Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[platform/kernel/linux-starfive.git] / mm / compaction.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * linux/mm/compaction.c
4  *
5  * Memory compaction for the reduction of external fragmentation. Note that
6  * this heavily depends upon page migration to do all the real heavy
7  * lifting
8  *
9  * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
10  */
11 #include <linux/cpu.h>
12 #include <linux/swap.h>
13 #include <linux/migrate.h>
14 #include <linux/compaction.h>
15 #include <linux/mm_inline.h>
16 #include <linux/sched/signal.h>
17 #include <linux/backing-dev.h>
18 #include <linux/sysctl.h>
19 #include <linux/sysfs.h>
20 #include <linux/page-isolation.h>
21 #include <linux/kasan.h>
22 #include <linux/kthread.h>
23 #include <linux/freezer.h>
24 #include <linux/page_owner.h>
25 #include <linux/psi.h>
26 #include "internal.h"
27
28 #ifdef CONFIG_COMPACTION
29 static inline void count_compact_event(enum vm_event_item item)
30 {
31         count_vm_event(item);
32 }
33
34 static inline void count_compact_events(enum vm_event_item item, long delta)
35 {
36         count_vm_events(item, delta);
37 }
38 #else
39 #define count_compact_event(item) do { } while (0)
40 #define count_compact_events(item, delta) do { } while (0)
41 #endif
42
43 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
44
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/compaction.h>
47
48 #define block_start_pfn(pfn, order)     round_down(pfn, 1UL << (order))
49 #define block_end_pfn(pfn, order)       ALIGN((pfn) + 1, 1UL << (order))
50 #define pageblock_start_pfn(pfn)        block_start_pfn(pfn, pageblock_order)
51 #define pageblock_end_pfn(pfn)          block_end_pfn(pfn, pageblock_order)
52
53 /*
54  * Fragmentation score check interval for proactive compaction purposes.
55  */
56 static const unsigned int HPAGE_FRAG_CHECK_INTERVAL_MSEC = 500;
57
58 /*
59  * Page order with-respect-to which proactive compaction
60  * calculates external fragmentation, which is used as
61  * the "fragmentation score" of a node/zone.
62  */
63 #if defined CONFIG_TRANSPARENT_HUGEPAGE
64 #define COMPACTION_HPAGE_ORDER  HPAGE_PMD_ORDER
65 #elif defined CONFIG_HUGETLBFS
66 #define COMPACTION_HPAGE_ORDER  HUGETLB_PAGE_ORDER
67 #else
68 #define COMPACTION_HPAGE_ORDER  (PMD_SHIFT - PAGE_SHIFT)
69 #endif
70
71 static unsigned long release_freepages(struct list_head *freelist)
72 {
73         struct page *page, *next;
74         unsigned long high_pfn = 0;
75
76         list_for_each_entry_safe(page, next, freelist, lru) {
77                 unsigned long pfn = page_to_pfn(page);
78                 list_del(&page->lru);
79                 __free_page(page);
80                 if (pfn > high_pfn)
81                         high_pfn = pfn;
82         }
83
84         return high_pfn;
85 }
86
87 static void split_map_pages(struct list_head *list)
88 {
89         unsigned int i, order, nr_pages;
90         struct page *page, *next;
91         LIST_HEAD(tmp_list);
92
93         list_for_each_entry_safe(page, next, list, lru) {
94                 list_del(&page->lru);
95
96                 order = page_private(page);
97                 nr_pages = 1 << order;
98
99                 post_alloc_hook(page, order, __GFP_MOVABLE);
100                 if (order)
101                         split_page(page, order);
102
103                 for (i = 0; i < nr_pages; i++) {
104                         list_add(&page->lru, &tmp_list);
105                         page++;
106                 }
107         }
108
109         list_splice(&tmp_list, list);
110 }
111
112 #ifdef CONFIG_COMPACTION
113
114 int PageMovable(struct page *page)
115 {
116         struct address_space *mapping;
117
118         VM_BUG_ON_PAGE(!PageLocked(page), page);
119         if (!__PageMovable(page))
120                 return 0;
121
122         mapping = page_mapping(page);
123         if (mapping && mapping->a_ops && mapping->a_ops->isolate_page)
124                 return 1;
125
126         return 0;
127 }
128 EXPORT_SYMBOL(PageMovable);
129
130 void __SetPageMovable(struct page *page, struct address_space *mapping)
131 {
132         VM_BUG_ON_PAGE(!PageLocked(page), page);
133         VM_BUG_ON_PAGE((unsigned long)mapping & PAGE_MAPPING_MOVABLE, page);
134         page->mapping = (void *)((unsigned long)mapping | PAGE_MAPPING_MOVABLE);
135 }
136 EXPORT_SYMBOL(__SetPageMovable);
137
138 void __ClearPageMovable(struct page *page)
139 {
140         VM_BUG_ON_PAGE(!PageMovable(page), page);
141         /*
142          * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE
143          * flag so that VM can catch up released page by driver after isolation.
144          * With it, VM migration doesn't try to put it back.
145          */
146         page->mapping = (void *)((unsigned long)page->mapping &
147                                 PAGE_MAPPING_MOVABLE);
148 }
149 EXPORT_SYMBOL(__ClearPageMovable);
150
151 /* Do not skip compaction more than 64 times */
152 #define COMPACT_MAX_DEFER_SHIFT 6
153
154 /*
155  * Compaction is deferred when compaction fails to result in a page
156  * allocation success. 1 << compact_defer_shift, compactions are skipped up
157  * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
158  */
159 static void defer_compaction(struct zone *zone, int order)
160 {
161         zone->compact_considered = 0;
162         zone->compact_defer_shift++;
163
164         if (order < zone->compact_order_failed)
165                 zone->compact_order_failed = order;
166
167         if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
168                 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
169
170         trace_mm_compaction_defer_compaction(zone, order);
171 }
172
173 /* Returns true if compaction should be skipped this time */
174 static bool compaction_deferred(struct zone *zone, int order)
175 {
176         unsigned long defer_limit = 1UL << zone->compact_defer_shift;
177
178         if (order < zone->compact_order_failed)
179                 return false;
180
181         /* Avoid possible overflow */
182         if (++zone->compact_considered >= defer_limit) {
183                 zone->compact_considered = defer_limit;
184                 return false;
185         }
186
187         trace_mm_compaction_deferred(zone, order);
188
189         return true;
190 }
191
192 /*
193  * Update defer tracking counters after successful compaction of given order,
194  * which means an allocation either succeeded (alloc_success == true) or is
195  * expected to succeed.
196  */
197 void compaction_defer_reset(struct zone *zone, int order,
198                 bool alloc_success)
199 {
200         if (alloc_success) {
201                 zone->compact_considered = 0;
202                 zone->compact_defer_shift = 0;
203         }
204         if (order >= zone->compact_order_failed)
205                 zone->compact_order_failed = order + 1;
206
207         trace_mm_compaction_defer_reset(zone, order);
208 }
209
210 /* Returns true if restarting compaction after many failures */
211 static bool compaction_restarting(struct zone *zone, int order)
212 {
213         if (order < zone->compact_order_failed)
214                 return false;
215
216         return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
217                 zone->compact_considered >= 1UL << zone->compact_defer_shift;
218 }
219
220 /* Returns true if the pageblock should be scanned for pages to isolate. */
221 static inline bool isolation_suitable(struct compact_control *cc,
222                                         struct page *page)
223 {
224         if (cc->ignore_skip_hint)
225                 return true;
226
227         return !get_pageblock_skip(page);
228 }
229
230 static void reset_cached_positions(struct zone *zone)
231 {
232         zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
233         zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
234         zone->compact_cached_free_pfn =
235                                 pageblock_start_pfn(zone_end_pfn(zone) - 1);
236 }
237
238 /*
239  * Compound pages of >= pageblock_order should consistently be skipped until
240  * released. It is always pointless to compact pages of such order (if they are
241  * migratable), and the pageblocks they occupy cannot contain any free pages.
242  */
243 static bool pageblock_skip_persistent(struct page *page)
244 {
245         if (!PageCompound(page))
246                 return false;
247
248         page = compound_head(page);
249
250         if (compound_order(page) >= pageblock_order)
251                 return true;
252
253         return false;
254 }
255
256 static bool
257 __reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source,
258                                                         bool check_target)
259 {
260         struct page *page = pfn_to_online_page(pfn);
261         struct page *block_page;
262         struct page *end_page;
263         unsigned long block_pfn;
264
265         if (!page)
266                 return false;
267         if (zone != page_zone(page))
268                 return false;
269         if (pageblock_skip_persistent(page))
270                 return false;
271
272         /*
273          * If skip is already cleared do no further checking once the
274          * restart points have been set.
275          */
276         if (check_source && check_target && !get_pageblock_skip(page))
277                 return true;
278
279         /*
280          * If clearing skip for the target scanner, do not select a
281          * non-movable pageblock as the starting point.
282          */
283         if (!check_source && check_target &&
284             get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
285                 return false;
286
287         /* Ensure the start of the pageblock or zone is online and valid */
288         block_pfn = pageblock_start_pfn(pfn);
289         block_pfn = max(block_pfn, zone->zone_start_pfn);
290         block_page = pfn_to_online_page(block_pfn);
291         if (block_page) {
292                 page = block_page;
293                 pfn = block_pfn;
294         }
295
296         /* Ensure the end of the pageblock or zone is online and valid */
297         block_pfn = pageblock_end_pfn(pfn) - 1;
298         block_pfn = min(block_pfn, zone_end_pfn(zone) - 1);
299         end_page = pfn_to_online_page(block_pfn);
300         if (!end_page)
301                 return false;
302
303         /*
304          * Only clear the hint if a sample indicates there is either a
305          * free page or an LRU page in the block. One or other condition
306          * is necessary for the block to be a migration source/target.
307          */
308         do {
309                 if (check_source && PageLRU(page)) {
310                         clear_pageblock_skip(page);
311                         return true;
312                 }
313
314                 if (check_target && PageBuddy(page)) {
315                         clear_pageblock_skip(page);
316                         return true;
317                 }
318
319                 page += (1 << PAGE_ALLOC_COSTLY_ORDER);
320                 pfn += (1 << PAGE_ALLOC_COSTLY_ORDER);
321         } while (page <= end_page);
322
323         return false;
324 }
325
326 /*
327  * This function is called to clear all cached information on pageblocks that
328  * should be skipped for page isolation when the migrate and free page scanner
329  * meet.
330  */
331 static void __reset_isolation_suitable(struct zone *zone)
332 {
333         unsigned long migrate_pfn = zone->zone_start_pfn;
334         unsigned long free_pfn = zone_end_pfn(zone) - 1;
335         unsigned long reset_migrate = free_pfn;
336         unsigned long reset_free = migrate_pfn;
337         bool source_set = false;
338         bool free_set = false;
339
340         if (!zone->compact_blockskip_flush)
341                 return;
342
343         zone->compact_blockskip_flush = false;
344
345         /*
346          * Walk the zone and update pageblock skip information. Source looks
347          * for PageLRU while target looks for PageBuddy. When the scanner
348          * is found, both PageBuddy and PageLRU are checked as the pageblock
349          * is suitable as both source and target.
350          */
351         for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages,
352                                         free_pfn -= pageblock_nr_pages) {
353                 cond_resched();
354
355                 /* Update the migrate PFN */
356                 if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) &&
357                     migrate_pfn < reset_migrate) {
358                         source_set = true;
359                         reset_migrate = migrate_pfn;
360                         zone->compact_init_migrate_pfn = reset_migrate;
361                         zone->compact_cached_migrate_pfn[0] = reset_migrate;
362                         zone->compact_cached_migrate_pfn[1] = reset_migrate;
363                 }
364
365                 /* Update the free PFN */
366                 if (__reset_isolation_pfn(zone, free_pfn, free_set, true) &&
367                     free_pfn > reset_free) {
368                         free_set = true;
369                         reset_free = free_pfn;
370                         zone->compact_init_free_pfn = reset_free;
371                         zone->compact_cached_free_pfn = reset_free;
372                 }
373         }
374
375         /* Leave no distance if no suitable block was reset */
376         if (reset_migrate >= reset_free) {
377                 zone->compact_cached_migrate_pfn[0] = migrate_pfn;
378                 zone->compact_cached_migrate_pfn[1] = migrate_pfn;
379                 zone->compact_cached_free_pfn = free_pfn;
380         }
381 }
382
383 void reset_isolation_suitable(pg_data_t *pgdat)
384 {
385         int zoneid;
386
387         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
388                 struct zone *zone = &pgdat->node_zones[zoneid];
389                 if (!populated_zone(zone))
390                         continue;
391
392                 /* Only flush if a full compaction finished recently */
393                 if (zone->compact_blockskip_flush)
394                         __reset_isolation_suitable(zone);
395         }
396 }
397
398 /*
399  * Sets the pageblock skip bit if it was clear. Note that this is a hint as
400  * locks are not required for read/writers. Returns true if it was already set.
401  */
402 static bool test_and_set_skip(struct compact_control *cc, struct page *page,
403                                                         unsigned long pfn)
404 {
405         bool skip;
406
407         /* Do no update if skip hint is being ignored */
408         if (cc->ignore_skip_hint)
409                 return false;
410
411         if (!IS_ALIGNED(pfn, pageblock_nr_pages))
412                 return false;
413
414         skip = get_pageblock_skip(page);
415         if (!skip && !cc->no_set_skip_hint)
416                 set_pageblock_skip(page);
417
418         return skip;
419 }
420
421 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
422 {
423         struct zone *zone = cc->zone;
424
425         pfn = pageblock_end_pfn(pfn);
426
427         /* Set for isolation rather than compaction */
428         if (cc->no_set_skip_hint)
429                 return;
430
431         if (pfn > zone->compact_cached_migrate_pfn[0])
432                 zone->compact_cached_migrate_pfn[0] = pfn;
433         if (cc->mode != MIGRATE_ASYNC &&
434             pfn > zone->compact_cached_migrate_pfn[1])
435                 zone->compact_cached_migrate_pfn[1] = pfn;
436 }
437
438 /*
439  * If no pages were isolated then mark this pageblock to be skipped in the
440  * future. The information is later cleared by __reset_isolation_suitable().
441  */
442 static void update_pageblock_skip(struct compact_control *cc,
443                         struct page *page, unsigned long pfn)
444 {
445         struct zone *zone = cc->zone;
446
447         if (cc->no_set_skip_hint)
448                 return;
449
450         if (!page)
451                 return;
452
453         set_pageblock_skip(page);
454
455         /* Update where async and sync compaction should restart */
456         if (pfn < zone->compact_cached_free_pfn)
457                 zone->compact_cached_free_pfn = pfn;
458 }
459 #else
460 static inline bool isolation_suitable(struct compact_control *cc,
461                                         struct page *page)
462 {
463         return true;
464 }
465
466 static inline bool pageblock_skip_persistent(struct page *page)
467 {
468         return false;
469 }
470
471 static inline void update_pageblock_skip(struct compact_control *cc,
472                         struct page *page, unsigned long pfn)
473 {
474 }
475
476 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
477 {
478 }
479
480 static bool test_and_set_skip(struct compact_control *cc, struct page *page,
481                                                         unsigned long pfn)
482 {
483         return false;
484 }
485 #endif /* CONFIG_COMPACTION */
486
487 /*
488  * Compaction requires the taking of some coarse locks that are potentially
489  * very heavily contended. For async compaction, trylock and record if the
490  * lock is contended. The lock will still be acquired but compaction will
491  * abort when the current block is finished regardless of success rate.
492  * Sync compaction acquires the lock.
493  *
494  * Always returns true which makes it easier to track lock state in callers.
495  */
496 static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags,
497                                                 struct compact_control *cc)
498         __acquires(lock)
499 {
500         /* Track if the lock is contended in async mode */
501         if (cc->mode == MIGRATE_ASYNC && !cc->contended) {
502                 if (spin_trylock_irqsave(lock, *flags))
503                         return true;
504
505                 cc->contended = true;
506         }
507
508         spin_lock_irqsave(lock, *flags);
509         return true;
510 }
511
512 /*
513  * Compaction requires the taking of some coarse locks that are potentially
514  * very heavily contended. The lock should be periodically unlocked to avoid
515  * having disabled IRQs for a long time, even when there is nobody waiting on
516  * the lock. It might also be that allowing the IRQs will result in
517  * need_resched() becoming true. If scheduling is needed, async compaction
518  * aborts. Sync compaction schedules.
519  * Either compaction type will also abort if a fatal signal is pending.
520  * In either case if the lock was locked, it is dropped and not regained.
521  *
522  * Returns true if compaction should abort due to fatal signal pending, or
523  *              async compaction due to need_resched()
524  * Returns false when compaction can continue (sync compaction might have
525  *              scheduled)
526  */
527 static bool compact_unlock_should_abort(spinlock_t *lock,
528                 unsigned long flags, bool *locked, struct compact_control *cc)
529 {
530         if (*locked) {
531                 spin_unlock_irqrestore(lock, flags);
532                 *locked = false;
533         }
534
535         if (fatal_signal_pending(current)) {
536                 cc->contended = true;
537                 return true;
538         }
539
540         cond_resched();
541
542         return false;
543 }
544
545 /*
546  * Isolate free pages onto a private freelist. If @strict is true, will abort
547  * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
548  * (even though it may still end up isolating some pages).
549  */
550 static unsigned long isolate_freepages_block(struct compact_control *cc,
551                                 unsigned long *start_pfn,
552                                 unsigned long end_pfn,
553                                 struct list_head *freelist,
554                                 unsigned int stride,
555                                 bool strict)
556 {
557         int nr_scanned = 0, total_isolated = 0;
558         struct page *cursor;
559         unsigned long flags = 0;
560         bool locked = false;
561         unsigned long blockpfn = *start_pfn;
562         unsigned int order;
563
564         /* Strict mode is for isolation, speed is secondary */
565         if (strict)
566                 stride = 1;
567
568         cursor = pfn_to_page(blockpfn);
569
570         /* Isolate free pages. */
571         for (; blockpfn < end_pfn; blockpfn += stride, cursor += stride) {
572                 int isolated;
573                 struct page *page = cursor;
574
575                 /*
576                  * Periodically drop the lock (if held) regardless of its
577                  * contention, to give chance to IRQs. Abort if fatal signal
578                  * pending or async compaction detects need_resched()
579                  */
580                 if (!(blockpfn % SWAP_CLUSTER_MAX)
581                     && compact_unlock_should_abort(&cc->zone->lock, flags,
582                                                                 &locked, cc))
583                         break;
584
585                 nr_scanned++;
586
587                 /*
588                  * For compound pages such as THP and hugetlbfs, we can save
589                  * potentially a lot of iterations if we skip them at once.
590                  * The check is racy, but we can consider only valid values
591                  * and the only danger is skipping too much.
592                  */
593                 if (PageCompound(page)) {
594                         const unsigned int order = compound_order(page);
595
596                         if (likely(order < MAX_ORDER)) {
597                                 blockpfn += (1UL << order) - 1;
598                                 cursor += (1UL << order) - 1;
599                         }
600                         goto isolate_fail;
601                 }
602
603                 if (!PageBuddy(page))
604                         goto isolate_fail;
605
606                 /*
607                  * If we already hold the lock, we can skip some rechecking.
608                  * Note that if we hold the lock now, checked_pageblock was
609                  * already set in some previous iteration (or strict is true),
610                  * so it is correct to skip the suitable migration target
611                  * recheck as well.
612                  */
613                 if (!locked) {
614                         locked = compact_lock_irqsave(&cc->zone->lock,
615                                                                 &flags, cc);
616
617                         /* Recheck this is a buddy page under lock */
618                         if (!PageBuddy(page))
619                                 goto isolate_fail;
620                 }
621
622                 /* Found a free page, will break it into order-0 pages */
623                 order = buddy_order(page);
624                 isolated = __isolate_free_page(page, order);
625                 if (!isolated)
626                         break;
627                 set_page_private(page, order);
628
629                 total_isolated += isolated;
630                 cc->nr_freepages += isolated;
631                 list_add_tail(&page->lru, freelist);
632
633                 if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
634                         blockpfn += isolated;
635                         break;
636                 }
637                 /* Advance to the end of split page */
638                 blockpfn += isolated - 1;
639                 cursor += isolated - 1;
640                 continue;
641
642 isolate_fail:
643                 if (strict)
644                         break;
645                 else
646                         continue;
647
648         }
649
650         if (locked)
651                 spin_unlock_irqrestore(&cc->zone->lock, flags);
652
653         /*
654          * There is a tiny chance that we have read bogus compound_order(),
655          * so be careful to not go outside of the pageblock.
656          */
657         if (unlikely(blockpfn > end_pfn))
658                 blockpfn = end_pfn;
659
660         trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
661                                         nr_scanned, total_isolated);
662
663         /* Record how far we have got within the block */
664         *start_pfn = blockpfn;
665
666         /*
667          * If strict isolation is requested by CMA then check that all the
668          * pages requested were isolated. If there were any failures, 0 is
669          * returned and CMA will fail.
670          */
671         if (strict && blockpfn < end_pfn)
672                 total_isolated = 0;
673
674         cc->total_free_scanned += nr_scanned;
675         if (total_isolated)
676                 count_compact_events(COMPACTISOLATED, total_isolated);
677         return total_isolated;
678 }
679
680 /**
681  * isolate_freepages_range() - isolate free pages.
682  * @cc:        Compaction control structure.
683  * @start_pfn: The first PFN to start isolating.
684  * @end_pfn:   The one-past-last PFN.
685  *
686  * Non-free pages, invalid PFNs, or zone boundaries within the
687  * [start_pfn, end_pfn) range are considered errors, cause function to
688  * undo its actions and return zero.
689  *
690  * Otherwise, function returns one-past-the-last PFN of isolated page
691  * (which may be greater then end_pfn if end fell in a middle of
692  * a free page).
693  */
694 unsigned long
695 isolate_freepages_range(struct compact_control *cc,
696                         unsigned long start_pfn, unsigned long end_pfn)
697 {
698         unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
699         LIST_HEAD(freelist);
700
701         pfn = start_pfn;
702         block_start_pfn = pageblock_start_pfn(pfn);
703         if (block_start_pfn < cc->zone->zone_start_pfn)
704                 block_start_pfn = cc->zone->zone_start_pfn;
705         block_end_pfn = pageblock_end_pfn(pfn);
706
707         for (; pfn < end_pfn; pfn += isolated,
708                                 block_start_pfn = block_end_pfn,
709                                 block_end_pfn += pageblock_nr_pages) {
710                 /* Protect pfn from changing by isolate_freepages_block */
711                 unsigned long isolate_start_pfn = pfn;
712
713                 block_end_pfn = min(block_end_pfn, end_pfn);
714
715                 /*
716                  * pfn could pass the block_end_pfn if isolated freepage
717                  * is more than pageblock order. In this case, we adjust
718                  * scanning range to right one.
719                  */
720                 if (pfn >= block_end_pfn) {
721                         block_start_pfn = pageblock_start_pfn(pfn);
722                         block_end_pfn = pageblock_end_pfn(pfn);
723                         block_end_pfn = min(block_end_pfn, end_pfn);
724                 }
725
726                 if (!pageblock_pfn_to_page(block_start_pfn,
727                                         block_end_pfn, cc->zone))
728                         break;
729
730                 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
731                                         block_end_pfn, &freelist, 0, true);
732
733                 /*
734                  * In strict mode, isolate_freepages_block() returns 0 if
735                  * there are any holes in the block (ie. invalid PFNs or
736                  * non-free pages).
737                  */
738                 if (!isolated)
739                         break;
740
741                 /*
742                  * If we managed to isolate pages, it is always (1 << n) *
743                  * pageblock_nr_pages for some non-negative n.  (Max order
744                  * page may span two pageblocks).
745                  */
746         }
747
748         /* __isolate_free_page() does not map the pages */
749         split_map_pages(&freelist);
750
751         if (pfn < end_pfn) {
752                 /* Loop terminated early, cleanup. */
753                 release_freepages(&freelist);
754                 return 0;
755         }
756
757         /* We don't use freelists for anything. */
758         return pfn;
759 }
760
761 /* Similar to reclaim, but different enough that they don't share logic */
762 static bool too_many_isolated(pg_data_t *pgdat)
763 {
764         bool too_many;
765
766         unsigned long active, inactive, isolated;
767
768         inactive = node_page_state(pgdat, NR_INACTIVE_FILE) +
769                         node_page_state(pgdat, NR_INACTIVE_ANON);
770         active = node_page_state(pgdat, NR_ACTIVE_FILE) +
771                         node_page_state(pgdat, NR_ACTIVE_ANON);
772         isolated = node_page_state(pgdat, NR_ISOLATED_FILE) +
773                         node_page_state(pgdat, NR_ISOLATED_ANON);
774
775         too_many = isolated > (inactive + active) / 2;
776         if (!too_many)
777                 wake_throttle_isolated(pgdat);
778
779         return too_many;
780 }
781
782 /**
783  * isolate_migratepages_block() - isolate all migrate-able pages within
784  *                                a single pageblock
785  * @cc:         Compaction control structure.
786  * @low_pfn:    The first PFN to isolate
787  * @end_pfn:    The one-past-the-last PFN to isolate, within same pageblock
788  * @isolate_mode: Isolation mode to be used.
789  *
790  * Isolate all pages that can be migrated from the range specified by
791  * [low_pfn, end_pfn). The range is expected to be within same pageblock.
792  * Returns errno, like -EAGAIN or -EINTR in case e.g signal pending or congestion,
793  * -ENOMEM in case we could not allocate a page, or 0.
794  * cc->migrate_pfn will contain the next pfn to scan.
795  *
796  * The pages are isolated on cc->migratepages list (not required to be empty),
797  * and cc->nr_migratepages is updated accordingly.
798  */
799 static int
800 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
801                         unsigned long end_pfn, isolate_mode_t isolate_mode)
802 {
803         pg_data_t *pgdat = cc->zone->zone_pgdat;
804         unsigned long nr_scanned = 0, nr_isolated = 0;
805         struct lruvec *lruvec;
806         unsigned long flags = 0;
807         struct lruvec *locked = NULL;
808         struct page *page = NULL, *valid_page = NULL;
809         unsigned long start_pfn = low_pfn;
810         bool skip_on_failure = false;
811         unsigned long next_skip_pfn = 0;
812         bool skip_updated = false;
813         int ret = 0;
814
815         cc->migrate_pfn = low_pfn;
816
817         /*
818          * Ensure that there are not too many pages isolated from the LRU
819          * list by either parallel reclaimers or compaction. If there are,
820          * delay for some time until fewer pages are isolated
821          */
822         while (unlikely(too_many_isolated(pgdat))) {
823                 /* stop isolation if there are still pages not migrated */
824                 if (cc->nr_migratepages)
825                         return -EAGAIN;
826
827                 /* async migration should just abort */
828                 if (cc->mode == MIGRATE_ASYNC)
829                         return -EAGAIN;
830
831                 reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
832
833                 if (fatal_signal_pending(current))
834                         return -EINTR;
835         }
836
837         cond_resched();
838
839         if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
840                 skip_on_failure = true;
841                 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
842         }
843
844         /* Time to isolate some pages for migration */
845         for (; low_pfn < end_pfn; low_pfn++) {
846
847                 if (skip_on_failure && low_pfn >= next_skip_pfn) {
848                         /*
849                          * We have isolated all migration candidates in the
850                          * previous order-aligned block, and did not skip it due
851                          * to failure. We should migrate the pages now and
852                          * hopefully succeed compaction.
853                          */
854                         if (nr_isolated)
855                                 break;
856
857                         /*
858                          * We failed to isolate in the previous order-aligned
859                          * block. Set the new boundary to the end of the
860                          * current block. Note we can't simply increase
861                          * next_skip_pfn by 1 << order, as low_pfn might have
862                          * been incremented by a higher number due to skipping
863                          * a compound or a high-order buddy page in the
864                          * previous loop iteration.
865                          */
866                         next_skip_pfn = block_end_pfn(low_pfn, cc->order);
867                 }
868
869                 /*
870                  * Periodically drop the lock (if held) regardless of its
871                  * contention, to give chance to IRQs. Abort completely if
872                  * a fatal signal is pending.
873                  */
874                 if (!(low_pfn % SWAP_CLUSTER_MAX)) {
875                         if (locked) {
876                                 unlock_page_lruvec_irqrestore(locked, flags);
877                                 locked = NULL;
878                         }
879
880                         if (fatal_signal_pending(current)) {
881                                 cc->contended = true;
882                                 ret = -EINTR;
883
884                                 goto fatal_pending;
885                         }
886
887                         cond_resched();
888                 }
889
890                 nr_scanned++;
891
892                 page = pfn_to_page(low_pfn);
893
894                 /*
895                  * Check if the pageblock has already been marked skipped.
896                  * Only the aligned PFN is checked as the caller isolates
897                  * COMPACT_CLUSTER_MAX at a time so the second call must
898                  * not falsely conclude that the block should be skipped.
899                  */
900                 if (!valid_page && IS_ALIGNED(low_pfn, pageblock_nr_pages)) {
901                         if (!cc->ignore_skip_hint && get_pageblock_skip(page)) {
902                                 low_pfn = end_pfn;
903                                 page = NULL;
904                                 goto isolate_abort;
905                         }
906                         valid_page = page;
907                 }
908
909                 if (PageHuge(page) && cc->alloc_contig) {
910                         ret = isolate_or_dissolve_huge_page(page, &cc->migratepages);
911
912                         /*
913                          * Fail isolation in case isolate_or_dissolve_huge_page()
914                          * reports an error. In case of -ENOMEM, abort right away.
915                          */
916                         if (ret < 0) {
917                                  /* Do not report -EBUSY down the chain */
918                                 if (ret == -EBUSY)
919                                         ret = 0;
920                                 low_pfn += (1UL << compound_order(page)) - 1;
921                                 goto isolate_fail;
922                         }
923
924                         if (PageHuge(page)) {
925                                 /*
926                                  * Hugepage was successfully isolated and placed
927                                  * on the cc->migratepages list.
928                                  */
929                                 low_pfn += compound_nr(page) - 1;
930                                 goto isolate_success_no_list;
931                         }
932
933                         /*
934                          * Ok, the hugepage was dissolved. Now these pages are
935                          * Buddy and cannot be re-allocated because they are
936                          * isolated. Fall-through as the check below handles
937                          * Buddy pages.
938                          */
939                 }
940
941                 /*
942                  * Skip if free. We read page order here without zone lock
943                  * which is generally unsafe, but the race window is small and
944                  * the worst thing that can happen is that we skip some
945                  * potential isolation targets.
946                  */
947                 if (PageBuddy(page)) {
948                         unsigned long freepage_order = buddy_order_unsafe(page);
949
950                         /*
951                          * Without lock, we cannot be sure that what we got is
952                          * a valid page order. Consider only values in the
953                          * valid order range to prevent low_pfn overflow.
954                          */
955                         if (freepage_order > 0 && freepage_order < MAX_ORDER)
956                                 low_pfn += (1UL << freepage_order) - 1;
957                         continue;
958                 }
959
960                 /*
961                  * Regardless of being on LRU, compound pages such as THP and
962                  * hugetlbfs are not to be compacted unless we are attempting
963                  * an allocation much larger than the huge page size (eg CMA).
964                  * We can potentially save a lot of iterations if we skip them
965                  * at once. The check is racy, but we can consider only valid
966                  * values and the only danger is skipping too much.
967                  */
968                 if (PageCompound(page) && !cc->alloc_contig) {
969                         const unsigned int order = compound_order(page);
970
971                         if (likely(order < MAX_ORDER))
972                                 low_pfn += (1UL << order) - 1;
973                         goto isolate_fail;
974                 }
975
976                 /*
977                  * Check may be lockless but that's ok as we recheck later.
978                  * It's possible to migrate LRU and non-lru movable pages.
979                  * Skip any other type of page
980                  */
981                 if (!PageLRU(page)) {
982                         /*
983                          * __PageMovable can return false positive so we need
984                          * to verify it under page_lock.
985                          */
986                         if (unlikely(__PageMovable(page)) &&
987                                         !PageIsolated(page)) {
988                                 if (locked) {
989                                         unlock_page_lruvec_irqrestore(locked, flags);
990                                         locked = NULL;
991                                 }
992
993                                 if (!isolate_movable_page(page, isolate_mode))
994                                         goto isolate_success;
995                         }
996
997                         goto isolate_fail;
998                 }
999
1000                 /*
1001                  * Migration will fail if an anonymous page is pinned in memory,
1002                  * so avoid taking lru_lock and isolating it unnecessarily in an
1003                  * admittedly racy check.
1004                  */
1005                 if (!page_mapping(page) &&
1006                     page_count(page) > page_mapcount(page))
1007                         goto isolate_fail;
1008
1009                 /*
1010                  * Only allow to migrate anonymous pages in GFP_NOFS context
1011                  * because those do not depend on fs locks.
1012                  */
1013                 if (!(cc->gfp_mask & __GFP_FS) && page_mapping(page))
1014                         goto isolate_fail;
1015
1016                 /*
1017                  * Be careful not to clear PageLRU until after we're
1018                  * sure the page is not being freed elsewhere -- the
1019                  * page release code relies on it.
1020                  */
1021                 if (unlikely(!get_page_unless_zero(page)))
1022                         goto isolate_fail;
1023
1024                 if (!__isolate_lru_page_prepare(page, isolate_mode))
1025                         goto isolate_fail_put;
1026
1027                 /* Try isolate the page */
1028                 if (!TestClearPageLRU(page))
1029                         goto isolate_fail_put;
1030
1031                 lruvec = folio_lruvec(page_folio(page));
1032
1033                 /* If we already hold the lock, we can skip some rechecking */
1034                 if (lruvec != locked) {
1035                         if (locked)
1036                                 unlock_page_lruvec_irqrestore(locked, flags);
1037
1038                         compact_lock_irqsave(&lruvec->lru_lock, &flags, cc);
1039                         locked = lruvec;
1040
1041                         lruvec_memcg_debug(lruvec, page_folio(page));
1042
1043                         /* Try get exclusive access under lock */
1044                         if (!skip_updated) {
1045                                 skip_updated = true;
1046                                 if (test_and_set_skip(cc, page, low_pfn))
1047                                         goto isolate_abort;
1048                         }
1049
1050                         /*
1051                          * Page become compound since the non-locked check,
1052                          * and it's on LRU. It can only be a THP so the order
1053                          * is safe to read and it's 0 for tail pages.
1054                          */
1055                         if (unlikely(PageCompound(page) && !cc->alloc_contig)) {
1056                                 low_pfn += compound_nr(page) - 1;
1057                                 SetPageLRU(page);
1058                                 goto isolate_fail_put;
1059                         }
1060                 }
1061
1062                 /* The whole page is taken off the LRU; skip the tail pages. */
1063                 if (PageCompound(page))
1064                         low_pfn += compound_nr(page) - 1;
1065
1066                 /* Successfully isolated */
1067                 del_page_from_lru_list(page, lruvec);
1068                 mod_node_page_state(page_pgdat(page),
1069                                 NR_ISOLATED_ANON + page_is_file_lru(page),
1070                                 thp_nr_pages(page));
1071
1072 isolate_success:
1073                 list_add(&page->lru, &cc->migratepages);
1074 isolate_success_no_list:
1075                 cc->nr_migratepages += compound_nr(page);
1076                 nr_isolated += compound_nr(page);
1077
1078                 /*
1079                  * Avoid isolating too much unless this block is being
1080                  * rescanned (e.g. dirty/writeback pages, parallel allocation)
1081                  * or a lock is contended. For contention, isolate quickly to
1082                  * potentially remove one source of contention.
1083                  */
1084                 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX &&
1085                     !cc->rescan && !cc->contended) {
1086                         ++low_pfn;
1087                         break;
1088                 }
1089
1090                 continue;
1091
1092 isolate_fail_put:
1093                 /* Avoid potential deadlock in freeing page under lru_lock */
1094                 if (locked) {
1095                         unlock_page_lruvec_irqrestore(locked, flags);
1096                         locked = NULL;
1097                 }
1098                 put_page(page);
1099
1100 isolate_fail:
1101                 if (!skip_on_failure && ret != -ENOMEM)
1102                         continue;
1103
1104                 /*
1105                  * We have isolated some pages, but then failed. Release them
1106                  * instead of migrating, as we cannot form the cc->order buddy
1107                  * page anyway.
1108                  */
1109                 if (nr_isolated) {
1110                         if (locked) {
1111                                 unlock_page_lruvec_irqrestore(locked, flags);
1112                                 locked = NULL;
1113                         }
1114                         putback_movable_pages(&cc->migratepages);
1115                         cc->nr_migratepages = 0;
1116                         nr_isolated = 0;
1117                 }
1118
1119                 if (low_pfn < next_skip_pfn) {
1120                         low_pfn = next_skip_pfn - 1;
1121                         /*
1122                          * The check near the loop beginning would have updated
1123                          * next_skip_pfn too, but this is a bit simpler.
1124                          */
1125                         next_skip_pfn += 1UL << cc->order;
1126                 }
1127
1128                 if (ret == -ENOMEM)
1129                         break;
1130         }
1131
1132         /*
1133          * The PageBuddy() check could have potentially brought us outside
1134          * the range to be scanned.
1135          */
1136         if (unlikely(low_pfn > end_pfn))
1137                 low_pfn = end_pfn;
1138
1139         page = NULL;
1140
1141 isolate_abort:
1142         if (locked)
1143                 unlock_page_lruvec_irqrestore(locked, flags);
1144         if (page) {
1145                 SetPageLRU(page);
1146                 put_page(page);
1147         }
1148
1149         /*
1150          * Updated the cached scanner pfn once the pageblock has been scanned
1151          * Pages will either be migrated in which case there is no point
1152          * scanning in the near future or migration failed in which case the
1153          * failure reason may persist. The block is marked for skipping if
1154          * there were no pages isolated in the block or if the block is
1155          * rescanned twice in a row.
1156          */
1157         if (low_pfn == end_pfn && (!nr_isolated || cc->rescan)) {
1158                 if (valid_page && !skip_updated)
1159                         set_pageblock_skip(valid_page);
1160                 update_cached_migrate(cc, low_pfn);
1161         }
1162
1163         trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
1164                                                 nr_scanned, nr_isolated);
1165
1166 fatal_pending:
1167         cc->total_migrate_scanned += nr_scanned;
1168         if (nr_isolated)
1169                 count_compact_events(COMPACTISOLATED, nr_isolated);
1170
1171         cc->migrate_pfn = low_pfn;
1172
1173         return ret;
1174 }
1175
1176 /**
1177  * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
1178  * @cc:        Compaction control structure.
1179  * @start_pfn: The first PFN to start isolating.
1180  * @end_pfn:   The one-past-last PFN.
1181  *
1182  * Returns -EAGAIN when contented, -EINTR in case of a signal pending, -ENOMEM
1183  * in case we could not allocate a page, or 0.
1184  */
1185 int
1186 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
1187                                                         unsigned long end_pfn)
1188 {
1189         unsigned long pfn, block_start_pfn, block_end_pfn;
1190         int ret = 0;
1191
1192         /* Scan block by block. First and last block may be incomplete */
1193         pfn = start_pfn;
1194         block_start_pfn = pageblock_start_pfn(pfn);
1195         if (block_start_pfn < cc->zone->zone_start_pfn)
1196                 block_start_pfn = cc->zone->zone_start_pfn;
1197         block_end_pfn = pageblock_end_pfn(pfn);
1198
1199         for (; pfn < end_pfn; pfn = block_end_pfn,
1200                                 block_start_pfn = block_end_pfn,
1201                                 block_end_pfn += pageblock_nr_pages) {
1202
1203                 block_end_pfn = min(block_end_pfn, end_pfn);
1204
1205                 if (!pageblock_pfn_to_page(block_start_pfn,
1206                                         block_end_pfn, cc->zone))
1207                         continue;
1208
1209                 ret = isolate_migratepages_block(cc, pfn, block_end_pfn,
1210                                                  ISOLATE_UNEVICTABLE);
1211
1212                 if (ret)
1213                         break;
1214
1215                 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX)
1216                         break;
1217         }
1218
1219         return ret;
1220 }
1221
1222 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
1223 #ifdef CONFIG_COMPACTION
1224
1225 static bool suitable_migration_source(struct compact_control *cc,
1226                                                         struct page *page)
1227 {
1228         int block_mt;
1229
1230         if (pageblock_skip_persistent(page))
1231                 return false;
1232
1233         if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
1234                 return true;
1235
1236         block_mt = get_pageblock_migratetype(page);
1237
1238         if (cc->migratetype == MIGRATE_MOVABLE)
1239                 return is_migrate_movable(block_mt);
1240         else
1241                 return block_mt == cc->migratetype;
1242 }
1243
1244 /* Returns true if the page is within a block suitable for migration to */
1245 static bool suitable_migration_target(struct compact_control *cc,
1246                                                         struct page *page)
1247 {
1248         /* If the page is a large free page, then disallow migration */
1249         if (PageBuddy(page)) {
1250                 /*
1251                  * We are checking page_order without zone->lock taken. But
1252                  * the only small danger is that we skip a potentially suitable
1253                  * pageblock, so it's not worth to check order for valid range.
1254                  */
1255                 if (buddy_order_unsafe(page) >= pageblock_order)
1256                         return false;
1257         }
1258
1259         if (cc->ignore_block_suitable)
1260                 return true;
1261
1262         /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1263         if (is_migrate_movable(get_pageblock_migratetype(page)))
1264                 return true;
1265
1266         /* Otherwise skip the block */
1267         return false;
1268 }
1269
1270 static inline unsigned int
1271 freelist_scan_limit(struct compact_control *cc)
1272 {
1273         unsigned short shift = BITS_PER_LONG - 1;
1274
1275         return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1;
1276 }
1277
1278 /*
1279  * Test whether the free scanner has reached the same or lower pageblock than
1280  * the migration scanner, and compaction should thus terminate.
1281  */
1282 static inline bool compact_scanners_met(struct compact_control *cc)
1283 {
1284         return (cc->free_pfn >> pageblock_order)
1285                 <= (cc->migrate_pfn >> pageblock_order);
1286 }
1287
1288 /*
1289  * Used when scanning for a suitable migration target which scans freelists
1290  * in reverse. Reorders the list such as the unscanned pages are scanned
1291  * first on the next iteration of the free scanner
1292  */
1293 static void
1294 move_freelist_head(struct list_head *freelist, struct page *freepage)
1295 {
1296         LIST_HEAD(sublist);
1297
1298         if (!list_is_last(freelist, &freepage->lru)) {
1299                 list_cut_before(&sublist, freelist, &freepage->lru);
1300                 list_splice_tail(&sublist, freelist);
1301         }
1302 }
1303
1304 /*
1305  * Similar to move_freelist_head except used by the migration scanner
1306  * when scanning forward. It's possible for these list operations to
1307  * move against each other if they search the free list exactly in
1308  * lockstep.
1309  */
1310 static void
1311 move_freelist_tail(struct list_head *freelist, struct page *freepage)
1312 {
1313         LIST_HEAD(sublist);
1314
1315         if (!list_is_first(freelist, &freepage->lru)) {
1316                 list_cut_position(&sublist, freelist, &freepage->lru);
1317                 list_splice_tail(&sublist, freelist);
1318         }
1319 }
1320
1321 static void
1322 fast_isolate_around(struct compact_control *cc, unsigned long pfn, unsigned long nr_isolated)
1323 {
1324         unsigned long start_pfn, end_pfn;
1325         struct page *page;
1326
1327         /* Do not search around if there are enough pages already */
1328         if (cc->nr_freepages >= cc->nr_migratepages)
1329                 return;
1330
1331         /* Minimise scanning during async compaction */
1332         if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC)
1333                 return;
1334
1335         /* Pageblock boundaries */
1336         start_pfn = max(pageblock_start_pfn(pfn), cc->zone->zone_start_pfn);
1337         end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone));
1338
1339         page = pageblock_pfn_to_page(start_pfn, end_pfn, cc->zone);
1340         if (!page)
1341                 return;
1342
1343         /* Scan before */
1344         if (start_pfn != pfn) {
1345                 isolate_freepages_block(cc, &start_pfn, pfn, &cc->freepages, 1, false);
1346                 if (cc->nr_freepages >= cc->nr_migratepages)
1347                         return;
1348         }
1349
1350         /* Scan after */
1351         start_pfn = pfn + nr_isolated;
1352         if (start_pfn < end_pfn)
1353                 isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false);
1354
1355         /* Skip this pageblock in the future as it's full or nearly full */
1356         if (cc->nr_freepages < cc->nr_migratepages)
1357                 set_pageblock_skip(page);
1358 }
1359
1360 /* Search orders in round-robin fashion */
1361 static int next_search_order(struct compact_control *cc, int order)
1362 {
1363         order--;
1364         if (order < 0)
1365                 order = cc->order - 1;
1366
1367         /* Search wrapped around? */
1368         if (order == cc->search_order) {
1369                 cc->search_order--;
1370                 if (cc->search_order < 0)
1371                         cc->search_order = cc->order - 1;
1372                 return -1;
1373         }
1374
1375         return order;
1376 }
1377
1378 static unsigned long
1379 fast_isolate_freepages(struct compact_control *cc)
1380 {
1381         unsigned int limit = max(1U, freelist_scan_limit(cc) >> 1);
1382         unsigned int nr_scanned = 0;
1383         unsigned long low_pfn, min_pfn, highest = 0;
1384         unsigned long nr_isolated = 0;
1385         unsigned long distance;
1386         struct page *page = NULL;
1387         bool scan_start = false;
1388         int order;
1389
1390         /* Full compaction passes in a negative order */
1391         if (cc->order <= 0)
1392                 return cc->free_pfn;
1393
1394         /*
1395          * If starting the scan, use a deeper search and use the highest
1396          * PFN found if a suitable one is not found.
1397          */
1398         if (cc->free_pfn >= cc->zone->compact_init_free_pfn) {
1399                 limit = pageblock_nr_pages >> 1;
1400                 scan_start = true;
1401         }
1402
1403         /*
1404          * Preferred point is in the top quarter of the scan space but take
1405          * a pfn from the top half if the search is problematic.
1406          */
1407         distance = (cc->free_pfn - cc->migrate_pfn);
1408         low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2));
1409         min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1));
1410
1411         if (WARN_ON_ONCE(min_pfn > low_pfn))
1412                 low_pfn = min_pfn;
1413
1414         /*
1415          * Search starts from the last successful isolation order or the next
1416          * order to search after a previous failure
1417          */
1418         cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order);
1419
1420         for (order = cc->search_order;
1421              !page && order >= 0;
1422              order = next_search_order(cc, order)) {
1423                 struct free_area *area = &cc->zone->free_area[order];
1424                 struct list_head *freelist;
1425                 struct page *freepage;
1426                 unsigned long flags;
1427                 unsigned int order_scanned = 0;
1428                 unsigned long high_pfn = 0;
1429
1430                 if (!area->nr_free)
1431                         continue;
1432
1433                 spin_lock_irqsave(&cc->zone->lock, flags);
1434                 freelist = &area->free_list[MIGRATE_MOVABLE];
1435                 list_for_each_entry_reverse(freepage, freelist, lru) {
1436                         unsigned long pfn;
1437
1438                         order_scanned++;
1439                         nr_scanned++;
1440                         pfn = page_to_pfn(freepage);
1441
1442                         if (pfn >= highest)
1443                                 highest = max(pageblock_start_pfn(pfn),
1444                                               cc->zone->zone_start_pfn);
1445
1446                         if (pfn >= low_pfn) {
1447                                 cc->fast_search_fail = 0;
1448                                 cc->search_order = order;
1449                                 page = freepage;
1450                                 break;
1451                         }
1452
1453                         if (pfn >= min_pfn && pfn > high_pfn) {
1454                                 high_pfn = pfn;
1455
1456                                 /* Shorten the scan if a candidate is found */
1457                                 limit >>= 1;
1458                         }
1459
1460                         if (order_scanned >= limit)
1461                                 break;
1462                 }
1463
1464                 /* Use a minimum pfn if a preferred one was not found */
1465                 if (!page && high_pfn) {
1466                         page = pfn_to_page(high_pfn);
1467
1468                         /* Update freepage for the list reorder below */
1469                         freepage = page;
1470                 }
1471
1472                 /* Reorder to so a future search skips recent pages */
1473                 move_freelist_head(freelist, freepage);
1474
1475                 /* Isolate the page if available */
1476                 if (page) {
1477                         if (__isolate_free_page(page, order)) {
1478                                 set_page_private(page, order);
1479                                 nr_isolated = 1 << order;
1480                                 cc->nr_freepages += nr_isolated;
1481                                 list_add_tail(&page->lru, &cc->freepages);
1482                                 count_compact_events(COMPACTISOLATED, nr_isolated);
1483                         } else {
1484                                 /* If isolation fails, abort the search */
1485                                 order = cc->search_order + 1;
1486                                 page = NULL;
1487                         }
1488                 }
1489
1490                 spin_unlock_irqrestore(&cc->zone->lock, flags);
1491
1492                 /*
1493                  * Smaller scan on next order so the total scan is related
1494                  * to freelist_scan_limit.
1495                  */
1496                 if (order_scanned >= limit)
1497                         limit = max(1U, limit >> 1);
1498         }
1499
1500         if (!page) {
1501                 cc->fast_search_fail++;
1502                 if (scan_start) {
1503                         /*
1504                          * Use the highest PFN found above min. If one was
1505                          * not found, be pessimistic for direct compaction
1506                          * and use the min mark.
1507                          */
1508                         if (highest) {
1509                                 page = pfn_to_page(highest);
1510                                 cc->free_pfn = highest;
1511                         } else {
1512                                 if (cc->direct_compaction && pfn_valid(min_pfn)) {
1513                                         page = pageblock_pfn_to_page(min_pfn,
1514                                                 min(pageblock_end_pfn(min_pfn),
1515                                                     zone_end_pfn(cc->zone)),
1516                                                 cc->zone);
1517                                         cc->free_pfn = min_pfn;
1518                                 }
1519                         }
1520                 }
1521         }
1522
1523         if (highest && highest >= cc->zone->compact_cached_free_pfn) {
1524                 highest -= pageblock_nr_pages;
1525                 cc->zone->compact_cached_free_pfn = highest;
1526         }
1527
1528         cc->total_free_scanned += nr_scanned;
1529         if (!page)
1530                 return cc->free_pfn;
1531
1532         low_pfn = page_to_pfn(page);
1533         fast_isolate_around(cc, low_pfn, nr_isolated);
1534         return low_pfn;
1535 }
1536
1537 /*
1538  * Based on information in the current compact_control, find blocks
1539  * suitable for isolating free pages from and then isolate them.
1540  */
1541 static void isolate_freepages(struct compact_control *cc)
1542 {
1543         struct zone *zone = cc->zone;
1544         struct page *page;
1545         unsigned long block_start_pfn;  /* start of current pageblock */
1546         unsigned long isolate_start_pfn; /* exact pfn we start at */
1547         unsigned long block_end_pfn;    /* end of current pageblock */
1548         unsigned long low_pfn;       /* lowest pfn scanner is able to scan */
1549         struct list_head *freelist = &cc->freepages;
1550         unsigned int stride;
1551
1552         /* Try a small search of the free lists for a candidate */
1553         isolate_start_pfn = fast_isolate_freepages(cc);
1554         if (cc->nr_freepages)
1555                 goto splitmap;
1556
1557         /*
1558          * Initialise the free scanner. The starting point is where we last
1559          * successfully isolated from, zone-cached value, or the end of the
1560          * zone when isolating for the first time. For looping we also need
1561          * this pfn aligned down to the pageblock boundary, because we do
1562          * block_start_pfn -= pageblock_nr_pages in the for loop.
1563          * For ending point, take care when isolating in last pageblock of a
1564          * zone which ends in the middle of a pageblock.
1565          * The low boundary is the end of the pageblock the migration scanner
1566          * is using.
1567          */
1568         isolate_start_pfn = cc->free_pfn;
1569         block_start_pfn = pageblock_start_pfn(isolate_start_pfn);
1570         block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1571                                                 zone_end_pfn(zone));
1572         low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1573         stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1;
1574
1575         /*
1576          * Isolate free pages until enough are available to migrate the
1577          * pages on cc->migratepages. We stop searching if the migrate
1578          * and free page scanners meet or enough free pages are isolated.
1579          */
1580         for (; block_start_pfn >= low_pfn;
1581                                 block_end_pfn = block_start_pfn,
1582                                 block_start_pfn -= pageblock_nr_pages,
1583                                 isolate_start_pfn = block_start_pfn) {
1584                 unsigned long nr_isolated;
1585
1586                 /*
1587                  * This can iterate a massively long zone without finding any
1588                  * suitable migration targets, so periodically check resched.
1589                  */
1590                 if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)))
1591                         cond_resched();
1592
1593                 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1594                                                                         zone);
1595                 if (!page)
1596                         continue;
1597
1598                 /* Check the block is suitable for migration */
1599                 if (!suitable_migration_target(cc, page))
1600                         continue;
1601
1602                 /* If isolation recently failed, do not retry */
1603                 if (!isolation_suitable(cc, page))
1604                         continue;
1605
1606                 /* Found a block suitable for isolating free pages from. */
1607                 nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn,
1608                                         block_end_pfn, freelist, stride, false);
1609
1610                 /* Update the skip hint if the full pageblock was scanned */
1611                 if (isolate_start_pfn == block_end_pfn)
1612                         update_pageblock_skip(cc, page, block_start_pfn);
1613
1614                 /* Are enough freepages isolated? */
1615                 if (cc->nr_freepages >= cc->nr_migratepages) {
1616                         if (isolate_start_pfn >= block_end_pfn) {
1617                                 /*
1618                                  * Restart at previous pageblock if more
1619                                  * freepages can be isolated next time.
1620                                  */
1621                                 isolate_start_pfn =
1622                                         block_start_pfn - pageblock_nr_pages;
1623                         }
1624                         break;
1625                 } else if (isolate_start_pfn < block_end_pfn) {
1626                         /*
1627                          * If isolation failed early, do not continue
1628                          * needlessly.
1629                          */
1630                         break;
1631                 }
1632
1633                 /* Adjust stride depending on isolation */
1634                 if (nr_isolated) {
1635                         stride = 1;
1636                         continue;
1637                 }
1638                 stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1);
1639         }
1640
1641         /*
1642          * Record where the free scanner will restart next time. Either we
1643          * broke from the loop and set isolate_start_pfn based on the last
1644          * call to isolate_freepages_block(), or we met the migration scanner
1645          * and the loop terminated due to isolate_start_pfn < low_pfn
1646          */
1647         cc->free_pfn = isolate_start_pfn;
1648
1649 splitmap:
1650         /* __isolate_free_page() does not map the pages */
1651         split_map_pages(freelist);
1652 }
1653
1654 /*
1655  * This is a migrate-callback that "allocates" freepages by taking pages
1656  * from the isolated freelists in the block we are migrating to.
1657  */
1658 static struct page *compaction_alloc(struct page *migratepage,
1659                                         unsigned long data)
1660 {
1661         struct compact_control *cc = (struct compact_control *)data;
1662         struct page *freepage;
1663
1664         if (list_empty(&cc->freepages)) {
1665                 isolate_freepages(cc);
1666
1667                 if (list_empty(&cc->freepages))
1668                         return NULL;
1669         }
1670
1671         freepage = list_entry(cc->freepages.next, struct page, lru);
1672         list_del(&freepage->lru);
1673         cc->nr_freepages--;
1674
1675         return freepage;
1676 }
1677
1678 /*
1679  * This is a migrate-callback that "frees" freepages back to the isolated
1680  * freelist.  All pages on the freelist are from the same zone, so there is no
1681  * special handling needed for NUMA.
1682  */
1683 static void compaction_free(struct page *page, unsigned long data)
1684 {
1685         struct compact_control *cc = (struct compact_control *)data;
1686
1687         list_add(&page->lru, &cc->freepages);
1688         cc->nr_freepages++;
1689 }
1690
1691 /* possible outcome of isolate_migratepages */
1692 typedef enum {
1693         ISOLATE_ABORT,          /* Abort compaction now */
1694         ISOLATE_NONE,           /* No pages isolated, continue scanning */
1695         ISOLATE_SUCCESS,        /* Pages isolated, migrate */
1696 } isolate_migrate_t;
1697
1698 /*
1699  * Allow userspace to control policy on scanning the unevictable LRU for
1700  * compactable pages.
1701  */
1702 #ifdef CONFIG_PREEMPT_RT
1703 int sysctl_compact_unevictable_allowed __read_mostly = 0;
1704 #else
1705 int sysctl_compact_unevictable_allowed __read_mostly = 1;
1706 #endif
1707
1708 static inline void
1709 update_fast_start_pfn(struct compact_control *cc, unsigned long pfn)
1710 {
1711         if (cc->fast_start_pfn == ULONG_MAX)
1712                 return;
1713
1714         if (!cc->fast_start_pfn)
1715                 cc->fast_start_pfn = pfn;
1716
1717         cc->fast_start_pfn = min(cc->fast_start_pfn, pfn);
1718 }
1719
1720 static inline unsigned long
1721 reinit_migrate_pfn(struct compact_control *cc)
1722 {
1723         if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX)
1724                 return cc->migrate_pfn;
1725
1726         cc->migrate_pfn = cc->fast_start_pfn;
1727         cc->fast_start_pfn = ULONG_MAX;
1728
1729         return cc->migrate_pfn;
1730 }
1731
1732 /*
1733  * Briefly search the free lists for a migration source that already has
1734  * some free pages to reduce the number of pages that need migration
1735  * before a pageblock is free.
1736  */
1737 static unsigned long fast_find_migrateblock(struct compact_control *cc)
1738 {
1739         unsigned int limit = freelist_scan_limit(cc);
1740         unsigned int nr_scanned = 0;
1741         unsigned long distance;
1742         unsigned long pfn = cc->migrate_pfn;
1743         unsigned long high_pfn;
1744         int order;
1745         bool found_block = false;
1746
1747         /* Skip hints are relied on to avoid repeats on the fast search */
1748         if (cc->ignore_skip_hint)
1749                 return pfn;
1750
1751         /*
1752          * If the migrate_pfn is not at the start of a zone or the start
1753          * of a pageblock then assume this is a continuation of a previous
1754          * scan restarted due to COMPACT_CLUSTER_MAX.
1755          */
1756         if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn))
1757                 return pfn;
1758
1759         /*
1760          * For smaller orders, just linearly scan as the number of pages
1761          * to migrate should be relatively small and does not necessarily
1762          * justify freeing up a large block for a small allocation.
1763          */
1764         if (cc->order <= PAGE_ALLOC_COSTLY_ORDER)
1765                 return pfn;
1766
1767         /*
1768          * Only allow kcompactd and direct requests for movable pages to
1769          * quickly clear out a MOVABLE pageblock for allocation. This
1770          * reduces the risk that a large movable pageblock is freed for
1771          * an unmovable/reclaimable small allocation.
1772          */
1773         if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE)
1774                 return pfn;
1775
1776         /*
1777          * When starting the migration scanner, pick any pageblock within the
1778          * first half of the search space. Otherwise try and pick a pageblock
1779          * within the first eighth to reduce the chances that a migration
1780          * target later becomes a source.
1781          */
1782         distance = (cc->free_pfn - cc->migrate_pfn) >> 1;
1783         if (cc->migrate_pfn != cc->zone->zone_start_pfn)
1784                 distance >>= 2;
1785         high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance);
1786
1787         for (order = cc->order - 1;
1788              order >= PAGE_ALLOC_COSTLY_ORDER && !found_block && nr_scanned < limit;
1789              order--) {
1790                 struct free_area *area = &cc->zone->free_area[order];
1791                 struct list_head *freelist;
1792                 unsigned long flags;
1793                 struct page *freepage;
1794
1795                 if (!area->nr_free)
1796                         continue;
1797
1798                 spin_lock_irqsave(&cc->zone->lock, flags);
1799                 freelist = &area->free_list[MIGRATE_MOVABLE];
1800                 list_for_each_entry(freepage, freelist, lru) {
1801                         unsigned long free_pfn;
1802
1803                         if (nr_scanned++ >= limit) {
1804                                 move_freelist_tail(freelist, freepage);
1805                                 break;
1806                         }
1807
1808                         free_pfn = page_to_pfn(freepage);
1809                         if (free_pfn < high_pfn) {
1810                                 /*
1811                                  * Avoid if skipped recently. Ideally it would
1812                                  * move to the tail but even safe iteration of
1813                                  * the list assumes an entry is deleted, not
1814                                  * reordered.
1815                                  */
1816                                 if (get_pageblock_skip(freepage))
1817                                         continue;
1818
1819                                 /* Reorder to so a future search skips recent pages */
1820                                 move_freelist_tail(freelist, freepage);
1821
1822                                 update_fast_start_pfn(cc, free_pfn);
1823                                 pfn = pageblock_start_pfn(free_pfn);
1824                                 cc->fast_search_fail = 0;
1825                                 found_block = true;
1826                                 set_pageblock_skip(freepage);
1827                                 break;
1828                         }
1829                 }
1830                 spin_unlock_irqrestore(&cc->zone->lock, flags);
1831         }
1832
1833         cc->total_migrate_scanned += nr_scanned;
1834
1835         /*
1836          * If fast scanning failed then use a cached entry for a page block
1837          * that had free pages as the basis for starting a linear scan.
1838          */
1839         if (!found_block) {
1840                 cc->fast_search_fail++;
1841                 pfn = reinit_migrate_pfn(cc);
1842         }
1843         return pfn;
1844 }
1845
1846 /*
1847  * Isolate all pages that can be migrated from the first suitable block,
1848  * starting at the block pointed to by the migrate scanner pfn within
1849  * compact_control.
1850  */
1851 static isolate_migrate_t isolate_migratepages(struct compact_control *cc)
1852 {
1853         unsigned long block_start_pfn;
1854         unsigned long block_end_pfn;
1855         unsigned long low_pfn;
1856         struct page *page;
1857         const isolate_mode_t isolate_mode =
1858                 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1859                 (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1860         bool fast_find_block;
1861
1862         /*
1863          * Start at where we last stopped, or beginning of the zone as
1864          * initialized by compact_zone(). The first failure will use
1865          * the lowest PFN as the starting point for linear scanning.
1866          */
1867         low_pfn = fast_find_migrateblock(cc);
1868         block_start_pfn = pageblock_start_pfn(low_pfn);
1869         if (block_start_pfn < cc->zone->zone_start_pfn)
1870                 block_start_pfn = cc->zone->zone_start_pfn;
1871
1872         /*
1873          * fast_find_migrateblock marks a pageblock skipped so to avoid
1874          * the isolation_suitable check below, check whether the fast
1875          * search was successful.
1876          */
1877         fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail;
1878
1879         /* Only scan within a pageblock boundary */
1880         block_end_pfn = pageblock_end_pfn(low_pfn);
1881
1882         /*
1883          * Iterate over whole pageblocks until we find the first suitable.
1884          * Do not cross the free scanner.
1885          */
1886         for (; block_end_pfn <= cc->free_pfn;
1887                         fast_find_block = false,
1888                         cc->migrate_pfn = low_pfn = block_end_pfn,
1889                         block_start_pfn = block_end_pfn,
1890                         block_end_pfn += pageblock_nr_pages) {
1891
1892                 /*
1893                  * This can potentially iterate a massively long zone with
1894                  * many pageblocks unsuitable, so periodically check if we
1895                  * need to schedule.
1896                  */
1897                 if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)))
1898                         cond_resched();
1899
1900                 page = pageblock_pfn_to_page(block_start_pfn,
1901                                                 block_end_pfn, cc->zone);
1902                 if (!page)
1903                         continue;
1904
1905                 /*
1906                  * If isolation recently failed, do not retry. Only check the
1907                  * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock
1908                  * to be visited multiple times. Assume skip was checked
1909                  * before making it "skip" so other compaction instances do
1910                  * not scan the same block.
1911                  */
1912                 if (IS_ALIGNED(low_pfn, pageblock_nr_pages) &&
1913                     !fast_find_block && !isolation_suitable(cc, page))
1914                         continue;
1915
1916                 /*
1917                  * For async compaction, also only scan in MOVABLE blocks
1918                  * without huge pages. Async compaction is optimistic to see
1919                  * if the minimum amount of work satisfies the allocation.
1920                  * The cached PFN is updated as it's possible that all
1921                  * remaining blocks between source and target are unsuitable
1922                  * and the compaction scanners fail to meet.
1923                  */
1924                 if (!suitable_migration_source(cc, page)) {
1925                         update_cached_migrate(cc, block_end_pfn);
1926                         continue;
1927                 }
1928
1929                 /* Perform the isolation */
1930                 if (isolate_migratepages_block(cc, low_pfn, block_end_pfn,
1931                                                 isolate_mode))
1932                         return ISOLATE_ABORT;
1933
1934                 /*
1935                  * Either we isolated something and proceed with migration. Or
1936                  * we failed and compact_zone should decide if we should
1937                  * continue or not.
1938                  */
1939                 break;
1940         }
1941
1942         return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1943 }
1944
1945 /*
1946  * order == -1 is expected when compacting via
1947  * /proc/sys/vm/compact_memory
1948  */
1949 static inline bool is_via_compact_memory(int order)
1950 {
1951         return order == -1;
1952 }
1953
1954 static bool kswapd_is_running(pg_data_t *pgdat)
1955 {
1956         return pgdat->kswapd && task_is_running(pgdat->kswapd);
1957 }
1958
1959 /*
1960  * A zone's fragmentation score is the external fragmentation wrt to the
1961  * COMPACTION_HPAGE_ORDER. It returns a value in the range [0, 100].
1962  */
1963 static unsigned int fragmentation_score_zone(struct zone *zone)
1964 {
1965         return extfrag_for_order(zone, COMPACTION_HPAGE_ORDER);
1966 }
1967
1968 /*
1969  * A weighted zone's fragmentation score is the external fragmentation
1970  * wrt to the COMPACTION_HPAGE_ORDER scaled by the zone's size. It
1971  * returns a value in the range [0, 100].
1972  *
1973  * The scaling factor ensures that proactive compaction focuses on larger
1974  * zones like ZONE_NORMAL, rather than smaller, specialized zones like
1975  * ZONE_DMA32. For smaller zones, the score value remains close to zero,
1976  * and thus never exceeds the high threshold for proactive compaction.
1977  */
1978 static unsigned int fragmentation_score_zone_weighted(struct zone *zone)
1979 {
1980         unsigned long score;
1981
1982         score = zone->present_pages * fragmentation_score_zone(zone);
1983         return div64_ul(score, zone->zone_pgdat->node_present_pages + 1);
1984 }
1985
1986 /*
1987  * The per-node proactive (background) compaction process is started by its
1988  * corresponding kcompactd thread when the node's fragmentation score
1989  * exceeds the high threshold. The compaction process remains active till
1990  * the node's score falls below the low threshold, or one of the back-off
1991  * conditions is met.
1992  */
1993 static unsigned int fragmentation_score_node(pg_data_t *pgdat)
1994 {
1995         unsigned int score = 0;
1996         int zoneid;
1997
1998         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
1999                 struct zone *zone;
2000
2001                 zone = &pgdat->node_zones[zoneid];
2002                 score += fragmentation_score_zone_weighted(zone);
2003         }
2004
2005         return score;
2006 }
2007
2008 static unsigned int fragmentation_score_wmark(pg_data_t *pgdat, bool low)
2009 {
2010         unsigned int wmark_low;
2011
2012         /*
2013          * Cap the low watermark to avoid excessive compaction
2014          * activity in case a user sets the proactiveness tunable
2015          * close to 100 (maximum).
2016          */
2017         wmark_low = max(100U - sysctl_compaction_proactiveness, 5U);
2018         return low ? wmark_low : min(wmark_low + 10, 100U);
2019 }
2020
2021 static bool should_proactive_compact_node(pg_data_t *pgdat)
2022 {
2023         int wmark_high;
2024
2025         if (!sysctl_compaction_proactiveness || kswapd_is_running(pgdat))
2026                 return false;
2027
2028         wmark_high = fragmentation_score_wmark(pgdat, false);
2029         return fragmentation_score_node(pgdat) > wmark_high;
2030 }
2031
2032 static enum compact_result __compact_finished(struct compact_control *cc)
2033 {
2034         unsigned int order;
2035         const int migratetype = cc->migratetype;
2036         int ret;
2037
2038         /* Compaction run completes if the migrate and free scanner meet */
2039         if (compact_scanners_met(cc)) {
2040                 /* Let the next compaction start anew. */
2041                 reset_cached_positions(cc->zone);
2042
2043                 /*
2044                  * Mark that the PG_migrate_skip information should be cleared
2045                  * by kswapd when it goes to sleep. kcompactd does not set the
2046                  * flag itself as the decision to be clear should be directly
2047                  * based on an allocation request.
2048                  */
2049                 if (cc->direct_compaction)
2050                         cc->zone->compact_blockskip_flush = true;
2051
2052                 if (cc->whole_zone)
2053                         return COMPACT_COMPLETE;
2054                 else
2055                         return COMPACT_PARTIAL_SKIPPED;
2056         }
2057
2058         if (cc->proactive_compaction) {
2059                 int score, wmark_low;
2060                 pg_data_t *pgdat;
2061
2062                 pgdat = cc->zone->zone_pgdat;
2063                 if (kswapd_is_running(pgdat))
2064                         return COMPACT_PARTIAL_SKIPPED;
2065
2066                 score = fragmentation_score_zone(cc->zone);
2067                 wmark_low = fragmentation_score_wmark(pgdat, true);
2068
2069                 if (score > wmark_low)
2070                         ret = COMPACT_CONTINUE;
2071                 else
2072                         ret = COMPACT_SUCCESS;
2073
2074                 goto out;
2075         }
2076
2077         if (is_via_compact_memory(cc->order))
2078                 return COMPACT_CONTINUE;
2079
2080         /*
2081          * Always finish scanning a pageblock to reduce the possibility of
2082          * fallbacks in the future. This is particularly important when
2083          * migration source is unmovable/reclaimable but it's not worth
2084          * special casing.
2085          */
2086         if (!IS_ALIGNED(cc->migrate_pfn, pageblock_nr_pages))
2087                 return COMPACT_CONTINUE;
2088
2089         /* Direct compactor: Is a suitable page free? */
2090         ret = COMPACT_NO_SUITABLE_PAGE;
2091         for (order = cc->order; order < MAX_ORDER; order++) {
2092                 struct free_area *area = &cc->zone->free_area[order];
2093                 bool can_steal;
2094
2095                 /* Job done if page is free of the right migratetype */
2096                 if (!free_area_empty(area, migratetype))
2097                         return COMPACT_SUCCESS;
2098
2099 #ifdef CONFIG_CMA
2100                 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
2101                 if (migratetype == MIGRATE_MOVABLE &&
2102                         !free_area_empty(area, MIGRATE_CMA))
2103                         return COMPACT_SUCCESS;
2104 #endif
2105                 /*
2106                  * Job done if allocation would steal freepages from
2107                  * other migratetype buddy lists.
2108                  */
2109                 if (find_suitable_fallback(area, order, migratetype,
2110                                                 true, &can_steal) != -1) {
2111
2112                         /* movable pages are OK in any pageblock */
2113                         if (migratetype == MIGRATE_MOVABLE)
2114                                 return COMPACT_SUCCESS;
2115
2116                         /*
2117                          * We are stealing for a non-movable allocation. Make
2118                          * sure we finish compacting the current pageblock
2119                          * first so it is as free as possible and we won't
2120                          * have to steal another one soon. This only applies
2121                          * to sync compaction, as async compaction operates
2122                          * on pageblocks of the same migratetype.
2123                          */
2124                         if (cc->mode == MIGRATE_ASYNC ||
2125                                         IS_ALIGNED(cc->migrate_pfn,
2126                                                         pageblock_nr_pages)) {
2127                                 return COMPACT_SUCCESS;
2128                         }
2129
2130                         ret = COMPACT_CONTINUE;
2131                         break;
2132                 }
2133         }
2134
2135 out:
2136         if (cc->contended || fatal_signal_pending(current))
2137                 ret = COMPACT_CONTENDED;
2138
2139         return ret;
2140 }
2141
2142 static enum compact_result compact_finished(struct compact_control *cc)
2143 {
2144         int ret;
2145
2146         ret = __compact_finished(cc);
2147         trace_mm_compaction_finished(cc->zone, cc->order, ret);
2148         if (ret == COMPACT_NO_SUITABLE_PAGE)
2149                 ret = COMPACT_CONTINUE;
2150
2151         return ret;
2152 }
2153
2154 static enum compact_result __compaction_suitable(struct zone *zone, int order,
2155                                         unsigned int alloc_flags,
2156                                         int highest_zoneidx,
2157                                         unsigned long wmark_target)
2158 {
2159         unsigned long watermark;
2160
2161         if (is_via_compact_memory(order))
2162                 return COMPACT_CONTINUE;
2163
2164         watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
2165         /*
2166          * If watermarks for high-order allocation are already met, there
2167          * should be no need for compaction at all.
2168          */
2169         if (zone_watermark_ok(zone, order, watermark, highest_zoneidx,
2170                                                                 alloc_flags))
2171                 return COMPACT_SUCCESS;
2172
2173         /*
2174          * Watermarks for order-0 must be met for compaction to be able to
2175          * isolate free pages for migration targets. This means that the
2176          * watermark and alloc_flags have to match, or be more pessimistic than
2177          * the check in __isolate_free_page(). We don't use the direct
2178          * compactor's alloc_flags, as they are not relevant for freepage
2179          * isolation. We however do use the direct compactor's highest_zoneidx
2180          * to skip over zones where lowmem reserves would prevent allocation
2181          * even if compaction succeeds.
2182          * For costly orders, we require low watermark instead of min for
2183          * compaction to proceed to increase its chances.
2184          * ALLOC_CMA is used, as pages in CMA pageblocks are considered
2185          * suitable migration targets
2186          */
2187         watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
2188                                 low_wmark_pages(zone) : min_wmark_pages(zone);
2189         watermark += compact_gap(order);
2190         if (!__zone_watermark_ok(zone, 0, watermark, highest_zoneidx,
2191                                                 ALLOC_CMA, wmark_target))
2192                 return COMPACT_SKIPPED;
2193
2194         return COMPACT_CONTINUE;
2195 }
2196
2197 /*
2198  * compaction_suitable: Is this suitable to run compaction on this zone now?
2199  * Returns
2200  *   COMPACT_SKIPPED  - If there are too few free pages for compaction
2201  *   COMPACT_SUCCESS  - If the allocation would succeed without compaction
2202  *   COMPACT_CONTINUE - If compaction should run now
2203  */
2204 enum compact_result compaction_suitable(struct zone *zone, int order,
2205                                         unsigned int alloc_flags,
2206                                         int highest_zoneidx)
2207 {
2208         enum compact_result ret;
2209         int fragindex;
2210
2211         ret = __compaction_suitable(zone, order, alloc_flags, highest_zoneidx,
2212                                     zone_page_state(zone, NR_FREE_PAGES));
2213         /*
2214          * fragmentation index determines if allocation failures are due to
2215          * low memory or external fragmentation
2216          *
2217          * index of -1000 would imply allocations might succeed depending on
2218          * watermarks, but we already failed the high-order watermark check
2219          * index towards 0 implies failure is due to lack of memory
2220          * index towards 1000 implies failure is due to fragmentation
2221          *
2222          * Only compact if a failure would be due to fragmentation. Also
2223          * ignore fragindex for non-costly orders where the alternative to
2224          * a successful reclaim/compaction is OOM. Fragindex and the
2225          * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
2226          * excessive compaction for costly orders, but it should not be at the
2227          * expense of system stability.
2228          */
2229         if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) {
2230                 fragindex = fragmentation_index(zone, order);
2231                 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
2232                         ret = COMPACT_NOT_SUITABLE_ZONE;
2233         }
2234
2235         trace_mm_compaction_suitable(zone, order, ret);
2236         if (ret == COMPACT_NOT_SUITABLE_ZONE)
2237                 ret = COMPACT_SKIPPED;
2238
2239         return ret;
2240 }
2241
2242 bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
2243                 int alloc_flags)
2244 {
2245         struct zone *zone;
2246         struct zoneref *z;
2247
2248         /*
2249          * Make sure at least one zone would pass __compaction_suitable if we continue
2250          * retrying the reclaim.
2251          */
2252         for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2253                                 ac->highest_zoneidx, ac->nodemask) {
2254                 unsigned long available;
2255                 enum compact_result compact_result;
2256
2257                 /*
2258                  * Do not consider all the reclaimable memory because we do not
2259                  * want to trash just for a single high order allocation which
2260                  * is even not guaranteed to appear even if __compaction_suitable
2261                  * is happy about the watermark check.
2262                  */
2263                 available = zone_reclaimable_pages(zone) / order;
2264                 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
2265                 compact_result = __compaction_suitable(zone, order, alloc_flags,
2266                                 ac->highest_zoneidx, available);
2267                 if (compact_result != COMPACT_SKIPPED)
2268                         return true;
2269         }
2270
2271         return false;
2272 }
2273
2274 static enum compact_result
2275 compact_zone(struct compact_control *cc, struct capture_control *capc)
2276 {
2277         enum compact_result ret;
2278         unsigned long start_pfn = cc->zone->zone_start_pfn;
2279         unsigned long end_pfn = zone_end_pfn(cc->zone);
2280         unsigned long last_migrated_pfn;
2281         const bool sync = cc->mode != MIGRATE_ASYNC;
2282         bool update_cached;
2283         unsigned int nr_succeeded = 0;
2284
2285         /*
2286          * These counters track activities during zone compaction.  Initialize
2287          * them before compacting a new zone.
2288          */
2289         cc->total_migrate_scanned = 0;
2290         cc->total_free_scanned = 0;
2291         cc->nr_migratepages = 0;
2292         cc->nr_freepages = 0;
2293         INIT_LIST_HEAD(&cc->freepages);
2294         INIT_LIST_HEAD(&cc->migratepages);
2295
2296         cc->migratetype = gfp_migratetype(cc->gfp_mask);
2297         ret = compaction_suitable(cc->zone, cc->order, cc->alloc_flags,
2298                                                         cc->highest_zoneidx);
2299         /* Compaction is likely to fail */
2300         if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED)
2301                 return ret;
2302
2303         /* huh, compaction_suitable is returning something unexpected */
2304         VM_BUG_ON(ret != COMPACT_CONTINUE);
2305
2306         /*
2307          * Clear pageblock skip if there were failures recently and compaction
2308          * is about to be retried after being deferred.
2309          */
2310         if (compaction_restarting(cc->zone, cc->order))
2311                 __reset_isolation_suitable(cc->zone);
2312
2313         /*
2314          * Setup to move all movable pages to the end of the zone. Used cached
2315          * information on where the scanners should start (unless we explicitly
2316          * want to compact the whole zone), but check that it is initialised
2317          * by ensuring the values are within zone boundaries.
2318          */
2319         cc->fast_start_pfn = 0;
2320         if (cc->whole_zone) {
2321                 cc->migrate_pfn = start_pfn;
2322                 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2323         } else {
2324                 cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync];
2325                 cc->free_pfn = cc->zone->compact_cached_free_pfn;
2326                 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
2327                         cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2328                         cc->zone->compact_cached_free_pfn = cc->free_pfn;
2329                 }
2330                 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
2331                         cc->migrate_pfn = start_pfn;
2332                         cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
2333                         cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
2334                 }
2335
2336                 if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn)
2337                         cc->whole_zone = true;
2338         }
2339
2340         last_migrated_pfn = 0;
2341
2342         /*
2343          * Migrate has separate cached PFNs for ASYNC and SYNC* migration on
2344          * the basis that some migrations will fail in ASYNC mode. However,
2345          * if the cached PFNs match and pageblocks are skipped due to having
2346          * no isolation candidates, then the sync state does not matter.
2347          * Until a pageblock with isolation candidates is found, keep the
2348          * cached PFNs in sync to avoid revisiting the same blocks.
2349          */
2350         update_cached = !sync &&
2351                 cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1];
2352
2353         trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
2354                                 cc->free_pfn, end_pfn, sync);
2355
2356         /* lru_add_drain_all could be expensive with involving other CPUs */
2357         lru_add_drain();
2358
2359         while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) {
2360                 int err;
2361                 unsigned long iteration_start_pfn = cc->migrate_pfn;
2362
2363                 /*
2364                  * Avoid multiple rescans which can happen if a page cannot be
2365                  * isolated (dirty/writeback in async mode) or if the migrated
2366                  * pages are being allocated before the pageblock is cleared.
2367                  * The first rescan will capture the entire pageblock for
2368                  * migration. If it fails, it'll be marked skip and scanning
2369                  * will proceed as normal.
2370                  */
2371                 cc->rescan = false;
2372                 if (pageblock_start_pfn(last_migrated_pfn) ==
2373                     pageblock_start_pfn(iteration_start_pfn)) {
2374                         cc->rescan = true;
2375                 }
2376
2377                 switch (isolate_migratepages(cc)) {
2378                 case ISOLATE_ABORT:
2379                         ret = COMPACT_CONTENDED;
2380                         putback_movable_pages(&cc->migratepages);
2381                         cc->nr_migratepages = 0;
2382                         goto out;
2383                 case ISOLATE_NONE:
2384                         if (update_cached) {
2385                                 cc->zone->compact_cached_migrate_pfn[1] =
2386                                         cc->zone->compact_cached_migrate_pfn[0];
2387                         }
2388
2389                         /*
2390                          * We haven't isolated and migrated anything, but
2391                          * there might still be unflushed migrations from
2392                          * previous cc->order aligned block.
2393                          */
2394                         goto check_drain;
2395                 case ISOLATE_SUCCESS:
2396                         update_cached = false;
2397                         last_migrated_pfn = iteration_start_pfn;
2398                 }
2399
2400                 err = migrate_pages(&cc->migratepages, compaction_alloc,
2401                                 compaction_free, (unsigned long)cc, cc->mode,
2402                                 MR_COMPACTION, &nr_succeeded);
2403
2404                 trace_mm_compaction_migratepages(cc->nr_migratepages,
2405                                                  nr_succeeded);
2406
2407                 /* All pages were either migrated or will be released */
2408                 cc->nr_migratepages = 0;
2409                 if (err) {
2410                         putback_movable_pages(&cc->migratepages);
2411                         /*
2412                          * migrate_pages() may return -ENOMEM when scanners meet
2413                          * and we want compact_finished() to detect it
2414                          */
2415                         if (err == -ENOMEM && !compact_scanners_met(cc)) {
2416                                 ret = COMPACT_CONTENDED;
2417                                 goto out;
2418                         }
2419                         /*
2420                          * We failed to migrate at least one page in the current
2421                          * order-aligned block, so skip the rest of it.
2422                          */
2423                         if (cc->direct_compaction &&
2424                                                 (cc->mode == MIGRATE_ASYNC)) {
2425                                 cc->migrate_pfn = block_end_pfn(
2426                                                 cc->migrate_pfn - 1, cc->order);
2427                                 /* Draining pcplists is useless in this case */
2428                                 last_migrated_pfn = 0;
2429                         }
2430                 }
2431
2432 check_drain:
2433                 /*
2434                  * Has the migration scanner moved away from the previous
2435                  * cc->order aligned block where we migrated from? If yes,
2436                  * flush the pages that were freed, so that they can merge and
2437                  * compact_finished() can detect immediately if allocation
2438                  * would succeed.
2439                  */
2440                 if (cc->order > 0 && last_migrated_pfn) {
2441                         unsigned long current_block_start =
2442                                 block_start_pfn(cc->migrate_pfn, cc->order);
2443
2444                         if (last_migrated_pfn < current_block_start) {
2445                                 lru_add_drain_cpu_zone(cc->zone);
2446                                 /* No more flushing until we migrate again */
2447                                 last_migrated_pfn = 0;
2448                         }
2449                 }
2450
2451                 /* Stop if a page has been captured */
2452                 if (capc && capc->page) {
2453                         ret = COMPACT_SUCCESS;
2454                         break;
2455                 }
2456         }
2457
2458 out:
2459         /*
2460          * Release free pages and update where the free scanner should restart,
2461          * so we don't leave any returned pages behind in the next attempt.
2462          */
2463         if (cc->nr_freepages > 0) {
2464                 unsigned long free_pfn = release_freepages(&cc->freepages);
2465
2466                 cc->nr_freepages = 0;
2467                 VM_BUG_ON(free_pfn == 0);
2468                 /* The cached pfn is always the first in a pageblock */
2469                 free_pfn = pageblock_start_pfn(free_pfn);
2470                 /*
2471                  * Only go back, not forward. The cached pfn might have been
2472                  * already reset to zone end in compact_finished()
2473                  */
2474                 if (free_pfn > cc->zone->compact_cached_free_pfn)
2475                         cc->zone->compact_cached_free_pfn = free_pfn;
2476         }
2477
2478         count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
2479         count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
2480
2481         trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
2482                                 cc->free_pfn, end_pfn, sync, ret);
2483
2484         return ret;
2485 }
2486
2487 static enum compact_result compact_zone_order(struct zone *zone, int order,
2488                 gfp_t gfp_mask, enum compact_priority prio,
2489                 unsigned int alloc_flags, int highest_zoneidx,
2490                 struct page **capture)
2491 {
2492         enum compact_result ret;
2493         struct compact_control cc = {
2494                 .order = order,
2495                 .search_order = order,
2496                 .gfp_mask = gfp_mask,
2497                 .zone = zone,
2498                 .mode = (prio == COMPACT_PRIO_ASYNC) ?
2499                                         MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT,
2500                 .alloc_flags = alloc_flags,
2501                 .highest_zoneidx = highest_zoneidx,
2502                 .direct_compaction = true,
2503                 .whole_zone = (prio == MIN_COMPACT_PRIORITY),
2504                 .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
2505                 .ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
2506         };
2507         struct capture_control capc = {
2508                 .cc = &cc,
2509                 .page = NULL,
2510         };
2511
2512         /*
2513          * Make sure the structs are really initialized before we expose the
2514          * capture control, in case we are interrupted and the interrupt handler
2515          * frees a page.
2516          */
2517         barrier();
2518         WRITE_ONCE(current->capture_control, &capc);
2519
2520         ret = compact_zone(&cc, &capc);
2521
2522         VM_BUG_ON(!list_empty(&cc.freepages));
2523         VM_BUG_ON(!list_empty(&cc.migratepages));
2524
2525         /*
2526          * Make sure we hide capture control first before we read the captured
2527          * page pointer, otherwise an interrupt could free and capture a page
2528          * and we would leak it.
2529          */
2530         WRITE_ONCE(current->capture_control, NULL);
2531         *capture = READ_ONCE(capc.page);
2532         /*
2533          * Technically, it is also possible that compaction is skipped but
2534          * the page is still captured out of luck(IRQ came and freed the page).
2535          * Returning COMPACT_SUCCESS in such cases helps in properly accounting
2536          * the COMPACT[STALL|FAIL] when compaction is skipped.
2537          */
2538         if (*capture)
2539                 ret = COMPACT_SUCCESS;
2540
2541         return ret;
2542 }
2543
2544 int sysctl_extfrag_threshold = 500;
2545
2546 /**
2547  * try_to_compact_pages - Direct compact to satisfy a high-order allocation
2548  * @gfp_mask: The GFP mask of the current allocation
2549  * @order: The order of the current allocation
2550  * @alloc_flags: The allocation flags of the current allocation
2551  * @ac: The context of current allocation
2552  * @prio: Determines how hard direct compaction should try to succeed
2553  * @capture: Pointer to free page created by compaction will be stored here
2554  *
2555  * This is the main entry point for direct page compaction.
2556  */
2557 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
2558                 unsigned int alloc_flags, const struct alloc_context *ac,
2559                 enum compact_priority prio, struct page **capture)
2560 {
2561         int may_perform_io = gfp_mask & __GFP_IO;
2562         struct zoneref *z;
2563         struct zone *zone;
2564         enum compact_result rc = COMPACT_SKIPPED;
2565
2566         /*
2567          * Check if the GFP flags allow compaction - GFP_NOIO is really
2568          * tricky context because the migration might require IO
2569          */
2570         if (!may_perform_io)
2571                 return COMPACT_SKIPPED;
2572
2573         trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
2574
2575         /* Compact each zone in the list */
2576         for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2577                                         ac->highest_zoneidx, ac->nodemask) {
2578                 enum compact_result status;
2579
2580                 if (prio > MIN_COMPACT_PRIORITY
2581                                         && compaction_deferred(zone, order)) {
2582                         rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
2583                         continue;
2584                 }
2585
2586                 status = compact_zone_order(zone, order, gfp_mask, prio,
2587                                 alloc_flags, ac->highest_zoneidx, capture);
2588                 rc = max(status, rc);
2589
2590                 /* The allocation should succeed, stop compacting */
2591                 if (status == COMPACT_SUCCESS) {
2592                         /*
2593                          * We think the allocation will succeed in this zone,
2594                          * but it is not certain, hence the false. The caller
2595                          * will repeat this with true if allocation indeed
2596                          * succeeds in this zone.
2597                          */
2598                         compaction_defer_reset(zone, order, false);
2599
2600                         break;
2601                 }
2602
2603                 if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
2604                                         status == COMPACT_PARTIAL_SKIPPED))
2605                         /*
2606                          * We think that allocation won't succeed in this zone
2607                          * so we defer compaction there. If it ends up
2608                          * succeeding after all, it will be reset.
2609                          */
2610                         defer_compaction(zone, order);
2611
2612                 /*
2613                  * We might have stopped compacting due to need_resched() in
2614                  * async compaction, or due to a fatal signal detected. In that
2615                  * case do not try further zones
2616                  */
2617                 if ((prio == COMPACT_PRIO_ASYNC && need_resched())
2618                                         || fatal_signal_pending(current))
2619                         break;
2620         }
2621
2622         return rc;
2623 }
2624
2625 /*
2626  * Compact all zones within a node till each zone's fragmentation score
2627  * reaches within proactive compaction thresholds (as determined by the
2628  * proactiveness tunable).
2629  *
2630  * It is possible that the function returns before reaching score targets
2631  * due to various back-off conditions, such as, contention on per-node or
2632  * per-zone locks.
2633  */
2634 static void proactive_compact_node(pg_data_t *pgdat)
2635 {
2636         int zoneid;
2637         struct zone *zone;
2638         struct compact_control cc = {
2639                 .order = -1,
2640                 .mode = MIGRATE_SYNC_LIGHT,
2641                 .ignore_skip_hint = true,
2642                 .whole_zone = true,
2643                 .gfp_mask = GFP_KERNEL,
2644                 .proactive_compaction = true,
2645         };
2646
2647         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2648                 zone = &pgdat->node_zones[zoneid];
2649                 if (!populated_zone(zone))
2650                         continue;
2651
2652                 cc.zone = zone;
2653
2654                 compact_zone(&cc, NULL);
2655
2656                 VM_BUG_ON(!list_empty(&cc.freepages));
2657                 VM_BUG_ON(!list_empty(&cc.migratepages));
2658         }
2659 }
2660
2661 /* Compact all zones within a node */
2662 static void compact_node(int nid)
2663 {
2664         pg_data_t *pgdat = NODE_DATA(nid);
2665         int zoneid;
2666         struct zone *zone;
2667         struct compact_control cc = {
2668                 .order = -1,
2669                 .mode = MIGRATE_SYNC,
2670                 .ignore_skip_hint = true,
2671                 .whole_zone = true,
2672                 .gfp_mask = GFP_KERNEL,
2673         };
2674
2675
2676         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2677
2678                 zone = &pgdat->node_zones[zoneid];
2679                 if (!populated_zone(zone))
2680                         continue;
2681
2682                 cc.zone = zone;
2683
2684                 compact_zone(&cc, NULL);
2685
2686                 VM_BUG_ON(!list_empty(&cc.freepages));
2687                 VM_BUG_ON(!list_empty(&cc.migratepages));
2688         }
2689 }
2690
2691 /* Compact all nodes in the system */
2692 static void compact_nodes(void)
2693 {
2694         int nid;
2695
2696         /* Flush pending updates to the LRU lists */
2697         lru_add_drain_all();
2698
2699         for_each_online_node(nid)
2700                 compact_node(nid);
2701 }
2702
2703 /*
2704  * Tunable for proactive compaction. It determines how
2705  * aggressively the kernel should compact memory in the
2706  * background. It takes values in the range [0, 100].
2707  */
2708 unsigned int __read_mostly sysctl_compaction_proactiveness = 20;
2709
2710 int compaction_proactiveness_sysctl_handler(struct ctl_table *table, int write,
2711                 void *buffer, size_t *length, loff_t *ppos)
2712 {
2713         int rc, nid;
2714
2715         rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
2716         if (rc)
2717                 return rc;
2718
2719         if (write && sysctl_compaction_proactiveness) {
2720                 for_each_online_node(nid) {
2721                         pg_data_t *pgdat = NODE_DATA(nid);
2722
2723                         if (pgdat->proactive_compact_trigger)
2724                                 continue;
2725
2726                         pgdat->proactive_compact_trigger = true;
2727                         wake_up_interruptible(&pgdat->kcompactd_wait);
2728                 }
2729         }
2730
2731         return 0;
2732 }
2733
2734 /*
2735  * This is the entry point for compacting all nodes via
2736  * /proc/sys/vm/compact_memory
2737  */
2738 int sysctl_compaction_handler(struct ctl_table *table, int write,
2739                         void *buffer, size_t *length, loff_t *ppos)
2740 {
2741         if (write)
2742                 compact_nodes();
2743
2744         return 0;
2745 }
2746
2747 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
2748 static ssize_t compact_store(struct device *dev,
2749                              struct device_attribute *attr,
2750                              const char *buf, size_t count)
2751 {
2752         int nid = dev->id;
2753
2754         if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
2755                 /* Flush pending updates to the LRU lists */
2756                 lru_add_drain_all();
2757
2758                 compact_node(nid);
2759         }
2760
2761         return count;
2762 }
2763 static DEVICE_ATTR_WO(compact);
2764
2765 int compaction_register_node(struct node *node)
2766 {
2767         return device_create_file(&node->dev, &dev_attr_compact);
2768 }
2769
2770 void compaction_unregister_node(struct node *node)
2771 {
2772         return device_remove_file(&node->dev, &dev_attr_compact);
2773 }
2774 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
2775
2776 static inline bool kcompactd_work_requested(pg_data_t *pgdat)
2777 {
2778         return pgdat->kcompactd_max_order > 0 || kthread_should_stop() ||
2779                 pgdat->proactive_compact_trigger;
2780 }
2781
2782 static bool kcompactd_node_suitable(pg_data_t *pgdat)
2783 {
2784         int zoneid;
2785         struct zone *zone;
2786         enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx;
2787
2788         for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) {
2789                 zone = &pgdat->node_zones[zoneid];
2790
2791                 if (!populated_zone(zone))
2792                         continue;
2793
2794                 if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
2795                                         highest_zoneidx) == COMPACT_CONTINUE)
2796                         return true;
2797         }
2798
2799         return false;
2800 }
2801
2802 static void kcompactd_do_work(pg_data_t *pgdat)
2803 {
2804         /*
2805          * With no special task, compact all zones so that a page of requested
2806          * order is allocatable.
2807          */
2808         int zoneid;
2809         struct zone *zone;
2810         struct compact_control cc = {
2811                 .order = pgdat->kcompactd_max_order,
2812                 .search_order = pgdat->kcompactd_max_order,
2813                 .highest_zoneidx = pgdat->kcompactd_highest_zoneidx,
2814                 .mode = MIGRATE_SYNC_LIGHT,
2815                 .ignore_skip_hint = false,
2816                 .gfp_mask = GFP_KERNEL,
2817         };
2818         trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
2819                                                         cc.highest_zoneidx);
2820         count_compact_event(KCOMPACTD_WAKE);
2821
2822         for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) {
2823                 int status;
2824
2825                 zone = &pgdat->node_zones[zoneid];
2826                 if (!populated_zone(zone))
2827                         continue;
2828
2829                 if (compaction_deferred(zone, cc.order))
2830                         continue;
2831
2832                 if (compaction_suitable(zone, cc.order, 0, zoneid) !=
2833                                                         COMPACT_CONTINUE)
2834                         continue;
2835
2836                 if (kthread_should_stop())
2837                         return;
2838
2839                 cc.zone = zone;
2840                 status = compact_zone(&cc, NULL);
2841
2842                 if (status == COMPACT_SUCCESS) {
2843                         compaction_defer_reset(zone, cc.order, false);
2844                 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
2845                         /*
2846                          * Buddy pages may become stranded on pcps that could
2847                          * otherwise coalesce on the zone's free area for
2848                          * order >= cc.order.  This is ratelimited by the
2849                          * upcoming deferral.
2850                          */
2851                         drain_all_pages(zone);
2852
2853                         /*
2854                          * We use sync migration mode here, so we defer like
2855                          * sync direct compaction does.
2856                          */
2857                         defer_compaction(zone, cc.order);
2858                 }
2859
2860                 count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2861                                      cc.total_migrate_scanned);
2862                 count_compact_events(KCOMPACTD_FREE_SCANNED,
2863                                      cc.total_free_scanned);
2864
2865                 VM_BUG_ON(!list_empty(&cc.freepages));
2866                 VM_BUG_ON(!list_empty(&cc.migratepages));
2867         }
2868
2869         /*
2870          * Regardless of success, we are done until woken up next. But remember
2871          * the requested order/highest_zoneidx in case it was higher/tighter
2872          * than our current ones
2873          */
2874         if (pgdat->kcompactd_max_order <= cc.order)
2875                 pgdat->kcompactd_max_order = 0;
2876         if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx)
2877                 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
2878 }
2879
2880 void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx)
2881 {
2882         if (!order)
2883                 return;
2884
2885         if (pgdat->kcompactd_max_order < order)
2886                 pgdat->kcompactd_max_order = order;
2887
2888         if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx)
2889                 pgdat->kcompactd_highest_zoneidx = highest_zoneidx;
2890
2891         /*
2892          * Pairs with implicit barrier in wait_event_freezable()
2893          * such that wakeups are not missed.
2894          */
2895         if (!wq_has_sleeper(&pgdat->kcompactd_wait))
2896                 return;
2897
2898         if (!kcompactd_node_suitable(pgdat))
2899                 return;
2900
2901         trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
2902                                                         highest_zoneidx);
2903         wake_up_interruptible(&pgdat->kcompactd_wait);
2904 }
2905
2906 /*
2907  * The background compaction daemon, started as a kernel thread
2908  * from the init process.
2909  */
2910 static int kcompactd(void *p)
2911 {
2912         pg_data_t *pgdat = (pg_data_t *)p;
2913         struct task_struct *tsk = current;
2914         long default_timeout = msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC);
2915         long timeout = default_timeout;
2916
2917         const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2918
2919         if (!cpumask_empty(cpumask))
2920                 set_cpus_allowed_ptr(tsk, cpumask);
2921
2922         set_freezable();
2923
2924         pgdat->kcompactd_max_order = 0;
2925         pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
2926
2927         while (!kthread_should_stop()) {
2928                 unsigned long pflags;
2929
2930                 /*
2931                  * Avoid the unnecessary wakeup for proactive compaction
2932                  * when it is disabled.
2933                  */
2934                 if (!sysctl_compaction_proactiveness)
2935                         timeout = MAX_SCHEDULE_TIMEOUT;
2936                 trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
2937                 if (wait_event_freezable_timeout(pgdat->kcompactd_wait,
2938                         kcompactd_work_requested(pgdat), timeout) &&
2939                         !pgdat->proactive_compact_trigger) {
2940
2941                         psi_memstall_enter(&pflags);
2942                         kcompactd_do_work(pgdat);
2943                         psi_memstall_leave(&pflags);
2944                         /*
2945                          * Reset the timeout value. The defer timeout from
2946                          * proactive compaction is lost here but that is fine
2947                          * as the condition of the zone changing substantionally
2948                          * then carrying on with the previous defer interval is
2949                          * not useful.
2950                          */
2951                         timeout = default_timeout;
2952                         continue;
2953                 }
2954
2955                 /*
2956                  * Start the proactive work with default timeout. Based
2957                  * on the fragmentation score, this timeout is updated.
2958                  */
2959                 timeout = default_timeout;
2960                 if (should_proactive_compact_node(pgdat)) {
2961                         unsigned int prev_score, score;
2962
2963                         prev_score = fragmentation_score_node(pgdat);
2964                         proactive_compact_node(pgdat);
2965                         score = fragmentation_score_node(pgdat);
2966                         /*
2967                          * Defer proactive compaction if the fragmentation
2968                          * score did not go down i.e. no progress made.
2969                          */
2970                         if (unlikely(score >= prev_score))
2971                                 timeout =
2972                                    default_timeout << COMPACT_MAX_DEFER_SHIFT;
2973                 }
2974                 if (unlikely(pgdat->proactive_compact_trigger))
2975                         pgdat->proactive_compact_trigger = false;
2976         }
2977
2978         return 0;
2979 }
2980
2981 /*
2982  * This kcompactd start function will be called by init and node-hot-add.
2983  * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
2984  */
2985 int kcompactd_run(int nid)
2986 {
2987         pg_data_t *pgdat = NODE_DATA(nid);
2988         int ret = 0;
2989
2990         if (pgdat->kcompactd)
2991                 return 0;
2992
2993         pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
2994         if (IS_ERR(pgdat->kcompactd)) {
2995                 pr_err("Failed to start kcompactd on node %d\n", nid);
2996                 ret = PTR_ERR(pgdat->kcompactd);
2997                 pgdat->kcompactd = NULL;
2998         }
2999         return ret;
3000 }
3001
3002 /*
3003  * Called by memory hotplug when all memory in a node is offlined. Caller must
3004  * hold mem_hotplug_begin/end().
3005  */
3006 void kcompactd_stop(int nid)
3007 {
3008         struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
3009
3010         if (kcompactd) {
3011                 kthread_stop(kcompactd);
3012                 NODE_DATA(nid)->kcompactd = NULL;
3013         }
3014 }
3015
3016 /*
3017  * It's optimal to keep kcompactd on the same CPUs as their memory, but
3018  * not required for correctness. So if the last cpu in a node goes
3019  * away, we get changed to run anywhere: as the first one comes back,
3020  * restore their cpu bindings.
3021  */
3022 static int kcompactd_cpu_online(unsigned int cpu)
3023 {
3024         int nid;
3025
3026         for_each_node_state(nid, N_MEMORY) {
3027                 pg_data_t *pgdat = NODE_DATA(nid);
3028                 const struct cpumask *mask;
3029
3030                 mask = cpumask_of_node(pgdat->node_id);
3031
3032                 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3033                         /* One of our CPUs online: restore mask */
3034                         set_cpus_allowed_ptr(pgdat->kcompactd, mask);
3035         }
3036         return 0;
3037 }
3038
3039 static int __init kcompactd_init(void)
3040 {
3041         int nid;
3042         int ret;
3043
3044         ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3045                                         "mm/compaction:online",
3046                                         kcompactd_cpu_online, NULL);
3047         if (ret < 0) {
3048                 pr_err("kcompactd: failed to register hotplug callbacks.\n");
3049                 return ret;
3050         }
3051
3052         for_each_node_state(nid, N_MEMORY)
3053                 kcompactd_run(nid);
3054         return 0;
3055 }
3056 subsys_initcall(kcompactd_init)
3057
3058 #endif /* CONFIG_COMPACTION */