Merge tag 'regulator-fix-v6.1-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git...
[platform/kernel/linux-rpi.git] / mm / compaction.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * linux/mm/compaction.c
4  *
5  * Memory compaction for the reduction of external fragmentation. Note that
6  * this heavily depends upon page migration to do all the real heavy
7  * lifting
8  *
9  * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
10  */
11 #include <linux/cpu.h>
12 #include <linux/swap.h>
13 #include <linux/migrate.h>
14 #include <linux/compaction.h>
15 #include <linux/mm_inline.h>
16 #include <linux/sched/signal.h>
17 #include <linux/backing-dev.h>
18 #include <linux/sysctl.h>
19 #include <linux/sysfs.h>
20 #include <linux/page-isolation.h>
21 #include <linux/kasan.h>
22 #include <linux/kthread.h>
23 #include <linux/freezer.h>
24 #include <linux/page_owner.h>
25 #include <linux/psi.h>
26 #include "internal.h"
27
28 #ifdef CONFIG_COMPACTION
29 /*
30  * Fragmentation score check interval for proactive compaction purposes.
31  */
32 #define HPAGE_FRAG_CHECK_INTERVAL_MSEC  (500)
33
34 static inline void count_compact_event(enum vm_event_item item)
35 {
36         count_vm_event(item);
37 }
38
39 static inline void count_compact_events(enum vm_event_item item, long delta)
40 {
41         count_vm_events(item, delta);
42 }
43 #else
44 #define count_compact_event(item) do { } while (0)
45 #define count_compact_events(item, delta) do { } while (0)
46 #endif
47
48 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
49
50 #define CREATE_TRACE_POINTS
51 #include <trace/events/compaction.h>
52
53 #define block_start_pfn(pfn, order)     round_down(pfn, 1UL << (order))
54 #define block_end_pfn(pfn, order)       ALIGN((pfn) + 1, 1UL << (order))
55
56 /*
57  * Page order with-respect-to which proactive compaction
58  * calculates external fragmentation, which is used as
59  * the "fragmentation score" of a node/zone.
60  */
61 #if defined CONFIG_TRANSPARENT_HUGEPAGE
62 #define COMPACTION_HPAGE_ORDER  HPAGE_PMD_ORDER
63 #elif defined CONFIG_HUGETLBFS
64 #define COMPACTION_HPAGE_ORDER  HUGETLB_PAGE_ORDER
65 #else
66 #define COMPACTION_HPAGE_ORDER  (PMD_SHIFT - PAGE_SHIFT)
67 #endif
68
69 static unsigned long release_freepages(struct list_head *freelist)
70 {
71         struct page *page, *next;
72         unsigned long high_pfn = 0;
73
74         list_for_each_entry_safe(page, next, freelist, lru) {
75                 unsigned long pfn = page_to_pfn(page);
76                 list_del(&page->lru);
77                 __free_page(page);
78                 if (pfn > high_pfn)
79                         high_pfn = pfn;
80         }
81
82         return high_pfn;
83 }
84
85 static void split_map_pages(struct list_head *list)
86 {
87         unsigned int i, order, nr_pages;
88         struct page *page, *next;
89         LIST_HEAD(tmp_list);
90
91         list_for_each_entry_safe(page, next, list, lru) {
92                 list_del(&page->lru);
93
94                 order = page_private(page);
95                 nr_pages = 1 << order;
96
97                 post_alloc_hook(page, order, __GFP_MOVABLE);
98                 if (order)
99                         split_page(page, order);
100
101                 for (i = 0; i < nr_pages; i++) {
102                         list_add(&page->lru, &tmp_list);
103                         page++;
104                 }
105         }
106
107         list_splice(&tmp_list, list);
108 }
109
110 #ifdef CONFIG_COMPACTION
111 bool PageMovable(struct page *page)
112 {
113         const struct movable_operations *mops;
114
115         VM_BUG_ON_PAGE(!PageLocked(page), page);
116         if (!__PageMovable(page))
117                 return false;
118
119         mops = page_movable_ops(page);
120         if (mops)
121                 return true;
122
123         return false;
124 }
125 EXPORT_SYMBOL(PageMovable);
126
127 void __SetPageMovable(struct page *page, const struct movable_operations *mops)
128 {
129         VM_BUG_ON_PAGE(!PageLocked(page), page);
130         VM_BUG_ON_PAGE((unsigned long)mops & PAGE_MAPPING_MOVABLE, page);
131         page->mapping = (void *)((unsigned long)mops | PAGE_MAPPING_MOVABLE);
132 }
133 EXPORT_SYMBOL(__SetPageMovable);
134
135 void __ClearPageMovable(struct page *page)
136 {
137         VM_BUG_ON_PAGE(!PageMovable(page), page);
138         /*
139          * This page still has the type of a movable page, but it's
140          * actually not movable any more.
141          */
142         page->mapping = (void *)PAGE_MAPPING_MOVABLE;
143 }
144 EXPORT_SYMBOL(__ClearPageMovable);
145
146 /* Do not skip compaction more than 64 times */
147 #define COMPACT_MAX_DEFER_SHIFT 6
148
149 /*
150  * Compaction is deferred when compaction fails to result in a page
151  * allocation success. 1 << compact_defer_shift, compactions are skipped up
152  * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
153  */
154 static void defer_compaction(struct zone *zone, int order)
155 {
156         zone->compact_considered = 0;
157         zone->compact_defer_shift++;
158
159         if (order < zone->compact_order_failed)
160                 zone->compact_order_failed = order;
161
162         if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
163                 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
164
165         trace_mm_compaction_defer_compaction(zone, order);
166 }
167
168 /* Returns true if compaction should be skipped this time */
169 static bool compaction_deferred(struct zone *zone, int order)
170 {
171         unsigned long defer_limit = 1UL << zone->compact_defer_shift;
172
173         if (order < zone->compact_order_failed)
174                 return false;
175
176         /* Avoid possible overflow */
177         if (++zone->compact_considered >= defer_limit) {
178                 zone->compact_considered = defer_limit;
179                 return false;
180         }
181
182         trace_mm_compaction_deferred(zone, order);
183
184         return true;
185 }
186
187 /*
188  * Update defer tracking counters after successful compaction of given order,
189  * which means an allocation either succeeded (alloc_success == true) or is
190  * expected to succeed.
191  */
192 void compaction_defer_reset(struct zone *zone, int order,
193                 bool alloc_success)
194 {
195         if (alloc_success) {
196                 zone->compact_considered = 0;
197                 zone->compact_defer_shift = 0;
198         }
199         if (order >= zone->compact_order_failed)
200                 zone->compact_order_failed = order + 1;
201
202         trace_mm_compaction_defer_reset(zone, order);
203 }
204
205 /* Returns true if restarting compaction after many failures */
206 static bool compaction_restarting(struct zone *zone, int order)
207 {
208         if (order < zone->compact_order_failed)
209                 return false;
210
211         return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
212                 zone->compact_considered >= 1UL << zone->compact_defer_shift;
213 }
214
215 /* Returns true if the pageblock should be scanned for pages to isolate. */
216 static inline bool isolation_suitable(struct compact_control *cc,
217                                         struct page *page)
218 {
219         if (cc->ignore_skip_hint)
220                 return true;
221
222         return !get_pageblock_skip(page);
223 }
224
225 static void reset_cached_positions(struct zone *zone)
226 {
227         zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
228         zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
229         zone->compact_cached_free_pfn =
230                                 pageblock_start_pfn(zone_end_pfn(zone) - 1);
231 }
232
233 /*
234  * Compound pages of >= pageblock_order should consistently be skipped until
235  * released. It is always pointless to compact pages of such order (if they are
236  * migratable), and the pageblocks they occupy cannot contain any free pages.
237  */
238 static bool pageblock_skip_persistent(struct page *page)
239 {
240         if (!PageCompound(page))
241                 return false;
242
243         page = compound_head(page);
244
245         if (compound_order(page) >= pageblock_order)
246                 return true;
247
248         return false;
249 }
250
251 static bool
252 __reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source,
253                                                         bool check_target)
254 {
255         struct page *page = pfn_to_online_page(pfn);
256         struct page *block_page;
257         struct page *end_page;
258         unsigned long block_pfn;
259
260         if (!page)
261                 return false;
262         if (zone != page_zone(page))
263                 return false;
264         if (pageblock_skip_persistent(page))
265                 return false;
266
267         /*
268          * If skip is already cleared do no further checking once the
269          * restart points have been set.
270          */
271         if (check_source && check_target && !get_pageblock_skip(page))
272                 return true;
273
274         /*
275          * If clearing skip for the target scanner, do not select a
276          * non-movable pageblock as the starting point.
277          */
278         if (!check_source && check_target &&
279             get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
280                 return false;
281
282         /* Ensure the start of the pageblock or zone is online and valid */
283         block_pfn = pageblock_start_pfn(pfn);
284         block_pfn = max(block_pfn, zone->zone_start_pfn);
285         block_page = pfn_to_online_page(block_pfn);
286         if (block_page) {
287                 page = block_page;
288                 pfn = block_pfn;
289         }
290
291         /* Ensure the end of the pageblock or zone is online and valid */
292         block_pfn = pageblock_end_pfn(pfn) - 1;
293         block_pfn = min(block_pfn, zone_end_pfn(zone) - 1);
294         end_page = pfn_to_online_page(block_pfn);
295         if (!end_page)
296                 return false;
297
298         /*
299          * Only clear the hint if a sample indicates there is either a
300          * free page or an LRU page in the block. One or other condition
301          * is necessary for the block to be a migration source/target.
302          */
303         do {
304                 if (check_source && PageLRU(page)) {
305                         clear_pageblock_skip(page);
306                         return true;
307                 }
308
309                 if (check_target && PageBuddy(page)) {
310                         clear_pageblock_skip(page);
311                         return true;
312                 }
313
314                 page += (1 << PAGE_ALLOC_COSTLY_ORDER);
315         } while (page <= end_page);
316
317         return false;
318 }
319
320 /*
321  * This function is called to clear all cached information on pageblocks that
322  * should be skipped for page isolation when the migrate and free page scanner
323  * meet.
324  */
325 static void __reset_isolation_suitable(struct zone *zone)
326 {
327         unsigned long migrate_pfn = zone->zone_start_pfn;
328         unsigned long free_pfn = zone_end_pfn(zone) - 1;
329         unsigned long reset_migrate = free_pfn;
330         unsigned long reset_free = migrate_pfn;
331         bool source_set = false;
332         bool free_set = false;
333
334         if (!zone->compact_blockskip_flush)
335                 return;
336
337         zone->compact_blockskip_flush = false;
338
339         /*
340          * Walk the zone and update pageblock skip information. Source looks
341          * for PageLRU while target looks for PageBuddy. When the scanner
342          * is found, both PageBuddy and PageLRU are checked as the pageblock
343          * is suitable as both source and target.
344          */
345         for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages,
346                                         free_pfn -= pageblock_nr_pages) {
347                 cond_resched();
348
349                 /* Update the migrate PFN */
350                 if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) &&
351                     migrate_pfn < reset_migrate) {
352                         source_set = true;
353                         reset_migrate = migrate_pfn;
354                         zone->compact_init_migrate_pfn = reset_migrate;
355                         zone->compact_cached_migrate_pfn[0] = reset_migrate;
356                         zone->compact_cached_migrate_pfn[1] = reset_migrate;
357                 }
358
359                 /* Update the free PFN */
360                 if (__reset_isolation_pfn(zone, free_pfn, free_set, true) &&
361                     free_pfn > reset_free) {
362                         free_set = true;
363                         reset_free = free_pfn;
364                         zone->compact_init_free_pfn = reset_free;
365                         zone->compact_cached_free_pfn = reset_free;
366                 }
367         }
368
369         /* Leave no distance if no suitable block was reset */
370         if (reset_migrate >= reset_free) {
371                 zone->compact_cached_migrate_pfn[0] = migrate_pfn;
372                 zone->compact_cached_migrate_pfn[1] = migrate_pfn;
373                 zone->compact_cached_free_pfn = free_pfn;
374         }
375 }
376
377 void reset_isolation_suitable(pg_data_t *pgdat)
378 {
379         int zoneid;
380
381         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
382                 struct zone *zone = &pgdat->node_zones[zoneid];
383                 if (!populated_zone(zone))
384                         continue;
385
386                 /* Only flush if a full compaction finished recently */
387                 if (zone->compact_blockskip_flush)
388                         __reset_isolation_suitable(zone);
389         }
390 }
391
392 /*
393  * Sets the pageblock skip bit if it was clear. Note that this is a hint as
394  * locks are not required for read/writers. Returns true if it was already set.
395  */
396 static bool test_and_set_skip(struct compact_control *cc, struct page *page,
397                                                         unsigned long pfn)
398 {
399         bool skip;
400
401         /* Do no update if skip hint is being ignored */
402         if (cc->ignore_skip_hint)
403                 return false;
404
405         if (!pageblock_aligned(pfn))
406                 return false;
407
408         skip = get_pageblock_skip(page);
409         if (!skip && !cc->no_set_skip_hint)
410                 set_pageblock_skip(page);
411
412         return skip;
413 }
414
415 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
416 {
417         struct zone *zone = cc->zone;
418
419         pfn = pageblock_end_pfn(pfn);
420
421         /* Set for isolation rather than compaction */
422         if (cc->no_set_skip_hint)
423                 return;
424
425         if (pfn > zone->compact_cached_migrate_pfn[0])
426                 zone->compact_cached_migrate_pfn[0] = pfn;
427         if (cc->mode != MIGRATE_ASYNC &&
428             pfn > zone->compact_cached_migrate_pfn[1])
429                 zone->compact_cached_migrate_pfn[1] = pfn;
430 }
431
432 /*
433  * If no pages were isolated then mark this pageblock to be skipped in the
434  * future. The information is later cleared by __reset_isolation_suitable().
435  */
436 static void update_pageblock_skip(struct compact_control *cc,
437                         struct page *page, unsigned long pfn)
438 {
439         struct zone *zone = cc->zone;
440
441         if (cc->no_set_skip_hint)
442                 return;
443
444         if (!page)
445                 return;
446
447         set_pageblock_skip(page);
448
449         /* Update where async and sync compaction should restart */
450         if (pfn < zone->compact_cached_free_pfn)
451                 zone->compact_cached_free_pfn = pfn;
452 }
453 #else
454 static inline bool isolation_suitable(struct compact_control *cc,
455                                         struct page *page)
456 {
457         return true;
458 }
459
460 static inline bool pageblock_skip_persistent(struct page *page)
461 {
462         return false;
463 }
464
465 static inline void update_pageblock_skip(struct compact_control *cc,
466                         struct page *page, unsigned long pfn)
467 {
468 }
469
470 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
471 {
472 }
473
474 static bool test_and_set_skip(struct compact_control *cc, struct page *page,
475                                                         unsigned long pfn)
476 {
477         return false;
478 }
479 #endif /* CONFIG_COMPACTION */
480
481 /*
482  * Compaction requires the taking of some coarse locks that are potentially
483  * very heavily contended. For async compaction, trylock and record if the
484  * lock is contended. The lock will still be acquired but compaction will
485  * abort when the current block is finished regardless of success rate.
486  * Sync compaction acquires the lock.
487  *
488  * Always returns true which makes it easier to track lock state in callers.
489  */
490 static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags,
491                                                 struct compact_control *cc)
492         __acquires(lock)
493 {
494         /* Track if the lock is contended in async mode */
495         if (cc->mode == MIGRATE_ASYNC && !cc->contended) {
496                 if (spin_trylock_irqsave(lock, *flags))
497                         return true;
498
499                 cc->contended = true;
500         }
501
502         spin_lock_irqsave(lock, *flags);
503         return true;
504 }
505
506 /*
507  * Compaction requires the taking of some coarse locks that are potentially
508  * very heavily contended. The lock should be periodically unlocked to avoid
509  * having disabled IRQs for a long time, even when there is nobody waiting on
510  * the lock. It might also be that allowing the IRQs will result in
511  * need_resched() becoming true. If scheduling is needed, compaction schedules.
512  * Either compaction type will also abort if a fatal signal is pending.
513  * In either case if the lock was locked, it is dropped and not regained.
514  *
515  * Returns true if compaction should abort due to fatal signal pending.
516  * Returns false when compaction can continue.
517  */
518 static bool compact_unlock_should_abort(spinlock_t *lock,
519                 unsigned long flags, bool *locked, struct compact_control *cc)
520 {
521         if (*locked) {
522                 spin_unlock_irqrestore(lock, flags);
523                 *locked = false;
524         }
525
526         if (fatal_signal_pending(current)) {
527                 cc->contended = true;
528                 return true;
529         }
530
531         cond_resched();
532
533         return false;
534 }
535
536 /*
537  * Isolate free pages onto a private freelist. If @strict is true, will abort
538  * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
539  * (even though it may still end up isolating some pages).
540  */
541 static unsigned long isolate_freepages_block(struct compact_control *cc,
542                                 unsigned long *start_pfn,
543                                 unsigned long end_pfn,
544                                 struct list_head *freelist,
545                                 unsigned int stride,
546                                 bool strict)
547 {
548         int nr_scanned = 0, total_isolated = 0;
549         struct page *cursor;
550         unsigned long flags = 0;
551         bool locked = false;
552         unsigned long blockpfn = *start_pfn;
553         unsigned int order;
554
555         /* Strict mode is for isolation, speed is secondary */
556         if (strict)
557                 stride = 1;
558
559         cursor = pfn_to_page(blockpfn);
560
561         /* Isolate free pages. */
562         for (; blockpfn < end_pfn; blockpfn += stride, cursor += stride) {
563                 int isolated;
564                 struct page *page = cursor;
565
566                 /*
567                  * Periodically drop the lock (if held) regardless of its
568                  * contention, to give chance to IRQs. Abort if fatal signal
569                  * pending.
570                  */
571                 if (!(blockpfn % COMPACT_CLUSTER_MAX)
572                     && compact_unlock_should_abort(&cc->zone->lock, flags,
573                                                                 &locked, cc))
574                         break;
575
576                 nr_scanned++;
577
578                 /*
579                  * For compound pages such as THP and hugetlbfs, we can save
580                  * potentially a lot of iterations if we skip them at once.
581                  * The check is racy, but we can consider only valid values
582                  * and the only danger is skipping too much.
583                  */
584                 if (PageCompound(page)) {
585                         const unsigned int order = compound_order(page);
586
587                         if (likely(order < MAX_ORDER)) {
588                                 blockpfn += (1UL << order) - 1;
589                                 cursor += (1UL << order) - 1;
590                         }
591                         goto isolate_fail;
592                 }
593
594                 if (!PageBuddy(page))
595                         goto isolate_fail;
596
597                 /* If we already hold the lock, we can skip some rechecking. */
598                 if (!locked) {
599                         locked = compact_lock_irqsave(&cc->zone->lock,
600                                                                 &flags, cc);
601
602                         /* Recheck this is a buddy page under lock */
603                         if (!PageBuddy(page))
604                                 goto isolate_fail;
605                 }
606
607                 /* Found a free page, will break it into order-0 pages */
608                 order = buddy_order(page);
609                 isolated = __isolate_free_page(page, order);
610                 if (!isolated)
611                         break;
612                 set_page_private(page, order);
613
614                 nr_scanned += isolated - 1;
615                 total_isolated += isolated;
616                 cc->nr_freepages += isolated;
617                 list_add_tail(&page->lru, freelist);
618
619                 if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
620                         blockpfn += isolated;
621                         break;
622                 }
623                 /* Advance to the end of split page */
624                 blockpfn += isolated - 1;
625                 cursor += isolated - 1;
626                 continue;
627
628 isolate_fail:
629                 if (strict)
630                         break;
631                 else
632                         continue;
633
634         }
635
636         if (locked)
637                 spin_unlock_irqrestore(&cc->zone->lock, flags);
638
639         /*
640          * There is a tiny chance that we have read bogus compound_order(),
641          * so be careful to not go outside of the pageblock.
642          */
643         if (unlikely(blockpfn > end_pfn))
644                 blockpfn = end_pfn;
645
646         trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
647                                         nr_scanned, total_isolated);
648
649         /* Record how far we have got within the block */
650         *start_pfn = blockpfn;
651
652         /*
653          * If strict isolation is requested by CMA then check that all the
654          * pages requested were isolated. If there were any failures, 0 is
655          * returned and CMA will fail.
656          */
657         if (strict && blockpfn < end_pfn)
658                 total_isolated = 0;
659
660         cc->total_free_scanned += nr_scanned;
661         if (total_isolated)
662                 count_compact_events(COMPACTISOLATED, total_isolated);
663         return total_isolated;
664 }
665
666 /**
667  * isolate_freepages_range() - isolate free pages.
668  * @cc:        Compaction control structure.
669  * @start_pfn: The first PFN to start isolating.
670  * @end_pfn:   The one-past-last PFN.
671  *
672  * Non-free pages, invalid PFNs, or zone boundaries within the
673  * [start_pfn, end_pfn) range are considered errors, cause function to
674  * undo its actions and return zero.
675  *
676  * Otherwise, function returns one-past-the-last PFN of isolated page
677  * (which may be greater then end_pfn if end fell in a middle of
678  * a free page).
679  */
680 unsigned long
681 isolate_freepages_range(struct compact_control *cc,
682                         unsigned long start_pfn, unsigned long end_pfn)
683 {
684         unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
685         LIST_HEAD(freelist);
686
687         pfn = start_pfn;
688         block_start_pfn = pageblock_start_pfn(pfn);
689         if (block_start_pfn < cc->zone->zone_start_pfn)
690                 block_start_pfn = cc->zone->zone_start_pfn;
691         block_end_pfn = pageblock_end_pfn(pfn);
692
693         for (; pfn < end_pfn; pfn += isolated,
694                                 block_start_pfn = block_end_pfn,
695                                 block_end_pfn += pageblock_nr_pages) {
696                 /* Protect pfn from changing by isolate_freepages_block */
697                 unsigned long isolate_start_pfn = pfn;
698
699                 block_end_pfn = min(block_end_pfn, end_pfn);
700
701                 /*
702                  * pfn could pass the block_end_pfn if isolated freepage
703                  * is more than pageblock order. In this case, we adjust
704                  * scanning range to right one.
705                  */
706                 if (pfn >= block_end_pfn) {
707                         block_start_pfn = pageblock_start_pfn(pfn);
708                         block_end_pfn = pageblock_end_pfn(pfn);
709                         block_end_pfn = min(block_end_pfn, end_pfn);
710                 }
711
712                 if (!pageblock_pfn_to_page(block_start_pfn,
713                                         block_end_pfn, cc->zone))
714                         break;
715
716                 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
717                                         block_end_pfn, &freelist, 0, true);
718
719                 /*
720                  * In strict mode, isolate_freepages_block() returns 0 if
721                  * there are any holes in the block (ie. invalid PFNs or
722                  * non-free pages).
723                  */
724                 if (!isolated)
725                         break;
726
727                 /*
728                  * If we managed to isolate pages, it is always (1 << n) *
729                  * pageblock_nr_pages for some non-negative n.  (Max order
730                  * page may span two pageblocks).
731                  */
732         }
733
734         /* __isolate_free_page() does not map the pages */
735         split_map_pages(&freelist);
736
737         if (pfn < end_pfn) {
738                 /* Loop terminated early, cleanup. */
739                 release_freepages(&freelist);
740                 return 0;
741         }
742
743         /* We don't use freelists for anything. */
744         return pfn;
745 }
746
747 /* Similar to reclaim, but different enough that they don't share logic */
748 static bool too_many_isolated(pg_data_t *pgdat)
749 {
750         bool too_many;
751
752         unsigned long active, inactive, isolated;
753
754         inactive = node_page_state(pgdat, NR_INACTIVE_FILE) +
755                         node_page_state(pgdat, NR_INACTIVE_ANON);
756         active = node_page_state(pgdat, NR_ACTIVE_FILE) +
757                         node_page_state(pgdat, NR_ACTIVE_ANON);
758         isolated = node_page_state(pgdat, NR_ISOLATED_FILE) +
759                         node_page_state(pgdat, NR_ISOLATED_ANON);
760
761         too_many = isolated > (inactive + active) / 2;
762         if (!too_many)
763                 wake_throttle_isolated(pgdat);
764
765         return too_many;
766 }
767
768 /**
769  * isolate_migratepages_block() - isolate all migrate-able pages within
770  *                                a single pageblock
771  * @cc:         Compaction control structure.
772  * @low_pfn:    The first PFN to isolate
773  * @end_pfn:    The one-past-the-last PFN to isolate, within same pageblock
774  * @mode:       Isolation mode to be used.
775  *
776  * Isolate all pages that can be migrated from the range specified by
777  * [low_pfn, end_pfn). The range is expected to be within same pageblock.
778  * Returns errno, like -EAGAIN or -EINTR in case e.g signal pending or congestion,
779  * -ENOMEM in case we could not allocate a page, or 0.
780  * cc->migrate_pfn will contain the next pfn to scan.
781  *
782  * The pages are isolated on cc->migratepages list (not required to be empty),
783  * and cc->nr_migratepages is updated accordingly.
784  */
785 static int
786 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
787                         unsigned long end_pfn, isolate_mode_t mode)
788 {
789         pg_data_t *pgdat = cc->zone->zone_pgdat;
790         unsigned long nr_scanned = 0, nr_isolated = 0;
791         struct lruvec *lruvec;
792         unsigned long flags = 0;
793         struct lruvec *locked = NULL;
794         struct page *page = NULL, *valid_page = NULL;
795         struct address_space *mapping;
796         unsigned long start_pfn = low_pfn;
797         bool skip_on_failure = false;
798         unsigned long next_skip_pfn = 0;
799         bool skip_updated = false;
800         int ret = 0;
801
802         cc->migrate_pfn = low_pfn;
803
804         /*
805          * Ensure that there are not too many pages isolated from the LRU
806          * list by either parallel reclaimers or compaction. If there are,
807          * delay for some time until fewer pages are isolated
808          */
809         while (unlikely(too_many_isolated(pgdat))) {
810                 /* stop isolation if there are still pages not migrated */
811                 if (cc->nr_migratepages)
812                         return -EAGAIN;
813
814                 /* async migration should just abort */
815                 if (cc->mode == MIGRATE_ASYNC)
816                         return -EAGAIN;
817
818                 reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
819
820                 if (fatal_signal_pending(current))
821                         return -EINTR;
822         }
823
824         cond_resched();
825
826         if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
827                 skip_on_failure = true;
828                 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
829         }
830
831         /* Time to isolate some pages for migration */
832         for (; low_pfn < end_pfn; low_pfn++) {
833
834                 if (skip_on_failure && low_pfn >= next_skip_pfn) {
835                         /*
836                          * We have isolated all migration candidates in the
837                          * previous order-aligned block, and did not skip it due
838                          * to failure. We should migrate the pages now and
839                          * hopefully succeed compaction.
840                          */
841                         if (nr_isolated)
842                                 break;
843
844                         /*
845                          * We failed to isolate in the previous order-aligned
846                          * block. Set the new boundary to the end of the
847                          * current block. Note we can't simply increase
848                          * next_skip_pfn by 1 << order, as low_pfn might have
849                          * been incremented by a higher number due to skipping
850                          * a compound or a high-order buddy page in the
851                          * previous loop iteration.
852                          */
853                         next_skip_pfn = block_end_pfn(low_pfn, cc->order);
854                 }
855
856                 /*
857                  * Periodically drop the lock (if held) regardless of its
858                  * contention, to give chance to IRQs. Abort completely if
859                  * a fatal signal is pending.
860                  */
861                 if (!(low_pfn % COMPACT_CLUSTER_MAX)) {
862                         if (locked) {
863                                 unlock_page_lruvec_irqrestore(locked, flags);
864                                 locked = NULL;
865                         }
866
867                         if (fatal_signal_pending(current)) {
868                                 cc->contended = true;
869                                 ret = -EINTR;
870
871                                 goto fatal_pending;
872                         }
873
874                         cond_resched();
875                 }
876
877                 nr_scanned++;
878
879                 page = pfn_to_page(low_pfn);
880
881                 /*
882                  * Check if the pageblock has already been marked skipped.
883                  * Only the aligned PFN is checked as the caller isolates
884                  * COMPACT_CLUSTER_MAX at a time so the second call must
885                  * not falsely conclude that the block should be skipped.
886                  */
887                 if (!valid_page && pageblock_aligned(low_pfn)) {
888                         if (!isolation_suitable(cc, page)) {
889                                 low_pfn = end_pfn;
890                                 page = NULL;
891                                 goto isolate_abort;
892                         }
893                         valid_page = page;
894                 }
895
896                 if (PageHuge(page) && cc->alloc_contig) {
897                         ret = isolate_or_dissolve_huge_page(page, &cc->migratepages);
898
899                         /*
900                          * Fail isolation in case isolate_or_dissolve_huge_page()
901                          * reports an error. In case of -ENOMEM, abort right away.
902                          */
903                         if (ret < 0) {
904                                  /* Do not report -EBUSY down the chain */
905                                 if (ret == -EBUSY)
906                                         ret = 0;
907                                 low_pfn += compound_nr(page) - 1;
908                                 goto isolate_fail;
909                         }
910
911                         if (PageHuge(page)) {
912                                 /*
913                                  * Hugepage was successfully isolated and placed
914                                  * on the cc->migratepages list.
915                                  */
916                                 low_pfn += compound_nr(page) - 1;
917                                 goto isolate_success_no_list;
918                         }
919
920                         /*
921                          * Ok, the hugepage was dissolved. Now these pages are
922                          * Buddy and cannot be re-allocated because they are
923                          * isolated. Fall-through as the check below handles
924                          * Buddy pages.
925                          */
926                 }
927
928                 /*
929                  * Skip if free. We read page order here without zone lock
930                  * which is generally unsafe, but the race window is small and
931                  * the worst thing that can happen is that we skip some
932                  * potential isolation targets.
933                  */
934                 if (PageBuddy(page)) {
935                         unsigned long freepage_order = buddy_order_unsafe(page);
936
937                         /*
938                          * Without lock, we cannot be sure that what we got is
939                          * a valid page order. Consider only values in the
940                          * valid order range to prevent low_pfn overflow.
941                          */
942                         if (freepage_order > 0 && freepage_order < MAX_ORDER)
943                                 low_pfn += (1UL << freepage_order) - 1;
944                         continue;
945                 }
946
947                 /*
948                  * Regardless of being on LRU, compound pages such as THP and
949                  * hugetlbfs are not to be compacted unless we are attempting
950                  * an allocation much larger than the huge page size (eg CMA).
951                  * We can potentially save a lot of iterations if we skip them
952                  * at once. The check is racy, but we can consider only valid
953                  * values and the only danger is skipping too much.
954                  */
955                 if (PageCompound(page) && !cc->alloc_contig) {
956                         const unsigned int order = compound_order(page);
957
958                         if (likely(order < MAX_ORDER))
959                                 low_pfn += (1UL << order) - 1;
960                         goto isolate_fail;
961                 }
962
963                 /*
964                  * Check may be lockless but that's ok as we recheck later.
965                  * It's possible to migrate LRU and non-lru movable pages.
966                  * Skip any other type of page
967                  */
968                 if (!PageLRU(page)) {
969                         /*
970                          * __PageMovable can return false positive so we need
971                          * to verify it under page_lock.
972                          */
973                         if (unlikely(__PageMovable(page)) &&
974                                         !PageIsolated(page)) {
975                                 if (locked) {
976                                         unlock_page_lruvec_irqrestore(locked, flags);
977                                         locked = NULL;
978                                 }
979
980                                 if (!isolate_movable_page(page, mode))
981                                         goto isolate_success;
982                         }
983
984                         goto isolate_fail;
985                 }
986
987                 /*
988                  * Migration will fail if an anonymous page is pinned in memory,
989                  * so avoid taking lru_lock and isolating it unnecessarily in an
990                  * admittedly racy check.
991                  */
992                 mapping = page_mapping(page);
993                 if (!mapping && page_count(page) > page_mapcount(page))
994                         goto isolate_fail;
995
996                 /*
997                  * Only allow to migrate anonymous pages in GFP_NOFS context
998                  * because those do not depend on fs locks.
999                  */
1000                 if (!(cc->gfp_mask & __GFP_FS) && mapping)
1001                         goto isolate_fail;
1002
1003                 /*
1004                  * Be careful not to clear PageLRU until after we're
1005                  * sure the page is not being freed elsewhere -- the
1006                  * page release code relies on it.
1007                  */
1008                 if (unlikely(!get_page_unless_zero(page)))
1009                         goto isolate_fail;
1010
1011                 /* Only take pages on LRU: a check now makes later tests safe */
1012                 if (!PageLRU(page))
1013                         goto isolate_fail_put;
1014
1015                 /* Compaction might skip unevictable pages but CMA takes them */
1016                 if (!(mode & ISOLATE_UNEVICTABLE) && PageUnevictable(page))
1017                         goto isolate_fail_put;
1018
1019                 /*
1020                  * To minimise LRU disruption, the caller can indicate with
1021                  * ISOLATE_ASYNC_MIGRATE that it only wants to isolate pages
1022                  * it will be able to migrate without blocking - clean pages
1023                  * for the most part.  PageWriteback would require blocking.
1024                  */
1025                 if ((mode & ISOLATE_ASYNC_MIGRATE) && PageWriteback(page))
1026                         goto isolate_fail_put;
1027
1028                 if ((mode & ISOLATE_ASYNC_MIGRATE) && PageDirty(page)) {
1029                         bool migrate_dirty;
1030
1031                         /*
1032                          * Only pages without mappings or that have a
1033                          * ->migrate_folio callback are possible to migrate
1034                          * without blocking. However, we can be racing with
1035                          * truncation so it's necessary to lock the page
1036                          * to stabilise the mapping as truncation holds
1037                          * the page lock until after the page is removed
1038                          * from the page cache.
1039                          */
1040                         if (!trylock_page(page))
1041                                 goto isolate_fail_put;
1042
1043                         mapping = page_mapping(page);
1044                         migrate_dirty = !mapping ||
1045                                         mapping->a_ops->migrate_folio;
1046                         unlock_page(page);
1047                         if (!migrate_dirty)
1048                                 goto isolate_fail_put;
1049                 }
1050
1051                 /* Try isolate the page */
1052                 if (!TestClearPageLRU(page))
1053                         goto isolate_fail_put;
1054
1055                 lruvec = folio_lruvec(page_folio(page));
1056
1057                 /* If we already hold the lock, we can skip some rechecking */
1058                 if (lruvec != locked) {
1059                         if (locked)
1060                                 unlock_page_lruvec_irqrestore(locked, flags);
1061
1062                         compact_lock_irqsave(&lruvec->lru_lock, &flags, cc);
1063                         locked = lruvec;
1064
1065                         lruvec_memcg_debug(lruvec, page_folio(page));
1066
1067                         /* Try get exclusive access under lock */
1068                         if (!skip_updated) {
1069                                 skip_updated = true;
1070                                 if (test_and_set_skip(cc, page, low_pfn))
1071                                         goto isolate_abort;
1072                         }
1073
1074                         /*
1075                          * Page become compound since the non-locked check,
1076                          * and it's on LRU. It can only be a THP so the order
1077                          * is safe to read and it's 0 for tail pages.
1078                          */
1079                         if (unlikely(PageCompound(page) && !cc->alloc_contig)) {
1080                                 low_pfn += compound_nr(page) - 1;
1081                                 SetPageLRU(page);
1082                                 goto isolate_fail_put;
1083                         }
1084                 }
1085
1086                 /* The whole page is taken off the LRU; skip the tail pages. */
1087                 if (PageCompound(page))
1088                         low_pfn += compound_nr(page) - 1;
1089
1090                 /* Successfully isolated */
1091                 del_page_from_lru_list(page, lruvec);
1092                 mod_node_page_state(page_pgdat(page),
1093                                 NR_ISOLATED_ANON + page_is_file_lru(page),
1094                                 thp_nr_pages(page));
1095
1096 isolate_success:
1097                 list_add(&page->lru, &cc->migratepages);
1098 isolate_success_no_list:
1099                 cc->nr_migratepages += compound_nr(page);
1100                 nr_isolated += compound_nr(page);
1101                 nr_scanned += compound_nr(page) - 1;
1102
1103                 /*
1104                  * Avoid isolating too much unless this block is being
1105                  * rescanned (e.g. dirty/writeback pages, parallel allocation)
1106                  * or a lock is contended. For contention, isolate quickly to
1107                  * potentially remove one source of contention.
1108                  */
1109                 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX &&
1110                     !cc->rescan && !cc->contended) {
1111                         ++low_pfn;
1112                         break;
1113                 }
1114
1115                 continue;
1116
1117 isolate_fail_put:
1118                 /* Avoid potential deadlock in freeing page under lru_lock */
1119                 if (locked) {
1120                         unlock_page_lruvec_irqrestore(locked, flags);
1121                         locked = NULL;
1122                 }
1123                 put_page(page);
1124
1125 isolate_fail:
1126                 if (!skip_on_failure && ret != -ENOMEM)
1127                         continue;
1128
1129                 /*
1130                  * We have isolated some pages, but then failed. Release them
1131                  * instead of migrating, as we cannot form the cc->order buddy
1132                  * page anyway.
1133                  */
1134                 if (nr_isolated) {
1135                         if (locked) {
1136                                 unlock_page_lruvec_irqrestore(locked, flags);
1137                                 locked = NULL;
1138                         }
1139                         putback_movable_pages(&cc->migratepages);
1140                         cc->nr_migratepages = 0;
1141                         nr_isolated = 0;
1142                 }
1143
1144                 if (low_pfn < next_skip_pfn) {
1145                         low_pfn = next_skip_pfn - 1;
1146                         /*
1147                          * The check near the loop beginning would have updated
1148                          * next_skip_pfn too, but this is a bit simpler.
1149                          */
1150                         next_skip_pfn += 1UL << cc->order;
1151                 }
1152
1153                 if (ret == -ENOMEM)
1154                         break;
1155         }
1156
1157         /*
1158          * The PageBuddy() check could have potentially brought us outside
1159          * the range to be scanned.
1160          */
1161         if (unlikely(low_pfn > end_pfn))
1162                 low_pfn = end_pfn;
1163
1164         page = NULL;
1165
1166 isolate_abort:
1167         if (locked)
1168                 unlock_page_lruvec_irqrestore(locked, flags);
1169         if (page) {
1170                 SetPageLRU(page);
1171                 put_page(page);
1172         }
1173
1174         /*
1175          * Updated the cached scanner pfn once the pageblock has been scanned
1176          * Pages will either be migrated in which case there is no point
1177          * scanning in the near future or migration failed in which case the
1178          * failure reason may persist. The block is marked for skipping if
1179          * there were no pages isolated in the block or if the block is
1180          * rescanned twice in a row.
1181          */
1182         if (low_pfn == end_pfn && (!nr_isolated || cc->rescan)) {
1183                 if (valid_page && !skip_updated)
1184                         set_pageblock_skip(valid_page);
1185                 update_cached_migrate(cc, low_pfn);
1186         }
1187
1188         trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
1189                                                 nr_scanned, nr_isolated);
1190
1191 fatal_pending:
1192         cc->total_migrate_scanned += nr_scanned;
1193         if (nr_isolated)
1194                 count_compact_events(COMPACTISOLATED, nr_isolated);
1195
1196         cc->migrate_pfn = low_pfn;
1197
1198         return ret;
1199 }
1200
1201 /**
1202  * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
1203  * @cc:        Compaction control structure.
1204  * @start_pfn: The first PFN to start isolating.
1205  * @end_pfn:   The one-past-last PFN.
1206  *
1207  * Returns -EAGAIN when contented, -EINTR in case of a signal pending, -ENOMEM
1208  * in case we could not allocate a page, or 0.
1209  */
1210 int
1211 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
1212                                                         unsigned long end_pfn)
1213 {
1214         unsigned long pfn, block_start_pfn, block_end_pfn;
1215         int ret = 0;
1216
1217         /* Scan block by block. First and last block may be incomplete */
1218         pfn = start_pfn;
1219         block_start_pfn = pageblock_start_pfn(pfn);
1220         if (block_start_pfn < cc->zone->zone_start_pfn)
1221                 block_start_pfn = cc->zone->zone_start_pfn;
1222         block_end_pfn = pageblock_end_pfn(pfn);
1223
1224         for (; pfn < end_pfn; pfn = block_end_pfn,
1225                                 block_start_pfn = block_end_pfn,
1226                                 block_end_pfn += pageblock_nr_pages) {
1227
1228                 block_end_pfn = min(block_end_pfn, end_pfn);
1229
1230                 if (!pageblock_pfn_to_page(block_start_pfn,
1231                                         block_end_pfn, cc->zone))
1232                         continue;
1233
1234                 ret = isolate_migratepages_block(cc, pfn, block_end_pfn,
1235                                                  ISOLATE_UNEVICTABLE);
1236
1237                 if (ret)
1238                         break;
1239
1240                 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX)
1241                         break;
1242         }
1243
1244         return ret;
1245 }
1246
1247 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
1248 #ifdef CONFIG_COMPACTION
1249
1250 static bool suitable_migration_source(struct compact_control *cc,
1251                                                         struct page *page)
1252 {
1253         int block_mt;
1254
1255         if (pageblock_skip_persistent(page))
1256                 return false;
1257
1258         if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
1259                 return true;
1260
1261         block_mt = get_pageblock_migratetype(page);
1262
1263         if (cc->migratetype == MIGRATE_MOVABLE)
1264                 return is_migrate_movable(block_mt);
1265         else
1266                 return block_mt == cc->migratetype;
1267 }
1268
1269 /* Returns true if the page is within a block suitable for migration to */
1270 static bool suitable_migration_target(struct compact_control *cc,
1271                                                         struct page *page)
1272 {
1273         /* If the page is a large free page, then disallow migration */
1274         if (PageBuddy(page)) {
1275                 /*
1276                  * We are checking page_order without zone->lock taken. But
1277                  * the only small danger is that we skip a potentially suitable
1278                  * pageblock, so it's not worth to check order for valid range.
1279                  */
1280                 if (buddy_order_unsafe(page) >= pageblock_order)
1281                         return false;
1282         }
1283
1284         if (cc->ignore_block_suitable)
1285                 return true;
1286
1287         /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1288         if (is_migrate_movable(get_pageblock_migratetype(page)))
1289                 return true;
1290
1291         /* Otherwise skip the block */
1292         return false;
1293 }
1294
1295 static inline unsigned int
1296 freelist_scan_limit(struct compact_control *cc)
1297 {
1298         unsigned short shift = BITS_PER_LONG - 1;
1299
1300         return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1;
1301 }
1302
1303 /*
1304  * Test whether the free scanner has reached the same or lower pageblock than
1305  * the migration scanner, and compaction should thus terminate.
1306  */
1307 static inline bool compact_scanners_met(struct compact_control *cc)
1308 {
1309         return (cc->free_pfn >> pageblock_order)
1310                 <= (cc->migrate_pfn >> pageblock_order);
1311 }
1312
1313 /*
1314  * Used when scanning for a suitable migration target which scans freelists
1315  * in reverse. Reorders the list such as the unscanned pages are scanned
1316  * first on the next iteration of the free scanner
1317  */
1318 static void
1319 move_freelist_head(struct list_head *freelist, struct page *freepage)
1320 {
1321         LIST_HEAD(sublist);
1322
1323         if (!list_is_last(freelist, &freepage->lru)) {
1324                 list_cut_before(&sublist, freelist, &freepage->lru);
1325                 list_splice_tail(&sublist, freelist);
1326         }
1327 }
1328
1329 /*
1330  * Similar to move_freelist_head except used by the migration scanner
1331  * when scanning forward. It's possible for these list operations to
1332  * move against each other if they search the free list exactly in
1333  * lockstep.
1334  */
1335 static void
1336 move_freelist_tail(struct list_head *freelist, struct page *freepage)
1337 {
1338         LIST_HEAD(sublist);
1339
1340         if (!list_is_first(freelist, &freepage->lru)) {
1341                 list_cut_position(&sublist, freelist, &freepage->lru);
1342                 list_splice_tail(&sublist, freelist);
1343         }
1344 }
1345
1346 static void
1347 fast_isolate_around(struct compact_control *cc, unsigned long pfn, unsigned long nr_isolated)
1348 {
1349         unsigned long start_pfn, end_pfn;
1350         struct page *page;
1351
1352         /* Do not search around if there are enough pages already */
1353         if (cc->nr_freepages >= cc->nr_migratepages)
1354                 return;
1355
1356         /* Minimise scanning during async compaction */
1357         if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC)
1358                 return;
1359
1360         /* Pageblock boundaries */
1361         start_pfn = max(pageblock_start_pfn(pfn), cc->zone->zone_start_pfn);
1362         end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone));
1363
1364         page = pageblock_pfn_to_page(start_pfn, end_pfn, cc->zone);
1365         if (!page)
1366                 return;
1367
1368         /* Scan before */
1369         if (start_pfn != pfn) {
1370                 isolate_freepages_block(cc, &start_pfn, pfn, &cc->freepages, 1, false);
1371                 if (cc->nr_freepages >= cc->nr_migratepages)
1372                         return;
1373         }
1374
1375         /* Scan after */
1376         start_pfn = pfn + nr_isolated;
1377         if (start_pfn < end_pfn)
1378                 isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false);
1379
1380         /* Skip this pageblock in the future as it's full or nearly full */
1381         if (cc->nr_freepages < cc->nr_migratepages)
1382                 set_pageblock_skip(page);
1383 }
1384
1385 /* Search orders in round-robin fashion */
1386 static int next_search_order(struct compact_control *cc, int order)
1387 {
1388         order--;
1389         if (order < 0)
1390                 order = cc->order - 1;
1391
1392         /* Search wrapped around? */
1393         if (order == cc->search_order) {
1394                 cc->search_order--;
1395                 if (cc->search_order < 0)
1396                         cc->search_order = cc->order - 1;
1397                 return -1;
1398         }
1399
1400         return order;
1401 }
1402
1403 static unsigned long
1404 fast_isolate_freepages(struct compact_control *cc)
1405 {
1406         unsigned int limit = max(1U, freelist_scan_limit(cc) >> 1);
1407         unsigned int nr_scanned = 0;
1408         unsigned long low_pfn, min_pfn, highest = 0;
1409         unsigned long nr_isolated = 0;
1410         unsigned long distance;
1411         struct page *page = NULL;
1412         bool scan_start = false;
1413         int order;
1414
1415         /* Full compaction passes in a negative order */
1416         if (cc->order <= 0)
1417                 return cc->free_pfn;
1418
1419         /*
1420          * If starting the scan, use a deeper search and use the highest
1421          * PFN found if a suitable one is not found.
1422          */
1423         if (cc->free_pfn >= cc->zone->compact_init_free_pfn) {
1424                 limit = pageblock_nr_pages >> 1;
1425                 scan_start = true;
1426         }
1427
1428         /*
1429          * Preferred point is in the top quarter of the scan space but take
1430          * a pfn from the top half if the search is problematic.
1431          */
1432         distance = (cc->free_pfn - cc->migrate_pfn);
1433         low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2));
1434         min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1));
1435
1436         if (WARN_ON_ONCE(min_pfn > low_pfn))
1437                 low_pfn = min_pfn;
1438
1439         /*
1440          * Search starts from the last successful isolation order or the next
1441          * order to search after a previous failure
1442          */
1443         cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order);
1444
1445         for (order = cc->search_order;
1446              !page && order >= 0;
1447              order = next_search_order(cc, order)) {
1448                 struct free_area *area = &cc->zone->free_area[order];
1449                 struct list_head *freelist;
1450                 struct page *freepage;
1451                 unsigned long flags;
1452                 unsigned int order_scanned = 0;
1453                 unsigned long high_pfn = 0;
1454
1455                 if (!area->nr_free)
1456                         continue;
1457
1458                 spin_lock_irqsave(&cc->zone->lock, flags);
1459                 freelist = &area->free_list[MIGRATE_MOVABLE];
1460                 list_for_each_entry_reverse(freepage, freelist, lru) {
1461                         unsigned long pfn;
1462
1463                         order_scanned++;
1464                         nr_scanned++;
1465                         pfn = page_to_pfn(freepage);
1466
1467                         if (pfn >= highest)
1468                                 highest = max(pageblock_start_pfn(pfn),
1469                                               cc->zone->zone_start_pfn);
1470
1471                         if (pfn >= low_pfn) {
1472                                 cc->fast_search_fail = 0;
1473                                 cc->search_order = order;
1474                                 page = freepage;
1475                                 break;
1476                         }
1477
1478                         if (pfn >= min_pfn && pfn > high_pfn) {
1479                                 high_pfn = pfn;
1480
1481                                 /* Shorten the scan if a candidate is found */
1482                                 limit >>= 1;
1483                         }
1484
1485                         if (order_scanned >= limit)
1486                                 break;
1487                 }
1488
1489                 /* Use a minimum pfn if a preferred one was not found */
1490                 if (!page && high_pfn) {
1491                         page = pfn_to_page(high_pfn);
1492
1493                         /* Update freepage for the list reorder below */
1494                         freepage = page;
1495                 }
1496
1497                 /* Reorder to so a future search skips recent pages */
1498                 move_freelist_head(freelist, freepage);
1499
1500                 /* Isolate the page if available */
1501                 if (page) {
1502                         if (__isolate_free_page(page, order)) {
1503                                 set_page_private(page, order);
1504                                 nr_isolated = 1 << order;
1505                                 nr_scanned += nr_isolated - 1;
1506                                 cc->nr_freepages += nr_isolated;
1507                                 list_add_tail(&page->lru, &cc->freepages);
1508                                 count_compact_events(COMPACTISOLATED, nr_isolated);
1509                         } else {
1510                                 /* If isolation fails, abort the search */
1511                                 order = cc->search_order + 1;
1512                                 page = NULL;
1513                         }
1514                 }
1515
1516                 spin_unlock_irqrestore(&cc->zone->lock, flags);
1517
1518                 /*
1519                  * Smaller scan on next order so the total scan is related
1520                  * to freelist_scan_limit.
1521                  */
1522                 if (order_scanned >= limit)
1523                         limit = max(1U, limit >> 1);
1524         }
1525
1526         if (!page) {
1527                 cc->fast_search_fail++;
1528                 if (scan_start) {
1529                         /*
1530                          * Use the highest PFN found above min. If one was
1531                          * not found, be pessimistic for direct compaction
1532                          * and use the min mark.
1533                          */
1534                         if (highest >= min_pfn) {
1535                                 page = pfn_to_page(highest);
1536                                 cc->free_pfn = highest;
1537                         } else {
1538                                 if (cc->direct_compaction && pfn_valid(min_pfn)) {
1539                                         page = pageblock_pfn_to_page(min_pfn,
1540                                                 min(pageblock_end_pfn(min_pfn),
1541                                                     zone_end_pfn(cc->zone)),
1542                                                 cc->zone);
1543                                         cc->free_pfn = min_pfn;
1544                                 }
1545                         }
1546                 }
1547         }
1548
1549         if (highest && highest >= cc->zone->compact_cached_free_pfn) {
1550                 highest -= pageblock_nr_pages;
1551                 cc->zone->compact_cached_free_pfn = highest;
1552         }
1553
1554         cc->total_free_scanned += nr_scanned;
1555         if (!page)
1556                 return cc->free_pfn;
1557
1558         low_pfn = page_to_pfn(page);
1559         fast_isolate_around(cc, low_pfn, nr_isolated);
1560         return low_pfn;
1561 }
1562
1563 /*
1564  * Based on information in the current compact_control, find blocks
1565  * suitable for isolating free pages from and then isolate them.
1566  */
1567 static void isolate_freepages(struct compact_control *cc)
1568 {
1569         struct zone *zone = cc->zone;
1570         struct page *page;
1571         unsigned long block_start_pfn;  /* start of current pageblock */
1572         unsigned long isolate_start_pfn; /* exact pfn we start at */
1573         unsigned long block_end_pfn;    /* end of current pageblock */
1574         unsigned long low_pfn;       /* lowest pfn scanner is able to scan */
1575         struct list_head *freelist = &cc->freepages;
1576         unsigned int stride;
1577
1578         /* Try a small search of the free lists for a candidate */
1579         fast_isolate_freepages(cc);
1580         if (cc->nr_freepages)
1581                 goto splitmap;
1582
1583         /*
1584          * Initialise the free scanner. The starting point is where we last
1585          * successfully isolated from, zone-cached value, or the end of the
1586          * zone when isolating for the first time. For looping we also need
1587          * this pfn aligned down to the pageblock boundary, because we do
1588          * block_start_pfn -= pageblock_nr_pages in the for loop.
1589          * For ending point, take care when isolating in last pageblock of a
1590          * zone which ends in the middle of a pageblock.
1591          * The low boundary is the end of the pageblock the migration scanner
1592          * is using.
1593          */
1594         isolate_start_pfn = cc->free_pfn;
1595         block_start_pfn = pageblock_start_pfn(isolate_start_pfn);
1596         block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1597                                                 zone_end_pfn(zone));
1598         low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1599         stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1;
1600
1601         /*
1602          * Isolate free pages until enough are available to migrate the
1603          * pages on cc->migratepages. We stop searching if the migrate
1604          * and free page scanners meet or enough free pages are isolated.
1605          */
1606         for (; block_start_pfn >= low_pfn;
1607                                 block_end_pfn = block_start_pfn,
1608                                 block_start_pfn -= pageblock_nr_pages,
1609                                 isolate_start_pfn = block_start_pfn) {
1610                 unsigned long nr_isolated;
1611
1612                 /*
1613                  * This can iterate a massively long zone without finding any
1614                  * suitable migration targets, so periodically check resched.
1615                  */
1616                 if (!(block_start_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages)))
1617                         cond_resched();
1618
1619                 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1620                                                                         zone);
1621                 if (!page)
1622                         continue;
1623
1624                 /* Check the block is suitable for migration */
1625                 if (!suitable_migration_target(cc, page))
1626                         continue;
1627
1628                 /* If isolation recently failed, do not retry */
1629                 if (!isolation_suitable(cc, page))
1630                         continue;
1631
1632                 /* Found a block suitable for isolating free pages from. */
1633                 nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn,
1634                                         block_end_pfn, freelist, stride, false);
1635
1636                 /* Update the skip hint if the full pageblock was scanned */
1637                 if (isolate_start_pfn == block_end_pfn)
1638                         update_pageblock_skip(cc, page, block_start_pfn);
1639
1640                 /* Are enough freepages isolated? */
1641                 if (cc->nr_freepages >= cc->nr_migratepages) {
1642                         if (isolate_start_pfn >= block_end_pfn) {
1643                                 /*
1644                                  * Restart at previous pageblock if more
1645                                  * freepages can be isolated next time.
1646                                  */
1647                                 isolate_start_pfn =
1648                                         block_start_pfn - pageblock_nr_pages;
1649                         }
1650                         break;
1651                 } else if (isolate_start_pfn < block_end_pfn) {
1652                         /*
1653                          * If isolation failed early, do not continue
1654                          * needlessly.
1655                          */
1656                         break;
1657                 }
1658
1659                 /* Adjust stride depending on isolation */
1660                 if (nr_isolated) {
1661                         stride = 1;
1662                         continue;
1663                 }
1664                 stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1);
1665         }
1666
1667         /*
1668          * Record where the free scanner will restart next time. Either we
1669          * broke from the loop and set isolate_start_pfn based on the last
1670          * call to isolate_freepages_block(), or we met the migration scanner
1671          * and the loop terminated due to isolate_start_pfn < low_pfn
1672          */
1673         cc->free_pfn = isolate_start_pfn;
1674
1675 splitmap:
1676         /* __isolate_free_page() does not map the pages */
1677         split_map_pages(freelist);
1678 }
1679
1680 /*
1681  * This is a migrate-callback that "allocates" freepages by taking pages
1682  * from the isolated freelists in the block we are migrating to.
1683  */
1684 static struct page *compaction_alloc(struct page *migratepage,
1685                                         unsigned long data)
1686 {
1687         struct compact_control *cc = (struct compact_control *)data;
1688         struct page *freepage;
1689
1690         if (list_empty(&cc->freepages)) {
1691                 isolate_freepages(cc);
1692
1693                 if (list_empty(&cc->freepages))
1694                         return NULL;
1695         }
1696
1697         freepage = list_entry(cc->freepages.next, struct page, lru);
1698         list_del(&freepage->lru);
1699         cc->nr_freepages--;
1700
1701         return freepage;
1702 }
1703
1704 /*
1705  * This is a migrate-callback that "frees" freepages back to the isolated
1706  * freelist.  All pages on the freelist are from the same zone, so there is no
1707  * special handling needed for NUMA.
1708  */
1709 static void compaction_free(struct page *page, unsigned long data)
1710 {
1711         struct compact_control *cc = (struct compact_control *)data;
1712
1713         list_add(&page->lru, &cc->freepages);
1714         cc->nr_freepages++;
1715 }
1716
1717 /* possible outcome of isolate_migratepages */
1718 typedef enum {
1719         ISOLATE_ABORT,          /* Abort compaction now */
1720         ISOLATE_NONE,           /* No pages isolated, continue scanning */
1721         ISOLATE_SUCCESS,        /* Pages isolated, migrate */
1722 } isolate_migrate_t;
1723
1724 /*
1725  * Allow userspace to control policy on scanning the unevictable LRU for
1726  * compactable pages.
1727  */
1728 int sysctl_compact_unevictable_allowed __read_mostly = CONFIG_COMPACT_UNEVICTABLE_DEFAULT;
1729
1730 static inline void
1731 update_fast_start_pfn(struct compact_control *cc, unsigned long pfn)
1732 {
1733         if (cc->fast_start_pfn == ULONG_MAX)
1734                 return;
1735
1736         if (!cc->fast_start_pfn)
1737                 cc->fast_start_pfn = pfn;
1738
1739         cc->fast_start_pfn = min(cc->fast_start_pfn, pfn);
1740 }
1741
1742 static inline unsigned long
1743 reinit_migrate_pfn(struct compact_control *cc)
1744 {
1745         if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX)
1746                 return cc->migrate_pfn;
1747
1748         cc->migrate_pfn = cc->fast_start_pfn;
1749         cc->fast_start_pfn = ULONG_MAX;
1750
1751         return cc->migrate_pfn;
1752 }
1753
1754 /*
1755  * Briefly search the free lists for a migration source that already has
1756  * some free pages to reduce the number of pages that need migration
1757  * before a pageblock is free.
1758  */
1759 static unsigned long fast_find_migrateblock(struct compact_control *cc)
1760 {
1761         unsigned int limit = freelist_scan_limit(cc);
1762         unsigned int nr_scanned = 0;
1763         unsigned long distance;
1764         unsigned long pfn = cc->migrate_pfn;
1765         unsigned long high_pfn;
1766         int order;
1767         bool found_block = false;
1768
1769         /* Skip hints are relied on to avoid repeats on the fast search */
1770         if (cc->ignore_skip_hint)
1771                 return pfn;
1772
1773         /*
1774          * If the migrate_pfn is not at the start of a zone or the start
1775          * of a pageblock then assume this is a continuation of a previous
1776          * scan restarted due to COMPACT_CLUSTER_MAX.
1777          */
1778         if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn))
1779                 return pfn;
1780
1781         /*
1782          * For smaller orders, just linearly scan as the number of pages
1783          * to migrate should be relatively small and does not necessarily
1784          * justify freeing up a large block for a small allocation.
1785          */
1786         if (cc->order <= PAGE_ALLOC_COSTLY_ORDER)
1787                 return pfn;
1788
1789         /*
1790          * Only allow kcompactd and direct requests for movable pages to
1791          * quickly clear out a MOVABLE pageblock for allocation. This
1792          * reduces the risk that a large movable pageblock is freed for
1793          * an unmovable/reclaimable small allocation.
1794          */
1795         if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE)
1796                 return pfn;
1797
1798         /*
1799          * When starting the migration scanner, pick any pageblock within the
1800          * first half of the search space. Otherwise try and pick a pageblock
1801          * within the first eighth to reduce the chances that a migration
1802          * target later becomes a source.
1803          */
1804         distance = (cc->free_pfn - cc->migrate_pfn) >> 1;
1805         if (cc->migrate_pfn != cc->zone->zone_start_pfn)
1806                 distance >>= 2;
1807         high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance);
1808
1809         for (order = cc->order - 1;
1810              order >= PAGE_ALLOC_COSTLY_ORDER && !found_block && nr_scanned < limit;
1811              order--) {
1812                 struct free_area *area = &cc->zone->free_area[order];
1813                 struct list_head *freelist;
1814                 unsigned long flags;
1815                 struct page *freepage;
1816
1817                 if (!area->nr_free)
1818                         continue;
1819
1820                 spin_lock_irqsave(&cc->zone->lock, flags);
1821                 freelist = &area->free_list[MIGRATE_MOVABLE];
1822                 list_for_each_entry(freepage, freelist, lru) {
1823                         unsigned long free_pfn;
1824
1825                         if (nr_scanned++ >= limit) {
1826                                 move_freelist_tail(freelist, freepage);
1827                                 break;
1828                         }
1829
1830                         free_pfn = page_to_pfn(freepage);
1831                         if (free_pfn < high_pfn) {
1832                                 /*
1833                                  * Avoid if skipped recently. Ideally it would
1834                                  * move to the tail but even safe iteration of
1835                                  * the list assumes an entry is deleted, not
1836                                  * reordered.
1837                                  */
1838                                 if (get_pageblock_skip(freepage))
1839                                         continue;
1840
1841                                 /* Reorder to so a future search skips recent pages */
1842                                 move_freelist_tail(freelist, freepage);
1843
1844                                 update_fast_start_pfn(cc, free_pfn);
1845                                 pfn = pageblock_start_pfn(free_pfn);
1846                                 if (pfn < cc->zone->zone_start_pfn)
1847                                         pfn = cc->zone->zone_start_pfn;
1848                                 cc->fast_search_fail = 0;
1849                                 found_block = true;
1850                                 break;
1851                         }
1852                 }
1853                 spin_unlock_irqrestore(&cc->zone->lock, flags);
1854         }
1855
1856         cc->total_migrate_scanned += nr_scanned;
1857
1858         /*
1859          * If fast scanning failed then use a cached entry for a page block
1860          * that had free pages as the basis for starting a linear scan.
1861          */
1862         if (!found_block) {
1863                 cc->fast_search_fail++;
1864                 pfn = reinit_migrate_pfn(cc);
1865         }
1866         return pfn;
1867 }
1868
1869 /*
1870  * Isolate all pages that can be migrated from the first suitable block,
1871  * starting at the block pointed to by the migrate scanner pfn within
1872  * compact_control.
1873  */
1874 static isolate_migrate_t isolate_migratepages(struct compact_control *cc)
1875 {
1876         unsigned long block_start_pfn;
1877         unsigned long block_end_pfn;
1878         unsigned long low_pfn;
1879         struct page *page;
1880         const isolate_mode_t isolate_mode =
1881                 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1882                 (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1883         bool fast_find_block;
1884
1885         /*
1886          * Start at where we last stopped, or beginning of the zone as
1887          * initialized by compact_zone(). The first failure will use
1888          * the lowest PFN as the starting point for linear scanning.
1889          */
1890         low_pfn = fast_find_migrateblock(cc);
1891         block_start_pfn = pageblock_start_pfn(low_pfn);
1892         if (block_start_pfn < cc->zone->zone_start_pfn)
1893                 block_start_pfn = cc->zone->zone_start_pfn;
1894
1895         /*
1896          * fast_find_migrateblock marks a pageblock skipped so to avoid
1897          * the isolation_suitable check below, check whether the fast
1898          * search was successful.
1899          */
1900         fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail;
1901
1902         /* Only scan within a pageblock boundary */
1903         block_end_pfn = pageblock_end_pfn(low_pfn);
1904
1905         /*
1906          * Iterate over whole pageblocks until we find the first suitable.
1907          * Do not cross the free scanner.
1908          */
1909         for (; block_end_pfn <= cc->free_pfn;
1910                         fast_find_block = false,
1911                         cc->migrate_pfn = low_pfn = block_end_pfn,
1912                         block_start_pfn = block_end_pfn,
1913                         block_end_pfn += pageblock_nr_pages) {
1914
1915                 /*
1916                  * This can potentially iterate a massively long zone with
1917                  * many pageblocks unsuitable, so periodically check if we
1918                  * need to schedule.
1919                  */
1920                 if (!(low_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages)))
1921                         cond_resched();
1922
1923                 page = pageblock_pfn_to_page(block_start_pfn,
1924                                                 block_end_pfn, cc->zone);
1925                 if (!page)
1926                         continue;
1927
1928                 /*
1929                  * If isolation recently failed, do not retry. Only check the
1930                  * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock
1931                  * to be visited multiple times. Assume skip was checked
1932                  * before making it "skip" so other compaction instances do
1933                  * not scan the same block.
1934                  */
1935                 if (pageblock_aligned(low_pfn) &&
1936                     !fast_find_block && !isolation_suitable(cc, page))
1937                         continue;
1938
1939                 /*
1940                  * For async direct compaction, only scan the pageblocks of the
1941                  * same migratetype without huge pages. Async direct compaction
1942                  * is optimistic to see if the minimum amount of work satisfies
1943                  * the allocation. The cached PFN is updated as it's possible
1944                  * that all remaining blocks between source and target are
1945                  * unsuitable and the compaction scanners fail to meet.
1946                  */
1947                 if (!suitable_migration_source(cc, page)) {
1948                         update_cached_migrate(cc, block_end_pfn);
1949                         continue;
1950                 }
1951
1952                 /* Perform the isolation */
1953                 if (isolate_migratepages_block(cc, low_pfn, block_end_pfn,
1954                                                 isolate_mode))
1955                         return ISOLATE_ABORT;
1956
1957                 /*
1958                  * Either we isolated something and proceed with migration. Or
1959                  * we failed and compact_zone should decide if we should
1960                  * continue or not.
1961                  */
1962                 break;
1963         }
1964
1965         return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1966 }
1967
1968 /*
1969  * order == -1 is expected when compacting via
1970  * /proc/sys/vm/compact_memory
1971  */
1972 static inline bool is_via_compact_memory(int order)
1973 {
1974         return order == -1;
1975 }
1976
1977 /*
1978  * Determine whether kswapd is (or recently was!) running on this node.
1979  *
1980  * pgdat_kswapd_lock() pins pgdat->kswapd, so a concurrent kswapd_stop() can't
1981  * zero it.
1982  */
1983 static bool kswapd_is_running(pg_data_t *pgdat)
1984 {
1985         bool running;
1986
1987         pgdat_kswapd_lock(pgdat);
1988         running = pgdat->kswapd && task_is_running(pgdat->kswapd);
1989         pgdat_kswapd_unlock(pgdat);
1990
1991         return running;
1992 }
1993
1994 /*
1995  * A zone's fragmentation score is the external fragmentation wrt to the
1996  * COMPACTION_HPAGE_ORDER. It returns a value in the range [0, 100].
1997  */
1998 static unsigned int fragmentation_score_zone(struct zone *zone)
1999 {
2000         return extfrag_for_order(zone, COMPACTION_HPAGE_ORDER);
2001 }
2002
2003 /*
2004  * A weighted zone's fragmentation score is the external fragmentation
2005  * wrt to the COMPACTION_HPAGE_ORDER scaled by the zone's size. It
2006  * returns a value in the range [0, 100].
2007  *
2008  * The scaling factor ensures that proactive compaction focuses on larger
2009  * zones like ZONE_NORMAL, rather than smaller, specialized zones like
2010  * ZONE_DMA32. For smaller zones, the score value remains close to zero,
2011  * and thus never exceeds the high threshold for proactive compaction.
2012  */
2013 static unsigned int fragmentation_score_zone_weighted(struct zone *zone)
2014 {
2015         unsigned long score;
2016
2017         score = zone->present_pages * fragmentation_score_zone(zone);
2018         return div64_ul(score, zone->zone_pgdat->node_present_pages + 1);
2019 }
2020
2021 /*
2022  * The per-node proactive (background) compaction process is started by its
2023  * corresponding kcompactd thread when the node's fragmentation score
2024  * exceeds the high threshold. The compaction process remains active till
2025  * the node's score falls below the low threshold, or one of the back-off
2026  * conditions is met.
2027  */
2028 static unsigned int fragmentation_score_node(pg_data_t *pgdat)
2029 {
2030         unsigned int score = 0;
2031         int zoneid;
2032
2033         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2034                 struct zone *zone;
2035
2036                 zone = &pgdat->node_zones[zoneid];
2037                 score += fragmentation_score_zone_weighted(zone);
2038         }
2039
2040         return score;
2041 }
2042
2043 static unsigned int fragmentation_score_wmark(pg_data_t *pgdat, bool low)
2044 {
2045         unsigned int wmark_low;
2046
2047         /*
2048          * Cap the low watermark to avoid excessive compaction
2049          * activity in case a user sets the proactiveness tunable
2050          * close to 100 (maximum).
2051          */
2052         wmark_low = max(100U - sysctl_compaction_proactiveness, 5U);
2053         return low ? wmark_low : min(wmark_low + 10, 100U);
2054 }
2055
2056 static bool should_proactive_compact_node(pg_data_t *pgdat)
2057 {
2058         int wmark_high;
2059
2060         if (!sysctl_compaction_proactiveness || kswapd_is_running(pgdat))
2061                 return false;
2062
2063         wmark_high = fragmentation_score_wmark(pgdat, false);
2064         return fragmentation_score_node(pgdat) > wmark_high;
2065 }
2066
2067 static enum compact_result __compact_finished(struct compact_control *cc)
2068 {
2069         unsigned int order;
2070         const int migratetype = cc->migratetype;
2071         int ret;
2072
2073         /* Compaction run completes if the migrate and free scanner meet */
2074         if (compact_scanners_met(cc)) {
2075                 /* Let the next compaction start anew. */
2076                 reset_cached_positions(cc->zone);
2077
2078                 /*
2079                  * Mark that the PG_migrate_skip information should be cleared
2080                  * by kswapd when it goes to sleep. kcompactd does not set the
2081                  * flag itself as the decision to be clear should be directly
2082                  * based on an allocation request.
2083                  */
2084                 if (cc->direct_compaction)
2085                         cc->zone->compact_blockskip_flush = true;
2086
2087                 if (cc->whole_zone)
2088                         return COMPACT_COMPLETE;
2089                 else
2090                         return COMPACT_PARTIAL_SKIPPED;
2091         }
2092
2093         if (cc->proactive_compaction) {
2094                 int score, wmark_low;
2095                 pg_data_t *pgdat;
2096
2097                 pgdat = cc->zone->zone_pgdat;
2098                 if (kswapd_is_running(pgdat))
2099                         return COMPACT_PARTIAL_SKIPPED;
2100
2101                 score = fragmentation_score_zone(cc->zone);
2102                 wmark_low = fragmentation_score_wmark(pgdat, true);
2103
2104                 if (score > wmark_low)
2105                         ret = COMPACT_CONTINUE;
2106                 else
2107                         ret = COMPACT_SUCCESS;
2108
2109                 goto out;
2110         }
2111
2112         if (is_via_compact_memory(cc->order))
2113                 return COMPACT_CONTINUE;
2114
2115         /*
2116          * Always finish scanning a pageblock to reduce the possibility of
2117          * fallbacks in the future. This is particularly important when
2118          * migration source is unmovable/reclaimable but it's not worth
2119          * special casing.
2120          */
2121         if (!pageblock_aligned(cc->migrate_pfn))
2122                 return COMPACT_CONTINUE;
2123
2124         /* Direct compactor: Is a suitable page free? */
2125         ret = COMPACT_NO_SUITABLE_PAGE;
2126         for (order = cc->order; order < MAX_ORDER; order++) {
2127                 struct free_area *area = &cc->zone->free_area[order];
2128                 bool can_steal;
2129
2130                 /* Job done if page is free of the right migratetype */
2131                 if (!free_area_empty(area, migratetype))
2132                         return COMPACT_SUCCESS;
2133
2134 #ifdef CONFIG_CMA
2135                 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
2136                 if (migratetype == MIGRATE_MOVABLE &&
2137                         !free_area_empty(area, MIGRATE_CMA))
2138                         return COMPACT_SUCCESS;
2139 #endif
2140                 /*
2141                  * Job done if allocation would steal freepages from
2142                  * other migratetype buddy lists.
2143                  */
2144                 if (find_suitable_fallback(area, order, migratetype,
2145                                                 true, &can_steal) != -1)
2146                         /*
2147                          * Movable pages are OK in any pageblock. If we are
2148                          * stealing for a non-movable allocation, make sure
2149                          * we finish compacting the current pageblock first
2150                          * (which is assured by the above migrate_pfn align
2151                          * check) so it is as free as possible and we won't
2152                          * have to steal another one soon.
2153                          */
2154                         return COMPACT_SUCCESS;
2155         }
2156
2157 out:
2158         if (cc->contended || fatal_signal_pending(current))
2159                 ret = COMPACT_CONTENDED;
2160
2161         return ret;
2162 }
2163
2164 static enum compact_result compact_finished(struct compact_control *cc)
2165 {
2166         int ret;
2167
2168         ret = __compact_finished(cc);
2169         trace_mm_compaction_finished(cc->zone, cc->order, ret);
2170         if (ret == COMPACT_NO_SUITABLE_PAGE)
2171                 ret = COMPACT_CONTINUE;
2172
2173         return ret;
2174 }
2175
2176 static enum compact_result __compaction_suitable(struct zone *zone, int order,
2177                                         unsigned int alloc_flags,
2178                                         int highest_zoneidx,
2179                                         unsigned long wmark_target)
2180 {
2181         unsigned long watermark;
2182
2183         if (is_via_compact_memory(order))
2184                 return COMPACT_CONTINUE;
2185
2186         watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
2187         /*
2188          * If watermarks for high-order allocation are already met, there
2189          * should be no need for compaction at all.
2190          */
2191         if (zone_watermark_ok(zone, order, watermark, highest_zoneidx,
2192                                                                 alloc_flags))
2193                 return COMPACT_SUCCESS;
2194
2195         /*
2196          * Watermarks for order-0 must be met for compaction to be able to
2197          * isolate free pages for migration targets. This means that the
2198          * watermark and alloc_flags have to match, or be more pessimistic than
2199          * the check in __isolate_free_page(). We don't use the direct
2200          * compactor's alloc_flags, as they are not relevant for freepage
2201          * isolation. We however do use the direct compactor's highest_zoneidx
2202          * to skip over zones where lowmem reserves would prevent allocation
2203          * even if compaction succeeds.
2204          * For costly orders, we require low watermark instead of min for
2205          * compaction to proceed to increase its chances.
2206          * ALLOC_CMA is used, as pages in CMA pageblocks are considered
2207          * suitable migration targets
2208          */
2209         watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
2210                                 low_wmark_pages(zone) : min_wmark_pages(zone);
2211         watermark += compact_gap(order);
2212         if (!__zone_watermark_ok(zone, 0, watermark, highest_zoneidx,
2213                                                 ALLOC_CMA, wmark_target))
2214                 return COMPACT_SKIPPED;
2215
2216         return COMPACT_CONTINUE;
2217 }
2218
2219 /*
2220  * compaction_suitable: Is this suitable to run compaction on this zone now?
2221  * Returns
2222  *   COMPACT_SKIPPED  - If there are too few free pages for compaction
2223  *   COMPACT_SUCCESS  - If the allocation would succeed without compaction
2224  *   COMPACT_CONTINUE - If compaction should run now
2225  */
2226 enum compact_result compaction_suitable(struct zone *zone, int order,
2227                                         unsigned int alloc_flags,
2228                                         int highest_zoneidx)
2229 {
2230         enum compact_result ret;
2231         int fragindex;
2232
2233         ret = __compaction_suitable(zone, order, alloc_flags, highest_zoneidx,
2234                                     zone_page_state(zone, NR_FREE_PAGES));
2235         /*
2236          * fragmentation index determines if allocation failures are due to
2237          * low memory or external fragmentation
2238          *
2239          * index of -1000 would imply allocations might succeed depending on
2240          * watermarks, but we already failed the high-order watermark check
2241          * index towards 0 implies failure is due to lack of memory
2242          * index towards 1000 implies failure is due to fragmentation
2243          *
2244          * Only compact if a failure would be due to fragmentation. Also
2245          * ignore fragindex for non-costly orders where the alternative to
2246          * a successful reclaim/compaction is OOM. Fragindex and the
2247          * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
2248          * excessive compaction for costly orders, but it should not be at the
2249          * expense of system stability.
2250          */
2251         if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) {
2252                 fragindex = fragmentation_index(zone, order);
2253                 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
2254                         ret = COMPACT_NOT_SUITABLE_ZONE;
2255         }
2256
2257         trace_mm_compaction_suitable(zone, order, ret);
2258         if (ret == COMPACT_NOT_SUITABLE_ZONE)
2259                 ret = COMPACT_SKIPPED;
2260
2261         return ret;
2262 }
2263
2264 bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
2265                 int alloc_flags)
2266 {
2267         struct zone *zone;
2268         struct zoneref *z;
2269
2270         /*
2271          * Make sure at least one zone would pass __compaction_suitable if we continue
2272          * retrying the reclaim.
2273          */
2274         for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2275                                 ac->highest_zoneidx, ac->nodemask) {
2276                 unsigned long available;
2277                 enum compact_result compact_result;
2278
2279                 /*
2280                  * Do not consider all the reclaimable memory because we do not
2281                  * want to trash just for a single high order allocation which
2282                  * is even not guaranteed to appear even if __compaction_suitable
2283                  * is happy about the watermark check.
2284                  */
2285                 available = zone_reclaimable_pages(zone) / order;
2286                 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
2287                 compact_result = __compaction_suitable(zone, order, alloc_flags,
2288                                 ac->highest_zoneidx, available);
2289                 if (compact_result == COMPACT_CONTINUE)
2290                         return true;
2291         }
2292
2293         return false;
2294 }
2295
2296 static enum compact_result
2297 compact_zone(struct compact_control *cc, struct capture_control *capc)
2298 {
2299         enum compact_result ret;
2300         unsigned long start_pfn = cc->zone->zone_start_pfn;
2301         unsigned long end_pfn = zone_end_pfn(cc->zone);
2302         unsigned long last_migrated_pfn;
2303         const bool sync = cc->mode != MIGRATE_ASYNC;
2304         bool update_cached;
2305         unsigned int nr_succeeded = 0;
2306
2307         /*
2308          * These counters track activities during zone compaction.  Initialize
2309          * them before compacting a new zone.
2310          */
2311         cc->total_migrate_scanned = 0;
2312         cc->total_free_scanned = 0;
2313         cc->nr_migratepages = 0;
2314         cc->nr_freepages = 0;
2315         INIT_LIST_HEAD(&cc->freepages);
2316         INIT_LIST_HEAD(&cc->migratepages);
2317
2318         cc->migratetype = gfp_migratetype(cc->gfp_mask);
2319         ret = compaction_suitable(cc->zone, cc->order, cc->alloc_flags,
2320                                                         cc->highest_zoneidx);
2321         /* Compaction is likely to fail */
2322         if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED)
2323                 return ret;
2324
2325         /* huh, compaction_suitable is returning something unexpected */
2326         VM_BUG_ON(ret != COMPACT_CONTINUE);
2327
2328         /*
2329          * Clear pageblock skip if there were failures recently and compaction
2330          * is about to be retried after being deferred.
2331          */
2332         if (compaction_restarting(cc->zone, cc->order))
2333                 __reset_isolation_suitable(cc->zone);
2334
2335         /*
2336          * Setup to move all movable pages to the end of the zone. Used cached
2337          * information on where the scanners should start (unless we explicitly
2338          * want to compact the whole zone), but check that it is initialised
2339          * by ensuring the values are within zone boundaries.
2340          */
2341         cc->fast_start_pfn = 0;
2342         if (cc->whole_zone) {
2343                 cc->migrate_pfn = start_pfn;
2344                 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2345         } else {
2346                 cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync];
2347                 cc->free_pfn = cc->zone->compact_cached_free_pfn;
2348                 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
2349                         cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2350                         cc->zone->compact_cached_free_pfn = cc->free_pfn;
2351                 }
2352                 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
2353                         cc->migrate_pfn = start_pfn;
2354                         cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
2355                         cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
2356                 }
2357
2358                 if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn)
2359                         cc->whole_zone = true;
2360         }
2361
2362         last_migrated_pfn = 0;
2363
2364         /*
2365          * Migrate has separate cached PFNs for ASYNC and SYNC* migration on
2366          * the basis that some migrations will fail in ASYNC mode. However,
2367          * if the cached PFNs match and pageblocks are skipped due to having
2368          * no isolation candidates, then the sync state does not matter.
2369          * Until a pageblock with isolation candidates is found, keep the
2370          * cached PFNs in sync to avoid revisiting the same blocks.
2371          */
2372         update_cached = !sync &&
2373                 cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1];
2374
2375         trace_mm_compaction_begin(cc, start_pfn, end_pfn, sync);
2376
2377         /* lru_add_drain_all could be expensive with involving other CPUs */
2378         lru_add_drain();
2379
2380         while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) {
2381                 int err;
2382                 unsigned long iteration_start_pfn = cc->migrate_pfn;
2383
2384                 /*
2385                  * Avoid multiple rescans which can happen if a page cannot be
2386                  * isolated (dirty/writeback in async mode) or if the migrated
2387                  * pages are being allocated before the pageblock is cleared.
2388                  * The first rescan will capture the entire pageblock for
2389                  * migration. If it fails, it'll be marked skip and scanning
2390                  * will proceed as normal.
2391                  */
2392                 cc->rescan = false;
2393                 if (pageblock_start_pfn(last_migrated_pfn) ==
2394                     pageblock_start_pfn(iteration_start_pfn)) {
2395                         cc->rescan = true;
2396                 }
2397
2398                 switch (isolate_migratepages(cc)) {
2399                 case ISOLATE_ABORT:
2400                         ret = COMPACT_CONTENDED;
2401                         putback_movable_pages(&cc->migratepages);
2402                         cc->nr_migratepages = 0;
2403                         goto out;
2404                 case ISOLATE_NONE:
2405                         if (update_cached) {
2406                                 cc->zone->compact_cached_migrate_pfn[1] =
2407                                         cc->zone->compact_cached_migrate_pfn[0];
2408                         }
2409
2410                         /*
2411                          * We haven't isolated and migrated anything, but
2412                          * there might still be unflushed migrations from
2413                          * previous cc->order aligned block.
2414                          */
2415                         goto check_drain;
2416                 case ISOLATE_SUCCESS:
2417                         update_cached = false;
2418                         last_migrated_pfn = iteration_start_pfn;
2419                 }
2420
2421                 err = migrate_pages(&cc->migratepages, compaction_alloc,
2422                                 compaction_free, (unsigned long)cc, cc->mode,
2423                                 MR_COMPACTION, &nr_succeeded);
2424
2425                 trace_mm_compaction_migratepages(cc, nr_succeeded);
2426
2427                 /* All pages were either migrated or will be released */
2428                 cc->nr_migratepages = 0;
2429                 if (err) {
2430                         putback_movable_pages(&cc->migratepages);
2431                         /*
2432                          * migrate_pages() may return -ENOMEM when scanners meet
2433                          * and we want compact_finished() to detect it
2434                          */
2435                         if (err == -ENOMEM && !compact_scanners_met(cc)) {
2436                                 ret = COMPACT_CONTENDED;
2437                                 goto out;
2438                         }
2439                         /*
2440                          * We failed to migrate at least one page in the current
2441                          * order-aligned block, so skip the rest of it.
2442                          */
2443                         if (cc->direct_compaction &&
2444                                                 (cc->mode == MIGRATE_ASYNC)) {
2445                                 cc->migrate_pfn = block_end_pfn(
2446                                                 cc->migrate_pfn - 1, cc->order);
2447                                 /* Draining pcplists is useless in this case */
2448                                 last_migrated_pfn = 0;
2449                         }
2450                 }
2451
2452 check_drain:
2453                 /*
2454                  * Has the migration scanner moved away from the previous
2455                  * cc->order aligned block where we migrated from? If yes,
2456                  * flush the pages that were freed, so that they can merge and
2457                  * compact_finished() can detect immediately if allocation
2458                  * would succeed.
2459                  */
2460                 if (cc->order > 0 && last_migrated_pfn) {
2461                         unsigned long current_block_start =
2462                                 block_start_pfn(cc->migrate_pfn, cc->order);
2463
2464                         if (last_migrated_pfn < current_block_start) {
2465                                 lru_add_drain_cpu_zone(cc->zone);
2466                                 /* No more flushing until we migrate again */
2467                                 last_migrated_pfn = 0;
2468                         }
2469                 }
2470
2471                 /* Stop if a page has been captured */
2472                 if (capc && capc->page) {
2473                         ret = COMPACT_SUCCESS;
2474                         break;
2475                 }
2476         }
2477
2478 out:
2479         /*
2480          * Release free pages and update where the free scanner should restart,
2481          * so we don't leave any returned pages behind in the next attempt.
2482          */
2483         if (cc->nr_freepages > 0) {
2484                 unsigned long free_pfn = release_freepages(&cc->freepages);
2485
2486                 cc->nr_freepages = 0;
2487                 VM_BUG_ON(free_pfn == 0);
2488                 /* The cached pfn is always the first in a pageblock */
2489                 free_pfn = pageblock_start_pfn(free_pfn);
2490                 /*
2491                  * Only go back, not forward. The cached pfn might have been
2492                  * already reset to zone end in compact_finished()
2493                  */
2494                 if (free_pfn > cc->zone->compact_cached_free_pfn)
2495                         cc->zone->compact_cached_free_pfn = free_pfn;
2496         }
2497
2498         count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
2499         count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
2500
2501         trace_mm_compaction_end(cc, start_pfn, end_pfn, sync, ret);
2502
2503         return ret;
2504 }
2505
2506 static enum compact_result compact_zone_order(struct zone *zone, int order,
2507                 gfp_t gfp_mask, enum compact_priority prio,
2508                 unsigned int alloc_flags, int highest_zoneidx,
2509                 struct page **capture)
2510 {
2511         enum compact_result ret;
2512         struct compact_control cc = {
2513                 .order = order,
2514                 .search_order = order,
2515                 .gfp_mask = gfp_mask,
2516                 .zone = zone,
2517                 .mode = (prio == COMPACT_PRIO_ASYNC) ?
2518                                         MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT,
2519                 .alloc_flags = alloc_flags,
2520                 .highest_zoneidx = highest_zoneidx,
2521                 .direct_compaction = true,
2522                 .whole_zone = (prio == MIN_COMPACT_PRIORITY),
2523                 .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
2524                 .ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
2525         };
2526         struct capture_control capc = {
2527                 .cc = &cc,
2528                 .page = NULL,
2529         };
2530
2531         /*
2532          * Make sure the structs are really initialized before we expose the
2533          * capture control, in case we are interrupted and the interrupt handler
2534          * frees a page.
2535          */
2536         barrier();
2537         WRITE_ONCE(current->capture_control, &capc);
2538
2539         ret = compact_zone(&cc, &capc);
2540
2541         VM_BUG_ON(!list_empty(&cc.freepages));
2542         VM_BUG_ON(!list_empty(&cc.migratepages));
2543
2544         /*
2545          * Make sure we hide capture control first before we read the captured
2546          * page pointer, otherwise an interrupt could free and capture a page
2547          * and we would leak it.
2548          */
2549         WRITE_ONCE(current->capture_control, NULL);
2550         *capture = READ_ONCE(capc.page);
2551         /*
2552          * Technically, it is also possible that compaction is skipped but
2553          * the page is still captured out of luck(IRQ came and freed the page).
2554          * Returning COMPACT_SUCCESS in such cases helps in properly accounting
2555          * the COMPACT[STALL|FAIL] when compaction is skipped.
2556          */
2557         if (*capture)
2558                 ret = COMPACT_SUCCESS;
2559
2560         return ret;
2561 }
2562
2563 int sysctl_extfrag_threshold = 500;
2564
2565 /**
2566  * try_to_compact_pages - Direct compact to satisfy a high-order allocation
2567  * @gfp_mask: The GFP mask of the current allocation
2568  * @order: The order of the current allocation
2569  * @alloc_flags: The allocation flags of the current allocation
2570  * @ac: The context of current allocation
2571  * @prio: Determines how hard direct compaction should try to succeed
2572  * @capture: Pointer to free page created by compaction will be stored here
2573  *
2574  * This is the main entry point for direct page compaction.
2575  */
2576 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
2577                 unsigned int alloc_flags, const struct alloc_context *ac,
2578                 enum compact_priority prio, struct page **capture)
2579 {
2580         int may_perform_io = (__force int)(gfp_mask & __GFP_IO);
2581         struct zoneref *z;
2582         struct zone *zone;
2583         enum compact_result rc = COMPACT_SKIPPED;
2584
2585         /*
2586          * Check if the GFP flags allow compaction - GFP_NOIO is really
2587          * tricky context because the migration might require IO
2588          */
2589         if (!may_perform_io)
2590                 return COMPACT_SKIPPED;
2591
2592         trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
2593
2594         /* Compact each zone in the list */
2595         for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2596                                         ac->highest_zoneidx, ac->nodemask) {
2597                 enum compact_result status;
2598
2599                 if (prio > MIN_COMPACT_PRIORITY
2600                                         && compaction_deferred(zone, order)) {
2601                         rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
2602                         continue;
2603                 }
2604
2605                 status = compact_zone_order(zone, order, gfp_mask, prio,
2606                                 alloc_flags, ac->highest_zoneidx, capture);
2607                 rc = max(status, rc);
2608
2609                 /* The allocation should succeed, stop compacting */
2610                 if (status == COMPACT_SUCCESS) {
2611                         /*
2612                          * We think the allocation will succeed in this zone,
2613                          * but it is not certain, hence the false. The caller
2614                          * will repeat this with true if allocation indeed
2615                          * succeeds in this zone.
2616                          */
2617                         compaction_defer_reset(zone, order, false);
2618
2619                         break;
2620                 }
2621
2622                 if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
2623                                         status == COMPACT_PARTIAL_SKIPPED))
2624                         /*
2625                          * We think that allocation won't succeed in this zone
2626                          * so we defer compaction there. If it ends up
2627                          * succeeding after all, it will be reset.
2628                          */
2629                         defer_compaction(zone, order);
2630
2631                 /*
2632                  * We might have stopped compacting due to need_resched() in
2633                  * async compaction, or due to a fatal signal detected. In that
2634                  * case do not try further zones
2635                  */
2636                 if ((prio == COMPACT_PRIO_ASYNC && need_resched())
2637                                         || fatal_signal_pending(current))
2638                         break;
2639         }
2640
2641         return rc;
2642 }
2643
2644 /*
2645  * Compact all zones within a node till each zone's fragmentation score
2646  * reaches within proactive compaction thresholds (as determined by the
2647  * proactiveness tunable).
2648  *
2649  * It is possible that the function returns before reaching score targets
2650  * due to various back-off conditions, such as, contention on per-node or
2651  * per-zone locks.
2652  */
2653 static void proactive_compact_node(pg_data_t *pgdat)
2654 {
2655         int zoneid;
2656         struct zone *zone;
2657         struct compact_control cc = {
2658                 .order = -1,
2659                 .mode = MIGRATE_SYNC_LIGHT,
2660                 .ignore_skip_hint = true,
2661                 .whole_zone = true,
2662                 .gfp_mask = GFP_KERNEL,
2663                 .proactive_compaction = true,
2664         };
2665
2666         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2667                 zone = &pgdat->node_zones[zoneid];
2668                 if (!populated_zone(zone))
2669                         continue;
2670
2671                 cc.zone = zone;
2672
2673                 compact_zone(&cc, NULL);
2674
2675                 VM_BUG_ON(!list_empty(&cc.freepages));
2676                 VM_BUG_ON(!list_empty(&cc.migratepages));
2677         }
2678 }
2679
2680 /* Compact all zones within a node */
2681 static void compact_node(int nid)
2682 {
2683         pg_data_t *pgdat = NODE_DATA(nid);
2684         int zoneid;
2685         struct zone *zone;
2686         struct compact_control cc = {
2687                 .order = -1,
2688                 .mode = MIGRATE_SYNC,
2689                 .ignore_skip_hint = true,
2690                 .whole_zone = true,
2691                 .gfp_mask = GFP_KERNEL,
2692         };
2693
2694
2695         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2696
2697                 zone = &pgdat->node_zones[zoneid];
2698                 if (!populated_zone(zone))
2699                         continue;
2700
2701                 cc.zone = zone;
2702
2703                 compact_zone(&cc, NULL);
2704
2705                 VM_BUG_ON(!list_empty(&cc.freepages));
2706                 VM_BUG_ON(!list_empty(&cc.migratepages));
2707         }
2708 }
2709
2710 /* Compact all nodes in the system */
2711 static void compact_nodes(void)
2712 {
2713         int nid;
2714
2715         /* Flush pending updates to the LRU lists */
2716         lru_add_drain_all();
2717
2718         for_each_online_node(nid)
2719                 compact_node(nid);
2720 }
2721
2722 /*
2723  * Tunable for proactive compaction. It determines how
2724  * aggressively the kernel should compact memory in the
2725  * background. It takes values in the range [0, 100].
2726  */
2727 unsigned int __read_mostly sysctl_compaction_proactiveness = 20;
2728
2729 int compaction_proactiveness_sysctl_handler(struct ctl_table *table, int write,
2730                 void *buffer, size_t *length, loff_t *ppos)
2731 {
2732         int rc, nid;
2733
2734         rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
2735         if (rc)
2736                 return rc;
2737
2738         if (write && sysctl_compaction_proactiveness) {
2739                 for_each_online_node(nid) {
2740                         pg_data_t *pgdat = NODE_DATA(nid);
2741
2742                         if (pgdat->proactive_compact_trigger)
2743                                 continue;
2744
2745                         pgdat->proactive_compact_trigger = true;
2746                         wake_up_interruptible(&pgdat->kcompactd_wait);
2747                 }
2748         }
2749
2750         return 0;
2751 }
2752
2753 /*
2754  * This is the entry point for compacting all nodes via
2755  * /proc/sys/vm/compact_memory
2756  */
2757 int sysctl_compaction_handler(struct ctl_table *table, int write,
2758                         void *buffer, size_t *length, loff_t *ppos)
2759 {
2760         if (write)
2761                 compact_nodes();
2762
2763         return 0;
2764 }
2765
2766 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
2767 static ssize_t compact_store(struct device *dev,
2768                              struct device_attribute *attr,
2769                              const char *buf, size_t count)
2770 {
2771         int nid = dev->id;
2772
2773         if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
2774                 /* Flush pending updates to the LRU lists */
2775                 lru_add_drain_all();
2776
2777                 compact_node(nid);
2778         }
2779
2780         return count;
2781 }
2782 static DEVICE_ATTR_WO(compact);
2783
2784 int compaction_register_node(struct node *node)
2785 {
2786         return device_create_file(&node->dev, &dev_attr_compact);
2787 }
2788
2789 void compaction_unregister_node(struct node *node)
2790 {
2791         return device_remove_file(&node->dev, &dev_attr_compact);
2792 }
2793 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
2794
2795 static inline bool kcompactd_work_requested(pg_data_t *pgdat)
2796 {
2797         return pgdat->kcompactd_max_order > 0 || kthread_should_stop() ||
2798                 pgdat->proactive_compact_trigger;
2799 }
2800
2801 static bool kcompactd_node_suitable(pg_data_t *pgdat)
2802 {
2803         int zoneid;
2804         struct zone *zone;
2805         enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx;
2806
2807         for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) {
2808                 zone = &pgdat->node_zones[zoneid];
2809
2810                 if (!populated_zone(zone))
2811                         continue;
2812
2813                 if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
2814                                         highest_zoneidx) == COMPACT_CONTINUE)
2815                         return true;
2816         }
2817
2818         return false;
2819 }
2820
2821 static void kcompactd_do_work(pg_data_t *pgdat)
2822 {
2823         /*
2824          * With no special task, compact all zones so that a page of requested
2825          * order is allocatable.
2826          */
2827         int zoneid;
2828         struct zone *zone;
2829         struct compact_control cc = {
2830                 .order = pgdat->kcompactd_max_order,
2831                 .search_order = pgdat->kcompactd_max_order,
2832                 .highest_zoneidx = pgdat->kcompactd_highest_zoneidx,
2833                 .mode = MIGRATE_SYNC_LIGHT,
2834                 .ignore_skip_hint = false,
2835                 .gfp_mask = GFP_KERNEL,
2836         };
2837         trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
2838                                                         cc.highest_zoneidx);
2839         count_compact_event(KCOMPACTD_WAKE);
2840
2841         for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) {
2842                 int status;
2843
2844                 zone = &pgdat->node_zones[zoneid];
2845                 if (!populated_zone(zone))
2846                         continue;
2847
2848                 if (compaction_deferred(zone, cc.order))
2849                         continue;
2850
2851                 if (compaction_suitable(zone, cc.order, 0, zoneid) !=
2852                                                         COMPACT_CONTINUE)
2853                         continue;
2854
2855                 if (kthread_should_stop())
2856                         return;
2857
2858                 cc.zone = zone;
2859                 status = compact_zone(&cc, NULL);
2860
2861                 if (status == COMPACT_SUCCESS) {
2862                         compaction_defer_reset(zone, cc.order, false);
2863                 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
2864                         /*
2865                          * Buddy pages may become stranded on pcps that could
2866                          * otherwise coalesce on the zone's free area for
2867                          * order >= cc.order.  This is ratelimited by the
2868                          * upcoming deferral.
2869                          */
2870                         drain_all_pages(zone);
2871
2872                         /*
2873                          * We use sync migration mode here, so we defer like
2874                          * sync direct compaction does.
2875                          */
2876                         defer_compaction(zone, cc.order);
2877                 }
2878
2879                 count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2880                                      cc.total_migrate_scanned);
2881                 count_compact_events(KCOMPACTD_FREE_SCANNED,
2882                                      cc.total_free_scanned);
2883
2884                 VM_BUG_ON(!list_empty(&cc.freepages));
2885                 VM_BUG_ON(!list_empty(&cc.migratepages));
2886         }
2887
2888         /*
2889          * Regardless of success, we are done until woken up next. But remember
2890          * the requested order/highest_zoneidx in case it was higher/tighter
2891          * than our current ones
2892          */
2893         if (pgdat->kcompactd_max_order <= cc.order)
2894                 pgdat->kcompactd_max_order = 0;
2895         if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx)
2896                 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
2897 }
2898
2899 void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx)
2900 {
2901         if (!order)
2902                 return;
2903
2904         if (pgdat->kcompactd_max_order < order)
2905                 pgdat->kcompactd_max_order = order;
2906
2907         if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx)
2908                 pgdat->kcompactd_highest_zoneidx = highest_zoneidx;
2909
2910         /*
2911          * Pairs with implicit barrier in wait_event_freezable()
2912          * such that wakeups are not missed.
2913          */
2914         if (!wq_has_sleeper(&pgdat->kcompactd_wait))
2915                 return;
2916
2917         if (!kcompactd_node_suitable(pgdat))
2918                 return;
2919
2920         trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
2921                                                         highest_zoneidx);
2922         wake_up_interruptible(&pgdat->kcompactd_wait);
2923 }
2924
2925 /*
2926  * The background compaction daemon, started as a kernel thread
2927  * from the init process.
2928  */
2929 static int kcompactd(void *p)
2930 {
2931         pg_data_t *pgdat = (pg_data_t *)p;
2932         struct task_struct *tsk = current;
2933         long default_timeout = msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC);
2934         long timeout = default_timeout;
2935
2936         const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2937
2938         if (!cpumask_empty(cpumask))
2939                 set_cpus_allowed_ptr(tsk, cpumask);
2940
2941         set_freezable();
2942
2943         pgdat->kcompactd_max_order = 0;
2944         pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
2945
2946         while (!kthread_should_stop()) {
2947                 unsigned long pflags;
2948
2949                 /*
2950                  * Avoid the unnecessary wakeup for proactive compaction
2951                  * when it is disabled.
2952                  */
2953                 if (!sysctl_compaction_proactiveness)
2954                         timeout = MAX_SCHEDULE_TIMEOUT;
2955                 trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
2956                 if (wait_event_freezable_timeout(pgdat->kcompactd_wait,
2957                         kcompactd_work_requested(pgdat), timeout) &&
2958                         !pgdat->proactive_compact_trigger) {
2959
2960                         psi_memstall_enter(&pflags);
2961                         kcompactd_do_work(pgdat);
2962                         psi_memstall_leave(&pflags);
2963                         /*
2964                          * Reset the timeout value. The defer timeout from
2965                          * proactive compaction is lost here but that is fine
2966                          * as the condition of the zone changing substantionally
2967                          * then carrying on with the previous defer interval is
2968                          * not useful.
2969                          */
2970                         timeout = default_timeout;
2971                         continue;
2972                 }
2973
2974                 /*
2975                  * Start the proactive work with default timeout. Based
2976                  * on the fragmentation score, this timeout is updated.
2977                  */
2978                 timeout = default_timeout;
2979                 if (should_proactive_compact_node(pgdat)) {
2980                         unsigned int prev_score, score;
2981
2982                         prev_score = fragmentation_score_node(pgdat);
2983                         proactive_compact_node(pgdat);
2984                         score = fragmentation_score_node(pgdat);
2985                         /*
2986                          * Defer proactive compaction if the fragmentation
2987                          * score did not go down i.e. no progress made.
2988                          */
2989                         if (unlikely(score >= prev_score))
2990                                 timeout =
2991                                    default_timeout << COMPACT_MAX_DEFER_SHIFT;
2992                 }
2993                 if (unlikely(pgdat->proactive_compact_trigger))
2994                         pgdat->proactive_compact_trigger = false;
2995         }
2996
2997         return 0;
2998 }
2999
3000 /*
3001  * This kcompactd start function will be called by init and node-hot-add.
3002  * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
3003  */
3004 void kcompactd_run(int nid)
3005 {
3006         pg_data_t *pgdat = NODE_DATA(nid);
3007
3008         if (pgdat->kcompactd)
3009                 return;
3010
3011         pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
3012         if (IS_ERR(pgdat->kcompactd)) {
3013                 pr_err("Failed to start kcompactd on node %d\n", nid);
3014                 pgdat->kcompactd = NULL;
3015         }
3016 }
3017
3018 /*
3019  * Called by memory hotplug when all memory in a node is offlined. Caller must
3020  * be holding mem_hotplug_begin/done().
3021  */
3022 void kcompactd_stop(int nid)
3023 {
3024         struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
3025
3026         if (kcompactd) {
3027                 kthread_stop(kcompactd);
3028                 NODE_DATA(nid)->kcompactd = NULL;
3029         }
3030 }
3031
3032 /*
3033  * It's optimal to keep kcompactd on the same CPUs as their memory, but
3034  * not required for correctness. So if the last cpu in a node goes
3035  * away, we get changed to run anywhere: as the first one comes back,
3036  * restore their cpu bindings.
3037  */
3038 static int kcompactd_cpu_online(unsigned int cpu)
3039 {
3040         int nid;
3041
3042         for_each_node_state(nid, N_MEMORY) {
3043                 pg_data_t *pgdat = NODE_DATA(nid);
3044                 const struct cpumask *mask;
3045
3046                 mask = cpumask_of_node(pgdat->node_id);
3047
3048                 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3049                         /* One of our CPUs online: restore mask */
3050                         if (pgdat->kcompactd)
3051                                 set_cpus_allowed_ptr(pgdat->kcompactd, mask);
3052         }
3053         return 0;
3054 }
3055
3056 static int __init kcompactd_init(void)
3057 {
3058         int nid;
3059         int ret;
3060
3061         ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3062                                         "mm/compaction:online",
3063                                         kcompactd_cpu_online, NULL);
3064         if (ret < 0) {
3065                 pr_err("kcompactd: failed to register hotplug callbacks.\n");
3066                 return ret;
3067         }
3068
3069         for_each_node_state(nid, N_MEMORY)
3070                 kcompactd_run(nid);
3071         return 0;
3072 }
3073 subsys_initcall(kcompactd_init)
3074
3075 #endif /* CONFIG_COMPACTION */