ASoC: mediatek: mt8192-mt6359: Make i2s9 share the clock from i2s8
[platform/kernel/linux-starfive.git] / mm / compaction.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * linux/mm/compaction.c
4  *
5  * Memory compaction for the reduction of external fragmentation. Note that
6  * this heavily depends upon page migration to do all the real heavy
7  * lifting
8  *
9  * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
10  */
11 #include <linux/cpu.h>
12 #include <linux/swap.h>
13 #include <linux/migrate.h>
14 #include <linux/compaction.h>
15 #include <linux/mm_inline.h>
16 #include <linux/sched/signal.h>
17 #include <linux/backing-dev.h>
18 #include <linux/sysctl.h>
19 #include <linux/sysfs.h>
20 #include <linux/page-isolation.h>
21 #include <linux/kasan.h>
22 #include <linux/kthread.h>
23 #include <linux/freezer.h>
24 #include <linux/page_owner.h>
25 #include <linux/psi.h>
26 #include "internal.h"
27
28 #ifdef CONFIG_COMPACTION
29 /*
30  * Fragmentation score check interval for proactive compaction purposes.
31  */
32 #define HPAGE_FRAG_CHECK_INTERVAL_MSEC  (500)
33
34 static inline void count_compact_event(enum vm_event_item item)
35 {
36         count_vm_event(item);
37 }
38
39 static inline void count_compact_events(enum vm_event_item item, long delta)
40 {
41         count_vm_events(item, delta);
42 }
43 #else
44 #define count_compact_event(item) do { } while (0)
45 #define count_compact_events(item, delta) do { } while (0)
46 #endif
47
48 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
49
50 #define CREATE_TRACE_POINTS
51 #include <trace/events/compaction.h>
52
53 #define block_start_pfn(pfn, order)     round_down(pfn, 1UL << (order))
54 #define block_end_pfn(pfn, order)       ALIGN((pfn) + 1, 1UL << (order))
55 #define pageblock_start_pfn(pfn)        block_start_pfn(pfn, pageblock_order)
56 #define pageblock_end_pfn(pfn)          block_end_pfn(pfn, pageblock_order)
57
58 /*
59  * Page order with-respect-to which proactive compaction
60  * calculates external fragmentation, which is used as
61  * the "fragmentation score" of a node/zone.
62  */
63 #if defined CONFIG_TRANSPARENT_HUGEPAGE
64 #define COMPACTION_HPAGE_ORDER  HPAGE_PMD_ORDER
65 #elif defined CONFIG_HUGETLBFS
66 #define COMPACTION_HPAGE_ORDER  HUGETLB_PAGE_ORDER
67 #else
68 #define COMPACTION_HPAGE_ORDER  (PMD_SHIFT - PAGE_SHIFT)
69 #endif
70
71 static unsigned long release_freepages(struct list_head *freelist)
72 {
73         struct page *page, *next;
74         unsigned long high_pfn = 0;
75
76         list_for_each_entry_safe(page, next, freelist, lru) {
77                 unsigned long pfn = page_to_pfn(page);
78                 list_del(&page->lru);
79                 __free_page(page);
80                 if (pfn > high_pfn)
81                         high_pfn = pfn;
82         }
83
84         return high_pfn;
85 }
86
87 static void split_map_pages(struct list_head *list)
88 {
89         unsigned int i, order, nr_pages;
90         struct page *page, *next;
91         LIST_HEAD(tmp_list);
92
93         list_for_each_entry_safe(page, next, list, lru) {
94                 list_del(&page->lru);
95
96                 order = page_private(page);
97                 nr_pages = 1 << order;
98
99                 post_alloc_hook(page, order, __GFP_MOVABLE);
100                 if (order)
101                         split_page(page, order);
102
103                 for (i = 0; i < nr_pages; i++) {
104                         list_add(&page->lru, &tmp_list);
105                         page++;
106                 }
107         }
108
109         list_splice(&tmp_list, list);
110 }
111
112 #ifdef CONFIG_COMPACTION
113 bool PageMovable(struct page *page)
114 {
115         const struct movable_operations *mops;
116
117         VM_BUG_ON_PAGE(!PageLocked(page), page);
118         if (!__PageMovable(page))
119                 return false;
120
121         mops = page_movable_ops(page);
122         if (mops)
123                 return true;
124
125         return false;
126 }
127 EXPORT_SYMBOL(PageMovable);
128
129 void __SetPageMovable(struct page *page, const struct movable_operations *mops)
130 {
131         VM_BUG_ON_PAGE(!PageLocked(page), page);
132         VM_BUG_ON_PAGE((unsigned long)mops & PAGE_MAPPING_MOVABLE, page);
133         page->mapping = (void *)((unsigned long)mops | PAGE_MAPPING_MOVABLE);
134 }
135 EXPORT_SYMBOL(__SetPageMovable);
136
137 void __ClearPageMovable(struct page *page)
138 {
139         VM_BUG_ON_PAGE(!PageMovable(page), page);
140         /*
141          * This page still has the type of a movable page, but it's
142          * actually not movable any more.
143          */
144         page->mapping = (void *)PAGE_MAPPING_MOVABLE;
145 }
146 EXPORT_SYMBOL(__ClearPageMovable);
147
148 /* Do not skip compaction more than 64 times */
149 #define COMPACT_MAX_DEFER_SHIFT 6
150
151 /*
152  * Compaction is deferred when compaction fails to result in a page
153  * allocation success. 1 << compact_defer_shift, compactions are skipped up
154  * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
155  */
156 static void defer_compaction(struct zone *zone, int order)
157 {
158         zone->compact_considered = 0;
159         zone->compact_defer_shift++;
160
161         if (order < zone->compact_order_failed)
162                 zone->compact_order_failed = order;
163
164         if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
165                 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
166
167         trace_mm_compaction_defer_compaction(zone, order);
168 }
169
170 /* Returns true if compaction should be skipped this time */
171 static bool compaction_deferred(struct zone *zone, int order)
172 {
173         unsigned long defer_limit = 1UL << zone->compact_defer_shift;
174
175         if (order < zone->compact_order_failed)
176                 return false;
177
178         /* Avoid possible overflow */
179         if (++zone->compact_considered >= defer_limit) {
180                 zone->compact_considered = defer_limit;
181                 return false;
182         }
183
184         trace_mm_compaction_deferred(zone, order);
185
186         return true;
187 }
188
189 /*
190  * Update defer tracking counters after successful compaction of given order,
191  * which means an allocation either succeeded (alloc_success == true) or is
192  * expected to succeed.
193  */
194 void compaction_defer_reset(struct zone *zone, int order,
195                 bool alloc_success)
196 {
197         if (alloc_success) {
198                 zone->compact_considered = 0;
199                 zone->compact_defer_shift = 0;
200         }
201         if (order >= zone->compact_order_failed)
202                 zone->compact_order_failed = order + 1;
203
204         trace_mm_compaction_defer_reset(zone, order);
205 }
206
207 /* Returns true if restarting compaction after many failures */
208 static bool compaction_restarting(struct zone *zone, int order)
209 {
210         if (order < zone->compact_order_failed)
211                 return false;
212
213         return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
214                 zone->compact_considered >= 1UL << zone->compact_defer_shift;
215 }
216
217 /* Returns true if the pageblock should be scanned for pages to isolate. */
218 static inline bool isolation_suitable(struct compact_control *cc,
219                                         struct page *page)
220 {
221         if (cc->ignore_skip_hint)
222                 return true;
223
224         return !get_pageblock_skip(page);
225 }
226
227 static void reset_cached_positions(struct zone *zone)
228 {
229         zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
230         zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
231         zone->compact_cached_free_pfn =
232                                 pageblock_start_pfn(zone_end_pfn(zone) - 1);
233 }
234
235 /*
236  * Compound pages of >= pageblock_order should consistently be skipped until
237  * released. It is always pointless to compact pages of such order (if they are
238  * migratable), and the pageblocks they occupy cannot contain any free pages.
239  */
240 static bool pageblock_skip_persistent(struct page *page)
241 {
242         if (!PageCompound(page))
243                 return false;
244
245         page = compound_head(page);
246
247         if (compound_order(page) >= pageblock_order)
248                 return true;
249
250         return false;
251 }
252
253 static bool
254 __reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source,
255                                                         bool check_target)
256 {
257         struct page *page = pfn_to_online_page(pfn);
258         struct page *block_page;
259         struct page *end_page;
260         unsigned long block_pfn;
261
262         if (!page)
263                 return false;
264         if (zone != page_zone(page))
265                 return false;
266         if (pageblock_skip_persistent(page))
267                 return false;
268
269         /*
270          * If skip is already cleared do no further checking once the
271          * restart points have been set.
272          */
273         if (check_source && check_target && !get_pageblock_skip(page))
274                 return true;
275
276         /*
277          * If clearing skip for the target scanner, do not select a
278          * non-movable pageblock as the starting point.
279          */
280         if (!check_source && check_target &&
281             get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
282                 return false;
283
284         /* Ensure the start of the pageblock or zone is online and valid */
285         block_pfn = pageblock_start_pfn(pfn);
286         block_pfn = max(block_pfn, zone->zone_start_pfn);
287         block_page = pfn_to_online_page(block_pfn);
288         if (block_page) {
289                 page = block_page;
290                 pfn = block_pfn;
291         }
292
293         /* Ensure the end of the pageblock or zone is online and valid */
294         block_pfn = pageblock_end_pfn(pfn) - 1;
295         block_pfn = min(block_pfn, zone_end_pfn(zone) - 1);
296         end_page = pfn_to_online_page(block_pfn);
297         if (!end_page)
298                 return false;
299
300         /*
301          * Only clear the hint if a sample indicates there is either a
302          * free page or an LRU page in the block. One or other condition
303          * is necessary for the block to be a migration source/target.
304          */
305         do {
306                 if (check_source && PageLRU(page)) {
307                         clear_pageblock_skip(page);
308                         return true;
309                 }
310
311                 if (check_target && PageBuddy(page)) {
312                         clear_pageblock_skip(page);
313                         return true;
314                 }
315
316                 page += (1 << PAGE_ALLOC_COSTLY_ORDER);
317         } while (page <= end_page);
318
319         return false;
320 }
321
322 /*
323  * This function is called to clear all cached information on pageblocks that
324  * should be skipped for page isolation when the migrate and free page scanner
325  * meet.
326  */
327 static void __reset_isolation_suitable(struct zone *zone)
328 {
329         unsigned long migrate_pfn = zone->zone_start_pfn;
330         unsigned long free_pfn = zone_end_pfn(zone) - 1;
331         unsigned long reset_migrate = free_pfn;
332         unsigned long reset_free = migrate_pfn;
333         bool source_set = false;
334         bool free_set = false;
335
336         if (!zone->compact_blockskip_flush)
337                 return;
338
339         zone->compact_blockskip_flush = false;
340
341         /*
342          * Walk the zone and update pageblock skip information. Source looks
343          * for PageLRU while target looks for PageBuddy. When the scanner
344          * is found, both PageBuddy and PageLRU are checked as the pageblock
345          * is suitable as both source and target.
346          */
347         for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages,
348                                         free_pfn -= pageblock_nr_pages) {
349                 cond_resched();
350
351                 /* Update the migrate PFN */
352                 if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) &&
353                     migrate_pfn < reset_migrate) {
354                         source_set = true;
355                         reset_migrate = migrate_pfn;
356                         zone->compact_init_migrate_pfn = reset_migrate;
357                         zone->compact_cached_migrate_pfn[0] = reset_migrate;
358                         zone->compact_cached_migrate_pfn[1] = reset_migrate;
359                 }
360
361                 /* Update the free PFN */
362                 if (__reset_isolation_pfn(zone, free_pfn, free_set, true) &&
363                     free_pfn > reset_free) {
364                         free_set = true;
365                         reset_free = free_pfn;
366                         zone->compact_init_free_pfn = reset_free;
367                         zone->compact_cached_free_pfn = reset_free;
368                 }
369         }
370
371         /* Leave no distance if no suitable block was reset */
372         if (reset_migrate >= reset_free) {
373                 zone->compact_cached_migrate_pfn[0] = migrate_pfn;
374                 zone->compact_cached_migrate_pfn[1] = migrate_pfn;
375                 zone->compact_cached_free_pfn = free_pfn;
376         }
377 }
378
379 void reset_isolation_suitable(pg_data_t *pgdat)
380 {
381         int zoneid;
382
383         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
384                 struct zone *zone = &pgdat->node_zones[zoneid];
385                 if (!populated_zone(zone))
386                         continue;
387
388                 /* Only flush if a full compaction finished recently */
389                 if (zone->compact_blockskip_flush)
390                         __reset_isolation_suitable(zone);
391         }
392 }
393
394 /*
395  * Sets the pageblock skip bit if it was clear. Note that this is a hint as
396  * locks are not required for read/writers. Returns true if it was already set.
397  */
398 static bool test_and_set_skip(struct compact_control *cc, struct page *page,
399                                                         unsigned long pfn)
400 {
401         bool skip;
402
403         /* Do no update if skip hint is being ignored */
404         if (cc->ignore_skip_hint)
405                 return false;
406
407         if (!IS_ALIGNED(pfn, pageblock_nr_pages))
408                 return false;
409
410         skip = get_pageblock_skip(page);
411         if (!skip && !cc->no_set_skip_hint)
412                 set_pageblock_skip(page);
413
414         return skip;
415 }
416
417 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
418 {
419         struct zone *zone = cc->zone;
420
421         pfn = pageblock_end_pfn(pfn);
422
423         /* Set for isolation rather than compaction */
424         if (cc->no_set_skip_hint)
425                 return;
426
427         if (pfn > zone->compact_cached_migrate_pfn[0])
428                 zone->compact_cached_migrate_pfn[0] = pfn;
429         if (cc->mode != MIGRATE_ASYNC &&
430             pfn > zone->compact_cached_migrate_pfn[1])
431                 zone->compact_cached_migrate_pfn[1] = pfn;
432 }
433
434 /*
435  * If no pages were isolated then mark this pageblock to be skipped in the
436  * future. The information is later cleared by __reset_isolation_suitable().
437  */
438 static void update_pageblock_skip(struct compact_control *cc,
439                         struct page *page, unsigned long pfn)
440 {
441         struct zone *zone = cc->zone;
442
443         if (cc->no_set_skip_hint)
444                 return;
445
446         if (!page)
447                 return;
448
449         set_pageblock_skip(page);
450
451         /* Update where async and sync compaction should restart */
452         if (pfn < zone->compact_cached_free_pfn)
453                 zone->compact_cached_free_pfn = pfn;
454 }
455 #else
456 static inline bool isolation_suitable(struct compact_control *cc,
457                                         struct page *page)
458 {
459         return true;
460 }
461
462 static inline bool pageblock_skip_persistent(struct page *page)
463 {
464         return false;
465 }
466
467 static inline void update_pageblock_skip(struct compact_control *cc,
468                         struct page *page, unsigned long pfn)
469 {
470 }
471
472 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
473 {
474 }
475
476 static bool test_and_set_skip(struct compact_control *cc, struct page *page,
477                                                         unsigned long pfn)
478 {
479         return false;
480 }
481 #endif /* CONFIG_COMPACTION */
482
483 /*
484  * Compaction requires the taking of some coarse locks that are potentially
485  * very heavily contended. For async compaction, trylock and record if the
486  * lock is contended. The lock will still be acquired but compaction will
487  * abort when the current block is finished regardless of success rate.
488  * Sync compaction acquires the lock.
489  *
490  * Always returns true which makes it easier to track lock state in callers.
491  */
492 static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags,
493                                                 struct compact_control *cc)
494         __acquires(lock)
495 {
496         /* Track if the lock is contended in async mode */
497         if (cc->mode == MIGRATE_ASYNC && !cc->contended) {
498                 if (spin_trylock_irqsave(lock, *flags))
499                         return true;
500
501                 cc->contended = true;
502         }
503
504         spin_lock_irqsave(lock, *flags);
505         return true;
506 }
507
508 /*
509  * Compaction requires the taking of some coarse locks that are potentially
510  * very heavily contended. The lock should be periodically unlocked to avoid
511  * having disabled IRQs for a long time, even when there is nobody waiting on
512  * the lock. It might also be that allowing the IRQs will result in
513  * need_resched() becoming true. If scheduling is needed, compaction schedules.
514  * Either compaction type will also abort if a fatal signal is pending.
515  * In either case if the lock was locked, it is dropped and not regained.
516  *
517  * Returns true if compaction should abort due to fatal signal pending.
518  * Returns false when compaction can continue.
519  */
520 static bool compact_unlock_should_abort(spinlock_t *lock,
521                 unsigned long flags, bool *locked, struct compact_control *cc)
522 {
523         if (*locked) {
524                 spin_unlock_irqrestore(lock, flags);
525                 *locked = false;
526         }
527
528         if (fatal_signal_pending(current)) {
529                 cc->contended = true;
530                 return true;
531         }
532
533         cond_resched();
534
535         return false;
536 }
537
538 /*
539  * Isolate free pages onto a private freelist. If @strict is true, will abort
540  * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
541  * (even though it may still end up isolating some pages).
542  */
543 static unsigned long isolate_freepages_block(struct compact_control *cc,
544                                 unsigned long *start_pfn,
545                                 unsigned long end_pfn,
546                                 struct list_head *freelist,
547                                 unsigned int stride,
548                                 bool strict)
549 {
550         int nr_scanned = 0, total_isolated = 0;
551         struct page *cursor;
552         unsigned long flags = 0;
553         bool locked = false;
554         unsigned long blockpfn = *start_pfn;
555         unsigned int order;
556
557         /* Strict mode is for isolation, speed is secondary */
558         if (strict)
559                 stride = 1;
560
561         cursor = pfn_to_page(blockpfn);
562
563         /* Isolate free pages. */
564         for (; blockpfn < end_pfn; blockpfn += stride, cursor += stride) {
565                 int isolated;
566                 struct page *page = cursor;
567
568                 /*
569                  * Periodically drop the lock (if held) regardless of its
570                  * contention, to give chance to IRQs. Abort if fatal signal
571                  * pending.
572                  */
573                 if (!(blockpfn % COMPACT_CLUSTER_MAX)
574                     && compact_unlock_should_abort(&cc->zone->lock, flags,
575                                                                 &locked, cc))
576                         break;
577
578                 nr_scanned++;
579
580                 /*
581                  * For compound pages such as THP and hugetlbfs, we can save
582                  * potentially a lot of iterations if we skip them at once.
583                  * The check is racy, but we can consider only valid values
584                  * and the only danger is skipping too much.
585                  */
586                 if (PageCompound(page)) {
587                         const unsigned int order = compound_order(page);
588
589                         if (likely(order < MAX_ORDER)) {
590                                 blockpfn += (1UL << order) - 1;
591                                 cursor += (1UL << order) - 1;
592                         }
593                         goto isolate_fail;
594                 }
595
596                 if (!PageBuddy(page))
597                         goto isolate_fail;
598
599                 /* If we already hold the lock, we can skip some rechecking. */
600                 if (!locked) {
601                         locked = compact_lock_irqsave(&cc->zone->lock,
602                                                                 &flags, cc);
603
604                         /* Recheck this is a buddy page under lock */
605                         if (!PageBuddy(page))
606                                 goto isolate_fail;
607                 }
608
609                 /* Found a free page, will break it into order-0 pages */
610                 order = buddy_order(page);
611                 isolated = __isolate_free_page(page, order);
612                 if (!isolated)
613                         break;
614                 set_page_private(page, order);
615
616                 nr_scanned += isolated - 1;
617                 total_isolated += isolated;
618                 cc->nr_freepages += isolated;
619                 list_add_tail(&page->lru, freelist);
620
621                 if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
622                         blockpfn += isolated;
623                         break;
624                 }
625                 /* Advance to the end of split page */
626                 blockpfn += isolated - 1;
627                 cursor += isolated - 1;
628                 continue;
629
630 isolate_fail:
631                 if (strict)
632                         break;
633                 else
634                         continue;
635
636         }
637
638         if (locked)
639                 spin_unlock_irqrestore(&cc->zone->lock, flags);
640
641         /*
642          * There is a tiny chance that we have read bogus compound_order(),
643          * so be careful to not go outside of the pageblock.
644          */
645         if (unlikely(blockpfn > end_pfn))
646                 blockpfn = end_pfn;
647
648         trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
649                                         nr_scanned, total_isolated);
650
651         /* Record how far we have got within the block */
652         *start_pfn = blockpfn;
653
654         /*
655          * If strict isolation is requested by CMA then check that all the
656          * pages requested were isolated. If there were any failures, 0 is
657          * returned and CMA will fail.
658          */
659         if (strict && blockpfn < end_pfn)
660                 total_isolated = 0;
661
662         cc->total_free_scanned += nr_scanned;
663         if (total_isolated)
664                 count_compact_events(COMPACTISOLATED, total_isolated);
665         return total_isolated;
666 }
667
668 /**
669  * isolate_freepages_range() - isolate free pages.
670  * @cc:        Compaction control structure.
671  * @start_pfn: The first PFN to start isolating.
672  * @end_pfn:   The one-past-last PFN.
673  *
674  * Non-free pages, invalid PFNs, or zone boundaries within the
675  * [start_pfn, end_pfn) range are considered errors, cause function to
676  * undo its actions and return zero.
677  *
678  * Otherwise, function returns one-past-the-last PFN of isolated page
679  * (which may be greater then end_pfn if end fell in a middle of
680  * a free page).
681  */
682 unsigned long
683 isolate_freepages_range(struct compact_control *cc,
684                         unsigned long start_pfn, unsigned long end_pfn)
685 {
686         unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
687         LIST_HEAD(freelist);
688
689         pfn = start_pfn;
690         block_start_pfn = pageblock_start_pfn(pfn);
691         if (block_start_pfn < cc->zone->zone_start_pfn)
692                 block_start_pfn = cc->zone->zone_start_pfn;
693         block_end_pfn = pageblock_end_pfn(pfn);
694
695         for (; pfn < end_pfn; pfn += isolated,
696                                 block_start_pfn = block_end_pfn,
697                                 block_end_pfn += pageblock_nr_pages) {
698                 /* Protect pfn from changing by isolate_freepages_block */
699                 unsigned long isolate_start_pfn = pfn;
700
701                 block_end_pfn = min(block_end_pfn, end_pfn);
702
703                 /*
704                  * pfn could pass the block_end_pfn if isolated freepage
705                  * is more than pageblock order. In this case, we adjust
706                  * scanning range to right one.
707                  */
708                 if (pfn >= block_end_pfn) {
709                         block_start_pfn = pageblock_start_pfn(pfn);
710                         block_end_pfn = pageblock_end_pfn(pfn);
711                         block_end_pfn = min(block_end_pfn, end_pfn);
712                 }
713
714                 if (!pageblock_pfn_to_page(block_start_pfn,
715                                         block_end_pfn, cc->zone))
716                         break;
717
718                 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
719                                         block_end_pfn, &freelist, 0, true);
720
721                 /*
722                  * In strict mode, isolate_freepages_block() returns 0 if
723                  * there are any holes in the block (ie. invalid PFNs or
724                  * non-free pages).
725                  */
726                 if (!isolated)
727                         break;
728
729                 /*
730                  * If we managed to isolate pages, it is always (1 << n) *
731                  * pageblock_nr_pages for some non-negative n.  (Max order
732                  * page may span two pageblocks).
733                  */
734         }
735
736         /* __isolate_free_page() does not map the pages */
737         split_map_pages(&freelist);
738
739         if (pfn < end_pfn) {
740                 /* Loop terminated early, cleanup. */
741                 release_freepages(&freelist);
742                 return 0;
743         }
744
745         /* We don't use freelists for anything. */
746         return pfn;
747 }
748
749 /* Similar to reclaim, but different enough that they don't share logic */
750 static bool too_many_isolated(pg_data_t *pgdat)
751 {
752         bool too_many;
753
754         unsigned long active, inactive, isolated;
755
756         inactive = node_page_state(pgdat, NR_INACTIVE_FILE) +
757                         node_page_state(pgdat, NR_INACTIVE_ANON);
758         active = node_page_state(pgdat, NR_ACTIVE_FILE) +
759                         node_page_state(pgdat, NR_ACTIVE_ANON);
760         isolated = node_page_state(pgdat, NR_ISOLATED_FILE) +
761                         node_page_state(pgdat, NR_ISOLATED_ANON);
762
763         too_many = isolated > (inactive + active) / 2;
764         if (!too_many)
765                 wake_throttle_isolated(pgdat);
766
767         return too_many;
768 }
769
770 /**
771  * isolate_migratepages_block() - isolate all migrate-able pages within
772  *                                a single pageblock
773  * @cc:         Compaction control structure.
774  * @low_pfn:    The first PFN to isolate
775  * @end_pfn:    The one-past-the-last PFN to isolate, within same pageblock
776  * @mode:       Isolation mode to be used.
777  *
778  * Isolate all pages that can be migrated from the range specified by
779  * [low_pfn, end_pfn). The range is expected to be within same pageblock.
780  * Returns errno, like -EAGAIN or -EINTR in case e.g signal pending or congestion,
781  * -ENOMEM in case we could not allocate a page, or 0.
782  * cc->migrate_pfn will contain the next pfn to scan.
783  *
784  * The pages are isolated on cc->migratepages list (not required to be empty),
785  * and cc->nr_migratepages is updated accordingly.
786  */
787 static int
788 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
789                         unsigned long end_pfn, isolate_mode_t mode)
790 {
791         pg_data_t *pgdat = cc->zone->zone_pgdat;
792         unsigned long nr_scanned = 0, nr_isolated = 0;
793         struct lruvec *lruvec;
794         unsigned long flags = 0;
795         struct lruvec *locked = NULL;
796         struct page *page = NULL, *valid_page = NULL;
797         struct address_space *mapping;
798         unsigned long start_pfn = low_pfn;
799         bool skip_on_failure = false;
800         unsigned long next_skip_pfn = 0;
801         bool skip_updated = false;
802         int ret = 0;
803
804         cc->migrate_pfn = low_pfn;
805
806         /*
807          * Ensure that there are not too many pages isolated from the LRU
808          * list by either parallel reclaimers or compaction. If there are,
809          * delay for some time until fewer pages are isolated
810          */
811         while (unlikely(too_many_isolated(pgdat))) {
812                 /* stop isolation if there are still pages not migrated */
813                 if (cc->nr_migratepages)
814                         return -EAGAIN;
815
816                 /* async migration should just abort */
817                 if (cc->mode == MIGRATE_ASYNC)
818                         return -EAGAIN;
819
820                 reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
821
822                 if (fatal_signal_pending(current))
823                         return -EINTR;
824         }
825
826         cond_resched();
827
828         if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
829                 skip_on_failure = true;
830                 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
831         }
832
833         /* Time to isolate some pages for migration */
834         for (; low_pfn < end_pfn; low_pfn++) {
835
836                 if (skip_on_failure && low_pfn >= next_skip_pfn) {
837                         /*
838                          * We have isolated all migration candidates in the
839                          * previous order-aligned block, and did not skip it due
840                          * to failure. We should migrate the pages now and
841                          * hopefully succeed compaction.
842                          */
843                         if (nr_isolated)
844                                 break;
845
846                         /*
847                          * We failed to isolate in the previous order-aligned
848                          * block. Set the new boundary to the end of the
849                          * current block. Note we can't simply increase
850                          * next_skip_pfn by 1 << order, as low_pfn might have
851                          * been incremented by a higher number due to skipping
852                          * a compound or a high-order buddy page in the
853                          * previous loop iteration.
854                          */
855                         next_skip_pfn = block_end_pfn(low_pfn, cc->order);
856                 }
857
858                 /*
859                  * Periodically drop the lock (if held) regardless of its
860                  * contention, to give chance to IRQs. Abort completely if
861                  * a fatal signal is pending.
862                  */
863                 if (!(low_pfn % COMPACT_CLUSTER_MAX)) {
864                         if (locked) {
865                                 unlock_page_lruvec_irqrestore(locked, flags);
866                                 locked = NULL;
867                         }
868
869                         if (fatal_signal_pending(current)) {
870                                 cc->contended = true;
871                                 ret = -EINTR;
872
873                                 goto fatal_pending;
874                         }
875
876                         cond_resched();
877                 }
878
879                 nr_scanned++;
880
881                 page = pfn_to_page(low_pfn);
882
883                 /*
884                  * Check if the pageblock has already been marked skipped.
885                  * Only the aligned PFN is checked as the caller isolates
886                  * COMPACT_CLUSTER_MAX at a time so the second call must
887                  * not falsely conclude that the block should be skipped.
888                  */
889                 if (!valid_page && IS_ALIGNED(low_pfn, pageblock_nr_pages)) {
890                         if (!isolation_suitable(cc, page)) {
891                                 low_pfn = end_pfn;
892                                 page = NULL;
893                                 goto isolate_abort;
894                         }
895                         valid_page = page;
896                 }
897
898                 if (PageHuge(page) && cc->alloc_contig) {
899                         ret = isolate_or_dissolve_huge_page(page, &cc->migratepages);
900
901                         /*
902                          * Fail isolation in case isolate_or_dissolve_huge_page()
903                          * reports an error. In case of -ENOMEM, abort right away.
904                          */
905                         if (ret < 0) {
906                                  /* Do not report -EBUSY down the chain */
907                                 if (ret == -EBUSY)
908                                         ret = 0;
909                                 low_pfn += compound_nr(page) - 1;
910                                 goto isolate_fail;
911                         }
912
913                         if (PageHuge(page)) {
914                                 /*
915                                  * Hugepage was successfully isolated and placed
916                                  * on the cc->migratepages list.
917                                  */
918                                 low_pfn += compound_nr(page) - 1;
919                                 goto isolate_success_no_list;
920                         }
921
922                         /*
923                          * Ok, the hugepage was dissolved. Now these pages are
924                          * Buddy and cannot be re-allocated because they are
925                          * isolated. Fall-through as the check below handles
926                          * Buddy pages.
927                          */
928                 }
929
930                 /*
931                  * Skip if free. We read page order here without zone lock
932                  * which is generally unsafe, but the race window is small and
933                  * the worst thing that can happen is that we skip some
934                  * potential isolation targets.
935                  */
936                 if (PageBuddy(page)) {
937                         unsigned long freepage_order = buddy_order_unsafe(page);
938
939                         /*
940                          * Without lock, we cannot be sure that what we got is
941                          * a valid page order. Consider only values in the
942                          * valid order range to prevent low_pfn overflow.
943                          */
944                         if (freepage_order > 0 && freepage_order < MAX_ORDER)
945                                 low_pfn += (1UL << freepage_order) - 1;
946                         continue;
947                 }
948
949                 /*
950                  * Regardless of being on LRU, compound pages such as THP and
951                  * hugetlbfs are not to be compacted unless we are attempting
952                  * an allocation much larger than the huge page size (eg CMA).
953                  * We can potentially save a lot of iterations if we skip them
954                  * at once. The check is racy, but we can consider only valid
955                  * values and the only danger is skipping too much.
956                  */
957                 if (PageCompound(page) && !cc->alloc_contig) {
958                         const unsigned int order = compound_order(page);
959
960                         if (likely(order < MAX_ORDER))
961                                 low_pfn += (1UL << order) - 1;
962                         goto isolate_fail;
963                 }
964
965                 /*
966                  * Check may be lockless but that's ok as we recheck later.
967                  * It's possible to migrate LRU and non-lru movable pages.
968                  * Skip any other type of page
969                  */
970                 if (!PageLRU(page)) {
971                         /*
972                          * __PageMovable can return false positive so we need
973                          * to verify it under page_lock.
974                          */
975                         if (unlikely(__PageMovable(page)) &&
976                                         !PageIsolated(page)) {
977                                 if (locked) {
978                                         unlock_page_lruvec_irqrestore(locked, flags);
979                                         locked = NULL;
980                                 }
981
982                                 if (!isolate_movable_page(page, mode))
983                                         goto isolate_success;
984                         }
985
986                         goto isolate_fail;
987                 }
988
989                 /*
990                  * Migration will fail if an anonymous page is pinned in memory,
991                  * so avoid taking lru_lock and isolating it unnecessarily in an
992                  * admittedly racy check.
993                  */
994                 mapping = page_mapping(page);
995                 if (!mapping && page_count(page) > page_mapcount(page))
996                         goto isolate_fail;
997
998                 /*
999                  * Only allow to migrate anonymous pages in GFP_NOFS context
1000                  * because those do not depend on fs locks.
1001                  */
1002                 if (!(cc->gfp_mask & __GFP_FS) && mapping)
1003                         goto isolate_fail;
1004
1005                 /*
1006                  * Be careful not to clear PageLRU until after we're
1007                  * sure the page is not being freed elsewhere -- the
1008                  * page release code relies on it.
1009                  */
1010                 if (unlikely(!get_page_unless_zero(page)))
1011                         goto isolate_fail;
1012
1013                 /* Only take pages on LRU: a check now makes later tests safe */
1014                 if (!PageLRU(page))
1015                         goto isolate_fail_put;
1016
1017                 /* Compaction might skip unevictable pages but CMA takes them */
1018                 if (!(mode & ISOLATE_UNEVICTABLE) && PageUnevictable(page))
1019                         goto isolate_fail_put;
1020
1021                 /*
1022                  * To minimise LRU disruption, the caller can indicate with
1023                  * ISOLATE_ASYNC_MIGRATE that it only wants to isolate pages
1024                  * it will be able to migrate without blocking - clean pages
1025                  * for the most part.  PageWriteback would require blocking.
1026                  */
1027                 if ((mode & ISOLATE_ASYNC_MIGRATE) && PageWriteback(page))
1028                         goto isolate_fail_put;
1029
1030                 if ((mode & ISOLATE_ASYNC_MIGRATE) && PageDirty(page)) {
1031                         bool migrate_dirty;
1032
1033                         /*
1034                          * Only pages without mappings or that have a
1035                          * ->migrate_folio callback are possible to migrate
1036                          * without blocking. However, we can be racing with
1037                          * truncation so it's necessary to lock the page
1038                          * to stabilise the mapping as truncation holds
1039                          * the page lock until after the page is removed
1040                          * from the page cache.
1041                          */
1042                         if (!trylock_page(page))
1043                                 goto isolate_fail_put;
1044
1045                         mapping = page_mapping(page);
1046                         migrate_dirty = !mapping ||
1047                                         mapping->a_ops->migrate_folio;
1048                         unlock_page(page);
1049                         if (!migrate_dirty)
1050                                 goto isolate_fail_put;
1051                 }
1052
1053                 /* Try isolate the page */
1054                 if (!TestClearPageLRU(page))
1055                         goto isolate_fail_put;
1056
1057                 lruvec = folio_lruvec(page_folio(page));
1058
1059                 /* If we already hold the lock, we can skip some rechecking */
1060                 if (lruvec != locked) {
1061                         if (locked)
1062                                 unlock_page_lruvec_irqrestore(locked, flags);
1063
1064                         compact_lock_irqsave(&lruvec->lru_lock, &flags, cc);
1065                         locked = lruvec;
1066
1067                         lruvec_memcg_debug(lruvec, page_folio(page));
1068
1069                         /* Try get exclusive access under lock */
1070                         if (!skip_updated) {
1071                                 skip_updated = true;
1072                                 if (test_and_set_skip(cc, page, low_pfn))
1073                                         goto isolate_abort;
1074                         }
1075
1076                         /*
1077                          * Page become compound since the non-locked check,
1078                          * and it's on LRU. It can only be a THP so the order
1079                          * is safe to read and it's 0 for tail pages.
1080                          */
1081                         if (unlikely(PageCompound(page) && !cc->alloc_contig)) {
1082                                 low_pfn += compound_nr(page) - 1;
1083                                 SetPageLRU(page);
1084                                 goto isolate_fail_put;
1085                         }
1086                 }
1087
1088                 /* The whole page is taken off the LRU; skip the tail pages. */
1089                 if (PageCompound(page))
1090                         low_pfn += compound_nr(page) - 1;
1091
1092                 /* Successfully isolated */
1093                 del_page_from_lru_list(page, lruvec);
1094                 mod_node_page_state(page_pgdat(page),
1095                                 NR_ISOLATED_ANON + page_is_file_lru(page),
1096                                 thp_nr_pages(page));
1097
1098 isolate_success:
1099                 list_add(&page->lru, &cc->migratepages);
1100 isolate_success_no_list:
1101                 cc->nr_migratepages += compound_nr(page);
1102                 nr_isolated += compound_nr(page);
1103                 nr_scanned += compound_nr(page) - 1;
1104
1105                 /*
1106                  * Avoid isolating too much unless this block is being
1107                  * rescanned (e.g. dirty/writeback pages, parallel allocation)
1108                  * or a lock is contended. For contention, isolate quickly to
1109                  * potentially remove one source of contention.
1110                  */
1111                 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX &&
1112                     !cc->rescan && !cc->contended) {
1113                         ++low_pfn;
1114                         break;
1115                 }
1116
1117                 continue;
1118
1119 isolate_fail_put:
1120                 /* Avoid potential deadlock in freeing page under lru_lock */
1121                 if (locked) {
1122                         unlock_page_lruvec_irqrestore(locked, flags);
1123                         locked = NULL;
1124                 }
1125                 put_page(page);
1126
1127 isolate_fail:
1128                 if (!skip_on_failure && ret != -ENOMEM)
1129                         continue;
1130
1131                 /*
1132                  * We have isolated some pages, but then failed. Release them
1133                  * instead of migrating, as we cannot form the cc->order buddy
1134                  * page anyway.
1135                  */
1136                 if (nr_isolated) {
1137                         if (locked) {
1138                                 unlock_page_lruvec_irqrestore(locked, flags);
1139                                 locked = NULL;
1140                         }
1141                         putback_movable_pages(&cc->migratepages);
1142                         cc->nr_migratepages = 0;
1143                         nr_isolated = 0;
1144                 }
1145
1146                 if (low_pfn < next_skip_pfn) {
1147                         low_pfn = next_skip_pfn - 1;
1148                         /*
1149                          * The check near the loop beginning would have updated
1150                          * next_skip_pfn too, but this is a bit simpler.
1151                          */
1152                         next_skip_pfn += 1UL << cc->order;
1153                 }
1154
1155                 if (ret == -ENOMEM)
1156                         break;
1157         }
1158
1159         /*
1160          * The PageBuddy() check could have potentially brought us outside
1161          * the range to be scanned.
1162          */
1163         if (unlikely(low_pfn > end_pfn))
1164                 low_pfn = end_pfn;
1165
1166         page = NULL;
1167
1168 isolate_abort:
1169         if (locked)
1170                 unlock_page_lruvec_irqrestore(locked, flags);
1171         if (page) {
1172                 SetPageLRU(page);
1173                 put_page(page);
1174         }
1175
1176         /*
1177          * Updated the cached scanner pfn once the pageblock has been scanned
1178          * Pages will either be migrated in which case there is no point
1179          * scanning in the near future or migration failed in which case the
1180          * failure reason may persist. The block is marked for skipping if
1181          * there were no pages isolated in the block or if the block is
1182          * rescanned twice in a row.
1183          */
1184         if (low_pfn == end_pfn && (!nr_isolated || cc->rescan)) {
1185                 if (valid_page && !skip_updated)
1186                         set_pageblock_skip(valid_page);
1187                 update_cached_migrate(cc, low_pfn);
1188         }
1189
1190         trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
1191                                                 nr_scanned, nr_isolated);
1192
1193 fatal_pending:
1194         cc->total_migrate_scanned += nr_scanned;
1195         if (nr_isolated)
1196                 count_compact_events(COMPACTISOLATED, nr_isolated);
1197
1198         cc->migrate_pfn = low_pfn;
1199
1200         return ret;
1201 }
1202
1203 /**
1204  * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
1205  * @cc:        Compaction control structure.
1206  * @start_pfn: The first PFN to start isolating.
1207  * @end_pfn:   The one-past-last PFN.
1208  *
1209  * Returns -EAGAIN when contented, -EINTR in case of a signal pending, -ENOMEM
1210  * in case we could not allocate a page, or 0.
1211  */
1212 int
1213 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
1214                                                         unsigned long end_pfn)
1215 {
1216         unsigned long pfn, block_start_pfn, block_end_pfn;
1217         int ret = 0;
1218
1219         /* Scan block by block. First and last block may be incomplete */
1220         pfn = start_pfn;
1221         block_start_pfn = pageblock_start_pfn(pfn);
1222         if (block_start_pfn < cc->zone->zone_start_pfn)
1223                 block_start_pfn = cc->zone->zone_start_pfn;
1224         block_end_pfn = pageblock_end_pfn(pfn);
1225
1226         for (; pfn < end_pfn; pfn = block_end_pfn,
1227                                 block_start_pfn = block_end_pfn,
1228                                 block_end_pfn += pageblock_nr_pages) {
1229
1230                 block_end_pfn = min(block_end_pfn, end_pfn);
1231
1232                 if (!pageblock_pfn_to_page(block_start_pfn,
1233                                         block_end_pfn, cc->zone))
1234                         continue;
1235
1236                 ret = isolate_migratepages_block(cc, pfn, block_end_pfn,
1237                                                  ISOLATE_UNEVICTABLE);
1238
1239                 if (ret)
1240                         break;
1241
1242                 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX)
1243                         break;
1244         }
1245
1246         return ret;
1247 }
1248
1249 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
1250 #ifdef CONFIG_COMPACTION
1251
1252 static bool suitable_migration_source(struct compact_control *cc,
1253                                                         struct page *page)
1254 {
1255         int block_mt;
1256
1257         if (pageblock_skip_persistent(page))
1258                 return false;
1259
1260         if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
1261                 return true;
1262
1263         block_mt = get_pageblock_migratetype(page);
1264
1265         if (cc->migratetype == MIGRATE_MOVABLE)
1266                 return is_migrate_movable(block_mt);
1267         else
1268                 return block_mt == cc->migratetype;
1269 }
1270
1271 /* Returns true if the page is within a block suitable for migration to */
1272 static bool suitable_migration_target(struct compact_control *cc,
1273                                                         struct page *page)
1274 {
1275         /* If the page is a large free page, then disallow migration */
1276         if (PageBuddy(page)) {
1277                 /*
1278                  * We are checking page_order without zone->lock taken. But
1279                  * the only small danger is that we skip a potentially suitable
1280                  * pageblock, so it's not worth to check order for valid range.
1281                  */
1282                 if (buddy_order_unsafe(page) >= pageblock_order)
1283                         return false;
1284         }
1285
1286         if (cc->ignore_block_suitable)
1287                 return true;
1288
1289         /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1290         if (is_migrate_movable(get_pageblock_migratetype(page)))
1291                 return true;
1292
1293         /* Otherwise skip the block */
1294         return false;
1295 }
1296
1297 static inline unsigned int
1298 freelist_scan_limit(struct compact_control *cc)
1299 {
1300         unsigned short shift = BITS_PER_LONG - 1;
1301
1302         return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1;
1303 }
1304
1305 /*
1306  * Test whether the free scanner has reached the same or lower pageblock than
1307  * the migration scanner, and compaction should thus terminate.
1308  */
1309 static inline bool compact_scanners_met(struct compact_control *cc)
1310 {
1311         return (cc->free_pfn >> pageblock_order)
1312                 <= (cc->migrate_pfn >> pageblock_order);
1313 }
1314
1315 /*
1316  * Used when scanning for a suitable migration target which scans freelists
1317  * in reverse. Reorders the list such as the unscanned pages are scanned
1318  * first on the next iteration of the free scanner
1319  */
1320 static void
1321 move_freelist_head(struct list_head *freelist, struct page *freepage)
1322 {
1323         LIST_HEAD(sublist);
1324
1325         if (!list_is_last(freelist, &freepage->lru)) {
1326                 list_cut_before(&sublist, freelist, &freepage->lru);
1327                 list_splice_tail(&sublist, freelist);
1328         }
1329 }
1330
1331 /*
1332  * Similar to move_freelist_head except used by the migration scanner
1333  * when scanning forward. It's possible for these list operations to
1334  * move against each other if they search the free list exactly in
1335  * lockstep.
1336  */
1337 static void
1338 move_freelist_tail(struct list_head *freelist, struct page *freepage)
1339 {
1340         LIST_HEAD(sublist);
1341
1342         if (!list_is_first(freelist, &freepage->lru)) {
1343                 list_cut_position(&sublist, freelist, &freepage->lru);
1344                 list_splice_tail(&sublist, freelist);
1345         }
1346 }
1347
1348 static void
1349 fast_isolate_around(struct compact_control *cc, unsigned long pfn, unsigned long nr_isolated)
1350 {
1351         unsigned long start_pfn, end_pfn;
1352         struct page *page;
1353
1354         /* Do not search around if there are enough pages already */
1355         if (cc->nr_freepages >= cc->nr_migratepages)
1356                 return;
1357
1358         /* Minimise scanning during async compaction */
1359         if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC)
1360                 return;
1361
1362         /* Pageblock boundaries */
1363         start_pfn = max(pageblock_start_pfn(pfn), cc->zone->zone_start_pfn);
1364         end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone));
1365
1366         page = pageblock_pfn_to_page(start_pfn, end_pfn, cc->zone);
1367         if (!page)
1368                 return;
1369
1370         /* Scan before */
1371         if (start_pfn != pfn) {
1372                 isolate_freepages_block(cc, &start_pfn, pfn, &cc->freepages, 1, false);
1373                 if (cc->nr_freepages >= cc->nr_migratepages)
1374                         return;
1375         }
1376
1377         /* Scan after */
1378         start_pfn = pfn + nr_isolated;
1379         if (start_pfn < end_pfn)
1380                 isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false);
1381
1382         /* Skip this pageblock in the future as it's full or nearly full */
1383         if (cc->nr_freepages < cc->nr_migratepages)
1384                 set_pageblock_skip(page);
1385 }
1386
1387 /* Search orders in round-robin fashion */
1388 static int next_search_order(struct compact_control *cc, int order)
1389 {
1390         order--;
1391         if (order < 0)
1392                 order = cc->order - 1;
1393
1394         /* Search wrapped around? */
1395         if (order == cc->search_order) {
1396                 cc->search_order--;
1397                 if (cc->search_order < 0)
1398                         cc->search_order = cc->order - 1;
1399                 return -1;
1400         }
1401
1402         return order;
1403 }
1404
1405 static unsigned long
1406 fast_isolate_freepages(struct compact_control *cc)
1407 {
1408         unsigned int limit = max(1U, freelist_scan_limit(cc) >> 1);
1409         unsigned int nr_scanned = 0;
1410         unsigned long low_pfn, min_pfn, highest = 0;
1411         unsigned long nr_isolated = 0;
1412         unsigned long distance;
1413         struct page *page = NULL;
1414         bool scan_start = false;
1415         int order;
1416
1417         /* Full compaction passes in a negative order */
1418         if (cc->order <= 0)
1419                 return cc->free_pfn;
1420
1421         /*
1422          * If starting the scan, use a deeper search and use the highest
1423          * PFN found if a suitable one is not found.
1424          */
1425         if (cc->free_pfn >= cc->zone->compact_init_free_pfn) {
1426                 limit = pageblock_nr_pages >> 1;
1427                 scan_start = true;
1428         }
1429
1430         /*
1431          * Preferred point is in the top quarter of the scan space but take
1432          * a pfn from the top half if the search is problematic.
1433          */
1434         distance = (cc->free_pfn - cc->migrate_pfn);
1435         low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2));
1436         min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1));
1437
1438         if (WARN_ON_ONCE(min_pfn > low_pfn))
1439                 low_pfn = min_pfn;
1440
1441         /*
1442          * Search starts from the last successful isolation order or the next
1443          * order to search after a previous failure
1444          */
1445         cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order);
1446
1447         for (order = cc->search_order;
1448              !page && order >= 0;
1449              order = next_search_order(cc, order)) {
1450                 struct free_area *area = &cc->zone->free_area[order];
1451                 struct list_head *freelist;
1452                 struct page *freepage;
1453                 unsigned long flags;
1454                 unsigned int order_scanned = 0;
1455                 unsigned long high_pfn = 0;
1456
1457                 if (!area->nr_free)
1458                         continue;
1459
1460                 spin_lock_irqsave(&cc->zone->lock, flags);
1461                 freelist = &area->free_list[MIGRATE_MOVABLE];
1462                 list_for_each_entry_reverse(freepage, freelist, lru) {
1463                         unsigned long pfn;
1464
1465                         order_scanned++;
1466                         nr_scanned++;
1467                         pfn = page_to_pfn(freepage);
1468
1469                         if (pfn >= highest)
1470                                 highest = max(pageblock_start_pfn(pfn),
1471                                               cc->zone->zone_start_pfn);
1472
1473                         if (pfn >= low_pfn) {
1474                                 cc->fast_search_fail = 0;
1475                                 cc->search_order = order;
1476                                 page = freepage;
1477                                 break;
1478                         }
1479
1480                         if (pfn >= min_pfn && pfn > high_pfn) {
1481                                 high_pfn = pfn;
1482
1483                                 /* Shorten the scan if a candidate is found */
1484                                 limit >>= 1;
1485                         }
1486
1487                         if (order_scanned >= limit)
1488                                 break;
1489                 }
1490
1491                 /* Use a minimum pfn if a preferred one was not found */
1492                 if (!page && high_pfn) {
1493                         page = pfn_to_page(high_pfn);
1494
1495                         /* Update freepage for the list reorder below */
1496                         freepage = page;
1497                 }
1498
1499                 /* Reorder to so a future search skips recent pages */
1500                 move_freelist_head(freelist, freepage);
1501
1502                 /* Isolate the page if available */
1503                 if (page) {
1504                         if (__isolate_free_page(page, order)) {
1505                                 set_page_private(page, order);
1506                                 nr_isolated = 1 << order;
1507                                 nr_scanned += nr_isolated - 1;
1508                                 cc->nr_freepages += nr_isolated;
1509                                 list_add_tail(&page->lru, &cc->freepages);
1510                                 count_compact_events(COMPACTISOLATED, nr_isolated);
1511                         } else {
1512                                 /* If isolation fails, abort the search */
1513                                 order = cc->search_order + 1;
1514                                 page = NULL;
1515                         }
1516                 }
1517
1518                 spin_unlock_irqrestore(&cc->zone->lock, flags);
1519
1520                 /*
1521                  * Smaller scan on next order so the total scan is related
1522                  * to freelist_scan_limit.
1523                  */
1524                 if (order_scanned >= limit)
1525                         limit = max(1U, limit >> 1);
1526         }
1527
1528         if (!page) {
1529                 cc->fast_search_fail++;
1530                 if (scan_start) {
1531                         /*
1532                          * Use the highest PFN found above min. If one was
1533                          * not found, be pessimistic for direct compaction
1534                          * and use the min mark.
1535                          */
1536                         if (highest >= min_pfn) {
1537                                 page = pfn_to_page(highest);
1538                                 cc->free_pfn = highest;
1539                         } else {
1540                                 if (cc->direct_compaction && pfn_valid(min_pfn)) {
1541                                         page = pageblock_pfn_to_page(min_pfn,
1542                                                 min(pageblock_end_pfn(min_pfn),
1543                                                     zone_end_pfn(cc->zone)),
1544                                                 cc->zone);
1545                                         cc->free_pfn = min_pfn;
1546                                 }
1547                         }
1548                 }
1549         }
1550
1551         if (highest && highest >= cc->zone->compact_cached_free_pfn) {
1552                 highest -= pageblock_nr_pages;
1553                 cc->zone->compact_cached_free_pfn = highest;
1554         }
1555
1556         cc->total_free_scanned += nr_scanned;
1557         if (!page)
1558                 return cc->free_pfn;
1559
1560         low_pfn = page_to_pfn(page);
1561         fast_isolate_around(cc, low_pfn, nr_isolated);
1562         return low_pfn;
1563 }
1564
1565 /*
1566  * Based on information in the current compact_control, find blocks
1567  * suitable for isolating free pages from and then isolate them.
1568  */
1569 static void isolate_freepages(struct compact_control *cc)
1570 {
1571         struct zone *zone = cc->zone;
1572         struct page *page;
1573         unsigned long block_start_pfn;  /* start of current pageblock */
1574         unsigned long isolate_start_pfn; /* exact pfn we start at */
1575         unsigned long block_end_pfn;    /* end of current pageblock */
1576         unsigned long low_pfn;       /* lowest pfn scanner is able to scan */
1577         struct list_head *freelist = &cc->freepages;
1578         unsigned int stride;
1579
1580         /* Try a small search of the free lists for a candidate */
1581         fast_isolate_freepages(cc);
1582         if (cc->nr_freepages)
1583                 goto splitmap;
1584
1585         /*
1586          * Initialise the free scanner. The starting point is where we last
1587          * successfully isolated from, zone-cached value, or the end of the
1588          * zone when isolating for the first time. For looping we also need
1589          * this pfn aligned down to the pageblock boundary, because we do
1590          * block_start_pfn -= pageblock_nr_pages in the for loop.
1591          * For ending point, take care when isolating in last pageblock of a
1592          * zone which ends in the middle of a pageblock.
1593          * The low boundary is the end of the pageblock the migration scanner
1594          * is using.
1595          */
1596         isolate_start_pfn = cc->free_pfn;
1597         block_start_pfn = pageblock_start_pfn(isolate_start_pfn);
1598         block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1599                                                 zone_end_pfn(zone));
1600         low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1601         stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1;
1602
1603         /*
1604          * Isolate free pages until enough are available to migrate the
1605          * pages on cc->migratepages. We stop searching if the migrate
1606          * and free page scanners meet or enough free pages are isolated.
1607          */
1608         for (; block_start_pfn >= low_pfn;
1609                                 block_end_pfn = block_start_pfn,
1610                                 block_start_pfn -= pageblock_nr_pages,
1611                                 isolate_start_pfn = block_start_pfn) {
1612                 unsigned long nr_isolated;
1613
1614                 /*
1615                  * This can iterate a massively long zone without finding any
1616                  * suitable migration targets, so periodically check resched.
1617                  */
1618                 if (!(block_start_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages)))
1619                         cond_resched();
1620
1621                 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1622                                                                         zone);
1623                 if (!page)
1624                         continue;
1625
1626                 /* Check the block is suitable for migration */
1627                 if (!suitable_migration_target(cc, page))
1628                         continue;
1629
1630                 /* If isolation recently failed, do not retry */
1631                 if (!isolation_suitable(cc, page))
1632                         continue;
1633
1634                 /* Found a block suitable for isolating free pages from. */
1635                 nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn,
1636                                         block_end_pfn, freelist, stride, false);
1637
1638                 /* Update the skip hint if the full pageblock was scanned */
1639                 if (isolate_start_pfn == block_end_pfn)
1640                         update_pageblock_skip(cc, page, block_start_pfn);
1641
1642                 /* Are enough freepages isolated? */
1643                 if (cc->nr_freepages >= cc->nr_migratepages) {
1644                         if (isolate_start_pfn >= block_end_pfn) {
1645                                 /*
1646                                  * Restart at previous pageblock if more
1647                                  * freepages can be isolated next time.
1648                                  */
1649                                 isolate_start_pfn =
1650                                         block_start_pfn - pageblock_nr_pages;
1651                         }
1652                         break;
1653                 } else if (isolate_start_pfn < block_end_pfn) {
1654                         /*
1655                          * If isolation failed early, do not continue
1656                          * needlessly.
1657                          */
1658                         break;
1659                 }
1660
1661                 /* Adjust stride depending on isolation */
1662                 if (nr_isolated) {
1663                         stride = 1;
1664                         continue;
1665                 }
1666                 stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1);
1667         }
1668
1669         /*
1670          * Record where the free scanner will restart next time. Either we
1671          * broke from the loop and set isolate_start_pfn based on the last
1672          * call to isolate_freepages_block(), or we met the migration scanner
1673          * and the loop terminated due to isolate_start_pfn < low_pfn
1674          */
1675         cc->free_pfn = isolate_start_pfn;
1676
1677 splitmap:
1678         /* __isolate_free_page() does not map the pages */
1679         split_map_pages(freelist);
1680 }
1681
1682 /*
1683  * This is a migrate-callback that "allocates" freepages by taking pages
1684  * from the isolated freelists in the block we are migrating to.
1685  */
1686 static struct page *compaction_alloc(struct page *migratepage,
1687                                         unsigned long data)
1688 {
1689         struct compact_control *cc = (struct compact_control *)data;
1690         struct page *freepage;
1691
1692         if (list_empty(&cc->freepages)) {
1693                 isolate_freepages(cc);
1694
1695                 if (list_empty(&cc->freepages))
1696                         return NULL;
1697         }
1698
1699         freepage = list_entry(cc->freepages.next, struct page, lru);
1700         list_del(&freepage->lru);
1701         cc->nr_freepages--;
1702
1703         return freepage;
1704 }
1705
1706 /*
1707  * This is a migrate-callback that "frees" freepages back to the isolated
1708  * freelist.  All pages on the freelist are from the same zone, so there is no
1709  * special handling needed for NUMA.
1710  */
1711 static void compaction_free(struct page *page, unsigned long data)
1712 {
1713         struct compact_control *cc = (struct compact_control *)data;
1714
1715         list_add(&page->lru, &cc->freepages);
1716         cc->nr_freepages++;
1717 }
1718
1719 /* possible outcome of isolate_migratepages */
1720 typedef enum {
1721         ISOLATE_ABORT,          /* Abort compaction now */
1722         ISOLATE_NONE,           /* No pages isolated, continue scanning */
1723         ISOLATE_SUCCESS,        /* Pages isolated, migrate */
1724 } isolate_migrate_t;
1725
1726 /*
1727  * Allow userspace to control policy on scanning the unevictable LRU for
1728  * compactable pages.
1729  */
1730 #ifdef CONFIG_PREEMPT_RT
1731 int sysctl_compact_unevictable_allowed __read_mostly = 0;
1732 #else
1733 int sysctl_compact_unevictable_allowed __read_mostly = 1;
1734 #endif
1735
1736 static inline void
1737 update_fast_start_pfn(struct compact_control *cc, unsigned long pfn)
1738 {
1739         if (cc->fast_start_pfn == ULONG_MAX)
1740                 return;
1741
1742         if (!cc->fast_start_pfn)
1743                 cc->fast_start_pfn = pfn;
1744
1745         cc->fast_start_pfn = min(cc->fast_start_pfn, pfn);
1746 }
1747
1748 static inline unsigned long
1749 reinit_migrate_pfn(struct compact_control *cc)
1750 {
1751         if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX)
1752                 return cc->migrate_pfn;
1753
1754         cc->migrate_pfn = cc->fast_start_pfn;
1755         cc->fast_start_pfn = ULONG_MAX;
1756
1757         return cc->migrate_pfn;
1758 }
1759
1760 /*
1761  * Briefly search the free lists for a migration source that already has
1762  * some free pages to reduce the number of pages that need migration
1763  * before a pageblock is free.
1764  */
1765 static unsigned long fast_find_migrateblock(struct compact_control *cc)
1766 {
1767         unsigned int limit = freelist_scan_limit(cc);
1768         unsigned int nr_scanned = 0;
1769         unsigned long distance;
1770         unsigned long pfn = cc->migrate_pfn;
1771         unsigned long high_pfn;
1772         int order;
1773         bool found_block = false;
1774
1775         /* Skip hints are relied on to avoid repeats on the fast search */
1776         if (cc->ignore_skip_hint)
1777                 return pfn;
1778
1779         /*
1780          * If the migrate_pfn is not at the start of a zone or the start
1781          * of a pageblock then assume this is a continuation of a previous
1782          * scan restarted due to COMPACT_CLUSTER_MAX.
1783          */
1784         if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn))
1785                 return pfn;
1786
1787         /*
1788          * For smaller orders, just linearly scan as the number of pages
1789          * to migrate should be relatively small and does not necessarily
1790          * justify freeing up a large block for a small allocation.
1791          */
1792         if (cc->order <= PAGE_ALLOC_COSTLY_ORDER)
1793                 return pfn;
1794
1795         /*
1796          * Only allow kcompactd and direct requests for movable pages to
1797          * quickly clear out a MOVABLE pageblock for allocation. This
1798          * reduces the risk that a large movable pageblock is freed for
1799          * an unmovable/reclaimable small allocation.
1800          */
1801         if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE)
1802                 return pfn;
1803
1804         /*
1805          * When starting the migration scanner, pick any pageblock within the
1806          * first half of the search space. Otherwise try and pick a pageblock
1807          * within the first eighth to reduce the chances that a migration
1808          * target later becomes a source.
1809          */
1810         distance = (cc->free_pfn - cc->migrate_pfn) >> 1;
1811         if (cc->migrate_pfn != cc->zone->zone_start_pfn)
1812                 distance >>= 2;
1813         high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance);
1814
1815         for (order = cc->order - 1;
1816              order >= PAGE_ALLOC_COSTLY_ORDER && !found_block && nr_scanned < limit;
1817              order--) {
1818                 struct free_area *area = &cc->zone->free_area[order];
1819                 struct list_head *freelist;
1820                 unsigned long flags;
1821                 struct page *freepage;
1822
1823                 if (!area->nr_free)
1824                         continue;
1825
1826                 spin_lock_irqsave(&cc->zone->lock, flags);
1827                 freelist = &area->free_list[MIGRATE_MOVABLE];
1828                 list_for_each_entry(freepage, freelist, lru) {
1829                         unsigned long free_pfn;
1830
1831                         if (nr_scanned++ >= limit) {
1832                                 move_freelist_tail(freelist, freepage);
1833                                 break;
1834                         }
1835
1836                         free_pfn = page_to_pfn(freepage);
1837                         if (free_pfn < high_pfn) {
1838                                 /*
1839                                  * Avoid if skipped recently. Ideally it would
1840                                  * move to the tail but even safe iteration of
1841                                  * the list assumes an entry is deleted, not
1842                                  * reordered.
1843                                  */
1844                                 if (get_pageblock_skip(freepage))
1845                                         continue;
1846
1847                                 /* Reorder to so a future search skips recent pages */
1848                                 move_freelist_tail(freelist, freepage);
1849
1850                                 update_fast_start_pfn(cc, free_pfn);
1851                                 pfn = pageblock_start_pfn(free_pfn);
1852                                 if (pfn < cc->zone->zone_start_pfn)
1853                                         pfn = cc->zone->zone_start_pfn;
1854                                 cc->fast_search_fail = 0;
1855                                 found_block = true;
1856                                 set_pageblock_skip(freepage);
1857                                 break;
1858                         }
1859                 }
1860                 spin_unlock_irqrestore(&cc->zone->lock, flags);
1861         }
1862
1863         cc->total_migrate_scanned += nr_scanned;
1864
1865         /*
1866          * If fast scanning failed then use a cached entry for a page block
1867          * that had free pages as the basis for starting a linear scan.
1868          */
1869         if (!found_block) {
1870                 cc->fast_search_fail++;
1871                 pfn = reinit_migrate_pfn(cc);
1872         }
1873         return pfn;
1874 }
1875
1876 /*
1877  * Isolate all pages that can be migrated from the first suitable block,
1878  * starting at the block pointed to by the migrate scanner pfn within
1879  * compact_control.
1880  */
1881 static isolate_migrate_t isolate_migratepages(struct compact_control *cc)
1882 {
1883         unsigned long block_start_pfn;
1884         unsigned long block_end_pfn;
1885         unsigned long low_pfn;
1886         struct page *page;
1887         const isolate_mode_t isolate_mode =
1888                 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1889                 (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1890         bool fast_find_block;
1891
1892         /*
1893          * Start at where we last stopped, or beginning of the zone as
1894          * initialized by compact_zone(). The first failure will use
1895          * the lowest PFN as the starting point for linear scanning.
1896          */
1897         low_pfn = fast_find_migrateblock(cc);
1898         block_start_pfn = pageblock_start_pfn(low_pfn);
1899         if (block_start_pfn < cc->zone->zone_start_pfn)
1900                 block_start_pfn = cc->zone->zone_start_pfn;
1901
1902         /*
1903          * fast_find_migrateblock marks a pageblock skipped so to avoid
1904          * the isolation_suitable check below, check whether the fast
1905          * search was successful.
1906          */
1907         fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail;
1908
1909         /* Only scan within a pageblock boundary */
1910         block_end_pfn = pageblock_end_pfn(low_pfn);
1911
1912         /*
1913          * Iterate over whole pageblocks until we find the first suitable.
1914          * Do not cross the free scanner.
1915          */
1916         for (; block_end_pfn <= cc->free_pfn;
1917                         fast_find_block = false,
1918                         cc->migrate_pfn = low_pfn = block_end_pfn,
1919                         block_start_pfn = block_end_pfn,
1920                         block_end_pfn += pageblock_nr_pages) {
1921
1922                 /*
1923                  * This can potentially iterate a massively long zone with
1924                  * many pageblocks unsuitable, so periodically check if we
1925                  * need to schedule.
1926                  */
1927                 if (!(low_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages)))
1928                         cond_resched();
1929
1930                 page = pageblock_pfn_to_page(block_start_pfn,
1931                                                 block_end_pfn, cc->zone);
1932                 if (!page)
1933                         continue;
1934
1935                 /*
1936                  * If isolation recently failed, do not retry. Only check the
1937                  * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock
1938                  * to be visited multiple times. Assume skip was checked
1939                  * before making it "skip" so other compaction instances do
1940                  * not scan the same block.
1941                  */
1942                 if (IS_ALIGNED(low_pfn, pageblock_nr_pages) &&
1943                     !fast_find_block && !isolation_suitable(cc, page))
1944                         continue;
1945
1946                 /*
1947                  * For async direct compaction, only scan the pageblocks of the
1948                  * same migratetype without huge pages. Async direct compaction
1949                  * is optimistic to see if the minimum amount of work satisfies
1950                  * the allocation. The cached PFN is updated as it's possible
1951                  * that all remaining blocks between source and target are
1952                  * unsuitable and the compaction scanners fail to meet.
1953                  */
1954                 if (!suitable_migration_source(cc, page)) {
1955                         update_cached_migrate(cc, block_end_pfn);
1956                         continue;
1957                 }
1958
1959                 /* Perform the isolation */
1960                 if (isolate_migratepages_block(cc, low_pfn, block_end_pfn,
1961                                                 isolate_mode))
1962                         return ISOLATE_ABORT;
1963
1964                 /*
1965                  * Either we isolated something and proceed with migration. Or
1966                  * we failed and compact_zone should decide if we should
1967                  * continue or not.
1968                  */
1969                 break;
1970         }
1971
1972         return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1973 }
1974
1975 /*
1976  * order == -1 is expected when compacting via
1977  * /proc/sys/vm/compact_memory
1978  */
1979 static inline bool is_via_compact_memory(int order)
1980 {
1981         return order == -1;
1982 }
1983
1984 static bool kswapd_is_running(pg_data_t *pgdat)
1985 {
1986         return pgdat->kswapd && task_is_running(pgdat->kswapd);
1987 }
1988
1989 /*
1990  * A zone's fragmentation score is the external fragmentation wrt to the
1991  * COMPACTION_HPAGE_ORDER. It returns a value in the range [0, 100].
1992  */
1993 static unsigned int fragmentation_score_zone(struct zone *zone)
1994 {
1995         return extfrag_for_order(zone, COMPACTION_HPAGE_ORDER);
1996 }
1997
1998 /*
1999  * A weighted zone's fragmentation score is the external fragmentation
2000  * wrt to the COMPACTION_HPAGE_ORDER scaled by the zone's size. It
2001  * returns a value in the range [0, 100].
2002  *
2003  * The scaling factor ensures that proactive compaction focuses on larger
2004  * zones like ZONE_NORMAL, rather than smaller, specialized zones like
2005  * ZONE_DMA32. For smaller zones, the score value remains close to zero,
2006  * and thus never exceeds the high threshold for proactive compaction.
2007  */
2008 static unsigned int fragmentation_score_zone_weighted(struct zone *zone)
2009 {
2010         unsigned long score;
2011
2012         score = zone->present_pages * fragmentation_score_zone(zone);
2013         return div64_ul(score, zone->zone_pgdat->node_present_pages + 1);
2014 }
2015
2016 /*
2017  * The per-node proactive (background) compaction process is started by its
2018  * corresponding kcompactd thread when the node's fragmentation score
2019  * exceeds the high threshold. The compaction process remains active till
2020  * the node's score falls below the low threshold, or one of the back-off
2021  * conditions is met.
2022  */
2023 static unsigned int fragmentation_score_node(pg_data_t *pgdat)
2024 {
2025         unsigned int score = 0;
2026         int zoneid;
2027
2028         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2029                 struct zone *zone;
2030
2031                 zone = &pgdat->node_zones[zoneid];
2032                 score += fragmentation_score_zone_weighted(zone);
2033         }
2034
2035         return score;
2036 }
2037
2038 static unsigned int fragmentation_score_wmark(pg_data_t *pgdat, bool low)
2039 {
2040         unsigned int wmark_low;
2041
2042         /*
2043          * Cap the low watermark to avoid excessive compaction
2044          * activity in case a user sets the proactiveness tunable
2045          * close to 100 (maximum).
2046          */
2047         wmark_low = max(100U - sysctl_compaction_proactiveness, 5U);
2048         return low ? wmark_low : min(wmark_low + 10, 100U);
2049 }
2050
2051 static bool should_proactive_compact_node(pg_data_t *pgdat)
2052 {
2053         int wmark_high;
2054
2055         if (!sysctl_compaction_proactiveness || kswapd_is_running(pgdat))
2056                 return false;
2057
2058         wmark_high = fragmentation_score_wmark(pgdat, false);
2059         return fragmentation_score_node(pgdat) > wmark_high;
2060 }
2061
2062 static enum compact_result __compact_finished(struct compact_control *cc)
2063 {
2064         unsigned int order;
2065         const int migratetype = cc->migratetype;
2066         int ret;
2067
2068         /* Compaction run completes if the migrate and free scanner meet */
2069         if (compact_scanners_met(cc)) {
2070                 /* Let the next compaction start anew. */
2071                 reset_cached_positions(cc->zone);
2072
2073                 /*
2074                  * Mark that the PG_migrate_skip information should be cleared
2075                  * by kswapd when it goes to sleep. kcompactd does not set the
2076                  * flag itself as the decision to be clear should be directly
2077                  * based on an allocation request.
2078                  */
2079                 if (cc->direct_compaction)
2080                         cc->zone->compact_blockskip_flush = true;
2081
2082                 if (cc->whole_zone)
2083                         return COMPACT_COMPLETE;
2084                 else
2085                         return COMPACT_PARTIAL_SKIPPED;
2086         }
2087
2088         if (cc->proactive_compaction) {
2089                 int score, wmark_low;
2090                 pg_data_t *pgdat;
2091
2092                 pgdat = cc->zone->zone_pgdat;
2093                 if (kswapd_is_running(pgdat))
2094                         return COMPACT_PARTIAL_SKIPPED;
2095
2096                 score = fragmentation_score_zone(cc->zone);
2097                 wmark_low = fragmentation_score_wmark(pgdat, true);
2098
2099                 if (score > wmark_low)
2100                         ret = COMPACT_CONTINUE;
2101                 else
2102                         ret = COMPACT_SUCCESS;
2103
2104                 goto out;
2105         }
2106
2107         if (is_via_compact_memory(cc->order))
2108                 return COMPACT_CONTINUE;
2109
2110         /*
2111          * Always finish scanning a pageblock to reduce the possibility of
2112          * fallbacks in the future. This is particularly important when
2113          * migration source is unmovable/reclaimable but it's not worth
2114          * special casing.
2115          */
2116         if (!IS_ALIGNED(cc->migrate_pfn, pageblock_nr_pages))
2117                 return COMPACT_CONTINUE;
2118
2119         /* Direct compactor: Is a suitable page free? */
2120         ret = COMPACT_NO_SUITABLE_PAGE;
2121         for (order = cc->order; order < MAX_ORDER; order++) {
2122                 struct free_area *area = &cc->zone->free_area[order];
2123                 bool can_steal;
2124
2125                 /* Job done if page is free of the right migratetype */
2126                 if (!free_area_empty(area, migratetype))
2127                         return COMPACT_SUCCESS;
2128
2129 #ifdef CONFIG_CMA
2130                 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
2131                 if (migratetype == MIGRATE_MOVABLE &&
2132                         !free_area_empty(area, MIGRATE_CMA))
2133                         return COMPACT_SUCCESS;
2134 #endif
2135                 /*
2136                  * Job done if allocation would steal freepages from
2137                  * other migratetype buddy lists.
2138                  */
2139                 if (find_suitable_fallback(area, order, migratetype,
2140                                                 true, &can_steal) != -1)
2141                         /*
2142                          * Movable pages are OK in any pageblock. If we are
2143                          * stealing for a non-movable allocation, make sure
2144                          * we finish compacting the current pageblock first
2145                          * (which is assured by the above migrate_pfn align
2146                          * check) so it is as free as possible and we won't
2147                          * have to steal another one soon.
2148                          */
2149                         return COMPACT_SUCCESS;
2150         }
2151
2152 out:
2153         if (cc->contended || fatal_signal_pending(current))
2154                 ret = COMPACT_CONTENDED;
2155
2156         return ret;
2157 }
2158
2159 static enum compact_result compact_finished(struct compact_control *cc)
2160 {
2161         int ret;
2162
2163         ret = __compact_finished(cc);
2164         trace_mm_compaction_finished(cc->zone, cc->order, ret);
2165         if (ret == COMPACT_NO_SUITABLE_PAGE)
2166                 ret = COMPACT_CONTINUE;
2167
2168         return ret;
2169 }
2170
2171 static enum compact_result __compaction_suitable(struct zone *zone, int order,
2172                                         unsigned int alloc_flags,
2173                                         int highest_zoneidx,
2174                                         unsigned long wmark_target)
2175 {
2176         unsigned long watermark;
2177
2178         if (is_via_compact_memory(order))
2179                 return COMPACT_CONTINUE;
2180
2181         watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
2182         /*
2183          * If watermarks for high-order allocation are already met, there
2184          * should be no need for compaction at all.
2185          */
2186         if (zone_watermark_ok(zone, order, watermark, highest_zoneidx,
2187                                                                 alloc_flags))
2188                 return COMPACT_SUCCESS;
2189
2190         /*
2191          * Watermarks for order-0 must be met for compaction to be able to
2192          * isolate free pages for migration targets. This means that the
2193          * watermark and alloc_flags have to match, or be more pessimistic than
2194          * the check in __isolate_free_page(). We don't use the direct
2195          * compactor's alloc_flags, as they are not relevant for freepage
2196          * isolation. We however do use the direct compactor's highest_zoneidx
2197          * to skip over zones where lowmem reserves would prevent allocation
2198          * even if compaction succeeds.
2199          * For costly orders, we require low watermark instead of min for
2200          * compaction to proceed to increase its chances.
2201          * ALLOC_CMA is used, as pages in CMA pageblocks are considered
2202          * suitable migration targets
2203          */
2204         watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
2205                                 low_wmark_pages(zone) : min_wmark_pages(zone);
2206         watermark += compact_gap(order);
2207         if (!__zone_watermark_ok(zone, 0, watermark, highest_zoneidx,
2208                                                 ALLOC_CMA, wmark_target))
2209                 return COMPACT_SKIPPED;
2210
2211         return COMPACT_CONTINUE;
2212 }
2213
2214 /*
2215  * compaction_suitable: Is this suitable to run compaction on this zone now?
2216  * Returns
2217  *   COMPACT_SKIPPED  - If there are too few free pages for compaction
2218  *   COMPACT_SUCCESS  - If the allocation would succeed without compaction
2219  *   COMPACT_CONTINUE - If compaction should run now
2220  */
2221 enum compact_result compaction_suitable(struct zone *zone, int order,
2222                                         unsigned int alloc_flags,
2223                                         int highest_zoneidx)
2224 {
2225         enum compact_result ret;
2226         int fragindex;
2227
2228         ret = __compaction_suitable(zone, order, alloc_flags, highest_zoneidx,
2229                                     zone_page_state(zone, NR_FREE_PAGES));
2230         /*
2231          * fragmentation index determines if allocation failures are due to
2232          * low memory or external fragmentation
2233          *
2234          * index of -1000 would imply allocations might succeed depending on
2235          * watermarks, but we already failed the high-order watermark check
2236          * index towards 0 implies failure is due to lack of memory
2237          * index towards 1000 implies failure is due to fragmentation
2238          *
2239          * Only compact if a failure would be due to fragmentation. Also
2240          * ignore fragindex for non-costly orders where the alternative to
2241          * a successful reclaim/compaction is OOM. Fragindex and the
2242          * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
2243          * excessive compaction for costly orders, but it should not be at the
2244          * expense of system stability.
2245          */
2246         if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) {
2247                 fragindex = fragmentation_index(zone, order);
2248                 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
2249                         ret = COMPACT_NOT_SUITABLE_ZONE;
2250         }
2251
2252         trace_mm_compaction_suitable(zone, order, ret);
2253         if (ret == COMPACT_NOT_SUITABLE_ZONE)
2254                 ret = COMPACT_SKIPPED;
2255
2256         return ret;
2257 }
2258
2259 bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
2260                 int alloc_flags)
2261 {
2262         struct zone *zone;
2263         struct zoneref *z;
2264
2265         /*
2266          * Make sure at least one zone would pass __compaction_suitable if we continue
2267          * retrying the reclaim.
2268          */
2269         for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2270                                 ac->highest_zoneidx, ac->nodemask) {
2271                 unsigned long available;
2272                 enum compact_result compact_result;
2273
2274                 /*
2275                  * Do not consider all the reclaimable memory because we do not
2276                  * want to trash just for a single high order allocation which
2277                  * is even not guaranteed to appear even if __compaction_suitable
2278                  * is happy about the watermark check.
2279                  */
2280                 available = zone_reclaimable_pages(zone) / order;
2281                 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
2282                 compact_result = __compaction_suitable(zone, order, alloc_flags,
2283                                 ac->highest_zoneidx, available);
2284                 if (compact_result == COMPACT_CONTINUE)
2285                         return true;
2286         }
2287
2288         return false;
2289 }
2290
2291 static enum compact_result
2292 compact_zone(struct compact_control *cc, struct capture_control *capc)
2293 {
2294         enum compact_result ret;
2295         unsigned long start_pfn = cc->zone->zone_start_pfn;
2296         unsigned long end_pfn = zone_end_pfn(cc->zone);
2297         unsigned long last_migrated_pfn;
2298         const bool sync = cc->mode != MIGRATE_ASYNC;
2299         bool update_cached;
2300         unsigned int nr_succeeded = 0;
2301
2302         /*
2303          * These counters track activities during zone compaction.  Initialize
2304          * them before compacting a new zone.
2305          */
2306         cc->total_migrate_scanned = 0;
2307         cc->total_free_scanned = 0;
2308         cc->nr_migratepages = 0;
2309         cc->nr_freepages = 0;
2310         INIT_LIST_HEAD(&cc->freepages);
2311         INIT_LIST_HEAD(&cc->migratepages);
2312
2313         cc->migratetype = gfp_migratetype(cc->gfp_mask);
2314         ret = compaction_suitable(cc->zone, cc->order, cc->alloc_flags,
2315                                                         cc->highest_zoneidx);
2316         /* Compaction is likely to fail */
2317         if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED)
2318                 return ret;
2319
2320         /* huh, compaction_suitable is returning something unexpected */
2321         VM_BUG_ON(ret != COMPACT_CONTINUE);
2322
2323         /*
2324          * Clear pageblock skip if there were failures recently and compaction
2325          * is about to be retried after being deferred.
2326          */
2327         if (compaction_restarting(cc->zone, cc->order))
2328                 __reset_isolation_suitable(cc->zone);
2329
2330         /*
2331          * Setup to move all movable pages to the end of the zone. Used cached
2332          * information on where the scanners should start (unless we explicitly
2333          * want to compact the whole zone), but check that it is initialised
2334          * by ensuring the values are within zone boundaries.
2335          */
2336         cc->fast_start_pfn = 0;
2337         if (cc->whole_zone) {
2338                 cc->migrate_pfn = start_pfn;
2339                 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2340         } else {
2341                 cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync];
2342                 cc->free_pfn = cc->zone->compact_cached_free_pfn;
2343                 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
2344                         cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2345                         cc->zone->compact_cached_free_pfn = cc->free_pfn;
2346                 }
2347                 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
2348                         cc->migrate_pfn = start_pfn;
2349                         cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
2350                         cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
2351                 }
2352
2353                 if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn)
2354                         cc->whole_zone = true;
2355         }
2356
2357         last_migrated_pfn = 0;
2358
2359         /*
2360          * Migrate has separate cached PFNs for ASYNC and SYNC* migration on
2361          * the basis that some migrations will fail in ASYNC mode. However,
2362          * if the cached PFNs match and pageblocks are skipped due to having
2363          * no isolation candidates, then the sync state does not matter.
2364          * Until a pageblock with isolation candidates is found, keep the
2365          * cached PFNs in sync to avoid revisiting the same blocks.
2366          */
2367         update_cached = !sync &&
2368                 cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1];
2369
2370         trace_mm_compaction_begin(cc, start_pfn, end_pfn, sync);
2371
2372         /* lru_add_drain_all could be expensive with involving other CPUs */
2373         lru_add_drain();
2374
2375         while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) {
2376                 int err;
2377                 unsigned long iteration_start_pfn = cc->migrate_pfn;
2378
2379                 /*
2380                  * Avoid multiple rescans which can happen if a page cannot be
2381                  * isolated (dirty/writeback in async mode) or if the migrated
2382                  * pages are being allocated before the pageblock is cleared.
2383                  * The first rescan will capture the entire pageblock for
2384                  * migration. If it fails, it'll be marked skip and scanning
2385                  * will proceed as normal.
2386                  */
2387                 cc->rescan = false;
2388                 if (pageblock_start_pfn(last_migrated_pfn) ==
2389                     pageblock_start_pfn(iteration_start_pfn)) {
2390                         cc->rescan = true;
2391                 }
2392
2393                 switch (isolate_migratepages(cc)) {
2394                 case ISOLATE_ABORT:
2395                         ret = COMPACT_CONTENDED;
2396                         putback_movable_pages(&cc->migratepages);
2397                         cc->nr_migratepages = 0;
2398                         goto out;
2399                 case ISOLATE_NONE:
2400                         if (update_cached) {
2401                                 cc->zone->compact_cached_migrate_pfn[1] =
2402                                         cc->zone->compact_cached_migrate_pfn[0];
2403                         }
2404
2405                         /*
2406                          * We haven't isolated and migrated anything, but
2407                          * there might still be unflushed migrations from
2408                          * previous cc->order aligned block.
2409                          */
2410                         goto check_drain;
2411                 case ISOLATE_SUCCESS:
2412                         update_cached = false;
2413                         last_migrated_pfn = iteration_start_pfn;
2414                 }
2415
2416                 err = migrate_pages(&cc->migratepages, compaction_alloc,
2417                                 compaction_free, (unsigned long)cc, cc->mode,
2418                                 MR_COMPACTION, &nr_succeeded);
2419
2420                 trace_mm_compaction_migratepages(cc, nr_succeeded);
2421
2422                 /* All pages were either migrated or will be released */
2423                 cc->nr_migratepages = 0;
2424                 if (err) {
2425                         putback_movable_pages(&cc->migratepages);
2426                         /*
2427                          * migrate_pages() may return -ENOMEM when scanners meet
2428                          * and we want compact_finished() to detect it
2429                          */
2430                         if (err == -ENOMEM && !compact_scanners_met(cc)) {
2431                                 ret = COMPACT_CONTENDED;
2432                                 goto out;
2433                         }
2434                         /*
2435                          * We failed to migrate at least one page in the current
2436                          * order-aligned block, so skip the rest of it.
2437                          */
2438                         if (cc->direct_compaction &&
2439                                                 (cc->mode == MIGRATE_ASYNC)) {
2440                                 cc->migrate_pfn = block_end_pfn(
2441                                                 cc->migrate_pfn - 1, cc->order);
2442                                 /* Draining pcplists is useless in this case */
2443                                 last_migrated_pfn = 0;
2444                         }
2445                 }
2446
2447 check_drain:
2448                 /*
2449                  * Has the migration scanner moved away from the previous
2450                  * cc->order aligned block where we migrated from? If yes,
2451                  * flush the pages that were freed, so that they can merge and
2452                  * compact_finished() can detect immediately if allocation
2453                  * would succeed.
2454                  */
2455                 if (cc->order > 0 && last_migrated_pfn) {
2456                         unsigned long current_block_start =
2457                                 block_start_pfn(cc->migrate_pfn, cc->order);
2458
2459                         if (last_migrated_pfn < current_block_start) {
2460                                 lru_add_drain_cpu_zone(cc->zone);
2461                                 /* No more flushing until we migrate again */
2462                                 last_migrated_pfn = 0;
2463                         }
2464                 }
2465
2466                 /* Stop if a page has been captured */
2467                 if (capc && capc->page) {
2468                         ret = COMPACT_SUCCESS;
2469                         break;
2470                 }
2471         }
2472
2473 out:
2474         /*
2475          * Release free pages and update where the free scanner should restart,
2476          * so we don't leave any returned pages behind in the next attempt.
2477          */
2478         if (cc->nr_freepages > 0) {
2479                 unsigned long free_pfn = release_freepages(&cc->freepages);
2480
2481                 cc->nr_freepages = 0;
2482                 VM_BUG_ON(free_pfn == 0);
2483                 /* The cached pfn is always the first in a pageblock */
2484                 free_pfn = pageblock_start_pfn(free_pfn);
2485                 /*
2486                  * Only go back, not forward. The cached pfn might have been
2487                  * already reset to zone end in compact_finished()
2488                  */
2489                 if (free_pfn > cc->zone->compact_cached_free_pfn)
2490                         cc->zone->compact_cached_free_pfn = free_pfn;
2491         }
2492
2493         count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
2494         count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
2495
2496         trace_mm_compaction_end(cc, start_pfn, end_pfn, sync, ret);
2497
2498         return ret;
2499 }
2500
2501 static enum compact_result compact_zone_order(struct zone *zone, int order,
2502                 gfp_t gfp_mask, enum compact_priority prio,
2503                 unsigned int alloc_flags, int highest_zoneidx,
2504                 struct page **capture)
2505 {
2506         enum compact_result ret;
2507         struct compact_control cc = {
2508                 .order = order,
2509                 .search_order = order,
2510                 .gfp_mask = gfp_mask,
2511                 .zone = zone,
2512                 .mode = (prio == COMPACT_PRIO_ASYNC) ?
2513                                         MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT,
2514                 .alloc_flags = alloc_flags,
2515                 .highest_zoneidx = highest_zoneidx,
2516                 .direct_compaction = true,
2517                 .whole_zone = (prio == MIN_COMPACT_PRIORITY),
2518                 .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
2519                 .ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
2520         };
2521         struct capture_control capc = {
2522                 .cc = &cc,
2523                 .page = NULL,
2524         };
2525
2526         /*
2527          * Make sure the structs are really initialized before we expose the
2528          * capture control, in case we are interrupted and the interrupt handler
2529          * frees a page.
2530          */
2531         barrier();
2532         WRITE_ONCE(current->capture_control, &capc);
2533
2534         ret = compact_zone(&cc, &capc);
2535
2536         VM_BUG_ON(!list_empty(&cc.freepages));
2537         VM_BUG_ON(!list_empty(&cc.migratepages));
2538
2539         /*
2540          * Make sure we hide capture control first before we read the captured
2541          * page pointer, otherwise an interrupt could free and capture a page
2542          * and we would leak it.
2543          */
2544         WRITE_ONCE(current->capture_control, NULL);
2545         *capture = READ_ONCE(capc.page);
2546         /*
2547          * Technically, it is also possible that compaction is skipped but
2548          * the page is still captured out of luck(IRQ came and freed the page).
2549          * Returning COMPACT_SUCCESS in such cases helps in properly accounting
2550          * the COMPACT[STALL|FAIL] when compaction is skipped.
2551          */
2552         if (*capture)
2553                 ret = COMPACT_SUCCESS;
2554
2555         return ret;
2556 }
2557
2558 int sysctl_extfrag_threshold = 500;
2559
2560 /**
2561  * try_to_compact_pages - Direct compact to satisfy a high-order allocation
2562  * @gfp_mask: The GFP mask of the current allocation
2563  * @order: The order of the current allocation
2564  * @alloc_flags: The allocation flags of the current allocation
2565  * @ac: The context of current allocation
2566  * @prio: Determines how hard direct compaction should try to succeed
2567  * @capture: Pointer to free page created by compaction will be stored here
2568  *
2569  * This is the main entry point for direct page compaction.
2570  */
2571 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
2572                 unsigned int alloc_flags, const struct alloc_context *ac,
2573                 enum compact_priority prio, struct page **capture)
2574 {
2575         int may_perform_io = (__force int)(gfp_mask & __GFP_IO);
2576         struct zoneref *z;
2577         struct zone *zone;
2578         enum compact_result rc = COMPACT_SKIPPED;
2579
2580         /*
2581          * Check if the GFP flags allow compaction - GFP_NOIO is really
2582          * tricky context because the migration might require IO
2583          */
2584         if (!may_perform_io)
2585                 return COMPACT_SKIPPED;
2586
2587         trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
2588
2589         /* Compact each zone in the list */
2590         for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2591                                         ac->highest_zoneidx, ac->nodemask) {
2592                 enum compact_result status;
2593
2594                 if (prio > MIN_COMPACT_PRIORITY
2595                                         && compaction_deferred(zone, order)) {
2596                         rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
2597                         continue;
2598                 }
2599
2600                 status = compact_zone_order(zone, order, gfp_mask, prio,
2601                                 alloc_flags, ac->highest_zoneidx, capture);
2602                 rc = max(status, rc);
2603
2604                 /* The allocation should succeed, stop compacting */
2605                 if (status == COMPACT_SUCCESS) {
2606                         /*
2607                          * We think the allocation will succeed in this zone,
2608                          * but it is not certain, hence the false. The caller
2609                          * will repeat this with true if allocation indeed
2610                          * succeeds in this zone.
2611                          */
2612                         compaction_defer_reset(zone, order, false);
2613
2614                         break;
2615                 }
2616
2617                 if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
2618                                         status == COMPACT_PARTIAL_SKIPPED))
2619                         /*
2620                          * We think that allocation won't succeed in this zone
2621                          * so we defer compaction there. If it ends up
2622                          * succeeding after all, it will be reset.
2623                          */
2624                         defer_compaction(zone, order);
2625
2626                 /*
2627                  * We might have stopped compacting due to need_resched() in
2628                  * async compaction, or due to a fatal signal detected. In that
2629                  * case do not try further zones
2630                  */
2631                 if ((prio == COMPACT_PRIO_ASYNC && need_resched())
2632                                         || fatal_signal_pending(current))
2633                         break;
2634         }
2635
2636         return rc;
2637 }
2638
2639 /*
2640  * Compact all zones within a node till each zone's fragmentation score
2641  * reaches within proactive compaction thresholds (as determined by the
2642  * proactiveness tunable).
2643  *
2644  * It is possible that the function returns before reaching score targets
2645  * due to various back-off conditions, such as, contention on per-node or
2646  * per-zone locks.
2647  */
2648 static void proactive_compact_node(pg_data_t *pgdat)
2649 {
2650         int zoneid;
2651         struct zone *zone;
2652         struct compact_control cc = {
2653                 .order = -1,
2654                 .mode = MIGRATE_SYNC_LIGHT,
2655                 .ignore_skip_hint = true,
2656                 .whole_zone = true,
2657                 .gfp_mask = GFP_KERNEL,
2658                 .proactive_compaction = true,
2659         };
2660
2661         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2662                 zone = &pgdat->node_zones[zoneid];
2663                 if (!populated_zone(zone))
2664                         continue;
2665
2666                 cc.zone = zone;
2667
2668                 compact_zone(&cc, NULL);
2669
2670                 VM_BUG_ON(!list_empty(&cc.freepages));
2671                 VM_BUG_ON(!list_empty(&cc.migratepages));
2672         }
2673 }
2674
2675 /* Compact all zones within a node */
2676 static void compact_node(int nid)
2677 {
2678         pg_data_t *pgdat = NODE_DATA(nid);
2679         int zoneid;
2680         struct zone *zone;
2681         struct compact_control cc = {
2682                 .order = -1,
2683                 .mode = MIGRATE_SYNC,
2684                 .ignore_skip_hint = true,
2685                 .whole_zone = true,
2686                 .gfp_mask = GFP_KERNEL,
2687         };
2688
2689
2690         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2691
2692                 zone = &pgdat->node_zones[zoneid];
2693                 if (!populated_zone(zone))
2694                         continue;
2695
2696                 cc.zone = zone;
2697
2698                 compact_zone(&cc, NULL);
2699
2700                 VM_BUG_ON(!list_empty(&cc.freepages));
2701                 VM_BUG_ON(!list_empty(&cc.migratepages));
2702         }
2703 }
2704
2705 /* Compact all nodes in the system */
2706 static void compact_nodes(void)
2707 {
2708         int nid;
2709
2710         /* Flush pending updates to the LRU lists */
2711         lru_add_drain_all();
2712
2713         for_each_online_node(nid)
2714                 compact_node(nid);
2715 }
2716
2717 /*
2718  * Tunable for proactive compaction. It determines how
2719  * aggressively the kernel should compact memory in the
2720  * background. It takes values in the range [0, 100].
2721  */
2722 unsigned int __read_mostly sysctl_compaction_proactiveness = 20;
2723
2724 int compaction_proactiveness_sysctl_handler(struct ctl_table *table, int write,
2725                 void *buffer, size_t *length, loff_t *ppos)
2726 {
2727         int rc, nid;
2728
2729         rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
2730         if (rc)
2731                 return rc;
2732
2733         if (write && sysctl_compaction_proactiveness) {
2734                 for_each_online_node(nid) {
2735                         pg_data_t *pgdat = NODE_DATA(nid);
2736
2737                         if (pgdat->proactive_compact_trigger)
2738                                 continue;
2739
2740                         pgdat->proactive_compact_trigger = true;
2741                         wake_up_interruptible(&pgdat->kcompactd_wait);
2742                 }
2743         }
2744
2745         return 0;
2746 }
2747
2748 /*
2749  * This is the entry point for compacting all nodes via
2750  * /proc/sys/vm/compact_memory
2751  */
2752 int sysctl_compaction_handler(struct ctl_table *table, int write,
2753                         void *buffer, size_t *length, loff_t *ppos)
2754 {
2755         if (write)
2756                 compact_nodes();
2757
2758         return 0;
2759 }
2760
2761 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
2762 static ssize_t compact_store(struct device *dev,
2763                              struct device_attribute *attr,
2764                              const char *buf, size_t count)
2765 {
2766         int nid = dev->id;
2767
2768         if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
2769                 /* Flush pending updates to the LRU lists */
2770                 lru_add_drain_all();
2771
2772                 compact_node(nid);
2773         }
2774
2775         return count;
2776 }
2777 static DEVICE_ATTR_WO(compact);
2778
2779 int compaction_register_node(struct node *node)
2780 {
2781         return device_create_file(&node->dev, &dev_attr_compact);
2782 }
2783
2784 void compaction_unregister_node(struct node *node)
2785 {
2786         return device_remove_file(&node->dev, &dev_attr_compact);
2787 }
2788 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
2789
2790 static inline bool kcompactd_work_requested(pg_data_t *pgdat)
2791 {
2792         return pgdat->kcompactd_max_order > 0 || kthread_should_stop() ||
2793                 pgdat->proactive_compact_trigger;
2794 }
2795
2796 static bool kcompactd_node_suitable(pg_data_t *pgdat)
2797 {
2798         int zoneid;
2799         struct zone *zone;
2800         enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx;
2801
2802         for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) {
2803                 zone = &pgdat->node_zones[zoneid];
2804
2805                 if (!populated_zone(zone))
2806                         continue;
2807
2808                 if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
2809                                         highest_zoneidx) == COMPACT_CONTINUE)
2810                         return true;
2811         }
2812
2813         return false;
2814 }
2815
2816 static void kcompactd_do_work(pg_data_t *pgdat)
2817 {
2818         /*
2819          * With no special task, compact all zones so that a page of requested
2820          * order is allocatable.
2821          */
2822         int zoneid;
2823         struct zone *zone;
2824         struct compact_control cc = {
2825                 .order = pgdat->kcompactd_max_order,
2826                 .search_order = pgdat->kcompactd_max_order,
2827                 .highest_zoneidx = pgdat->kcompactd_highest_zoneidx,
2828                 .mode = MIGRATE_SYNC_LIGHT,
2829                 .ignore_skip_hint = false,
2830                 .gfp_mask = GFP_KERNEL,
2831         };
2832         trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
2833                                                         cc.highest_zoneidx);
2834         count_compact_event(KCOMPACTD_WAKE);
2835
2836         for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) {
2837                 int status;
2838
2839                 zone = &pgdat->node_zones[zoneid];
2840                 if (!populated_zone(zone))
2841                         continue;
2842
2843                 if (compaction_deferred(zone, cc.order))
2844                         continue;
2845
2846                 if (compaction_suitable(zone, cc.order, 0, zoneid) !=
2847                                                         COMPACT_CONTINUE)
2848                         continue;
2849
2850                 if (kthread_should_stop())
2851                         return;
2852
2853                 cc.zone = zone;
2854                 status = compact_zone(&cc, NULL);
2855
2856                 if (status == COMPACT_SUCCESS) {
2857                         compaction_defer_reset(zone, cc.order, false);
2858                 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
2859                         /*
2860                          * Buddy pages may become stranded on pcps that could
2861                          * otherwise coalesce on the zone's free area for
2862                          * order >= cc.order.  This is ratelimited by the
2863                          * upcoming deferral.
2864                          */
2865                         drain_all_pages(zone);
2866
2867                         /*
2868                          * We use sync migration mode here, so we defer like
2869                          * sync direct compaction does.
2870                          */
2871                         defer_compaction(zone, cc.order);
2872                 }
2873
2874                 count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2875                                      cc.total_migrate_scanned);
2876                 count_compact_events(KCOMPACTD_FREE_SCANNED,
2877                                      cc.total_free_scanned);
2878
2879                 VM_BUG_ON(!list_empty(&cc.freepages));
2880                 VM_BUG_ON(!list_empty(&cc.migratepages));
2881         }
2882
2883         /*
2884          * Regardless of success, we are done until woken up next. But remember
2885          * the requested order/highest_zoneidx in case it was higher/tighter
2886          * than our current ones
2887          */
2888         if (pgdat->kcompactd_max_order <= cc.order)
2889                 pgdat->kcompactd_max_order = 0;
2890         if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx)
2891                 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
2892 }
2893
2894 void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx)
2895 {
2896         if (!order)
2897                 return;
2898
2899         if (pgdat->kcompactd_max_order < order)
2900                 pgdat->kcompactd_max_order = order;
2901
2902         if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx)
2903                 pgdat->kcompactd_highest_zoneidx = highest_zoneidx;
2904
2905         /*
2906          * Pairs with implicit barrier in wait_event_freezable()
2907          * such that wakeups are not missed.
2908          */
2909         if (!wq_has_sleeper(&pgdat->kcompactd_wait))
2910                 return;
2911
2912         if (!kcompactd_node_suitable(pgdat))
2913                 return;
2914
2915         trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
2916                                                         highest_zoneidx);
2917         wake_up_interruptible(&pgdat->kcompactd_wait);
2918 }
2919
2920 /*
2921  * The background compaction daemon, started as a kernel thread
2922  * from the init process.
2923  */
2924 static int kcompactd(void *p)
2925 {
2926         pg_data_t *pgdat = (pg_data_t *)p;
2927         struct task_struct *tsk = current;
2928         long default_timeout = msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC);
2929         long timeout = default_timeout;
2930
2931         const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2932
2933         if (!cpumask_empty(cpumask))
2934                 set_cpus_allowed_ptr(tsk, cpumask);
2935
2936         set_freezable();
2937
2938         pgdat->kcompactd_max_order = 0;
2939         pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
2940
2941         while (!kthread_should_stop()) {
2942                 unsigned long pflags;
2943
2944                 /*
2945                  * Avoid the unnecessary wakeup for proactive compaction
2946                  * when it is disabled.
2947                  */
2948                 if (!sysctl_compaction_proactiveness)
2949                         timeout = MAX_SCHEDULE_TIMEOUT;
2950                 trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
2951                 if (wait_event_freezable_timeout(pgdat->kcompactd_wait,
2952                         kcompactd_work_requested(pgdat), timeout) &&
2953                         !pgdat->proactive_compact_trigger) {
2954
2955                         psi_memstall_enter(&pflags);
2956                         kcompactd_do_work(pgdat);
2957                         psi_memstall_leave(&pflags);
2958                         /*
2959                          * Reset the timeout value. The defer timeout from
2960                          * proactive compaction is lost here but that is fine
2961                          * as the condition of the zone changing substantionally
2962                          * then carrying on with the previous defer interval is
2963                          * not useful.
2964                          */
2965                         timeout = default_timeout;
2966                         continue;
2967                 }
2968
2969                 /*
2970                  * Start the proactive work with default timeout. Based
2971                  * on the fragmentation score, this timeout is updated.
2972                  */
2973                 timeout = default_timeout;
2974                 if (should_proactive_compact_node(pgdat)) {
2975                         unsigned int prev_score, score;
2976
2977                         prev_score = fragmentation_score_node(pgdat);
2978                         proactive_compact_node(pgdat);
2979                         score = fragmentation_score_node(pgdat);
2980                         /*
2981                          * Defer proactive compaction if the fragmentation
2982                          * score did not go down i.e. no progress made.
2983                          */
2984                         if (unlikely(score >= prev_score))
2985                                 timeout =
2986                                    default_timeout << COMPACT_MAX_DEFER_SHIFT;
2987                 }
2988                 if (unlikely(pgdat->proactive_compact_trigger))
2989                         pgdat->proactive_compact_trigger = false;
2990         }
2991
2992         return 0;
2993 }
2994
2995 /*
2996  * This kcompactd start function will be called by init and node-hot-add.
2997  * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
2998  */
2999 void kcompactd_run(int nid)
3000 {
3001         pg_data_t *pgdat = NODE_DATA(nid);
3002
3003         if (pgdat->kcompactd)
3004                 return;
3005
3006         pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
3007         if (IS_ERR(pgdat->kcompactd)) {
3008                 pr_err("Failed to start kcompactd on node %d\n", nid);
3009                 pgdat->kcompactd = NULL;
3010         }
3011 }
3012
3013 /*
3014  * Called by memory hotplug when all memory in a node is offlined. Caller must
3015  * be holding mem_hotplug_begin/done().
3016  */
3017 void kcompactd_stop(int nid)
3018 {
3019         struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
3020
3021         if (kcompactd) {
3022                 kthread_stop(kcompactd);
3023                 NODE_DATA(nid)->kcompactd = NULL;
3024         }
3025 }
3026
3027 /*
3028  * It's optimal to keep kcompactd on the same CPUs as their memory, but
3029  * not required for correctness. So if the last cpu in a node goes
3030  * away, we get changed to run anywhere: as the first one comes back,
3031  * restore their cpu bindings.
3032  */
3033 static int kcompactd_cpu_online(unsigned int cpu)
3034 {
3035         int nid;
3036
3037         for_each_node_state(nid, N_MEMORY) {
3038                 pg_data_t *pgdat = NODE_DATA(nid);
3039                 const struct cpumask *mask;
3040
3041                 mask = cpumask_of_node(pgdat->node_id);
3042
3043                 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3044                         /* One of our CPUs online: restore mask */
3045                         if (pgdat->kcompactd)
3046                                 set_cpus_allowed_ptr(pgdat->kcompactd, mask);
3047         }
3048         return 0;
3049 }
3050
3051 static int __init kcompactd_init(void)
3052 {
3053         int nid;
3054         int ret;
3055
3056         ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3057                                         "mm/compaction:online",
3058                                         kcompactd_cpu_online, NULL);
3059         if (ret < 0) {
3060                 pr_err("kcompactd: failed to register hotplug callbacks.\n");
3061                 return ret;
3062         }
3063
3064         for_each_node_state(nid, N_MEMORY)
3065                 kcompactd_run(nid);
3066         return 0;
3067 }
3068 subsys_initcall(kcompactd_init)
3069
3070 #endif /* CONFIG_COMPACTION */