x86: add tizen_qemu_x86_defconfig & tizen_qemu_x86_64_defconfig
[platform/kernel/linux-rpi.git] / mm / compaction.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * linux/mm/compaction.c
4  *
5  * Memory compaction for the reduction of external fragmentation. Note that
6  * this heavily depends upon page migration to do all the real heavy
7  * lifting
8  *
9  * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
10  */
11 #include <linux/cpu.h>
12 #include <linux/swap.h>
13 #include <linux/migrate.h>
14 #include <linux/compaction.h>
15 #include <linux/mm_inline.h>
16 #include <linux/sched/signal.h>
17 #include <linux/backing-dev.h>
18 #include <linux/sysctl.h>
19 #include <linux/sysfs.h>
20 #include <linux/page-isolation.h>
21 #include <linux/kasan.h>
22 #include <linux/kthread.h>
23 #include <linux/freezer.h>
24 #include <linux/page_owner.h>
25 #include <linux/psi.h>
26 #include "internal.h"
27
28 #ifdef CONFIG_COMPACTION
29 static inline void count_compact_event(enum vm_event_item item)
30 {
31         count_vm_event(item);
32 }
33
34 static inline void count_compact_events(enum vm_event_item item, long delta)
35 {
36         count_vm_events(item, delta);
37 }
38 #else
39 #define count_compact_event(item) do { } while (0)
40 #define count_compact_events(item, delta) do { } while (0)
41 #endif
42
43 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
44
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/compaction.h>
47
48 #define block_start_pfn(pfn, order)     round_down(pfn, 1UL << (order))
49 #define block_end_pfn(pfn, order)       ALIGN((pfn) + 1, 1UL << (order))
50 #define pageblock_start_pfn(pfn)        block_start_pfn(pfn, pageblock_order)
51 #define pageblock_end_pfn(pfn)          block_end_pfn(pfn, pageblock_order)
52
53 /*
54  * Fragmentation score check interval for proactive compaction purposes.
55  */
56 static const unsigned int HPAGE_FRAG_CHECK_INTERVAL_MSEC = 500;
57
58 /*
59  * Page order with-respect-to which proactive compaction
60  * calculates external fragmentation, which is used as
61  * the "fragmentation score" of a node/zone.
62  */
63 #if defined CONFIG_TRANSPARENT_HUGEPAGE
64 #define COMPACTION_HPAGE_ORDER  HPAGE_PMD_ORDER
65 #elif defined CONFIG_HUGETLBFS
66 #define COMPACTION_HPAGE_ORDER  HUGETLB_PAGE_ORDER
67 #else
68 #define COMPACTION_HPAGE_ORDER  (PMD_SHIFT - PAGE_SHIFT)
69 #endif
70
71 static unsigned long release_freepages(struct list_head *freelist)
72 {
73         struct page *page, *next;
74         unsigned long high_pfn = 0;
75
76         list_for_each_entry_safe(page, next, freelist, lru) {
77                 unsigned long pfn = page_to_pfn(page);
78                 list_del(&page->lru);
79                 __free_page(page);
80                 if (pfn > high_pfn)
81                         high_pfn = pfn;
82         }
83
84         return high_pfn;
85 }
86
87 static void split_map_pages(struct list_head *list)
88 {
89         unsigned int i, order, nr_pages;
90         struct page *page, *next;
91         LIST_HEAD(tmp_list);
92
93         list_for_each_entry_safe(page, next, list, lru) {
94                 list_del(&page->lru);
95
96                 order = page_private(page);
97                 nr_pages = 1 << order;
98
99                 post_alloc_hook(page, order, __GFP_MOVABLE);
100                 if (order)
101                         split_page(page, order);
102
103                 for (i = 0; i < nr_pages; i++) {
104                         list_add(&page->lru, &tmp_list);
105                         page++;
106                 }
107         }
108
109         list_splice(&tmp_list, list);
110 }
111
112 #ifdef CONFIG_COMPACTION
113
114 int PageMovable(struct page *page)
115 {
116         struct address_space *mapping;
117
118         VM_BUG_ON_PAGE(!PageLocked(page), page);
119         if (!__PageMovable(page))
120                 return 0;
121
122         mapping = page_mapping(page);
123         if (mapping && mapping->a_ops && mapping->a_ops->isolate_page)
124                 return 1;
125
126         return 0;
127 }
128 EXPORT_SYMBOL(PageMovable);
129
130 void __SetPageMovable(struct page *page, struct address_space *mapping)
131 {
132         VM_BUG_ON_PAGE(!PageLocked(page), page);
133         VM_BUG_ON_PAGE((unsigned long)mapping & PAGE_MAPPING_MOVABLE, page);
134         page->mapping = (void *)((unsigned long)mapping | PAGE_MAPPING_MOVABLE);
135 }
136 EXPORT_SYMBOL(__SetPageMovable);
137
138 void __ClearPageMovable(struct page *page)
139 {
140         VM_BUG_ON_PAGE(!PageMovable(page), page);
141         /*
142          * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE
143          * flag so that VM can catch up released page by driver after isolation.
144          * With it, VM migration doesn't try to put it back.
145          */
146         page->mapping = (void *)((unsigned long)page->mapping &
147                                 PAGE_MAPPING_MOVABLE);
148 }
149 EXPORT_SYMBOL(__ClearPageMovable);
150
151 /* Do not skip compaction more than 64 times */
152 #define COMPACT_MAX_DEFER_SHIFT 6
153
154 /*
155  * Compaction is deferred when compaction fails to result in a page
156  * allocation success. 1 << compact_defer_shift, compactions are skipped up
157  * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
158  */
159 static void defer_compaction(struct zone *zone, int order)
160 {
161         zone->compact_considered = 0;
162         zone->compact_defer_shift++;
163
164         if (order < zone->compact_order_failed)
165                 zone->compact_order_failed = order;
166
167         if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
168                 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
169
170         trace_mm_compaction_defer_compaction(zone, order);
171 }
172
173 /* Returns true if compaction should be skipped this time */
174 static bool compaction_deferred(struct zone *zone, int order)
175 {
176         unsigned long defer_limit = 1UL << zone->compact_defer_shift;
177
178         if (order < zone->compact_order_failed)
179                 return false;
180
181         /* Avoid possible overflow */
182         if (++zone->compact_considered >= defer_limit) {
183                 zone->compact_considered = defer_limit;
184                 return false;
185         }
186
187         trace_mm_compaction_deferred(zone, order);
188
189         return true;
190 }
191
192 /*
193  * Update defer tracking counters after successful compaction of given order,
194  * which means an allocation either succeeded (alloc_success == true) or is
195  * expected to succeed.
196  */
197 void compaction_defer_reset(struct zone *zone, int order,
198                 bool alloc_success)
199 {
200         if (alloc_success) {
201                 zone->compact_considered = 0;
202                 zone->compact_defer_shift = 0;
203         }
204         if (order >= zone->compact_order_failed)
205                 zone->compact_order_failed = order + 1;
206
207         trace_mm_compaction_defer_reset(zone, order);
208 }
209
210 /* Returns true if restarting compaction after many failures */
211 static bool compaction_restarting(struct zone *zone, int order)
212 {
213         if (order < zone->compact_order_failed)
214                 return false;
215
216         return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
217                 zone->compact_considered >= 1UL << zone->compact_defer_shift;
218 }
219
220 /* Returns true if the pageblock should be scanned for pages to isolate. */
221 static inline bool isolation_suitable(struct compact_control *cc,
222                                         struct page *page)
223 {
224         if (cc->ignore_skip_hint)
225                 return true;
226
227         return !get_pageblock_skip(page);
228 }
229
230 static void reset_cached_positions(struct zone *zone)
231 {
232         zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
233         zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
234         zone->compact_cached_free_pfn =
235                                 pageblock_start_pfn(zone_end_pfn(zone) - 1);
236 }
237
238 /*
239  * Compound pages of >= pageblock_order should consistently be skipped until
240  * released. It is always pointless to compact pages of such order (if they are
241  * migratable), and the pageblocks they occupy cannot contain any free pages.
242  */
243 static bool pageblock_skip_persistent(struct page *page)
244 {
245         if (!PageCompound(page))
246                 return false;
247
248         page = compound_head(page);
249
250         if (compound_order(page) >= pageblock_order)
251                 return true;
252
253         return false;
254 }
255
256 static bool
257 __reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source,
258                                                         bool check_target)
259 {
260         struct page *page = pfn_to_online_page(pfn);
261         struct page *block_page;
262         struct page *end_page;
263         unsigned long block_pfn;
264
265         if (!page)
266                 return false;
267         if (zone != page_zone(page))
268                 return false;
269         if (pageblock_skip_persistent(page))
270                 return false;
271
272         /*
273          * If skip is already cleared do no further checking once the
274          * restart points have been set.
275          */
276         if (check_source && check_target && !get_pageblock_skip(page))
277                 return true;
278
279         /*
280          * If clearing skip for the target scanner, do not select a
281          * non-movable pageblock as the starting point.
282          */
283         if (!check_source && check_target &&
284             get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
285                 return false;
286
287         /* Ensure the start of the pageblock or zone is online and valid */
288         block_pfn = pageblock_start_pfn(pfn);
289         block_pfn = max(block_pfn, zone->zone_start_pfn);
290         block_page = pfn_to_online_page(block_pfn);
291         if (block_page) {
292                 page = block_page;
293                 pfn = block_pfn;
294         }
295
296         /* Ensure the end of the pageblock or zone is online and valid */
297         block_pfn = pageblock_end_pfn(pfn) - 1;
298         block_pfn = min(block_pfn, zone_end_pfn(zone) - 1);
299         end_page = pfn_to_online_page(block_pfn);
300         if (!end_page)
301                 return false;
302
303         /*
304          * Only clear the hint if a sample indicates there is either a
305          * free page or an LRU page in the block. One or other condition
306          * is necessary for the block to be a migration source/target.
307          */
308         do {
309                 if (check_source && PageLRU(page)) {
310                         clear_pageblock_skip(page);
311                         return true;
312                 }
313
314                 if (check_target && PageBuddy(page)) {
315                         clear_pageblock_skip(page);
316                         return true;
317                 }
318
319                 page += (1 << PAGE_ALLOC_COSTLY_ORDER);
320                 pfn += (1 << PAGE_ALLOC_COSTLY_ORDER);
321         } while (page <= end_page);
322
323         return false;
324 }
325
326 /*
327  * This function is called to clear all cached information on pageblocks that
328  * should be skipped for page isolation when the migrate and free page scanner
329  * meet.
330  */
331 static void __reset_isolation_suitable(struct zone *zone)
332 {
333         unsigned long migrate_pfn = zone->zone_start_pfn;
334         unsigned long free_pfn = zone_end_pfn(zone) - 1;
335         unsigned long reset_migrate = free_pfn;
336         unsigned long reset_free = migrate_pfn;
337         bool source_set = false;
338         bool free_set = false;
339
340         if (!zone->compact_blockskip_flush)
341                 return;
342
343         zone->compact_blockskip_flush = false;
344
345         /*
346          * Walk the zone and update pageblock skip information. Source looks
347          * for PageLRU while target looks for PageBuddy. When the scanner
348          * is found, both PageBuddy and PageLRU are checked as the pageblock
349          * is suitable as both source and target.
350          */
351         for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages,
352                                         free_pfn -= pageblock_nr_pages) {
353                 cond_resched();
354
355                 /* Update the migrate PFN */
356                 if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) &&
357                     migrate_pfn < reset_migrate) {
358                         source_set = true;
359                         reset_migrate = migrate_pfn;
360                         zone->compact_init_migrate_pfn = reset_migrate;
361                         zone->compact_cached_migrate_pfn[0] = reset_migrate;
362                         zone->compact_cached_migrate_pfn[1] = reset_migrate;
363                 }
364
365                 /* Update the free PFN */
366                 if (__reset_isolation_pfn(zone, free_pfn, free_set, true) &&
367                     free_pfn > reset_free) {
368                         free_set = true;
369                         reset_free = free_pfn;
370                         zone->compact_init_free_pfn = reset_free;
371                         zone->compact_cached_free_pfn = reset_free;
372                 }
373         }
374
375         /* Leave no distance if no suitable block was reset */
376         if (reset_migrate >= reset_free) {
377                 zone->compact_cached_migrate_pfn[0] = migrate_pfn;
378                 zone->compact_cached_migrate_pfn[1] = migrate_pfn;
379                 zone->compact_cached_free_pfn = free_pfn;
380         }
381 }
382
383 void reset_isolation_suitable(pg_data_t *pgdat)
384 {
385         int zoneid;
386
387         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
388                 struct zone *zone = &pgdat->node_zones[zoneid];
389                 if (!populated_zone(zone))
390                         continue;
391
392                 /* Only flush if a full compaction finished recently */
393                 if (zone->compact_blockskip_flush)
394                         __reset_isolation_suitable(zone);
395         }
396 }
397
398 /*
399  * Sets the pageblock skip bit if it was clear. Note that this is a hint as
400  * locks are not required for read/writers. Returns true if it was already set.
401  */
402 static bool test_and_set_skip(struct compact_control *cc, struct page *page,
403                                                         unsigned long pfn)
404 {
405         bool skip;
406
407         /* Do no update if skip hint is being ignored */
408         if (cc->ignore_skip_hint)
409                 return false;
410
411         if (!IS_ALIGNED(pfn, pageblock_nr_pages))
412                 return false;
413
414         skip = get_pageblock_skip(page);
415         if (!skip && !cc->no_set_skip_hint)
416                 set_pageblock_skip(page);
417
418         return skip;
419 }
420
421 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
422 {
423         struct zone *zone = cc->zone;
424
425         pfn = pageblock_end_pfn(pfn);
426
427         /* Set for isolation rather than compaction */
428         if (cc->no_set_skip_hint)
429                 return;
430
431         if (pfn > zone->compact_cached_migrate_pfn[0])
432                 zone->compact_cached_migrate_pfn[0] = pfn;
433         if (cc->mode != MIGRATE_ASYNC &&
434             pfn > zone->compact_cached_migrate_pfn[1])
435                 zone->compact_cached_migrate_pfn[1] = pfn;
436 }
437
438 /*
439  * If no pages were isolated then mark this pageblock to be skipped in the
440  * future. The information is later cleared by __reset_isolation_suitable().
441  */
442 static void update_pageblock_skip(struct compact_control *cc,
443                         struct page *page, unsigned long pfn)
444 {
445         struct zone *zone = cc->zone;
446
447         if (cc->no_set_skip_hint)
448                 return;
449
450         if (!page)
451                 return;
452
453         set_pageblock_skip(page);
454
455         /* Update where async and sync compaction should restart */
456         if (pfn < zone->compact_cached_free_pfn)
457                 zone->compact_cached_free_pfn = pfn;
458 }
459 #else
460 static inline bool isolation_suitable(struct compact_control *cc,
461                                         struct page *page)
462 {
463         return true;
464 }
465
466 static inline bool pageblock_skip_persistent(struct page *page)
467 {
468         return false;
469 }
470
471 static inline void update_pageblock_skip(struct compact_control *cc,
472                         struct page *page, unsigned long pfn)
473 {
474 }
475
476 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
477 {
478 }
479
480 static bool test_and_set_skip(struct compact_control *cc, struct page *page,
481                                                         unsigned long pfn)
482 {
483         return false;
484 }
485 #endif /* CONFIG_COMPACTION */
486
487 /*
488  * Compaction requires the taking of some coarse locks that are potentially
489  * very heavily contended. For async compaction, trylock and record if the
490  * lock is contended. The lock will still be acquired but compaction will
491  * abort when the current block is finished regardless of success rate.
492  * Sync compaction acquires the lock.
493  *
494  * Always returns true which makes it easier to track lock state in callers.
495  */
496 static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags,
497                                                 struct compact_control *cc)
498         __acquires(lock)
499 {
500         /* Track if the lock is contended in async mode */
501         if (cc->mode == MIGRATE_ASYNC && !cc->contended) {
502                 if (spin_trylock_irqsave(lock, *flags))
503                         return true;
504
505                 cc->contended = true;
506         }
507
508         spin_lock_irqsave(lock, *flags);
509         return true;
510 }
511
512 /*
513  * Compaction requires the taking of some coarse locks that are potentially
514  * very heavily contended. The lock should be periodically unlocked to avoid
515  * having disabled IRQs for a long time, even when there is nobody waiting on
516  * the lock. It might also be that allowing the IRQs will result in
517  * need_resched() becoming true. If scheduling is needed, async compaction
518  * aborts. Sync compaction schedules.
519  * Either compaction type will also abort if a fatal signal is pending.
520  * In either case if the lock was locked, it is dropped and not regained.
521  *
522  * Returns true if compaction should abort due to fatal signal pending, or
523  *              async compaction due to need_resched()
524  * Returns false when compaction can continue (sync compaction might have
525  *              scheduled)
526  */
527 static bool compact_unlock_should_abort(spinlock_t *lock,
528                 unsigned long flags, bool *locked, struct compact_control *cc)
529 {
530         if (*locked) {
531                 spin_unlock_irqrestore(lock, flags);
532                 *locked = false;
533         }
534
535         if (fatal_signal_pending(current)) {
536                 cc->contended = true;
537                 return true;
538         }
539
540         cond_resched();
541
542         return false;
543 }
544
545 /*
546  * Isolate free pages onto a private freelist. If @strict is true, will abort
547  * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
548  * (even though it may still end up isolating some pages).
549  */
550 static unsigned long isolate_freepages_block(struct compact_control *cc,
551                                 unsigned long *start_pfn,
552                                 unsigned long end_pfn,
553                                 struct list_head *freelist,
554                                 unsigned int stride,
555                                 bool strict)
556 {
557         int nr_scanned = 0, total_isolated = 0;
558         struct page *cursor;
559         unsigned long flags = 0;
560         bool locked = false;
561         unsigned long blockpfn = *start_pfn;
562         unsigned int order;
563
564         /* Strict mode is for isolation, speed is secondary */
565         if (strict)
566                 stride = 1;
567
568         cursor = pfn_to_page(blockpfn);
569
570         /* Isolate free pages. */
571         for (; blockpfn < end_pfn; blockpfn += stride, cursor += stride) {
572                 int isolated;
573                 struct page *page = cursor;
574
575                 /*
576                  * Periodically drop the lock (if held) regardless of its
577                  * contention, to give chance to IRQs. Abort if fatal signal
578                  * pending or async compaction detects need_resched()
579                  */
580                 if (!(blockpfn % SWAP_CLUSTER_MAX)
581                     && compact_unlock_should_abort(&cc->zone->lock, flags,
582                                                                 &locked, cc))
583                         break;
584
585                 nr_scanned++;
586
587                 /*
588                  * For compound pages such as THP and hugetlbfs, we can save
589                  * potentially a lot of iterations if we skip them at once.
590                  * The check is racy, but we can consider only valid values
591                  * and the only danger is skipping too much.
592                  */
593                 if (PageCompound(page)) {
594                         const unsigned int order = compound_order(page);
595
596                         if (likely(order < MAX_ORDER)) {
597                                 blockpfn += (1UL << order) - 1;
598                                 cursor += (1UL << order) - 1;
599                         }
600                         goto isolate_fail;
601                 }
602
603                 if (!PageBuddy(page))
604                         goto isolate_fail;
605
606                 /*
607                  * If we already hold the lock, we can skip some rechecking.
608                  * Note that if we hold the lock now, checked_pageblock was
609                  * already set in some previous iteration (or strict is true),
610                  * so it is correct to skip the suitable migration target
611                  * recheck as well.
612                  */
613                 if (!locked) {
614                         locked = compact_lock_irqsave(&cc->zone->lock,
615                                                                 &flags, cc);
616
617                         /* Recheck this is a buddy page under lock */
618                         if (!PageBuddy(page))
619                                 goto isolate_fail;
620                 }
621
622                 /* Found a free page, will break it into order-0 pages */
623                 order = buddy_order(page);
624                 isolated = __isolate_free_page(page, order);
625                 if (!isolated)
626                         break;
627                 set_page_private(page, order);
628
629                 total_isolated += isolated;
630                 cc->nr_freepages += isolated;
631                 list_add_tail(&page->lru, freelist);
632
633                 if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
634                         blockpfn += isolated;
635                         break;
636                 }
637                 /* Advance to the end of split page */
638                 blockpfn += isolated - 1;
639                 cursor += isolated - 1;
640                 continue;
641
642 isolate_fail:
643                 if (strict)
644                         break;
645                 else
646                         continue;
647
648         }
649
650         if (locked)
651                 spin_unlock_irqrestore(&cc->zone->lock, flags);
652
653         /*
654          * There is a tiny chance that we have read bogus compound_order(),
655          * so be careful to not go outside of the pageblock.
656          */
657         if (unlikely(blockpfn > end_pfn))
658                 blockpfn = end_pfn;
659
660         trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
661                                         nr_scanned, total_isolated);
662
663         /* Record how far we have got within the block */
664         *start_pfn = blockpfn;
665
666         /*
667          * If strict isolation is requested by CMA then check that all the
668          * pages requested were isolated. If there were any failures, 0 is
669          * returned and CMA will fail.
670          */
671         if (strict && blockpfn < end_pfn)
672                 total_isolated = 0;
673
674         cc->total_free_scanned += nr_scanned;
675         if (total_isolated)
676                 count_compact_events(COMPACTISOLATED, total_isolated);
677         return total_isolated;
678 }
679
680 /**
681  * isolate_freepages_range() - isolate free pages.
682  * @cc:        Compaction control structure.
683  * @start_pfn: The first PFN to start isolating.
684  * @end_pfn:   The one-past-last PFN.
685  *
686  * Non-free pages, invalid PFNs, or zone boundaries within the
687  * [start_pfn, end_pfn) range are considered errors, cause function to
688  * undo its actions and return zero.
689  *
690  * Otherwise, function returns one-past-the-last PFN of isolated page
691  * (which may be greater then end_pfn if end fell in a middle of
692  * a free page).
693  */
694 unsigned long
695 isolate_freepages_range(struct compact_control *cc,
696                         unsigned long start_pfn, unsigned long end_pfn)
697 {
698         unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
699         LIST_HEAD(freelist);
700
701         pfn = start_pfn;
702         block_start_pfn = pageblock_start_pfn(pfn);
703         if (block_start_pfn < cc->zone->zone_start_pfn)
704                 block_start_pfn = cc->zone->zone_start_pfn;
705         block_end_pfn = pageblock_end_pfn(pfn);
706
707         for (; pfn < end_pfn; pfn += isolated,
708                                 block_start_pfn = block_end_pfn,
709                                 block_end_pfn += pageblock_nr_pages) {
710                 /* Protect pfn from changing by isolate_freepages_block */
711                 unsigned long isolate_start_pfn = pfn;
712
713                 block_end_pfn = min(block_end_pfn, end_pfn);
714
715                 /*
716                  * pfn could pass the block_end_pfn if isolated freepage
717                  * is more than pageblock order. In this case, we adjust
718                  * scanning range to right one.
719                  */
720                 if (pfn >= block_end_pfn) {
721                         block_start_pfn = pageblock_start_pfn(pfn);
722                         block_end_pfn = pageblock_end_pfn(pfn);
723                         block_end_pfn = min(block_end_pfn, end_pfn);
724                 }
725
726                 if (!pageblock_pfn_to_page(block_start_pfn,
727                                         block_end_pfn, cc->zone))
728                         break;
729
730                 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
731                                         block_end_pfn, &freelist, 0, true);
732
733                 /*
734                  * In strict mode, isolate_freepages_block() returns 0 if
735                  * there are any holes in the block (ie. invalid PFNs or
736                  * non-free pages).
737                  */
738                 if (!isolated)
739                         break;
740
741                 /*
742                  * If we managed to isolate pages, it is always (1 << n) *
743                  * pageblock_nr_pages for some non-negative n.  (Max order
744                  * page may span two pageblocks).
745                  */
746         }
747
748         /* __isolate_free_page() does not map the pages */
749         split_map_pages(&freelist);
750
751         if (pfn < end_pfn) {
752                 /* Loop terminated early, cleanup. */
753                 release_freepages(&freelist);
754                 return 0;
755         }
756
757         /* We don't use freelists for anything. */
758         return pfn;
759 }
760
761 /* Similar to reclaim, but different enough that they don't share logic */
762 static bool too_many_isolated(pg_data_t *pgdat)
763 {
764         unsigned long active, inactive, isolated;
765
766         inactive = node_page_state(pgdat, NR_INACTIVE_FILE) +
767                         node_page_state(pgdat, NR_INACTIVE_ANON);
768         active = node_page_state(pgdat, NR_ACTIVE_FILE) +
769                         node_page_state(pgdat, NR_ACTIVE_ANON);
770         isolated = node_page_state(pgdat, NR_ISOLATED_FILE) +
771                         node_page_state(pgdat, NR_ISOLATED_ANON);
772
773         return isolated > (inactive + active) / 2;
774 }
775
776 /**
777  * isolate_migratepages_block() - isolate all migrate-able pages within
778  *                                a single pageblock
779  * @cc:         Compaction control structure.
780  * @low_pfn:    The first PFN to isolate
781  * @end_pfn:    The one-past-the-last PFN to isolate, within same pageblock
782  * @mode:       Isolation mode to be used.
783  *
784  * Isolate all pages that can be migrated from the range specified by
785  * [low_pfn, end_pfn). The range is expected to be within same pageblock.
786  * Returns errno, like -EAGAIN or -EINTR in case e.g signal pending or congestion,
787  * -ENOMEM in case we could not allocate a page, or 0.
788  * cc->migrate_pfn will contain the next pfn to scan.
789  *
790  * The pages are isolated on cc->migratepages list (not required to be empty),
791  * and cc->nr_migratepages is updated accordingly.
792  */
793 static int
794 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
795                         unsigned long end_pfn, isolate_mode_t mode)
796 {
797         pg_data_t *pgdat = cc->zone->zone_pgdat;
798         unsigned long nr_scanned = 0, nr_isolated = 0;
799         struct lruvec *lruvec;
800         unsigned long flags = 0;
801         struct lruvec *locked = NULL;
802         struct page *page = NULL, *valid_page = NULL;
803         struct address_space *mapping;
804         unsigned long start_pfn = low_pfn;
805         bool skip_on_failure = false;
806         unsigned long next_skip_pfn = 0;
807         bool skip_updated = false;
808         int ret = 0;
809
810         cc->migrate_pfn = low_pfn;
811
812         /*
813          * Ensure that there are not too many pages isolated from the LRU
814          * list by either parallel reclaimers or compaction. If there are,
815          * delay for some time until fewer pages are isolated
816          */
817         while (unlikely(too_many_isolated(pgdat))) {
818                 /* stop isolation if there are still pages not migrated */
819                 if (cc->nr_migratepages)
820                         return -EAGAIN;
821
822                 /* async migration should just abort */
823                 if (cc->mode == MIGRATE_ASYNC)
824                         return -EAGAIN;
825
826                 congestion_wait(BLK_RW_ASYNC, HZ/10);
827
828                 if (fatal_signal_pending(current))
829                         return -EINTR;
830         }
831
832         cond_resched();
833
834         if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
835                 skip_on_failure = true;
836                 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
837         }
838
839         /* Time to isolate some pages for migration */
840         for (; low_pfn < end_pfn; low_pfn++) {
841
842                 if (skip_on_failure && low_pfn >= next_skip_pfn) {
843                         /*
844                          * We have isolated all migration candidates in the
845                          * previous order-aligned block, and did not skip it due
846                          * to failure. We should migrate the pages now and
847                          * hopefully succeed compaction.
848                          */
849                         if (nr_isolated)
850                                 break;
851
852                         /*
853                          * We failed to isolate in the previous order-aligned
854                          * block. Set the new boundary to the end of the
855                          * current block. Note we can't simply increase
856                          * next_skip_pfn by 1 << order, as low_pfn might have
857                          * been incremented by a higher number due to skipping
858                          * a compound or a high-order buddy page in the
859                          * previous loop iteration.
860                          */
861                         next_skip_pfn = block_end_pfn(low_pfn, cc->order);
862                 }
863
864                 /*
865                  * Periodically drop the lock (if held) regardless of its
866                  * contention, to give chance to IRQs. Abort completely if
867                  * a fatal signal is pending.
868                  */
869                 if (!(low_pfn % SWAP_CLUSTER_MAX)) {
870                         if (locked) {
871                                 unlock_page_lruvec_irqrestore(locked, flags);
872                                 locked = NULL;
873                         }
874
875                         if (fatal_signal_pending(current)) {
876                                 cc->contended = true;
877                                 ret = -EINTR;
878
879                                 goto fatal_pending;
880                         }
881
882                         cond_resched();
883                 }
884
885                 nr_scanned++;
886
887                 page = pfn_to_page(low_pfn);
888
889                 /*
890                  * Check if the pageblock has already been marked skipped.
891                  * Only the aligned PFN is checked as the caller isolates
892                  * COMPACT_CLUSTER_MAX at a time so the second call must
893                  * not falsely conclude that the block should be skipped.
894                  */
895                 if (!valid_page && IS_ALIGNED(low_pfn, pageblock_nr_pages)) {
896                         if (!cc->ignore_skip_hint && get_pageblock_skip(page)) {
897                                 low_pfn = end_pfn;
898                                 page = NULL;
899                                 goto isolate_abort;
900                         }
901                         valid_page = page;
902                 }
903
904                 if (PageHuge(page) && cc->alloc_contig) {
905                         ret = isolate_or_dissolve_huge_page(page, &cc->migratepages);
906
907                         /*
908                          * Fail isolation in case isolate_or_dissolve_huge_page()
909                          * reports an error. In case of -ENOMEM, abort right away.
910                          */
911                         if (ret < 0) {
912                                  /* Do not report -EBUSY down the chain */
913                                 if (ret == -EBUSY)
914                                         ret = 0;
915                                 low_pfn += (1UL << compound_order(page)) - 1;
916                                 goto isolate_fail;
917                         }
918
919                         if (PageHuge(page)) {
920                                 /*
921                                  * Hugepage was successfully isolated and placed
922                                  * on the cc->migratepages list.
923                                  */
924                                 low_pfn += compound_nr(page) - 1;
925                                 goto isolate_success_no_list;
926                         }
927
928                         /*
929                          * Ok, the hugepage was dissolved. Now these pages are
930                          * Buddy and cannot be re-allocated because they are
931                          * isolated. Fall-through as the check below handles
932                          * Buddy pages.
933                          */
934                 }
935
936                 /*
937                  * Skip if free. We read page order here without zone lock
938                  * which is generally unsafe, but the race window is small and
939                  * the worst thing that can happen is that we skip some
940                  * potential isolation targets.
941                  */
942                 if (PageBuddy(page)) {
943                         unsigned long freepage_order = buddy_order_unsafe(page);
944
945                         /*
946                          * Without lock, we cannot be sure that what we got is
947                          * a valid page order. Consider only values in the
948                          * valid order range to prevent low_pfn overflow.
949                          */
950                         if (freepage_order > 0 && freepage_order < MAX_ORDER)
951                                 low_pfn += (1UL << freepage_order) - 1;
952                         continue;
953                 }
954
955                 /*
956                  * Regardless of being on LRU, compound pages such as THP and
957                  * hugetlbfs are not to be compacted unless we are attempting
958                  * an allocation much larger than the huge page size (eg CMA).
959                  * We can potentially save a lot of iterations if we skip them
960                  * at once. The check is racy, but we can consider only valid
961                  * values and the only danger is skipping too much.
962                  */
963                 if (PageCompound(page) && !cc->alloc_contig) {
964                         const unsigned int order = compound_order(page);
965
966                         if (likely(order < MAX_ORDER))
967                                 low_pfn += (1UL << order) - 1;
968                         goto isolate_fail;
969                 }
970
971                 /*
972                  * Check may be lockless but that's ok as we recheck later.
973                  * It's possible to migrate LRU and non-lru movable pages.
974                  * Skip any other type of page
975                  */
976                 if (!PageLRU(page)) {
977                         /*
978                          * __PageMovable can return false positive so we need
979                          * to verify it under page_lock.
980                          */
981                         if (unlikely(__PageMovable(page)) &&
982                                         !PageIsolated(page)) {
983                                 if (locked) {
984                                         unlock_page_lruvec_irqrestore(locked, flags);
985                                         locked = NULL;
986                                 }
987
988                                 if (!isolate_movable_page(page, mode))
989                                         goto isolate_success;
990                         }
991
992                         goto isolate_fail;
993                 }
994
995                 /*
996                  * Be careful not to clear PageLRU until after we're
997                  * sure the page is not being freed elsewhere -- the
998                  * page release code relies on it.
999                  */
1000                 if (unlikely(!get_page_unless_zero(page)))
1001                         goto isolate_fail;
1002
1003                 /*
1004                  * Migration will fail if an anonymous page is pinned in memory,
1005                  * so avoid taking lru_lock and isolating it unnecessarily in an
1006                  * admittedly racy check.
1007                  */
1008                 mapping = page_mapping(page);
1009                 if (!mapping && (page_count(page) - 1) > total_mapcount(page))
1010                         goto isolate_fail_put;
1011
1012                 /*
1013                  * Only allow to migrate anonymous pages in GFP_NOFS context
1014                  * because those do not depend on fs locks.
1015                  */
1016                 if (!(cc->gfp_mask & __GFP_FS) && mapping)
1017                         goto isolate_fail_put;
1018
1019                 /* Only take pages on LRU: a check now makes later tests safe */
1020                 if (!PageLRU(page))
1021                         goto isolate_fail_put;
1022
1023                 /* Compaction might skip unevictable pages but CMA takes them */
1024                 if (!(mode & ISOLATE_UNEVICTABLE) && PageUnevictable(page))
1025                         goto isolate_fail_put;
1026
1027                 /*
1028                  * To minimise LRU disruption, the caller can indicate with
1029                  * ISOLATE_ASYNC_MIGRATE that it only wants to isolate pages
1030                  * it will be able to migrate without blocking - clean pages
1031                  * for the most part.  PageWriteback would require blocking.
1032                  */
1033                 if ((mode & ISOLATE_ASYNC_MIGRATE) && PageWriteback(page))
1034                         goto isolate_fail_put;
1035
1036                 if ((mode & ISOLATE_ASYNC_MIGRATE) && PageDirty(page)) {
1037                         bool migrate_dirty;
1038
1039                         /*
1040                          * Only pages without mappings or that have a
1041                          * ->migratepage callback are possible to migrate
1042                          * without blocking. However, we can be racing with
1043                          * truncation so it's necessary to lock the page
1044                          * to stabilise the mapping as truncation holds
1045                          * the page lock until after the page is removed
1046                          * from the page cache.
1047                          */
1048                         if (!trylock_page(page))
1049                                 goto isolate_fail_put;
1050
1051                         mapping = page_mapping(page);
1052                         migrate_dirty = !mapping || mapping->a_ops->migratepage;
1053                         unlock_page(page);
1054                         if (!migrate_dirty)
1055                                 goto isolate_fail_put;
1056                 }
1057
1058                 /* Try isolate the page */
1059                 if (!TestClearPageLRU(page))
1060                         goto isolate_fail_put;
1061
1062                 lruvec = mem_cgroup_page_lruvec(page);
1063
1064                 /* If we already hold the lock, we can skip some rechecking */
1065                 if (lruvec != locked) {
1066                         if (locked)
1067                                 unlock_page_lruvec_irqrestore(locked, flags);
1068
1069                         compact_lock_irqsave(&lruvec->lru_lock, &flags, cc);
1070                         locked = lruvec;
1071
1072                         lruvec_memcg_debug(lruvec, page);
1073
1074                         /* Try get exclusive access under lock */
1075                         if (!skip_updated) {
1076                                 skip_updated = true;
1077                                 if (test_and_set_skip(cc, page, low_pfn))
1078                                         goto isolate_abort;
1079                         }
1080
1081                         /*
1082                          * Page become compound since the non-locked check,
1083                          * and it's on LRU. It can only be a THP so the order
1084                          * is safe to read and it's 0 for tail pages.
1085                          */
1086                         if (unlikely(PageCompound(page) && !cc->alloc_contig)) {
1087                                 low_pfn += compound_nr(page) - 1;
1088                                 SetPageLRU(page);
1089                                 goto isolate_fail_put;
1090                         }
1091                 }
1092
1093                 /* The whole page is taken off the LRU; skip the tail pages. */
1094                 if (PageCompound(page))
1095                         low_pfn += compound_nr(page) - 1;
1096
1097                 /* Successfully isolated */
1098                 del_page_from_lru_list(page, lruvec);
1099                 mod_node_page_state(page_pgdat(page),
1100                                 NR_ISOLATED_ANON + page_is_file_lru(page),
1101                                 thp_nr_pages(page));
1102
1103 isolate_success:
1104                 list_add(&page->lru, &cc->migratepages);
1105 isolate_success_no_list:
1106                 cc->nr_migratepages += compound_nr(page);
1107                 nr_isolated += compound_nr(page);
1108
1109                 /*
1110                  * Avoid isolating too much unless this block is being
1111                  * rescanned (e.g. dirty/writeback pages, parallel allocation)
1112                  * or a lock is contended. For contention, isolate quickly to
1113                  * potentially remove one source of contention.
1114                  */
1115                 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX &&
1116                     !cc->rescan && !cc->contended) {
1117                         ++low_pfn;
1118                         break;
1119                 }
1120
1121                 continue;
1122
1123 isolate_fail_put:
1124                 /* Avoid potential deadlock in freeing page under lru_lock */
1125                 if (locked) {
1126                         unlock_page_lruvec_irqrestore(locked, flags);
1127                         locked = NULL;
1128                 }
1129                 put_page(page);
1130
1131 isolate_fail:
1132                 if (!skip_on_failure && ret != -ENOMEM)
1133                         continue;
1134
1135                 /*
1136                  * We have isolated some pages, but then failed. Release them
1137                  * instead of migrating, as we cannot form the cc->order buddy
1138                  * page anyway.
1139                  */
1140                 if (nr_isolated) {
1141                         if (locked) {
1142                                 unlock_page_lruvec_irqrestore(locked, flags);
1143                                 locked = NULL;
1144                         }
1145                         putback_movable_pages(&cc->migratepages);
1146                         cc->nr_migratepages = 0;
1147                         nr_isolated = 0;
1148                 }
1149
1150                 if (low_pfn < next_skip_pfn) {
1151                         low_pfn = next_skip_pfn - 1;
1152                         /*
1153                          * The check near the loop beginning would have updated
1154                          * next_skip_pfn too, but this is a bit simpler.
1155                          */
1156                         next_skip_pfn += 1UL << cc->order;
1157                 }
1158
1159                 if (ret == -ENOMEM)
1160                         break;
1161         }
1162
1163         /*
1164          * The PageBuddy() check could have potentially brought us outside
1165          * the range to be scanned.
1166          */
1167         if (unlikely(low_pfn > end_pfn))
1168                 low_pfn = end_pfn;
1169
1170         page = NULL;
1171
1172 isolate_abort:
1173         if (locked)
1174                 unlock_page_lruvec_irqrestore(locked, flags);
1175         if (page) {
1176                 SetPageLRU(page);
1177                 put_page(page);
1178         }
1179
1180         /*
1181          * Updated the cached scanner pfn once the pageblock has been scanned
1182          * Pages will either be migrated in which case there is no point
1183          * scanning in the near future or migration failed in which case the
1184          * failure reason may persist. The block is marked for skipping if
1185          * there were no pages isolated in the block or if the block is
1186          * rescanned twice in a row.
1187          */
1188         if (low_pfn == end_pfn && (!nr_isolated || cc->rescan)) {
1189                 if (valid_page && !skip_updated)
1190                         set_pageblock_skip(valid_page);
1191                 update_cached_migrate(cc, low_pfn);
1192         }
1193
1194         trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
1195                                                 nr_scanned, nr_isolated);
1196
1197 fatal_pending:
1198         cc->total_migrate_scanned += nr_scanned;
1199         if (nr_isolated)
1200                 count_compact_events(COMPACTISOLATED, nr_isolated);
1201
1202         cc->migrate_pfn = low_pfn;
1203
1204         return ret;
1205 }
1206
1207 /**
1208  * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
1209  * @cc:        Compaction control structure.
1210  * @start_pfn: The first PFN to start isolating.
1211  * @end_pfn:   The one-past-last PFN.
1212  *
1213  * Returns -EAGAIN when contented, -EINTR in case of a signal pending, -ENOMEM
1214  * in case we could not allocate a page, or 0.
1215  */
1216 int
1217 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
1218                                                         unsigned long end_pfn)
1219 {
1220         unsigned long pfn, block_start_pfn, block_end_pfn;
1221         int ret = 0;
1222
1223         /* Scan block by block. First and last block may be incomplete */
1224         pfn = start_pfn;
1225         block_start_pfn = pageblock_start_pfn(pfn);
1226         if (block_start_pfn < cc->zone->zone_start_pfn)
1227                 block_start_pfn = cc->zone->zone_start_pfn;
1228         block_end_pfn = pageblock_end_pfn(pfn);
1229
1230         for (; pfn < end_pfn; pfn = block_end_pfn,
1231                                 block_start_pfn = block_end_pfn,
1232                                 block_end_pfn += pageblock_nr_pages) {
1233
1234                 block_end_pfn = min(block_end_pfn, end_pfn);
1235
1236                 if (!pageblock_pfn_to_page(block_start_pfn,
1237                                         block_end_pfn, cc->zone))
1238                         continue;
1239
1240                 ret = isolate_migratepages_block(cc, pfn, block_end_pfn,
1241                                                  ISOLATE_UNEVICTABLE);
1242
1243                 if (ret)
1244                         break;
1245
1246                 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX)
1247                         break;
1248         }
1249
1250         return ret;
1251 }
1252
1253 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
1254 #ifdef CONFIG_COMPACTION
1255
1256 static bool suitable_migration_source(struct compact_control *cc,
1257                                                         struct page *page)
1258 {
1259         int block_mt;
1260
1261         if (pageblock_skip_persistent(page))
1262                 return false;
1263
1264         if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
1265                 return true;
1266
1267         block_mt = get_pageblock_migratetype(page);
1268
1269         if (cc->migratetype == MIGRATE_MOVABLE)
1270                 return is_migrate_movable(block_mt);
1271         else
1272                 return block_mt == cc->migratetype;
1273 }
1274
1275 /* Returns true if the page is within a block suitable for migration to */
1276 static bool suitable_migration_target(struct compact_control *cc,
1277                                                         struct page *page)
1278 {
1279         /* If the page is a large free page, then disallow migration */
1280         if (PageBuddy(page)) {
1281                 /*
1282                  * We are checking page_order without zone->lock taken. But
1283                  * the only small danger is that we skip a potentially suitable
1284                  * pageblock, so it's not worth to check order for valid range.
1285                  */
1286                 if (buddy_order_unsafe(page) >= pageblock_order)
1287                         return false;
1288         }
1289
1290         if (cc->ignore_block_suitable)
1291                 return true;
1292
1293         /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1294         if (is_migrate_movable(get_pageblock_migratetype(page)))
1295                 return true;
1296
1297         /* Otherwise skip the block */
1298         return false;
1299 }
1300
1301 static inline unsigned int
1302 freelist_scan_limit(struct compact_control *cc)
1303 {
1304         unsigned short shift = BITS_PER_LONG - 1;
1305
1306         return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1;
1307 }
1308
1309 /*
1310  * Test whether the free scanner has reached the same or lower pageblock than
1311  * the migration scanner, and compaction should thus terminate.
1312  */
1313 static inline bool compact_scanners_met(struct compact_control *cc)
1314 {
1315         return (cc->free_pfn >> pageblock_order)
1316                 <= (cc->migrate_pfn >> pageblock_order);
1317 }
1318
1319 /*
1320  * Used when scanning for a suitable migration target which scans freelists
1321  * in reverse. Reorders the list such as the unscanned pages are scanned
1322  * first on the next iteration of the free scanner
1323  */
1324 static void
1325 move_freelist_head(struct list_head *freelist, struct page *freepage)
1326 {
1327         LIST_HEAD(sublist);
1328
1329         if (!list_is_last(freelist, &freepage->lru)) {
1330                 list_cut_before(&sublist, freelist, &freepage->lru);
1331                 list_splice_tail(&sublist, freelist);
1332         }
1333 }
1334
1335 /*
1336  * Similar to move_freelist_head except used by the migration scanner
1337  * when scanning forward. It's possible for these list operations to
1338  * move against each other if they search the free list exactly in
1339  * lockstep.
1340  */
1341 static void
1342 move_freelist_tail(struct list_head *freelist, struct page *freepage)
1343 {
1344         LIST_HEAD(sublist);
1345
1346         if (!list_is_first(freelist, &freepage->lru)) {
1347                 list_cut_position(&sublist, freelist, &freepage->lru);
1348                 list_splice_tail(&sublist, freelist);
1349         }
1350 }
1351
1352 static void
1353 fast_isolate_around(struct compact_control *cc, unsigned long pfn)
1354 {
1355         unsigned long start_pfn, end_pfn;
1356         struct page *page;
1357
1358         /* Do not search around if there are enough pages already */
1359         if (cc->nr_freepages >= cc->nr_migratepages)
1360                 return;
1361
1362         /* Minimise scanning during async compaction */
1363         if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC)
1364                 return;
1365
1366         /* Pageblock boundaries */
1367         start_pfn = max(pageblock_start_pfn(pfn), cc->zone->zone_start_pfn);
1368         end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone));
1369
1370         page = pageblock_pfn_to_page(start_pfn, end_pfn, cc->zone);
1371         if (!page)
1372                 return;
1373
1374         isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false);
1375
1376         /* Skip this pageblock in the future as it's full or nearly full */
1377         if (cc->nr_freepages < cc->nr_migratepages)
1378                 set_pageblock_skip(page);
1379
1380         return;
1381 }
1382
1383 /* Search orders in round-robin fashion */
1384 static int next_search_order(struct compact_control *cc, int order)
1385 {
1386         order--;
1387         if (order < 0)
1388                 order = cc->order - 1;
1389
1390         /* Search wrapped around? */
1391         if (order == cc->search_order) {
1392                 cc->search_order--;
1393                 if (cc->search_order < 0)
1394                         cc->search_order = cc->order - 1;
1395                 return -1;
1396         }
1397
1398         return order;
1399 }
1400
1401 static unsigned long
1402 fast_isolate_freepages(struct compact_control *cc)
1403 {
1404         unsigned int limit = max(1U, freelist_scan_limit(cc) >> 1);
1405         unsigned int nr_scanned = 0;
1406         unsigned long low_pfn, min_pfn, highest = 0;
1407         unsigned long nr_isolated = 0;
1408         unsigned long distance;
1409         struct page *page = NULL;
1410         bool scan_start = false;
1411         int order;
1412
1413         /* Full compaction passes in a negative order */
1414         if (cc->order <= 0)
1415                 return cc->free_pfn;
1416
1417         /*
1418          * If starting the scan, use a deeper search and use the highest
1419          * PFN found if a suitable one is not found.
1420          */
1421         if (cc->free_pfn >= cc->zone->compact_init_free_pfn) {
1422                 limit = pageblock_nr_pages >> 1;
1423                 scan_start = true;
1424         }
1425
1426         /*
1427          * Preferred point is in the top quarter of the scan space but take
1428          * a pfn from the top half if the search is problematic.
1429          */
1430         distance = (cc->free_pfn - cc->migrate_pfn);
1431         low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2));
1432         min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1));
1433
1434         if (WARN_ON_ONCE(min_pfn > low_pfn))
1435                 low_pfn = min_pfn;
1436
1437         /*
1438          * Search starts from the last successful isolation order or the next
1439          * order to search after a previous failure
1440          */
1441         cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order);
1442
1443         for (order = cc->search_order;
1444              !page && order >= 0;
1445              order = next_search_order(cc, order)) {
1446                 struct free_area *area = &cc->zone->free_area[order];
1447                 struct list_head *freelist;
1448                 struct page *freepage;
1449                 unsigned long flags;
1450                 unsigned int order_scanned = 0;
1451                 unsigned long high_pfn = 0;
1452
1453                 if (!area->nr_free)
1454                         continue;
1455
1456                 spin_lock_irqsave(&cc->zone->lock, flags);
1457                 freelist = &area->free_list[MIGRATE_MOVABLE];
1458                 list_for_each_entry_reverse(freepage, freelist, lru) {
1459                         unsigned long pfn;
1460
1461                         order_scanned++;
1462                         nr_scanned++;
1463                         pfn = page_to_pfn(freepage);
1464
1465                         if (pfn >= highest)
1466                                 highest = max(pageblock_start_pfn(pfn),
1467                                               cc->zone->zone_start_pfn);
1468
1469                         if (pfn >= low_pfn) {
1470                                 cc->fast_search_fail = 0;
1471                                 cc->search_order = order;
1472                                 page = freepage;
1473                                 break;
1474                         }
1475
1476                         if (pfn >= min_pfn && pfn > high_pfn) {
1477                                 high_pfn = pfn;
1478
1479                                 /* Shorten the scan if a candidate is found */
1480                                 limit >>= 1;
1481                         }
1482
1483                         if (order_scanned >= limit)
1484                                 break;
1485                 }
1486
1487                 /* Use a minimum pfn if a preferred one was not found */
1488                 if (!page && high_pfn) {
1489                         page = pfn_to_page(high_pfn);
1490
1491                         /* Update freepage for the list reorder below */
1492                         freepage = page;
1493                 }
1494
1495                 /* Reorder to so a future search skips recent pages */
1496                 move_freelist_head(freelist, freepage);
1497
1498                 /* Isolate the page if available */
1499                 if (page) {
1500                         if (__isolate_free_page(page, order)) {
1501                                 set_page_private(page, order);
1502                                 nr_isolated = 1 << order;
1503                                 cc->nr_freepages += nr_isolated;
1504                                 list_add_tail(&page->lru, &cc->freepages);
1505                                 count_compact_events(COMPACTISOLATED, nr_isolated);
1506                         } else {
1507                                 /* If isolation fails, abort the search */
1508                                 order = cc->search_order + 1;
1509                                 page = NULL;
1510                         }
1511                 }
1512
1513                 spin_unlock_irqrestore(&cc->zone->lock, flags);
1514
1515                 /*
1516                  * Smaller scan on next order so the total scan is related
1517                  * to freelist_scan_limit.
1518                  */
1519                 if (order_scanned >= limit)
1520                         limit = max(1U, limit >> 1);
1521         }
1522
1523         if (!page) {
1524                 cc->fast_search_fail++;
1525                 if (scan_start) {
1526                         /*
1527                          * Use the highest PFN found above min. If one was
1528                          * not found, be pessimistic for direct compaction
1529                          * and use the min mark.
1530                          */
1531                         if (highest) {
1532                                 page = pfn_to_page(highest);
1533                                 cc->free_pfn = highest;
1534                         } else {
1535                                 if (cc->direct_compaction && pfn_valid(min_pfn)) {
1536                                         page = pageblock_pfn_to_page(min_pfn,
1537                                                 min(pageblock_end_pfn(min_pfn),
1538                                                     zone_end_pfn(cc->zone)),
1539                                                 cc->zone);
1540                                         cc->free_pfn = min_pfn;
1541                                 }
1542                         }
1543                 }
1544         }
1545
1546         if (highest && highest >= cc->zone->compact_cached_free_pfn) {
1547                 highest -= pageblock_nr_pages;
1548                 cc->zone->compact_cached_free_pfn = highest;
1549         }
1550
1551         cc->total_free_scanned += nr_scanned;
1552         if (!page)
1553                 return cc->free_pfn;
1554
1555         low_pfn = page_to_pfn(page);
1556         fast_isolate_around(cc, low_pfn);
1557         return low_pfn;
1558 }
1559
1560 /*
1561  * Based on information in the current compact_control, find blocks
1562  * suitable for isolating free pages from and then isolate them.
1563  */
1564 static void isolate_freepages(struct compact_control *cc)
1565 {
1566         struct zone *zone = cc->zone;
1567         struct page *page;
1568         unsigned long block_start_pfn;  /* start of current pageblock */
1569         unsigned long isolate_start_pfn; /* exact pfn we start at */
1570         unsigned long block_end_pfn;    /* end of current pageblock */
1571         unsigned long low_pfn;       /* lowest pfn scanner is able to scan */
1572         struct list_head *freelist = &cc->freepages;
1573         unsigned int stride;
1574
1575         /* Try a small search of the free lists for a candidate */
1576         isolate_start_pfn = fast_isolate_freepages(cc);
1577         if (cc->nr_freepages)
1578                 goto splitmap;
1579
1580         /*
1581          * Initialise the free scanner. The starting point is where we last
1582          * successfully isolated from, zone-cached value, or the end of the
1583          * zone when isolating for the first time. For looping we also need
1584          * this pfn aligned down to the pageblock boundary, because we do
1585          * block_start_pfn -= pageblock_nr_pages in the for loop.
1586          * For ending point, take care when isolating in last pageblock of a
1587          * zone which ends in the middle of a pageblock.
1588          * The low boundary is the end of the pageblock the migration scanner
1589          * is using.
1590          */
1591         isolate_start_pfn = cc->free_pfn;
1592         block_start_pfn = pageblock_start_pfn(isolate_start_pfn);
1593         block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1594                                                 zone_end_pfn(zone));
1595         low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1596         stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1;
1597
1598         /*
1599          * Isolate free pages until enough are available to migrate the
1600          * pages on cc->migratepages. We stop searching if the migrate
1601          * and free page scanners meet or enough free pages are isolated.
1602          */
1603         for (; block_start_pfn >= low_pfn;
1604                                 block_end_pfn = block_start_pfn,
1605                                 block_start_pfn -= pageblock_nr_pages,
1606                                 isolate_start_pfn = block_start_pfn) {
1607                 unsigned long nr_isolated;
1608
1609                 /*
1610                  * This can iterate a massively long zone without finding any
1611                  * suitable migration targets, so periodically check resched.
1612                  */
1613                 if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)))
1614                         cond_resched();
1615
1616                 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1617                                                                         zone);
1618                 if (!page)
1619                         continue;
1620
1621                 /* Check the block is suitable for migration */
1622                 if (!suitable_migration_target(cc, page))
1623                         continue;
1624
1625                 /* If isolation recently failed, do not retry */
1626                 if (!isolation_suitable(cc, page))
1627                         continue;
1628
1629                 /* Found a block suitable for isolating free pages from. */
1630                 nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn,
1631                                         block_end_pfn, freelist, stride, false);
1632
1633                 /* Update the skip hint if the full pageblock was scanned */
1634                 if (isolate_start_pfn == block_end_pfn)
1635                         update_pageblock_skip(cc, page, block_start_pfn);
1636
1637                 /* Are enough freepages isolated? */
1638                 if (cc->nr_freepages >= cc->nr_migratepages) {
1639                         if (isolate_start_pfn >= block_end_pfn) {
1640                                 /*
1641                                  * Restart at previous pageblock if more
1642                                  * freepages can be isolated next time.
1643                                  */
1644                                 isolate_start_pfn =
1645                                         block_start_pfn - pageblock_nr_pages;
1646                         }
1647                         break;
1648                 } else if (isolate_start_pfn < block_end_pfn) {
1649                         /*
1650                          * If isolation failed early, do not continue
1651                          * needlessly.
1652                          */
1653                         break;
1654                 }
1655
1656                 /* Adjust stride depending on isolation */
1657                 if (nr_isolated) {
1658                         stride = 1;
1659                         continue;
1660                 }
1661                 stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1);
1662         }
1663
1664         /*
1665          * Record where the free scanner will restart next time. Either we
1666          * broke from the loop and set isolate_start_pfn based on the last
1667          * call to isolate_freepages_block(), or we met the migration scanner
1668          * and the loop terminated due to isolate_start_pfn < low_pfn
1669          */
1670         cc->free_pfn = isolate_start_pfn;
1671
1672 splitmap:
1673         /* __isolate_free_page() does not map the pages */
1674         split_map_pages(freelist);
1675 }
1676
1677 /*
1678  * This is a migrate-callback that "allocates" freepages by taking pages
1679  * from the isolated freelists in the block we are migrating to.
1680  */
1681 static struct page *compaction_alloc(struct page *migratepage,
1682                                         unsigned long data)
1683 {
1684         struct compact_control *cc = (struct compact_control *)data;
1685         struct page *freepage;
1686
1687         if (list_empty(&cc->freepages)) {
1688                 isolate_freepages(cc);
1689
1690                 if (list_empty(&cc->freepages))
1691                         return NULL;
1692         }
1693
1694         freepage = list_entry(cc->freepages.next, struct page, lru);
1695         list_del(&freepage->lru);
1696         cc->nr_freepages--;
1697
1698         return freepage;
1699 }
1700
1701 /*
1702  * This is a migrate-callback that "frees" freepages back to the isolated
1703  * freelist.  All pages on the freelist are from the same zone, so there is no
1704  * special handling needed for NUMA.
1705  */
1706 static void compaction_free(struct page *page, unsigned long data)
1707 {
1708         struct compact_control *cc = (struct compact_control *)data;
1709
1710         list_add(&page->lru, &cc->freepages);
1711         cc->nr_freepages++;
1712 }
1713
1714 /* possible outcome of isolate_migratepages */
1715 typedef enum {
1716         ISOLATE_ABORT,          /* Abort compaction now */
1717         ISOLATE_NONE,           /* No pages isolated, continue scanning */
1718         ISOLATE_SUCCESS,        /* Pages isolated, migrate */
1719 } isolate_migrate_t;
1720
1721 /*
1722  * Allow userspace to control policy on scanning the unevictable LRU for
1723  * compactable pages.
1724  */
1725 #ifdef CONFIG_PREEMPT_RT
1726 int sysctl_compact_unevictable_allowed __read_mostly = 0;
1727 #else
1728 int sysctl_compact_unevictable_allowed __read_mostly = 1;
1729 #endif
1730
1731 static inline void
1732 update_fast_start_pfn(struct compact_control *cc, unsigned long pfn)
1733 {
1734         if (cc->fast_start_pfn == ULONG_MAX)
1735                 return;
1736
1737         if (!cc->fast_start_pfn)
1738                 cc->fast_start_pfn = pfn;
1739
1740         cc->fast_start_pfn = min(cc->fast_start_pfn, pfn);
1741 }
1742
1743 static inline unsigned long
1744 reinit_migrate_pfn(struct compact_control *cc)
1745 {
1746         if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX)
1747                 return cc->migrate_pfn;
1748
1749         cc->migrate_pfn = cc->fast_start_pfn;
1750         cc->fast_start_pfn = ULONG_MAX;
1751
1752         return cc->migrate_pfn;
1753 }
1754
1755 /*
1756  * Briefly search the free lists for a migration source that already has
1757  * some free pages to reduce the number of pages that need migration
1758  * before a pageblock is free.
1759  */
1760 static unsigned long fast_find_migrateblock(struct compact_control *cc)
1761 {
1762         unsigned int limit = freelist_scan_limit(cc);
1763         unsigned int nr_scanned = 0;
1764         unsigned long distance;
1765         unsigned long pfn = cc->migrate_pfn;
1766         unsigned long high_pfn;
1767         int order;
1768         bool found_block = false;
1769
1770         /* Skip hints are relied on to avoid repeats on the fast search */
1771         if (cc->ignore_skip_hint)
1772                 return pfn;
1773
1774         /*
1775          * If the migrate_pfn is not at the start of a zone or the start
1776          * of a pageblock then assume this is a continuation of a previous
1777          * scan restarted due to COMPACT_CLUSTER_MAX.
1778          */
1779         if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn))
1780                 return pfn;
1781
1782         /*
1783          * For smaller orders, just linearly scan as the number of pages
1784          * to migrate should be relatively small and does not necessarily
1785          * justify freeing up a large block for a small allocation.
1786          */
1787         if (cc->order <= PAGE_ALLOC_COSTLY_ORDER)
1788                 return pfn;
1789
1790         /*
1791          * Only allow kcompactd and direct requests for movable pages to
1792          * quickly clear out a MOVABLE pageblock for allocation. This
1793          * reduces the risk that a large movable pageblock is freed for
1794          * an unmovable/reclaimable small allocation.
1795          */
1796         if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE)
1797                 return pfn;
1798
1799         /*
1800          * When starting the migration scanner, pick any pageblock within the
1801          * first half of the search space. Otherwise try and pick a pageblock
1802          * within the first eighth to reduce the chances that a migration
1803          * target later becomes a source.
1804          */
1805         distance = (cc->free_pfn - cc->migrate_pfn) >> 1;
1806         if (cc->migrate_pfn != cc->zone->zone_start_pfn)
1807                 distance >>= 2;
1808         high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance);
1809
1810         for (order = cc->order - 1;
1811              order >= PAGE_ALLOC_COSTLY_ORDER && !found_block && nr_scanned < limit;
1812              order--) {
1813                 struct free_area *area = &cc->zone->free_area[order];
1814                 struct list_head *freelist;
1815                 unsigned long flags;
1816                 struct page *freepage;
1817
1818                 if (!area->nr_free)
1819                         continue;
1820
1821                 spin_lock_irqsave(&cc->zone->lock, flags);
1822                 freelist = &area->free_list[MIGRATE_MOVABLE];
1823                 list_for_each_entry(freepage, freelist, lru) {
1824                         unsigned long free_pfn;
1825
1826                         if (nr_scanned++ >= limit) {
1827                                 move_freelist_tail(freelist, freepage);
1828                                 break;
1829                         }
1830
1831                         free_pfn = page_to_pfn(freepage);
1832                         if (free_pfn < high_pfn) {
1833                                 /*
1834                                  * Avoid if skipped recently. Ideally it would
1835                                  * move to the tail but even safe iteration of
1836                                  * the list assumes an entry is deleted, not
1837                                  * reordered.
1838                                  */
1839                                 if (get_pageblock_skip(freepage))
1840                                         continue;
1841
1842                                 /* Reorder to so a future search skips recent pages */
1843                                 move_freelist_tail(freelist, freepage);
1844
1845                                 update_fast_start_pfn(cc, free_pfn);
1846                                 pfn = pageblock_start_pfn(free_pfn);
1847                                 if (pfn < cc->zone->zone_start_pfn)
1848                                         pfn = cc->zone->zone_start_pfn;
1849                                 cc->fast_search_fail = 0;
1850                                 found_block = true;
1851                                 set_pageblock_skip(freepage);
1852                                 break;
1853                         }
1854                 }
1855                 spin_unlock_irqrestore(&cc->zone->lock, flags);
1856         }
1857
1858         cc->total_migrate_scanned += nr_scanned;
1859
1860         /*
1861          * If fast scanning failed then use a cached entry for a page block
1862          * that had free pages as the basis for starting a linear scan.
1863          */
1864         if (!found_block) {
1865                 cc->fast_search_fail++;
1866                 pfn = reinit_migrate_pfn(cc);
1867         }
1868         return pfn;
1869 }
1870
1871 /*
1872  * Isolate all pages that can be migrated from the first suitable block,
1873  * starting at the block pointed to by the migrate scanner pfn within
1874  * compact_control.
1875  */
1876 static isolate_migrate_t isolate_migratepages(struct compact_control *cc)
1877 {
1878         unsigned long block_start_pfn;
1879         unsigned long block_end_pfn;
1880         unsigned long low_pfn;
1881         struct page *page;
1882         const isolate_mode_t isolate_mode =
1883                 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1884                 (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1885         bool fast_find_block;
1886
1887         /*
1888          * Start at where we last stopped, or beginning of the zone as
1889          * initialized by compact_zone(). The first failure will use
1890          * the lowest PFN as the starting point for linear scanning.
1891          */
1892         low_pfn = fast_find_migrateblock(cc);
1893         block_start_pfn = pageblock_start_pfn(low_pfn);
1894         if (block_start_pfn < cc->zone->zone_start_pfn)
1895                 block_start_pfn = cc->zone->zone_start_pfn;
1896
1897         /*
1898          * fast_find_migrateblock marks a pageblock skipped so to avoid
1899          * the isolation_suitable check below, check whether the fast
1900          * search was successful.
1901          */
1902         fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail;
1903
1904         /* Only scan within a pageblock boundary */
1905         block_end_pfn = pageblock_end_pfn(low_pfn);
1906
1907         /*
1908          * Iterate over whole pageblocks until we find the first suitable.
1909          * Do not cross the free scanner.
1910          */
1911         for (; block_end_pfn <= cc->free_pfn;
1912                         fast_find_block = false,
1913                         cc->migrate_pfn = low_pfn = block_end_pfn,
1914                         block_start_pfn = block_end_pfn,
1915                         block_end_pfn += pageblock_nr_pages) {
1916
1917                 /*
1918                  * This can potentially iterate a massively long zone with
1919                  * many pageblocks unsuitable, so periodically check if we
1920                  * need to schedule.
1921                  */
1922                 if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)))
1923                         cond_resched();
1924
1925                 page = pageblock_pfn_to_page(block_start_pfn,
1926                                                 block_end_pfn, cc->zone);
1927                 if (!page)
1928                         continue;
1929
1930                 /*
1931                  * If isolation recently failed, do not retry. Only check the
1932                  * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock
1933                  * to be visited multiple times. Assume skip was checked
1934                  * before making it "skip" so other compaction instances do
1935                  * not scan the same block.
1936                  */
1937                 if (IS_ALIGNED(low_pfn, pageblock_nr_pages) &&
1938                     !fast_find_block && !isolation_suitable(cc, page))
1939                         continue;
1940
1941                 /*
1942                  * For async compaction, also only scan in MOVABLE blocks
1943                  * without huge pages. Async compaction is optimistic to see
1944                  * if the minimum amount of work satisfies the allocation.
1945                  * The cached PFN is updated as it's possible that all
1946                  * remaining blocks between source and target are unsuitable
1947                  * and the compaction scanners fail to meet.
1948                  */
1949                 if (!suitable_migration_source(cc, page)) {
1950                         update_cached_migrate(cc, block_end_pfn);
1951                         continue;
1952                 }
1953
1954                 /* Perform the isolation */
1955                 if (isolate_migratepages_block(cc, low_pfn, block_end_pfn,
1956                                                 isolate_mode))
1957                         return ISOLATE_ABORT;
1958
1959                 /*
1960                  * Either we isolated something and proceed with migration. Or
1961                  * we failed and compact_zone should decide if we should
1962                  * continue or not.
1963                  */
1964                 break;
1965         }
1966
1967         return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1968 }
1969
1970 /*
1971  * order == -1 is expected when compacting via
1972  * /proc/sys/vm/compact_memory
1973  */
1974 static inline bool is_via_compact_memory(int order)
1975 {
1976         return order == -1;
1977 }
1978
1979 static bool kswapd_is_running(pg_data_t *pgdat)
1980 {
1981         return pgdat->kswapd && task_is_running(pgdat->kswapd);
1982 }
1983
1984 /*
1985  * A zone's fragmentation score is the external fragmentation wrt to the
1986  * COMPACTION_HPAGE_ORDER. It returns a value in the range [0, 100].
1987  */
1988 static unsigned int fragmentation_score_zone(struct zone *zone)
1989 {
1990         return extfrag_for_order(zone, COMPACTION_HPAGE_ORDER);
1991 }
1992
1993 /*
1994  * A weighted zone's fragmentation score is the external fragmentation
1995  * wrt to the COMPACTION_HPAGE_ORDER scaled by the zone's size. It
1996  * returns a value in the range [0, 100].
1997  *
1998  * The scaling factor ensures that proactive compaction focuses on larger
1999  * zones like ZONE_NORMAL, rather than smaller, specialized zones like
2000  * ZONE_DMA32. For smaller zones, the score value remains close to zero,
2001  * and thus never exceeds the high threshold for proactive compaction.
2002  */
2003 static unsigned int fragmentation_score_zone_weighted(struct zone *zone)
2004 {
2005         unsigned long score;
2006
2007         score = zone->present_pages * fragmentation_score_zone(zone);
2008         return div64_ul(score, zone->zone_pgdat->node_present_pages + 1);
2009 }
2010
2011 /*
2012  * The per-node proactive (background) compaction process is started by its
2013  * corresponding kcompactd thread when the node's fragmentation score
2014  * exceeds the high threshold. The compaction process remains active till
2015  * the node's score falls below the low threshold, or one of the back-off
2016  * conditions is met.
2017  */
2018 static unsigned int fragmentation_score_node(pg_data_t *pgdat)
2019 {
2020         unsigned int score = 0;
2021         int zoneid;
2022
2023         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2024                 struct zone *zone;
2025
2026                 zone = &pgdat->node_zones[zoneid];
2027                 score += fragmentation_score_zone_weighted(zone);
2028         }
2029
2030         return score;
2031 }
2032
2033 static unsigned int fragmentation_score_wmark(pg_data_t *pgdat, bool low)
2034 {
2035         unsigned int wmark_low;
2036
2037         /*
2038          * Cap the low watermark to avoid excessive compaction
2039          * activity in case a user sets the proactiveness tunable
2040          * close to 100 (maximum).
2041          */
2042         wmark_low = max(100U - sysctl_compaction_proactiveness, 5U);
2043         return low ? wmark_low : min(wmark_low + 10, 100U);
2044 }
2045
2046 static bool should_proactive_compact_node(pg_data_t *pgdat)
2047 {
2048         int wmark_high;
2049
2050         if (!sysctl_compaction_proactiveness || kswapd_is_running(pgdat))
2051                 return false;
2052
2053         wmark_high = fragmentation_score_wmark(pgdat, false);
2054         return fragmentation_score_node(pgdat) > wmark_high;
2055 }
2056
2057 static enum compact_result __compact_finished(struct compact_control *cc)
2058 {
2059         unsigned int order;
2060         const int migratetype = cc->migratetype;
2061         int ret;
2062
2063         /* Compaction run completes if the migrate and free scanner meet */
2064         if (compact_scanners_met(cc)) {
2065                 /* Let the next compaction start anew. */
2066                 reset_cached_positions(cc->zone);
2067
2068                 /*
2069                  * Mark that the PG_migrate_skip information should be cleared
2070                  * by kswapd when it goes to sleep. kcompactd does not set the
2071                  * flag itself as the decision to be clear should be directly
2072                  * based on an allocation request.
2073                  */
2074                 if (cc->direct_compaction)
2075                         cc->zone->compact_blockskip_flush = true;
2076
2077                 if (cc->whole_zone)
2078                         return COMPACT_COMPLETE;
2079                 else
2080                         return COMPACT_PARTIAL_SKIPPED;
2081         }
2082
2083         if (cc->proactive_compaction) {
2084                 int score, wmark_low;
2085                 pg_data_t *pgdat;
2086
2087                 pgdat = cc->zone->zone_pgdat;
2088                 if (kswapd_is_running(pgdat))
2089                         return COMPACT_PARTIAL_SKIPPED;
2090
2091                 score = fragmentation_score_zone(cc->zone);
2092                 wmark_low = fragmentation_score_wmark(pgdat, true);
2093
2094                 if (score > wmark_low)
2095                         ret = COMPACT_CONTINUE;
2096                 else
2097                         ret = COMPACT_SUCCESS;
2098
2099                 goto out;
2100         }
2101
2102         if (is_via_compact_memory(cc->order))
2103                 return COMPACT_CONTINUE;
2104
2105         /*
2106          * Always finish scanning a pageblock to reduce the possibility of
2107          * fallbacks in the future. This is particularly important when
2108          * migration source is unmovable/reclaimable but it's not worth
2109          * special casing.
2110          */
2111         if (!IS_ALIGNED(cc->migrate_pfn, pageblock_nr_pages))
2112                 return COMPACT_CONTINUE;
2113
2114         /* Direct compactor: Is a suitable page free? */
2115         ret = COMPACT_NO_SUITABLE_PAGE;
2116         for (order = cc->order; order < MAX_ORDER; order++) {
2117                 struct free_area *area = &cc->zone->free_area[order];
2118                 bool can_steal;
2119
2120                 /* Job done if page is free of the right migratetype */
2121                 if (!free_area_empty(area, migratetype))
2122                         return COMPACT_SUCCESS;
2123
2124 #ifdef CONFIG_CMA
2125                 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
2126                 if (migratetype == MIGRATE_MOVABLE &&
2127                         !free_area_empty(area, MIGRATE_CMA))
2128                         return COMPACT_SUCCESS;
2129 #endif
2130                 /*
2131                  * Job done if allocation would steal freepages from
2132                  * other migratetype buddy lists.
2133                  */
2134                 if (find_suitable_fallback(area, order, migratetype,
2135                                                 true, &can_steal) != -1) {
2136
2137                         /* movable pages are OK in any pageblock */
2138                         if (migratetype == MIGRATE_MOVABLE)
2139                                 return COMPACT_SUCCESS;
2140
2141                         /*
2142                          * We are stealing for a non-movable allocation. Make
2143                          * sure we finish compacting the current pageblock
2144                          * first so it is as free as possible and we won't
2145                          * have to steal another one soon. This only applies
2146                          * to sync compaction, as async compaction operates
2147                          * on pageblocks of the same migratetype.
2148                          */
2149                         if (cc->mode == MIGRATE_ASYNC ||
2150                                         IS_ALIGNED(cc->migrate_pfn,
2151                                                         pageblock_nr_pages)) {
2152                                 return COMPACT_SUCCESS;
2153                         }
2154
2155                         ret = COMPACT_CONTINUE;
2156                         break;
2157                 }
2158         }
2159
2160 out:
2161         if (cc->contended || fatal_signal_pending(current))
2162                 ret = COMPACT_CONTENDED;
2163
2164         return ret;
2165 }
2166
2167 static enum compact_result compact_finished(struct compact_control *cc)
2168 {
2169         int ret;
2170
2171         ret = __compact_finished(cc);
2172         trace_mm_compaction_finished(cc->zone, cc->order, ret);
2173         if (ret == COMPACT_NO_SUITABLE_PAGE)
2174                 ret = COMPACT_CONTINUE;
2175
2176         return ret;
2177 }
2178
2179 static enum compact_result __compaction_suitable(struct zone *zone, int order,
2180                                         unsigned int alloc_flags,
2181                                         int highest_zoneidx,
2182                                         unsigned long wmark_target)
2183 {
2184         unsigned long watermark;
2185
2186         if (is_via_compact_memory(order))
2187                 return COMPACT_CONTINUE;
2188
2189         watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
2190         /*
2191          * If watermarks for high-order allocation are already met, there
2192          * should be no need for compaction at all.
2193          */
2194         if (zone_watermark_ok(zone, order, watermark, highest_zoneidx,
2195                                                                 alloc_flags))
2196                 return COMPACT_SUCCESS;
2197
2198         /*
2199          * Watermarks for order-0 must be met for compaction to be able to
2200          * isolate free pages for migration targets. This means that the
2201          * watermark and alloc_flags have to match, or be more pessimistic than
2202          * the check in __isolate_free_page(). We don't use the direct
2203          * compactor's alloc_flags, as they are not relevant for freepage
2204          * isolation. We however do use the direct compactor's highest_zoneidx
2205          * to skip over zones where lowmem reserves would prevent allocation
2206          * even if compaction succeeds.
2207          * For costly orders, we require low watermark instead of min for
2208          * compaction to proceed to increase its chances.
2209          * ALLOC_CMA is used, as pages in CMA pageblocks are considered
2210          * suitable migration targets
2211          */
2212         watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
2213                                 low_wmark_pages(zone) : min_wmark_pages(zone);
2214         watermark += compact_gap(order);
2215         if (!__zone_watermark_ok(zone, 0, watermark, highest_zoneidx,
2216                                                 ALLOC_CMA, wmark_target))
2217                 return COMPACT_SKIPPED;
2218
2219         return COMPACT_CONTINUE;
2220 }
2221
2222 /*
2223  * compaction_suitable: Is this suitable to run compaction on this zone now?
2224  * Returns
2225  *   COMPACT_SKIPPED  - If there are too few free pages for compaction
2226  *   COMPACT_SUCCESS  - If the allocation would succeed without compaction
2227  *   COMPACT_CONTINUE - If compaction should run now
2228  */
2229 enum compact_result compaction_suitable(struct zone *zone, int order,
2230                                         unsigned int alloc_flags,
2231                                         int highest_zoneidx)
2232 {
2233         enum compact_result ret;
2234         int fragindex;
2235
2236         ret = __compaction_suitable(zone, order, alloc_flags, highest_zoneidx,
2237                                     zone_page_state(zone, NR_FREE_PAGES));
2238         /*
2239          * fragmentation index determines if allocation failures are due to
2240          * low memory or external fragmentation
2241          *
2242          * index of -1000 would imply allocations might succeed depending on
2243          * watermarks, but we already failed the high-order watermark check
2244          * index towards 0 implies failure is due to lack of memory
2245          * index towards 1000 implies failure is due to fragmentation
2246          *
2247          * Only compact if a failure would be due to fragmentation. Also
2248          * ignore fragindex for non-costly orders where the alternative to
2249          * a successful reclaim/compaction is OOM. Fragindex and the
2250          * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
2251          * excessive compaction for costly orders, but it should not be at the
2252          * expense of system stability.
2253          */
2254         if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) {
2255                 fragindex = fragmentation_index(zone, order);
2256                 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
2257                         ret = COMPACT_NOT_SUITABLE_ZONE;
2258         }
2259
2260         trace_mm_compaction_suitable(zone, order, ret);
2261         if (ret == COMPACT_NOT_SUITABLE_ZONE)
2262                 ret = COMPACT_SKIPPED;
2263
2264         return ret;
2265 }
2266
2267 bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
2268                 int alloc_flags)
2269 {
2270         struct zone *zone;
2271         struct zoneref *z;
2272
2273         /*
2274          * Make sure at least one zone would pass __compaction_suitable if we continue
2275          * retrying the reclaim.
2276          */
2277         for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2278                                 ac->highest_zoneidx, ac->nodemask) {
2279                 unsigned long available;
2280                 enum compact_result compact_result;
2281
2282                 /*
2283                  * Do not consider all the reclaimable memory because we do not
2284                  * want to trash just for a single high order allocation which
2285                  * is even not guaranteed to appear even if __compaction_suitable
2286                  * is happy about the watermark check.
2287                  */
2288                 available = zone_reclaimable_pages(zone) / order;
2289                 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
2290                 compact_result = __compaction_suitable(zone, order, alloc_flags,
2291                                 ac->highest_zoneidx, available);
2292                 if (compact_result != COMPACT_SKIPPED)
2293                         return true;
2294         }
2295
2296         return false;
2297 }
2298
2299 static enum compact_result
2300 compact_zone(struct compact_control *cc, struct capture_control *capc)
2301 {
2302         enum compact_result ret;
2303         unsigned long start_pfn = cc->zone->zone_start_pfn;
2304         unsigned long end_pfn = zone_end_pfn(cc->zone);
2305         unsigned long last_migrated_pfn;
2306         const bool sync = cc->mode != MIGRATE_ASYNC;
2307         bool update_cached;
2308
2309         /*
2310          * These counters track activities during zone compaction.  Initialize
2311          * them before compacting a new zone.
2312          */
2313         cc->total_migrate_scanned = 0;
2314         cc->total_free_scanned = 0;
2315         cc->nr_migratepages = 0;
2316         cc->nr_freepages = 0;
2317         INIT_LIST_HEAD(&cc->freepages);
2318         INIT_LIST_HEAD(&cc->migratepages);
2319
2320         cc->migratetype = gfp_migratetype(cc->gfp_mask);
2321         ret = compaction_suitable(cc->zone, cc->order, cc->alloc_flags,
2322                                                         cc->highest_zoneidx);
2323         /* Compaction is likely to fail */
2324         if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED)
2325                 return ret;
2326
2327         /* huh, compaction_suitable is returning something unexpected */
2328         VM_BUG_ON(ret != COMPACT_CONTINUE);
2329
2330         /*
2331          * Clear pageblock skip if there were failures recently and compaction
2332          * is about to be retried after being deferred.
2333          */
2334         if (compaction_restarting(cc->zone, cc->order))
2335                 __reset_isolation_suitable(cc->zone);
2336
2337         /*
2338          * Setup to move all movable pages to the end of the zone. Used cached
2339          * information on where the scanners should start (unless we explicitly
2340          * want to compact the whole zone), but check that it is initialised
2341          * by ensuring the values are within zone boundaries.
2342          */
2343         cc->fast_start_pfn = 0;
2344         if (cc->whole_zone) {
2345                 cc->migrate_pfn = start_pfn;
2346                 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2347         } else {
2348                 cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync];
2349                 cc->free_pfn = cc->zone->compact_cached_free_pfn;
2350                 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
2351                         cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2352                         cc->zone->compact_cached_free_pfn = cc->free_pfn;
2353                 }
2354                 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
2355                         cc->migrate_pfn = start_pfn;
2356                         cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
2357                         cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
2358                 }
2359
2360                 if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn)
2361                         cc->whole_zone = true;
2362         }
2363
2364         last_migrated_pfn = 0;
2365
2366         /*
2367          * Migrate has separate cached PFNs for ASYNC and SYNC* migration on
2368          * the basis that some migrations will fail in ASYNC mode. However,
2369          * if the cached PFNs match and pageblocks are skipped due to having
2370          * no isolation candidates, then the sync state does not matter.
2371          * Until a pageblock with isolation candidates is found, keep the
2372          * cached PFNs in sync to avoid revisiting the same blocks.
2373          */
2374         update_cached = !sync &&
2375                 cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1];
2376
2377         trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
2378                                 cc->free_pfn, end_pfn, sync);
2379
2380         /* lru_add_drain_all could be expensive with involving other CPUs */
2381         lru_add_drain();
2382
2383         while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) {
2384                 int err;
2385                 unsigned long iteration_start_pfn = cc->migrate_pfn;
2386
2387                 /*
2388                  * Avoid multiple rescans which can happen if a page cannot be
2389                  * isolated (dirty/writeback in async mode) or if the migrated
2390                  * pages are being allocated before the pageblock is cleared.
2391                  * The first rescan will capture the entire pageblock for
2392                  * migration. If it fails, it'll be marked skip and scanning
2393                  * will proceed as normal.
2394                  */
2395                 cc->rescan = false;
2396                 if (pageblock_start_pfn(last_migrated_pfn) ==
2397                     pageblock_start_pfn(iteration_start_pfn)) {
2398                         cc->rescan = true;
2399                 }
2400
2401                 switch (isolate_migratepages(cc)) {
2402                 case ISOLATE_ABORT:
2403                         ret = COMPACT_CONTENDED;
2404                         putback_movable_pages(&cc->migratepages);
2405                         cc->nr_migratepages = 0;
2406                         goto out;
2407                 case ISOLATE_NONE:
2408                         if (update_cached) {
2409                                 cc->zone->compact_cached_migrate_pfn[1] =
2410                                         cc->zone->compact_cached_migrate_pfn[0];
2411                         }
2412
2413                         /*
2414                          * We haven't isolated and migrated anything, but
2415                          * there might still be unflushed migrations from
2416                          * previous cc->order aligned block.
2417                          */
2418                         goto check_drain;
2419                 case ISOLATE_SUCCESS:
2420                         update_cached = false;
2421                         last_migrated_pfn = iteration_start_pfn;
2422                 }
2423
2424                 err = migrate_pages(&cc->migratepages, compaction_alloc,
2425                                 compaction_free, (unsigned long)cc, cc->mode,
2426                                 MR_COMPACTION, NULL);
2427
2428                 trace_mm_compaction_migratepages(cc->nr_migratepages, err,
2429                                                         &cc->migratepages);
2430
2431                 /* All pages were either migrated or will be released */
2432                 cc->nr_migratepages = 0;
2433                 if (err) {
2434                         putback_movable_pages(&cc->migratepages);
2435                         /*
2436                          * migrate_pages() may return -ENOMEM when scanners meet
2437                          * and we want compact_finished() to detect it
2438                          */
2439                         if (err == -ENOMEM && !compact_scanners_met(cc)) {
2440                                 ret = COMPACT_CONTENDED;
2441                                 goto out;
2442                         }
2443                         /*
2444                          * We failed to migrate at least one page in the current
2445                          * order-aligned block, so skip the rest of it.
2446                          */
2447                         if (cc->direct_compaction &&
2448                                                 (cc->mode == MIGRATE_ASYNC)) {
2449                                 cc->migrate_pfn = block_end_pfn(
2450                                                 cc->migrate_pfn - 1, cc->order);
2451                                 /* Draining pcplists is useless in this case */
2452                                 last_migrated_pfn = 0;
2453                         }
2454                 }
2455
2456 check_drain:
2457                 /*
2458                  * Has the migration scanner moved away from the previous
2459                  * cc->order aligned block where we migrated from? If yes,
2460                  * flush the pages that were freed, so that they can merge and
2461                  * compact_finished() can detect immediately if allocation
2462                  * would succeed.
2463                  */
2464                 if (cc->order > 0 && last_migrated_pfn) {
2465                         unsigned long current_block_start =
2466                                 block_start_pfn(cc->migrate_pfn, cc->order);
2467
2468                         if (last_migrated_pfn < current_block_start) {
2469                                 lru_add_drain_cpu_zone(cc->zone);
2470                                 /* No more flushing until we migrate again */
2471                                 last_migrated_pfn = 0;
2472                         }
2473                 }
2474
2475                 /* Stop if a page has been captured */
2476                 if (capc && capc->page) {
2477                         ret = COMPACT_SUCCESS;
2478                         break;
2479                 }
2480         }
2481
2482 out:
2483         /*
2484          * Release free pages and update where the free scanner should restart,
2485          * so we don't leave any returned pages behind in the next attempt.
2486          */
2487         if (cc->nr_freepages > 0) {
2488                 unsigned long free_pfn = release_freepages(&cc->freepages);
2489
2490                 cc->nr_freepages = 0;
2491                 VM_BUG_ON(free_pfn == 0);
2492                 /* The cached pfn is always the first in a pageblock */
2493                 free_pfn = pageblock_start_pfn(free_pfn);
2494                 /*
2495                  * Only go back, not forward. The cached pfn might have been
2496                  * already reset to zone end in compact_finished()
2497                  */
2498                 if (free_pfn > cc->zone->compact_cached_free_pfn)
2499                         cc->zone->compact_cached_free_pfn = free_pfn;
2500         }
2501
2502         count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
2503         count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
2504
2505         trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
2506                                 cc->free_pfn, end_pfn, sync, ret);
2507
2508         return ret;
2509 }
2510
2511 static enum compact_result compact_zone_order(struct zone *zone, int order,
2512                 gfp_t gfp_mask, enum compact_priority prio,
2513                 unsigned int alloc_flags, int highest_zoneidx,
2514                 struct page **capture)
2515 {
2516         enum compact_result ret;
2517         struct compact_control cc = {
2518                 .order = order,
2519                 .search_order = order,
2520                 .gfp_mask = gfp_mask,
2521                 .zone = zone,
2522                 .mode = (prio == COMPACT_PRIO_ASYNC) ?
2523                                         MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT,
2524                 .alloc_flags = alloc_flags,
2525                 .highest_zoneidx = highest_zoneidx,
2526                 .direct_compaction = true,
2527                 .whole_zone = (prio == MIN_COMPACT_PRIORITY),
2528                 .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
2529                 .ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
2530         };
2531         struct capture_control capc = {
2532                 .cc = &cc,
2533                 .page = NULL,
2534         };
2535
2536         /*
2537          * Make sure the structs are really initialized before we expose the
2538          * capture control, in case we are interrupted and the interrupt handler
2539          * frees a page.
2540          */
2541         barrier();
2542         WRITE_ONCE(current->capture_control, &capc);
2543
2544         ret = compact_zone(&cc, &capc);
2545
2546         VM_BUG_ON(!list_empty(&cc.freepages));
2547         VM_BUG_ON(!list_empty(&cc.migratepages));
2548
2549         /*
2550          * Make sure we hide capture control first before we read the captured
2551          * page pointer, otherwise an interrupt could free and capture a page
2552          * and we would leak it.
2553          */
2554         WRITE_ONCE(current->capture_control, NULL);
2555         *capture = READ_ONCE(capc.page);
2556         /*
2557          * Technically, it is also possible that compaction is skipped but
2558          * the page is still captured out of luck(IRQ came and freed the page).
2559          * Returning COMPACT_SUCCESS in such cases helps in properly accounting
2560          * the COMPACT[STALL|FAIL] when compaction is skipped.
2561          */
2562         if (*capture)
2563                 ret = COMPACT_SUCCESS;
2564
2565         return ret;
2566 }
2567
2568 int sysctl_extfrag_threshold = 500;
2569
2570 /**
2571  * try_to_compact_pages - Direct compact to satisfy a high-order allocation
2572  * @gfp_mask: The GFP mask of the current allocation
2573  * @order: The order of the current allocation
2574  * @alloc_flags: The allocation flags of the current allocation
2575  * @ac: The context of current allocation
2576  * @prio: Determines how hard direct compaction should try to succeed
2577  * @capture: Pointer to free page created by compaction will be stored here
2578  *
2579  * This is the main entry point for direct page compaction.
2580  */
2581 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
2582                 unsigned int alloc_flags, const struct alloc_context *ac,
2583                 enum compact_priority prio, struct page **capture)
2584 {
2585         int may_perform_io = gfp_mask & __GFP_IO;
2586         struct zoneref *z;
2587         struct zone *zone;
2588         enum compact_result rc = COMPACT_SKIPPED;
2589
2590         /*
2591          * Check if the GFP flags allow compaction - GFP_NOIO is really
2592          * tricky context because the migration might require IO
2593          */
2594         if (!may_perform_io)
2595                 return COMPACT_SKIPPED;
2596
2597         trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
2598
2599         /* Compact each zone in the list */
2600         for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2601                                         ac->highest_zoneidx, ac->nodemask) {
2602                 enum compact_result status;
2603
2604                 if (prio > MIN_COMPACT_PRIORITY
2605                                         && compaction_deferred(zone, order)) {
2606                         rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
2607                         continue;
2608                 }
2609
2610                 status = compact_zone_order(zone, order, gfp_mask, prio,
2611                                 alloc_flags, ac->highest_zoneidx, capture);
2612                 rc = max(status, rc);
2613
2614                 /* The allocation should succeed, stop compacting */
2615                 if (status == COMPACT_SUCCESS) {
2616                         /*
2617                          * We think the allocation will succeed in this zone,
2618                          * but it is not certain, hence the false. The caller
2619                          * will repeat this with true if allocation indeed
2620                          * succeeds in this zone.
2621                          */
2622                         compaction_defer_reset(zone, order, false);
2623
2624                         break;
2625                 }
2626
2627                 if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
2628                                         status == COMPACT_PARTIAL_SKIPPED))
2629                         /*
2630                          * We think that allocation won't succeed in this zone
2631                          * so we defer compaction there. If it ends up
2632                          * succeeding after all, it will be reset.
2633                          */
2634                         defer_compaction(zone, order);
2635
2636                 /*
2637                  * We might have stopped compacting due to need_resched() in
2638                  * async compaction, or due to a fatal signal detected. In that
2639                  * case do not try further zones
2640                  */
2641                 if ((prio == COMPACT_PRIO_ASYNC && need_resched())
2642                                         || fatal_signal_pending(current))
2643                         break;
2644         }
2645
2646         return rc;
2647 }
2648
2649 /*
2650  * Compact all zones within a node till each zone's fragmentation score
2651  * reaches within proactive compaction thresholds (as determined by the
2652  * proactiveness tunable).
2653  *
2654  * It is possible that the function returns before reaching score targets
2655  * due to various back-off conditions, such as, contention on per-node or
2656  * per-zone locks.
2657  */
2658 static void proactive_compact_node(pg_data_t *pgdat)
2659 {
2660         int zoneid;
2661         struct zone *zone;
2662         struct compact_control cc = {
2663                 .order = -1,
2664                 .mode = MIGRATE_SYNC_LIGHT,
2665                 .ignore_skip_hint = true,
2666                 .whole_zone = true,
2667                 .gfp_mask = GFP_KERNEL,
2668                 .proactive_compaction = true,
2669         };
2670
2671         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2672                 zone = &pgdat->node_zones[zoneid];
2673                 if (!populated_zone(zone))
2674                         continue;
2675
2676                 cc.zone = zone;
2677
2678                 compact_zone(&cc, NULL);
2679
2680                 VM_BUG_ON(!list_empty(&cc.freepages));
2681                 VM_BUG_ON(!list_empty(&cc.migratepages));
2682         }
2683 }
2684
2685 /* Compact all zones within a node */
2686 static void compact_node(int nid)
2687 {
2688         pg_data_t *pgdat = NODE_DATA(nid);
2689         int zoneid;
2690         struct zone *zone;
2691         struct compact_control cc = {
2692                 .order = -1,
2693                 .mode = MIGRATE_SYNC,
2694                 .ignore_skip_hint = true,
2695                 .whole_zone = true,
2696                 .gfp_mask = GFP_KERNEL,
2697         };
2698
2699
2700         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2701
2702                 zone = &pgdat->node_zones[zoneid];
2703                 if (!populated_zone(zone))
2704                         continue;
2705
2706                 cc.zone = zone;
2707
2708                 compact_zone(&cc, NULL);
2709
2710                 VM_BUG_ON(!list_empty(&cc.freepages));
2711                 VM_BUG_ON(!list_empty(&cc.migratepages));
2712         }
2713 }
2714
2715 /* Compact all nodes in the system */
2716 static void compact_nodes(void)
2717 {
2718         int nid;
2719
2720         /* Flush pending updates to the LRU lists */
2721         lru_add_drain_all();
2722
2723         for_each_online_node(nid)
2724                 compact_node(nid);
2725 }
2726
2727 /*
2728  * Tunable for proactive compaction. It determines how
2729  * aggressively the kernel should compact memory in the
2730  * background. It takes values in the range [0, 100].
2731  */
2732 unsigned int __read_mostly sysctl_compaction_proactiveness = 20;
2733
2734 int compaction_proactiveness_sysctl_handler(struct ctl_table *table, int write,
2735                 void *buffer, size_t *length, loff_t *ppos)
2736 {
2737         int rc, nid;
2738
2739         rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
2740         if (rc)
2741                 return rc;
2742
2743         if (write && sysctl_compaction_proactiveness) {
2744                 for_each_online_node(nid) {
2745                         pg_data_t *pgdat = NODE_DATA(nid);
2746
2747                         if (pgdat->proactive_compact_trigger)
2748                                 continue;
2749
2750                         pgdat->proactive_compact_trigger = true;
2751                         wake_up_interruptible(&pgdat->kcompactd_wait);
2752                 }
2753         }
2754
2755         return 0;
2756 }
2757
2758 /*
2759  * This is the entry point for compacting all nodes via
2760  * /proc/sys/vm/compact_memory
2761  */
2762 int sysctl_compaction_handler(struct ctl_table *table, int write,
2763                         void *buffer, size_t *length, loff_t *ppos)
2764 {
2765         if (write)
2766                 compact_nodes();
2767
2768         return 0;
2769 }
2770
2771 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
2772 static ssize_t compact_store(struct device *dev,
2773                              struct device_attribute *attr,
2774                              const char *buf, size_t count)
2775 {
2776         int nid = dev->id;
2777
2778         if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
2779                 /* Flush pending updates to the LRU lists */
2780                 lru_add_drain_all();
2781
2782                 compact_node(nid);
2783         }
2784
2785         return count;
2786 }
2787 static DEVICE_ATTR_WO(compact);
2788
2789 int compaction_register_node(struct node *node)
2790 {
2791         return device_create_file(&node->dev, &dev_attr_compact);
2792 }
2793
2794 void compaction_unregister_node(struct node *node)
2795 {
2796         return device_remove_file(&node->dev, &dev_attr_compact);
2797 }
2798 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
2799
2800 static inline bool kcompactd_work_requested(pg_data_t *pgdat)
2801 {
2802         return pgdat->kcompactd_max_order > 0 || kthread_should_stop() ||
2803                 pgdat->proactive_compact_trigger;
2804 }
2805
2806 static bool kcompactd_node_suitable(pg_data_t *pgdat)
2807 {
2808         int zoneid;
2809         struct zone *zone;
2810         enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx;
2811
2812         for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) {
2813                 zone = &pgdat->node_zones[zoneid];
2814
2815                 if (!populated_zone(zone))
2816                         continue;
2817
2818                 if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
2819                                         highest_zoneidx) == COMPACT_CONTINUE)
2820                         return true;
2821         }
2822
2823         return false;
2824 }
2825
2826 static void kcompactd_do_work(pg_data_t *pgdat)
2827 {
2828         /*
2829          * With no special task, compact all zones so that a page of requested
2830          * order is allocatable.
2831          */
2832         int zoneid;
2833         struct zone *zone;
2834         struct compact_control cc = {
2835                 .order = pgdat->kcompactd_max_order,
2836                 .search_order = pgdat->kcompactd_max_order,
2837                 .highest_zoneidx = pgdat->kcompactd_highest_zoneidx,
2838                 .mode = MIGRATE_SYNC_LIGHT,
2839                 .ignore_skip_hint = false,
2840                 .gfp_mask = GFP_KERNEL,
2841         };
2842         trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
2843                                                         cc.highest_zoneidx);
2844         count_compact_event(KCOMPACTD_WAKE);
2845
2846         for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) {
2847                 int status;
2848
2849                 zone = &pgdat->node_zones[zoneid];
2850                 if (!populated_zone(zone))
2851                         continue;
2852
2853                 if (compaction_deferred(zone, cc.order))
2854                         continue;
2855
2856                 if (compaction_suitable(zone, cc.order, 0, zoneid) !=
2857                                                         COMPACT_CONTINUE)
2858                         continue;
2859
2860                 if (kthread_should_stop())
2861                         return;
2862
2863                 cc.zone = zone;
2864                 status = compact_zone(&cc, NULL);
2865
2866                 if (status == COMPACT_SUCCESS) {
2867                         compaction_defer_reset(zone, cc.order, false);
2868                 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
2869                         /*
2870                          * Buddy pages may become stranded on pcps that could
2871                          * otherwise coalesce on the zone's free area for
2872                          * order >= cc.order.  This is ratelimited by the
2873                          * upcoming deferral.
2874                          */
2875                         drain_all_pages(zone);
2876
2877                         /*
2878                          * We use sync migration mode here, so we defer like
2879                          * sync direct compaction does.
2880                          */
2881                         defer_compaction(zone, cc.order);
2882                 }
2883
2884                 count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2885                                      cc.total_migrate_scanned);
2886                 count_compact_events(KCOMPACTD_FREE_SCANNED,
2887                                      cc.total_free_scanned);
2888
2889                 VM_BUG_ON(!list_empty(&cc.freepages));
2890                 VM_BUG_ON(!list_empty(&cc.migratepages));
2891         }
2892
2893         /*
2894          * Regardless of success, we are done until woken up next. But remember
2895          * the requested order/highest_zoneidx in case it was higher/tighter
2896          * than our current ones
2897          */
2898         if (pgdat->kcompactd_max_order <= cc.order)
2899                 pgdat->kcompactd_max_order = 0;
2900         if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx)
2901                 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
2902 }
2903
2904 void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx)
2905 {
2906         if (!order)
2907                 return;
2908
2909         if (pgdat->kcompactd_max_order < order)
2910                 pgdat->kcompactd_max_order = order;
2911
2912         if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx)
2913                 pgdat->kcompactd_highest_zoneidx = highest_zoneidx;
2914
2915         /*
2916          * Pairs with implicit barrier in wait_event_freezable()
2917          * such that wakeups are not missed.
2918          */
2919         if (!wq_has_sleeper(&pgdat->kcompactd_wait))
2920                 return;
2921
2922         if (!kcompactd_node_suitable(pgdat))
2923                 return;
2924
2925         trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
2926                                                         highest_zoneidx);
2927         wake_up_interruptible(&pgdat->kcompactd_wait);
2928 }
2929
2930 /*
2931  * The background compaction daemon, started as a kernel thread
2932  * from the init process.
2933  */
2934 static int kcompactd(void *p)
2935 {
2936         pg_data_t *pgdat = (pg_data_t *)p;
2937         struct task_struct *tsk = current;
2938         long default_timeout = msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC);
2939         long timeout = default_timeout;
2940
2941         const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2942
2943         if (!cpumask_empty(cpumask))
2944                 set_cpus_allowed_ptr(tsk, cpumask);
2945
2946         set_freezable();
2947
2948         pgdat->kcompactd_max_order = 0;
2949         pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
2950
2951         while (!kthread_should_stop()) {
2952                 unsigned long pflags;
2953
2954                 /*
2955                  * Avoid the unnecessary wakeup for proactive compaction
2956                  * when it is disabled.
2957                  */
2958                 if (!sysctl_compaction_proactiveness)
2959                         timeout = MAX_SCHEDULE_TIMEOUT;
2960                 trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
2961                 if (wait_event_freezable_timeout(pgdat->kcompactd_wait,
2962                         kcompactd_work_requested(pgdat), timeout) &&
2963                         !pgdat->proactive_compact_trigger) {
2964
2965                         psi_memstall_enter(&pflags);
2966                         kcompactd_do_work(pgdat);
2967                         psi_memstall_leave(&pflags);
2968                         /*
2969                          * Reset the timeout value. The defer timeout from
2970                          * proactive compaction is lost here but that is fine
2971                          * as the condition of the zone changing substantionally
2972                          * then carrying on with the previous defer interval is
2973                          * not useful.
2974                          */
2975                         timeout = default_timeout;
2976                         continue;
2977                 }
2978
2979                 /*
2980                  * Start the proactive work with default timeout. Based
2981                  * on the fragmentation score, this timeout is updated.
2982                  */
2983                 timeout = default_timeout;
2984                 if (should_proactive_compact_node(pgdat)) {
2985                         unsigned int prev_score, score;
2986
2987                         prev_score = fragmentation_score_node(pgdat);
2988                         proactive_compact_node(pgdat);
2989                         score = fragmentation_score_node(pgdat);
2990                         /*
2991                          * Defer proactive compaction if the fragmentation
2992                          * score did not go down i.e. no progress made.
2993                          */
2994                         if (unlikely(score >= prev_score))
2995                                 timeout =
2996                                    default_timeout << COMPACT_MAX_DEFER_SHIFT;
2997                 }
2998                 if (unlikely(pgdat->proactive_compact_trigger))
2999                         pgdat->proactive_compact_trigger = false;
3000         }
3001
3002         return 0;
3003 }
3004
3005 /*
3006  * This kcompactd start function will be called by init and node-hot-add.
3007  * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
3008  */
3009 int kcompactd_run(int nid)
3010 {
3011         pg_data_t *pgdat = NODE_DATA(nid);
3012         int ret = 0;
3013
3014         if (pgdat->kcompactd)
3015                 return 0;
3016
3017         pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
3018         if (IS_ERR(pgdat->kcompactd)) {
3019                 pr_err("Failed to start kcompactd on node %d\n", nid);
3020                 ret = PTR_ERR(pgdat->kcompactd);
3021                 pgdat->kcompactd = NULL;
3022         }
3023         return ret;
3024 }
3025
3026 /*
3027  * Called by memory hotplug when all memory in a node is offlined. Caller must
3028  * hold mem_hotplug_begin/end().
3029  */
3030 void kcompactd_stop(int nid)
3031 {
3032         struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
3033
3034         if (kcompactd) {
3035                 kthread_stop(kcompactd);
3036                 NODE_DATA(nid)->kcompactd = NULL;
3037         }
3038 }
3039
3040 /*
3041  * It's optimal to keep kcompactd on the same CPUs as their memory, but
3042  * not required for correctness. So if the last cpu in a node goes
3043  * away, we get changed to run anywhere: as the first one comes back,
3044  * restore their cpu bindings.
3045  */
3046 static int kcompactd_cpu_online(unsigned int cpu)
3047 {
3048         int nid;
3049
3050         for_each_node_state(nid, N_MEMORY) {
3051                 pg_data_t *pgdat = NODE_DATA(nid);
3052                 const struct cpumask *mask;
3053
3054                 mask = cpumask_of_node(pgdat->node_id);
3055
3056                 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3057                         /* One of our CPUs online: restore mask */
3058                         set_cpus_allowed_ptr(pgdat->kcompactd, mask);
3059         }
3060         return 0;
3061 }
3062
3063 static int __init kcompactd_init(void)
3064 {
3065         int nid;
3066         int ret;
3067
3068         ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3069                                         "mm/compaction:online",
3070                                         kcompactd_cpu_online, NULL);
3071         if (ret < 0) {
3072                 pr_err("kcompactd: failed to register hotplug callbacks.\n");
3073                 return ret;
3074         }
3075
3076         for_each_node_state(nid, N_MEMORY)
3077                 kcompactd_run(nid);
3078         return 0;
3079 }
3080 subsys_initcall(kcompactd_init)
3081
3082 #endif /* CONFIG_COMPACTION */