1 // SPDX-License-Identifier: GPL-2.0
3 * linux/mm/compaction.c
5 * Memory compaction for the reduction of external fragmentation. Note that
6 * this heavily depends upon page migration to do all the real heavy
9 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
11 #include <linux/cpu.h>
12 #include <linux/swap.h>
13 #include <linux/migrate.h>
14 #include <linux/compaction.h>
15 #include <linux/mm_inline.h>
16 #include <linux/sched/signal.h>
17 #include <linux/backing-dev.h>
18 #include <linux/sysctl.h>
19 #include <linux/sysfs.h>
20 #include <linux/page-isolation.h>
21 #include <linux/kasan.h>
22 #include <linux/kthread.h>
23 #include <linux/freezer.h>
24 #include <linux/page_owner.h>
25 #include <linux/psi.h>
28 #ifdef CONFIG_COMPACTION
30 * Fragmentation score check interval for proactive compaction purposes.
32 #define HPAGE_FRAG_CHECK_INTERVAL_MSEC (500)
34 static inline void count_compact_event(enum vm_event_item item)
39 static inline void count_compact_events(enum vm_event_item item, long delta)
41 count_vm_events(item, delta);
44 #define count_compact_event(item) do { } while (0)
45 #define count_compact_events(item, delta) do { } while (0)
48 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
50 #define CREATE_TRACE_POINTS
51 #include <trace/events/compaction.h>
53 #define block_start_pfn(pfn, order) round_down(pfn, 1UL << (order))
54 #define block_end_pfn(pfn, order) ALIGN((pfn) + 1, 1UL << (order))
57 * Page order with-respect-to which proactive compaction
58 * calculates external fragmentation, which is used as
59 * the "fragmentation score" of a node/zone.
61 #if defined CONFIG_TRANSPARENT_HUGEPAGE
62 #define COMPACTION_HPAGE_ORDER HPAGE_PMD_ORDER
63 #elif defined CONFIG_HUGETLBFS
64 #define COMPACTION_HPAGE_ORDER HUGETLB_PAGE_ORDER
66 #define COMPACTION_HPAGE_ORDER (PMD_SHIFT - PAGE_SHIFT)
69 static unsigned long release_freepages(struct list_head *freelist)
71 struct page *page, *next;
72 unsigned long high_pfn = 0;
74 list_for_each_entry_safe(page, next, freelist, lru) {
75 unsigned long pfn = page_to_pfn(page);
85 static void split_map_pages(struct list_head *list)
87 unsigned int i, order, nr_pages;
88 struct page *page, *next;
91 list_for_each_entry_safe(page, next, list, lru) {
94 order = page_private(page);
95 nr_pages = 1 << order;
97 post_alloc_hook(page, order, __GFP_MOVABLE);
99 split_page(page, order);
101 for (i = 0; i < nr_pages; i++) {
102 list_add(&page->lru, &tmp_list);
107 list_splice(&tmp_list, list);
110 #ifdef CONFIG_COMPACTION
111 bool PageMovable(struct page *page)
113 const struct movable_operations *mops;
115 VM_BUG_ON_PAGE(!PageLocked(page), page);
116 if (!__PageMovable(page))
119 mops = page_movable_ops(page);
125 EXPORT_SYMBOL(PageMovable);
127 void __SetPageMovable(struct page *page, const struct movable_operations *mops)
129 VM_BUG_ON_PAGE(!PageLocked(page), page);
130 VM_BUG_ON_PAGE((unsigned long)mops & PAGE_MAPPING_MOVABLE, page);
131 page->mapping = (void *)((unsigned long)mops | PAGE_MAPPING_MOVABLE);
133 EXPORT_SYMBOL(__SetPageMovable);
135 void __ClearPageMovable(struct page *page)
137 VM_BUG_ON_PAGE(!PageMovable(page), page);
139 * This page still has the type of a movable page, but it's
140 * actually not movable any more.
142 page->mapping = (void *)PAGE_MAPPING_MOVABLE;
144 EXPORT_SYMBOL(__ClearPageMovable);
146 /* Do not skip compaction more than 64 times */
147 #define COMPACT_MAX_DEFER_SHIFT 6
150 * Compaction is deferred when compaction fails to result in a page
151 * allocation success. 1 << compact_defer_shift, compactions are skipped up
152 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
154 static void defer_compaction(struct zone *zone, int order)
156 zone->compact_considered = 0;
157 zone->compact_defer_shift++;
159 if (order < zone->compact_order_failed)
160 zone->compact_order_failed = order;
162 if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
163 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
165 trace_mm_compaction_defer_compaction(zone, order);
168 /* Returns true if compaction should be skipped this time */
169 static bool compaction_deferred(struct zone *zone, int order)
171 unsigned long defer_limit = 1UL << zone->compact_defer_shift;
173 if (order < zone->compact_order_failed)
176 /* Avoid possible overflow */
177 if (++zone->compact_considered >= defer_limit) {
178 zone->compact_considered = defer_limit;
182 trace_mm_compaction_deferred(zone, order);
188 * Update defer tracking counters after successful compaction of given order,
189 * which means an allocation either succeeded (alloc_success == true) or is
190 * expected to succeed.
192 void compaction_defer_reset(struct zone *zone, int order,
196 zone->compact_considered = 0;
197 zone->compact_defer_shift = 0;
199 if (order >= zone->compact_order_failed)
200 zone->compact_order_failed = order + 1;
202 trace_mm_compaction_defer_reset(zone, order);
205 /* Returns true if restarting compaction after many failures */
206 static bool compaction_restarting(struct zone *zone, int order)
208 if (order < zone->compact_order_failed)
211 return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
212 zone->compact_considered >= 1UL << zone->compact_defer_shift;
215 /* Returns true if the pageblock should be scanned for pages to isolate. */
216 static inline bool isolation_suitable(struct compact_control *cc,
219 if (cc->ignore_skip_hint)
222 return !get_pageblock_skip(page);
225 static void reset_cached_positions(struct zone *zone)
227 zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
228 zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
229 zone->compact_cached_free_pfn =
230 pageblock_start_pfn(zone_end_pfn(zone) - 1);
234 * Compound pages of >= pageblock_order should consistently be skipped until
235 * released. It is always pointless to compact pages of such order (if they are
236 * migratable), and the pageblocks they occupy cannot contain any free pages.
238 static bool pageblock_skip_persistent(struct page *page)
240 if (!PageCompound(page))
243 page = compound_head(page);
245 if (compound_order(page) >= pageblock_order)
252 __reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source,
255 struct page *page = pfn_to_online_page(pfn);
256 struct page *block_page;
257 struct page *end_page;
258 unsigned long block_pfn;
262 if (zone != page_zone(page))
264 if (pageblock_skip_persistent(page))
268 * If skip is already cleared do no further checking once the
269 * restart points have been set.
271 if (check_source && check_target && !get_pageblock_skip(page))
275 * If clearing skip for the target scanner, do not select a
276 * non-movable pageblock as the starting point.
278 if (!check_source && check_target &&
279 get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
282 /* Ensure the start of the pageblock or zone is online and valid */
283 block_pfn = pageblock_start_pfn(pfn);
284 block_pfn = max(block_pfn, zone->zone_start_pfn);
285 block_page = pfn_to_online_page(block_pfn);
291 /* Ensure the end of the pageblock or zone is online and valid */
292 block_pfn = pageblock_end_pfn(pfn) - 1;
293 block_pfn = min(block_pfn, zone_end_pfn(zone) - 1);
294 end_page = pfn_to_online_page(block_pfn);
299 * Only clear the hint if a sample indicates there is either a
300 * free page or an LRU page in the block. One or other condition
301 * is necessary for the block to be a migration source/target.
304 if (check_source && PageLRU(page)) {
305 clear_pageblock_skip(page);
309 if (check_target && PageBuddy(page)) {
310 clear_pageblock_skip(page);
314 page += (1 << PAGE_ALLOC_COSTLY_ORDER);
315 } while (page <= end_page);
321 * This function is called to clear all cached information on pageblocks that
322 * should be skipped for page isolation when the migrate and free page scanner
325 static void __reset_isolation_suitable(struct zone *zone)
327 unsigned long migrate_pfn = zone->zone_start_pfn;
328 unsigned long free_pfn = zone_end_pfn(zone) - 1;
329 unsigned long reset_migrate = free_pfn;
330 unsigned long reset_free = migrate_pfn;
331 bool source_set = false;
332 bool free_set = false;
334 if (!zone->compact_blockskip_flush)
337 zone->compact_blockskip_flush = false;
340 * Walk the zone and update pageblock skip information. Source looks
341 * for PageLRU while target looks for PageBuddy. When the scanner
342 * is found, both PageBuddy and PageLRU are checked as the pageblock
343 * is suitable as both source and target.
345 for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages,
346 free_pfn -= pageblock_nr_pages) {
349 /* Update the migrate PFN */
350 if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) &&
351 migrate_pfn < reset_migrate) {
353 reset_migrate = migrate_pfn;
354 zone->compact_init_migrate_pfn = reset_migrate;
355 zone->compact_cached_migrate_pfn[0] = reset_migrate;
356 zone->compact_cached_migrate_pfn[1] = reset_migrate;
359 /* Update the free PFN */
360 if (__reset_isolation_pfn(zone, free_pfn, free_set, true) &&
361 free_pfn > reset_free) {
363 reset_free = free_pfn;
364 zone->compact_init_free_pfn = reset_free;
365 zone->compact_cached_free_pfn = reset_free;
369 /* Leave no distance if no suitable block was reset */
370 if (reset_migrate >= reset_free) {
371 zone->compact_cached_migrate_pfn[0] = migrate_pfn;
372 zone->compact_cached_migrate_pfn[1] = migrate_pfn;
373 zone->compact_cached_free_pfn = free_pfn;
377 void reset_isolation_suitable(pg_data_t *pgdat)
381 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
382 struct zone *zone = &pgdat->node_zones[zoneid];
383 if (!populated_zone(zone))
386 /* Only flush if a full compaction finished recently */
387 if (zone->compact_blockskip_flush)
388 __reset_isolation_suitable(zone);
393 * Sets the pageblock skip bit if it was clear. Note that this is a hint as
394 * locks are not required for read/writers. Returns true if it was already set.
396 static bool test_and_set_skip(struct compact_control *cc, struct page *page,
401 /* Do no update if skip hint is being ignored */
402 if (cc->ignore_skip_hint)
405 if (!pageblock_aligned(pfn))
408 skip = get_pageblock_skip(page);
409 if (!skip && !cc->no_set_skip_hint)
410 set_pageblock_skip(page);
415 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
417 struct zone *zone = cc->zone;
419 pfn = pageblock_end_pfn(pfn);
421 /* Set for isolation rather than compaction */
422 if (cc->no_set_skip_hint)
425 if (pfn > zone->compact_cached_migrate_pfn[0])
426 zone->compact_cached_migrate_pfn[0] = pfn;
427 if (cc->mode != MIGRATE_ASYNC &&
428 pfn > zone->compact_cached_migrate_pfn[1])
429 zone->compact_cached_migrate_pfn[1] = pfn;
433 * If no pages were isolated then mark this pageblock to be skipped in the
434 * future. The information is later cleared by __reset_isolation_suitable().
436 static void update_pageblock_skip(struct compact_control *cc,
437 struct page *page, unsigned long pfn)
439 struct zone *zone = cc->zone;
441 if (cc->no_set_skip_hint)
447 set_pageblock_skip(page);
449 /* Update where async and sync compaction should restart */
450 if (pfn < zone->compact_cached_free_pfn)
451 zone->compact_cached_free_pfn = pfn;
454 static inline bool isolation_suitable(struct compact_control *cc,
460 static inline bool pageblock_skip_persistent(struct page *page)
465 static inline void update_pageblock_skip(struct compact_control *cc,
466 struct page *page, unsigned long pfn)
470 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
474 static bool test_and_set_skip(struct compact_control *cc, struct page *page,
479 #endif /* CONFIG_COMPACTION */
482 * Compaction requires the taking of some coarse locks that are potentially
483 * very heavily contended. For async compaction, trylock and record if the
484 * lock is contended. The lock will still be acquired but compaction will
485 * abort when the current block is finished regardless of success rate.
486 * Sync compaction acquires the lock.
488 * Always returns true which makes it easier to track lock state in callers.
490 static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags,
491 struct compact_control *cc)
494 /* Track if the lock is contended in async mode */
495 if (cc->mode == MIGRATE_ASYNC && !cc->contended) {
496 if (spin_trylock_irqsave(lock, *flags))
499 cc->contended = true;
502 spin_lock_irqsave(lock, *flags);
507 * Compaction requires the taking of some coarse locks that are potentially
508 * very heavily contended. The lock should be periodically unlocked to avoid
509 * having disabled IRQs for a long time, even when there is nobody waiting on
510 * the lock. It might also be that allowing the IRQs will result in
511 * need_resched() becoming true. If scheduling is needed, compaction schedules.
512 * Either compaction type will also abort if a fatal signal is pending.
513 * In either case if the lock was locked, it is dropped and not regained.
515 * Returns true if compaction should abort due to fatal signal pending.
516 * Returns false when compaction can continue.
518 static bool compact_unlock_should_abort(spinlock_t *lock,
519 unsigned long flags, bool *locked, struct compact_control *cc)
522 spin_unlock_irqrestore(lock, flags);
526 if (fatal_signal_pending(current)) {
527 cc->contended = true;
537 * Isolate free pages onto a private freelist. If @strict is true, will abort
538 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
539 * (even though it may still end up isolating some pages).
541 static unsigned long isolate_freepages_block(struct compact_control *cc,
542 unsigned long *start_pfn,
543 unsigned long end_pfn,
544 struct list_head *freelist,
548 int nr_scanned = 0, total_isolated = 0;
550 unsigned long flags = 0;
552 unsigned long blockpfn = *start_pfn;
555 /* Strict mode is for isolation, speed is secondary */
559 cursor = pfn_to_page(blockpfn);
561 /* Isolate free pages. */
562 for (; blockpfn < end_pfn; blockpfn += stride, cursor += stride) {
564 struct page *page = cursor;
567 * Periodically drop the lock (if held) regardless of its
568 * contention, to give chance to IRQs. Abort if fatal signal
571 if (!(blockpfn % COMPACT_CLUSTER_MAX)
572 && compact_unlock_should_abort(&cc->zone->lock, flags,
579 * For compound pages such as THP and hugetlbfs, we can save
580 * potentially a lot of iterations if we skip them at once.
581 * The check is racy, but we can consider only valid values
582 * and the only danger is skipping too much.
584 if (PageCompound(page)) {
585 const unsigned int order = compound_order(page);
587 if (likely(order < MAX_ORDER)) {
588 blockpfn += (1UL << order) - 1;
589 cursor += (1UL << order) - 1;
594 if (!PageBuddy(page))
597 /* If we already hold the lock, we can skip some rechecking. */
599 locked = compact_lock_irqsave(&cc->zone->lock,
602 /* Recheck this is a buddy page under lock */
603 if (!PageBuddy(page))
607 /* Found a free page, will break it into order-0 pages */
608 order = buddy_order(page);
609 isolated = __isolate_free_page(page, order);
612 set_page_private(page, order);
614 nr_scanned += isolated - 1;
615 total_isolated += isolated;
616 cc->nr_freepages += isolated;
617 list_add_tail(&page->lru, freelist);
619 if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
620 blockpfn += isolated;
623 /* Advance to the end of split page */
624 blockpfn += isolated - 1;
625 cursor += isolated - 1;
637 spin_unlock_irqrestore(&cc->zone->lock, flags);
640 * There is a tiny chance that we have read bogus compound_order(),
641 * so be careful to not go outside of the pageblock.
643 if (unlikely(blockpfn > end_pfn))
646 trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
647 nr_scanned, total_isolated);
649 /* Record how far we have got within the block */
650 *start_pfn = blockpfn;
653 * If strict isolation is requested by CMA then check that all the
654 * pages requested were isolated. If there were any failures, 0 is
655 * returned and CMA will fail.
657 if (strict && blockpfn < end_pfn)
660 cc->total_free_scanned += nr_scanned;
662 count_compact_events(COMPACTISOLATED, total_isolated);
663 return total_isolated;
667 * isolate_freepages_range() - isolate free pages.
668 * @cc: Compaction control structure.
669 * @start_pfn: The first PFN to start isolating.
670 * @end_pfn: The one-past-last PFN.
672 * Non-free pages, invalid PFNs, or zone boundaries within the
673 * [start_pfn, end_pfn) range are considered errors, cause function to
674 * undo its actions and return zero.
676 * Otherwise, function returns one-past-the-last PFN of isolated page
677 * (which may be greater then end_pfn if end fell in a middle of
681 isolate_freepages_range(struct compact_control *cc,
682 unsigned long start_pfn, unsigned long end_pfn)
684 unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
688 block_start_pfn = pageblock_start_pfn(pfn);
689 if (block_start_pfn < cc->zone->zone_start_pfn)
690 block_start_pfn = cc->zone->zone_start_pfn;
691 block_end_pfn = pageblock_end_pfn(pfn);
693 for (; pfn < end_pfn; pfn += isolated,
694 block_start_pfn = block_end_pfn,
695 block_end_pfn += pageblock_nr_pages) {
696 /* Protect pfn from changing by isolate_freepages_block */
697 unsigned long isolate_start_pfn = pfn;
699 block_end_pfn = min(block_end_pfn, end_pfn);
702 * pfn could pass the block_end_pfn if isolated freepage
703 * is more than pageblock order. In this case, we adjust
704 * scanning range to right one.
706 if (pfn >= block_end_pfn) {
707 block_start_pfn = pageblock_start_pfn(pfn);
708 block_end_pfn = pageblock_end_pfn(pfn);
709 block_end_pfn = min(block_end_pfn, end_pfn);
712 if (!pageblock_pfn_to_page(block_start_pfn,
713 block_end_pfn, cc->zone))
716 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
717 block_end_pfn, &freelist, 0, true);
720 * In strict mode, isolate_freepages_block() returns 0 if
721 * there are any holes in the block (ie. invalid PFNs or
728 * If we managed to isolate pages, it is always (1 << n) *
729 * pageblock_nr_pages for some non-negative n. (Max order
730 * page may span two pageblocks).
734 /* __isolate_free_page() does not map the pages */
735 split_map_pages(&freelist);
738 /* Loop terminated early, cleanup. */
739 release_freepages(&freelist);
743 /* We don't use freelists for anything. */
747 /* Similar to reclaim, but different enough that they don't share logic */
748 static bool too_many_isolated(pg_data_t *pgdat)
752 unsigned long active, inactive, isolated;
754 inactive = node_page_state(pgdat, NR_INACTIVE_FILE) +
755 node_page_state(pgdat, NR_INACTIVE_ANON);
756 active = node_page_state(pgdat, NR_ACTIVE_FILE) +
757 node_page_state(pgdat, NR_ACTIVE_ANON);
758 isolated = node_page_state(pgdat, NR_ISOLATED_FILE) +
759 node_page_state(pgdat, NR_ISOLATED_ANON);
761 too_many = isolated > (inactive + active) / 2;
763 wake_throttle_isolated(pgdat);
769 * isolate_migratepages_block() - isolate all migrate-able pages within
771 * @cc: Compaction control structure.
772 * @low_pfn: The first PFN to isolate
773 * @end_pfn: The one-past-the-last PFN to isolate, within same pageblock
774 * @mode: Isolation mode to be used.
776 * Isolate all pages that can be migrated from the range specified by
777 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
778 * Returns errno, like -EAGAIN or -EINTR in case e.g signal pending or congestion,
779 * -ENOMEM in case we could not allocate a page, or 0.
780 * cc->migrate_pfn will contain the next pfn to scan.
782 * The pages are isolated on cc->migratepages list (not required to be empty),
783 * and cc->nr_migratepages is updated accordingly.
786 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
787 unsigned long end_pfn, isolate_mode_t mode)
789 pg_data_t *pgdat = cc->zone->zone_pgdat;
790 unsigned long nr_scanned = 0, nr_isolated = 0;
791 struct lruvec *lruvec;
792 unsigned long flags = 0;
793 struct lruvec *locked = NULL;
794 struct page *page = NULL, *valid_page = NULL;
795 struct address_space *mapping;
796 unsigned long start_pfn = low_pfn;
797 bool skip_on_failure = false;
798 unsigned long next_skip_pfn = 0;
799 bool skip_updated = false;
802 cc->migrate_pfn = low_pfn;
805 * Ensure that there are not too many pages isolated from the LRU
806 * list by either parallel reclaimers or compaction. If there are,
807 * delay for some time until fewer pages are isolated
809 while (unlikely(too_many_isolated(pgdat))) {
810 /* stop isolation if there are still pages not migrated */
811 if (cc->nr_migratepages)
814 /* async migration should just abort */
815 if (cc->mode == MIGRATE_ASYNC)
818 reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
820 if (fatal_signal_pending(current))
826 if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
827 skip_on_failure = true;
828 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
831 /* Time to isolate some pages for migration */
832 for (; low_pfn < end_pfn; low_pfn++) {
834 if (skip_on_failure && low_pfn >= next_skip_pfn) {
836 * We have isolated all migration candidates in the
837 * previous order-aligned block, and did not skip it due
838 * to failure. We should migrate the pages now and
839 * hopefully succeed compaction.
845 * We failed to isolate in the previous order-aligned
846 * block. Set the new boundary to the end of the
847 * current block. Note we can't simply increase
848 * next_skip_pfn by 1 << order, as low_pfn might have
849 * been incremented by a higher number due to skipping
850 * a compound or a high-order buddy page in the
851 * previous loop iteration.
853 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
857 * Periodically drop the lock (if held) regardless of its
858 * contention, to give chance to IRQs. Abort completely if
859 * a fatal signal is pending.
861 if (!(low_pfn % COMPACT_CLUSTER_MAX)) {
863 unlock_page_lruvec_irqrestore(locked, flags);
867 if (fatal_signal_pending(current)) {
868 cc->contended = true;
879 page = pfn_to_page(low_pfn);
882 * Check if the pageblock has already been marked skipped.
883 * Only the aligned PFN is checked as the caller isolates
884 * COMPACT_CLUSTER_MAX at a time so the second call must
885 * not falsely conclude that the block should be skipped.
887 if (!valid_page && pageblock_aligned(low_pfn)) {
888 if (!isolation_suitable(cc, page)) {
896 if (PageHuge(page) && cc->alloc_contig) {
897 ret = isolate_or_dissolve_huge_page(page, &cc->migratepages);
900 * Fail isolation in case isolate_or_dissolve_huge_page()
901 * reports an error. In case of -ENOMEM, abort right away.
904 /* Do not report -EBUSY down the chain */
907 low_pfn += compound_nr(page) - 1;
911 if (PageHuge(page)) {
913 * Hugepage was successfully isolated and placed
914 * on the cc->migratepages list.
916 low_pfn += compound_nr(page) - 1;
917 goto isolate_success_no_list;
921 * Ok, the hugepage was dissolved. Now these pages are
922 * Buddy and cannot be re-allocated because they are
923 * isolated. Fall-through as the check below handles
929 * Skip if free. We read page order here without zone lock
930 * which is generally unsafe, but the race window is small and
931 * the worst thing that can happen is that we skip some
932 * potential isolation targets.
934 if (PageBuddy(page)) {
935 unsigned long freepage_order = buddy_order_unsafe(page);
938 * Without lock, we cannot be sure that what we got is
939 * a valid page order. Consider only values in the
940 * valid order range to prevent low_pfn overflow.
942 if (freepage_order > 0 && freepage_order < MAX_ORDER)
943 low_pfn += (1UL << freepage_order) - 1;
948 * Regardless of being on LRU, compound pages such as THP and
949 * hugetlbfs are not to be compacted unless we are attempting
950 * an allocation much larger than the huge page size (eg CMA).
951 * We can potentially save a lot of iterations if we skip them
952 * at once. The check is racy, but we can consider only valid
953 * values and the only danger is skipping too much.
955 if (PageCompound(page) && !cc->alloc_contig) {
956 const unsigned int order = compound_order(page);
958 if (likely(order < MAX_ORDER))
959 low_pfn += (1UL << order) - 1;
964 * Check may be lockless but that's ok as we recheck later.
965 * It's possible to migrate LRU and non-lru movable pages.
966 * Skip any other type of page
968 if (!PageLRU(page)) {
970 * __PageMovable can return false positive so we need
971 * to verify it under page_lock.
973 if (unlikely(__PageMovable(page)) &&
974 !PageIsolated(page)) {
976 unlock_page_lruvec_irqrestore(locked, flags);
980 if (!isolate_movable_page(page, mode))
981 goto isolate_success;
988 * Migration will fail if an anonymous page is pinned in memory,
989 * so avoid taking lru_lock and isolating it unnecessarily in an
990 * admittedly racy check.
992 mapping = page_mapping(page);
993 if (!mapping && page_count(page) > page_mapcount(page))
997 * Only allow to migrate anonymous pages in GFP_NOFS context
998 * because those do not depend on fs locks.
1000 if (!(cc->gfp_mask & __GFP_FS) && mapping)
1004 * Be careful not to clear PageLRU until after we're
1005 * sure the page is not being freed elsewhere -- the
1006 * page release code relies on it.
1008 if (unlikely(!get_page_unless_zero(page)))
1011 /* Only take pages on LRU: a check now makes later tests safe */
1013 goto isolate_fail_put;
1015 /* Compaction might skip unevictable pages but CMA takes them */
1016 if (!(mode & ISOLATE_UNEVICTABLE) && PageUnevictable(page))
1017 goto isolate_fail_put;
1020 * To minimise LRU disruption, the caller can indicate with
1021 * ISOLATE_ASYNC_MIGRATE that it only wants to isolate pages
1022 * it will be able to migrate without blocking - clean pages
1023 * for the most part. PageWriteback would require blocking.
1025 if ((mode & ISOLATE_ASYNC_MIGRATE) && PageWriteback(page))
1026 goto isolate_fail_put;
1028 if ((mode & ISOLATE_ASYNC_MIGRATE) && PageDirty(page)) {
1032 * Only pages without mappings or that have a
1033 * ->migrate_folio callback are possible to migrate
1034 * without blocking. However, we can be racing with
1035 * truncation so it's necessary to lock the page
1036 * to stabilise the mapping as truncation holds
1037 * the page lock until after the page is removed
1038 * from the page cache.
1040 if (!trylock_page(page))
1041 goto isolate_fail_put;
1043 mapping = page_mapping(page);
1044 migrate_dirty = !mapping ||
1045 mapping->a_ops->migrate_folio;
1048 goto isolate_fail_put;
1051 /* Try isolate the page */
1052 if (!TestClearPageLRU(page))
1053 goto isolate_fail_put;
1055 lruvec = folio_lruvec(page_folio(page));
1057 /* If we already hold the lock, we can skip some rechecking */
1058 if (lruvec != locked) {
1060 unlock_page_lruvec_irqrestore(locked, flags);
1062 compact_lock_irqsave(&lruvec->lru_lock, &flags, cc);
1065 lruvec_memcg_debug(lruvec, page_folio(page));
1067 /* Try get exclusive access under lock */
1068 if (!skip_updated) {
1069 skip_updated = true;
1070 if (test_and_set_skip(cc, page, low_pfn))
1075 * Page become compound since the non-locked check,
1076 * and it's on LRU. It can only be a THP so the order
1077 * is safe to read and it's 0 for tail pages.
1079 if (unlikely(PageCompound(page) && !cc->alloc_contig)) {
1080 low_pfn += compound_nr(page) - 1;
1082 goto isolate_fail_put;
1086 /* The whole page is taken off the LRU; skip the tail pages. */
1087 if (PageCompound(page))
1088 low_pfn += compound_nr(page) - 1;
1090 /* Successfully isolated */
1091 del_page_from_lru_list(page, lruvec);
1092 mod_node_page_state(page_pgdat(page),
1093 NR_ISOLATED_ANON + page_is_file_lru(page),
1094 thp_nr_pages(page));
1097 list_add(&page->lru, &cc->migratepages);
1098 isolate_success_no_list:
1099 cc->nr_migratepages += compound_nr(page);
1100 nr_isolated += compound_nr(page);
1101 nr_scanned += compound_nr(page) - 1;
1104 * Avoid isolating too much unless this block is being
1105 * rescanned (e.g. dirty/writeback pages, parallel allocation)
1106 * or a lock is contended. For contention, isolate quickly to
1107 * potentially remove one source of contention.
1109 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX &&
1110 !cc->rescan && !cc->contended) {
1118 /* Avoid potential deadlock in freeing page under lru_lock */
1120 unlock_page_lruvec_irqrestore(locked, flags);
1126 if (!skip_on_failure && ret != -ENOMEM)
1130 * We have isolated some pages, but then failed. Release them
1131 * instead of migrating, as we cannot form the cc->order buddy
1136 unlock_page_lruvec_irqrestore(locked, flags);
1139 putback_movable_pages(&cc->migratepages);
1140 cc->nr_migratepages = 0;
1144 if (low_pfn < next_skip_pfn) {
1145 low_pfn = next_skip_pfn - 1;
1147 * The check near the loop beginning would have updated
1148 * next_skip_pfn too, but this is a bit simpler.
1150 next_skip_pfn += 1UL << cc->order;
1158 * The PageBuddy() check could have potentially brought us outside
1159 * the range to be scanned.
1161 if (unlikely(low_pfn > end_pfn))
1168 unlock_page_lruvec_irqrestore(locked, flags);
1175 * Updated the cached scanner pfn once the pageblock has been scanned
1176 * Pages will either be migrated in which case there is no point
1177 * scanning in the near future or migration failed in which case the
1178 * failure reason may persist. The block is marked for skipping if
1179 * there were no pages isolated in the block or if the block is
1180 * rescanned twice in a row.
1182 if (low_pfn == end_pfn && (!nr_isolated || cc->rescan)) {
1183 if (valid_page && !skip_updated)
1184 set_pageblock_skip(valid_page);
1185 update_cached_migrate(cc, low_pfn);
1188 trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
1189 nr_scanned, nr_isolated);
1192 cc->total_migrate_scanned += nr_scanned;
1194 count_compact_events(COMPACTISOLATED, nr_isolated);
1196 cc->migrate_pfn = low_pfn;
1202 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
1203 * @cc: Compaction control structure.
1204 * @start_pfn: The first PFN to start isolating.
1205 * @end_pfn: The one-past-last PFN.
1207 * Returns -EAGAIN when contented, -EINTR in case of a signal pending, -ENOMEM
1208 * in case we could not allocate a page, or 0.
1211 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
1212 unsigned long end_pfn)
1214 unsigned long pfn, block_start_pfn, block_end_pfn;
1217 /* Scan block by block. First and last block may be incomplete */
1219 block_start_pfn = pageblock_start_pfn(pfn);
1220 if (block_start_pfn < cc->zone->zone_start_pfn)
1221 block_start_pfn = cc->zone->zone_start_pfn;
1222 block_end_pfn = pageblock_end_pfn(pfn);
1224 for (; pfn < end_pfn; pfn = block_end_pfn,
1225 block_start_pfn = block_end_pfn,
1226 block_end_pfn += pageblock_nr_pages) {
1228 block_end_pfn = min(block_end_pfn, end_pfn);
1230 if (!pageblock_pfn_to_page(block_start_pfn,
1231 block_end_pfn, cc->zone))
1234 ret = isolate_migratepages_block(cc, pfn, block_end_pfn,
1235 ISOLATE_UNEVICTABLE);
1240 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX)
1247 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
1248 #ifdef CONFIG_COMPACTION
1250 static bool suitable_migration_source(struct compact_control *cc,
1255 if (pageblock_skip_persistent(page))
1258 if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
1261 block_mt = get_pageblock_migratetype(page);
1263 if (cc->migratetype == MIGRATE_MOVABLE)
1264 return is_migrate_movable(block_mt);
1266 return block_mt == cc->migratetype;
1269 /* Returns true if the page is within a block suitable for migration to */
1270 static bool suitable_migration_target(struct compact_control *cc,
1273 /* If the page is a large free page, then disallow migration */
1274 if (PageBuddy(page)) {
1276 * We are checking page_order without zone->lock taken. But
1277 * the only small danger is that we skip a potentially suitable
1278 * pageblock, so it's not worth to check order for valid range.
1280 if (buddy_order_unsafe(page) >= pageblock_order)
1284 if (cc->ignore_block_suitable)
1287 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1288 if (is_migrate_movable(get_pageblock_migratetype(page)))
1291 /* Otherwise skip the block */
1295 static inline unsigned int
1296 freelist_scan_limit(struct compact_control *cc)
1298 unsigned short shift = BITS_PER_LONG - 1;
1300 return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1;
1304 * Test whether the free scanner has reached the same or lower pageblock than
1305 * the migration scanner, and compaction should thus terminate.
1307 static inline bool compact_scanners_met(struct compact_control *cc)
1309 return (cc->free_pfn >> pageblock_order)
1310 <= (cc->migrate_pfn >> pageblock_order);
1314 * Used when scanning for a suitable migration target which scans freelists
1315 * in reverse. Reorders the list such as the unscanned pages are scanned
1316 * first on the next iteration of the free scanner
1319 move_freelist_head(struct list_head *freelist, struct page *freepage)
1323 if (!list_is_last(freelist, &freepage->lru)) {
1324 list_cut_before(&sublist, freelist, &freepage->lru);
1325 list_splice_tail(&sublist, freelist);
1330 * Similar to move_freelist_head except used by the migration scanner
1331 * when scanning forward. It's possible for these list operations to
1332 * move against each other if they search the free list exactly in
1336 move_freelist_tail(struct list_head *freelist, struct page *freepage)
1340 if (!list_is_first(freelist, &freepage->lru)) {
1341 list_cut_position(&sublist, freelist, &freepage->lru);
1342 list_splice_tail(&sublist, freelist);
1347 fast_isolate_around(struct compact_control *cc, unsigned long pfn, unsigned long nr_isolated)
1349 unsigned long start_pfn, end_pfn;
1352 /* Do not search around if there are enough pages already */
1353 if (cc->nr_freepages >= cc->nr_migratepages)
1356 /* Minimise scanning during async compaction */
1357 if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC)
1360 /* Pageblock boundaries */
1361 start_pfn = max(pageblock_start_pfn(pfn), cc->zone->zone_start_pfn);
1362 end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone));
1364 page = pageblock_pfn_to_page(start_pfn, end_pfn, cc->zone);
1369 if (start_pfn != pfn) {
1370 isolate_freepages_block(cc, &start_pfn, pfn, &cc->freepages, 1, false);
1371 if (cc->nr_freepages >= cc->nr_migratepages)
1376 start_pfn = pfn + nr_isolated;
1377 if (start_pfn < end_pfn)
1378 isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false);
1380 /* Skip this pageblock in the future as it's full or nearly full */
1381 if (cc->nr_freepages < cc->nr_migratepages)
1382 set_pageblock_skip(page);
1385 /* Search orders in round-robin fashion */
1386 static int next_search_order(struct compact_control *cc, int order)
1390 order = cc->order - 1;
1392 /* Search wrapped around? */
1393 if (order == cc->search_order) {
1395 if (cc->search_order < 0)
1396 cc->search_order = cc->order - 1;
1403 static unsigned long
1404 fast_isolate_freepages(struct compact_control *cc)
1406 unsigned int limit = max(1U, freelist_scan_limit(cc) >> 1);
1407 unsigned int nr_scanned = 0;
1408 unsigned long low_pfn, min_pfn, highest = 0;
1409 unsigned long nr_isolated = 0;
1410 unsigned long distance;
1411 struct page *page = NULL;
1412 bool scan_start = false;
1415 /* Full compaction passes in a negative order */
1417 return cc->free_pfn;
1420 * If starting the scan, use a deeper search and use the highest
1421 * PFN found if a suitable one is not found.
1423 if (cc->free_pfn >= cc->zone->compact_init_free_pfn) {
1424 limit = pageblock_nr_pages >> 1;
1429 * Preferred point is in the top quarter of the scan space but take
1430 * a pfn from the top half if the search is problematic.
1432 distance = (cc->free_pfn - cc->migrate_pfn);
1433 low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2));
1434 min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1));
1436 if (WARN_ON_ONCE(min_pfn > low_pfn))
1440 * Search starts from the last successful isolation order or the next
1441 * order to search after a previous failure
1443 cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order);
1445 for (order = cc->search_order;
1446 !page && order >= 0;
1447 order = next_search_order(cc, order)) {
1448 struct free_area *area = &cc->zone->free_area[order];
1449 struct list_head *freelist;
1450 struct page *freepage;
1451 unsigned long flags;
1452 unsigned int order_scanned = 0;
1453 unsigned long high_pfn = 0;
1458 spin_lock_irqsave(&cc->zone->lock, flags);
1459 freelist = &area->free_list[MIGRATE_MOVABLE];
1460 list_for_each_entry_reverse(freepage, freelist, lru) {
1465 pfn = page_to_pfn(freepage);
1468 highest = max(pageblock_start_pfn(pfn),
1469 cc->zone->zone_start_pfn);
1471 if (pfn >= low_pfn) {
1472 cc->fast_search_fail = 0;
1473 cc->search_order = order;
1478 if (pfn >= min_pfn && pfn > high_pfn) {
1481 /* Shorten the scan if a candidate is found */
1485 if (order_scanned >= limit)
1489 /* Use a minimum pfn if a preferred one was not found */
1490 if (!page && high_pfn) {
1491 page = pfn_to_page(high_pfn);
1493 /* Update freepage for the list reorder below */
1497 /* Reorder to so a future search skips recent pages */
1498 move_freelist_head(freelist, freepage);
1500 /* Isolate the page if available */
1502 if (__isolate_free_page(page, order)) {
1503 set_page_private(page, order);
1504 nr_isolated = 1 << order;
1505 nr_scanned += nr_isolated - 1;
1506 cc->nr_freepages += nr_isolated;
1507 list_add_tail(&page->lru, &cc->freepages);
1508 count_compact_events(COMPACTISOLATED, nr_isolated);
1510 /* If isolation fails, abort the search */
1511 order = cc->search_order + 1;
1516 spin_unlock_irqrestore(&cc->zone->lock, flags);
1519 * Smaller scan on next order so the total scan is related
1520 * to freelist_scan_limit.
1522 if (order_scanned >= limit)
1523 limit = max(1U, limit >> 1);
1527 cc->fast_search_fail++;
1530 * Use the highest PFN found above min. If one was
1531 * not found, be pessimistic for direct compaction
1532 * and use the min mark.
1534 if (highest >= min_pfn) {
1535 page = pfn_to_page(highest);
1536 cc->free_pfn = highest;
1538 if (cc->direct_compaction && pfn_valid(min_pfn)) {
1539 page = pageblock_pfn_to_page(min_pfn,
1540 min(pageblock_end_pfn(min_pfn),
1541 zone_end_pfn(cc->zone)),
1543 cc->free_pfn = min_pfn;
1549 if (highest && highest >= cc->zone->compact_cached_free_pfn) {
1550 highest -= pageblock_nr_pages;
1551 cc->zone->compact_cached_free_pfn = highest;
1554 cc->total_free_scanned += nr_scanned;
1556 return cc->free_pfn;
1558 low_pfn = page_to_pfn(page);
1559 fast_isolate_around(cc, low_pfn, nr_isolated);
1564 * Based on information in the current compact_control, find blocks
1565 * suitable for isolating free pages from and then isolate them.
1567 static void isolate_freepages(struct compact_control *cc)
1569 struct zone *zone = cc->zone;
1571 unsigned long block_start_pfn; /* start of current pageblock */
1572 unsigned long isolate_start_pfn; /* exact pfn we start at */
1573 unsigned long block_end_pfn; /* end of current pageblock */
1574 unsigned long low_pfn; /* lowest pfn scanner is able to scan */
1575 struct list_head *freelist = &cc->freepages;
1576 unsigned int stride;
1578 /* Try a small search of the free lists for a candidate */
1579 fast_isolate_freepages(cc);
1580 if (cc->nr_freepages)
1584 * Initialise the free scanner. The starting point is where we last
1585 * successfully isolated from, zone-cached value, or the end of the
1586 * zone when isolating for the first time. For looping we also need
1587 * this pfn aligned down to the pageblock boundary, because we do
1588 * block_start_pfn -= pageblock_nr_pages in the for loop.
1589 * For ending point, take care when isolating in last pageblock of a
1590 * zone which ends in the middle of a pageblock.
1591 * The low boundary is the end of the pageblock the migration scanner
1594 isolate_start_pfn = cc->free_pfn;
1595 block_start_pfn = pageblock_start_pfn(isolate_start_pfn);
1596 block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1597 zone_end_pfn(zone));
1598 low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1599 stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1;
1602 * Isolate free pages until enough are available to migrate the
1603 * pages on cc->migratepages. We stop searching if the migrate
1604 * and free page scanners meet or enough free pages are isolated.
1606 for (; block_start_pfn >= low_pfn;
1607 block_end_pfn = block_start_pfn,
1608 block_start_pfn -= pageblock_nr_pages,
1609 isolate_start_pfn = block_start_pfn) {
1610 unsigned long nr_isolated;
1613 * This can iterate a massively long zone without finding any
1614 * suitable migration targets, so periodically check resched.
1616 if (!(block_start_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages)))
1619 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1624 /* Check the block is suitable for migration */
1625 if (!suitable_migration_target(cc, page))
1628 /* If isolation recently failed, do not retry */
1629 if (!isolation_suitable(cc, page))
1632 /* Found a block suitable for isolating free pages from. */
1633 nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn,
1634 block_end_pfn, freelist, stride, false);
1636 /* Update the skip hint if the full pageblock was scanned */
1637 if (isolate_start_pfn == block_end_pfn)
1638 update_pageblock_skip(cc, page, block_start_pfn);
1640 /* Are enough freepages isolated? */
1641 if (cc->nr_freepages >= cc->nr_migratepages) {
1642 if (isolate_start_pfn >= block_end_pfn) {
1644 * Restart at previous pageblock if more
1645 * freepages can be isolated next time.
1648 block_start_pfn - pageblock_nr_pages;
1651 } else if (isolate_start_pfn < block_end_pfn) {
1653 * If isolation failed early, do not continue
1659 /* Adjust stride depending on isolation */
1664 stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1);
1668 * Record where the free scanner will restart next time. Either we
1669 * broke from the loop and set isolate_start_pfn based on the last
1670 * call to isolate_freepages_block(), or we met the migration scanner
1671 * and the loop terminated due to isolate_start_pfn < low_pfn
1673 cc->free_pfn = isolate_start_pfn;
1676 /* __isolate_free_page() does not map the pages */
1677 split_map_pages(freelist);
1681 * This is a migrate-callback that "allocates" freepages by taking pages
1682 * from the isolated freelists in the block we are migrating to.
1684 static struct page *compaction_alloc(struct page *migratepage,
1687 struct compact_control *cc = (struct compact_control *)data;
1688 struct page *freepage;
1690 if (list_empty(&cc->freepages)) {
1691 isolate_freepages(cc);
1693 if (list_empty(&cc->freepages))
1697 freepage = list_entry(cc->freepages.next, struct page, lru);
1698 list_del(&freepage->lru);
1705 * This is a migrate-callback that "frees" freepages back to the isolated
1706 * freelist. All pages on the freelist are from the same zone, so there is no
1707 * special handling needed for NUMA.
1709 static void compaction_free(struct page *page, unsigned long data)
1711 struct compact_control *cc = (struct compact_control *)data;
1713 list_add(&page->lru, &cc->freepages);
1717 /* possible outcome of isolate_migratepages */
1719 ISOLATE_ABORT, /* Abort compaction now */
1720 ISOLATE_NONE, /* No pages isolated, continue scanning */
1721 ISOLATE_SUCCESS, /* Pages isolated, migrate */
1722 } isolate_migrate_t;
1725 * Allow userspace to control policy on scanning the unevictable LRU for
1726 * compactable pages.
1728 int sysctl_compact_unevictable_allowed __read_mostly = CONFIG_COMPACT_UNEVICTABLE_DEFAULT;
1731 update_fast_start_pfn(struct compact_control *cc, unsigned long pfn)
1733 if (cc->fast_start_pfn == ULONG_MAX)
1736 if (!cc->fast_start_pfn)
1737 cc->fast_start_pfn = pfn;
1739 cc->fast_start_pfn = min(cc->fast_start_pfn, pfn);
1742 static inline unsigned long
1743 reinit_migrate_pfn(struct compact_control *cc)
1745 if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX)
1746 return cc->migrate_pfn;
1748 cc->migrate_pfn = cc->fast_start_pfn;
1749 cc->fast_start_pfn = ULONG_MAX;
1751 return cc->migrate_pfn;
1755 * Briefly search the free lists for a migration source that already has
1756 * some free pages to reduce the number of pages that need migration
1757 * before a pageblock is free.
1759 static unsigned long fast_find_migrateblock(struct compact_control *cc)
1761 unsigned int limit = freelist_scan_limit(cc);
1762 unsigned int nr_scanned = 0;
1763 unsigned long distance;
1764 unsigned long pfn = cc->migrate_pfn;
1765 unsigned long high_pfn;
1767 bool found_block = false;
1769 /* Skip hints are relied on to avoid repeats on the fast search */
1770 if (cc->ignore_skip_hint)
1774 * If the migrate_pfn is not at the start of a zone or the start
1775 * of a pageblock then assume this is a continuation of a previous
1776 * scan restarted due to COMPACT_CLUSTER_MAX.
1778 if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn))
1782 * For smaller orders, just linearly scan as the number of pages
1783 * to migrate should be relatively small and does not necessarily
1784 * justify freeing up a large block for a small allocation.
1786 if (cc->order <= PAGE_ALLOC_COSTLY_ORDER)
1790 * Only allow kcompactd and direct requests for movable pages to
1791 * quickly clear out a MOVABLE pageblock for allocation. This
1792 * reduces the risk that a large movable pageblock is freed for
1793 * an unmovable/reclaimable small allocation.
1795 if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE)
1799 * When starting the migration scanner, pick any pageblock within the
1800 * first half of the search space. Otherwise try and pick a pageblock
1801 * within the first eighth to reduce the chances that a migration
1802 * target later becomes a source.
1804 distance = (cc->free_pfn - cc->migrate_pfn) >> 1;
1805 if (cc->migrate_pfn != cc->zone->zone_start_pfn)
1807 high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance);
1809 for (order = cc->order - 1;
1810 order >= PAGE_ALLOC_COSTLY_ORDER && !found_block && nr_scanned < limit;
1812 struct free_area *area = &cc->zone->free_area[order];
1813 struct list_head *freelist;
1814 unsigned long flags;
1815 struct page *freepage;
1820 spin_lock_irqsave(&cc->zone->lock, flags);
1821 freelist = &area->free_list[MIGRATE_MOVABLE];
1822 list_for_each_entry(freepage, freelist, lru) {
1823 unsigned long free_pfn;
1825 if (nr_scanned++ >= limit) {
1826 move_freelist_tail(freelist, freepage);
1830 free_pfn = page_to_pfn(freepage);
1831 if (free_pfn < high_pfn) {
1833 * Avoid if skipped recently. Ideally it would
1834 * move to the tail but even safe iteration of
1835 * the list assumes an entry is deleted, not
1838 if (get_pageblock_skip(freepage))
1841 /* Reorder to so a future search skips recent pages */
1842 move_freelist_tail(freelist, freepage);
1844 update_fast_start_pfn(cc, free_pfn);
1845 pfn = pageblock_start_pfn(free_pfn);
1846 if (pfn < cc->zone->zone_start_pfn)
1847 pfn = cc->zone->zone_start_pfn;
1848 cc->fast_search_fail = 0;
1853 spin_unlock_irqrestore(&cc->zone->lock, flags);
1856 cc->total_migrate_scanned += nr_scanned;
1859 * If fast scanning failed then use a cached entry for a page block
1860 * that had free pages as the basis for starting a linear scan.
1863 cc->fast_search_fail++;
1864 pfn = reinit_migrate_pfn(cc);
1870 * Isolate all pages that can be migrated from the first suitable block,
1871 * starting at the block pointed to by the migrate scanner pfn within
1874 static isolate_migrate_t isolate_migratepages(struct compact_control *cc)
1876 unsigned long block_start_pfn;
1877 unsigned long block_end_pfn;
1878 unsigned long low_pfn;
1880 const isolate_mode_t isolate_mode =
1881 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1882 (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1883 bool fast_find_block;
1886 * Start at where we last stopped, or beginning of the zone as
1887 * initialized by compact_zone(). The first failure will use
1888 * the lowest PFN as the starting point for linear scanning.
1890 low_pfn = fast_find_migrateblock(cc);
1891 block_start_pfn = pageblock_start_pfn(low_pfn);
1892 if (block_start_pfn < cc->zone->zone_start_pfn)
1893 block_start_pfn = cc->zone->zone_start_pfn;
1896 * fast_find_migrateblock marks a pageblock skipped so to avoid
1897 * the isolation_suitable check below, check whether the fast
1898 * search was successful.
1900 fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail;
1902 /* Only scan within a pageblock boundary */
1903 block_end_pfn = pageblock_end_pfn(low_pfn);
1906 * Iterate over whole pageblocks until we find the first suitable.
1907 * Do not cross the free scanner.
1909 for (; block_end_pfn <= cc->free_pfn;
1910 fast_find_block = false,
1911 cc->migrate_pfn = low_pfn = block_end_pfn,
1912 block_start_pfn = block_end_pfn,
1913 block_end_pfn += pageblock_nr_pages) {
1916 * This can potentially iterate a massively long zone with
1917 * many pageblocks unsuitable, so periodically check if we
1920 if (!(low_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages)))
1923 page = pageblock_pfn_to_page(block_start_pfn,
1924 block_end_pfn, cc->zone);
1929 * If isolation recently failed, do not retry. Only check the
1930 * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock
1931 * to be visited multiple times. Assume skip was checked
1932 * before making it "skip" so other compaction instances do
1933 * not scan the same block.
1935 if (pageblock_aligned(low_pfn) &&
1936 !fast_find_block && !isolation_suitable(cc, page))
1940 * For async direct compaction, only scan the pageblocks of the
1941 * same migratetype without huge pages. Async direct compaction
1942 * is optimistic to see if the minimum amount of work satisfies
1943 * the allocation. The cached PFN is updated as it's possible
1944 * that all remaining blocks between source and target are
1945 * unsuitable and the compaction scanners fail to meet.
1947 if (!suitable_migration_source(cc, page)) {
1948 update_cached_migrate(cc, block_end_pfn);
1952 /* Perform the isolation */
1953 if (isolate_migratepages_block(cc, low_pfn, block_end_pfn,
1955 return ISOLATE_ABORT;
1958 * Either we isolated something and proceed with migration. Or
1959 * we failed and compact_zone should decide if we should
1965 return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1969 * order == -1 is expected when compacting via
1970 * /proc/sys/vm/compact_memory
1972 static inline bool is_via_compact_memory(int order)
1978 * Determine whether kswapd is (or recently was!) running on this node.
1980 * pgdat_kswapd_lock() pins pgdat->kswapd, so a concurrent kswapd_stop() can't
1983 static bool kswapd_is_running(pg_data_t *pgdat)
1987 pgdat_kswapd_lock(pgdat);
1988 running = pgdat->kswapd && task_is_running(pgdat->kswapd);
1989 pgdat_kswapd_unlock(pgdat);
1995 * A zone's fragmentation score is the external fragmentation wrt to the
1996 * COMPACTION_HPAGE_ORDER. It returns a value in the range [0, 100].
1998 static unsigned int fragmentation_score_zone(struct zone *zone)
2000 return extfrag_for_order(zone, COMPACTION_HPAGE_ORDER);
2004 * A weighted zone's fragmentation score is the external fragmentation
2005 * wrt to the COMPACTION_HPAGE_ORDER scaled by the zone's size. It
2006 * returns a value in the range [0, 100].
2008 * The scaling factor ensures that proactive compaction focuses on larger
2009 * zones like ZONE_NORMAL, rather than smaller, specialized zones like
2010 * ZONE_DMA32. For smaller zones, the score value remains close to zero,
2011 * and thus never exceeds the high threshold for proactive compaction.
2013 static unsigned int fragmentation_score_zone_weighted(struct zone *zone)
2015 unsigned long score;
2017 score = zone->present_pages * fragmentation_score_zone(zone);
2018 return div64_ul(score, zone->zone_pgdat->node_present_pages + 1);
2022 * The per-node proactive (background) compaction process is started by its
2023 * corresponding kcompactd thread when the node's fragmentation score
2024 * exceeds the high threshold. The compaction process remains active till
2025 * the node's score falls below the low threshold, or one of the back-off
2026 * conditions is met.
2028 static unsigned int fragmentation_score_node(pg_data_t *pgdat)
2030 unsigned int score = 0;
2033 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2036 zone = &pgdat->node_zones[zoneid];
2037 score += fragmentation_score_zone_weighted(zone);
2043 static unsigned int fragmentation_score_wmark(pg_data_t *pgdat, bool low)
2045 unsigned int wmark_low;
2048 * Cap the low watermark to avoid excessive compaction
2049 * activity in case a user sets the proactiveness tunable
2050 * close to 100 (maximum).
2052 wmark_low = max(100U - sysctl_compaction_proactiveness, 5U);
2053 return low ? wmark_low : min(wmark_low + 10, 100U);
2056 static bool should_proactive_compact_node(pg_data_t *pgdat)
2060 if (!sysctl_compaction_proactiveness || kswapd_is_running(pgdat))
2063 wmark_high = fragmentation_score_wmark(pgdat, false);
2064 return fragmentation_score_node(pgdat) > wmark_high;
2067 static enum compact_result __compact_finished(struct compact_control *cc)
2070 const int migratetype = cc->migratetype;
2073 /* Compaction run completes if the migrate and free scanner meet */
2074 if (compact_scanners_met(cc)) {
2075 /* Let the next compaction start anew. */
2076 reset_cached_positions(cc->zone);
2079 * Mark that the PG_migrate_skip information should be cleared
2080 * by kswapd when it goes to sleep. kcompactd does not set the
2081 * flag itself as the decision to be clear should be directly
2082 * based on an allocation request.
2084 if (cc->direct_compaction)
2085 cc->zone->compact_blockskip_flush = true;
2088 return COMPACT_COMPLETE;
2090 return COMPACT_PARTIAL_SKIPPED;
2093 if (cc->proactive_compaction) {
2094 int score, wmark_low;
2097 pgdat = cc->zone->zone_pgdat;
2098 if (kswapd_is_running(pgdat))
2099 return COMPACT_PARTIAL_SKIPPED;
2101 score = fragmentation_score_zone(cc->zone);
2102 wmark_low = fragmentation_score_wmark(pgdat, true);
2104 if (score > wmark_low)
2105 ret = COMPACT_CONTINUE;
2107 ret = COMPACT_SUCCESS;
2112 if (is_via_compact_memory(cc->order))
2113 return COMPACT_CONTINUE;
2116 * Always finish scanning a pageblock to reduce the possibility of
2117 * fallbacks in the future. This is particularly important when
2118 * migration source is unmovable/reclaimable but it's not worth
2121 if (!pageblock_aligned(cc->migrate_pfn))
2122 return COMPACT_CONTINUE;
2124 /* Direct compactor: Is a suitable page free? */
2125 ret = COMPACT_NO_SUITABLE_PAGE;
2126 for (order = cc->order; order < MAX_ORDER; order++) {
2127 struct free_area *area = &cc->zone->free_area[order];
2130 /* Job done if page is free of the right migratetype */
2131 if (!free_area_empty(area, migratetype))
2132 return COMPACT_SUCCESS;
2135 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
2136 if (migratetype == MIGRATE_MOVABLE &&
2137 !free_area_empty(area, MIGRATE_CMA))
2138 return COMPACT_SUCCESS;
2141 * Job done if allocation would steal freepages from
2142 * other migratetype buddy lists.
2144 if (find_suitable_fallback(area, order, migratetype,
2145 true, &can_steal) != -1)
2147 * Movable pages are OK in any pageblock. If we are
2148 * stealing for a non-movable allocation, make sure
2149 * we finish compacting the current pageblock first
2150 * (which is assured by the above migrate_pfn align
2151 * check) so it is as free as possible and we won't
2152 * have to steal another one soon.
2154 return COMPACT_SUCCESS;
2158 if (cc->contended || fatal_signal_pending(current))
2159 ret = COMPACT_CONTENDED;
2164 static enum compact_result compact_finished(struct compact_control *cc)
2168 ret = __compact_finished(cc);
2169 trace_mm_compaction_finished(cc->zone, cc->order, ret);
2170 if (ret == COMPACT_NO_SUITABLE_PAGE)
2171 ret = COMPACT_CONTINUE;
2176 static enum compact_result __compaction_suitable(struct zone *zone, int order,
2177 unsigned int alloc_flags,
2178 int highest_zoneidx,
2179 unsigned long wmark_target)
2181 unsigned long watermark;
2183 if (is_via_compact_memory(order))
2184 return COMPACT_CONTINUE;
2186 watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
2188 * If watermarks for high-order allocation are already met, there
2189 * should be no need for compaction at all.
2191 if (zone_watermark_ok(zone, order, watermark, highest_zoneidx,
2193 return COMPACT_SUCCESS;
2196 * Watermarks for order-0 must be met for compaction to be able to
2197 * isolate free pages for migration targets. This means that the
2198 * watermark and alloc_flags have to match, or be more pessimistic than
2199 * the check in __isolate_free_page(). We don't use the direct
2200 * compactor's alloc_flags, as they are not relevant for freepage
2201 * isolation. We however do use the direct compactor's highest_zoneidx
2202 * to skip over zones where lowmem reserves would prevent allocation
2203 * even if compaction succeeds.
2204 * For costly orders, we require low watermark instead of min for
2205 * compaction to proceed to increase its chances.
2206 * ALLOC_CMA is used, as pages in CMA pageblocks are considered
2207 * suitable migration targets
2209 watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
2210 low_wmark_pages(zone) : min_wmark_pages(zone);
2211 watermark += compact_gap(order);
2212 if (!__zone_watermark_ok(zone, 0, watermark, highest_zoneidx,
2213 ALLOC_CMA, wmark_target))
2214 return COMPACT_SKIPPED;
2216 return COMPACT_CONTINUE;
2220 * compaction_suitable: Is this suitable to run compaction on this zone now?
2222 * COMPACT_SKIPPED - If there are too few free pages for compaction
2223 * COMPACT_SUCCESS - If the allocation would succeed without compaction
2224 * COMPACT_CONTINUE - If compaction should run now
2226 enum compact_result compaction_suitable(struct zone *zone, int order,
2227 unsigned int alloc_flags,
2228 int highest_zoneidx)
2230 enum compact_result ret;
2233 ret = __compaction_suitable(zone, order, alloc_flags, highest_zoneidx,
2234 zone_page_state(zone, NR_FREE_PAGES));
2236 * fragmentation index determines if allocation failures are due to
2237 * low memory or external fragmentation
2239 * index of -1000 would imply allocations might succeed depending on
2240 * watermarks, but we already failed the high-order watermark check
2241 * index towards 0 implies failure is due to lack of memory
2242 * index towards 1000 implies failure is due to fragmentation
2244 * Only compact if a failure would be due to fragmentation. Also
2245 * ignore fragindex for non-costly orders where the alternative to
2246 * a successful reclaim/compaction is OOM. Fragindex and the
2247 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
2248 * excessive compaction for costly orders, but it should not be at the
2249 * expense of system stability.
2251 if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) {
2252 fragindex = fragmentation_index(zone, order);
2253 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
2254 ret = COMPACT_NOT_SUITABLE_ZONE;
2257 trace_mm_compaction_suitable(zone, order, ret);
2258 if (ret == COMPACT_NOT_SUITABLE_ZONE)
2259 ret = COMPACT_SKIPPED;
2264 bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
2271 * Make sure at least one zone would pass __compaction_suitable if we continue
2272 * retrying the reclaim.
2274 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2275 ac->highest_zoneidx, ac->nodemask) {
2276 unsigned long available;
2277 enum compact_result compact_result;
2280 * Do not consider all the reclaimable memory because we do not
2281 * want to trash just for a single high order allocation which
2282 * is even not guaranteed to appear even if __compaction_suitable
2283 * is happy about the watermark check.
2285 available = zone_reclaimable_pages(zone) / order;
2286 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
2287 compact_result = __compaction_suitable(zone, order, alloc_flags,
2288 ac->highest_zoneidx, available);
2289 if (compact_result == COMPACT_CONTINUE)
2296 static enum compact_result
2297 compact_zone(struct compact_control *cc, struct capture_control *capc)
2299 enum compact_result ret;
2300 unsigned long start_pfn = cc->zone->zone_start_pfn;
2301 unsigned long end_pfn = zone_end_pfn(cc->zone);
2302 unsigned long last_migrated_pfn;
2303 const bool sync = cc->mode != MIGRATE_ASYNC;
2305 unsigned int nr_succeeded = 0;
2308 * These counters track activities during zone compaction. Initialize
2309 * them before compacting a new zone.
2311 cc->total_migrate_scanned = 0;
2312 cc->total_free_scanned = 0;
2313 cc->nr_migratepages = 0;
2314 cc->nr_freepages = 0;
2315 INIT_LIST_HEAD(&cc->freepages);
2316 INIT_LIST_HEAD(&cc->migratepages);
2318 cc->migratetype = gfp_migratetype(cc->gfp_mask);
2319 ret = compaction_suitable(cc->zone, cc->order, cc->alloc_flags,
2320 cc->highest_zoneidx);
2321 /* Compaction is likely to fail */
2322 if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED)
2325 /* huh, compaction_suitable is returning something unexpected */
2326 VM_BUG_ON(ret != COMPACT_CONTINUE);
2329 * Clear pageblock skip if there were failures recently and compaction
2330 * is about to be retried after being deferred.
2332 if (compaction_restarting(cc->zone, cc->order))
2333 __reset_isolation_suitable(cc->zone);
2336 * Setup to move all movable pages to the end of the zone. Used cached
2337 * information on where the scanners should start (unless we explicitly
2338 * want to compact the whole zone), but check that it is initialised
2339 * by ensuring the values are within zone boundaries.
2341 cc->fast_start_pfn = 0;
2342 if (cc->whole_zone) {
2343 cc->migrate_pfn = start_pfn;
2344 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2346 cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync];
2347 cc->free_pfn = cc->zone->compact_cached_free_pfn;
2348 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
2349 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2350 cc->zone->compact_cached_free_pfn = cc->free_pfn;
2352 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
2353 cc->migrate_pfn = start_pfn;
2354 cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
2355 cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
2358 if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn)
2359 cc->whole_zone = true;
2362 last_migrated_pfn = 0;
2365 * Migrate has separate cached PFNs for ASYNC and SYNC* migration on
2366 * the basis that some migrations will fail in ASYNC mode. However,
2367 * if the cached PFNs match and pageblocks are skipped due to having
2368 * no isolation candidates, then the sync state does not matter.
2369 * Until a pageblock with isolation candidates is found, keep the
2370 * cached PFNs in sync to avoid revisiting the same blocks.
2372 update_cached = !sync &&
2373 cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1];
2375 trace_mm_compaction_begin(cc, start_pfn, end_pfn, sync);
2377 /* lru_add_drain_all could be expensive with involving other CPUs */
2380 while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) {
2382 unsigned long iteration_start_pfn = cc->migrate_pfn;
2385 * Avoid multiple rescans which can happen if a page cannot be
2386 * isolated (dirty/writeback in async mode) or if the migrated
2387 * pages are being allocated before the pageblock is cleared.
2388 * The first rescan will capture the entire pageblock for
2389 * migration. If it fails, it'll be marked skip and scanning
2390 * will proceed as normal.
2393 if (pageblock_start_pfn(last_migrated_pfn) ==
2394 pageblock_start_pfn(iteration_start_pfn)) {
2398 switch (isolate_migratepages(cc)) {
2400 ret = COMPACT_CONTENDED;
2401 putback_movable_pages(&cc->migratepages);
2402 cc->nr_migratepages = 0;
2405 if (update_cached) {
2406 cc->zone->compact_cached_migrate_pfn[1] =
2407 cc->zone->compact_cached_migrate_pfn[0];
2411 * We haven't isolated and migrated anything, but
2412 * there might still be unflushed migrations from
2413 * previous cc->order aligned block.
2416 case ISOLATE_SUCCESS:
2417 update_cached = false;
2418 last_migrated_pfn = iteration_start_pfn;
2421 err = migrate_pages(&cc->migratepages, compaction_alloc,
2422 compaction_free, (unsigned long)cc, cc->mode,
2423 MR_COMPACTION, &nr_succeeded);
2425 trace_mm_compaction_migratepages(cc, nr_succeeded);
2427 /* All pages were either migrated or will be released */
2428 cc->nr_migratepages = 0;
2430 putback_movable_pages(&cc->migratepages);
2432 * migrate_pages() may return -ENOMEM when scanners meet
2433 * and we want compact_finished() to detect it
2435 if (err == -ENOMEM && !compact_scanners_met(cc)) {
2436 ret = COMPACT_CONTENDED;
2440 * We failed to migrate at least one page in the current
2441 * order-aligned block, so skip the rest of it.
2443 if (cc->direct_compaction &&
2444 (cc->mode == MIGRATE_ASYNC)) {
2445 cc->migrate_pfn = block_end_pfn(
2446 cc->migrate_pfn - 1, cc->order);
2447 /* Draining pcplists is useless in this case */
2448 last_migrated_pfn = 0;
2454 * Has the migration scanner moved away from the previous
2455 * cc->order aligned block where we migrated from? If yes,
2456 * flush the pages that were freed, so that they can merge and
2457 * compact_finished() can detect immediately if allocation
2460 if (cc->order > 0 && last_migrated_pfn) {
2461 unsigned long current_block_start =
2462 block_start_pfn(cc->migrate_pfn, cc->order);
2464 if (last_migrated_pfn < current_block_start) {
2465 lru_add_drain_cpu_zone(cc->zone);
2466 /* No more flushing until we migrate again */
2467 last_migrated_pfn = 0;
2471 /* Stop if a page has been captured */
2472 if (capc && capc->page) {
2473 ret = COMPACT_SUCCESS;
2480 * Release free pages and update where the free scanner should restart,
2481 * so we don't leave any returned pages behind in the next attempt.
2483 if (cc->nr_freepages > 0) {
2484 unsigned long free_pfn = release_freepages(&cc->freepages);
2486 cc->nr_freepages = 0;
2487 VM_BUG_ON(free_pfn == 0);
2488 /* The cached pfn is always the first in a pageblock */
2489 free_pfn = pageblock_start_pfn(free_pfn);
2491 * Only go back, not forward. The cached pfn might have been
2492 * already reset to zone end in compact_finished()
2494 if (free_pfn > cc->zone->compact_cached_free_pfn)
2495 cc->zone->compact_cached_free_pfn = free_pfn;
2498 count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
2499 count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
2501 trace_mm_compaction_end(cc, start_pfn, end_pfn, sync, ret);
2506 static enum compact_result compact_zone_order(struct zone *zone, int order,
2507 gfp_t gfp_mask, enum compact_priority prio,
2508 unsigned int alloc_flags, int highest_zoneidx,
2509 struct page **capture)
2511 enum compact_result ret;
2512 struct compact_control cc = {
2514 .search_order = order,
2515 .gfp_mask = gfp_mask,
2517 .mode = (prio == COMPACT_PRIO_ASYNC) ?
2518 MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT,
2519 .alloc_flags = alloc_flags,
2520 .highest_zoneidx = highest_zoneidx,
2521 .direct_compaction = true,
2522 .whole_zone = (prio == MIN_COMPACT_PRIORITY),
2523 .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
2524 .ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
2526 struct capture_control capc = {
2532 * Make sure the structs are really initialized before we expose the
2533 * capture control, in case we are interrupted and the interrupt handler
2537 WRITE_ONCE(current->capture_control, &capc);
2539 ret = compact_zone(&cc, &capc);
2541 VM_BUG_ON(!list_empty(&cc.freepages));
2542 VM_BUG_ON(!list_empty(&cc.migratepages));
2545 * Make sure we hide capture control first before we read the captured
2546 * page pointer, otherwise an interrupt could free and capture a page
2547 * and we would leak it.
2549 WRITE_ONCE(current->capture_control, NULL);
2550 *capture = READ_ONCE(capc.page);
2552 * Technically, it is also possible that compaction is skipped but
2553 * the page is still captured out of luck(IRQ came and freed the page).
2554 * Returning COMPACT_SUCCESS in such cases helps in properly accounting
2555 * the COMPACT[STALL|FAIL] when compaction is skipped.
2558 ret = COMPACT_SUCCESS;
2563 int sysctl_extfrag_threshold = 500;
2566 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
2567 * @gfp_mask: The GFP mask of the current allocation
2568 * @order: The order of the current allocation
2569 * @alloc_flags: The allocation flags of the current allocation
2570 * @ac: The context of current allocation
2571 * @prio: Determines how hard direct compaction should try to succeed
2572 * @capture: Pointer to free page created by compaction will be stored here
2574 * This is the main entry point for direct page compaction.
2576 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
2577 unsigned int alloc_flags, const struct alloc_context *ac,
2578 enum compact_priority prio, struct page **capture)
2580 int may_perform_io = (__force int)(gfp_mask & __GFP_IO);
2583 enum compact_result rc = COMPACT_SKIPPED;
2586 * Check if the GFP flags allow compaction - GFP_NOIO is really
2587 * tricky context because the migration might require IO
2589 if (!may_perform_io)
2590 return COMPACT_SKIPPED;
2592 trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
2594 /* Compact each zone in the list */
2595 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2596 ac->highest_zoneidx, ac->nodemask) {
2597 enum compact_result status;
2599 if (prio > MIN_COMPACT_PRIORITY
2600 && compaction_deferred(zone, order)) {
2601 rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
2605 status = compact_zone_order(zone, order, gfp_mask, prio,
2606 alloc_flags, ac->highest_zoneidx, capture);
2607 rc = max(status, rc);
2609 /* The allocation should succeed, stop compacting */
2610 if (status == COMPACT_SUCCESS) {
2612 * We think the allocation will succeed in this zone,
2613 * but it is not certain, hence the false. The caller
2614 * will repeat this with true if allocation indeed
2615 * succeeds in this zone.
2617 compaction_defer_reset(zone, order, false);
2622 if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
2623 status == COMPACT_PARTIAL_SKIPPED))
2625 * We think that allocation won't succeed in this zone
2626 * so we defer compaction there. If it ends up
2627 * succeeding after all, it will be reset.
2629 defer_compaction(zone, order);
2632 * We might have stopped compacting due to need_resched() in
2633 * async compaction, or due to a fatal signal detected. In that
2634 * case do not try further zones
2636 if ((prio == COMPACT_PRIO_ASYNC && need_resched())
2637 || fatal_signal_pending(current))
2645 * Compact all zones within a node till each zone's fragmentation score
2646 * reaches within proactive compaction thresholds (as determined by the
2647 * proactiveness tunable).
2649 * It is possible that the function returns before reaching score targets
2650 * due to various back-off conditions, such as, contention on per-node or
2653 static void proactive_compact_node(pg_data_t *pgdat)
2657 struct compact_control cc = {
2659 .mode = MIGRATE_SYNC_LIGHT,
2660 .ignore_skip_hint = true,
2662 .gfp_mask = GFP_KERNEL,
2663 .proactive_compaction = true,
2666 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2667 zone = &pgdat->node_zones[zoneid];
2668 if (!populated_zone(zone))
2673 compact_zone(&cc, NULL);
2675 VM_BUG_ON(!list_empty(&cc.freepages));
2676 VM_BUG_ON(!list_empty(&cc.migratepages));
2680 /* Compact all zones within a node */
2681 static void compact_node(int nid)
2683 pg_data_t *pgdat = NODE_DATA(nid);
2686 struct compact_control cc = {
2688 .mode = MIGRATE_SYNC,
2689 .ignore_skip_hint = true,
2691 .gfp_mask = GFP_KERNEL,
2695 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2697 zone = &pgdat->node_zones[zoneid];
2698 if (!populated_zone(zone))
2703 compact_zone(&cc, NULL);
2705 VM_BUG_ON(!list_empty(&cc.freepages));
2706 VM_BUG_ON(!list_empty(&cc.migratepages));
2710 /* Compact all nodes in the system */
2711 static void compact_nodes(void)
2715 /* Flush pending updates to the LRU lists */
2716 lru_add_drain_all();
2718 for_each_online_node(nid)
2723 * Tunable for proactive compaction. It determines how
2724 * aggressively the kernel should compact memory in the
2725 * background. It takes values in the range [0, 100].
2727 unsigned int __read_mostly sysctl_compaction_proactiveness = 20;
2729 int compaction_proactiveness_sysctl_handler(struct ctl_table *table, int write,
2730 void *buffer, size_t *length, loff_t *ppos)
2734 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
2738 if (write && sysctl_compaction_proactiveness) {
2739 for_each_online_node(nid) {
2740 pg_data_t *pgdat = NODE_DATA(nid);
2742 if (pgdat->proactive_compact_trigger)
2745 pgdat->proactive_compact_trigger = true;
2746 wake_up_interruptible(&pgdat->kcompactd_wait);
2754 * This is the entry point for compacting all nodes via
2755 * /proc/sys/vm/compact_memory
2757 int sysctl_compaction_handler(struct ctl_table *table, int write,
2758 void *buffer, size_t *length, loff_t *ppos)
2766 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
2767 static ssize_t compact_store(struct device *dev,
2768 struct device_attribute *attr,
2769 const char *buf, size_t count)
2773 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
2774 /* Flush pending updates to the LRU lists */
2775 lru_add_drain_all();
2782 static DEVICE_ATTR_WO(compact);
2784 int compaction_register_node(struct node *node)
2786 return device_create_file(&node->dev, &dev_attr_compact);
2789 void compaction_unregister_node(struct node *node)
2791 return device_remove_file(&node->dev, &dev_attr_compact);
2793 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
2795 static inline bool kcompactd_work_requested(pg_data_t *pgdat)
2797 return pgdat->kcompactd_max_order > 0 || kthread_should_stop() ||
2798 pgdat->proactive_compact_trigger;
2801 static bool kcompactd_node_suitable(pg_data_t *pgdat)
2805 enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx;
2807 for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) {
2808 zone = &pgdat->node_zones[zoneid];
2810 if (!populated_zone(zone))
2813 if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
2814 highest_zoneidx) == COMPACT_CONTINUE)
2821 static void kcompactd_do_work(pg_data_t *pgdat)
2824 * With no special task, compact all zones so that a page of requested
2825 * order is allocatable.
2829 struct compact_control cc = {
2830 .order = pgdat->kcompactd_max_order,
2831 .search_order = pgdat->kcompactd_max_order,
2832 .highest_zoneidx = pgdat->kcompactd_highest_zoneidx,
2833 .mode = MIGRATE_SYNC_LIGHT,
2834 .ignore_skip_hint = false,
2835 .gfp_mask = GFP_KERNEL,
2837 trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
2838 cc.highest_zoneidx);
2839 count_compact_event(KCOMPACTD_WAKE);
2841 for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) {
2844 zone = &pgdat->node_zones[zoneid];
2845 if (!populated_zone(zone))
2848 if (compaction_deferred(zone, cc.order))
2851 if (compaction_suitable(zone, cc.order, 0, zoneid) !=
2855 if (kthread_should_stop())
2859 status = compact_zone(&cc, NULL);
2861 if (status == COMPACT_SUCCESS) {
2862 compaction_defer_reset(zone, cc.order, false);
2863 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
2865 * Buddy pages may become stranded on pcps that could
2866 * otherwise coalesce on the zone's free area for
2867 * order >= cc.order. This is ratelimited by the
2868 * upcoming deferral.
2870 drain_all_pages(zone);
2873 * We use sync migration mode here, so we defer like
2874 * sync direct compaction does.
2876 defer_compaction(zone, cc.order);
2879 count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2880 cc.total_migrate_scanned);
2881 count_compact_events(KCOMPACTD_FREE_SCANNED,
2882 cc.total_free_scanned);
2884 VM_BUG_ON(!list_empty(&cc.freepages));
2885 VM_BUG_ON(!list_empty(&cc.migratepages));
2889 * Regardless of success, we are done until woken up next. But remember
2890 * the requested order/highest_zoneidx in case it was higher/tighter
2891 * than our current ones
2893 if (pgdat->kcompactd_max_order <= cc.order)
2894 pgdat->kcompactd_max_order = 0;
2895 if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx)
2896 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
2899 void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx)
2904 if (pgdat->kcompactd_max_order < order)
2905 pgdat->kcompactd_max_order = order;
2907 if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx)
2908 pgdat->kcompactd_highest_zoneidx = highest_zoneidx;
2911 * Pairs with implicit barrier in wait_event_freezable()
2912 * such that wakeups are not missed.
2914 if (!wq_has_sleeper(&pgdat->kcompactd_wait))
2917 if (!kcompactd_node_suitable(pgdat))
2920 trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
2922 wake_up_interruptible(&pgdat->kcompactd_wait);
2926 * The background compaction daemon, started as a kernel thread
2927 * from the init process.
2929 static int kcompactd(void *p)
2931 pg_data_t *pgdat = (pg_data_t *)p;
2932 struct task_struct *tsk = current;
2933 long default_timeout = msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC);
2934 long timeout = default_timeout;
2936 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2938 if (!cpumask_empty(cpumask))
2939 set_cpus_allowed_ptr(tsk, cpumask);
2943 pgdat->kcompactd_max_order = 0;
2944 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
2946 while (!kthread_should_stop()) {
2947 unsigned long pflags;
2950 * Avoid the unnecessary wakeup for proactive compaction
2951 * when it is disabled.
2953 if (!sysctl_compaction_proactiveness)
2954 timeout = MAX_SCHEDULE_TIMEOUT;
2955 trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
2956 if (wait_event_freezable_timeout(pgdat->kcompactd_wait,
2957 kcompactd_work_requested(pgdat), timeout) &&
2958 !pgdat->proactive_compact_trigger) {
2960 psi_memstall_enter(&pflags);
2961 kcompactd_do_work(pgdat);
2962 psi_memstall_leave(&pflags);
2964 * Reset the timeout value. The defer timeout from
2965 * proactive compaction is lost here but that is fine
2966 * as the condition of the zone changing substantionally
2967 * then carrying on with the previous defer interval is
2970 timeout = default_timeout;
2975 * Start the proactive work with default timeout. Based
2976 * on the fragmentation score, this timeout is updated.
2978 timeout = default_timeout;
2979 if (should_proactive_compact_node(pgdat)) {
2980 unsigned int prev_score, score;
2982 prev_score = fragmentation_score_node(pgdat);
2983 proactive_compact_node(pgdat);
2984 score = fragmentation_score_node(pgdat);
2986 * Defer proactive compaction if the fragmentation
2987 * score did not go down i.e. no progress made.
2989 if (unlikely(score >= prev_score))
2991 default_timeout << COMPACT_MAX_DEFER_SHIFT;
2993 if (unlikely(pgdat->proactive_compact_trigger))
2994 pgdat->proactive_compact_trigger = false;
3001 * This kcompactd start function will be called by init and node-hot-add.
3002 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
3004 void kcompactd_run(int nid)
3006 pg_data_t *pgdat = NODE_DATA(nid);
3008 if (pgdat->kcompactd)
3011 pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
3012 if (IS_ERR(pgdat->kcompactd)) {
3013 pr_err("Failed to start kcompactd on node %d\n", nid);
3014 pgdat->kcompactd = NULL;
3019 * Called by memory hotplug when all memory in a node is offlined. Caller must
3020 * be holding mem_hotplug_begin/done().
3022 void kcompactd_stop(int nid)
3024 struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
3027 kthread_stop(kcompactd);
3028 NODE_DATA(nid)->kcompactd = NULL;
3033 * It's optimal to keep kcompactd on the same CPUs as their memory, but
3034 * not required for correctness. So if the last cpu in a node goes
3035 * away, we get changed to run anywhere: as the first one comes back,
3036 * restore their cpu bindings.
3038 static int kcompactd_cpu_online(unsigned int cpu)
3042 for_each_node_state(nid, N_MEMORY) {
3043 pg_data_t *pgdat = NODE_DATA(nid);
3044 const struct cpumask *mask;
3046 mask = cpumask_of_node(pgdat->node_id);
3048 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3049 /* One of our CPUs online: restore mask */
3050 if (pgdat->kcompactd)
3051 set_cpus_allowed_ptr(pgdat->kcompactd, mask);
3056 static int __init kcompactd_init(void)
3061 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3062 "mm/compaction:online",
3063 kcompactd_cpu_online, NULL);
3065 pr_err("kcompactd: failed to register hotplug callbacks.\n");
3069 for_each_node_state(nid, N_MEMORY)
3073 subsys_initcall(kcompactd_init)
3075 #endif /* CONFIG_COMPACTION */