /*
2096          * If watermarks for high-order allocation are already met, there
2097          * should be no need for compaction at all.
2098          */
2099         if (zone_watermark_ok(zone, order, watermark, highest_zoneidx,
2100                                                                 alloc_flags))
2101                 return COMPACT_SUCCESS;
2102
2103         /*
2104          * Watermarks for order-0 must be met for compaction to be able to
2105          * isolate free pages for migration targets. This means that the
2106          * watermark and alloc_flags have to match, or be more pessimistic than
2107          * the check in __isolate_free_page(). We don't use the direct
2108          * compactor's alloc_flags, as they are not relevant for freepage
2109          * isolation. We however do use the direct compactor's highest_zoneidx
2110          * to skip over zones where lowmem reserves would prevent allocation
2111          * even if compaction succeeds.
2112          * For costly orders, we require low watermark instead of min for
2113          * compaction to proceed to increase its chances.
2114          * ALLOC_CMA is used, as pages in CMA pageblocks are considered
2115          * suitable migration targets
2116          */
2117         watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
2118                                 low_wmark_pages(zone) : min_wmark_pages(zone);
2119         watermark += compact_gap(order);
2120         if (!__zone_watermark_ok(zone, 0, watermark, highest_zoneidx,
2121                                                 ALLOC_CMA, wmark_target))
2122                 return COMPACT_SKIPPED;
2123
2124         return COMPACT_CONTINUE;
2125 }
2126
2127 enum compact_result compaction_suitable(struct zone *zone, int order,
2128                                         unsigned int alloc_flags,
2129                                         int highest_zoneidx)
2130 {
2131         enum compact_result ret;
2132         int fragindex;
2133
2134         ret = __compaction_suitable(zone, order, alloc_flags, highest_zoneidx,
2135                                     zone_page_state(zone, NR_FREE_PAGES));
2136         /*
2137          * fragmentation index determines if allocation failures are due to
2138          * low memory or external fragmentation
2139          *
2140          * index of -1000 would imply allocations might succeed depending on
2141          * watermarks, but we already failed the high-order watermark check
2142          * index towards 0 implies failure is due to lack of memory
2143          * index towards 1000 implies failure is due to fragmentation
2144          *
2145          * Only compact if a failure would be due to fragmentation. Also
2146          * ignore fragindex for non-costly orders where the alternative to
2147          * a successful reclaim/compaction is OOM. Fragindex and the
2148          * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
2149          * excessive compaction for costly orders, but it should not be at the
2150          * expense of system stability.
2151          */
2152         if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) {
2153                 fragindex = fragmentation_index(zone, order);
2154                 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
2155                         ret = COMPACT_NOT_SUITABLE_ZONE;
2156         }
2157
2158         trace_mm_compaction_suitable(zone, order, ret);
2159         if (ret == COMPACT_NOT_SUITABLE_ZONE)
2160                 ret = COMPACT_SKIPPED;
2161
2162         return ret;
2163 }
2164
2165 bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
2166                 int alloc_flags)
2167 {
2168         struct zone *zone;
2169         struct zoneref *z;
2170
2171         /*
2172          * Make sure at least one zone would pass __compaction_suitable if we continue
2173          * retrying the reclaim.
2174          */
2175         for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2176                                 ac->highest_zoneidx, ac->nodemask) {
2177                 unsigned long available;
2178                 enum compact_result compact_result;
2179
2180                 /*
2181                  * Do not consider all the reclaimable memory because we do not
2182                  * want to trash just for a single high order allocation which
2183                  * is even not guaranteed to appear even if __compaction_suitable
2184                  * is happy about the watermark check.
2185                  */
2186                 available = zone_reclaimable_pages(zone) / order;
2187                 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
2188                 compact_result = __compaction_suitable(zone, order, alloc_flags,
2189                                 ac->highest_zoneidx, available);
2190                 if (compact_result != COMPACT_SKIPPED)
2191                         return true;
2192         }
2193
2194         return false;
2195 }
2196
2197 static enum compact_result
2198 compact_zone(struct compact_control *cc, struct capture_control *capc)
2199 {
2200         enum compact_result ret;
2201         unsigned long start_pfn = cc->zone->zone_start_pfn;
2202         unsigned long end_pfn = zone_end_pfn(cc->zone);
2203         unsigned long last_migrated_pfn;
2204         const bool sync = cc->mode != MIGRATE_ASYNC;
2205         bool update_cached;
2206
2207         /*
2208          * These counters track activities during zone compaction.  Initialize
2209          * them before compacting a new zone.
2210          */
2211         cc->total_migrate_scanned = 0;
2212         cc->total_free_scanned = 0;
2213         cc->nr_migratepages = 0;
2214         cc->nr_freepages = 0;
2215         INIT_LIST_HEAD(&cc->freepages);
2216         INIT_LIST_HEAD(&cc->migratepages);
2217
2218         cc->migratetype = gfp_migratetype(cc->gfp_mask);
2219         ret = compaction_suitable(cc->zone, cc->order, cc->alloc_flags,
2220                                                         cc->highest_zoneidx);
2221         /* Compaction is likely to fail */
2222         if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED)
2223                 return ret;
2224
2225         /* huh, compaction_suitable is returning something unexpected */
2226         VM_BUG_ON(ret != COMPACT_CONTINUE);
2227
2228         /*
2229          * Clear pageblock skip if there were failures recently and compaction
2230          * is about to be retried after being deferred.
2231          */
2232         if (compaction_restarting(cc->zone, cc->order))
2233                 __reset_isolation_suitable(cc->zone);
2234
2235         /*
2236          * Setup to move all movable pages to the end of the zone. Used cached
2237          * information on where the scanners should start (unless we explicitly
2238          * want to compact the whole zone), but check that it is initialised
2239          * by ensuring the values are within zone boundaries.
2240          */
2241         cc->fast_start_pfn = 0;
2242         if (cc->whole_zone) {
2243                 cc->migrate_pfn = start_pfn;
2244                 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2245         } else {
2246                 cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync];
2247                 cc->free_pfn = cc->zone->compact_cached_free_pfn;
2248                 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
2249                         cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2250                         cc->zone->compact_cached_free_pfn = cc->free_pfn;
2251                 }
2252                 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
2253                         cc->migrate_pfn = start_pfn;
2254                         cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
2255                         cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
2256                 }
2257
2258                 if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn)
2259                         cc->whole_zone = true;
2260         }
2261
2262         last_migrated_pfn = 0;
2263
2264         /*
2265          * Migrate has separate cached PFNs for ASYNC and SYNC* migration on
2266          * the basis that some migrations will fail in ASYNC mode. However,
2267          * if the cached PFNs match and pageblocks are skipped due to having
2268          * no isolation candidates, then the sync state does not matter.
2269          * Until a pageblock with isolation candidates is found, keep the
2270          * cached PFNs in sync to avoid revisiting the same blocks.
2271          */
2272         update_cached = !sync &&
2273                 cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1];
2274
2275         trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
2276                                 cc->free_pfn, end_pfn, sync);
2277
2278         migrate_prep_local();
2279
2280         while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) {
2281                 int err;
2282                 unsigned long start_pfn = cc->migrate_pfn;
2283
2284                 /*
2285                  * Avoid multiple rescans which can happen if a page cannot be
2286                  * isolated (dirty/writeback in async mode) or if the migrated
2287                  * pages are being allocated before the pageblock is cleared.
2288                  * The first rescan will capture the entire pageblock for
2289                  * migration. If it fails, it'll be marked skip and scanning
2290                  * will proceed as normal.
2291                  */
2292                 cc->rescan = false;
2293                 if (pageblock_start_pfn(last_migrated_pfn) ==
2294                     pageblock_start_pfn(start_pfn)) {
2295                         cc->rescan = true;
2296                 }
2297
2298                 switch (isolate_migratepages(cc)) {
2299                 case ISOLATE_ABORT:
2300                         ret = COMPACT_CONTENDED;
2301                         putback_movable_pages(&cc->migratepages);
2302                         cc->nr_migratepages = 0;
2303                         goto out;
2304                 case ISOLATE_NONE:
2305                         if (update_cached) {
2306                                 cc->zone->compact_cached_migrate_pfn[1] =
2307                                         cc->zone->compact_cached_migrate_pfn[0];
2308                         }
2309
2310                         /*
2311                          * We haven't isolated and migrated anything, but
2312                          * there might still be unflushed migrations from
2313                          * previous cc->order aligned block.
2314                          */
2315                         goto check_drain;
2316                 case ISOLATE_SUCCESS:
2317                         update_cached = false;
2318                         last_migrated_pfn = start_pfn;
2319                         ;
2320                 }
2321
2322                 err = migrate_pages(&cc->migratepages, compaction_alloc,
2323                                 compaction_free, (unsigned long)cc, cc->mode,
2324                                 MR_COMPACTION);
2325
2326                 trace_mm_compaction_migratepages(cc->nr_migratepages, err,
2327                                                         &cc->migratepages);
2328
2329                 /* All pages were either migrated or will be released */
2330                 cc->nr_migratepages = 0;
2331                 if (err) {
2332                         putback_movable_pages(&cc->migratepages);
2333                         /*
2334                          * migrate_pages() may return -ENOMEM when scanners meet
2335                          * and we want compact_finished() to detect it
2336                          */
2337                         if (err == -ENOMEM && !compact_scanners_met(cc)) {
2338                                 ret = COMPACT_CONTENDED;
2339                                 goto out;
2340                         }
2341                         /*
2342                          * We failed to migrate at least one page in the current
2343                          * order-aligned block, so skip the rest of it.
2344                          */
2345                         if (cc->direct_compaction &&
2346                                                 (cc->mode == MIGRATE_ASYNC)) {
2347                                 cc->migrate_pfn = block_end_pfn(
2348                                                 cc->migrate_pfn - 1, cc->order);
2349                                 /* Draining pcplists is useless in this case */
2350                                 last_migrated_pfn = 0;
2351                         }
2352                 }
2353
2354 check_drain:
2355                 /*
2356                  * Has the migration scanner moved away from the previous
2357                  * cc->order aligned block where we migrated from? If yes,
2358                  * flush the pages that were freed, so that they can merge and
2359                  * compact_finished() can detect immediately if allocation
2360                  * would succeed.
2361                  */
2362                 if (cc->order > 0 && last_migrated_pfn) {
2363                         unsigned long current_block_start =
2364                                 block_start_pfn(cc->migrate_pfn, cc->order);
2365
2366                         if (last_migrated_pfn < current_block_start) {
2367                                 lru_add_drain_cpu_zone(cc->zone);
2368                                 /* No more flushing until we migrate again */
2369                                 last_migrated_pfn = 0;
2370                         }
2371                 }
2372
2373                 /* Stop if a page has been captured */
2374                 if (capc && capc->page) {
2375                         ret = COMPACT_SUCCESS;
2376                         break;
2377                 }
2378         }
2379
2380 out:
2381         /*
2382          * Release free pages and update where the free scanner should restart,
2383          * so we don't leave any returned pages behind in the next attempt.
2384          */
2385         if (cc->nr_freepages > 0) {
2386                 unsigned long free_pfn = release_freepages(&cc->freepages);
2387
2388                 cc->nr_freepages = 0;
2389                 VM_BUG_ON(free_pfn == 0);
2390                 /* The cached pfn is always the first in a pageblock */
2391                 free_pfn = pageblock_start_pfn(free_pfn);
2392                 /*
2393                  * Only go back, not forward. The cached pfn might have been
2394                  * already reset to zone end in compact_finished()
2395                  */
2396                 if (free_pfn > cc->zone->compact_cached_free_pfn)
2397                         cc->zone->compact_cached_free_pfn = free_pfn;
2398         }
2399
2400         count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
2401         count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
2402
2403         trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
2404                                 cc->free_pfn, end_pfn, sync, ret);
2405
2406         return ret;
2407 }
2408
2409 static enum compact_result compact_zone_order(struct zone *zone, int order,
2410                 gfp_t gfp_mask, enum compact_priority prio,
2411                 unsigned int alloc_flags, int highest_zoneidx,
2412                 struct page **capture)
2413 {
2414         enum compact_result ret;
2415         struct compact_control cc = {
2416                 .order = order,
2417                 .search_order = order,
2418                 .gfp_mask = gfp_mask,
2419                 .zone = zone,
2420                 .mode = (prio == COMPACT_PRIO_ASYNC) ?
2421                                         MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT,
2422                 .alloc_flags = alloc_flags,
2423                 .highest_zoneidx = highest_zoneidx,
2424                 .direct_compaction = true,
2425                 .whole_zone = (prio == MIN_COMPACT_PRIORITY),
2426                 .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
2427                 .ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
2428         };
2429         struct capture_control capc = {
2430                 .cc = &cc,
2431                 .page = NULL,
2432         };
2433
2434         /*
2435          * Make sure the structs are really initialized before we expose the
2436          * capture control, in case we are interrupted and the interrupt handler
2437          * frees a page.
2438          */
2439         barrier();
2440         WRITE_ONCE(current->capture_control, &capc);
2441
2442         ret = compact_zone(&cc, &capc);
2443
2444         VM_BUG_ON(!list_empty(&cc.freepages));
2445         VM_BUG_ON(!list_empty(&cc.migratepages));
2446
2447         /*
2448          * Make sure we hide capture control first before we read the captured
2449          * page pointer, otherwise an interrupt could free and capture a page
2450          * and we would leak it.
2451          */
2452         WRITE_ONCE(current->capture_control, NULL);
2453         *capture = READ_ONCE(capc.page);
2454
2455         return ret;
2456 }
2457
2458 int sysctl_extfrag_threshold = 500;
2459
2460 /**
2461  * try_to_compact_pages - Direct compact to satisfy a high-order allocation
2462  * @gfp_mask: The GFP mask of the current allocation
2463  * @order: The order of the current allocation
2464  * @alloc_flags: The allocation flags of the current allocation
2465  * @ac: The context of current allocation
2466  * @prio: Determines how hard direct compaction should try to succeed
2467  * @capture: Pointer to free page created by compaction will be stored here
2468  *
2469  * This is the main entry point for direct page compaction.
2470  */
2471 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
2472                 unsigned int alloc_flags, const struct alloc_context *ac,
2473                 enum compact_priority prio, struct page **capture)
2474 {
2475         int may_perform_io = gfp_mask & __GFP_IO;
2476         struct zoneref *z;
2477         struct zone *zone;
2478         enum compact_result rc = COMPACT_SKIPPED;
2479
2480         /*
2481          * Check if the GFP flags allow compaction - GFP_NOIO is really
2482          * tricky context because the migration might require IO
2483          */
2484         if (!may_perform_io)
2485                 return COMPACT_SKIPPED;
2486
2487         trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
2488
2489         /* Compact each zone in the list */
2490         for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2491                                         ac->highest_zoneidx, ac->nodemask) {
2492                 enum compact_result status;
2493
2494                 if (prio > MIN_COMPACT_PRIORITY
2495                                         && compaction_deferred(zone, order)) {
2496                         rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
2497                         continue;
2498                 }
2499
2500                 status = compact_zone_order(zone, order, gfp_mask, prio,
2501                                 alloc_flags, ac->highest_zoneidx, capture);
2502                 rc = max(status, rc);
2503
2504                 /* The allocation should succeed, stop compacting */
2505                 if (status == COMPACT_SUCCESS) {
2506                         /*
2507                          * We think the allocation will succeed in this zone,
2508                          * but it is not certain, hence the false. The caller
2509                          * will repeat this with true if allocation indeed
2510                          * succeeds in this zone.
2511                          */
2512                         compaction_defer_reset(zone, order, false);
2513
2514                         break;
2515                 }
2516
2517                 if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
2518                                         status == COMPACT_PARTIAL_SKIPPED))
2519                         /*
2520                          * We think that allocation won't succeed in this zone
2521                          * so we defer compaction there. If it ends up
2522                          * succeeding after all, it will be reset.
2523                          */
2524                         defer_compaction(zone, order);
2525
2526                 /*
2527                  * We might have stopped compacting due to need_resched() in
2528                  * async compaction, or due to a fatal signal detected. In that
2529                  * case do not try further zones
2530                  */
2531                 if ((prio == COMPACT_PRIO_ASYNC && need_resched())
2532                                         || fatal_signal_pending(current))
2533                         break;
2534         }
2535
2536         return rc;
2537 }
2538
2539 /*
2540  * Compact all zones within a node till each zone's fragmentation score
2541  * reaches within proactive compaction thresholds (as determined by the
2542  * proactiveness tunable).
2543  *
2544  * It is possible that the function returns before reaching score targets
2545  * due to various back-off conditions, such as, contention on per-node or
2546  * per-zone locks.
2547  */
2548 static void proactive_compact_node(pg_data_t *pgdat)
2549 {
2550         int zoneid;
2551         struct zone *zone;
2552         struct compact_control cc = {
2553                 .order = -1,
2554                 .mode = MIGRATE_SYNC_LIGHT,
2555                 .ignore_skip_hint = true,
2556                 .whole_zone = true,
2557                 .gfp_mask = GFP_KERNEL,
2558                 .proactive_compaction = true,
2559         };
2560
2561         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2562                 zone = &pgdat->node_zones[zoneid];
2563                 if (!populated_zone(zone))
2564                         continue;
2565
2566                 cc.zone = zone;
2567
2568                 compact_zone(&cc, NULL);
2569
2570                 VM_BUG_ON(!list_empty(&cc.freepages));
2571                 VM_BUG_ON(!list_empty(&cc.migratepages));
2572         }
2573 }
2574
2575 /* Compact all zones within a node */
2576 static void compact_node(int nid)
2577 {
2578         pg_data_t *pgdat = NODE_DATA(nid);
2579         int zoneid;
2580         struct zone *zone;
2581         struct compact_control cc = {
2582                 .order = -1,
2583                 .mode = MIGRATE_SYNC,
2584                 .ignore_skip_hint = true,
2585                 .whole_zone = true,
2586                 .gfp_mask = GFP_KERNEL,
2587         };
2588
2589
2590         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2591
2592                 zone = &pgdat->node_zones[zoneid];
2593                 if (!populated_zone(zone))
2594                         continue;
2595
2596                 cc.zone = zone;
2597
2598                 compact_zone(&cc, NULL);
2599
2600                 VM_BUG_ON(!list_empty(&cc.freepages));
2601                 VM_BUG_ON(!list_empty(&cc.migratepages));
2602         }
2603 }
2604
2605 /* Compact all nodes in the system */
2606 static void compact_nodes(void)
2607 {
2608         int nid;
2609
2610         /* Flush pending updates to the LRU lists */
2611         lru_add_drain_all();
2612
2613         for_each_online_node(nid)
2614                 compact_node(nid);
2615 }
2616
2617 /* The written value is actually unused, all memory is compacted */
2618 int sysctl_compact_memory;
2619
2620 /*
2621  * Tunable for proactive compaction. It determines how
2622  * aggressively the kernel should compact memory in the
2623  * background. It takes values in the range [0, 100].
2624  */
2625 unsigned int __read_mostly sysctl_compaction_proactiveness = 20;
2626
2627 /*
2628  * This is the entry point for compacting all nodes via
2629  * /proc/sys/vm/compact_memory
2630  */
2631 int sysctl_compaction_handler(struct ctl_table *table, int write,
2632                         void *buffer, size_t *length, loff_t *ppos)
2633 {
2634         if (write)
2635                 compact_nodes();
2636
2637         return 0;
2638 }
2639
2640 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
2641 static ssize_t sysfs_compact_node(struct device *dev,
2642                         struct device_attribute *attr,
2643                         const char *buf, size_t count)
2644 {
2645         int nid = dev->id;
2646
2647         if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
2648                 /* Flush pending updates to the LRU lists */
2649                 lru_add_drain_all();
2650
2651                 compact_node(nid);
2652         }
2653
2654         return count;
2655 }
2656 static DEVICE_ATTR(compact, 0200, NULL, sysfs_compact_node);
2657
2658 int compaction_register_node(struct node *node)
2659 {
2660         return device_create_file(&node->dev, &dev_attr_compact);
2661 }
2662
2663 void compaction_unregister_node(struct node *node)
2664 {
2665         return device_remove_file(&node->dev, &dev_attr_compact);
2666 }
2667 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
2668
2669 static inline bool kcompactd_work_requested(pg_data_t *pgdat)
2670 {
2671         return pgdat->kcompactd_max_order > 0 || kthread_should_stop();
2672 }
2673
2674 static bool kcompactd_node_suitable(pg_data_t *pgdat)
2675 {
2676         int zoneid;
2677         struct zone *zone;
2678         enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx;
2679
2680         for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) {
2681                 zone = &pgdat->node_zones[zoneid];
2682
2683                 if (!populated_zone(zone))
2684                         continue;
2685
2686                 if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
2687                                         highest_zoneidx) == COMPACT_CONTINUE)
2688                         return true;
2689         }
2690
2691         return false;
2692 }
2693
2694 static void kcompactd_do_work(pg_data_t *pgdat)
2695 {
2696         /*
2697          * With no special task, compact all zones so that a page of requested
2698          * order is allocatable.
2699          */
2700         int zoneid;
2701         struct zone *zone;
2702         struct compact_control cc = {
2703                 .order = pgdat->kcompactd_max_order,
2704                 .search_order = pgdat->kcompactd_max_order,
2705                 .highest_zoneidx = pgdat->kcompactd_highest_zoneidx,
2706                 .mode = MIGRATE_SYNC_LIGHT,
2707                 .ignore_skip_hint = false,
2708                 .gfp_mask = GFP_KERNEL,
2709         };
2710         trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
2711                                                         cc.highest_zoneidx);
2712         count_compact_event(KCOMPACTD_WAKE);
2713
2714         for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) {
2715                 int status;
2716
2717                 zone = &pgdat->node_zones[zoneid];
2718                 if (!populated_zone(zone))
2719                         continue;
2720
2721                 if (compaction_deferred(zone, cc.order))
2722                         continue;
2723
2724                 if (compaction_suitable(zone, cc.order, 0, zoneid) !=
2725                                                         COMPACT_CONTINUE)
2726                         continue;
2727
2728                 if (kthread_should_stop())
2729                         return;
2730
2731                 cc.zone = zone;
2732                 status = compact_zone(&cc, NULL);
2733
2734                 if (status == COMPACT_SUCCESS) {
2735                         compaction_defer_reset(zone, cc.order, false);
2736                 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
2737                         /*
2738                          * Buddy pages may become stranded on pcps that could
2739                          * otherwise coalesce on the zone's free area for
2740                          * order >= cc.order.  This is ratelimited by the
2741                          * upcoming deferral.
2742                          */
2743                         drain_all_pages(zone);
2744
2745                         /*
2746                          * We use sync migration mode here, so we defer like
2747                          * sync direct compaction does.
2748                          */
2749                         defer_compaction(zone, cc.order);
2750                 }
2751
2752                 count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2753                                      cc.total_migrate_scanned);
2754                 count_compact_events(KCOMPACTD_FREE_SCANNED,
2755                                      cc.total_free_scanned);
2756
2757                 VM_BUG_ON(!list_empty(&cc.freepages));
2758                 VM_BUG_ON(!list_empty(&cc.migratepages));
2759         }
2760
2761         /*
2762          * Regardless of success, we are done until woken up next. But remember
2763          * the requested order/highest_zoneidx in case it was higher/tighter
2764          * than our current ones
2765          */
2766         if (pgdat->kcompactd_max_order <= cc.order)
2767                 pgdat->kcompactd_max_order = 0;
2768         if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx)
2769                 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
2770 }
2771
2772 void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx)
2773 {
2774         if (!order)
2775                 return;
2776
2777         if (pgdat->kcompactd_max_order < order)
2778                 pgdat->kcompactd_max_order = order;
2779
2780         if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx)
2781                 pgdat->kcompactd_highest_zoneidx = highest_zoneidx;
2782
2783         /*
2784          * Pairs with implicit barrier in wait_event_freezable()
2785          * such that wakeups are not missed.
2786          */
2787         if (!wq_has_sleeper(&pgdat->kcompactd_wait))
2788                 return;
2789
2790         if (!kcompactd_node_suitable(pgdat))
2791                 return;
2792
2793         trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
2794                                                         highest_zoneidx);
2795         wake_up_interruptible(&pgdat->kcompactd_wait);
2796 }
2797
2798 /*
2799  * The background compaction daemon, started as a kernel thread
2800  * from the init process.
2801  */
2802 static int kcompactd(void *p)
2803 {
2804         pg_data_t *pgdat = (pg_data_t*)p;
2805         struct task_struct *tsk = current;
2806         unsigned int proactive_defer = 0;
2807
2808         const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2809
2810         if (!cpumask_empty(cpumask))
2811                 set_cpus_allowed_ptr(tsk, cpumask);
2812
2813         set_freezable();
2814
2815         pgdat->kcompactd_max_order = 0;
2816         pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
2817
2818         while (!kthread_should_stop()) {
2819                 unsigned long pflags;
2820
2821                 trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
2822                 if (wait_event_freezable_timeout(pgdat->kcompactd_wait,
2823                         kcompactd_work_requested(pgdat),
2824                         msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC))) {
2825
2826                         psi_memstall_enter(&pflags);
2827                         kcompactd_do_work(pgdat);
2828                         psi_memstall_leave(&pflags);
2829                         continue;
2830                 }
2831
2832                 /* kcompactd wait timeout */
2833                 if (should_proactive_compact_node(pgdat)) {
2834                         unsigned int prev_score, score;
2835
2836                         if (proactive_defer) {
2837                                 proactive_defer--;
2838                                 continue;
2839                         }
2840                         prev_score = fragmentation_score_node(pgdat);
2841                         proactive_compact_node(pgdat);
2842                         score = fragmentation_score_node(pgdat);
2843                         /*
2844                          * Defer proactive compaction if the fragmentation
2845                          * score did not go down i.e. no progress made.
2846                          */
2847                         proactive_defer = score < prev_score ?
2848                                         0 : 1 << COMPACT_MAX_DEFER_SHIFT;
2849                 }
2850         }
2851
2852         return 0;
2853 }
2854
2855 /*
2856  * This kcompactd start function will be called by init and node-hot-add.
2857  * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
2858  */
2859 int kcompactd_run(int nid)
2860 {
2861         pg_data_t *pgdat = NODE_DATA(nid);
2862         int ret = 0;
2863
2864         if (pgdat->kcompactd)
2865                 return 0;
2866
2867         pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
2868         if (IS_ERR(pgdat->kcompactd)) {
2869                 pr_err("Failed to start kcompactd on node %d\n", nid);
2870                 ret = PTR_ERR(pgdat->kcompactd);
2871                 pgdat->kcompactd = NULL;
2872         }
2873         return ret;
2874 }
2875
2876 /*
2877  * Called by memory hotplug when all memory in a node is offlined. Caller must
2878  * hold mem_hotplug_begin/end().
2879  */
2880 void kcompactd_stop(int nid)
2881 {
2882         struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
2883
2884         if (kcompactd) {
2885                 kthread_stop(kcompactd);
2886                 NODE_DATA(nid)->kcompactd = NULL;
2887         }
2888 }
2889
2890 /*
2891  * It's optimal to keep kcompactd on the same CPUs as their memory, but
2892  * not required for correctness. So if the last cpu in a node goes
2893  * away, we get changed to run anywhere: as the first one comes back,
2894  * restore their cpu bindings.
2895  */
2896 static int kcompactd_cpu_online(unsigned int cpu)
2897 {
2898         int nid;
2899
2900         for_each_node_state(nid, N_MEMORY) {
2901                 pg_data_t *pgdat = NODE_DATA(nid);
2902                 const struct cpumask *mask;
2903
2904                 mask = cpumask_of_node(pgdat->node_id);
2905
2906                 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2907                         /* One of our CPUs online: restore mask */
2908                         set_cpus_allowed_ptr(pgdat->kcompactd, mask);
2909         }
2910         return 0;
2911 }
2912
2913 static int __init kcompactd_init(void)
2914 {
2915         int nid;
2916         int ret;
2917
2918         ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
2919                                         "mm/compaction:online",
2920                                         kcompactd_cpu_online, NULL);
2921         if (ret < 0) {
2922                 pr_err("kcompactd: failed to register hotplug callbacks.\n");
2923                 return ret;
2924         }
2925
2926         for_each_node_state(nid, N_MEMORY)
2927                 kcompactd_run(nid);
2928         return 0;
2929 }
2930 subsys_initcall(kcompactd_init)
2931
2932 #endif /* CONFIG_COMPACTION */