Merge tag 'trace-v5.18-1' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt...
[platform/kernel/linux-starfive.git] / mm / compaction.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * linux/mm/compaction.c
4  *
5  * Memory compaction for the reduction of external fragmentation. Note that
6  * this heavily depends upon page migration to do all the real heavy
7  * lifting
8  *
9  * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
10  */
11 #include <linux/cpu.h>
12 #include <linux/swap.h>
13 #include <linux/migrate.h>
14 #include <linux/compaction.h>
15 #include <linux/mm_inline.h>
16 #include <linux/sched/signal.h>
17 #include <linux/backing-dev.h>
18 #include <linux/sysctl.h>
19 #include <linux/sysfs.h>
20 #include <linux/page-isolation.h>
21 #include <linux/kasan.h>
22 #include <linux/kthread.h>
23 #include <linux/freezer.h>
24 #include <linux/page_owner.h>
25 #include <linux/psi.h>
26 #include "internal.h"
27
28 #ifdef CONFIG_COMPACTION
29 static inline void count_compact_event(enum vm_event_item item)
30 {
31         count_vm_event(item);
32 }
33
34 static inline void count_compact_events(enum vm_event_item item, long delta)
35 {
36         count_vm_events(item, delta);
37 }
38 #else
39 #define count_compact_event(item) do { } while (0)
40 #define count_compact_events(item, delta) do { } while (0)
41 #endif
42
43 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
44
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/compaction.h>
47
48 #define block_start_pfn(pfn, order)     round_down(pfn, 1UL << (order))
49 #define block_end_pfn(pfn, order)       ALIGN((pfn) + 1, 1UL << (order))
50 #define pageblock_start_pfn(pfn)        block_start_pfn(pfn, pageblock_order)
51 #define pageblock_end_pfn(pfn)          block_end_pfn(pfn, pageblock_order)
52
53 /*
54  * Fragmentation score check interval for proactive compaction purposes.
55  */
56 static const unsigned int HPAGE_FRAG_CHECK_INTERVAL_MSEC = 500;
57
58 /*
59  * Page order with-respect-to which proactive compaction
60  * calculates external fragmentation, which is used as
61  * the "fragmentation score" of a node/zone.
62  */
63 #if defined CONFIG_TRANSPARENT_HUGEPAGE
64 #define COMPACTION_HPAGE_ORDER  HPAGE_PMD_ORDER
65 #elif defined CONFIG_HUGETLBFS
66 #define COMPACTION_HPAGE_ORDER  HUGETLB_PAGE_ORDER
67 #else
68 #define COMPACTION_HPAGE_ORDER  (PMD_SHIFT - PAGE_SHIFT)
69 #endif
70
71 static unsigned long release_freepages(struct list_head *freelist)
72 {
73         struct page *page, *next;
74         unsigned long high_pfn = 0;
75
76         list_for_each_entry_safe(page, next, freelist, lru) {
77                 unsigned long pfn = page_to_pfn(page);
78                 list_del(&page->lru);
79                 __free_page(page);
80                 if (pfn > high_pfn)
81                         high_pfn = pfn;
82         }
83
84         return high_pfn;
85 }
86
87 static void split_map_pages(struct list_head *list)
88 {
89         unsigned int i, order, nr_pages;
90         struct page *page, *next;
91         LIST_HEAD(tmp_list);
92
93         list_for_each_entry_safe(page, next, list, lru) {
94                 list_del(&page->lru);
95
96                 order = page_private(page);
97                 nr_pages = 1 << order;
98
99                 post_alloc_hook(page, order, __GFP_MOVABLE);
100                 if (order)
101                         split_page(page, order);
102
103                 for (i = 0; i < nr_pages; i++) {
104                         list_add(&page->lru, &tmp_list);
105                         page++;
106                 }
107         }
108
109         list_splice(&tmp_list, list);
110 }
111
112 #ifdef CONFIG_COMPACTION
113
114 int PageMovable(struct page *page)
115 {
116         struct address_space *mapping;
117
118         VM_BUG_ON_PAGE(!PageLocked(page), page);
119         if (!__PageMovable(page))
120                 return 0;
121
122         mapping = page_mapping(page);
123         if (mapping && mapping->a_ops && mapping->a_ops->isolate_page)
124                 return 1;
125
126         return 0;
127 }
128 EXPORT_SYMBOL(PageMovable);
129
130 void __SetPageMovable(struct page *page, struct address_space *mapping)
131 {
132         VM_BUG_ON_PAGE(!PageLocked(page), page);
133         VM_BUG_ON_PAGE((unsigned long)mapping & PAGE_MAPPING_MOVABLE, page);
134         page->mapping = (void *)((unsigned long)mapping | PAGE_MAPPING_MOVABLE);
135 }
136 EXPORT_SYMBOL(__SetPageMovable);
137
138 void __ClearPageMovable(struct page *page)
139 {
140         VM_BUG_ON_PAGE(!PageMovable(page), page);
141         /*
142          * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE
143          * flag so that VM can catch up released page by driver after isolation.
144          * With it, VM migration doesn't try to put it back.
145          */
146         page->mapping = (void *)((unsigned long)page->mapping &
147                                 PAGE_MAPPING_MOVABLE);
148 }
149 EXPORT_SYMBOL(__ClearPageMovable);
150
151 /* Do not skip compaction more than 64 times */
152 #define COMPACT_MAX_DEFER_SHIFT 6
153
154 /*
155  * Compaction is deferred when compaction fails to result in a page
156  * allocation success. 1 << compact_defer_shift, compactions are skipped up
157  * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
158  */
159 static void defer_compaction(struct zone *zone, int order)
160 {
161         zone->compact_considered = 0;
162         zone->compact_defer_shift++;
163
164         if (order < zone->compact_order_failed)
165                 zone->compact_order_failed = order;
166
167         if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
168                 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
169
170         trace_mm_compaction_defer_compaction(zone, order);
171 }
172
173 /* Returns true if compaction should be skipped this time */
174 static bool compaction_deferred(struct zone *zone, int order)
175 {
176         unsigned long defer_limit = 1UL << zone->compact_defer_shift;
177
178         if (order < zone->compact_order_failed)
179                 return false;
180
181         /* Avoid possible overflow */
182         if (++zone->compact_considered >= defer_limit) {
183                 zone->compact_considered = defer_limit;
184                 return false;
185         }
186
187         trace_mm_compaction_deferred(zone, order);
188
189         return true;
190 }
191
192 /*
193  * Update defer tracking counters after successful compaction of given order,
194  * which means an allocation either succeeded (alloc_success == true) or is
195  * expected to succeed.
196  */
197 void compaction_defer_reset(struct zone *zone, int order,
198                 bool alloc_success)
199 {
200         if (alloc_success) {
201                 zone->compact_considered = 0;
202                 zone->compact_defer_shift = 0;
203         }
204         if (order >= zone->compact_order_failed)
205                 zone->compact_order_failed = order + 1;
206
207         trace_mm_compaction_defer_reset(zone, order);
208 }
209
210 /* Returns true if restarting compaction after many failures */
211 static bool compaction_restarting(struct zone *zone, int order)
212 {
213         if (order < zone->compact_order_failed)
214                 return false;
215
216         return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
217                 zone->compact_considered >= 1UL << zone->compact_defer_shift;
218 }
219
220 /* Returns true if the pageblock should be scanned for pages to isolate. */
221 static inline bool isolation_suitable(struct compact_control *cc,
222                                         struct page *page)
223 {
224         if (cc->ignore_skip_hint)
225                 return true;
226
227         return !get_pageblock_skip(page);
228 }
229
230 static void reset_cached_positions(struct zone *zone)
231 {
232         zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
233         zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
234         zone->compact_cached_free_pfn =
235                                 pageblock_start_pfn(zone_end_pfn(zone) - 1);
236 }
237
238 /*
239  * Compound pages of >= pageblock_order should consistently be skipped until
240  * released. It is always pointless to compact pages of such order (if they are
241  * migratable), and the pageblocks they occupy cannot contain any free pages.
242  */
243 static bool pageblock_skip_persistent(struct page *page)
244 {
245         if (!PageCompound(page))
246                 return false;
247
248         page = compound_head(page);
249
250         if (compound_order(page) >= pageblock_order)
251                 return true;
252
253         return false;
254 }
255
256 static bool
257 __reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source,
258                                                         bool check_target)
259 {
260         struct page *page = pfn_to_online_page(pfn);
261         struct page *block_page;
262         struct page *end_page;
263         unsigned long block_pfn;
264
265         if (!page)
266                 return false;
267         if (zone != page_zone(page))
268                 return false;
269         if (pageblock_skip_persistent(page))
270                 return false;
271
272         /*
273          * If skip is already cleared do no further checking once the
274          * restart points have been set.
275          */
276         if (check_source && check_target && !get_pageblock_skip(page))
277                 return true;
278
279         /*
280          * If clearing skip for the target scanner, do not select a
281          * non-movable pageblock as the starting point.
282          */
283         if (!check_source && check_target &&
284             get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
285                 return false;
286
287         /* Ensure the start of the pageblock or zone is online and valid */
288         block_pfn = pageblock_start_pfn(pfn);
289         block_pfn = max(block_pfn, zone->zone_start_pfn);
290         block_page = pfn_to_online_page(block_pfn);
291         if (block_page) {
292                 page = block_page;
293                 pfn = block_pfn;
294         }
295
296         /* Ensure the end of the pageblock or zone is online and valid */
297         block_pfn = pageblock_end_pfn(pfn) - 1;
298         block_pfn = min(block_pfn, zone_end_pfn(zone) - 1);
299         end_page = pfn_to_online_page(block_pfn);
300         if (!end_page)
301                 return false;
302
303         /*
304          * Only clear the hint if a sample indicates there is either a
305          * free page or an LRU page in the block. One or other condition
306          * is necessary for the block to be a migration source/target.
307          */
308         do {
309                 if (check_source && PageLRU(page)) {
310                         clear_pageblock_skip(page);
311                         return true;
312                 }
313
314                 if (check_target && PageBuddy(page)) {
315                         clear_pageblock_skip(page);
316                         return true;
317                 }
318
319                 page += (1 << PAGE_ALLOC_COSTLY_ORDER);
320                 pfn += (1 << PAGE_ALLOC_COSTLY_ORDER);
321         } while (page <= end_page);
322
323         return false;
324 }
325
326 /*
327  * This function is called to clear all cached information on pageblocks that
328  * should be skipped for page isolation when the migrate and free page scanner
329  * meet.
330  */
331 static void __reset_isolation_suitable(struct zone *zone)
332 {
333         unsigned long migrate_pfn = zone->zone_start_pfn;
334         unsigned long free_pfn = zone_end_pfn(zone) - 1;
335         unsigned long reset_migrate = free_pfn;
336         unsigned long reset_free = migrate_pfn;
337         bool source_set = false;
338         bool free_set = false;
339
340         if (!zone->compact_blockskip_flush)
341                 return;
342
343         zone->compact_blockskip_flush = false;
344
345         /*
346          * Walk the zone and update pageblock skip information. Source looks
347          * for PageLRU while target looks for PageBuddy. When the scanner
348          * is found, both PageBuddy and PageLRU are checked as the pageblock
349          * is suitable as both source and target.
350          */
351         for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages,
352                                         free_pfn -= pageblock_nr_pages) {
353                 cond_resched();
354
355                 /* Update the migrate PFN */
356                 if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) &&
357                     migrate_pfn < reset_migrate) {
358                         source_set = true;
359                         reset_migrate = migrate_pfn;
360                         zone->compact_init_migrate_pfn = reset_migrate;
361                         zone->compact_cached_migrate_pfn[0] = reset_migrate;
362                         zone->compact_cached_migrate_pfn[1] = reset_migrate;
363                 }
364
365                 /* Update the free PFN */
366                 if (__reset_isolation_pfn(zone, free_pfn, free_set, true) &&
367                     free_pfn > reset_free) {
368                         free_set = true;
369                         reset_free = free_pfn;
370                         zone->compact_init_free_pfn = reset_free;
371                         zone->compact_cached_free_pfn = reset_free;
372                 }
373         }
374
375         /* Leave no distance if no suitable block was reset */
376         if (reset_migrate >= reset_free) {
377                 zone->compact_cached_migrate_pfn[0] = migrate_pfn;
378                 zone->compact_cached_migrate_pfn[1] = migrate_pfn;
379                 zone->compact_cached_free_pfn = free_pfn;
380         }
381 }
382
383 void reset_isolation_suitable(pg_data_t *pgdat)
384 {
385         int zoneid;
386
387         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
388                 struct zone *zone = &pgdat->node_zones[zoneid];
389                 if (!populated_zone(zone))
390                         continue;
391
392                 /* Only flush if a full compaction finished recently */
393                 if (zone->compact_blockskip_flush)
394                         __reset_isolation_suitable(zone);
395         }
396 }
397
398 /*
399  * Sets the pageblock skip bit if it was clear. Note that this is a hint as
400  * locks are not required for read/writers. Returns true if it was already set.
401  */
402 static bool test_and_set_skip(struct compact_control *cc, struct page *page,
403                                                         unsigned long pfn)
404 {
405         bool skip;
406
407         /* Do no update if skip hint is being ignored */
408         if (cc->ignore_skip_hint)
409                 return false;
410
411         if (!IS_ALIGNED(pfn, pageblock_nr_pages))
412                 return false;
413
414         skip = get_pageblock_skip(page);
415         if (!skip && !cc->no_set_skip_hint)
416                 set_pageblock_skip(page);
417
418         return skip;
419 }
420
421 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
422 {
423         struct zone *zone = cc->zone;
424
425         pfn = pageblock_end_pfn(pfn);
426
427         /* Set for isolation rather than compaction */
428         if (cc->no_set_skip_hint)
429                 return;
430
431         if (pfn > zone->compact_cached_migrate_pfn[0])
432                 zone->compact_cached_migrate_pfn[0] = pfn;
433         if (cc->mode != MIGRATE_ASYNC &&
434             pfn > zone->compact_cached_migrate_pfn[1])
435                 zone->compact_cached_migrate_pfn[1] = pfn;
436 }
437
438 /*
439  * If no pages were isolated then mark this pageblock to be skipped in the
440  * future. The information is later cleared by __reset_isolation_suitable().
441  */
442 static void update_pageblock_skip(struct compact_control *cc,
443                         struct page *page, unsigned long pfn)
444 {
445         struct zone *zone = cc->zone;
446
447         if (cc->no_set_skip_hint)
448                 return;
449
450         if (!page)
451                 return;
452
453         set_pageblock_skip(page);
454
455         /* Update where async and sync compaction should restart */
456         if (pfn < zone->compact_cached_free_pfn)
457                 zone->compact_cached_free_pfn = pfn;
458 }
459 #else
460 static inline bool isolation_suitable(struct compact_control *cc,
461                                         struct page *page)
462 {
463         return true;
464 }
465
466 static inline bool pageblock_skip_persistent(struct page *page)
467 {
468         return false;
469 }
470
471 static inline void update_pageblock_skip(struct compact_control *cc,
472                         struct page *page, unsigned long pfn)
473 {
474 }
475
476 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
477 {
478 }
479
480 static bool test_and_set_skip(struct compact_control *cc, struct page *page,
481                                                         unsigned long pfn)
482 {
483         return false;
484 }
485 #endif /* CONFIG_COMPACTION */
486
487 /*
488  * Compaction requires the taking of some coarse locks that are potentially
489  * very heavily contended. For async compaction, trylock and record if the
490  * lock is contended. The lock will still be acquired but compaction will
491  * abort when the current block is finished regardless of success rate.
492  * Sync compaction acquires the lock.
493  *
494  * Always returns true which makes it easier to track lock state in callers.
495  */
496 static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags,
497                                                 struct compact_control *cc)
498         __acquires(lock)
499 {
500         /* Track if the lock is contended in async mode */
501         if (cc->mode == MIGRATE_ASYNC && !cc->contended) {
502                 if (spin_trylock_irqsave(lock, *flags))
503                         return true;
504
505                 cc->contended = true;
506         }
507
508         spin_lock_irqsave(lock, *flags);
509         return true;
510 }
511
512 /*
513  * Compaction requires the taking of some coarse locks that are potentially
514  * very heavily contended. The lock should be periodically unlocked to avoid
515  * having disabled IRQs for a long time, even when there is nobody waiting on
516  * the lock. It might also be that allowing the IRQs will result in
517  * need_resched() becoming true. If scheduling is needed, async compaction
518  * aborts. Sync compaction schedules.
519  * Either compaction type will also abort if a fatal signal is pending.
520  * In either case if the lock was locked, it is dropped and not regained.
521  *
522  * Returns true if compaction should abort due to fatal signal pending, or
523  *              async compaction due to need_resched()
524  * Returns false when compaction can continue (sync compaction might have
525  *              scheduled)
526  */
527 static bool compact_unlock_should_abort(spinlock_t *lock,
528                 unsigned long flags, bool *locked, struct compact_control *cc)
529 {
530         if (*locked) {
531                 spin_unlock_irqrestore(lock, flags);
532                 *locked = false;
533         }
534
535         if (fatal_signal_pending(current)) {
536                 cc->contended = true;
537                 return true;
538         }
539
540         cond_resched();
541
542         return false;
543 }
544
545 /*
546  * Isolate free pages onto a private freelist. If @strict is true, will abort
547  * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
548  * (even though it may still end up isolating some pages).
549  */
550 static unsigned long isolate_freepages_block(struct compact_control *cc,
551                                 unsigned long *start_pfn,
552                                 unsigned long end_pfn,
553                                 struct list_head *freelist,
554                                 unsigned int stride,
555                                 bool strict)
556 {
557         int nr_scanned = 0, total_isolated = 0;
558         struct page *cursor;
559         unsigned long flags = 0;
560         bool locked = false;
561         unsigned long blockpfn = *start_pfn;
562         unsigned int order;
563
564         /* Strict mode is for isolation, speed is secondary */
565         if (strict)
566                 stride = 1;
567
568         cursor = pfn_to_page(blockpfn);
569
570         /* Isolate free pages. */
571         for (; blockpfn < end_pfn; blockpfn += stride, cursor += stride) {
572                 int isolated;
573                 struct page *page = cursor;
574
575                 /*
576                  * Periodically drop the lock (if held) regardless of its
577                  * contention, to give chance to IRQs. Abort if fatal signal
578                  * pending or async compaction detects need_resched()
579                  */
580                 if (!(blockpfn % SWAP_CLUSTER_MAX)
581                     && compact_unlock_should_abort(&cc->zone->lock, flags,
582                                                                 &locked, cc))
583                         break;
584
585                 nr_scanned++;
586
587                 /*
588                  * For compound pages such as THP and hugetlbfs, we can save
589                  * potentially a lot of iterations if we skip them at once.
590                  * The check is racy, but we can consider only valid values
591                  * and the only danger is skipping too much.
592                  */
593                 if (PageCompound(page)) {
594                         const unsigned int order = compound_order(page);
595
596                         if (likely(order < MAX_ORDER)) {
597                                 blockpfn += (1UL << order) - 1;
598                                 cursor += (1UL << order) - 1;
599                         }
600                         goto isolate_fail;
601                 }
602
603                 if (!PageBuddy(page))
604                         goto isolate_fail;
605
606                 /*
607                  * If we already hold the lock, we can skip some rechecking.
608                  * Note that if we hold the lock now, checked_pageblock was
609                  * already set in some previous iteration (or strict is true),
610                  * so it is correct to skip the suitable migration target
611                  * recheck as well.
612                  */
613                 if (!locked) {
614                         locked = compact_lock_irqsave(&cc->zone->lock,
615                                                                 &flags, cc);
616
617                         /* Recheck this is a buddy page under lock */
618                         if (!PageBuddy(page))
619                                 goto isolate_fail;
620                 }
621
622                 /* Found a free page, will break it into order-0 pages */
623                 order = buddy_order(page);
624                 isolated = __isolate_free_page(page, order);
625                 if (!isolated)
626                         break;
627                 set_page_private(page, order);
628
629                 total_isolated += isolated;
630                 cc->nr_freepages += isolated;
631                 list_add_tail(&page->lru, freelist);
632
633                 if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
634                         blockpfn += isolated;
635                         break;
636                 }
637                 /* Advance to the end of split page */
638                 blockpfn += isolated - 1;
639                 cursor += isolated - 1;
640                 continue;
641
642 isolate_fail:
643                 if (strict)
644                         break;
645                 else
646                         continue;
647
648         }
649
650         if (locked)
651                 spin_unlock_irqrestore(&cc->zone->lock, flags);
652
653         /*
654          * There is a tiny chance that we have read bogus compound_order(),
655          * so be careful to not go outside of the pageblock.
656          */
657         if (unlikely(blockpfn > end_pfn))
658                 blockpfn = end_pfn;
659
660         trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
661                                         nr_scanned, total_isolated);
662
663         /* Record how far we have got within the block */
664         *start_pfn = blockpfn;
665
666         /*
667          * If strict isolation is requested by CMA then check that all the
668          * pages requested were isolated. If there were any failures, 0 is
669          * returned and CMA will fail.
670          */
671         if (strict && blockpfn < end_pfn)
672                 total_isolated = 0;
673
674         cc->total_free_scanned += nr_scanned;
675         if (total_isolated)
676                 count_compact_events(COMPACTISOLATED, total_isolated);
677         return total_isolated;
678 }
679
680 /**
681  * isolate_freepages_range() - isolate free pages.
682  * @cc:        Compaction control structure.
683  * @start_pfn: The first PFN to start isolating.
684  * @end_pfn:   The one-past-last PFN.
685  *
686  * Non-free pages, invalid PFNs, or zone boundaries within the
687  * [start_pfn, end_pfn) range are considered errors, cause function to
688  * undo its actions and return zero.
689  *
690  * Otherwise, function returns one-past-the-last PFN of isolated page
691  * (which may be greater then end_pfn if end fell in a middle of
692  * a free page).
693  */
694 unsigned long
695 isolate_freepages_range(struct compact_control *cc,
696                         unsigned long start_pfn, unsigned long end_pfn)
697 {
698         unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
699         LIST_HEAD(freelist);
700
701         pfn = start_pfn;
702         block_start_pfn = pageblock_start_pfn(pfn);
703         if (block_start_pfn < cc->zone->zone_start_pfn)
704                 block_start_pfn = cc->zone->zone_start_pfn;
705         block_end_pfn = pageblock_end_pfn(pfn);
706
707         for (; pfn < end_pfn; pfn += isolated,
708                                 block_start_pfn = block_end_pfn,
709                                 block_end_pfn += pageblock_nr_pages) {
710                 /* Protect pfn from changing by isolate_freepages_block */
711                 unsigned long isolate_start_pfn = pfn;
712
713                 block_end_pfn = min(block_end_pfn, end_pfn);
714
715                 /*
716                  * pfn could pass the block_end_pfn if isolated freepage
717                  * is more than pageblock order. In this case, we adjust
718                  * scanning range to right one.
719                  */
720                 if (pfn >= block_end_pfn) {
721                         block_start_pfn = pageblock_start_pfn(pfn);
722                         block_end_pfn = pageblock_end_pfn(pfn);
723                         block_end_pfn = min(block_end_pfn, end_pfn);
724                 }
725
726                 if (!pageblock_pfn_to_page(block_start_pfn,
727                                         block_end_pfn, cc->zone))
728                         break;
729
730                 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
731                                         block_end_pfn, &freelist, 0, true);
732
733                 /*
734                  * In strict mode, isolate_freepages_block() returns 0 if
735                  * there are any holes in the block (ie. invalid PFNs or
736                  * non-free pages).
737                  */
738                 if (!isolated)
739                         break;
740
741                 /*
742                  * If we managed to isolate pages, it is always (1 << n) *
743                  * pageblock_nr_pages for some non-negative n.  (Max order
744                  * page may span two pageblocks).
745                  */
746         }
747
748         /* __isolate_free_page() does not map the pages */
749         split_map_pages(&freelist);
750
751         if (pfn < end_pfn) {
752                 /* Loop terminated early, cleanup. */
753                 release_freepages(&freelist);
754                 return 0;
755         }
756
757         /* We don't use freelists for anything. */
758         return pfn;
759 }
760
761 /* Similar to reclaim, but different enough that they don't share logic */
762 static bool too_many_isolated(pg_data_t *pgdat)
763 {
764         bool too_many;
765
766         unsigned long active, inactive, isolated;
767
768         inactive = node_page_state(pgdat, NR_INACTIVE_FILE) +
769                         node_page_state(pgdat, NR_INACTIVE_ANON);
770         active = node_page_state(pgdat, NR_ACTIVE_FILE) +
771                         node_page_state(pgdat, NR_ACTIVE_ANON);
772         isolated = node_page_state(pgdat, NR_ISOLATED_FILE) +
773                         node_page_state(pgdat, NR_ISOLATED_ANON);
774
775         too_many = isolated > (inactive + active) / 2;
776         if (!too_many)
777                 wake_throttle_isolated(pgdat);
778
779         return too_many;
780 }
781
782 /**
783  * isolate_migratepages_block() - isolate all migrate-able pages within
784  *                                a single pageblock
785  * @cc:         Compaction control structure.
786  * @low_pfn:    The first PFN to isolate
787  * @end_pfn:    The one-past-the-last PFN to isolate, within same pageblock
788  * @mode:       Isolation mode to be used.
789  *
790  * Isolate all pages that can be migrated from the range specified by
791  * [low_pfn, end_pfn). The range is expected to be within same pageblock.
792  * Returns errno, like -EAGAIN or -EINTR in case e.g signal pending or congestion,
793  * -ENOMEM in case we could not allocate a page, or 0.
794  * cc->migrate_pfn will contain the next pfn to scan.
795  *
796  * The pages are isolated on cc->migratepages list (not required to be empty),
797  * and cc->nr_migratepages is updated accordingly.
798  */
799 static int
800 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
801                         unsigned long end_pfn, isolate_mode_t mode)
802 {
803         pg_data_t *pgdat = cc->zone->zone_pgdat;
804         unsigned long nr_scanned = 0, nr_isolated = 0;
805         struct lruvec *lruvec;
806         unsigned long flags = 0;
807         struct lruvec *locked = NULL;
808         struct page *page = NULL, *valid_page = NULL;
809         struct address_space *mapping;
810         unsigned long start_pfn = low_pfn;
811         bool skip_on_failure = false;
812         unsigned long next_skip_pfn = 0;
813         bool skip_updated = false;
814         int ret = 0;
815
816         cc->migrate_pfn = low_pfn;
817
818         /*
819          * Ensure that there are not too many pages isolated from the LRU
820          * list by either parallel reclaimers or compaction. If there are,
821          * delay for some time until fewer pages are isolated
822          */
823         while (unlikely(too_many_isolated(pgdat))) {
824                 /* stop isolation if there are still pages not migrated */
825                 if (cc->nr_migratepages)
826                         return -EAGAIN;
827
828                 /* async migration should just abort */
829                 if (cc->mode == MIGRATE_ASYNC)
830                         return -EAGAIN;
831
832                 reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
833
834                 if (fatal_signal_pending(current))
835                         return -EINTR;
836         }
837
838         cond_resched();
839
840         if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
841                 skip_on_failure = true;
842                 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
843         }
844
845         /* Time to isolate some pages for migration */
846         for (; low_pfn < end_pfn; low_pfn++) {
847
848                 if (skip_on_failure && low_pfn >= next_skip_pfn) {
849                         /*
850                          * We have isolated all migration candidates in the
851                          * previous order-aligned block, and did not skip it due
852                          * to failure. We should migrate the pages now and
853                          * hopefully succeed compaction.
854                          */
855                         if (nr_isolated)
856                                 break;
857
858                         /*
859                          * We failed to isolate in the previous order-aligned
860                          * block. Set the new boundary to the end of the
861                          * current block. Note we can't simply increase
862                          * next_skip_pfn by 1 << order, as low_pfn might have
863                          * been incremented by a higher number due to skipping
864                          * a compound or a high-order buddy page in the
865                          * previous loop iteration.
866                          */
867                         next_skip_pfn = block_end_pfn(low_pfn, cc->order);
868                 }
869
870                 /*
871                  * Periodically drop the lock (if held) regardless of its
872                  * contention, to give chance to IRQs. Abort completely if
873                  * a fatal signal is pending.
874                  */
875                 if (!(low_pfn % SWAP_CLUSTER_MAX)) {
876                         if (locked) {
877                                 unlock_page_lruvec_irqrestore(locked, flags);
878                                 locked = NULL;
879                         }
880
881                         if (fatal_signal_pending(current)) {
882                                 cc->contended = true;
883                                 ret = -EINTR;
884
885                                 goto fatal_pending;
886                         }
887
888                         cond_resched();
889                 }
890
891                 nr_scanned++;
892
893                 page = pfn_to_page(low_pfn);
894
895                 /*
896                  * Check if the pageblock has already been marked skipped.
897                  * Only the aligned PFN is checked as the caller isolates
898                  * COMPACT_CLUSTER_MAX at a time so the second call must
899                  * not falsely conclude that the block should be skipped.
900                  */
901                 if (!valid_page && IS_ALIGNED(low_pfn, pageblock_nr_pages)) {
902                         if (!cc->ignore_skip_hint && get_pageblock_skip(page)) {
903                                 low_pfn = end_pfn;
904                                 page = NULL;
905                                 goto isolate_abort;
906                         }
907                         valid_page = page;
908                 }
909
910                 if (PageHuge(page) && cc->alloc_contig) {
911                         ret = isolate_or_dissolve_huge_page(page, &cc->migratepages);
912
913                         /*
914                          * Fail isolation in case isolate_or_dissolve_huge_page()
915                          * reports an error. In case of -ENOMEM, abort right away.
916                          */
917                         if (ret < 0) {
918                                  /* Do not report -EBUSY down the chain */
919                                 if (ret == -EBUSY)
920                                         ret = 0;
921                                 low_pfn += (1UL << compound_order(page)) - 1;
922                                 goto isolate_fail;
923                         }
924
925                         if (PageHuge(page)) {
926                                 /*
927                                  * Hugepage was successfully isolated and placed
928                                  * on the cc->migratepages list.
929                                  */
930                                 low_pfn += compound_nr(page) - 1;
931                                 goto isolate_success_no_list;
932                         }
933
934                         /*
935                          * Ok, the hugepage was dissolved. Now these pages are
936                          * Buddy and cannot be re-allocated because they are
937                          * isolated. Fall-through as the check below handles
938                          * Buddy pages.
939                          */
940                 }
941
942                 /*
943                  * Skip if free. We read page order here without zone lock
944                  * which is generally unsafe, but the race window is small and
945                  * the worst thing that can happen is that we skip some
946                  * potential isolation targets.
947                  */
948                 if (PageBuddy(page)) {
949                         unsigned long freepage_order = buddy_order_unsafe(page);
950
951                         /*
952                          * Without lock, we cannot be sure that what we got is
953                          * a valid page order. Consider only values in the
954                          * valid order range to prevent low_pfn overflow.
955                          */
956                         if (freepage_order > 0 && freepage_order < MAX_ORDER)
957                                 low_pfn += (1UL << freepage_order) - 1;
958                         continue;
959                 }
960
961                 /*
962                  * Regardless of being on LRU, compound pages such as THP and
963                  * hugetlbfs are not to be compacted unless we are attempting
964                  * an allocation much larger than the huge page size (eg CMA).
965                  * We can potentially save a lot of iterations if we skip them
966                  * at once. The check is racy, but we can consider only valid
967                  * values and the only danger is skipping too much.
968                  */
969                 if (PageCompound(page) && !cc->alloc_contig) {
970                         const unsigned int order = compound_order(page);
971
972                         if (likely(order < MAX_ORDER))
973                                 low_pfn += (1UL << order) - 1;
974                         goto isolate_fail;
975                 }
976
977                 /*
978                  * Check may be lockless but that's ok as we recheck later.
979                  * It's possible to migrate LRU and non-lru movable pages.
980                  * Skip any other type of page
981                  */
982                 if (!PageLRU(page)) {
983                         /*
984                          * __PageMovable can return false positive so we need
985                          * to verify it under page_lock.
986                          */
987                         if (unlikely(__PageMovable(page)) &&
988                                         !PageIsolated(page)) {
989                                 if (locked) {
990                                         unlock_page_lruvec_irqrestore(locked, flags);
991                                         locked = NULL;
992                                 }
993
994                                 if (!isolate_movable_page(page, mode))
995                                         goto isolate_success;
996                         }
997
998                         goto isolate_fail;
999                 }
1000
1001                 /*
1002                  * Migration will fail if an anonymous page is pinned in memory,
1003                  * so avoid taking lru_lock and isolating it unnecessarily in an
1004                  * admittedly racy check.
1005                  */
1006                 mapping = page_mapping(page);
1007                 if (!mapping && page_count(page) > page_mapcount(page))
1008                         goto isolate_fail;
1009
1010                 /*
1011                  * Only allow to migrate anonymous pages in GFP_NOFS context
1012                  * because those do not depend on fs locks.
1013                  */
1014                 if (!(cc->gfp_mask & __GFP_FS) && mapping)
1015                         goto isolate_fail;
1016
1017                 /*
1018                  * Be careful not to clear PageLRU until after we're
1019                  * sure the page is not being freed elsewhere -- the
1020                  * page release code relies on it.
1021                  */
1022                 if (unlikely(!get_page_unless_zero(page)))
1023                         goto isolate_fail;
1024
1025                 /* Only take pages on LRU: a check now makes later tests safe */
1026                 if (!PageLRU(page))
1027                         goto isolate_fail_put;
1028
1029                 /* Compaction might skip unevictable pages but CMA takes them */
1030                 if (!(mode & ISOLATE_UNEVICTABLE) && PageUnevictable(page))
1031                         goto isolate_fail_put;
1032
1033                 /*
1034                  * To minimise LRU disruption, the caller can indicate with
1035                  * ISOLATE_ASYNC_MIGRATE that it only wants to isolate pages
1036                  * it will be able to migrate without blocking - clean pages
1037                  * for the most part.  PageWriteback would require blocking.
1038                  */
1039                 if ((mode & ISOLATE_ASYNC_MIGRATE) && PageWriteback(page))
1040                         goto isolate_fail_put;
1041
1042                 if ((mode & ISOLATE_ASYNC_MIGRATE) && PageDirty(page)) {
1043                         bool migrate_dirty;
1044
1045                         /*
1046                          * Only pages without mappings or that have a
1047                          * ->migratepage callback are possible to migrate
1048                          * without blocking. However, we can be racing with
1049                          * truncation so it's necessary to lock the page
1050                          * to stabilise the mapping as truncation holds
1051                          * the page lock until after the page is removed
1052                          * from the page cache.
1053                          */
1054                         if (!trylock_page(page))
1055                                 goto isolate_fail_put;
1056
1057                         mapping = page_mapping(page);
1058                         migrate_dirty = !mapping || mapping->a_ops->migratepage;
1059                         unlock_page(page);
1060                         if (!migrate_dirty)
1061                                 goto isolate_fail_put;
1062                 }
1063
1064                 /* Try isolate the page */
1065                 if (!TestClearPageLRU(page))
1066                         goto isolate_fail_put;
1067
1068                 lruvec = folio_lruvec(page_folio(page));
1069
1070                 /* If we already hold the lock, we can skip some rechecking */
1071                 if (lruvec != locked) {
1072                         if (locked)
1073                                 unlock_page_lruvec_irqrestore(locked, flags);
1074
1075                         compact_lock_irqsave(&lruvec->lru_lock, &flags, cc);
1076                         locked = lruvec;
1077
1078                         lruvec_memcg_debug(lruvec, page_folio(page));
1079
1080                         /* Try get exclusive access under lock */
1081                         if (!skip_updated) {
1082                                 skip_updated = true;
1083                                 if (test_and_set_skip(cc, page, low_pfn))
1084                                         goto isolate_abort;
1085                         }
1086
1087                         /*
1088                          * Page become compound since the non-locked check,
1089                          * and it's on LRU. It can only be a THP so the order
1090                          * is safe to read and it's 0 for tail pages.
1091                          */
1092                         if (unlikely(PageCompound(page) && !cc->alloc_contig)) {
1093                                 low_pfn += compound_nr(page) - 1;
1094                                 SetPageLRU(page);
1095                                 goto isolate_fail_put;
1096                         }
1097                 }
1098
1099                 /* The whole page is taken off the LRU; skip the tail pages. */
1100                 if (PageCompound(page))
1101                         low_pfn += compound_nr(page) - 1;
1102
1103                 /* Successfully isolated */
1104                 del_page_from_lru_list(page, lruvec);
1105                 mod_node_page_state(page_pgdat(page),
1106                                 NR_ISOLATED_ANON + page_is_file_lru(page),
1107                                 thp_nr_pages(page));
1108
1109 isolate_success:
1110                 list_add(&page->lru, &cc->migratepages);
1111 isolate_success_no_list:
1112                 cc->nr_migratepages += compound_nr(page);
1113                 nr_isolated += compound_nr(page);
1114
1115                 /*
1116                  * Avoid isolating too much unless this block is being
1117                  * rescanned (e.g. dirty/writeback pages, parallel allocation)
1118                  * or a lock is contended. For contention, isolate quickly to
1119                  * potentially remove one source of contention.
1120                  */
1121                 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX &&
1122                     !cc->rescan && !cc->contended) {
1123                         ++low_pfn;
1124                         break;
1125                 }
1126
1127                 continue;
1128
1129 isolate_fail_put:
1130                 /* Avoid potential deadlock in freeing page under lru_lock */
1131                 if (locked) {
1132                         unlock_page_lruvec_irqrestore(locked, flags);
1133                         locked = NULL;
1134                 }
1135                 put_page(page);
1136
1137 isolate_fail:
1138                 if (!skip_on_failure && ret != -ENOMEM)
1139                         continue;
1140
1141                 /*
1142                  * We have isolated some pages, but then failed. Release them
1143                  * instead of migrating, as we cannot form the cc->order buddy
1144                  * page anyway.
1145                  */
1146                 if (nr_isolated) {
1147                         if (locked) {
1148                                 unlock_page_lruvec_irqrestore(locked, flags);
1149                                 locked = NULL;
1150                         }
1151                         putback_movable_pages(&cc->migratepages);
1152                         cc->nr_migratepages = 0;
1153                         nr_isolated = 0;
1154                 }
1155
1156                 if (low_pfn < next_skip_pfn) {
1157                         low_pfn = next_skip_pfn - 1;
1158                         /*
1159                          * The check near the loop beginning would have updated
1160                          * next_skip_pfn too, but this is a bit simpler.
1161                          */
1162                         next_skip_pfn += 1UL << cc->order;
1163                 }
1164
1165                 if (ret == -ENOMEM)
1166                         break;
1167         }
1168
1169         /*
1170          * The PageBuddy() check could have potentially brought us outside
1171          * the range to be scanned.
1172          */
1173         if (unlikely(low_pfn > end_pfn))
1174                 low_pfn = end_pfn;
1175
1176         page = NULL;
1177
1178 isolate_abort:
1179         if (locked)
1180                 unlock_page_lruvec_irqrestore(locked, flags);
1181         if (page) {
1182                 SetPageLRU(page);
1183                 put_page(page);
1184         }
1185
1186         /*
1187          * Updated the cached scanner pfn once the pageblock has been scanned
1188          * Pages will either be migrated in which case there is no point
1189          * scanning in the near future or migration failed in which case the
1190          * failure reason may persist. The block is marked for skipping if
1191          * there were no pages isolated in the block or if the block is
1192          * rescanned twice in a row.
1193          */
1194         if (low_pfn == end_pfn && (!nr_isolated || cc->rescan)) {
1195                 if (valid_page && !skip_updated)
1196                         set_pageblock_skip(valid_page);
1197                 update_cached_migrate(cc, low_pfn);
1198         }
1199
1200         trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
1201                                                 nr_scanned, nr_isolated);
1202
1203 fatal_pending:
1204         cc->total_migrate_scanned += nr_scanned;
1205         if (nr_isolated)
1206                 count_compact_events(COMPACTISOLATED, nr_isolated);
1207
1208         cc->migrate_pfn = low_pfn;
1209
1210         return ret;
1211 }
1212
1213 /**
1214  * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
1215  * @cc:        Compaction control structure.
1216  * @start_pfn: The first PFN to start isolating.
1217  * @end_pfn:   The one-past-last PFN.
1218  *
1219  * Returns -EAGAIN when contented, -EINTR in case of a signal pending, -ENOMEM
1220  * in case we could not allocate a page, or 0.
1221  */
1222 int
1223 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
1224                                                         unsigned long end_pfn)
1225 {
1226         unsigned long pfn, block_start_pfn, block_end_pfn;
1227         int ret = 0;
1228
1229         /* Scan block by block. First and last block may be incomplete */
1230         pfn = start_pfn;
1231         block_start_pfn = pageblock_start_pfn(pfn);
1232         if (block_start_pfn < cc->zone->zone_start_pfn)
1233                 block_start_pfn = cc->zone->zone_start_pfn;
1234         block_end_pfn = pageblock_end_pfn(pfn);
1235
1236         for (; pfn < end_pfn; pfn = block_end_pfn,
1237                                 block_start_pfn = block_end_pfn,
1238                                 block_end_pfn += pageblock_nr_pages) {
1239
1240                 block_end_pfn = min(block_end_pfn, end_pfn);
1241
1242                 if (!pageblock_pfn_to_page(block_start_pfn,
1243                                         block_end_pfn, cc->zone))
1244                         continue;
1245
1246                 ret = isolate_migratepages_block(cc, pfn, block_end_pfn,
1247                                                  ISOLATE_UNEVICTABLE);
1248
1249                 if (ret)
1250                         break;
1251
1252                 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX)
1253                         break;
1254         }
1255
1256         return ret;
1257 }
1258
1259 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
1260 #ifdef CONFIG_COMPACTION
1261
1262 static bool suitable_migration_source(struct compact_control *cc,
1263                                                         struct page *page)
1264 {
1265         int block_mt;
1266
1267         if (pageblock_skip_persistent(page))
1268                 return false;
1269
1270         if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
1271                 return true;
1272
1273         block_mt = get_pageblock_migratetype(page);
1274
1275         if (cc->migratetype == MIGRATE_MOVABLE)
1276                 return is_migrate_movable(block_mt);
1277         else
1278                 return block_mt == cc->migratetype;
1279 }
1280
1281 /* Returns true if the page is within a block suitable for migration to */
1282 static bool suitable_migration_target(struct compact_control *cc,
1283                                                         struct page *page)
1284 {
1285         /* If the page is a large free page, then disallow migration */
1286         if (PageBuddy(page)) {
1287                 /*
1288                  * We are checking page_order without zone->lock taken. But
1289                  * the only small danger is that we skip a potentially suitable
1290                  * pageblock, so it's not worth to check order for valid range.
1291                  */
1292                 if (buddy_order_unsafe(page) >= pageblock_order)
1293                         return false;
1294         }
1295
1296         if (cc->ignore_block_suitable)
1297                 return true;
1298
1299         /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1300         if (is_migrate_movable(get_pageblock_migratetype(page)))
1301                 return true;
1302
1303         /* Otherwise skip the block */
1304         return false;
1305 }
1306
1307 static inline unsigned int
1308 freelist_scan_limit(struct compact_control *cc)
1309 {
1310         unsigned short shift = BITS_PER_LONG - 1;
1311
1312         return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1;
1313 }
1314
1315 /*
1316  * Test whether the free scanner has reached the same or lower pageblock than
1317  * the migration scanner, and compaction should thus terminate.
1318  */
1319 static inline bool compact_scanners_met(struct compact_control *cc)
1320 {
1321         return (cc->free_pfn >> pageblock_order)
1322                 <= (cc->migrate_pfn >> pageblock_order);
1323 }
1324
1325 /*
1326  * Used when scanning for a suitable migration target which scans freelists
1327  * in reverse. Reorders the list such as the unscanned pages are scanned
1328  * first on the next iteration of the free scanner
1329  */
1330 static void
1331 move_freelist_head(struct list_head *freelist, struct page *freepage)
1332 {
1333         LIST_HEAD(sublist);
1334
1335         if (!list_is_last(freelist, &freepage->lru)) {
1336                 list_cut_before(&sublist, freelist, &freepage->lru);
1337                 list_splice_tail(&sublist, freelist);
1338         }
1339 }
1340
1341 /*
1342  * Similar to move_freelist_head except used by the migration scanner
1343  * when scanning forward. It's possible for these list operations to
1344  * move against each other if they search the free list exactly in
1345  * lockstep.
1346  */
1347 static void
1348 move_freelist_tail(struct list_head *freelist, struct page *freepage)
1349 {
1350         LIST_HEAD(sublist);
1351
1352         if (!list_is_first(freelist, &freepage->lru)) {
1353                 list_cut_position(&sublist, freelist, &freepage->lru);
1354                 list_splice_tail(&sublist, freelist);
1355         }
1356 }
1357
1358 static void
1359 fast_isolate_around(struct compact_control *cc, unsigned long pfn, unsigned long nr_isolated)
1360 {
1361         unsigned long start_pfn, end_pfn;
1362         struct page *page;
1363
1364         /* Do not search around if there are enough pages already */
1365         if (cc->nr_freepages >= cc->nr_migratepages)
1366                 return;
1367
1368         /* Minimise scanning during async compaction */
1369         if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC)
1370                 return;
1371
1372         /* Pageblock boundaries */
1373         start_pfn = max(pageblock_start_pfn(pfn), cc->zone->zone_start_pfn);
1374         end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone));
1375
1376         page = pageblock_pfn_to_page(start_pfn, end_pfn, cc->zone);
1377         if (!page)
1378                 return;
1379
1380         /* Scan before */
1381         if (start_pfn != pfn) {
1382                 isolate_freepages_block(cc, &start_pfn, pfn, &cc->freepages, 1, false);
1383                 if (cc->nr_freepages >= cc->nr_migratepages)
1384                         return;
1385         }
1386
1387         /* Scan after */
1388         start_pfn = pfn + nr_isolated;
1389         if (start_pfn < end_pfn)
1390                 isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false);
1391
1392         /* Skip this pageblock in the future as it's full or nearly full */
1393         if (cc->nr_freepages < cc->nr_migratepages)
1394                 set_pageblock_skip(page);
1395 }
1396
1397 /* Search orders in round-robin fashion */
1398 static int next_search_order(struct compact_control *cc, int order)
1399 {
1400         order--;
1401         if (order < 0)
1402                 order = cc->order - 1;
1403
1404         /* Search wrapped around? */
1405         if (order == cc->search_order) {
1406                 cc->search_order--;
1407                 if (cc->search_order < 0)
1408                         cc->search_order = cc->order - 1;
1409                 return -1;
1410         }
1411
1412         return order;
1413 }
1414
1415 static unsigned long
1416 fast_isolate_freepages(struct compact_control *cc)
1417 {
1418         unsigned int limit = max(1U, freelist_scan_limit(cc) >> 1);
1419         unsigned int nr_scanned = 0;
1420         unsigned long low_pfn, min_pfn, highest = 0;
1421         unsigned long nr_isolated = 0;
1422         unsigned long distance;
1423         struct page *page = NULL;
1424         bool scan_start = false;
1425         int order;
1426
1427         /* Full compaction passes in a negative order */
1428         if (cc->order <= 0)
1429                 return cc->free_pfn;
1430
1431         /*
1432          * If starting the scan, use a deeper search and use the highest
1433          * PFN found if a suitable one is not found.
1434          */
1435         if (cc->free_pfn >= cc->zone->compact_init_free_pfn) {
1436                 limit = pageblock_nr_pages >> 1;
1437                 scan_start = true;
1438         }
1439
1440         /*
1441          * Preferred point is in the top quarter of the scan space but take
1442          * a pfn from the top half if the search is problematic.
1443          */
1444         distance = (cc->free_pfn - cc->migrate_pfn);
1445         low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2));
1446         min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1));
1447
1448         if (WARN_ON_ONCE(min_pfn > low_pfn))
1449                 low_pfn = min_pfn;
1450
1451         /*
1452          * Search starts from the last successful isolation order or the next
1453          * order to search after a previous failure
1454          */
1455         cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order);
1456
1457         for (order = cc->search_order;
1458              !page && order >= 0;
1459              order = next_search_order(cc, order)) {
1460                 struct free_area *area = &cc->zone->free_area[order];
1461                 struct list_head *freelist;
1462                 struct page *freepage;
1463                 unsigned long flags;
1464                 unsigned int order_scanned = 0;
1465                 unsigned long high_pfn = 0;
1466
1467                 if (!area->nr_free)
1468                         continue;
1469
1470                 spin_lock_irqsave(&cc->zone->lock, flags);
1471                 freelist = &area->free_list[MIGRATE_MOVABLE];
1472                 list_for_each_entry_reverse(freepage, freelist, lru) {
1473                         unsigned long pfn;
1474
1475                         order_scanned++;
1476                         nr_scanned++;
1477                         pfn = page_to_pfn(freepage);
1478
1479                         if (pfn >= highest)
1480                                 highest = max(pageblock_start_pfn(pfn),
1481                                               cc->zone->zone_start_pfn);
1482
1483                         if (pfn >= low_pfn) {
1484                                 cc->fast_search_fail = 0;
1485                                 cc->search_order = order;
1486                                 page = freepage;
1487                                 break;
1488                         }
1489
1490                         if (pfn >= min_pfn && pfn > high_pfn) {
1491                                 high_pfn = pfn;
1492
1493                                 /* Shorten the scan if a candidate is found */
1494                                 limit >>= 1;
1495                         }
1496
1497                         if (order_scanned >= limit)
1498                                 break;
1499                 }
1500
1501                 /* Use a minimum pfn if a preferred one was not found */
1502                 if (!page && high_pfn) {
1503                         page = pfn_to_page(high_pfn);
1504
1505                         /* Update freepage for the list reorder below */
1506                         freepage = page;
1507                 }
1508
1509                 /* Reorder to so a future search skips recent pages */
1510                 move_freelist_head(freelist, freepage);
1511
1512                 /* Isolate the page if available */
1513                 if (page) {
1514                         if (__isolate_free_page(page, order)) {
1515                                 set_page_private(page, order);
1516                                 nr_isolated = 1 << order;
1517                                 cc->nr_freepages += nr_isolated;
1518                                 list_add_tail(&page->lru, &cc->freepages);
1519                                 count_compact_events(COMPACTISOLATED, nr_isolated);
1520                         } else {
1521                                 /* If isolation fails, abort the search */
1522                                 order = cc->search_order + 1;
1523                                 page = NULL;
1524                         }
1525                 }
1526
1527                 spin_unlock_irqrestore(&cc->zone->lock, flags);
1528
1529                 /*
1530                  * Smaller scan on next order so the total scan is related
1531                  * to freelist_scan_limit.
1532                  */
1533                 if (order_scanned >= limit)
1534                         limit = max(1U, limit >> 1);
1535         }
1536
1537         if (!page) {
1538                 cc->fast_search_fail++;
1539                 if (scan_start) {
1540                         /*
1541                          * Use the highest PFN found above min. If one was
1542                          * not found, be pessimistic for direct compaction
1543                          * and use the min mark.
1544                          */
1545                         if (highest) {
1546                                 page = pfn_to_page(highest);
1547                                 cc->free_pfn = highest;
1548                         } else {
1549                                 if (cc->direct_compaction && pfn_valid(min_pfn)) {
1550                                         page = pageblock_pfn_to_page(min_pfn,
1551                                                 min(pageblock_end_pfn(min_pfn),
1552                                                     zone_end_pfn(cc->zone)),
1553                                                 cc->zone);
1554                                         cc->free_pfn = min_pfn;
1555                                 }
1556                         }
1557                 }
1558         }
1559
1560         if (highest && highest >= cc->zone->compact_cached_free_pfn) {
1561                 highest -= pageblock_nr_pages;
1562                 cc->zone->compact_cached_free_pfn = highest;
1563         }
1564
1565         cc->total_free_scanned += nr_scanned;
1566         if (!page)
1567                 return cc->free_pfn;
1568
1569         low_pfn = page_to_pfn(page);
1570         fast_isolate_around(cc, low_pfn, nr_isolated);
1571         return low_pfn;
1572 }
1573
1574 /*
1575  * Based on information in the current compact_control, find blocks
1576  * suitable for isolating free pages from and then isolate them.
1577  */
1578 static void isolate_freepages(struct compact_control *cc)
1579 {
1580         struct zone *zone = cc->zone;
1581         struct page *page;
1582         unsigned long block_start_pfn;  /* start of current pageblock */
1583         unsigned long isolate_start_pfn; /* exact pfn we start at */
1584         unsigned long block_end_pfn;    /* end of current pageblock */
1585         unsigned long low_pfn;       /* lowest pfn scanner is able to scan */
1586         struct list_head *freelist = &cc->freepages;
1587         unsigned int stride;
1588
1589         /* Try a small search of the free lists for a candidate */
1590         isolate_start_pfn = fast_isolate_freepages(cc);
1591         if (cc->nr_freepages)
1592                 goto splitmap;
1593
1594         /*
1595          * Initialise the free scanner. The starting point is where we last
1596          * successfully isolated from, zone-cached value, or the end of the
1597          * zone when isolating for the first time. For looping we also need
1598          * this pfn aligned down to the pageblock boundary, because we do
1599          * block_start_pfn -= pageblock_nr_pages in the for loop.
1600          * For ending point, take care when isolating in last pageblock of a
1601          * zone which ends in the middle of a pageblock.
1602          * The low boundary is the end of the pageblock the migration scanner
1603          * is using.
1604          */
1605         isolate_start_pfn = cc->free_pfn;
1606         block_start_pfn = pageblock_start_pfn(isolate_start_pfn);
1607         block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1608                                                 zone_end_pfn(zone));
1609         low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1610         stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1;
1611
1612         /*
1613          * Isolate free pages until enough are available to migrate the
1614          * pages on cc->migratepages. We stop searching if the migrate
1615          * and free page scanners meet or enough free pages are isolated.
1616          */
1617         for (; block_start_pfn >= low_pfn;
1618                                 block_end_pfn = block_start_pfn,
1619                                 block_start_pfn -= pageblock_nr_pages,
1620                                 isolate_start_pfn = block_start_pfn) {
1621                 unsigned long nr_isolated;
1622
1623                 /*
1624                  * This can iterate a massively long zone without finding any
1625                  * suitable migration targets, so periodically check resched.
1626                  */
1627                 if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)))
1628                         cond_resched();
1629
1630                 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1631                                                                         zone);
1632                 if (!page)
1633                         continue;
1634
1635                 /* Check the block is suitable for migration */
1636                 if (!suitable_migration_target(cc, page))
1637                         continue;
1638
1639                 /* If isolation recently failed, do not retry */
1640                 if (!isolation_suitable(cc, page))
1641                         continue;
1642
1643                 /* Found a block suitable for isolating free pages from. */
1644                 nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn,
1645                                         block_end_pfn, freelist, stride, false);
1646
1647                 /* Update the skip hint if the full pageblock was scanned */
1648                 if (isolate_start_pfn == block_end_pfn)
1649                         update_pageblock_skip(cc, page, block_start_pfn);
1650
1651                 /* Are enough freepages isolated? */
1652                 if (cc->nr_freepages >= cc->nr_migratepages) {
1653                         if (isolate_start_pfn >= block_end_pfn) {
1654                                 /*
1655                                  * Restart at previous pageblock if more
1656                                  * freepages can be isolated next time.
1657                                  */
1658                                 isolate_start_pfn =
1659                                         block_start_pfn - pageblock_nr_pages;
1660                         }
1661                         break;
1662                 } else if (isolate_start_pfn < block_end_pfn) {
1663                         /*
1664                          * If isolation failed early, do not continue
1665                          * needlessly.
1666                          */
1667                         break;
1668                 }
1669
1670                 /* Adjust stride depending on isolation */
1671                 if (nr_isolated) {
1672                         stride = 1;
1673                         continue;
1674                 }
1675                 stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1);
1676         }
1677
1678         /*
1679          * Record where the free scanner will restart next time. Either we
1680          * broke from the loop and set isolate_start_pfn based on the last
1681          * call to isolate_freepages_block(), or we met the migration scanner
1682          * and the loop terminated due to isolate_start_pfn < low_pfn
1683          */
1684         cc->free_pfn = isolate_start_pfn;
1685
1686 splitmap:
1687         /* __isolate_free_page() does not map the pages */
1688         split_map_pages(freelist);
1689 }
1690
1691 /*
1692  * This is a migrate-callback that "allocates" freepages by taking pages
1693  * from the isolated freelists in the block we are migrating to.
1694  */
1695 static struct page *compaction_alloc(struct page *migratepage,
1696                                         unsigned long data)
1697 {
1698         struct compact_control *cc = (struct compact_control *)data;
1699         struct page *freepage;
1700
1701         if (list_empty(&cc->freepages)) {
1702                 isolate_freepages(cc);
1703
1704                 if (list_empty(&cc->freepages))
1705                         return NULL;
1706         }
1707
1708         freepage = list_entry(cc->freepages.next, struct page, lru);
1709         list_del(&freepage->lru);
1710         cc->nr_freepages--;
1711
1712         return freepage;
1713 }
1714
1715 /*
1716  * This is a migrate-callback that "frees" freepages back to the isolated
1717  * freelist.  All pages on the freelist are from the same zone, so there is no
1718  * special handling needed for NUMA.
1719  */
1720 static void compaction_free(struct page *page, unsigned long data)
1721 {
1722         struct compact_control *cc = (struct compact_control *)data;
1723
1724         list_add(&page->lru, &cc->freepages);
1725         cc->nr_freepages++;
1726 }
1727
1728 /* possible outcome of isolate_migratepages */
1729 typedef enum {
1730         ISOLATE_ABORT,          /* Abort compaction now */
1731         ISOLATE_NONE,           /* No pages isolated, continue scanning */
1732         ISOLATE_SUCCESS,        /* Pages isolated, migrate */
1733 } isolate_migrate_t;
1734
1735 /*
1736  * Allow userspace to control policy on scanning the unevictable LRU for
1737  * compactable pages.
1738  */
1739 #ifdef CONFIG_PREEMPT_RT
1740 int sysctl_compact_unevictable_allowed __read_mostly = 0;
1741 #else
1742 int sysctl_compact_unevictable_allowed __read_mostly = 1;
1743 #endif
1744
1745 static inline void
1746 update_fast_start_pfn(struct compact_control *cc, unsigned long pfn)
1747 {
1748         if (cc->fast_start_pfn == ULONG_MAX)
1749                 return;
1750
1751         if (!cc->fast_start_pfn)
1752                 cc->fast_start_pfn = pfn;
1753
1754         cc->fast_start_pfn = min(cc->fast_start_pfn, pfn);
1755 }
1756
1757 static inline unsigned long
1758 reinit_migrate_pfn(struct compact_control *cc)
1759 {
1760         if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX)
1761                 return cc->migrate_pfn;
1762
1763         cc->migrate_pfn = cc->fast_start_pfn;
1764         cc->fast_start_pfn = ULONG_MAX;
1765
1766         return cc->migrate_pfn;
1767 }
1768
1769 /*
1770  * Briefly search the free lists for a migration source that already has
1771  * some free pages to reduce the number of pages that need migration
1772  * before a pageblock is free.
1773  */
1774 static unsigned long fast_find_migrateblock(struct compact_control *cc)
1775 {
1776         unsigned int limit = freelist_scan_limit(cc);
1777         unsigned int nr_scanned = 0;
1778         unsigned long distance;
1779         unsigned long pfn = cc->migrate_pfn;
1780         unsigned long high_pfn;
1781         int order;
1782         bool found_block = false;
1783
1784         /* Skip hints are relied on to avoid repeats on the fast search */
1785         if (cc->ignore_skip_hint)
1786                 return pfn;
1787
1788         /*
1789          * If the migrate_pfn is not at the start of a zone or the start
1790          * of a pageblock then assume this is a continuation of a previous
1791          * scan restarted due to COMPACT_CLUSTER_MAX.
1792          */
1793         if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn))
1794                 return pfn;
1795
1796         /*
1797          * For smaller orders, just linearly scan as the number of pages
1798          * to migrate should be relatively small and does not necessarily
1799          * justify freeing up a large block for a small allocation.
1800          */
1801         if (cc->order <= PAGE_ALLOC_COSTLY_ORDER)
1802                 return pfn;
1803
1804         /*
1805          * Only allow kcompactd and direct requests for movable pages to
1806          * quickly clear out a MOVABLE pageblock for allocation. This
1807          * reduces the risk that a large movable pageblock is freed for
1808          * an unmovable/reclaimable small allocation.
1809          */
1810         if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE)
1811                 return pfn;
1812
1813         /*
1814          * When starting the migration scanner, pick any pageblock within the
1815          * first half of the search space. Otherwise try and pick a pageblock
1816          * within the first eighth to reduce the chances that a migration
1817          * target later becomes a source.
1818          */
1819         distance = (cc->free_pfn - cc->migrate_pfn) >> 1;
1820         if (cc->migrate_pfn != cc->zone->zone_start_pfn)
1821                 distance >>= 2;
1822         high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance);
1823
1824         for (order = cc->order - 1;
1825              order >= PAGE_ALLOC_COSTLY_ORDER && !found_block && nr_scanned < limit;
1826              order--) {
1827                 struct free_area *area = &cc->zone->free_area[order];
1828                 struct list_head *freelist;
1829                 unsigned long flags;
1830                 struct page *freepage;
1831
1832                 if (!area->nr_free)
1833                         continue;
1834
1835                 spin_lock_irqsave(&cc->zone->lock, flags);
1836                 freelist = &area->free_list[MIGRATE_MOVABLE];
1837                 list_for_each_entry(freepage, freelist, lru) {
1838                         unsigned long free_pfn;
1839
1840                         if (nr_scanned++ >= limit) {
1841                                 move_freelist_tail(freelist, freepage);
1842                                 break;
1843                         }
1844
1845                         free_pfn = page_to_pfn(freepage);
1846                         if (free_pfn < high_pfn) {
1847                                 /*
1848                                  * Avoid if skipped recently. Ideally it would
1849                                  * move to the tail but even safe iteration of
1850                                  * the list assumes an entry is deleted, not
1851                                  * reordered.
1852                                  */
1853                                 if (get_pageblock_skip(freepage))
1854                                         continue;
1855
1856                                 /* Reorder to so a future search skips recent pages */
1857                                 move_freelist_tail(freelist, freepage);
1858
1859                                 update_fast_start_pfn(cc, free_pfn);
1860                                 pfn = pageblock_start_pfn(free_pfn);
1861                                 cc->fast_search_fail = 0;
1862                                 found_block = true;
1863                                 set_pageblock_skip(freepage);
1864                                 break;
1865                         }
1866                 }
1867                 spin_unlock_irqrestore(&cc->zone->lock, flags);
1868         }
1869
1870         cc->total_migrate_scanned += nr_scanned;
1871
1872         /*
1873          * If fast scanning failed then use a cached entry for a page block
1874          * that had free pages as the basis for starting a linear scan.
1875          */
1876         if (!found_block) {
1877                 cc->fast_search_fail++;
1878                 pfn = reinit_migrate_pfn(cc);
1879         }
1880         return pfn;
1881 }
1882
1883 /*
1884  * Isolate all pages that can be migrated from the first suitable block,
1885  * starting at the block pointed to by the migrate scanner pfn within
1886  * compact_control.
1887  */
1888 static isolate_migrate_t isolate_migratepages(struct compact_control *cc)
1889 {
1890         unsigned long block_start_pfn;
1891         unsigned long block_end_pfn;
1892         unsigned long low_pfn;
1893         struct page *page;
1894         const isolate_mode_t isolate_mode =
1895                 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1896                 (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1897         bool fast_find_block;
1898
1899         /*
1900          * Start at where we last stopped, or beginning of the zone as
1901          * initialized by compact_zone(). The first failure will use
1902          * the lowest PFN as the starting point for linear scanning.
1903          */
1904         low_pfn = fast_find_migrateblock(cc);
1905         block_start_pfn = pageblock_start_pfn(low_pfn);
1906         if (block_start_pfn < cc->zone->zone_start_pfn)
1907                 block_start_pfn = cc->zone->zone_start_pfn;
1908
1909         /*
1910          * fast_find_migrateblock marks a pageblock skipped so to avoid
1911          * the isolation_suitable check below, check whether the fast
1912          * search was successful.
1913          */
1914         fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail;
1915
1916         /* Only scan within a pageblock boundary */
1917         block_end_pfn = pageblock_end_pfn(low_pfn);
1918
1919         /*
1920          * Iterate over whole pageblocks until we find the first suitable.
1921          * Do not cross the free scanner.
1922          */
1923         for (; block_end_pfn <= cc->free_pfn;
1924                         fast_find_block = false,
1925                         cc->migrate_pfn = low_pfn = block_end_pfn,
1926                         block_start_pfn = block_end_pfn,
1927                         block_end_pfn += pageblock_nr_pages) {
1928
1929                 /*
1930                  * This can potentially iterate a massively long zone with
1931                  * many pageblocks unsuitable, so periodically check if we
1932                  * need to schedule.
1933                  */
1934                 if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)))
1935                         cond_resched();
1936
1937                 page = pageblock_pfn_to_page(block_start_pfn,
1938                                                 block_end_pfn, cc->zone);
1939                 if (!page)
1940                         continue;
1941
1942                 /*
1943                  * If isolation recently failed, do not retry. Only check the
1944                  * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock
1945                  * to be visited multiple times. Assume skip was checked
1946                  * before making it "skip" so other compaction instances do
1947                  * not scan the same block.
1948                  */
1949                 if (IS_ALIGNED(low_pfn, pageblock_nr_pages) &&
1950                     !fast_find_block && !isolation_suitable(cc, page))
1951                         continue;
1952
1953                 /*
1954                  * For async compaction, also only scan in MOVABLE blocks
1955                  * without huge pages. Async compaction is optimistic to see
1956                  * if the minimum amount of work satisfies the allocation.
1957                  * The cached PFN is updated as it's possible that all
1958                  * remaining blocks between source and target are unsuitable
1959                  * and the compaction scanners fail to meet.
1960                  */
1961                 if (!suitable_migration_source(cc, page)) {
1962                         update_cached_migrate(cc, block_end_pfn);
1963                         continue;
1964                 }
1965
1966                 /* Perform the isolation */
1967                 if (isolate_migratepages_block(cc, low_pfn, block_end_pfn,
1968                                                 isolate_mode))
1969                         return ISOLATE_ABORT;
1970
1971                 /*
1972                  * Either we isolated something and proceed with migration. Or
1973                  * we failed and compact_zone should decide if we should
1974                  * continue or not.
1975                  */
1976                 break;
1977         }
1978
1979         return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1980 }
1981
1982 /*
1983  * order == -1 is expected when compacting via
1984  * /proc/sys/vm/compact_memory
1985  */
1986 static inline bool is_via_compact_memory(int order)
1987 {
1988         return order == -1;
1989 }
1990
1991 static bool kswapd_is_running(pg_data_t *pgdat)
1992 {
1993         return pgdat->kswapd && task_is_running(pgdat->kswapd);
1994 }
1995
1996 /*
1997  * A zone's fragmentation score is the external fragmentation wrt to the
1998  * COMPACTION_HPAGE_ORDER. It returns a value in the range [0, 100].
1999  */
2000 static unsigned int fragmentation_score_zone(struct zone *zone)
2001 {
2002         return extfrag_for_order(zone, COMPACTION_HPAGE_ORDER);
2003 }
2004
2005 /*
2006  * A weighted zone's fragmentation score is the external fragmentation
2007  * wrt to the COMPACTION_HPAGE_ORDER scaled by the zone's size. It
2008  * returns a value in the range [0, 100].
2009  *
2010  * The scaling factor ensures that proactive compaction focuses on larger
2011  * zones like ZONE_NORMAL, rather than smaller, specialized zones like
2012  * ZONE_DMA32. For smaller zones, the score value remains close to zero,
2013  * and thus never exceeds the high threshold for proactive compaction.
2014  */
2015 static unsigned int fragmentation_score_zone_weighted(struct zone *zone)
2016 {
2017         unsigned long score;
2018
2019         score = zone->present_pages * fragmentation_score_zone(zone);
2020         return div64_ul(score, zone->zone_pgdat->node_present_pages + 1);
2021 }
2022
2023 /*
2024  * The per-node proactive (background) compaction process is started by its
2025  * corresponding kcompactd thread when the node's fragmentation score
2026  * exceeds the high threshold. The compaction process remains active till
2027  * the node's score falls below the low threshold, or one of the back-off
2028  * conditions is met.
2029  */
2030 static unsigned int fragmentation_score_node(pg_data_t *pgdat)
2031 {
2032         unsigned int score = 0;
2033         int zoneid;
2034
2035         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2036                 struct zone *zone;
2037
2038                 zone = &pgdat->node_zones[zoneid];
2039                 score += fragmentation_score_zone_weighted(zone);
2040         }
2041
2042         return score;
2043 }
2044
2045 static unsigned int fragmentation_score_wmark(pg_data_t *pgdat, bool low)
2046 {
2047         unsigned int wmark_low;
2048
2049         /*
2050          * Cap the low watermark to avoid excessive compaction
2051          * activity in case a user sets the proactiveness tunable
2052          * close to 100 (maximum).
2053          */
2054         wmark_low = max(100U - sysctl_compaction_proactiveness, 5U);
2055         return low ? wmark_low : min(wmark_low + 10, 100U);
2056 }
2057
2058 static bool should_proactive_compact_node(pg_data_t *pgdat)
2059 {
2060         int wmark_high;
2061
2062         if (!sysctl_compaction_proactiveness || kswapd_is_running(pgdat))
2063                 return false;
2064
2065         wmark_high = fragmentation_score_wmark(pgdat, false);
2066         return fragmentation_score_node(pgdat) > wmark_high;
2067 }
2068
2069 static enum compact_result __compact_finished(struct compact_control *cc)
2070 {
2071         unsigned int order;
2072         const int migratetype = cc->migratetype;
2073         int ret;
2074
2075         /* Compaction run completes if the migrate and free scanner meet */
2076         if (compact_scanners_met(cc)) {
2077                 /* Let the next compaction start anew. */
2078                 reset_cached_positions(cc->zone);
2079
2080                 /*
2081                  * Mark that the PG_migrate_skip information should be cleared
2082                  * by kswapd when it goes to sleep. kcompactd does not set the
2083                  * flag itself as the decision to be clear should be directly
2084                  * based on an allocation request.
2085                  */
2086                 if (cc->direct_compaction)
2087                         cc->zone->compact_blockskip_flush = true;
2088
2089                 if (cc->whole_zone)
2090                         return COMPACT_COMPLETE;
2091                 else
2092                         return COMPACT_PARTIAL_SKIPPED;
2093         }
2094
2095         if (cc->proactive_compaction) {
2096                 int score, wmark_low;
2097                 pg_data_t *pgdat;
2098
2099                 pgdat = cc->zone->zone_pgdat;
2100                 if (kswapd_is_running(pgdat))
2101                         return COMPACT_PARTIAL_SKIPPED;
2102
2103                 score = fragmentation_score_zone(cc->zone);
2104                 wmark_low = fragmentation_score_wmark(pgdat, true);
2105
2106                 if (score > wmark_low)
2107                         ret = COMPACT_CONTINUE;
2108                 else
2109                         ret = COMPACT_SUCCESS;
2110
2111                 goto out;
2112         }
2113
2114         if (is_via_compact_memory(cc->order))
2115                 return COMPACT_CONTINUE;
2116
2117         /*
2118          * Always finish scanning a pageblock to reduce the possibility of
2119          * fallbacks in the future. This is particularly important when
2120          * migration source is unmovable/reclaimable but it's not worth
2121          * special casing.
2122          */
2123         if (!IS_ALIGNED(cc->migrate_pfn, pageblock_nr_pages))
2124                 return COMPACT_CONTINUE;
2125
2126         /* Direct compactor: Is a suitable page free? */
2127         ret = COMPACT_NO_SUITABLE_PAGE;
2128         for (order = cc->order; order < MAX_ORDER; order++) {
2129                 struct free_area *area = &cc->zone->free_area[order];
2130                 bool can_steal;
2131
2132                 /* Job done if page is free of the right migratetype */
2133                 if (!free_area_empty(area, migratetype))
2134                         return COMPACT_SUCCESS;
2135
2136 #ifdef CONFIG_CMA
2137                 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
2138                 if (migratetype == MIGRATE_MOVABLE &&
2139                         !free_area_empty(area, MIGRATE_CMA))
2140                         return COMPACT_SUCCESS;
2141 #endif
2142                 /*
2143                  * Job done if allocation would steal freepages from
2144                  * other migratetype buddy lists.
2145                  */
2146                 if (find_suitable_fallback(area, order, migratetype,
2147                                                 true, &can_steal) != -1) {
2148
2149                         /* movable pages are OK in any pageblock */
2150                         if (migratetype == MIGRATE_MOVABLE)
2151                                 return COMPACT_SUCCESS;
2152
2153                         /*
2154                          * We are stealing for a non-movable allocation. Make
2155                          * sure we finish compacting the current pageblock
2156                          * first so it is as free as possible and we won't
2157                          * have to steal another one soon. This only applies
2158                          * to sync compaction, as async compaction operates
2159                          * on pageblocks of the same migratetype.
2160                          */
2161                         if (cc->mode == MIGRATE_ASYNC ||
2162                                         IS_ALIGNED(cc->migrate_pfn,
2163                                                         pageblock_nr_pages)) {
2164                                 return COMPACT_SUCCESS;
2165                         }
2166
2167                         ret = COMPACT_CONTINUE;
2168                         break;
2169                 }
2170         }
2171
2172 out:
2173         if (cc->contended || fatal_signal_pending(current))
2174                 ret = COMPACT_CONTENDED;
2175
2176         return ret;
2177 }
2178
2179 static enum compact_result compact_finished(struct compact_control *cc)
2180 {
2181         int ret;
2182
2183         ret = __compact_finished(cc);
2184         trace_mm_compaction_finished(cc->zone, cc->order, ret);
2185         if (ret == COMPACT_NO_SUITABLE_PAGE)
2186                 ret = COMPACT_CONTINUE;
2187
2188         return ret;
2189 }
2190
2191 static enum compact_result __compaction_suitable(struct zone *zone, int order,
2192                                         unsigned int alloc_flags,
2193                                         int highest_zoneidx,
2194                                         unsigned long wmark_target)
2195 {
2196         unsigned long watermark;
2197
2198         if (is_via_compact_memory(order))
2199                 return COMPACT_CONTINUE;
2200
2201         watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
2202         /*
2203          * If watermarks for high-order allocation are already met, there
2204          * should be no need for compaction at all.
2205          */
2206         if (zone_watermark_ok(zone, order, watermark, highest_zoneidx,
2207                                                                 alloc_flags))
2208                 return COMPACT_SUCCESS;
2209
2210         /*
2211          * Watermarks for order-0 must be met for compaction to be able to
2212          * isolate free pages for migration targets. This means that the
2213          * watermark and alloc_flags have to match, or be more pessimistic than
2214          * the check in __isolate_free_page(). We don't use the direct
2215          * compactor's alloc_flags, as they are not relevant for freepage
2216          * isolation. We however do use the direct compactor's highest_zoneidx
2217          * to skip over zones where lowmem reserves would prevent allocation
2218          * even if compaction succeeds.
2219          * For costly orders, we require low watermark instead of min for
2220          * compaction to proceed to increase its chances.
2221          * ALLOC_CMA is used, as pages in CMA pageblocks are considered
2222          * suitable migration targets
2223          */
2224         watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
2225                                 low_wmark_pages(zone) : min_wmark_pages(zone);
2226         watermark += compact_gap(order);
2227         if (!__zone_watermark_ok(zone, 0, watermark, highest_zoneidx,
2228                                                 ALLOC_CMA, wmark_target))
2229                 return COMPACT_SKIPPED;
2230
2231         return COMPACT_CONTINUE;
2232 }
2233
2234 /*
2235  * compaction_suitable: Is this suitable to run compaction on this zone now?
2236  * Returns
2237  *   COMPACT_SKIPPED  - If there are too few free pages for compaction
2238  *   COMPACT_SUCCESS  - If the allocation would succeed without compaction
2239  *   COMPACT_CONTINUE - If compaction should run now
2240  */
2241 enum compact_result compaction_suitable(struct zone *zone, int order,
2242                                         unsigned int alloc_flags,
2243                                         int highest_zoneidx)
2244 {
2245         enum compact_result ret;
2246         int fragindex;
2247
2248         ret = __compaction_suitable(zone, order, alloc_flags, highest_zoneidx,
2249                                     zone_page_state(zone, NR_FREE_PAGES));
2250         /*
2251          * fragmentation index determines if allocation failures are due to
2252          * low memory or external fragmentation
2253          *
2254          * index of -1000 would imply allocations might succeed depending on
2255          * watermarks, but we already failed the high-order watermark check
2256          * index towards 0 implies failure is due to lack of memory
2257          * index towards 1000 implies failure is due to fragmentation
2258          *
2259          * Only compact if a failure would be due to fragmentation. Also
2260          * ignore fragindex for non-costly orders where the alternative to
2261          * a successful reclaim/compaction is OOM. Fragindex and the
2262          * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
2263          * excessive compaction for costly orders, but it should not be at the
2264          * expense of system stability.
2265          */
2266         if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) {
2267                 fragindex = fragmentation_index(zone, order);
2268                 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
2269                         ret = COMPACT_NOT_SUITABLE_ZONE;
2270         }
2271
2272         trace_mm_compaction_suitable(zone, order, ret);
2273         if (ret == COMPACT_NOT_SUITABLE_ZONE)
2274                 ret = COMPACT_SKIPPED;
2275
2276         return ret;
2277 }
2278
2279 bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
2280                 int alloc_flags)
2281 {
2282         struct zone *zone;
2283         struct zoneref *z;
2284
2285         /*
2286          * Make sure at least one zone would pass __compaction_suitable if we continue
2287          * retrying the reclaim.
2288          */
2289         for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2290                                 ac->highest_zoneidx, ac->nodemask) {
2291                 unsigned long available;
2292                 enum compact_result compact_result;
2293
2294                 /*
2295                  * Do not consider all the reclaimable memory because we do not
2296                  * want to trash just for a single high order allocation which
2297                  * is even not guaranteed to appear even if __compaction_suitable
2298                  * is happy about the watermark check.
2299                  */
2300                 available = zone_reclaimable_pages(zone) / order;
2301                 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
2302                 compact_result = __compaction_suitable(zone, order, alloc_flags,
2303                                 ac->highest_zoneidx, available);
2304                 if (compact_result != COMPACT_SKIPPED)
2305                         return true;
2306         }
2307
2308         return false;
2309 }
2310
2311 static enum compact_result
2312 compact_zone(struct compact_control *cc, struct capture_control *capc)
2313 {
2314         enum compact_result ret;
2315         unsigned long start_pfn = cc->zone->zone_start_pfn;
2316         unsigned long end_pfn = zone_end_pfn(cc->zone);
2317         unsigned long last_migrated_pfn;
2318         const bool sync = cc->mode != MIGRATE_ASYNC;
2319         bool update_cached;
2320         unsigned int nr_succeeded = 0;
2321
2322         /*
2323          * These counters track activities during zone compaction.  Initialize
2324          * them before compacting a new zone.
2325          */
2326         cc->total_migrate_scanned = 0;
2327         cc->total_free_scanned = 0;
2328         cc->nr_migratepages = 0;
2329         cc->nr_freepages = 0;
2330         INIT_LIST_HEAD(&cc->freepages);
2331         INIT_LIST_HEAD(&cc->migratepages);
2332
2333         cc->migratetype = gfp_migratetype(cc->gfp_mask);
2334         ret = compaction_suitable(cc->zone, cc->order, cc->alloc_flags,
2335                                                         cc->highest_zoneidx);
2336         /* Compaction is likely to fail */
2337         if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED)
2338                 return ret;
2339
2340         /* huh, compaction_suitable is returning something unexpected */
2341         VM_BUG_ON(ret != COMPACT_CONTINUE);
2342
2343         /*
2344          * Clear pageblock skip if there were failures recently and compaction
2345          * is about to be retried after being deferred.
2346          */
2347         if (compaction_restarting(cc->zone, cc->order))
2348                 __reset_isolation_suitable(cc->zone);
2349
2350         /*
2351          * Setup to move all movable pages to the end of the zone. Used cached
2352          * information on where the scanners should start (unless we explicitly
2353          * want to compact the whole zone), but check that it is initialised
2354          * by ensuring the values are within zone boundaries.
2355          */
2356         cc->fast_start_pfn = 0;
2357         if (cc->whole_zone) {
2358                 cc->migrate_pfn = start_pfn;
2359                 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2360         } else {
2361                 cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync];
2362                 cc->free_pfn = cc->zone->compact_cached_free_pfn;
2363                 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
2364                         cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2365                         cc->zone->compact_cached_free_pfn = cc->free_pfn;
2366                 }
2367                 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
2368                         cc->migrate_pfn = start_pfn;
2369                         cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
2370                         cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
2371                 }
2372
2373                 if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn)
2374                         cc->whole_zone = true;
2375         }
2376
2377         last_migrated_pfn = 0;
2378
2379         /*
2380          * Migrate has separate cached PFNs for ASYNC and SYNC* migration on
2381          * the basis that some migrations will fail in ASYNC mode. However,
2382          * if the cached PFNs match and pageblocks are skipped due to having
2383          * no isolation candidates, then the sync state does not matter.
2384          * Until a pageblock with isolation candidates is found, keep the
2385          * cached PFNs in sync to avoid revisiting the same blocks.
2386          */
2387         update_cached = !sync &&
2388                 cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1];
2389
2390         trace_mm_compaction_begin(cc, start_pfn, end_pfn, sync);
2391
2392         /* lru_add_drain_all could be expensive with involving other CPUs */
2393         lru_add_drain();
2394
2395         while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) {
2396                 int err;
2397                 unsigned long iteration_start_pfn = cc->migrate_pfn;
2398
2399                 /*
2400                  * Avoid multiple rescans which can happen if a page cannot be
2401                  * isolated (dirty/writeback in async mode) or if the migrated
2402                  * pages are being allocated before the pageblock is cleared.
2403                  * The first rescan will capture the entire pageblock for
2404                  * migration. If it fails, it'll be marked skip and scanning
2405                  * will proceed as normal.
2406                  */
2407                 cc->rescan = false;
2408                 if (pageblock_start_pfn(last_migrated_pfn) ==
2409                     pageblock_start_pfn(iteration_start_pfn)) {
2410                         cc->rescan = true;
2411                 }
2412
2413                 switch (isolate_migratepages(cc)) {
2414                 case ISOLATE_ABORT:
2415                         ret = COMPACT_CONTENDED;
2416                         putback_movable_pages(&cc->migratepages);
2417                         cc->nr_migratepages = 0;
2418                         goto out;
2419                 case ISOLATE_NONE:
2420                         if (update_cached) {
2421                                 cc->zone->compact_cached_migrate_pfn[1] =
2422                                         cc->zone->compact_cached_migrate_pfn[0];
2423                         }
2424
2425                         /*
2426                          * We haven't isolated and migrated anything, but
2427                          * there might still be unflushed migrations from
2428                          * previous cc->order aligned block.
2429                          */
2430                         goto check_drain;
2431                 case ISOLATE_SUCCESS:
2432                         update_cached = false;
2433                         last_migrated_pfn = iteration_start_pfn;
2434                 }
2435
2436                 err = migrate_pages(&cc->migratepages, compaction_alloc,
2437                                 compaction_free, (unsigned long)cc, cc->mode,
2438                                 MR_COMPACTION, &nr_succeeded);
2439
2440                 trace_mm_compaction_migratepages(cc, nr_succeeded);
2441
2442                 /* All pages were either migrated or will be released */
2443                 cc->nr_migratepages = 0;
2444                 if (err) {
2445                         putback_movable_pages(&cc->migratepages);
2446                         /*
2447                          * migrate_pages() may return -ENOMEM when scanners meet
2448                          * and we want compact_finished() to detect it
2449                          */
2450                         if (err == -ENOMEM && !compact_scanners_met(cc)) {
2451                                 ret = COMPACT_CONTENDED;
2452                                 goto out;
2453                         }
2454                         /*
2455                          * We failed to migrate at least one page in the current
2456                          * order-aligned block, so skip the rest of it.
2457                          */
2458                         if (cc->direct_compaction &&
2459                                                 (cc->mode == MIGRATE_ASYNC)) {
2460                                 cc->migrate_pfn = block_end_pfn(
2461                                                 cc->migrate_pfn - 1, cc->order);
2462                                 /* Draining pcplists is useless in this case */
2463                                 last_migrated_pfn = 0;
2464                         }
2465                 }
2466
2467 check_drain:
2468                 /*
2469                  * Has the migration scanner moved away from the previous
2470                  * cc->order aligned block where we migrated from? If yes,
2471                  * flush the pages that were freed, so that they can merge and
2472                  * compact_finished() can detect immediately if allocation
2473                  * would succeed.
2474                  */
2475                 if (cc->order > 0 && last_migrated_pfn) {
2476                         unsigned long current_block_start =
2477                                 block_start_pfn(cc->migrate_pfn, cc->order);
2478
2479                         if (last_migrated_pfn < current_block_start) {
2480                                 lru_add_drain_cpu_zone(cc->zone);
2481                                 /* No more flushing until we migrate again */
2482                                 last_migrated_pfn = 0;
2483                         }
2484                 }
2485
2486                 /* Stop if a page has been captured */
2487                 if (capc && capc->page) {
2488                         ret = COMPACT_SUCCESS;
2489                         break;
2490                 }
2491         }
2492
2493 out:
2494         /*
2495          * Release free pages and update where the free scanner should restart,
2496          * so we don't leave any returned pages behind in the next attempt.
2497          */
2498         if (cc->nr_freepages > 0) {
2499                 unsigned long free_pfn = release_freepages(&cc->freepages);
2500
2501                 cc->nr_freepages = 0;
2502                 VM_BUG_ON(free_pfn == 0);
2503                 /* The cached pfn is always the first in a pageblock */
2504                 free_pfn = pageblock_start_pfn(free_pfn);
2505                 /*
2506                  * Only go back, not forward. The cached pfn might have been
2507                  * already reset to zone end in compact_finished()
2508                  */
2509                 if (free_pfn > cc->zone->compact_cached_free_pfn)
2510                         cc->zone->compact_cached_free_pfn = free_pfn;
2511         }
2512
2513         count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
2514         count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
2515
2516         trace_mm_compaction_end(cc, start_pfn, end_pfn, sync, ret);
2517
2518         return ret;
2519 }
2520
2521 static enum compact_result compact_zone_order(struct zone *zone, int order,
2522                 gfp_t gfp_mask, enum compact_priority prio,
2523                 unsigned int alloc_flags, int highest_zoneidx,
2524                 struct page **capture)
2525 {
2526         enum compact_result ret;
2527         struct compact_control cc = {
2528                 .order = order,
2529                 .search_order = order,
2530                 .gfp_mask = gfp_mask,
2531                 .zone = zone,
2532                 .mode = (prio == COMPACT_PRIO_ASYNC) ?
2533                                         MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT,
2534                 .alloc_flags = alloc_flags,
2535                 .highest_zoneidx = highest_zoneidx,
2536                 .direct_compaction = true,
2537                 .whole_zone = (prio == MIN_COMPACT_PRIORITY),
2538                 .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
2539                 .ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
2540         };
2541         struct capture_control capc = {
2542                 .cc = &cc,
2543                 .page = NULL,
2544         };
2545
2546         /*
2547          * Make sure the structs are really initialized before we expose the
2548          * capture control, in case we are interrupted and the interrupt handler
2549          * frees a page.
2550          */
2551         barrier();
2552         WRITE_ONCE(current->capture_control, &capc);
2553
2554         ret = compact_zone(&cc, &capc);
2555
2556         VM_BUG_ON(!list_empty(&cc.freepages));
2557         VM_BUG_ON(!list_empty(&cc.migratepages));
2558
2559         /*
2560          * Make sure we hide capture control first before we read the captured
2561          * page pointer, otherwise an interrupt could free and capture a page
2562          * and we would leak it.
2563          */
2564         WRITE_ONCE(current->capture_control, NULL);
2565         *capture = READ_ONCE(capc.page);
2566         /*
2567          * Technically, it is also possible that compaction is skipped but
2568          * the page is still captured out of luck(IRQ came and freed the page).
2569          * Returning COMPACT_SUCCESS in such cases helps in properly accounting
2570          * the COMPACT[STALL|FAIL] when compaction is skipped.
2571          */
2572         if (*capture)
2573                 ret = COMPACT_SUCCESS;
2574
2575         return ret;
2576 }
2577
2578 int sysctl_extfrag_threshold = 500;
2579
2580 /**
2581  * try_to_compact_pages - Direct compact to satisfy a high-order allocation
2582  * @gfp_mask: The GFP mask of the current allocation
2583  * @order: The order of the current allocation
2584  * @alloc_flags: The allocation flags of the current allocation
2585  * @ac: The context of current allocation
2586  * @prio: Determines how hard direct compaction should try to succeed
2587  * @capture: Pointer to free page created by compaction will be stored here
2588  *
2589  * This is the main entry point for direct page compaction.
2590  */
2591 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
2592                 unsigned int alloc_flags, const struct alloc_context *ac,
2593                 enum compact_priority prio, struct page **capture)
2594 {
2595         int may_perform_io = gfp_mask & __GFP_IO;
2596         struct zoneref *z;
2597         struct zone *zone;
2598         enum compact_result rc = COMPACT_SKIPPED;
2599
2600         /*
2601          * Check if the GFP flags allow compaction - GFP_NOIO is really
2602          * tricky context because the migration might require IO
2603          */
2604         if (!may_perform_io)
2605                 return COMPACT_SKIPPED;
2606
2607         trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
2608
2609         /* Compact each zone in the list */
2610         for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2611                                         ac->highest_zoneidx, ac->nodemask) {
2612                 enum compact_result status;
2613
2614                 if (prio > MIN_COMPACT_PRIORITY
2615                                         && compaction_deferred(zone, order)) {
2616                         rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
2617                         continue;
2618                 }
2619
2620                 status = compact_zone_order(zone, order, gfp_mask, prio,
2621                                 alloc_flags, ac->highest_zoneidx, capture);
2622                 rc = max(status, rc);
2623
2624                 /* The allocation should succeed, stop compacting */
2625                 if (status == COMPACT_SUCCESS) {
2626                         /*
2627                          * We think the allocation will succeed in this zone,
2628                          * but it is not certain, hence the false. The caller
2629                          * will repeat this with true if allocation indeed
2630                          * succeeds in this zone.
2631                          */
2632                         compaction_defer_reset(zone, order, false);
2633
2634                         break;
2635                 }
2636
2637                 if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
2638                                         status == COMPACT_PARTIAL_SKIPPED))
2639                         /*
2640                          * We think that allocation won't succeed in this zone
2641                          * so we defer compaction there. If it ends up
2642                          * succeeding after all, it will be reset.
2643                          */
2644                         defer_compaction(zone, order);
2645
2646                 /*
2647                  * We might have stopped compacting due to need_resched() in
2648                  * async compaction, or due to a fatal signal detected. In that
2649                  * case do not try further zones
2650                  */
2651                 if ((prio == COMPACT_PRIO_ASYNC && need_resched())
2652                                         || fatal_signal_pending(current))
2653                         break;
2654         }
2655
2656         return rc;
2657 }
2658
2659 /*
2660  * Compact all zones within a node till each zone's fragmentation score
2661  * reaches within proactive compaction thresholds (as determined by the
2662  * proactiveness tunable).
2663  *
2664  * It is possible that the function returns before reaching score targets
2665  * due to various back-off conditions, such as, contention on per-node or
2666  * per-zone locks.
2667  */
2668 static void proactive_compact_node(pg_data_t *pgdat)
2669 {
2670         int zoneid;
2671         struct zone *zone;
2672         struct compact_control cc = {
2673                 .order = -1,
2674                 .mode = MIGRATE_SYNC_LIGHT,
2675                 .ignore_skip_hint = true,
2676                 .whole_zone = true,
2677                 .gfp_mask = GFP_KERNEL,
2678                 .proactive_compaction = true,
2679         };
2680
2681         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2682                 zone = &pgdat->node_zones[zoneid];
2683                 if (!populated_zone(zone))
2684                         continue;
2685
2686                 cc.zone = zone;
2687
2688                 compact_zone(&cc, NULL);
2689
2690                 VM_BUG_ON(!list_empty(&cc.freepages));
2691                 VM_BUG_ON(!list_empty(&cc.migratepages));
2692         }
2693 }
2694
2695 /* Compact all zones within a node */
2696 static void compact_node(int nid)
2697 {
2698         pg_data_t *pgdat = NODE_DATA(nid);
2699         int zoneid;
2700         struct zone *zone;
2701         struct compact_control cc = {
2702                 .order = -1,
2703                 .mode = MIGRATE_SYNC,
2704                 .ignore_skip_hint = true,
2705                 .whole_zone = true,
2706                 .gfp_mask = GFP_KERNEL,
2707         };
2708
2709
2710         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2711
2712                 zone = &pgdat->node_zones[zoneid];
2713                 if (!populated_zone(zone))
2714                         continue;
2715
2716                 cc.zone = zone;
2717
2718                 compact_zone(&cc, NULL);
2719
2720                 VM_BUG_ON(!list_empty(&cc.freepages));
2721                 VM_BUG_ON(!list_empty(&cc.migratepages));
2722         }
2723 }
2724
2725 /* Compact all nodes in the system */
2726 static void compact_nodes(void)
2727 {
2728         int nid;
2729
2730         /* Flush pending updates to the LRU lists */
2731         lru_add_drain_all();
2732
2733         for_each_online_node(nid)
2734                 compact_node(nid);
2735 }
2736
2737 /*
2738  * Tunable for proactive compaction. It determines how
2739  * aggressively the kernel should compact memory in the
2740  * background. It takes values in the range [0, 100].
2741  */
2742 unsigned int __read_mostly sysctl_compaction_proactiveness = 20;
2743
2744 int compaction_proactiveness_sysctl_handler(struct ctl_table *table, int write,
2745                 void *buffer, size_t *length, loff_t *ppos)
2746 {
2747         int rc, nid;
2748
2749         rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
2750         if (rc)
2751                 return rc;
2752
2753         if (write && sysctl_compaction_proactiveness) {
2754                 for_each_online_node(nid) {
2755                         pg_data_t *pgdat = NODE_DATA(nid);
2756
2757                         if (pgdat->proactive_compact_trigger)
2758                                 continue;
2759
2760                         pgdat->proactive_compact_trigger = true;
2761                         wake_up_interruptible(&pgdat->kcompactd_wait);
2762                 }
2763         }
2764
2765         return 0;
2766 }
2767
2768 /*
2769  * This is the entry point for compacting all nodes via
2770  * /proc/sys/vm/compact_memory
2771  */
2772 int sysctl_compaction_handler(struct ctl_table *table, int write,
2773                         void *buffer, size_t *length, loff_t *ppos)
2774 {
2775         if (write)
2776                 compact_nodes();
2777
2778         return 0;
2779 }
2780
2781 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
2782 static ssize_t compact_store(struct device *dev,
2783                              struct device_attribute *attr,
2784                              const char *buf, size_t count)
2785 {
2786         int nid = dev->id;
2787
2788         if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
2789                 /* Flush pending updates to the LRU lists */
2790                 lru_add_drain_all();
2791
2792                 compact_node(nid);
2793         }
2794
2795         return count;
2796 }
2797 static DEVICE_ATTR_WO(compact);
2798
2799 int compaction_register_node(struct node *node)
2800 {
2801         return device_create_file(&node->dev, &dev_attr_compact);
2802 }
2803
2804 void compaction_unregister_node(struct node *node)
2805 {
2806         return device_remove_file(&node->dev, &dev_attr_compact);
2807 }
2808 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
2809
2810 static inline bool kcompactd_work_requested(pg_data_t *pgdat)
2811 {
2812         return pgdat->kcompactd_max_order > 0 || kthread_should_stop() ||
2813                 pgdat->proactive_compact_trigger;
2814 }
2815
2816 static bool kcompactd_node_suitable(pg_data_t *pgdat)
2817 {
2818         int zoneid;
2819         struct zone *zone;
2820         enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx;
2821
2822         for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) {
2823                 zone = &pgdat->node_zones[zoneid];
2824
2825                 if (!populated_zone(zone))
2826                         continue;
2827
2828                 if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
2829                                         highest_zoneidx) == COMPACT_CONTINUE)
2830                         return true;
2831         }
2832
2833         return false;
2834 }
2835
2836 static void kcompactd_do_work(pg_data_t *pgdat)
2837 {
2838         /*
2839          * With no special task, compact all zones so that a page of requested
2840          * order is allocatable.
2841          */
2842         int zoneid;
2843         struct zone *zone;
2844         struct compact_control cc = {
2845                 .order = pgdat->kcompactd_max_order,
2846                 .search_order = pgdat->kcompactd_max_order,
2847                 .highest_zoneidx = pgdat->kcompactd_highest_zoneidx,
2848                 .mode = MIGRATE_SYNC_LIGHT,
2849                 .ignore_skip_hint = false,
2850                 .gfp_mask = GFP_KERNEL,
2851         };
2852         trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
2853                                                         cc.highest_zoneidx);
2854         count_compact_event(KCOMPACTD_WAKE);
2855
2856         for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) {
2857                 int status;
2858
2859                 zone = &pgdat->node_zones[zoneid];
2860                 if (!populated_zone(zone))
2861                         continue;
2862
2863                 if (compaction_deferred(zone, cc.order))
2864                         continue;
2865
2866                 if (compaction_suitable(zone, cc.order, 0, zoneid) !=
2867                                                         COMPACT_CONTINUE)
2868                         continue;
2869
2870                 if (kthread_should_stop())
2871                         return;
2872
2873                 cc.zone = zone;
2874                 status = compact_zone(&cc, NULL);
2875
2876                 if (status == COMPACT_SUCCESS) {
2877                         compaction_defer_reset(zone, cc.order, false);
2878                 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
2879                         /*
2880                          * Buddy pages may become stranded on pcps that could
2881                          * otherwise coalesce on the zone's free area for
2882                          * order >= cc.order.  This is ratelimited by the
2883                          * upcoming deferral.
2884                          */
2885                         drain_all_pages(zone);
2886
2887                         /*
2888                          * We use sync migration mode here, so we defer like
2889                          * sync direct compaction does.
2890                          */
2891                         defer_compaction(zone, cc.order);
2892                 }
2893
2894                 count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2895                                      cc.total_migrate_scanned);
2896                 count_compact_events(KCOMPACTD_FREE_SCANNED,
2897                                      cc.total_free_scanned);
2898
2899                 VM_BUG_ON(!list_empty(&cc.freepages));
2900                 VM_BUG_ON(!list_empty(&cc.migratepages));
2901         }
2902
2903         /*
2904          * Regardless of success, we are done until woken up next. But remember
2905          * the requested order/highest_zoneidx in case it was higher/tighter
2906          * than our current ones
2907          */
2908         if (pgdat->kcompactd_max_order <= cc.order)
2909                 pgdat->kcompactd_max_order = 0;
2910         if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx)
2911                 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
2912 }
2913
2914 void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx)
2915 {
2916         if (!order)
2917                 return;
2918
2919         if (pgdat->kcompactd_max_order < order)
2920                 pgdat->kcompactd_max_order = order;
2921
2922         if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx)
2923                 pgdat->kcompactd_highest_zoneidx = highest_zoneidx;
2924
2925         /*
2926          * Pairs with implicit barrier in wait_event_freezable()
2927          * such that wakeups are not missed.
2928          */
2929         if (!wq_has_sleeper(&pgdat->kcompactd_wait))
2930                 return;
2931
2932         if (!kcompactd_node_suitable(pgdat))
2933                 return;
2934
2935         trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
2936                                                         highest_zoneidx);
2937         wake_up_interruptible(&pgdat->kcompactd_wait);
2938 }
2939
2940 /*
2941  * The background compaction daemon, started as a kernel thread
2942  * from the init process.
2943  */
2944 static int kcompactd(void *p)
2945 {
2946         pg_data_t *pgdat = (pg_data_t *)p;
2947         struct task_struct *tsk = current;
2948         long default_timeout = msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC);
2949         long timeout = default_timeout;
2950
2951         const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2952
2953         if (!cpumask_empty(cpumask))
2954                 set_cpus_allowed_ptr(tsk, cpumask);
2955
2956         set_freezable();
2957
2958         pgdat->kcompactd_max_order = 0;
2959         pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
2960
2961         while (!kthread_should_stop()) {
2962                 unsigned long pflags;
2963
2964                 /*
2965                  * Avoid the unnecessary wakeup for proactive compaction
2966                  * when it is disabled.
2967                  */
2968                 if (!sysctl_compaction_proactiveness)
2969                         timeout = MAX_SCHEDULE_TIMEOUT;
2970                 trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
2971                 if (wait_event_freezable_timeout(pgdat->kcompactd_wait,
2972                         kcompactd_work_requested(pgdat), timeout) &&
2973                         !pgdat->proactive_compact_trigger) {
2974
2975                         psi_memstall_enter(&pflags);
2976                         kcompactd_do_work(pgdat);
2977                         psi_memstall_leave(&pflags);
2978                         /*
2979                          * Reset the timeout value. The defer timeout from
2980                          * proactive compaction is lost here but that is fine
2981                          * as the condition of the zone changing substantionally
2982                          * then carrying on with the previous defer interval is
2983                          * not useful.
2984                          */
2985                         timeout = default_timeout;
2986                         continue;
2987                 }
2988
2989                 /*
2990                  * Start the proactive work with default timeout. Based
2991                  * on the fragmentation score, this timeout is updated.
2992                  */
2993                 timeout = default_timeout;
2994                 if (should_proactive_compact_node(pgdat)) {
2995                         unsigned int prev_score, score;
2996
2997                         prev_score = fragmentation_score_node(pgdat);
2998                         proactive_compact_node(pgdat);
2999                         score = fragmentation_score_node(pgdat);
3000                         /*
3001                          * Defer proactive compaction if the fragmentation
3002                          * score did not go down i.e. no progress made.
3003                          */
3004                         if (unlikely(score >= prev_score))
3005                                 timeout =
3006                                    default_timeout << COMPACT_MAX_DEFER_SHIFT;
3007                 }
3008                 if (unlikely(pgdat->proactive_compact_trigger))
3009                         pgdat->proactive_compact_trigger = false;
3010         }
3011
3012         return 0;
3013 }
3014
3015 /*
3016  * This kcompactd start function will be called by init and node-hot-add.
3017  * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
3018  */
3019 int kcompactd_run(int nid)
3020 {
3021         pg_data_t *pgdat = NODE_DATA(nid);
3022         int ret = 0;
3023
3024         if (pgdat->kcompactd)
3025                 return 0;
3026
3027         pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
3028         if (IS_ERR(pgdat->kcompactd)) {
3029                 pr_err("Failed to start kcompactd on node %d\n", nid);
3030                 ret = PTR_ERR(pgdat->kcompactd);
3031                 pgdat->kcompactd = NULL;
3032         }
3033         return ret;
3034 }
3035
3036 /*
3037  * Called by memory hotplug when all memory in a node is offlined. Caller must
3038  * hold mem_hotplug_begin/end().
3039  */
3040 void kcompactd_stop(int nid)
3041 {
3042         struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
3043
3044         if (kcompactd) {
3045                 kthread_stop(kcompactd);
3046                 NODE_DATA(nid)->kcompactd = NULL;
3047         }
3048 }
3049
3050 /*
3051  * It's optimal to keep kcompactd on the same CPUs as their memory, but
3052  * not required for correctness. So if the last cpu in a node goes
3053  * away, we get changed to run anywhere: as the first one comes back,
3054  * restore their cpu bindings.
3055  */
3056 static int kcompactd_cpu_online(unsigned int cpu)
3057 {
3058         int nid;
3059
3060         for_each_node_state(nid, N_MEMORY) {
3061                 pg_data_t *pgdat = NODE_DATA(nid);
3062                 const struct cpumask *mask;
3063
3064                 mask = cpumask_of_node(pgdat->node_id);
3065
3066                 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3067                         /* One of our CPUs online: restore mask */
3068                         set_cpus_allowed_ptr(pgdat->kcompactd, mask);
3069         }
3070         return 0;
3071 }
3072
3073 static int __init kcompactd_init(void)
3074 {
3075         int nid;
3076         int ret;
3077
3078         ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3079                                         "mm/compaction:online",
3080                                         kcompactd_cpu_online, NULL);
3081         if (ret < 0) {
3082                 pr_err("kcompactd: failed to register hotplug callbacks.\n");
3083                 return ret;
3084         }
3085
3086         for_each_node_state(nid, N_MEMORY)
3087                 kcompactd_run(nid);
3088         return 0;
3089 }
3090 subsys_initcall(kcompactd_init)
3091
3092 #endif /* CONFIG_COMPACTION */