Merge branch 'work.adfs' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[platform/kernel/linux-starfive.git] / mm / compaction.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * linux/mm/compaction.c
4  *
5  * Memory compaction for the reduction of external fragmentation. Note that
6  * this heavily depends upon page migration to do all the real heavy
7  * lifting
8  *
9  * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
10  */
11 #include <linux/cpu.h>
12 #include <linux/swap.h>
13 #include <linux/migrate.h>
14 #include <linux/compaction.h>
15 #include <linux/mm_inline.h>
16 #include <linux/sched/signal.h>
17 #include <linux/backing-dev.h>
18 #include <linux/sysctl.h>
19 #include <linux/sysfs.h>
20 #include <linux/page-isolation.h>
21 #include <linux/kasan.h>
22 #include <linux/kthread.h>
23 #include <linux/freezer.h>
24 #include <linux/page_owner.h>
25 #include <linux/psi.h>
26 #include "internal.h"
27
28 #ifdef CONFIG_COMPACTION
29 static inline void count_compact_event(enum vm_event_item item)
30 {
31         count_vm_event(item);
32 }
33
34 static inline void count_compact_events(enum vm_event_item item, long delta)
35 {
36         count_vm_events(item, delta);
37 }
38 #else
39 #define count_compact_event(item) do { } while (0)
40 #define count_compact_events(item, delta) do { } while (0)
41 #endif
42
43 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
44
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/compaction.h>
47
48 #define block_start_pfn(pfn, order)     round_down(pfn, 1UL << (order))
49 #define block_end_pfn(pfn, order)       ALIGN((pfn) + 1, 1UL << (order))
50 #define pageblock_start_pfn(pfn)        block_start_pfn(pfn, pageblock_order)
51 #define pageblock_end_pfn(pfn)          block_end_pfn(pfn, pageblock_order)
52
53 static unsigned long release_freepages(struct list_head *freelist)
54 {
55         struct page *page, *next;
56         unsigned long high_pfn = 0;
57
58         list_for_each_entry_safe(page, next, freelist, lru) {
59                 unsigned long pfn = page_to_pfn(page);
60                 list_del(&page->lru);
61                 __free_page(page);
62                 if (pfn > high_pfn)
63                         high_pfn = pfn;
64         }
65
66         return high_pfn;
67 }
68
69 static void split_map_pages(struct list_head *list)
70 {
71         unsigned int i, order, nr_pages;
72         struct page *page, *next;
73         LIST_HEAD(tmp_list);
74
75         list_for_each_entry_safe(page, next, list, lru) {
76                 list_del(&page->lru);
77
78                 order = page_private(page);
79                 nr_pages = 1 << order;
80
81                 post_alloc_hook(page, order, __GFP_MOVABLE);
82                 if (order)
83                         split_page(page, order);
84
85                 for (i = 0; i < nr_pages; i++) {
86                         list_add(&page->lru, &tmp_list);
87                         page++;
88                 }
89         }
90
91         list_splice(&tmp_list, list);
92 }
93
94 #ifdef CONFIG_COMPACTION
95
96 int PageMovable(struct page *page)
97 {
98         struct address_space *mapping;
99
100         VM_BUG_ON_PAGE(!PageLocked(page), page);
101         if (!__PageMovable(page))
102                 return 0;
103
104         mapping = page_mapping(page);
105         if (mapping && mapping->a_ops && mapping->a_ops->isolate_page)
106                 return 1;
107
108         return 0;
109 }
110 EXPORT_SYMBOL(PageMovable);
111
112 void __SetPageMovable(struct page *page, struct address_space *mapping)
113 {
114         VM_BUG_ON_PAGE(!PageLocked(page), page);
115         VM_BUG_ON_PAGE((unsigned long)mapping & PAGE_MAPPING_MOVABLE, page);
116         page->mapping = (void *)((unsigned long)mapping | PAGE_MAPPING_MOVABLE);
117 }
118 EXPORT_SYMBOL(__SetPageMovable);
119
120 void __ClearPageMovable(struct page *page)
121 {
122         VM_BUG_ON_PAGE(!PageLocked(page), page);
123         VM_BUG_ON_PAGE(!PageMovable(page), page);
124         /*
125          * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE
126          * flag so that VM can catch up released page by driver after isolation.
127          * With it, VM migration doesn't try to put it back.
128          */
129         page->mapping = (void *)((unsigned long)page->mapping &
130                                 PAGE_MAPPING_MOVABLE);
131 }
132 EXPORT_SYMBOL(__ClearPageMovable);
133
134 /* Do not skip compaction more than 64 times */
135 #define COMPACT_MAX_DEFER_SHIFT 6
136
137 /*
138  * Compaction is deferred when compaction fails to result in a page
139  * allocation success. 1 << compact_defer_limit compactions are skipped up
140  * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
141  */
142 void defer_compaction(struct zone *zone, int order)
143 {
144         zone->compact_considered = 0;
145         zone->compact_defer_shift++;
146
147         if (order < zone->compact_order_failed)
148                 zone->compact_order_failed = order;
149
150         if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
151                 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
152
153         trace_mm_compaction_defer_compaction(zone, order);
154 }
155
156 /* Returns true if compaction should be skipped this time */
157 bool compaction_deferred(struct zone *zone, int order)
158 {
159         unsigned long defer_limit = 1UL << zone->compact_defer_shift;
160
161         if (order < zone->compact_order_failed)
162                 return false;
163
164         /* Avoid possible overflow */
165         if (++zone->compact_considered > defer_limit)
166                 zone->compact_considered = defer_limit;
167
168         if (zone->compact_considered >= defer_limit)
169                 return false;
170
171         trace_mm_compaction_deferred(zone, order);
172
173         return true;
174 }
175
176 /*
177  * Update defer tracking counters after successful compaction of given order,
178  * which means an allocation either succeeded (alloc_success == true) or is
179  * expected to succeed.
180  */
181 void compaction_defer_reset(struct zone *zone, int order,
182                 bool alloc_success)
183 {
184         if (alloc_success) {
185                 zone->compact_considered = 0;
186                 zone->compact_defer_shift = 0;
187         }
188         if (order >= zone->compact_order_failed)
189                 zone->compact_order_failed = order + 1;
190
191         trace_mm_compaction_defer_reset(zone, order);
192 }
193
194 /* Returns true if restarting compaction after many failures */
195 bool compaction_restarting(struct zone *zone, int order)
196 {
197         if (order < zone->compact_order_failed)
198                 return false;
199
200         return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
201                 zone->compact_considered >= 1UL << zone->compact_defer_shift;
202 }
203
204 /* Returns true if the pageblock should be scanned for pages to isolate. */
205 static inline bool isolation_suitable(struct compact_control *cc,
206                                         struct page *page)
207 {
208         if (cc->ignore_skip_hint)
209                 return true;
210
211         return !get_pageblock_skip(page);
212 }
213
214 static void reset_cached_positions(struct zone *zone)
215 {
216         zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
217         zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
218         zone->compact_cached_free_pfn =
219                                 pageblock_start_pfn(zone_end_pfn(zone) - 1);
220 }
221
222 /*
223  * Compound pages of >= pageblock_order should consistenly be skipped until
224  * released. It is always pointless to compact pages of such order (if they are
225  * migratable), and the pageblocks they occupy cannot contain any free pages.
226  */
227 static bool pageblock_skip_persistent(struct page *page)
228 {
229         if (!PageCompound(page))
230                 return false;
231
232         page = compound_head(page);
233
234         if (compound_order(page) >= pageblock_order)
235                 return true;
236
237         return false;
238 }
239
240 static bool
241 __reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source,
242                                                         bool check_target)
243 {
244         struct page *page = pfn_to_online_page(pfn);
245         struct page *block_page;
246         struct page *end_page;
247         unsigned long block_pfn;
248
249         if (!page)
250                 return false;
251         if (zone != page_zone(page))
252                 return false;
253         if (pageblock_skip_persistent(page))
254                 return false;
255
256         /*
257          * If skip is already cleared do no further checking once the
258          * restart points have been set.
259          */
260         if (check_source && check_target && !get_pageblock_skip(page))
261                 return true;
262
263         /*
264          * If clearing skip for the target scanner, do not select a
265          * non-movable pageblock as the starting point.
266          */
267         if (!check_source && check_target &&
268             get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
269                 return false;
270
271         /* Ensure the start of the pageblock or zone is online and valid */
272         block_pfn = pageblock_start_pfn(pfn);
273         block_page = pfn_to_online_page(max(block_pfn, zone->zone_start_pfn));
274         if (block_page) {
275                 page = block_page;
276                 pfn = block_pfn;
277         }
278
279         /* Ensure the end of the pageblock or zone is online and valid */
280         block_pfn += pageblock_nr_pages;
281         block_pfn = min(block_pfn, zone_end_pfn(zone) - 1);
282         end_page = pfn_to_online_page(block_pfn);
283         if (!end_page)
284                 return false;
285
286         /*
287          * Only clear the hint if a sample indicates there is either a
288          * free page or an LRU page in the block. One or other condition
289          * is necessary for the block to be a migration source/target.
290          */
291         do {
292                 if (pfn_valid_within(pfn)) {
293                         if (check_source && PageLRU(page)) {
294                                 clear_pageblock_skip(page);
295                                 return true;
296                         }
297
298                         if (check_target && PageBuddy(page)) {
299                                 clear_pageblock_skip(page);
300                                 return true;
301                         }
302                 }
303
304                 page += (1 << PAGE_ALLOC_COSTLY_ORDER);
305                 pfn += (1 << PAGE_ALLOC_COSTLY_ORDER);
306         } while (page < end_page);
307
308         return false;
309 }
310
311 /*
312  * This function is called to clear all cached information on pageblocks that
313  * should be skipped for page isolation when the migrate and free page scanner
314  * meet.
315  */
316 static void __reset_isolation_suitable(struct zone *zone)
317 {
318         unsigned long migrate_pfn = zone->zone_start_pfn;
319         unsigned long free_pfn = zone_end_pfn(zone) - 1;
320         unsigned long reset_migrate = free_pfn;
321         unsigned long reset_free = migrate_pfn;
322         bool source_set = false;
323         bool free_set = false;
324
325         if (!zone->compact_blockskip_flush)
326                 return;
327
328         zone->compact_blockskip_flush = false;
329
330         /*
331          * Walk the zone and update pageblock skip information. Source looks
332          * for PageLRU while target looks for PageBuddy. When the scanner
333          * is found, both PageBuddy and PageLRU are checked as the pageblock
334          * is suitable as both source and target.
335          */
336         for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages,
337                                         free_pfn -= pageblock_nr_pages) {
338                 cond_resched();
339
340                 /* Update the migrate PFN */
341                 if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) &&
342                     migrate_pfn < reset_migrate) {
343                         source_set = true;
344                         reset_migrate = migrate_pfn;
345                         zone->compact_init_migrate_pfn = reset_migrate;
346                         zone->compact_cached_migrate_pfn[0] = reset_migrate;
347                         zone->compact_cached_migrate_pfn[1] = reset_migrate;
348                 }
349
350                 /* Update the free PFN */
351                 if (__reset_isolation_pfn(zone, free_pfn, free_set, true) &&
352                     free_pfn > reset_free) {
353                         free_set = true;
354                         reset_free = free_pfn;
355                         zone->compact_init_free_pfn = reset_free;
356                         zone->compact_cached_free_pfn = reset_free;
357                 }
358         }
359
360         /* Leave no distance if no suitable block was reset */
361         if (reset_migrate >= reset_free) {
362                 zone->compact_cached_migrate_pfn[0] = migrate_pfn;
363                 zone->compact_cached_migrate_pfn[1] = migrate_pfn;
364                 zone->compact_cached_free_pfn = free_pfn;
365         }
366 }
367
368 void reset_isolation_suitable(pg_data_t *pgdat)
369 {
370         int zoneid;
371
372         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
373                 struct zone *zone = &pgdat->node_zones[zoneid];
374                 if (!populated_zone(zone))
375                         continue;
376
377                 /* Only flush if a full compaction finished recently */
378                 if (zone->compact_blockskip_flush)
379                         __reset_isolation_suitable(zone);
380         }
381 }
382
383 /*
384  * Sets the pageblock skip bit if it was clear. Note that this is a hint as
385  * locks are not required for read/writers. Returns true if it was already set.
386  */
387 static bool test_and_set_skip(struct compact_control *cc, struct page *page,
388                                                         unsigned long pfn)
389 {
390         bool skip;
391
392         /* Do no update if skip hint is being ignored */
393         if (cc->ignore_skip_hint)
394                 return false;
395
396         if (!IS_ALIGNED(pfn, pageblock_nr_pages))
397                 return false;
398
399         skip = get_pageblock_skip(page);
400         if (!skip && !cc->no_set_skip_hint)
401                 set_pageblock_skip(page);
402
403         return skip;
404 }
405
406 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
407 {
408         struct zone *zone = cc->zone;
409
410         pfn = pageblock_end_pfn(pfn);
411
412         /* Set for isolation rather than compaction */
413         if (cc->no_set_skip_hint)
414                 return;
415
416         if (pfn > zone->compact_cached_migrate_pfn[0])
417                 zone->compact_cached_migrate_pfn[0] = pfn;
418         if (cc->mode != MIGRATE_ASYNC &&
419             pfn > zone->compact_cached_migrate_pfn[1])
420                 zone->compact_cached_migrate_pfn[1] = pfn;
421 }
422
423 /*
424  * If no pages were isolated then mark this pageblock to be skipped in the
425  * future. The information is later cleared by __reset_isolation_suitable().
426  */
427 static void update_pageblock_skip(struct compact_control *cc,
428                         struct page *page, unsigned long pfn)
429 {
430         struct zone *zone = cc->zone;
431
432         if (cc->no_set_skip_hint)
433                 return;
434
435         if (!page)
436                 return;
437
438         set_pageblock_skip(page);
439
440         /* Update where async and sync compaction should restart */
441         if (pfn < zone->compact_cached_free_pfn)
442                 zone->compact_cached_free_pfn = pfn;
443 }
444 #else
445 static inline bool isolation_suitable(struct compact_control *cc,
446                                         struct page *page)
447 {
448         return true;
449 }
450
451 static inline bool pageblock_skip_persistent(struct page *page)
452 {
453         return false;
454 }
455
456 static inline void update_pageblock_skip(struct compact_control *cc,
457                         struct page *page, unsigned long pfn)
458 {
459 }
460
461 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
462 {
463 }
464
465 static bool test_and_set_skip(struct compact_control *cc, struct page *page,
466                                                         unsigned long pfn)
467 {
468         return false;
469 }
470 #endif /* CONFIG_COMPACTION */
471
472 /*
473  * Compaction requires the taking of some coarse locks that are potentially
474  * very heavily contended. For async compaction, trylock and record if the
475  * lock is contended. The lock will still be acquired but compaction will
476  * abort when the current block is finished regardless of success rate.
477  * Sync compaction acquires the lock.
478  *
479  * Always returns true which makes it easier to track lock state in callers.
480  */
481 static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags,
482                                                 struct compact_control *cc)
483 {
484         /* Track if the lock is contended in async mode */
485         if (cc->mode == MIGRATE_ASYNC && !cc->contended) {
486                 if (spin_trylock_irqsave(lock, *flags))
487                         return true;
488
489                 cc->contended = true;
490         }
491
492         spin_lock_irqsave(lock, *flags);
493         return true;
494 }
495
496 /*
497  * Compaction requires the taking of some coarse locks that are potentially
498  * very heavily contended. The lock should be periodically unlocked to avoid
499  * having disabled IRQs for a long time, even when there is nobody waiting on
500  * the lock. It might also be that allowing the IRQs will result in
501  * need_resched() becoming true. If scheduling is needed, async compaction
502  * aborts. Sync compaction schedules.
503  * Either compaction type will also abort if a fatal signal is pending.
504  * In either case if the lock was locked, it is dropped and not regained.
505  *
506  * Returns true if compaction should abort due to fatal signal pending, or
507  *              async compaction due to need_resched()
508  * Returns false when compaction can continue (sync compaction might have
509  *              scheduled)
510  */
511 static bool compact_unlock_should_abort(spinlock_t *lock,
512                 unsigned long flags, bool *locked, struct compact_control *cc)
513 {
514         if (*locked) {
515                 spin_unlock_irqrestore(lock, flags);
516                 *locked = false;
517         }
518
519         if (fatal_signal_pending(current)) {
520                 cc->contended = true;
521                 return true;
522         }
523
524         cond_resched();
525
526         return false;
527 }
528
529 /*
530  * Isolate free pages onto a private freelist. If @strict is true, will abort
531  * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
532  * (even though it may still end up isolating some pages).
533  */
534 static unsigned long isolate_freepages_block(struct compact_control *cc,
535                                 unsigned long *start_pfn,
536                                 unsigned long end_pfn,
537                                 struct list_head *freelist,
538                                 unsigned int stride,
539                                 bool strict)
540 {
541         int nr_scanned = 0, total_isolated = 0;
542         struct page *cursor;
543         unsigned long flags = 0;
544         bool locked = false;
545         unsigned long blockpfn = *start_pfn;
546         unsigned int order;
547
548         /* Strict mode is for isolation, speed is secondary */
549         if (strict)
550                 stride = 1;
551
552         cursor = pfn_to_page(blockpfn);
553
554         /* Isolate free pages. */
555         for (; blockpfn < end_pfn; blockpfn += stride, cursor += stride) {
556                 int isolated;
557                 struct page *page = cursor;
558
559                 /*
560                  * Periodically drop the lock (if held) regardless of its
561                  * contention, to give chance to IRQs. Abort if fatal signal
562                  * pending or async compaction detects need_resched()
563                  */
564                 if (!(blockpfn % SWAP_CLUSTER_MAX)
565                     && compact_unlock_should_abort(&cc->zone->lock, flags,
566                                                                 &locked, cc))
567                         break;
568
569                 nr_scanned++;
570                 if (!pfn_valid_within(blockpfn))
571                         goto isolate_fail;
572
573                 /*
574                  * For compound pages such as THP and hugetlbfs, we can save
575                  * potentially a lot of iterations if we skip them at once.
576                  * The check is racy, but we can consider only valid values
577                  * and the only danger is skipping too much.
578                  */
579                 if (PageCompound(page)) {
580                         const unsigned int order = compound_order(page);
581
582                         if (likely(order < MAX_ORDER)) {
583                                 blockpfn += (1UL << order) - 1;
584                                 cursor += (1UL << order) - 1;
585                         }
586                         goto isolate_fail;
587                 }
588
589                 if (!PageBuddy(page))
590                         goto isolate_fail;
591
592                 /*
593                  * If we already hold the lock, we can skip some rechecking.
594                  * Note that if we hold the lock now, checked_pageblock was
595                  * already set in some previous iteration (or strict is true),
596                  * so it is correct to skip the suitable migration target
597                  * recheck as well.
598                  */
599                 if (!locked) {
600                         locked = compact_lock_irqsave(&cc->zone->lock,
601                                                                 &flags, cc);
602
603                         /* Recheck this is a buddy page under lock */
604                         if (!PageBuddy(page))
605                                 goto isolate_fail;
606                 }
607
608                 /* Found a free page, will break it into order-0 pages */
609                 order = page_order(page);
610                 isolated = __isolate_free_page(page, order);
611                 if (!isolated)
612                         break;
613                 set_page_private(page, order);
614
615                 total_isolated += isolated;
616                 cc->nr_freepages += isolated;
617                 list_add_tail(&page->lru, freelist);
618
619                 if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
620                         blockpfn += isolated;
621                         break;
622                 }
623                 /* Advance to the end of split page */
624                 blockpfn += isolated - 1;
625                 cursor += isolated - 1;
626                 continue;
627
628 isolate_fail:
629                 if (strict)
630                         break;
631                 else
632                         continue;
633
634         }
635
636         if (locked)
637                 spin_unlock_irqrestore(&cc->zone->lock, flags);
638
639         /*
640          * There is a tiny chance that we have read bogus compound_order(),
641          * so be careful to not go outside of the pageblock.
642          */
643         if (unlikely(blockpfn > end_pfn))
644                 blockpfn = end_pfn;
645
646         trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
647                                         nr_scanned, total_isolated);
648
649         /* Record how far we have got within the block */
650         *start_pfn = blockpfn;
651
652         /*
653          * If strict isolation is requested by CMA then check that all the
654          * pages requested were isolated. If there were any failures, 0 is
655          * returned and CMA will fail.
656          */
657         if (strict && blockpfn < end_pfn)
658                 total_isolated = 0;
659
660         cc->total_free_scanned += nr_scanned;
661         if (total_isolated)
662                 count_compact_events(COMPACTISOLATED, total_isolated);
663         return total_isolated;
664 }
665
666 /**
667  * isolate_freepages_range() - isolate free pages.
668  * @cc:        Compaction control structure.
669  * @start_pfn: The first PFN to start isolating.
670  * @end_pfn:   The one-past-last PFN.
671  *
672  * Non-free pages, invalid PFNs, or zone boundaries within the
673  * [start_pfn, end_pfn) range are considered errors, cause function to
674  * undo its actions and return zero.
675  *
676  * Otherwise, function returns one-past-the-last PFN of isolated page
677  * (which may be greater then end_pfn if end fell in a middle of
678  * a free page).
679  */
680 unsigned long
681 isolate_freepages_range(struct compact_control *cc,
682                         unsigned long start_pfn, unsigned long end_pfn)
683 {
684         unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
685         LIST_HEAD(freelist);
686
687         pfn = start_pfn;
688         block_start_pfn = pageblock_start_pfn(pfn);
689         if (block_start_pfn < cc->zone->zone_start_pfn)
690                 block_start_pfn = cc->zone->zone_start_pfn;
691         block_end_pfn = pageblock_end_pfn(pfn);
692
693         for (; pfn < end_pfn; pfn += isolated,
694                                 block_start_pfn = block_end_pfn,
695                                 block_end_pfn += pageblock_nr_pages) {
696                 /* Protect pfn from changing by isolate_freepages_block */
697                 unsigned long isolate_start_pfn = pfn;
698
699                 block_end_pfn = min(block_end_pfn, end_pfn);
700
701                 /*
702                  * pfn could pass the block_end_pfn if isolated freepage
703                  * is more than pageblock order. In this case, we adjust
704                  * scanning range to right one.
705                  */
706                 if (pfn >= block_end_pfn) {
707                         block_start_pfn = pageblock_start_pfn(pfn);
708                         block_end_pfn = pageblock_end_pfn(pfn);
709                         block_end_pfn = min(block_end_pfn, end_pfn);
710                 }
711
712                 if (!pageblock_pfn_to_page(block_start_pfn,
713                                         block_end_pfn, cc->zone))
714                         break;
715
716                 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
717                                         block_end_pfn, &freelist, 0, true);
718
719                 /*
720                  * In strict mode, isolate_freepages_block() returns 0 if
721                  * there are any holes in the block (ie. invalid PFNs or
722                  * non-free pages).
723                  */
724                 if (!isolated)
725                         break;
726
727                 /*
728                  * If we managed to isolate pages, it is always (1 << n) *
729                  * pageblock_nr_pages for some non-negative n.  (Max order
730                  * page may span two pageblocks).
731                  */
732         }
733
734         /* __isolate_free_page() does not map the pages */
735         split_map_pages(&freelist);
736
737         if (pfn < end_pfn) {
738                 /* Loop terminated early, cleanup. */
739                 release_freepages(&freelist);
740                 return 0;
741         }
742
743         /* We don't use freelists for anything. */
744         return pfn;
745 }
746
747 /* Similar to reclaim, but different enough that they don't share logic */
748 static bool too_many_isolated(pg_data_t *pgdat)
749 {
750         unsigned long active, inactive, isolated;
751
752         inactive = node_page_state(pgdat, NR_INACTIVE_FILE) +
753                         node_page_state(pgdat, NR_INACTIVE_ANON);
754         active = node_page_state(pgdat, NR_ACTIVE_FILE) +
755                         node_page_state(pgdat, NR_ACTIVE_ANON);
756         isolated = node_page_state(pgdat, NR_ISOLATED_FILE) +
757                         node_page_state(pgdat, NR_ISOLATED_ANON);
758
759         return isolated > (inactive + active) / 2;
760 }
761
762 /**
763  * isolate_migratepages_block() - isolate all migrate-able pages within
764  *                                a single pageblock
765  * @cc:         Compaction control structure.
766  * @low_pfn:    The first PFN to isolate
767  * @end_pfn:    The one-past-the-last PFN to isolate, within same pageblock
768  * @isolate_mode: Isolation mode to be used.
769  *
770  * Isolate all pages that can be migrated from the range specified by
771  * [low_pfn, end_pfn). The range is expected to be within same pageblock.
772  * Returns zero if there is a fatal signal pending, otherwise PFN of the
773  * first page that was not scanned (which may be both less, equal to or more
774  * than end_pfn).
775  *
776  * The pages are isolated on cc->migratepages list (not required to be empty),
777  * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
778  * is neither read nor updated.
779  */
780 static unsigned long
781 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
782                         unsigned long end_pfn, isolate_mode_t isolate_mode)
783 {
784         pg_data_t *pgdat = cc->zone->zone_pgdat;
785         unsigned long nr_scanned = 0, nr_isolated = 0;
786         struct lruvec *lruvec;
787         unsigned long flags = 0;
788         bool locked = false;
789         struct page *page = NULL, *valid_page = NULL;
790         unsigned long start_pfn = low_pfn;
791         bool skip_on_failure = false;
792         unsigned long next_skip_pfn = 0;
793         bool skip_updated = false;
794
795         /*
796          * Ensure that there are not too many pages isolated from the LRU
797          * list by either parallel reclaimers or compaction. If there are,
798          * delay for some time until fewer pages are isolated
799          */
800         while (unlikely(too_many_isolated(pgdat))) {
801                 /* async migration should just abort */
802                 if (cc->mode == MIGRATE_ASYNC)
803                         return 0;
804
805                 congestion_wait(BLK_RW_ASYNC, HZ/10);
806
807                 if (fatal_signal_pending(current))
808                         return 0;
809         }
810
811         cond_resched();
812
813         if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
814                 skip_on_failure = true;
815                 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
816         }
817
818         /* Time to isolate some pages for migration */
819         for (; low_pfn < end_pfn; low_pfn++) {
820
821                 if (skip_on_failure && low_pfn >= next_skip_pfn) {
822                         /*
823                          * We have isolated all migration candidates in the
824                          * previous order-aligned block, and did not skip it due
825                          * to failure. We should migrate the pages now and
826                          * hopefully succeed compaction.
827                          */
828                         if (nr_isolated)
829                                 break;
830
831                         /*
832                          * We failed to isolate in the previous order-aligned
833                          * block. Set the new boundary to the end of the
834                          * current block. Note we can't simply increase
835                          * next_skip_pfn by 1 << order, as low_pfn might have
836                          * been incremented by a higher number due to skipping
837                          * a compound or a high-order buddy page in the
838                          * previous loop iteration.
839                          */
840                         next_skip_pfn = block_end_pfn(low_pfn, cc->order);
841                 }
842
843                 /*
844                  * Periodically drop the lock (if held) regardless of its
845                  * contention, to give chance to IRQs. Abort async compaction
846                  * if contended.
847                  */
848                 if (!(low_pfn % SWAP_CLUSTER_MAX)
849                     && compact_unlock_should_abort(&pgdat->lru_lock,
850                                             flags, &locked, cc))
851                         break;
852
853                 if (!pfn_valid_within(low_pfn))
854                         goto isolate_fail;
855                 nr_scanned++;
856
857                 page = pfn_to_page(low_pfn);
858
859                 /*
860                  * Check if the pageblock has already been marked skipped.
861                  * Only the aligned PFN is checked as the caller isolates
862                  * COMPACT_CLUSTER_MAX at a time so the second call must
863                  * not falsely conclude that the block should be skipped.
864                  */
865                 if (!valid_page && IS_ALIGNED(low_pfn, pageblock_nr_pages)) {
866                         if (!cc->ignore_skip_hint && get_pageblock_skip(page)) {
867                                 low_pfn = end_pfn;
868                                 goto isolate_abort;
869                         }
870                         valid_page = page;
871                 }
872
873                 /*
874                  * Skip if free. We read page order here without zone lock
875                  * which is generally unsafe, but the race window is small and
876                  * the worst thing that can happen is that we skip some
877                  * potential isolation targets.
878                  */
879                 if (PageBuddy(page)) {
880                         unsigned long freepage_order = page_order_unsafe(page);
881
882                         /*
883                          * Without lock, we cannot be sure that what we got is
884                          * a valid page order. Consider only values in the
885                          * valid order range to prevent low_pfn overflow.
886                          */
887                         if (freepage_order > 0 && freepage_order < MAX_ORDER)
888                                 low_pfn += (1UL << freepage_order) - 1;
889                         continue;
890                 }
891
892                 /*
893                  * Regardless of being on LRU, compound pages such as THP and
894                  * hugetlbfs are not to be compacted. We can potentially save
895                  * a lot of iterations if we skip them at once. The check is
896                  * racy, but we can consider only valid values and the only
897                  * danger is skipping too much.
898                  */
899                 if (PageCompound(page)) {
900                         const unsigned int order = compound_order(page);
901
902                         if (likely(order < MAX_ORDER))
903                                 low_pfn += (1UL << order) - 1;
904                         goto isolate_fail;
905                 }
906
907                 /*
908                  * Check may be lockless but that's ok as we recheck later.
909                  * It's possible to migrate LRU and non-lru movable pages.
910                  * Skip any other type of page
911                  */
912                 if (!PageLRU(page)) {
913                         /*
914                          * __PageMovable can return false positive so we need
915                          * to verify it under page_lock.
916                          */
917                         if (unlikely(__PageMovable(page)) &&
918                                         !PageIsolated(page)) {
919                                 if (locked) {
920                                         spin_unlock_irqrestore(&pgdat->lru_lock,
921                                                                         flags);
922                                         locked = false;
923                                 }
924
925                                 if (!isolate_movable_page(page, isolate_mode))
926                                         goto isolate_success;
927                         }
928
929                         goto isolate_fail;
930                 }
931
932                 /*
933                  * Migration will fail if an anonymous page is pinned in memory,
934                  * so avoid taking lru_lock and isolating it unnecessarily in an
935                  * admittedly racy check.
936                  */
937                 if (!page_mapping(page) &&
938                     page_count(page) > page_mapcount(page))
939                         goto isolate_fail;
940
941                 /*
942                  * Only allow to migrate anonymous pages in GFP_NOFS context
943                  * because those do not depend on fs locks.
944                  */
945                 if (!(cc->gfp_mask & __GFP_FS) && page_mapping(page))
946                         goto isolate_fail;
947
948                 /* If we already hold the lock, we can skip some rechecking */
949                 if (!locked) {
950                         locked = compact_lock_irqsave(&pgdat->lru_lock,
951                                                                 &flags, cc);
952
953                         /* Try get exclusive access under lock */
954                         if (!skip_updated) {
955                                 skip_updated = true;
956                                 if (test_and_set_skip(cc, page, low_pfn))
957                                         goto isolate_abort;
958                         }
959
960                         /* Recheck PageLRU and PageCompound under lock */
961                         if (!PageLRU(page))
962                                 goto isolate_fail;
963
964                         /*
965                          * Page become compound since the non-locked check,
966                          * and it's on LRU. It can only be a THP so the order
967                          * is safe to read and it's 0 for tail pages.
968                          */
969                         if (unlikely(PageCompound(page))) {
970                                 low_pfn += (1UL << compound_order(page)) - 1;
971                                 goto isolate_fail;
972                         }
973                 }
974
975                 lruvec = mem_cgroup_page_lruvec(page, pgdat);
976
977                 /* Try isolate the page */
978                 if (__isolate_lru_page(page, isolate_mode) != 0)
979                         goto isolate_fail;
980
981                 VM_BUG_ON_PAGE(PageCompound(page), page);
982
983                 /* Successfully isolated */
984                 del_page_from_lru_list(page, lruvec, page_lru(page));
985                 inc_node_page_state(page,
986                                 NR_ISOLATED_ANON + page_is_file_cache(page));
987
988 isolate_success:
989                 list_add(&page->lru, &cc->migratepages);
990                 cc->nr_migratepages++;
991                 nr_isolated++;
992
993                 /*
994                  * Avoid isolating too much unless this block is being
995                  * rescanned (e.g. dirty/writeback pages, parallel allocation)
996                  * or a lock is contended. For contention, isolate quickly to
997                  * potentially remove one source of contention.
998                  */
999                 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX &&
1000                     !cc->rescan && !cc->contended) {
1001                         ++low_pfn;
1002                         break;
1003                 }
1004
1005                 continue;
1006 isolate_fail:
1007                 if (!skip_on_failure)
1008                         continue;
1009
1010                 /*
1011                  * We have isolated some pages, but then failed. Release them
1012                  * instead of migrating, as we cannot form the cc->order buddy
1013                  * page anyway.
1014                  */
1015                 if (nr_isolated) {
1016                         if (locked) {
1017                                 spin_unlock_irqrestore(&pgdat->lru_lock, flags);
1018                                 locked = false;
1019                         }
1020                         putback_movable_pages(&cc->migratepages);
1021                         cc->nr_migratepages = 0;
1022                         nr_isolated = 0;
1023                 }
1024
1025                 if (low_pfn < next_skip_pfn) {
1026                         low_pfn = next_skip_pfn - 1;
1027                         /*
1028                          * The check near the loop beginning would have updated
1029                          * next_skip_pfn too, but this is a bit simpler.
1030                          */
1031                         next_skip_pfn += 1UL << cc->order;
1032                 }
1033         }
1034
1035         /*
1036          * The PageBuddy() check could have potentially brought us outside
1037          * the range to be scanned.
1038          */
1039         if (unlikely(low_pfn > end_pfn))
1040                 low_pfn = end_pfn;
1041
1042 isolate_abort:
1043         if (locked)
1044                 spin_unlock_irqrestore(&pgdat->lru_lock, flags);
1045
1046         /*
1047          * Updated the cached scanner pfn once the pageblock has been scanned
1048          * Pages will either be migrated in which case there is no point
1049          * scanning in the near future or migration failed in which case the
1050          * failure reason may persist. The block is marked for skipping if
1051          * there were no pages isolated in the block or if the block is
1052          * rescanned twice in a row.
1053          */
1054         if (low_pfn == end_pfn && (!nr_isolated || cc->rescan)) {
1055                 if (valid_page && !skip_updated)
1056                         set_pageblock_skip(valid_page);
1057                 update_cached_migrate(cc, low_pfn);
1058         }
1059
1060         trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
1061                                                 nr_scanned, nr_isolated);
1062
1063         cc->total_migrate_scanned += nr_scanned;
1064         if (nr_isolated)
1065                 count_compact_events(COMPACTISOLATED, nr_isolated);
1066
1067         return low_pfn;
1068 }
1069
1070 /**
1071  * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
1072  * @cc:        Compaction control structure.
1073  * @start_pfn: The first PFN to start isolating.
1074  * @end_pfn:   The one-past-last PFN.
1075  *
1076  * Returns zero if isolation fails fatally due to e.g. pending signal.
1077  * Otherwise, function returns one-past-the-last PFN of isolated page
1078  * (which may be greater than end_pfn if end fell in a middle of a THP page).
1079  */
1080 unsigned long
1081 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
1082                                                         unsigned long end_pfn)
1083 {
1084         unsigned long pfn, block_start_pfn, block_end_pfn;
1085
1086         /* Scan block by block. First and last block may be incomplete */
1087         pfn = start_pfn;
1088         block_start_pfn = pageblock_start_pfn(pfn);
1089         if (block_start_pfn < cc->zone->zone_start_pfn)
1090                 block_start_pfn = cc->zone->zone_start_pfn;
1091         block_end_pfn = pageblock_end_pfn(pfn);
1092
1093         for (; pfn < end_pfn; pfn = block_end_pfn,
1094                                 block_start_pfn = block_end_pfn,
1095                                 block_end_pfn += pageblock_nr_pages) {
1096
1097                 block_end_pfn = min(block_end_pfn, end_pfn);
1098
1099                 if (!pageblock_pfn_to_page(block_start_pfn,
1100                                         block_end_pfn, cc->zone))
1101                         continue;
1102
1103                 pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
1104                                                         ISOLATE_UNEVICTABLE);
1105
1106                 if (!pfn)
1107                         break;
1108
1109                 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
1110                         break;
1111         }
1112
1113         return pfn;
1114 }
1115
1116 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
1117 #ifdef CONFIG_COMPACTION
1118
1119 static bool suitable_migration_source(struct compact_control *cc,
1120                                                         struct page *page)
1121 {
1122         int block_mt;
1123
1124         if (pageblock_skip_persistent(page))
1125                 return false;
1126
1127         if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
1128                 return true;
1129
1130         block_mt = get_pageblock_migratetype(page);
1131
1132         if (cc->migratetype == MIGRATE_MOVABLE)
1133                 return is_migrate_movable(block_mt);
1134         else
1135                 return block_mt == cc->migratetype;
1136 }
1137
1138 /* Returns true if the page is within a block suitable for migration to */
1139 static bool suitable_migration_target(struct compact_control *cc,
1140                                                         struct page *page)
1141 {
1142         /* If the page is a large free page, then disallow migration */
1143         if (PageBuddy(page)) {
1144                 /*
1145                  * We are checking page_order without zone->lock taken. But
1146                  * the only small danger is that we skip a potentially suitable
1147                  * pageblock, so it's not worth to check order for valid range.
1148                  */
1149                 if (page_order_unsafe(page) >= pageblock_order)
1150                         return false;
1151         }
1152
1153         if (cc->ignore_block_suitable)
1154                 return true;
1155
1156         /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1157         if (is_migrate_movable(get_pageblock_migratetype(page)))
1158                 return true;
1159
1160         /* Otherwise skip the block */
1161         return false;
1162 }
1163
1164 static inline unsigned int
1165 freelist_scan_limit(struct compact_control *cc)
1166 {
1167         unsigned short shift = BITS_PER_LONG - 1;
1168
1169         return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1;
1170 }
1171
1172 /*
1173  * Test whether the free scanner has reached the same or lower pageblock than
1174  * the migration scanner, and compaction should thus terminate.
1175  */
1176 static inline bool compact_scanners_met(struct compact_control *cc)
1177 {
1178         return (cc->free_pfn >> pageblock_order)
1179                 <= (cc->migrate_pfn >> pageblock_order);
1180 }
1181
1182 /*
1183  * Used when scanning for a suitable migration target which scans freelists
1184  * in reverse. Reorders the list such as the unscanned pages are scanned
1185  * first on the next iteration of the free scanner
1186  */
1187 static void
1188 move_freelist_head(struct list_head *freelist, struct page *freepage)
1189 {
1190         LIST_HEAD(sublist);
1191
1192         if (!list_is_last(freelist, &freepage->lru)) {
1193                 list_cut_before(&sublist, freelist, &freepage->lru);
1194                 if (!list_empty(&sublist))
1195                         list_splice_tail(&sublist, freelist);
1196         }
1197 }
1198
1199 /*
1200  * Similar to move_freelist_head except used by the migration scanner
1201  * when scanning forward. It's possible for these list operations to
1202  * move against each other if they search the free list exactly in
1203  * lockstep.
1204  */
1205 static void
1206 move_freelist_tail(struct list_head *freelist, struct page *freepage)
1207 {
1208         LIST_HEAD(sublist);
1209
1210         if (!list_is_first(freelist, &freepage->lru)) {
1211                 list_cut_position(&sublist, freelist, &freepage->lru);
1212                 if (!list_empty(&sublist))
1213                         list_splice_tail(&sublist, freelist);
1214         }
1215 }
1216
1217 static void
1218 fast_isolate_around(struct compact_control *cc, unsigned long pfn, unsigned long nr_isolated)
1219 {
1220         unsigned long start_pfn, end_pfn;
1221         struct page *page = pfn_to_page(pfn);
1222
1223         /* Do not search around if there are enough pages already */
1224         if (cc->nr_freepages >= cc->nr_migratepages)
1225                 return;
1226
1227         /* Minimise scanning during async compaction */
1228         if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC)
1229                 return;
1230
1231         /* Pageblock boundaries */
1232         start_pfn = pageblock_start_pfn(pfn);
1233         end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone)) - 1;
1234
1235         /* Scan before */
1236         if (start_pfn != pfn) {
1237                 isolate_freepages_block(cc, &start_pfn, pfn, &cc->freepages, 1, false);
1238                 if (cc->nr_freepages >= cc->nr_migratepages)
1239                         return;
1240         }
1241
1242         /* Scan after */
1243         start_pfn = pfn + nr_isolated;
1244         if (start_pfn < end_pfn)
1245                 isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false);
1246
1247         /* Skip this pageblock in the future as it's full or nearly full */
1248         if (cc->nr_freepages < cc->nr_migratepages)
1249                 set_pageblock_skip(page);
1250 }
1251
1252 /* Search orders in round-robin fashion */
1253 static int next_search_order(struct compact_control *cc, int order)
1254 {
1255         order--;
1256         if (order < 0)
1257                 order = cc->order - 1;
1258
1259         /* Search wrapped around? */
1260         if (order == cc->search_order) {
1261                 cc->search_order--;
1262                 if (cc->search_order < 0)
1263                         cc->search_order = cc->order - 1;
1264                 return -1;
1265         }
1266
1267         return order;
1268 }
1269
1270 static unsigned long
1271 fast_isolate_freepages(struct compact_control *cc)
1272 {
1273         unsigned int limit = min(1U, freelist_scan_limit(cc) >> 1);
1274         unsigned int nr_scanned = 0;
1275         unsigned long low_pfn, min_pfn, high_pfn = 0, highest = 0;
1276         unsigned long nr_isolated = 0;
1277         unsigned long distance;
1278         struct page *page = NULL;
1279         bool scan_start = false;
1280         int order;
1281
1282         /* Full compaction passes in a negative order */
1283         if (cc->order <= 0)
1284                 return cc->free_pfn;
1285
1286         /*
1287          * If starting the scan, use a deeper search and use the highest
1288          * PFN found if a suitable one is not found.
1289          */
1290         if (cc->free_pfn >= cc->zone->compact_init_free_pfn) {
1291                 limit = pageblock_nr_pages >> 1;
1292                 scan_start = true;
1293         }
1294
1295         /*
1296          * Preferred point is in the top quarter of the scan space but take
1297          * a pfn from the top half if the search is problematic.
1298          */
1299         distance = (cc->free_pfn - cc->migrate_pfn);
1300         low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2));
1301         min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1));
1302
1303         if (WARN_ON_ONCE(min_pfn > low_pfn))
1304                 low_pfn = min_pfn;
1305
1306         /*
1307          * Search starts from the last successful isolation order or the next
1308          * order to search after a previous failure
1309          */
1310         cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order);
1311
1312         for (order = cc->search_order;
1313              !page && order >= 0;
1314              order = next_search_order(cc, order)) {
1315                 struct free_area *area = &cc->zone->free_area[order];
1316                 struct list_head *freelist;
1317                 struct page *freepage;
1318                 unsigned long flags;
1319                 unsigned int order_scanned = 0;
1320
1321                 if (!area->nr_free)
1322                         continue;
1323
1324                 spin_lock_irqsave(&cc->zone->lock, flags);
1325                 freelist = &area->free_list[MIGRATE_MOVABLE];
1326                 list_for_each_entry_reverse(freepage, freelist, lru) {
1327                         unsigned long pfn;
1328
1329                         order_scanned++;
1330                         nr_scanned++;
1331                         pfn = page_to_pfn(freepage);
1332
1333                         if (pfn >= highest)
1334                                 highest = pageblock_start_pfn(pfn);
1335
1336                         if (pfn >= low_pfn) {
1337                                 cc->fast_search_fail = 0;
1338                                 cc->search_order = order;
1339                                 page = freepage;
1340                                 break;
1341                         }
1342
1343                         if (pfn >= min_pfn && pfn > high_pfn) {
1344                                 high_pfn = pfn;
1345
1346                                 /* Shorten the scan if a candidate is found */
1347                                 limit >>= 1;
1348                         }
1349
1350                         if (order_scanned >= limit)
1351                                 break;
1352                 }
1353
1354                 /* Use a minimum pfn if a preferred one was not found */
1355                 if (!page && high_pfn) {
1356                         page = pfn_to_page(high_pfn);
1357
1358                         /* Update freepage for the list reorder below */
1359                         freepage = page;
1360                 }
1361
1362                 /* Reorder to so a future search skips recent pages */
1363                 move_freelist_head(freelist, freepage);
1364
1365                 /* Isolate the page if available */
1366                 if (page) {
1367                         if (__isolate_free_page(page, order)) {
1368                                 set_page_private(page, order);
1369                                 nr_isolated = 1 << order;
1370                                 cc->nr_freepages += nr_isolated;
1371                                 list_add_tail(&page->lru, &cc->freepages);
1372                                 count_compact_events(COMPACTISOLATED, nr_isolated);
1373                         } else {
1374                                 /* If isolation fails, abort the search */
1375                                 order = cc->search_order + 1;
1376                                 page = NULL;
1377                         }
1378                 }
1379
1380                 spin_unlock_irqrestore(&cc->zone->lock, flags);
1381
1382                 /*
1383                  * Smaller scan on next order so the total scan ig related
1384                  * to freelist_scan_limit.
1385                  */
1386                 if (order_scanned >= limit)
1387                         limit = min(1U, limit >> 1);
1388         }
1389
1390         if (!page) {
1391                 cc->fast_search_fail++;
1392                 if (scan_start) {
1393                         /*
1394                          * Use the highest PFN found above min. If one was
1395                          * not found, be pessemistic for direct compaction
1396                          * and use the min mark.
1397                          */
1398                         if (highest) {
1399                                 page = pfn_to_page(highest);
1400                                 cc->free_pfn = highest;
1401                         } else {
1402                                 if (cc->direct_compaction && pfn_valid(min_pfn)) {
1403                                         page = pfn_to_page(min_pfn);
1404                                         cc->free_pfn = min_pfn;
1405                                 }
1406                         }
1407                 }
1408         }
1409
1410         if (highest && highest >= cc->zone->compact_cached_free_pfn) {
1411                 highest -= pageblock_nr_pages;
1412                 cc->zone->compact_cached_free_pfn = highest;
1413         }
1414
1415         cc->total_free_scanned += nr_scanned;
1416         if (!page)
1417                 return cc->free_pfn;
1418
1419         low_pfn = page_to_pfn(page);
1420         fast_isolate_around(cc, low_pfn, nr_isolated);
1421         return low_pfn;
1422 }
1423
1424 /*
1425  * Based on information in the current compact_control, find blocks
1426  * suitable for isolating free pages from and then isolate them.
1427  */
1428 static void isolate_freepages(struct compact_control *cc)
1429 {
1430         struct zone *zone = cc->zone;
1431         struct page *page;
1432         unsigned long block_start_pfn;  /* start of current pageblock */
1433         unsigned long isolate_start_pfn; /* exact pfn we start at */
1434         unsigned long block_end_pfn;    /* end of current pageblock */
1435         unsigned long low_pfn;       /* lowest pfn scanner is able to scan */
1436         struct list_head *freelist = &cc->freepages;
1437         unsigned int stride;
1438
1439         /* Try a small search of the free lists for a candidate */
1440         isolate_start_pfn = fast_isolate_freepages(cc);
1441         if (cc->nr_freepages)
1442                 goto splitmap;
1443
1444         /*
1445          * Initialise the free scanner. The starting point is where we last
1446          * successfully isolated from, zone-cached value, or the end of the
1447          * zone when isolating for the first time. For looping we also need
1448          * this pfn aligned down to the pageblock boundary, because we do
1449          * block_start_pfn -= pageblock_nr_pages in the for loop.
1450          * For ending point, take care when isolating in last pageblock of a
1451          * a zone which ends in the middle of a pageblock.
1452          * The low boundary is the end of the pageblock the migration scanner
1453          * is using.
1454          */
1455         isolate_start_pfn = cc->free_pfn;
1456         block_start_pfn = pageblock_start_pfn(isolate_start_pfn);
1457         block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1458                                                 zone_end_pfn(zone));
1459         low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1460         stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1;
1461
1462         /*
1463          * Isolate free pages until enough are available to migrate the
1464          * pages on cc->migratepages. We stop searching if the migrate
1465          * and free page scanners meet or enough free pages are isolated.
1466          */
1467         for (; block_start_pfn >= low_pfn;
1468                                 block_end_pfn = block_start_pfn,
1469                                 block_start_pfn -= pageblock_nr_pages,
1470                                 isolate_start_pfn = block_start_pfn) {
1471                 unsigned long nr_isolated;
1472
1473                 /*
1474                  * This can iterate a massively long zone without finding any
1475                  * suitable migration targets, so periodically check resched.
1476                  */
1477                 if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)))
1478                         cond_resched();
1479
1480                 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1481                                                                         zone);
1482                 if (!page)
1483                         continue;
1484
1485                 /* Check the block is suitable for migration */
1486                 if (!suitable_migration_target(cc, page))
1487                         continue;
1488
1489                 /* If isolation recently failed, do not retry */
1490                 if (!isolation_suitable(cc, page))
1491                         continue;
1492
1493                 /* Found a block suitable for isolating free pages from. */
1494                 nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn,
1495                                         block_end_pfn, freelist, stride, false);
1496
1497                 /* Update the skip hint if the full pageblock was scanned */
1498                 if (isolate_start_pfn == block_end_pfn)
1499                         update_pageblock_skip(cc, page, block_start_pfn);
1500
1501                 /* Are enough freepages isolated? */
1502                 if (cc->nr_freepages >= cc->nr_migratepages) {
1503                         if (isolate_start_pfn >= block_end_pfn) {
1504                                 /*
1505                                  * Restart at previous pageblock if more
1506                                  * freepages can be isolated next time.
1507                                  */
1508                                 isolate_start_pfn =
1509                                         block_start_pfn - pageblock_nr_pages;
1510                         }
1511                         break;
1512                 } else if (isolate_start_pfn < block_end_pfn) {
1513                         /*
1514                          * If isolation failed early, do not continue
1515                          * needlessly.
1516                          */
1517                         break;
1518                 }
1519
1520                 /* Adjust stride depending on isolation */
1521                 if (nr_isolated) {
1522                         stride = 1;
1523                         continue;
1524                 }
1525                 stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1);
1526         }
1527
1528         /*
1529          * Record where the free scanner will restart next time. Either we
1530          * broke from the loop and set isolate_start_pfn based on the last
1531          * call to isolate_freepages_block(), or we met the migration scanner
1532          * and the loop terminated due to isolate_start_pfn < low_pfn
1533          */
1534         cc->free_pfn = isolate_start_pfn;
1535
1536 splitmap:
1537         /* __isolate_free_page() does not map the pages */
1538         split_map_pages(freelist);
1539 }
1540
1541 /*
1542  * This is a migrate-callback that "allocates" freepages by taking pages
1543  * from the isolated freelists in the block we are migrating to.
1544  */
1545 static struct page *compaction_alloc(struct page *migratepage,
1546                                         unsigned long data)
1547 {
1548         struct compact_control *cc = (struct compact_control *)data;
1549         struct page *freepage;
1550
1551         if (list_empty(&cc->freepages)) {
1552                 isolate_freepages(cc);
1553
1554                 if (list_empty(&cc->freepages))
1555                         return NULL;
1556         }
1557
1558         freepage = list_entry(cc->freepages.next, struct page, lru);
1559         list_del(&freepage->lru);
1560         cc->nr_freepages--;
1561
1562         return freepage;
1563 }
1564
1565 /*
1566  * This is a migrate-callback that "frees" freepages back to the isolated
1567  * freelist.  All pages on the freelist are from the same zone, so there is no
1568  * special handling needed for NUMA.
1569  */
1570 static void compaction_free(struct page *page, unsigned long data)
1571 {
1572         struct compact_control *cc = (struct compact_control *)data;
1573
1574         list_add(&page->lru, &cc->freepages);
1575         cc->nr_freepages++;
1576 }
1577
1578 /* possible outcome of isolate_migratepages */
1579 typedef enum {
1580         ISOLATE_ABORT,          /* Abort compaction now */
1581         ISOLATE_NONE,           /* No pages isolated, continue scanning */
1582         ISOLATE_SUCCESS,        /* Pages isolated, migrate */
1583 } isolate_migrate_t;
1584
1585 /*
1586  * Allow userspace to control policy on scanning the unevictable LRU for
1587  * compactable pages.
1588  */
1589 int sysctl_compact_unevictable_allowed __read_mostly = 1;
1590
1591 static inline void
1592 update_fast_start_pfn(struct compact_control *cc, unsigned long pfn)
1593 {
1594         if (cc->fast_start_pfn == ULONG_MAX)
1595                 return;
1596
1597         if (!cc->fast_start_pfn)
1598                 cc->fast_start_pfn = pfn;
1599
1600         cc->fast_start_pfn = min(cc->fast_start_pfn, pfn);
1601 }
1602
1603 static inline unsigned long
1604 reinit_migrate_pfn(struct compact_control *cc)
1605 {
1606         if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX)
1607                 return cc->migrate_pfn;
1608
1609         cc->migrate_pfn = cc->fast_start_pfn;
1610         cc->fast_start_pfn = ULONG_MAX;
1611
1612         return cc->migrate_pfn;
1613 }
1614
1615 /*
1616  * Briefly search the free lists for a migration source that already has
1617  * some free pages to reduce the number of pages that need migration
1618  * before a pageblock is free.
1619  */
1620 static unsigned long fast_find_migrateblock(struct compact_control *cc)
1621 {
1622         unsigned int limit = freelist_scan_limit(cc);
1623         unsigned int nr_scanned = 0;
1624         unsigned long distance;
1625         unsigned long pfn = cc->migrate_pfn;
1626         unsigned long high_pfn;
1627         int order;
1628
1629         /* Skip hints are relied on to avoid repeats on the fast search */
1630         if (cc->ignore_skip_hint)
1631                 return pfn;
1632
1633         /*
1634          * If the migrate_pfn is not at the start of a zone or the start
1635          * of a pageblock then assume this is a continuation of a previous
1636          * scan restarted due to COMPACT_CLUSTER_MAX.
1637          */
1638         if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn))
1639                 return pfn;
1640
1641         /*
1642          * For smaller orders, just linearly scan as the number of pages
1643          * to migrate should be relatively small and does not necessarily
1644          * justify freeing up a large block for a small allocation.
1645          */
1646         if (cc->order <= PAGE_ALLOC_COSTLY_ORDER)
1647                 return pfn;
1648
1649         /*
1650          * Only allow kcompactd and direct requests for movable pages to
1651          * quickly clear out a MOVABLE pageblock for allocation. This
1652          * reduces the risk that a large movable pageblock is freed for
1653          * an unmovable/reclaimable small allocation.
1654          */
1655         if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE)
1656                 return pfn;
1657
1658         /*
1659          * When starting the migration scanner, pick any pageblock within the
1660          * first half of the search space. Otherwise try and pick a pageblock
1661          * within the first eighth to reduce the chances that a migration
1662          * target later becomes a source.
1663          */
1664         distance = (cc->free_pfn - cc->migrate_pfn) >> 1;
1665         if (cc->migrate_pfn != cc->zone->zone_start_pfn)
1666                 distance >>= 2;
1667         high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance);
1668
1669         for (order = cc->order - 1;
1670              order >= PAGE_ALLOC_COSTLY_ORDER && pfn == cc->migrate_pfn && nr_scanned < limit;
1671              order--) {
1672                 struct free_area *area = &cc->zone->free_area[order];
1673                 struct list_head *freelist;
1674                 unsigned long flags;
1675                 struct page *freepage;
1676
1677                 if (!area->nr_free)
1678                         continue;
1679
1680                 spin_lock_irqsave(&cc->zone->lock, flags);
1681                 freelist = &area->free_list[MIGRATE_MOVABLE];
1682                 list_for_each_entry(freepage, freelist, lru) {
1683                         unsigned long free_pfn;
1684
1685                         nr_scanned++;
1686                         free_pfn = page_to_pfn(freepage);
1687                         if (free_pfn < high_pfn) {
1688                                 /*
1689                                  * Avoid if skipped recently. Ideally it would
1690                                  * move to the tail but even safe iteration of
1691                                  * the list assumes an entry is deleted, not
1692                                  * reordered.
1693                                  */
1694                                 if (get_pageblock_skip(freepage)) {
1695                                         if (list_is_last(freelist, &freepage->lru))
1696                                                 break;
1697
1698                                         continue;
1699                                 }
1700
1701                                 /* Reorder to so a future search skips recent pages */
1702                                 move_freelist_tail(freelist, freepage);
1703
1704                                 update_fast_start_pfn(cc, free_pfn);
1705                                 pfn = pageblock_start_pfn(free_pfn);
1706                                 cc->fast_search_fail = 0;
1707                                 set_pageblock_skip(freepage);
1708                                 break;
1709                         }
1710
1711                         if (nr_scanned >= limit) {
1712                                 cc->fast_search_fail++;
1713                                 move_freelist_tail(freelist, freepage);
1714                                 break;
1715                         }
1716                 }
1717                 spin_unlock_irqrestore(&cc->zone->lock, flags);
1718         }
1719
1720         cc->total_migrate_scanned += nr_scanned;
1721
1722         /*
1723          * If fast scanning failed then use a cached entry for a page block
1724          * that had free pages as the basis for starting a linear scan.
1725          */
1726         if (pfn == cc->migrate_pfn)
1727                 pfn = reinit_migrate_pfn(cc);
1728
1729         return pfn;
1730 }
1731
1732 /*
1733  * Isolate all pages that can be migrated from the first suitable block,
1734  * starting at the block pointed to by the migrate scanner pfn within
1735  * compact_control.
1736  */
1737 static isolate_migrate_t isolate_migratepages(struct zone *zone,
1738                                         struct compact_control *cc)
1739 {
1740         unsigned long block_start_pfn;
1741         unsigned long block_end_pfn;
1742         unsigned long low_pfn;
1743         struct page *page;
1744         const isolate_mode_t isolate_mode =
1745                 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1746                 (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1747         bool fast_find_block;
1748
1749         /*
1750          * Start at where we last stopped, or beginning of the zone as
1751          * initialized by compact_zone(). The first failure will use
1752          * the lowest PFN as the starting point for linear scanning.
1753          */
1754         low_pfn = fast_find_migrateblock(cc);
1755         block_start_pfn = pageblock_start_pfn(low_pfn);
1756         if (block_start_pfn < zone->zone_start_pfn)
1757                 block_start_pfn = zone->zone_start_pfn;
1758
1759         /*
1760          * fast_find_migrateblock marks a pageblock skipped so to avoid
1761          * the isolation_suitable check below, check whether the fast
1762          * search was successful.
1763          */
1764         fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail;
1765
1766         /* Only scan within a pageblock boundary */
1767         block_end_pfn = pageblock_end_pfn(low_pfn);
1768
1769         /*
1770          * Iterate over whole pageblocks until we find the first suitable.
1771          * Do not cross the free scanner.
1772          */
1773         for (; block_end_pfn <= cc->free_pfn;
1774                         fast_find_block = false,
1775                         low_pfn = block_end_pfn,
1776                         block_start_pfn = block_end_pfn,
1777                         block_end_pfn += pageblock_nr_pages) {
1778
1779                 /*
1780                  * This can potentially iterate a massively long zone with
1781                  * many pageblocks unsuitable, so periodically check if we
1782                  * need to schedule.
1783                  */
1784                 if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)))
1785                         cond_resched();
1786
1787                 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1788                                                                         zone);
1789                 if (!page)
1790                         continue;
1791
1792                 /*
1793                  * If isolation recently failed, do not retry. Only check the
1794                  * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock
1795                  * to be visited multiple times. Assume skip was checked
1796                  * before making it "skip" so other compaction instances do
1797                  * not scan the same block.
1798                  */
1799                 if (IS_ALIGNED(low_pfn, pageblock_nr_pages) &&
1800                     !fast_find_block && !isolation_suitable(cc, page))
1801                         continue;
1802
1803                 /*
1804                  * For async compaction, also only scan in MOVABLE blocks
1805                  * without huge pages. Async compaction is optimistic to see
1806                  * if the minimum amount of work satisfies the allocation.
1807                  * The cached PFN is updated as it's possible that all
1808                  * remaining blocks between source and target are unsuitable
1809                  * and the compaction scanners fail to meet.
1810                  */
1811                 if (!suitable_migration_source(cc, page)) {
1812                         update_cached_migrate(cc, block_end_pfn);
1813                         continue;
1814                 }
1815
1816                 /* Perform the isolation */
1817                 low_pfn = isolate_migratepages_block(cc, low_pfn,
1818                                                 block_end_pfn, isolate_mode);
1819
1820                 if (!low_pfn)
1821                         return ISOLATE_ABORT;
1822
1823                 /*
1824                  * Either we isolated something and proceed with migration. Or
1825                  * we failed and compact_zone should decide if we should
1826                  * continue or not.
1827                  */
1828                 break;
1829         }
1830
1831         /* Record where migration scanner will be restarted. */
1832         cc->migrate_pfn = low_pfn;
1833
1834         return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1835 }
1836
1837 /*
1838  * order == -1 is expected when compacting via
1839  * /proc/sys/vm/compact_memory
1840  */
1841 static inline bool is_via_compact_memory(int order)
1842 {
1843         return order == -1;
1844 }
1845
1846 static enum compact_result __compact_finished(struct compact_control *cc)
1847 {
1848         unsigned int order;
1849         const int migratetype = cc->migratetype;
1850         int ret;
1851
1852         /* Compaction run completes if the migrate and free scanner meet */
1853         if (compact_scanners_met(cc)) {
1854                 /* Let the next compaction start anew. */
1855                 reset_cached_positions(cc->zone);
1856
1857                 /*
1858                  * Mark that the PG_migrate_skip information should be cleared
1859                  * by kswapd when it goes to sleep. kcompactd does not set the
1860                  * flag itself as the decision to be clear should be directly
1861                  * based on an allocation request.
1862                  */
1863                 if (cc->direct_compaction)
1864                         cc->zone->compact_blockskip_flush = true;
1865
1866                 if (cc->whole_zone)
1867                         return COMPACT_COMPLETE;
1868                 else
1869                         return COMPACT_PARTIAL_SKIPPED;
1870         }
1871
1872         if (is_via_compact_memory(cc->order))
1873                 return COMPACT_CONTINUE;
1874
1875         /*
1876          * Always finish scanning a pageblock to reduce the possibility of
1877          * fallbacks in the future. This is particularly important when
1878          * migration source is unmovable/reclaimable but it's not worth
1879          * special casing.
1880          */
1881         if (!IS_ALIGNED(cc->migrate_pfn, pageblock_nr_pages))
1882                 return COMPACT_CONTINUE;
1883
1884         /* Direct compactor: Is a suitable page free? */
1885         ret = COMPACT_NO_SUITABLE_PAGE;
1886         for (order = cc->order; order < MAX_ORDER; order++) {
1887                 struct free_area *area = &cc->zone->free_area[order];
1888                 bool can_steal;
1889
1890                 /* Job done if page is free of the right migratetype */
1891                 if (!free_area_empty(area, migratetype))
1892                         return COMPACT_SUCCESS;
1893
1894 #ifdef CONFIG_CMA
1895                 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
1896                 if (migratetype == MIGRATE_MOVABLE &&
1897                         !free_area_empty(area, MIGRATE_CMA))
1898                         return COMPACT_SUCCESS;
1899 #endif
1900                 /*
1901                  * Job done if allocation would steal freepages from
1902                  * other migratetype buddy lists.
1903                  */
1904                 if (find_suitable_fallback(area, order, migratetype,
1905                                                 true, &can_steal) != -1) {
1906
1907                         /* movable pages are OK in any pageblock */
1908                         if (migratetype == MIGRATE_MOVABLE)
1909                                 return COMPACT_SUCCESS;
1910
1911                         /*
1912                          * We are stealing for a non-movable allocation. Make
1913                          * sure we finish compacting the current pageblock
1914                          * first so it is as free as possible and we won't
1915                          * have to steal another one soon. This only applies
1916                          * to sync compaction, as async compaction operates
1917                          * on pageblocks of the same migratetype.
1918                          */
1919                         if (cc->mode == MIGRATE_ASYNC ||
1920                                         IS_ALIGNED(cc->migrate_pfn,
1921                                                         pageblock_nr_pages)) {
1922                                 return COMPACT_SUCCESS;
1923                         }
1924
1925                         ret = COMPACT_CONTINUE;
1926                         break;
1927                 }
1928         }
1929
1930         if (cc->contended || fatal_signal_pending(current))
1931                 ret = COMPACT_CONTENDED;
1932
1933         return ret;
1934 }
1935
1936 static enum compact_result compact_finished(struct compact_control *cc)
1937 {
1938         int ret;
1939
1940         ret = __compact_finished(cc);
1941         trace_mm_compaction_finished(cc->zone, cc->order, ret);
1942         if (ret == COMPACT_NO_SUITABLE_PAGE)
1943                 ret = COMPACT_CONTINUE;
1944
1945         return ret;
1946 }
1947
1948 /*
1949  * compaction_suitable: Is this suitable to run compaction on this zone now?
1950  * Returns
1951  *   COMPACT_SKIPPED  - If there are too few free pages for compaction
1952  *   COMPACT_SUCCESS  - If the allocation would succeed without compaction
1953  *   COMPACT_CONTINUE - If compaction should run now
1954  */
1955 static enum compact_result __compaction_suitable(struct zone *zone, int order,
1956                                         unsigned int alloc_flags,
1957                                         int classzone_idx,
1958                                         unsigned long wmark_target)
1959 {
1960         unsigned long watermark;
1961
1962         if (is_via_compact_memory(order))
1963                 return COMPACT_CONTINUE;
1964
1965         watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
1966         /*
1967          * If watermarks for high-order allocation are already met, there
1968          * should be no need for compaction at all.
1969          */
1970         if (zone_watermark_ok(zone, order, watermark, classzone_idx,
1971                                                                 alloc_flags))
1972                 return COMPACT_SUCCESS;
1973
1974         /*
1975          * Watermarks for order-0 must be met for compaction to be able to
1976          * isolate free pages for migration targets. This means that the
1977          * watermark and alloc_flags have to match, or be more pessimistic than
1978          * the check in __isolate_free_page(). We don't use the direct
1979          * compactor's alloc_flags, as they are not relevant for freepage
1980          * isolation. We however do use the direct compactor's classzone_idx to
1981          * skip over zones where lowmem reserves would prevent allocation even
1982          * if compaction succeeds.
1983          * For costly orders, we require low watermark instead of min for
1984          * compaction to proceed to increase its chances.
1985          * ALLOC_CMA is used, as pages in CMA pageblocks are considered
1986          * suitable migration targets
1987          */
1988         watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
1989                                 low_wmark_pages(zone) : min_wmark_pages(zone);
1990         watermark += compact_gap(order);
1991         if (!__zone_watermark_ok(zone, 0, watermark, classzone_idx,
1992                                                 ALLOC_CMA, wmark_target))
1993                 return COMPACT_SKIPPED;
1994
1995         return COMPACT_CONTINUE;
1996 }
1997
1998 enum compact_result compaction_suitable(struct zone *zone, int order,
1999                                         unsigned int alloc_flags,
2000                                         int classzone_idx)
2001 {
2002         enum compact_result ret;
2003         int fragindex;
2004
2005         ret = __compaction_suitable(zone, order, alloc_flags, classzone_idx,
2006                                     zone_page_state(zone, NR_FREE_PAGES));
2007         /*
2008          * fragmentation index determines if allocation failures are due to
2009          * low memory or external fragmentation
2010          *
2011          * index of -1000 would imply allocations might succeed depending on
2012          * watermarks, but we already failed the high-order watermark check
2013          * index towards 0 implies failure is due to lack of memory
2014          * index towards 1000 implies failure is due to fragmentation
2015          *
2016          * Only compact if a failure would be due to fragmentation. Also
2017          * ignore fragindex for non-costly orders where the alternative to
2018          * a successful reclaim/compaction is OOM. Fragindex and the
2019          * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
2020          * excessive compaction for costly orders, but it should not be at the
2021          * expense of system stability.
2022          */
2023         if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) {
2024                 fragindex = fragmentation_index(zone, order);
2025                 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
2026                         ret = COMPACT_NOT_SUITABLE_ZONE;
2027         }
2028
2029         trace_mm_compaction_suitable(zone, order, ret);
2030         if (ret == COMPACT_NOT_SUITABLE_ZONE)
2031                 ret = COMPACT_SKIPPED;
2032
2033         return ret;
2034 }
2035
2036 bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
2037                 int alloc_flags)
2038 {
2039         struct zone *zone;
2040         struct zoneref *z;
2041
2042         /*
2043          * Make sure at least one zone would pass __compaction_suitable if we continue
2044          * retrying the reclaim.
2045          */
2046         for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
2047                                         ac->nodemask) {
2048                 unsigned long available;
2049                 enum compact_result compact_result;
2050
2051                 /*
2052                  * Do not consider all the reclaimable memory because we do not
2053                  * want to trash just for a single high order allocation which
2054                  * is even not guaranteed to appear even if __compaction_suitable
2055                  * is happy about the watermark check.
2056                  */
2057                 available = zone_reclaimable_pages(zone) / order;
2058                 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
2059                 compact_result = __compaction_suitable(zone, order, alloc_flags,
2060                                 ac_classzone_idx(ac), available);
2061                 if (compact_result != COMPACT_SKIPPED)
2062                         return true;
2063         }
2064
2065         return false;
2066 }
2067
2068 static enum compact_result
2069 compact_zone(struct compact_control *cc, struct capture_control *capc)
2070 {
2071         enum compact_result ret;
2072         unsigned long start_pfn = cc->zone->zone_start_pfn;
2073         unsigned long end_pfn = zone_end_pfn(cc->zone);
2074         unsigned long last_migrated_pfn;
2075         const bool sync = cc->mode != MIGRATE_ASYNC;
2076         bool update_cached;
2077
2078         cc->migratetype = gfpflags_to_migratetype(cc->gfp_mask);
2079         ret = compaction_suitable(cc->zone, cc->order, cc->alloc_flags,
2080                                                         cc->classzone_idx);
2081         /* Compaction is likely to fail */
2082         if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED)
2083                 return ret;
2084
2085         /* huh, compaction_suitable is returning something unexpected */
2086         VM_BUG_ON(ret != COMPACT_CONTINUE);
2087
2088         /*
2089          * Clear pageblock skip if there were failures recently and compaction
2090          * is about to be retried after being deferred.
2091          */
2092         if (compaction_restarting(cc->zone, cc->order))
2093                 __reset_isolation_suitable(cc->zone);
2094
2095         /*
2096          * Setup to move all movable pages to the end of the zone. Used cached
2097          * information on where the scanners should start (unless we explicitly
2098          * want to compact the whole zone), but check that it is initialised
2099          * by ensuring the values are within zone boundaries.
2100          */
2101         cc->fast_start_pfn = 0;
2102         if (cc->whole_zone) {
2103                 cc->migrate_pfn = start_pfn;
2104                 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2105         } else {
2106                 cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync];
2107                 cc->free_pfn = cc->zone->compact_cached_free_pfn;
2108                 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
2109                         cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2110                         cc->zone->compact_cached_free_pfn = cc->free_pfn;
2111                 }
2112                 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
2113                         cc->migrate_pfn = start_pfn;
2114                         cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
2115                         cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
2116                 }
2117
2118                 if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn)
2119                         cc->whole_zone = true;
2120         }
2121
2122         last_migrated_pfn = 0;
2123
2124         /*
2125          * Migrate has separate cached PFNs for ASYNC and SYNC* migration on
2126          * the basis that some migrations will fail in ASYNC mode. However,
2127          * if the cached PFNs match and pageblocks are skipped due to having
2128          * no isolation candidates, then the sync state does not matter.
2129          * Until a pageblock with isolation candidates is found, keep the
2130          * cached PFNs in sync to avoid revisiting the same blocks.
2131          */
2132         update_cached = !sync &&
2133                 cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1];
2134
2135         trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
2136                                 cc->free_pfn, end_pfn, sync);
2137
2138         migrate_prep_local();
2139
2140         while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) {
2141                 int err;
2142                 unsigned long start_pfn = cc->migrate_pfn;
2143
2144                 /*
2145                  * Avoid multiple rescans which can happen if a page cannot be
2146                  * isolated (dirty/writeback in async mode) or if the migrated
2147                  * pages are being allocated before the pageblock is cleared.
2148                  * The first rescan will capture the entire pageblock for
2149                  * migration. If it fails, it'll be marked skip and scanning
2150                  * will proceed as normal.
2151                  */
2152                 cc->rescan = false;
2153                 if (pageblock_start_pfn(last_migrated_pfn) ==
2154                     pageblock_start_pfn(start_pfn)) {
2155                         cc->rescan = true;
2156                 }
2157
2158                 switch (isolate_migratepages(cc->zone, cc)) {
2159                 case ISOLATE_ABORT:
2160                         ret = COMPACT_CONTENDED;
2161                         putback_movable_pages(&cc->migratepages);
2162                         cc->nr_migratepages = 0;
2163                         last_migrated_pfn = 0;
2164                         goto out;
2165                 case ISOLATE_NONE:
2166                         if (update_cached) {
2167                                 cc->zone->compact_cached_migrate_pfn[1] =
2168                                         cc->zone->compact_cached_migrate_pfn[0];
2169                         }
2170
2171                         /*
2172                          * We haven't isolated and migrated anything, but
2173                          * there might still be unflushed migrations from
2174                          * previous cc->order aligned block.
2175                          */
2176                         goto check_drain;
2177                 case ISOLATE_SUCCESS:
2178                         update_cached = false;
2179                         last_migrated_pfn = start_pfn;
2180                         ;
2181                 }
2182
2183                 err = migrate_pages(&cc->migratepages, compaction_alloc,
2184                                 compaction_free, (unsigned long)cc, cc->mode,
2185                                 MR_COMPACTION);
2186
2187                 trace_mm_compaction_migratepages(cc->nr_migratepages, err,
2188                                                         &cc->migratepages);
2189
2190                 /* All pages were either migrated or will be released */
2191                 cc->nr_migratepages = 0;
2192                 if (err) {
2193                         putback_movable_pages(&cc->migratepages);
2194                         /*
2195                          * migrate_pages() may return -ENOMEM when scanners meet
2196                          * and we want compact_finished() to detect it
2197                          */
2198                         if (err == -ENOMEM && !compact_scanners_met(cc)) {
2199                                 ret = COMPACT_CONTENDED;
2200                                 goto out;
2201                         }
2202                         /*
2203                          * We failed to migrate at least one page in the current
2204                          * order-aligned block, so skip the rest of it.
2205                          */
2206                         if (cc->direct_compaction &&
2207                                                 (cc->mode == MIGRATE_ASYNC)) {
2208                                 cc->migrate_pfn = block_end_pfn(
2209                                                 cc->migrate_pfn - 1, cc->order);
2210                                 /* Draining pcplists is useless in this case */
2211                                 last_migrated_pfn = 0;
2212                         }
2213                 }
2214
2215 check_drain:
2216                 /*
2217                  * Has the migration scanner moved away from the previous
2218                  * cc->order aligned block where we migrated from? If yes,
2219                  * flush the pages that were freed, so that they can merge and
2220                  * compact_finished() can detect immediately if allocation
2221                  * would succeed.
2222                  */
2223                 if (cc->order > 0 && last_migrated_pfn) {
2224                         int cpu;
2225                         unsigned long current_block_start =
2226                                 block_start_pfn(cc->migrate_pfn, cc->order);
2227
2228                         if (last_migrated_pfn < current_block_start) {
2229                                 cpu = get_cpu();
2230                                 lru_add_drain_cpu(cpu);
2231                                 drain_local_pages(cc->zone);
2232                                 put_cpu();
2233                                 /* No more flushing until we migrate again */
2234                                 last_migrated_pfn = 0;
2235                         }
2236                 }
2237
2238                 /* Stop if a page has been captured */
2239                 if (capc && capc->page) {
2240                         ret = COMPACT_SUCCESS;
2241                         break;
2242                 }
2243         }
2244
2245 out:
2246         /*
2247          * Release free pages and update where the free scanner should restart,
2248          * so we don't leave any returned pages behind in the next attempt.
2249          */
2250         if (cc->nr_freepages > 0) {
2251                 unsigned long free_pfn = release_freepages(&cc->freepages);
2252
2253                 cc->nr_freepages = 0;
2254                 VM_BUG_ON(free_pfn == 0);
2255                 /* The cached pfn is always the first in a pageblock */
2256                 free_pfn = pageblock_start_pfn(free_pfn);
2257                 /*
2258                  * Only go back, not forward. The cached pfn might have been
2259                  * already reset to zone end in compact_finished()
2260                  */
2261                 if (free_pfn > cc->zone->compact_cached_free_pfn)
2262                         cc->zone->compact_cached_free_pfn = free_pfn;
2263         }
2264
2265         count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
2266         count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
2267
2268         trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
2269                                 cc->free_pfn, end_pfn, sync, ret);
2270
2271         return ret;
2272 }
2273
2274 static enum compact_result compact_zone_order(struct zone *zone, int order,
2275                 gfp_t gfp_mask, enum compact_priority prio,
2276                 unsigned int alloc_flags, int classzone_idx,
2277                 struct page **capture)
2278 {
2279         enum compact_result ret;
2280         struct compact_control cc = {
2281                 .nr_freepages = 0,
2282                 .nr_migratepages = 0,
2283                 .total_migrate_scanned = 0,
2284                 .total_free_scanned = 0,
2285                 .order = order,
2286                 .search_order = order,
2287                 .gfp_mask = gfp_mask,
2288                 .zone = zone,
2289                 .mode = (prio == COMPACT_PRIO_ASYNC) ?
2290                                         MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT,
2291                 .alloc_flags = alloc_flags,
2292                 .classzone_idx = classzone_idx,
2293                 .direct_compaction = true,
2294                 .whole_zone = (prio == MIN_COMPACT_PRIORITY),
2295                 .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
2296                 .ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
2297         };
2298         struct capture_control capc = {
2299                 .cc = &cc,
2300                 .page = NULL,
2301         };
2302
2303         if (capture)
2304                 current->capture_control = &capc;
2305         INIT_LIST_HEAD(&cc.freepages);
2306         INIT_LIST_HEAD(&cc.migratepages);
2307
2308         ret = compact_zone(&cc, &capc);
2309
2310         VM_BUG_ON(!list_empty(&cc.freepages));
2311         VM_BUG_ON(!list_empty(&cc.migratepages));
2312
2313         *capture = capc.page;
2314         current->capture_control = NULL;
2315
2316         return ret;
2317 }
2318
2319 int sysctl_extfrag_threshold = 500;
2320
2321 /**
2322  * try_to_compact_pages - Direct compact to satisfy a high-order allocation
2323  * @gfp_mask: The GFP mask of the current allocation
2324  * @order: The order of the current allocation
2325  * @alloc_flags: The allocation flags of the current allocation
2326  * @ac: The context of current allocation
2327  * @prio: Determines how hard direct compaction should try to succeed
2328  *
2329  * This is the main entry point for direct page compaction.
2330  */
2331 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
2332                 unsigned int alloc_flags, const struct alloc_context *ac,
2333                 enum compact_priority prio, struct page **capture)
2334 {
2335         int may_perform_io = gfp_mask & __GFP_IO;
2336         struct zoneref *z;
2337         struct zone *zone;
2338         enum compact_result rc = COMPACT_SKIPPED;
2339
2340         /*
2341          * Check if the GFP flags allow compaction - GFP_NOIO is really
2342          * tricky context because the migration might require IO
2343          */
2344         if (!may_perform_io)
2345                 return COMPACT_SKIPPED;
2346
2347         trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
2348
2349         /* Compact each zone in the list */
2350         for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
2351                                                                 ac->nodemask) {
2352                 enum compact_result status;
2353
2354                 if (prio > MIN_COMPACT_PRIORITY
2355                                         && compaction_deferred(zone, order)) {
2356                         rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
2357                         continue;
2358                 }
2359
2360                 status = compact_zone_order(zone, order, gfp_mask, prio,
2361                                 alloc_flags, ac_classzone_idx(ac), capture);
2362                 rc = max(status, rc);
2363
2364                 /* The allocation should succeed, stop compacting */
2365                 if (status == COMPACT_SUCCESS) {
2366                         /*
2367                          * We think the allocation will succeed in this zone,
2368                          * but it is not certain, hence the false. The caller
2369                          * will repeat this with true if allocation indeed
2370                          * succeeds in this zone.
2371                          */
2372                         compaction_defer_reset(zone, order, false);
2373
2374                         break;
2375                 }
2376
2377                 if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
2378                                         status == COMPACT_PARTIAL_SKIPPED))
2379                         /*
2380                          * We think that allocation won't succeed in this zone
2381                          * so we defer compaction there. If it ends up
2382                          * succeeding after all, it will be reset.
2383                          */
2384                         defer_compaction(zone, order);
2385
2386                 /*
2387                  * We might have stopped compacting due to need_resched() in
2388                  * async compaction, or due to a fatal signal detected. In that
2389                  * case do not try further zones
2390                  */
2391                 if ((prio == COMPACT_PRIO_ASYNC && need_resched())
2392                                         || fatal_signal_pending(current))
2393                         break;
2394         }
2395
2396         return rc;
2397 }
2398
2399
2400 /* Compact all zones within a node */
2401 static void compact_node(int nid)
2402 {
2403         pg_data_t *pgdat = NODE_DATA(nid);
2404         int zoneid;
2405         struct zone *zone;
2406         struct compact_control cc = {
2407                 .order = -1,
2408                 .total_migrate_scanned = 0,
2409                 .total_free_scanned = 0,
2410                 .mode = MIGRATE_SYNC,
2411                 .ignore_skip_hint = true,
2412                 .whole_zone = true,
2413                 .gfp_mask = GFP_KERNEL,
2414         };
2415
2416
2417         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2418
2419                 zone = &pgdat->node_zones[zoneid];
2420                 if (!populated_zone(zone))
2421                         continue;
2422
2423                 cc.nr_freepages = 0;
2424                 cc.nr_migratepages = 0;
2425                 cc.zone = zone;
2426                 INIT_LIST_HEAD(&cc.freepages);
2427                 INIT_LIST_HEAD(&cc.migratepages);
2428
2429                 compact_zone(&cc, NULL);
2430
2431                 VM_BUG_ON(!list_empty(&cc.freepages));
2432                 VM_BUG_ON(!list_empty(&cc.migratepages));
2433         }
2434 }
2435
2436 /* Compact all nodes in the system */
2437 static void compact_nodes(void)
2438 {
2439         int nid;
2440
2441         /* Flush pending updates to the LRU lists */
2442         lru_add_drain_all();
2443
2444         for_each_online_node(nid)
2445                 compact_node(nid);
2446 }
2447
2448 /* The written value is actually unused, all memory is compacted */
2449 int sysctl_compact_memory;
2450
2451 /*
2452  * This is the entry point for compacting all nodes via
2453  * /proc/sys/vm/compact_memory
2454  */
2455 int sysctl_compaction_handler(struct ctl_table *table, int write,
2456                         void __user *buffer, size_t *length, loff_t *ppos)
2457 {
2458         if (write)
2459                 compact_nodes();
2460
2461         return 0;
2462 }
2463
2464 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
2465 static ssize_t sysfs_compact_node(struct device *dev,
2466                         struct device_attribute *attr,
2467                         const char *buf, size_t count)
2468 {
2469         int nid = dev->id;
2470
2471         if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
2472                 /* Flush pending updates to the LRU lists */
2473                 lru_add_drain_all();
2474
2475                 compact_node(nid);
2476         }
2477
2478         return count;
2479 }
2480 static DEVICE_ATTR(compact, 0200, NULL, sysfs_compact_node);
2481
2482 int compaction_register_node(struct node *node)
2483 {
2484         return device_create_file(&node->dev, &dev_attr_compact);
2485 }
2486
2487 void compaction_unregister_node(struct node *node)
2488 {
2489         return device_remove_file(&node->dev, &dev_attr_compact);
2490 }
2491 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
2492
2493 static inline bool kcompactd_work_requested(pg_data_t *pgdat)
2494 {
2495         return pgdat->kcompactd_max_order > 0 || kthread_should_stop();
2496 }
2497
2498 static bool kcompactd_node_suitable(pg_data_t *pgdat)
2499 {
2500         int zoneid;
2501         struct zone *zone;
2502         enum zone_type classzone_idx = pgdat->kcompactd_classzone_idx;
2503
2504         for (zoneid = 0; zoneid <= classzone_idx; zoneid++) {
2505                 zone = &pgdat->node_zones[zoneid];
2506
2507                 if (!populated_zone(zone))
2508                         continue;
2509
2510                 if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
2511                                         classzone_idx) == COMPACT_CONTINUE)
2512                         return true;
2513         }
2514
2515         return false;
2516 }
2517
2518 static void kcompactd_do_work(pg_data_t *pgdat)
2519 {
2520         /*
2521          * With no special task, compact all zones so that a page of requested
2522          * order is allocatable.
2523          */
2524         int zoneid;
2525         struct zone *zone;
2526         struct compact_control cc = {
2527                 .order = pgdat->kcompactd_max_order,
2528                 .search_order = pgdat->kcompactd_max_order,
2529                 .total_migrate_scanned = 0,
2530                 .total_free_scanned = 0,
2531                 .classzone_idx = pgdat->kcompactd_classzone_idx,
2532                 .mode = MIGRATE_SYNC_LIGHT,
2533                 .ignore_skip_hint = false,
2534                 .gfp_mask = GFP_KERNEL,
2535         };
2536         trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
2537                                                         cc.classzone_idx);
2538         count_compact_event(KCOMPACTD_WAKE);
2539
2540         for (zoneid = 0; zoneid <= cc.classzone_idx; zoneid++) {
2541                 int status;
2542
2543                 zone = &pgdat->node_zones[zoneid];
2544                 if (!populated_zone(zone))
2545                         continue;
2546
2547                 if (compaction_deferred(zone, cc.order))
2548                         continue;
2549
2550                 if (compaction_suitable(zone, cc.order, 0, zoneid) !=
2551                                                         COMPACT_CONTINUE)
2552                         continue;
2553
2554                 cc.nr_freepages = 0;
2555                 cc.nr_migratepages = 0;
2556                 cc.total_migrate_scanned = 0;
2557                 cc.total_free_scanned = 0;
2558                 cc.zone = zone;
2559                 INIT_LIST_HEAD(&cc.freepages);
2560                 INIT_LIST_HEAD(&cc.migratepages);
2561
2562                 if (kthread_should_stop())
2563                         return;
2564                 status = compact_zone(&cc, NULL);
2565
2566                 if (status == COMPACT_SUCCESS) {
2567                         compaction_defer_reset(zone, cc.order, false);
2568                 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
2569                         /*
2570                          * Buddy pages may become stranded on pcps that could
2571                          * otherwise coalesce on the zone's free area for
2572                          * order >= cc.order.  This is ratelimited by the
2573                          * upcoming deferral.
2574                          */
2575                         drain_all_pages(zone);
2576
2577                         /*
2578                          * We use sync migration mode here, so we defer like
2579                          * sync direct compaction does.
2580                          */
2581                         defer_compaction(zone, cc.order);
2582                 }
2583
2584                 count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2585                                      cc.total_migrate_scanned);
2586                 count_compact_events(KCOMPACTD_FREE_SCANNED,
2587                                      cc.total_free_scanned);
2588
2589                 VM_BUG_ON(!list_empty(&cc.freepages));
2590                 VM_BUG_ON(!list_empty(&cc.migratepages));
2591         }
2592
2593         /*
2594          * Regardless of success, we are done until woken up next. But remember
2595          * the requested order/classzone_idx in case it was higher/tighter than
2596          * our current ones
2597          */
2598         if (pgdat->kcompactd_max_order <= cc.order)
2599                 pgdat->kcompactd_max_order = 0;
2600         if (pgdat->kcompactd_classzone_idx >= cc.classzone_idx)
2601                 pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
2602 }
2603
2604 void wakeup_kcompactd(pg_data_t *pgdat, int order, int classzone_idx)
2605 {
2606         if (!order)
2607                 return;
2608
2609         if (pgdat->kcompactd_max_order < order)
2610                 pgdat->kcompactd_max_order = order;
2611
2612         if (pgdat->kcompactd_classzone_idx > classzone_idx)
2613                 pgdat->kcompactd_classzone_idx = classzone_idx;
2614
2615         /*
2616          * Pairs with implicit barrier in wait_event_freezable()
2617          * such that wakeups are not missed.
2618          */
2619         if (!wq_has_sleeper(&pgdat->kcompactd_wait))
2620                 return;
2621
2622         if (!kcompactd_node_suitable(pgdat))
2623                 return;
2624
2625         trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
2626                                                         classzone_idx);
2627         wake_up_interruptible(&pgdat->kcompactd_wait);
2628 }
2629
2630 /*
2631  * The background compaction daemon, started as a kernel thread
2632  * from the init process.
2633  */
2634 static int kcompactd(void *p)
2635 {
2636         pg_data_t *pgdat = (pg_data_t*)p;
2637         struct task_struct *tsk = current;
2638
2639         const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2640
2641         if (!cpumask_empty(cpumask))
2642                 set_cpus_allowed_ptr(tsk, cpumask);
2643
2644         set_freezable();
2645
2646         pgdat->kcompactd_max_order = 0;
2647         pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
2648
2649         while (!kthread_should_stop()) {
2650                 unsigned long pflags;
2651
2652                 trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
2653                 wait_event_freezable(pgdat->kcompactd_wait,
2654                                 kcompactd_work_requested(pgdat));
2655
2656                 psi_memstall_enter(&pflags);
2657                 kcompactd_do_work(pgdat);
2658                 psi_memstall_leave(&pflags);
2659         }
2660
2661         return 0;
2662 }
2663
2664 /*
2665  * This kcompactd start function will be called by init and node-hot-add.
2666  * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
2667  */
2668 int kcompactd_run(int nid)
2669 {
2670         pg_data_t *pgdat = NODE_DATA(nid);
2671         int ret = 0;
2672
2673         if (pgdat->kcompactd)
2674                 return 0;
2675
2676         pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
2677         if (IS_ERR(pgdat->kcompactd)) {
2678                 pr_err("Failed to start kcompactd on node %d\n", nid);
2679                 ret = PTR_ERR(pgdat->kcompactd);
2680                 pgdat->kcompactd = NULL;
2681         }
2682         return ret;
2683 }
2684
2685 /*
2686  * Called by memory hotplug when all memory in a node is offlined. Caller must
2687  * hold mem_hotplug_begin/end().
2688  */
2689 void kcompactd_stop(int nid)
2690 {
2691         struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
2692
2693         if (kcompactd) {
2694                 kthread_stop(kcompactd);
2695                 NODE_DATA(nid)->kcompactd = NULL;
2696         }
2697 }
2698
2699 /*
2700  * It's optimal to keep kcompactd on the same CPUs as their memory, but
2701  * not required for correctness. So if the last cpu in a node goes
2702  * away, we get changed to run anywhere: as the first one comes back,
2703  * restore their cpu bindings.
2704  */
2705 static int kcompactd_cpu_online(unsigned int cpu)
2706 {
2707         int nid;
2708
2709         for_each_node_state(nid, N_MEMORY) {
2710                 pg_data_t *pgdat = NODE_DATA(nid);
2711                 const struct cpumask *mask;
2712
2713                 mask = cpumask_of_node(pgdat->node_id);
2714
2715                 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2716                         /* One of our CPUs online: restore mask */
2717                         set_cpus_allowed_ptr(pgdat->kcompactd, mask);
2718         }
2719         return 0;
2720 }
2721
2722 static int __init kcompactd_init(void)
2723 {
2724         int nid;
2725         int ret;
2726
2727         ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
2728                                         "mm/compaction:online",
2729                                         kcompactd_cpu_online, NULL);
2730         if (ret < 0) {
2731                 pr_err("kcompactd: failed to register hotplug callbacks.\n");
2732                 return ret;
2733         }
2734
2735         for_each_node_state(nid, N_MEMORY)
2736                 kcompactd_run(nid);
2737         return 0;
2738 }
2739 subsys_initcall(kcompactd_init)
2740
2741 #endif /* CONFIG_COMPACTION */