1 // SPDX-License-Identifier: GPL-2.0
3 * linux/mm/compaction.c
5 * Memory compaction for the reduction of external fragmentation. Note that
6 * this heavily depends upon page migration to do all the real heavy
9 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
11 #include <linux/cpu.h>
12 #include <linux/swap.h>
13 #include <linux/migrate.h>
14 #include <linux/compaction.h>
15 #include <linux/mm_inline.h>
16 #include <linux/sched/signal.h>
17 #include <linux/backing-dev.h>
18 #include <linux/sysctl.h>
19 #include <linux/sysfs.h>
20 #include <linux/page-isolation.h>
21 #include <linux/kasan.h>
22 #include <linux/kthread.h>
23 #include <linux/freezer.h>
24 #include <linux/page_owner.h>
25 #include <linux/psi.h>
28 #ifdef CONFIG_COMPACTION
30 * Fragmentation score check interval for proactive compaction purposes.
32 #define HPAGE_FRAG_CHECK_INTERVAL_MSEC (500)
34 static inline void count_compact_event(enum vm_event_item item)
39 static inline void count_compact_events(enum vm_event_item item, long delta)
41 count_vm_events(item, delta);
44 #define count_compact_event(item) do { } while (0)
45 #define count_compact_events(item, delta) do { } while (0)
48 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
50 #define CREATE_TRACE_POINTS
51 #include <trace/events/compaction.h>
53 #define block_start_pfn(pfn, order) round_down(pfn, 1UL << (order))
54 #define block_end_pfn(pfn, order) ALIGN((pfn) + 1, 1UL << (order))
55 #define pageblock_start_pfn(pfn) block_start_pfn(pfn, pageblock_order)
56 #define pageblock_end_pfn(pfn) block_end_pfn(pfn, pageblock_order)
59 * Page order with-respect-to which proactive compaction
60 * calculates external fragmentation, which is used as
61 * the "fragmentation score" of a node/zone.
63 #if defined CONFIG_TRANSPARENT_HUGEPAGE
64 #define COMPACTION_HPAGE_ORDER HPAGE_PMD_ORDER
65 #elif defined CONFIG_HUGETLBFS
66 #define COMPACTION_HPAGE_ORDER HUGETLB_PAGE_ORDER
68 #define COMPACTION_HPAGE_ORDER (PMD_SHIFT - PAGE_SHIFT)
71 static unsigned long release_freepages(struct list_head *freelist)
73 struct page *page, *next;
74 unsigned long high_pfn = 0;
76 list_for_each_entry_safe(page, next, freelist, lru) {
77 unsigned long pfn = page_to_pfn(page);
87 static void split_map_pages(struct list_head *list)
89 unsigned int i, order, nr_pages;
90 struct page *page, *next;
93 list_for_each_entry_safe(page, next, list, lru) {
96 order = page_private(page);
97 nr_pages = 1 << order;
99 post_alloc_hook(page, order, __GFP_MOVABLE);
101 split_page(page, order);
103 for (i = 0; i < nr_pages; i++) {
104 list_add(&page->lru, &tmp_list);
109 list_splice(&tmp_list, list);
112 #ifdef CONFIG_COMPACTION
113 bool PageMovable(struct page *page)
115 const struct movable_operations *mops;
117 VM_BUG_ON_PAGE(!PageLocked(page), page);
118 if (!__PageMovable(page))
121 mops = page_movable_ops(page);
127 EXPORT_SYMBOL(PageMovable);
129 void __SetPageMovable(struct page *page, const struct movable_operations *mops)
131 VM_BUG_ON_PAGE(!PageLocked(page), page);
132 VM_BUG_ON_PAGE((unsigned long)mops & PAGE_MAPPING_MOVABLE, page);
133 page->mapping = (void *)((unsigned long)mops | PAGE_MAPPING_MOVABLE);
135 EXPORT_SYMBOL(__SetPageMovable);
137 void __ClearPageMovable(struct page *page)
139 VM_BUG_ON_PAGE(!PageMovable(page), page);
141 * This page still has the type of a movable page, but it's
142 * actually not movable any more.
144 page->mapping = (void *)PAGE_MAPPING_MOVABLE;
146 EXPORT_SYMBOL(__ClearPageMovable);
148 /* Do not skip compaction more than 64 times */
149 #define COMPACT_MAX_DEFER_SHIFT 6
152 * Compaction is deferred when compaction fails to result in a page
153 * allocation success. 1 << compact_defer_shift, compactions are skipped up
154 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
156 static void defer_compaction(struct zone *zone, int order)
158 zone->compact_considered = 0;
159 zone->compact_defer_shift++;
161 if (order < zone->compact_order_failed)
162 zone->compact_order_failed = order;
164 if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
165 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
167 trace_mm_compaction_defer_compaction(zone, order);
170 /* Returns true if compaction should be skipped this time */
171 static bool compaction_deferred(struct zone *zone, int order)
173 unsigned long defer_limit = 1UL << zone->compact_defer_shift;
175 if (order < zone->compact_order_failed)
178 /* Avoid possible overflow */
179 if (++zone->compact_considered >= defer_limit) {
180 zone->compact_considered = defer_limit;
184 trace_mm_compaction_deferred(zone, order);
190 * Update defer tracking counters after successful compaction of given order,
191 * which means an allocation either succeeded (alloc_success == true) or is
192 * expected to succeed.
194 void compaction_defer_reset(struct zone *zone, int order,
198 zone->compact_considered = 0;
199 zone->compact_defer_shift = 0;
201 if (order >= zone->compact_order_failed)
202 zone->compact_order_failed = order + 1;
204 trace_mm_compaction_defer_reset(zone, order);
207 /* Returns true if restarting compaction after many failures */
208 static bool compaction_restarting(struct zone *zone, int order)
210 if (order < zone->compact_order_failed)
213 return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
214 zone->compact_considered >= 1UL << zone->compact_defer_shift;
217 /* Returns true if the pageblock should be scanned for pages to isolate. */
218 static inline bool isolation_suitable(struct compact_control *cc,
221 if (cc->ignore_skip_hint)
224 return !get_pageblock_skip(page);
227 static void reset_cached_positions(struct zone *zone)
229 zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
230 zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
231 zone->compact_cached_free_pfn =
232 pageblock_start_pfn(zone_end_pfn(zone) - 1);
236 * Compound pages of >= pageblock_order should consistently be skipped until
237 * released. It is always pointless to compact pages of such order (if they are
238 * migratable), and the pageblocks they occupy cannot contain any free pages.
240 static bool pageblock_skip_persistent(struct page *page)
242 if (!PageCompound(page))
245 page = compound_head(page);
247 if (compound_order(page) >= pageblock_order)
254 __reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source,
257 struct page *page = pfn_to_online_page(pfn);
258 struct page *block_page;
259 struct page *end_page;
260 unsigned long block_pfn;
264 if (zone != page_zone(page))
266 if (pageblock_skip_persistent(page))
270 * If skip is already cleared do no further checking once the
271 * restart points have been set.
273 if (check_source && check_target && !get_pageblock_skip(page))
277 * If clearing skip for the target scanner, do not select a
278 * non-movable pageblock as the starting point.
280 if (!check_source && check_target &&
281 get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
284 /* Ensure the start of the pageblock or zone is online and valid */
285 block_pfn = pageblock_start_pfn(pfn);
286 block_pfn = max(block_pfn, zone->zone_start_pfn);
287 block_page = pfn_to_online_page(block_pfn);
293 /* Ensure the end of the pageblock or zone is online and valid */
294 block_pfn = pageblock_end_pfn(pfn) - 1;
295 block_pfn = min(block_pfn, zone_end_pfn(zone) - 1);
296 end_page = pfn_to_online_page(block_pfn);
301 * Only clear the hint if a sample indicates there is either a
302 * free page or an LRU page in the block. One or other condition
303 * is necessary for the block to be a migration source/target.
306 if (check_source && PageLRU(page)) {
307 clear_pageblock_skip(page);
311 if (check_target && PageBuddy(page)) {
312 clear_pageblock_skip(page);
316 page += (1 << PAGE_ALLOC_COSTLY_ORDER);
317 } while (page <= end_page);
323 * This function is called to clear all cached information on pageblocks that
324 * should be skipped for page isolation when the migrate and free page scanner
327 static void __reset_isolation_suitable(struct zone *zone)
329 unsigned long migrate_pfn = zone->zone_start_pfn;
330 unsigned long free_pfn = zone_end_pfn(zone) - 1;
331 unsigned long reset_migrate = free_pfn;
332 unsigned long reset_free = migrate_pfn;
333 bool source_set = false;
334 bool free_set = false;
336 if (!zone->compact_blockskip_flush)
339 zone->compact_blockskip_flush = false;
342 * Walk the zone and update pageblock skip information. Source looks
343 * for PageLRU while target looks for PageBuddy. When the scanner
344 * is found, both PageBuddy and PageLRU are checked as the pageblock
345 * is suitable as both source and target.
347 for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages,
348 free_pfn -= pageblock_nr_pages) {
351 /* Update the migrate PFN */
352 if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) &&
353 migrate_pfn < reset_migrate) {
355 reset_migrate = migrate_pfn;
356 zone->compact_init_migrate_pfn = reset_migrate;
357 zone->compact_cached_migrate_pfn[0] = reset_migrate;
358 zone->compact_cached_migrate_pfn[1] = reset_migrate;
361 /* Update the free PFN */
362 if (__reset_isolation_pfn(zone, free_pfn, free_set, true) &&
363 free_pfn > reset_free) {
365 reset_free = free_pfn;
366 zone->compact_init_free_pfn = reset_free;
367 zone->compact_cached_free_pfn = reset_free;
371 /* Leave no distance if no suitable block was reset */
372 if (reset_migrate >= reset_free) {
373 zone->compact_cached_migrate_pfn[0] = migrate_pfn;
374 zone->compact_cached_migrate_pfn[1] = migrate_pfn;
375 zone->compact_cached_free_pfn = free_pfn;
379 void reset_isolation_suitable(pg_data_t *pgdat)
383 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
384 struct zone *zone = &pgdat->node_zones[zoneid];
385 if (!populated_zone(zone))
388 /* Only flush if a full compaction finished recently */
389 if (zone->compact_blockskip_flush)
390 __reset_isolation_suitable(zone);
395 * Sets the pageblock skip bit if it was clear. Note that this is a hint as
396 * locks are not required for read/writers. Returns true if it was already set.
398 static bool test_and_set_skip(struct compact_control *cc, struct page *page,
403 /* Do no update if skip hint is being ignored */
404 if (cc->ignore_skip_hint)
407 if (!IS_ALIGNED(pfn, pageblock_nr_pages))
410 skip = get_pageblock_skip(page);
411 if (!skip && !cc->no_set_skip_hint)
412 set_pageblock_skip(page);
417 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
419 struct zone *zone = cc->zone;
421 pfn = pageblock_end_pfn(pfn);
423 /* Set for isolation rather than compaction */
424 if (cc->no_set_skip_hint)
427 if (pfn > zone->compact_cached_migrate_pfn[0])
428 zone->compact_cached_migrate_pfn[0] = pfn;
429 if (cc->mode != MIGRATE_ASYNC &&
430 pfn > zone->compact_cached_migrate_pfn[1])
431 zone->compact_cached_migrate_pfn[1] = pfn;
435 * If no pages were isolated then mark this pageblock to be skipped in the
436 * future. The information is later cleared by __reset_isolation_suitable().
438 static void update_pageblock_skip(struct compact_control *cc,
439 struct page *page, unsigned long pfn)
441 struct zone *zone = cc->zone;
443 if (cc->no_set_skip_hint)
449 set_pageblock_skip(page);
451 /* Update where async and sync compaction should restart */
452 if (pfn < zone->compact_cached_free_pfn)
453 zone->compact_cached_free_pfn = pfn;
456 static inline bool isolation_suitable(struct compact_control *cc,
462 static inline bool pageblock_skip_persistent(struct page *page)
467 static inline void update_pageblock_skip(struct compact_control *cc,
468 struct page *page, unsigned long pfn)
472 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
476 static bool test_and_set_skip(struct compact_control *cc, struct page *page,
481 #endif /* CONFIG_COMPACTION */
484 * Compaction requires the taking of some coarse locks that are potentially
485 * very heavily contended. For async compaction, trylock and record if the
486 * lock is contended. The lock will still be acquired but compaction will
487 * abort when the current block is finished regardless of success rate.
488 * Sync compaction acquires the lock.
490 * Always returns true which makes it easier to track lock state in callers.
492 static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags,
493 struct compact_control *cc)
496 /* Track if the lock is contended in async mode */
497 if (cc->mode == MIGRATE_ASYNC && !cc->contended) {
498 if (spin_trylock_irqsave(lock, *flags))
501 cc->contended = true;
504 spin_lock_irqsave(lock, *flags);
509 * Compaction requires the taking of some coarse locks that are potentially
510 * very heavily contended. The lock should be periodically unlocked to avoid
511 * having disabled IRQs for a long time, even when there is nobody waiting on
512 * the lock. It might also be that allowing the IRQs will result in
513 * need_resched() becoming true. If scheduling is needed, compaction schedules.
514 * Either compaction type will also abort if a fatal signal is pending.
515 * In either case if the lock was locked, it is dropped and not regained.
517 * Returns true if compaction should abort due to fatal signal pending.
518 * Returns false when compaction can continue.
520 static bool compact_unlock_should_abort(spinlock_t *lock,
521 unsigned long flags, bool *locked, struct compact_control *cc)
524 spin_unlock_irqrestore(lock, flags);
528 if (fatal_signal_pending(current)) {
529 cc->contended = true;
539 * Isolate free pages onto a private freelist. If @strict is true, will abort
540 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
541 * (even though it may still end up isolating some pages).
543 static unsigned long isolate_freepages_block(struct compact_control *cc,
544 unsigned long *start_pfn,
545 unsigned long end_pfn,
546 struct list_head *freelist,
550 int nr_scanned = 0, total_isolated = 0;
552 unsigned long flags = 0;
554 unsigned long blockpfn = *start_pfn;
557 /* Strict mode is for isolation, speed is secondary */
561 cursor = pfn_to_page(blockpfn);
563 /* Isolate free pages. */
564 for (; blockpfn < end_pfn; blockpfn += stride, cursor += stride) {
566 struct page *page = cursor;
569 * Periodically drop the lock (if held) regardless of its
570 * contention, to give chance to IRQs. Abort if fatal signal
573 if (!(blockpfn % COMPACT_CLUSTER_MAX)
574 && compact_unlock_should_abort(&cc->zone->lock, flags,
581 * For compound pages such as THP and hugetlbfs, we can save
582 * potentially a lot of iterations if we skip them at once.
583 * The check is racy, but we can consider only valid values
584 * and the only danger is skipping too much.
586 if (PageCompound(page)) {
587 const unsigned int order = compound_order(page);
589 if (likely(order < MAX_ORDER)) {
590 blockpfn += (1UL << order) - 1;
591 cursor += (1UL << order) - 1;
596 if (!PageBuddy(page))
599 /* If we already hold the lock, we can skip some rechecking. */
601 locked = compact_lock_irqsave(&cc->zone->lock,
604 /* Recheck this is a buddy page under lock */
605 if (!PageBuddy(page))
609 /* Found a free page, will break it into order-0 pages */
610 order = buddy_order(page);
611 isolated = __isolate_free_page(page, order);
614 set_page_private(page, order);
616 nr_scanned += isolated - 1;
617 total_isolated += isolated;
618 cc->nr_freepages += isolated;
619 list_add_tail(&page->lru, freelist);
621 if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
622 blockpfn += isolated;
625 /* Advance to the end of split page */
626 blockpfn += isolated - 1;
627 cursor += isolated - 1;
639 spin_unlock_irqrestore(&cc->zone->lock, flags);
642 * There is a tiny chance that we have read bogus compound_order(),
643 * so be careful to not go outside of the pageblock.
645 if (unlikely(blockpfn > end_pfn))
648 trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
649 nr_scanned, total_isolated);
651 /* Record how far we have got within the block */
652 *start_pfn = blockpfn;
655 * If strict isolation is requested by CMA then check that all the
656 * pages requested were isolated. If there were any failures, 0 is
657 * returned and CMA will fail.
659 if (strict && blockpfn < end_pfn)
662 cc->total_free_scanned += nr_scanned;
664 count_compact_events(COMPACTISOLATED, total_isolated);
665 return total_isolated;
669 * isolate_freepages_range() - isolate free pages.
670 * @cc: Compaction control structure.
671 * @start_pfn: The first PFN to start isolating.
672 * @end_pfn: The one-past-last PFN.
674 * Non-free pages, invalid PFNs, or zone boundaries within the
675 * [start_pfn, end_pfn) range are considered errors, cause function to
676 * undo its actions and return zero.
678 * Otherwise, function returns one-past-the-last PFN of isolated page
679 * (which may be greater then end_pfn if end fell in a middle of
683 isolate_freepages_range(struct compact_control *cc,
684 unsigned long start_pfn, unsigned long end_pfn)
686 unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
690 block_start_pfn = pageblock_start_pfn(pfn);
691 if (block_start_pfn < cc->zone->zone_start_pfn)
692 block_start_pfn = cc->zone->zone_start_pfn;
693 block_end_pfn = pageblock_end_pfn(pfn);
695 for (; pfn < end_pfn; pfn += isolated,
696 block_start_pfn = block_end_pfn,
697 block_end_pfn += pageblock_nr_pages) {
698 /* Protect pfn from changing by isolate_freepages_block */
699 unsigned long isolate_start_pfn = pfn;
701 block_end_pfn = min(block_end_pfn, end_pfn);
704 * pfn could pass the block_end_pfn if isolated freepage
705 * is more than pageblock order. In this case, we adjust
706 * scanning range to right one.
708 if (pfn >= block_end_pfn) {
709 block_start_pfn = pageblock_start_pfn(pfn);
710 block_end_pfn = pageblock_end_pfn(pfn);
711 block_end_pfn = min(block_end_pfn, end_pfn);
714 if (!pageblock_pfn_to_page(block_start_pfn,
715 block_end_pfn, cc->zone))
718 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
719 block_end_pfn, &freelist, 0, true);
722 * In strict mode, isolate_freepages_block() returns 0 if
723 * there are any holes in the block (ie. invalid PFNs or
730 * If we managed to isolate pages, it is always (1 << n) *
731 * pageblock_nr_pages for some non-negative n. (Max order
732 * page may span two pageblocks).
736 /* __isolate_free_page() does not map the pages */
737 split_map_pages(&freelist);
740 /* Loop terminated early, cleanup. */
741 release_freepages(&freelist);
745 /* We don't use freelists for anything. */
749 /* Similar to reclaim, but different enough that they don't share logic */
750 static bool too_many_isolated(pg_data_t *pgdat)
754 unsigned long active, inactive, isolated;
756 inactive = node_page_state(pgdat, NR_INACTIVE_FILE) +
757 node_page_state(pgdat, NR_INACTIVE_ANON);
758 active = node_page_state(pgdat, NR_ACTIVE_FILE) +
759 node_page_state(pgdat, NR_ACTIVE_ANON);
760 isolated = node_page_state(pgdat, NR_ISOLATED_FILE) +
761 node_page_state(pgdat, NR_ISOLATED_ANON);
763 too_many = isolated > (inactive + active) / 2;
765 wake_throttle_isolated(pgdat);
771 * isolate_migratepages_block() - isolate all migrate-able pages within
773 * @cc: Compaction control structure.
774 * @low_pfn: The first PFN to isolate
775 * @end_pfn: The one-past-the-last PFN to isolate, within same pageblock
776 * @mode: Isolation mode to be used.
778 * Isolate all pages that can be migrated from the range specified by
779 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
780 * Returns errno, like -EAGAIN or -EINTR in case e.g signal pending or congestion,
781 * -ENOMEM in case we could not allocate a page, or 0.
782 * cc->migrate_pfn will contain the next pfn to scan.
784 * The pages are isolated on cc->migratepages list (not required to be empty),
785 * and cc->nr_migratepages is updated accordingly.
788 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
789 unsigned long end_pfn, isolate_mode_t mode)
791 pg_data_t *pgdat = cc->zone->zone_pgdat;
792 unsigned long nr_scanned = 0, nr_isolated = 0;
793 struct lruvec *lruvec;
794 unsigned long flags = 0;
795 struct lruvec *locked = NULL;
796 struct page *page = NULL, *valid_page = NULL;
797 struct address_space *mapping;
798 unsigned long start_pfn = low_pfn;
799 bool skip_on_failure = false;
800 unsigned long next_skip_pfn = 0;
801 bool skip_updated = false;
804 cc->migrate_pfn = low_pfn;
807 * Ensure that there are not too many pages isolated from the LRU
808 * list by either parallel reclaimers or compaction. If there are,
809 * delay for some time until fewer pages are isolated
811 while (unlikely(too_many_isolated(pgdat))) {
812 /* stop isolation if there are still pages not migrated */
813 if (cc->nr_migratepages)
816 /* async migration should just abort */
817 if (cc->mode == MIGRATE_ASYNC)
820 reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
822 if (fatal_signal_pending(current))
828 if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
829 skip_on_failure = true;
830 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
833 /* Time to isolate some pages for migration */
834 for (; low_pfn < end_pfn; low_pfn++) {
836 if (skip_on_failure && low_pfn >= next_skip_pfn) {
838 * We have isolated all migration candidates in the
839 * previous order-aligned block, and did not skip it due
840 * to failure. We should migrate the pages now and
841 * hopefully succeed compaction.
847 * We failed to isolate in the previous order-aligned
848 * block. Set the new boundary to the end of the
849 * current block. Note we can't simply increase
850 * next_skip_pfn by 1 << order, as low_pfn might have
851 * been incremented by a higher number due to skipping
852 * a compound or a high-order buddy page in the
853 * previous loop iteration.
855 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
859 * Periodically drop the lock (if held) regardless of its
860 * contention, to give chance to IRQs. Abort completely if
861 * a fatal signal is pending.
863 if (!(low_pfn % COMPACT_CLUSTER_MAX)) {
865 unlock_page_lruvec_irqrestore(locked, flags);
869 if (fatal_signal_pending(current)) {
870 cc->contended = true;
881 page = pfn_to_page(low_pfn);
884 * Check if the pageblock has already been marked skipped.
885 * Only the aligned PFN is checked as the caller isolates
886 * COMPACT_CLUSTER_MAX at a time so the second call must
887 * not falsely conclude that the block should be skipped.
889 if (!valid_page && IS_ALIGNED(low_pfn, pageblock_nr_pages)) {
890 if (!isolation_suitable(cc, page)) {
898 if (PageHuge(page) && cc->alloc_contig) {
899 ret = isolate_or_dissolve_huge_page(page, &cc->migratepages);
902 * Fail isolation in case isolate_or_dissolve_huge_page()
903 * reports an error. In case of -ENOMEM, abort right away.
906 /* Do not report -EBUSY down the chain */
909 low_pfn += compound_nr(page) - 1;
913 if (PageHuge(page)) {
915 * Hugepage was successfully isolated and placed
916 * on the cc->migratepages list.
918 low_pfn += compound_nr(page) - 1;
919 goto isolate_success_no_list;
923 * Ok, the hugepage was dissolved. Now these pages are
924 * Buddy and cannot be re-allocated because they are
925 * isolated. Fall-through as the check below handles
931 * Skip if free. We read page order here without zone lock
932 * which is generally unsafe, but the race window is small and
933 * the worst thing that can happen is that we skip some
934 * potential isolation targets.
936 if (PageBuddy(page)) {
937 unsigned long freepage_order = buddy_order_unsafe(page);
940 * Without lock, we cannot be sure that what we got is
941 * a valid page order. Consider only values in the
942 * valid order range to prevent low_pfn overflow.
944 if (freepage_order > 0 && freepage_order < MAX_ORDER)
945 low_pfn += (1UL << freepage_order) - 1;
950 * Regardless of being on LRU, compound pages such as THP and
951 * hugetlbfs are not to be compacted unless we are attempting
952 * an allocation much larger than the huge page size (eg CMA).
953 * We can potentially save a lot of iterations if we skip them
954 * at once. The check is racy, but we can consider only valid
955 * values and the only danger is skipping too much.
957 if (PageCompound(page) && !cc->alloc_contig) {
958 const unsigned int order = compound_order(page);
960 if (likely(order < MAX_ORDER))
961 low_pfn += (1UL << order) - 1;
966 * Check may be lockless but that's ok as we recheck later.
967 * It's possible to migrate LRU and non-lru movable pages.
968 * Skip any other type of page
970 if (!PageLRU(page)) {
972 * __PageMovable can return false positive so we need
973 * to verify it under page_lock.
975 if (unlikely(__PageMovable(page)) &&
976 !PageIsolated(page)) {
978 unlock_page_lruvec_irqrestore(locked, flags);
982 if (!isolate_movable_page(page, mode))
983 goto isolate_success;
990 * Migration will fail if an anonymous page is pinned in memory,
991 * so avoid taking lru_lock and isolating it unnecessarily in an
992 * admittedly racy check.
994 mapping = page_mapping(page);
995 if (!mapping && page_count(page) > page_mapcount(page))
999 * Only allow to migrate anonymous pages in GFP_NOFS context
1000 * because those do not depend on fs locks.
1002 if (!(cc->gfp_mask & __GFP_FS) && mapping)
1006 * Be careful not to clear PageLRU until after we're
1007 * sure the page is not being freed elsewhere -- the
1008 * page release code relies on it.
1010 if (unlikely(!get_page_unless_zero(page)))
1013 /* Only take pages on LRU: a check now makes later tests safe */
1015 goto isolate_fail_put;
1017 /* Compaction might skip unevictable pages but CMA takes them */
1018 if (!(mode & ISOLATE_UNEVICTABLE) && PageUnevictable(page))
1019 goto isolate_fail_put;
1022 * To minimise LRU disruption, the caller can indicate with
1023 * ISOLATE_ASYNC_MIGRATE that it only wants to isolate pages
1024 * it will be able to migrate without blocking - clean pages
1025 * for the most part. PageWriteback would require blocking.
1027 if ((mode & ISOLATE_ASYNC_MIGRATE) && PageWriteback(page))
1028 goto isolate_fail_put;
1030 if ((mode & ISOLATE_ASYNC_MIGRATE) && PageDirty(page)) {
1034 * Only pages without mappings or that have a
1035 * ->migrate_folio callback are possible to migrate
1036 * without blocking. However, we can be racing with
1037 * truncation so it's necessary to lock the page
1038 * to stabilise the mapping as truncation holds
1039 * the page lock until after the page is removed
1040 * from the page cache.
1042 if (!trylock_page(page))
1043 goto isolate_fail_put;
1045 mapping = page_mapping(page);
1046 migrate_dirty = !mapping ||
1047 mapping->a_ops->migrate_folio;
1050 goto isolate_fail_put;
1053 /* Try isolate the page */
1054 if (!TestClearPageLRU(page))
1055 goto isolate_fail_put;
1057 lruvec = folio_lruvec(page_folio(page));
1059 /* If we already hold the lock, we can skip some rechecking */
1060 if (lruvec != locked) {
1062 unlock_page_lruvec_irqrestore(locked, flags);
1064 compact_lock_irqsave(&lruvec->lru_lock, &flags, cc);
1067 lruvec_memcg_debug(lruvec, page_folio(page));
1069 /* Try get exclusive access under lock */
1070 if (!skip_updated) {
1071 skip_updated = true;
1072 if (test_and_set_skip(cc, page, low_pfn))
1077 * Page become compound since the non-locked check,
1078 * and it's on LRU. It can only be a THP so the order
1079 * is safe to read and it's 0 for tail pages.
1081 if (unlikely(PageCompound(page) && !cc->alloc_contig)) {
1082 low_pfn += compound_nr(page) - 1;
1084 goto isolate_fail_put;
1088 /* The whole page is taken off the LRU; skip the tail pages. */
1089 if (PageCompound(page))
1090 low_pfn += compound_nr(page) - 1;
1092 /* Successfully isolated */
1093 del_page_from_lru_list(page, lruvec);
1094 mod_node_page_state(page_pgdat(page),
1095 NR_ISOLATED_ANON + page_is_file_lru(page),
1096 thp_nr_pages(page));
1099 list_add(&page->lru, &cc->migratepages);
1100 isolate_success_no_list:
1101 cc->nr_migratepages += compound_nr(page);
1102 nr_isolated += compound_nr(page);
1103 nr_scanned += compound_nr(page) - 1;
1106 * Avoid isolating too much unless this block is being
1107 * rescanned (e.g. dirty/writeback pages, parallel allocation)
1108 * or a lock is contended. For contention, isolate quickly to
1109 * potentially remove one source of contention.
1111 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX &&
1112 !cc->rescan && !cc->contended) {
1120 /* Avoid potential deadlock in freeing page under lru_lock */
1122 unlock_page_lruvec_irqrestore(locked, flags);
1128 if (!skip_on_failure && ret != -ENOMEM)
1132 * We have isolated some pages, but then failed. Release them
1133 * instead of migrating, as we cannot form the cc->order buddy
1138 unlock_page_lruvec_irqrestore(locked, flags);
1141 putback_movable_pages(&cc->migratepages);
1142 cc->nr_migratepages = 0;
1146 if (low_pfn < next_skip_pfn) {
1147 low_pfn = next_skip_pfn - 1;
1149 * The check near the loop beginning would have updated
1150 * next_skip_pfn too, but this is a bit simpler.
1152 next_skip_pfn += 1UL << cc->order;
1160 * The PageBuddy() check could have potentially brought us outside
1161 * the range to be scanned.
1163 if (unlikely(low_pfn > end_pfn))
1170 unlock_page_lruvec_irqrestore(locked, flags);
1177 * Updated the cached scanner pfn once the pageblock has been scanned
1178 * Pages will either be migrated in which case there is no point
1179 * scanning in the near future or migration failed in which case the
1180 * failure reason may persist. The block is marked for skipping if
1181 * there were no pages isolated in the block or if the block is
1182 * rescanned twice in a row.
1184 if (low_pfn == end_pfn && (!nr_isolated || cc->rescan)) {
1185 if (valid_page && !skip_updated)
1186 set_pageblock_skip(valid_page);
1187 update_cached_migrate(cc, low_pfn);
1190 trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
1191 nr_scanned, nr_isolated);
1194 cc->total_migrate_scanned += nr_scanned;
1196 count_compact_events(COMPACTISOLATED, nr_isolated);
1198 cc->migrate_pfn = low_pfn;
1204 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
1205 * @cc: Compaction control structure.
1206 * @start_pfn: The first PFN to start isolating.
1207 * @end_pfn: The one-past-last PFN.
1209 * Returns -EAGAIN when contented, -EINTR in case of a signal pending, -ENOMEM
1210 * in case we could not allocate a page, or 0.
1213 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
1214 unsigned long end_pfn)
1216 unsigned long pfn, block_start_pfn, block_end_pfn;
1219 /* Scan block by block. First and last block may be incomplete */
1221 block_start_pfn = pageblock_start_pfn(pfn);
1222 if (block_start_pfn < cc->zone->zone_start_pfn)
1223 block_start_pfn = cc->zone->zone_start_pfn;
1224 block_end_pfn = pageblock_end_pfn(pfn);
1226 for (; pfn < end_pfn; pfn = block_end_pfn,
1227 block_start_pfn = block_end_pfn,
1228 block_end_pfn += pageblock_nr_pages) {
1230 block_end_pfn = min(block_end_pfn, end_pfn);
1232 if (!pageblock_pfn_to_page(block_start_pfn,
1233 block_end_pfn, cc->zone))
1236 ret = isolate_migratepages_block(cc, pfn, block_end_pfn,
1237 ISOLATE_UNEVICTABLE);
1242 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX)
1249 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
1250 #ifdef CONFIG_COMPACTION
1252 static bool suitable_migration_source(struct compact_control *cc,
1257 if (pageblock_skip_persistent(page))
1260 if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
1263 block_mt = get_pageblock_migratetype(page);
1265 if (cc->migratetype == MIGRATE_MOVABLE)
1266 return is_migrate_movable(block_mt);
1268 return block_mt == cc->migratetype;
1271 /* Returns true if the page is within a block suitable for migration to */
1272 static bool suitable_migration_target(struct compact_control *cc,
1275 /* If the page is a large free page, then disallow migration */
1276 if (PageBuddy(page)) {
1278 * We are checking page_order without zone->lock taken. But
1279 * the only small danger is that we skip a potentially suitable
1280 * pageblock, so it's not worth to check order for valid range.
1282 if (buddy_order_unsafe(page) >= pageblock_order)
1286 if (cc->ignore_block_suitable)
1289 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1290 if (is_migrate_movable(get_pageblock_migratetype(page)))
1293 /* Otherwise skip the block */
1297 static inline unsigned int
1298 freelist_scan_limit(struct compact_control *cc)
1300 unsigned short shift = BITS_PER_LONG - 1;
1302 return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1;
1306 * Test whether the free scanner has reached the same or lower pageblock than
1307 * the migration scanner, and compaction should thus terminate.
1309 static inline bool compact_scanners_met(struct compact_control *cc)
1311 return (cc->free_pfn >> pageblock_order)
1312 <= (cc->migrate_pfn >> pageblock_order);
1316 * Used when scanning for a suitable migration target which scans freelists
1317 * in reverse. Reorders the list such as the unscanned pages are scanned
1318 * first on the next iteration of the free scanner
1321 move_freelist_head(struct list_head *freelist, struct page *freepage)
1325 if (!list_is_last(freelist, &freepage->lru)) {
1326 list_cut_before(&sublist, freelist, &freepage->lru);
1327 list_splice_tail(&sublist, freelist);
1332 * Similar to move_freelist_head except used by the migration scanner
1333 * when scanning forward. It's possible for these list operations to
1334 * move against each other if they search the free list exactly in
1338 move_freelist_tail(struct list_head *freelist, struct page *freepage)
1342 if (!list_is_first(freelist, &freepage->lru)) {
1343 list_cut_position(&sublist, freelist, &freepage->lru);
1344 list_splice_tail(&sublist, freelist);
1349 fast_isolate_around(struct compact_control *cc, unsigned long pfn, unsigned long nr_isolated)
1351 unsigned long start_pfn, end_pfn;
1354 /* Do not search around if there are enough pages already */
1355 if (cc->nr_freepages >= cc->nr_migratepages)
1358 /* Minimise scanning during async compaction */
1359 if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC)
1362 /* Pageblock boundaries */
1363 start_pfn = max(pageblock_start_pfn(pfn), cc->zone->zone_start_pfn);
1364 end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone));
1366 page = pageblock_pfn_to_page(start_pfn, end_pfn, cc->zone);
1371 if (start_pfn != pfn) {
1372 isolate_freepages_block(cc, &start_pfn, pfn, &cc->freepages, 1, false);
1373 if (cc->nr_freepages >= cc->nr_migratepages)
1378 start_pfn = pfn + nr_isolated;
1379 if (start_pfn < end_pfn)
1380 isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false);
1382 /* Skip this pageblock in the future as it's full or nearly full */
1383 if (cc->nr_freepages < cc->nr_migratepages)
1384 set_pageblock_skip(page);
1387 /* Search orders in round-robin fashion */
1388 static int next_search_order(struct compact_control *cc, int order)
1392 order = cc->order - 1;
1394 /* Search wrapped around? */
1395 if (order == cc->search_order) {
1397 if (cc->search_order < 0)
1398 cc->search_order = cc->order - 1;
1405 static unsigned long
1406 fast_isolate_freepages(struct compact_control *cc)
1408 unsigned int limit = max(1U, freelist_scan_limit(cc) >> 1);
1409 unsigned int nr_scanned = 0;
1410 unsigned long low_pfn, min_pfn, highest = 0;
1411 unsigned long nr_isolated = 0;
1412 unsigned long distance;
1413 struct page *page = NULL;
1414 bool scan_start = false;
1417 /* Full compaction passes in a negative order */
1419 return cc->free_pfn;
1422 * If starting the scan, use a deeper search and use the highest
1423 * PFN found if a suitable one is not found.
1425 if (cc->free_pfn >= cc->zone->compact_init_free_pfn) {
1426 limit = pageblock_nr_pages >> 1;
1431 * Preferred point is in the top quarter of the scan space but take
1432 * a pfn from the top half if the search is problematic.
1434 distance = (cc->free_pfn - cc->migrate_pfn);
1435 low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2));
1436 min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1));
1438 if (WARN_ON_ONCE(min_pfn > low_pfn))
1442 * Search starts from the last successful isolation order or the next
1443 * order to search after a previous failure
1445 cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order);
1447 for (order = cc->search_order;
1448 !page && order >= 0;
1449 order = next_search_order(cc, order)) {
1450 struct free_area *area = &cc->zone->free_area[order];
1451 struct list_head *freelist;
1452 struct page *freepage;
1453 unsigned long flags;
1454 unsigned int order_scanned = 0;
1455 unsigned long high_pfn = 0;
1460 spin_lock_irqsave(&cc->zone->lock, flags);
1461 freelist = &area->free_list[MIGRATE_MOVABLE];
1462 list_for_each_entry_reverse(freepage, freelist, lru) {
1467 pfn = page_to_pfn(freepage);
1470 highest = max(pageblock_start_pfn(pfn),
1471 cc->zone->zone_start_pfn);
1473 if (pfn >= low_pfn) {
1474 cc->fast_search_fail = 0;
1475 cc->search_order = order;
1480 if (pfn >= min_pfn && pfn > high_pfn) {
1483 /* Shorten the scan if a candidate is found */
1487 if (order_scanned >= limit)
1491 /* Use a minimum pfn if a preferred one was not found */
1492 if (!page && high_pfn) {
1493 page = pfn_to_page(high_pfn);
1495 /* Update freepage for the list reorder below */
1499 /* Reorder to so a future search skips recent pages */
1500 move_freelist_head(freelist, freepage);
1502 /* Isolate the page if available */
1504 if (__isolate_free_page(page, order)) {
1505 set_page_private(page, order);
1506 nr_isolated = 1 << order;
1507 nr_scanned += nr_isolated - 1;
1508 cc->nr_freepages += nr_isolated;
1509 list_add_tail(&page->lru, &cc->freepages);
1510 count_compact_events(COMPACTISOLATED, nr_isolated);
1512 /* If isolation fails, abort the search */
1513 order = cc->search_order + 1;
1518 spin_unlock_irqrestore(&cc->zone->lock, flags);
1521 * Smaller scan on next order so the total scan is related
1522 * to freelist_scan_limit.
1524 if (order_scanned >= limit)
1525 limit = max(1U, limit >> 1);
1529 cc->fast_search_fail++;
1532 * Use the highest PFN found above min. If one was
1533 * not found, be pessimistic for direct compaction
1534 * and use the min mark.
1536 if (highest >= min_pfn) {
1537 page = pfn_to_page(highest);
1538 cc->free_pfn = highest;
1540 if (cc->direct_compaction && pfn_valid(min_pfn)) {
1541 page = pageblock_pfn_to_page(min_pfn,
1542 min(pageblock_end_pfn(min_pfn),
1543 zone_end_pfn(cc->zone)),
1545 cc->free_pfn = min_pfn;
1551 if (highest && highest >= cc->zone->compact_cached_free_pfn) {
1552 highest -= pageblock_nr_pages;
1553 cc->zone->compact_cached_free_pfn = highest;
1556 cc->total_free_scanned += nr_scanned;
1558 return cc->free_pfn;
1560 low_pfn = page_to_pfn(page);
1561 fast_isolate_around(cc, low_pfn, nr_isolated);
1566 * Based on information in the current compact_control, find blocks
1567 * suitable for isolating free pages from and then isolate them.
1569 static void isolate_freepages(struct compact_control *cc)
1571 struct zone *zone = cc->zone;
1573 unsigned long block_start_pfn; /* start of current pageblock */
1574 unsigned long isolate_start_pfn; /* exact pfn we start at */
1575 unsigned long block_end_pfn; /* end of current pageblock */
1576 unsigned long low_pfn; /* lowest pfn scanner is able to scan */
1577 struct list_head *freelist = &cc->freepages;
1578 unsigned int stride;
1580 /* Try a small search of the free lists for a candidate */
1581 fast_isolate_freepages(cc);
1582 if (cc->nr_freepages)
1586 * Initialise the free scanner. The starting point is where we last
1587 * successfully isolated from, zone-cached value, or the end of the
1588 * zone when isolating for the first time. For looping we also need
1589 * this pfn aligned down to the pageblock boundary, because we do
1590 * block_start_pfn -= pageblock_nr_pages in the for loop.
1591 * For ending point, take care when isolating in last pageblock of a
1592 * zone which ends in the middle of a pageblock.
1593 * The low boundary is the end of the pageblock the migration scanner
1596 isolate_start_pfn = cc->free_pfn;
1597 block_start_pfn = pageblock_start_pfn(isolate_start_pfn);
1598 block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1599 zone_end_pfn(zone));
1600 low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1601 stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1;
1604 * Isolate free pages until enough are available to migrate the
1605 * pages on cc->migratepages. We stop searching if the migrate
1606 * and free page scanners meet or enough free pages are isolated.
1608 for (; block_start_pfn >= low_pfn;
1609 block_end_pfn = block_start_pfn,
1610 block_start_pfn -= pageblock_nr_pages,
1611 isolate_start_pfn = block_start_pfn) {
1612 unsigned long nr_isolated;
1615 * This can iterate a massively long zone without finding any
1616 * suitable migration targets, so periodically check resched.
1618 if (!(block_start_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages)))
1621 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1626 /* Check the block is suitable for migration */
1627 if (!suitable_migration_target(cc, page))
1630 /* If isolation recently failed, do not retry */
1631 if (!isolation_suitable(cc, page))
1634 /* Found a block suitable for isolating free pages from. */
1635 nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn,
1636 block_end_pfn, freelist, stride, false);
1638 /* Update the skip hint if the full pageblock was scanned */
1639 if (isolate_start_pfn == block_end_pfn)
1640 update_pageblock_skip(cc, page, block_start_pfn);
1642 /* Are enough freepages isolated? */
1643 if (cc->nr_freepages >= cc->nr_migratepages) {
1644 if (isolate_start_pfn >= block_end_pfn) {
1646 * Restart at previous pageblock if more
1647 * freepages can be isolated next time.
1650 block_start_pfn - pageblock_nr_pages;
1653 } else if (isolate_start_pfn < block_end_pfn) {
1655 * If isolation failed early, do not continue
1661 /* Adjust stride depending on isolation */
1666 stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1);
1670 * Record where the free scanner will restart next time. Either we
1671 * broke from the loop and set isolate_start_pfn based on the last
1672 * call to isolate_freepages_block(), or we met the migration scanner
1673 * and the loop terminated due to isolate_start_pfn < low_pfn
1675 cc->free_pfn = isolate_start_pfn;
1678 /* __isolate_free_page() does not map the pages */
1679 split_map_pages(freelist);
1683 * This is a migrate-callback that "allocates" freepages by taking pages
1684 * from the isolated freelists in the block we are migrating to.
1686 static struct page *compaction_alloc(struct page *migratepage,
1689 struct compact_control *cc = (struct compact_control *)data;
1690 struct page *freepage;
1692 if (list_empty(&cc->freepages)) {
1693 isolate_freepages(cc);
1695 if (list_empty(&cc->freepages))
1699 freepage = list_entry(cc->freepages.next, struct page, lru);
1700 list_del(&freepage->lru);
1707 * This is a migrate-callback that "frees" freepages back to the isolated
1708 * freelist. All pages on the freelist are from the same zone, so there is no
1709 * special handling needed for NUMA.
1711 static void compaction_free(struct page *page, unsigned long data)
1713 struct compact_control *cc = (struct compact_control *)data;
1715 list_add(&page->lru, &cc->freepages);
1719 /* possible outcome of isolate_migratepages */
1721 ISOLATE_ABORT, /* Abort compaction now */
1722 ISOLATE_NONE, /* No pages isolated, continue scanning */
1723 ISOLATE_SUCCESS, /* Pages isolated, migrate */
1724 } isolate_migrate_t;
1727 * Allow userspace to control policy on scanning the unevictable LRU for
1728 * compactable pages.
1730 #ifdef CONFIG_PREEMPT_RT
1731 int sysctl_compact_unevictable_allowed __read_mostly = 0;
1733 int sysctl_compact_unevictable_allowed __read_mostly = 1;
1737 update_fast_start_pfn(struct compact_control *cc, unsigned long pfn)
1739 if (cc->fast_start_pfn == ULONG_MAX)
1742 if (!cc->fast_start_pfn)
1743 cc->fast_start_pfn = pfn;
1745 cc->fast_start_pfn = min(cc->fast_start_pfn, pfn);
1748 static inline unsigned long
1749 reinit_migrate_pfn(struct compact_control *cc)
1751 if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX)
1752 return cc->migrate_pfn;
1754 cc->migrate_pfn = cc->fast_start_pfn;
1755 cc->fast_start_pfn = ULONG_MAX;
1757 return cc->migrate_pfn;
1761 * Briefly search the free lists for a migration source that already has
1762 * some free pages to reduce the number of pages that need migration
1763 * before a pageblock is free.
1765 static unsigned long fast_find_migrateblock(struct compact_control *cc)
1767 unsigned int limit = freelist_scan_limit(cc);
1768 unsigned int nr_scanned = 0;
1769 unsigned long distance;
1770 unsigned long pfn = cc->migrate_pfn;
1771 unsigned long high_pfn;
1773 bool found_block = false;
1775 /* Skip hints are relied on to avoid repeats on the fast search */
1776 if (cc->ignore_skip_hint)
1780 * If the migrate_pfn is not at the start of a zone or the start
1781 * of a pageblock then assume this is a continuation of a previous
1782 * scan restarted due to COMPACT_CLUSTER_MAX.
1784 if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn))
1788 * For smaller orders, just linearly scan as the number of pages
1789 * to migrate should be relatively small and does not necessarily
1790 * justify freeing up a large block for a small allocation.
1792 if (cc->order <= PAGE_ALLOC_COSTLY_ORDER)
1796 * Only allow kcompactd and direct requests for movable pages to
1797 * quickly clear out a MOVABLE pageblock for allocation. This
1798 * reduces the risk that a large movable pageblock is freed for
1799 * an unmovable/reclaimable small allocation.
1801 if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE)
1805 * When starting the migration scanner, pick any pageblock within the
1806 * first half of the search space. Otherwise try and pick a pageblock
1807 * within the first eighth to reduce the chances that a migration
1808 * target later becomes a source.
1810 distance = (cc->free_pfn - cc->migrate_pfn) >> 1;
1811 if (cc->migrate_pfn != cc->zone->zone_start_pfn)
1813 high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance);
1815 for (order = cc->order - 1;
1816 order >= PAGE_ALLOC_COSTLY_ORDER && !found_block && nr_scanned < limit;
1818 struct free_area *area = &cc->zone->free_area[order];
1819 struct list_head *freelist;
1820 unsigned long flags;
1821 struct page *freepage;
1826 spin_lock_irqsave(&cc->zone->lock, flags);
1827 freelist = &area->free_list[MIGRATE_MOVABLE];
1828 list_for_each_entry(freepage, freelist, lru) {
1829 unsigned long free_pfn;
1831 if (nr_scanned++ >= limit) {
1832 move_freelist_tail(freelist, freepage);
1836 free_pfn = page_to_pfn(freepage);
1837 if (free_pfn < high_pfn) {
1839 * Avoid if skipped recently. Ideally it would
1840 * move to the tail but even safe iteration of
1841 * the list assumes an entry is deleted, not
1844 if (get_pageblock_skip(freepage))
1847 /* Reorder to so a future search skips recent pages */
1848 move_freelist_tail(freelist, freepage);
1850 update_fast_start_pfn(cc, free_pfn);
1851 pfn = pageblock_start_pfn(free_pfn);
1852 if (pfn < cc->zone->zone_start_pfn)
1853 pfn = cc->zone->zone_start_pfn;
1854 cc->fast_search_fail = 0;
1856 set_pageblock_skip(freepage);
1860 spin_unlock_irqrestore(&cc->zone->lock, flags);
1863 cc->total_migrate_scanned += nr_scanned;
1866 * If fast scanning failed then use a cached entry for a page block
1867 * that had free pages as the basis for starting a linear scan.
1870 cc->fast_search_fail++;
1871 pfn = reinit_migrate_pfn(cc);
1877 * Isolate all pages that can be migrated from the first suitable block,
1878 * starting at the block pointed to by the migrate scanner pfn within
1881 static isolate_migrate_t isolate_migratepages(struct compact_control *cc)
1883 unsigned long block_start_pfn;
1884 unsigned long block_end_pfn;
1885 unsigned long low_pfn;
1887 const isolate_mode_t isolate_mode =
1888 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1889 (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1890 bool fast_find_block;
1893 * Start at where we last stopped, or beginning of the zone as
1894 * initialized by compact_zone(). The first failure will use
1895 * the lowest PFN as the starting point for linear scanning.
1897 low_pfn = fast_find_migrateblock(cc);
1898 block_start_pfn = pageblock_start_pfn(low_pfn);
1899 if (block_start_pfn < cc->zone->zone_start_pfn)
1900 block_start_pfn = cc->zone->zone_start_pfn;
1903 * fast_find_migrateblock marks a pageblock skipped so to avoid
1904 * the isolation_suitable check below, check whether the fast
1905 * search was successful.
1907 fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail;
1909 /* Only scan within a pageblock boundary */
1910 block_end_pfn = pageblock_end_pfn(low_pfn);
1913 * Iterate over whole pageblocks until we find the first suitable.
1914 * Do not cross the free scanner.
1916 for (; block_end_pfn <= cc->free_pfn;
1917 fast_find_block = false,
1918 cc->migrate_pfn = low_pfn = block_end_pfn,
1919 block_start_pfn = block_end_pfn,
1920 block_end_pfn += pageblock_nr_pages) {
1923 * This can potentially iterate a massively long zone with
1924 * many pageblocks unsuitable, so periodically check if we
1927 if (!(low_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages)))
1930 page = pageblock_pfn_to_page(block_start_pfn,
1931 block_end_pfn, cc->zone);
1936 * If isolation recently failed, do not retry. Only check the
1937 * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock
1938 * to be visited multiple times. Assume skip was checked
1939 * before making it "skip" so other compaction instances do
1940 * not scan the same block.
1942 if (IS_ALIGNED(low_pfn, pageblock_nr_pages) &&
1943 !fast_find_block && !isolation_suitable(cc, page))
1947 * For async direct compaction, only scan the pageblocks of the
1948 * same migratetype without huge pages. Async direct compaction
1949 * is optimistic to see if the minimum amount of work satisfies
1950 * the allocation. The cached PFN is updated as it's possible
1951 * that all remaining blocks between source and target are
1952 * unsuitable and the compaction scanners fail to meet.
1954 if (!suitable_migration_source(cc, page)) {
1955 update_cached_migrate(cc, block_end_pfn);
1959 /* Perform the isolation */
1960 if (isolate_migratepages_block(cc, low_pfn, block_end_pfn,
1962 return ISOLATE_ABORT;
1965 * Either we isolated something and proceed with migration. Or
1966 * we failed and compact_zone should decide if we should
1972 return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1976 * order == -1 is expected when compacting via
1977 * /proc/sys/vm/compact_memory
1979 static inline bool is_via_compact_memory(int order)
1984 static bool kswapd_is_running(pg_data_t *pgdat)
1986 return pgdat->kswapd && task_is_running(pgdat->kswapd);
1990 * A zone's fragmentation score is the external fragmentation wrt to the
1991 * COMPACTION_HPAGE_ORDER. It returns a value in the range [0, 100].
1993 static unsigned int fragmentation_score_zone(struct zone *zone)
1995 return extfrag_for_order(zone, COMPACTION_HPAGE_ORDER);
1999 * A weighted zone's fragmentation score is the external fragmentation
2000 * wrt to the COMPACTION_HPAGE_ORDER scaled by the zone's size. It
2001 * returns a value in the range [0, 100].
2003 * The scaling factor ensures that proactive compaction focuses on larger
2004 * zones like ZONE_NORMAL, rather than smaller, specialized zones like
2005 * ZONE_DMA32. For smaller zones, the score value remains close to zero,
2006 * and thus never exceeds the high threshold for proactive compaction.
2008 static unsigned int fragmentation_score_zone_weighted(struct zone *zone)
2010 unsigned long score;
2012 score = zone->present_pages * fragmentation_score_zone(zone);
2013 return div64_ul(score, zone->zone_pgdat->node_present_pages + 1);
2017 * The per-node proactive (background) compaction process is started by its
2018 * corresponding kcompactd thread when the node's fragmentation score
2019 * exceeds the high threshold. The compaction process remains active till
2020 * the node's score falls below the low threshold, or one of the back-off
2021 * conditions is met.
2023 static unsigned int fragmentation_score_node(pg_data_t *pgdat)
2025 unsigned int score = 0;
2028 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2031 zone = &pgdat->node_zones[zoneid];
2032 score += fragmentation_score_zone_weighted(zone);
2038 static unsigned int fragmentation_score_wmark(pg_data_t *pgdat, bool low)
2040 unsigned int wmark_low;
2043 * Cap the low watermark to avoid excessive compaction
2044 * activity in case a user sets the proactiveness tunable
2045 * close to 100 (maximum).
2047 wmark_low = max(100U - sysctl_compaction_proactiveness, 5U);
2048 return low ? wmark_low : min(wmark_low + 10, 100U);
2051 static bool should_proactive_compact_node(pg_data_t *pgdat)
2055 if (!sysctl_compaction_proactiveness || kswapd_is_running(pgdat))
2058 wmark_high = fragmentation_score_wmark(pgdat, false);
2059 return fragmentation_score_node(pgdat) > wmark_high;
2062 static enum compact_result __compact_finished(struct compact_control *cc)
2065 const int migratetype = cc->migratetype;
2068 /* Compaction run completes if the migrate and free scanner meet */
2069 if (compact_scanners_met(cc)) {
2070 /* Let the next compaction start anew. */
2071 reset_cached_positions(cc->zone);
2074 * Mark that the PG_migrate_skip information should be cleared
2075 * by kswapd when it goes to sleep. kcompactd does not set the
2076 * flag itself as the decision to be clear should be directly
2077 * based on an allocation request.
2079 if (cc->direct_compaction)
2080 cc->zone->compact_blockskip_flush = true;
2083 return COMPACT_COMPLETE;
2085 return COMPACT_PARTIAL_SKIPPED;
2088 if (cc->proactive_compaction) {
2089 int score, wmark_low;
2092 pgdat = cc->zone->zone_pgdat;
2093 if (kswapd_is_running(pgdat))
2094 return COMPACT_PARTIAL_SKIPPED;
2096 score = fragmentation_score_zone(cc->zone);
2097 wmark_low = fragmentation_score_wmark(pgdat, true);
2099 if (score > wmark_low)
2100 ret = COMPACT_CONTINUE;
2102 ret = COMPACT_SUCCESS;
2107 if (is_via_compact_memory(cc->order))
2108 return COMPACT_CONTINUE;
2111 * Always finish scanning a pageblock to reduce the possibility of
2112 * fallbacks in the future. This is particularly important when
2113 * migration source is unmovable/reclaimable but it's not worth
2116 if (!IS_ALIGNED(cc->migrate_pfn, pageblock_nr_pages))
2117 return COMPACT_CONTINUE;
2119 /* Direct compactor: Is a suitable page free? */
2120 ret = COMPACT_NO_SUITABLE_PAGE;
2121 for (order = cc->order; order < MAX_ORDER; order++) {
2122 struct free_area *area = &cc->zone->free_area[order];
2125 /* Job done if page is free of the right migratetype */
2126 if (!free_area_empty(area, migratetype))
2127 return COMPACT_SUCCESS;
2130 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
2131 if (migratetype == MIGRATE_MOVABLE &&
2132 !free_area_empty(area, MIGRATE_CMA))
2133 return COMPACT_SUCCESS;
2136 * Job done if allocation would steal freepages from
2137 * other migratetype buddy lists.
2139 if (find_suitable_fallback(area, order, migratetype,
2140 true, &can_steal) != -1)
2142 * Movable pages are OK in any pageblock. If we are
2143 * stealing for a non-movable allocation, make sure
2144 * we finish compacting the current pageblock first
2145 * (which is assured by the above migrate_pfn align
2146 * check) so it is as free as possible and we won't
2147 * have to steal another one soon.
2149 return COMPACT_SUCCESS;
2153 if (cc->contended || fatal_signal_pending(current))
2154 ret = COMPACT_CONTENDED;
2159 static enum compact_result compact_finished(struct compact_control *cc)
2163 ret = __compact_finished(cc);
2164 trace_mm_compaction_finished(cc->zone, cc->order, ret);
2165 if (ret == COMPACT_NO_SUITABLE_PAGE)
2166 ret = COMPACT_CONTINUE;
2171 static enum compact_result __compaction_suitable(struct zone *zone, int order,
2172 unsigned int alloc_flags,
2173 int highest_zoneidx,
2174 unsigned long wmark_target)
2176 unsigned long watermark;
2178 if (is_via_compact_memory(order))
2179 return COMPACT_CONTINUE;
2181 watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
2183 * If watermarks for high-order allocation are already met, there
2184 * should be no need for compaction at all.
2186 if (zone_watermark_ok(zone, order, watermark, highest_zoneidx,
2188 return COMPACT_SUCCESS;
2191 * Watermarks for order-0 must be met for compaction to be able to
2192 * isolate free pages for migration targets. This means that the
2193 * watermark and alloc_flags have to match, or be more pessimistic than
2194 * the check in __isolate_free_page(). We don't use the direct
2195 * compactor's alloc_flags, as they are not relevant for freepage
2196 * isolation. We however do use the direct compactor's highest_zoneidx
2197 * to skip over zones where lowmem reserves would prevent allocation
2198 * even if compaction succeeds.
2199 * For costly orders, we require low watermark instead of min for
2200 * compaction to proceed to increase its chances.
2201 * ALLOC_CMA is used, as pages in CMA pageblocks are considered
2202 * suitable migration targets
2204 watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
2205 low_wmark_pages(zone) : min_wmark_pages(zone);
2206 watermark += compact_gap(order);
2207 if (!__zone_watermark_ok(zone, 0, watermark, highest_zoneidx,
2208 ALLOC_CMA, wmark_target))
2209 return COMPACT_SKIPPED;
2211 return COMPACT_CONTINUE;
2215 * compaction_suitable: Is this suitable to run compaction on this zone now?
2217 * COMPACT_SKIPPED - If there are too few free pages for compaction
2218 * COMPACT_SUCCESS - If the allocation would succeed without compaction
2219 * COMPACT_CONTINUE - If compaction should run now
2221 enum compact_result compaction_suitable(struct zone *zone, int order,
2222 unsigned int alloc_flags,
2223 int highest_zoneidx)
2225 enum compact_result ret;
2228 ret = __compaction_suitable(zone, order, alloc_flags, highest_zoneidx,
2229 zone_page_state(zone, NR_FREE_PAGES));
2231 * fragmentation index determines if allocation failures are due to
2232 * low memory or external fragmentation
2234 * index of -1000 would imply allocations might succeed depending on
2235 * watermarks, but we already failed the high-order watermark check
2236 * index towards 0 implies failure is due to lack of memory
2237 * index towards 1000 implies failure is due to fragmentation
2239 * Only compact if a failure would be due to fragmentation. Also
2240 * ignore fragindex for non-costly orders where the alternative to
2241 * a successful reclaim/compaction is OOM. Fragindex and the
2242 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
2243 * excessive compaction for costly orders, but it should not be at the
2244 * expense of system stability.
2246 if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) {
2247 fragindex = fragmentation_index(zone, order);
2248 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
2249 ret = COMPACT_NOT_SUITABLE_ZONE;
2252 trace_mm_compaction_suitable(zone, order, ret);
2253 if (ret == COMPACT_NOT_SUITABLE_ZONE)
2254 ret = COMPACT_SKIPPED;
2259 bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
2266 * Make sure at least one zone would pass __compaction_suitable if we continue
2267 * retrying the reclaim.
2269 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2270 ac->highest_zoneidx, ac->nodemask) {
2271 unsigned long available;
2272 enum compact_result compact_result;
2275 * Do not consider all the reclaimable memory because we do not
2276 * want to trash just for a single high order allocation which
2277 * is even not guaranteed to appear even if __compaction_suitable
2278 * is happy about the watermark check.
2280 available = zone_reclaimable_pages(zone) / order;
2281 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
2282 compact_result = __compaction_suitable(zone, order, alloc_flags,
2283 ac->highest_zoneidx, available);
2284 if (compact_result == COMPACT_CONTINUE)
2291 static enum compact_result
2292 compact_zone(struct compact_control *cc, struct capture_control *capc)
2294 enum compact_result ret;
2295 unsigned long start_pfn = cc->zone->zone_start_pfn;
2296 unsigned long end_pfn = zone_end_pfn(cc->zone);
2297 unsigned long last_migrated_pfn;
2298 const bool sync = cc->mode != MIGRATE_ASYNC;
2300 unsigned int nr_succeeded = 0;
2303 * These counters track activities during zone compaction. Initialize
2304 * them before compacting a new zone.
2306 cc->total_migrate_scanned = 0;
2307 cc->total_free_scanned = 0;
2308 cc->nr_migratepages = 0;
2309 cc->nr_freepages = 0;
2310 INIT_LIST_HEAD(&cc->freepages);
2311 INIT_LIST_HEAD(&cc->migratepages);
2313 cc->migratetype = gfp_migratetype(cc->gfp_mask);
2314 ret = compaction_suitable(cc->zone, cc->order, cc->alloc_flags,
2315 cc->highest_zoneidx);
2316 /* Compaction is likely to fail */
2317 if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED)
2320 /* huh, compaction_suitable is returning something unexpected */
2321 VM_BUG_ON(ret != COMPACT_CONTINUE);
2324 * Clear pageblock skip if there were failures recently and compaction
2325 * is about to be retried after being deferred.
2327 if (compaction_restarting(cc->zone, cc->order))
2328 __reset_isolation_suitable(cc->zone);
2331 * Setup to move all movable pages to the end of the zone. Used cached
2332 * information on where the scanners should start (unless we explicitly
2333 * want to compact the whole zone), but check that it is initialised
2334 * by ensuring the values are within zone boundaries.
2336 cc->fast_start_pfn = 0;
2337 if (cc->whole_zone) {
2338 cc->migrate_pfn = start_pfn;
2339 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2341 cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync];
2342 cc->free_pfn = cc->zone->compact_cached_free_pfn;
2343 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
2344 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2345 cc->zone->compact_cached_free_pfn = cc->free_pfn;
2347 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
2348 cc->migrate_pfn = start_pfn;
2349 cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
2350 cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
2353 if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn)
2354 cc->whole_zone = true;
2357 last_migrated_pfn = 0;
2360 * Migrate has separate cached PFNs for ASYNC and SYNC* migration on
2361 * the basis that some migrations will fail in ASYNC mode. However,
2362 * if the cached PFNs match and pageblocks are skipped due to having
2363 * no isolation candidates, then the sync state does not matter.
2364 * Until a pageblock with isolation candidates is found, keep the
2365 * cached PFNs in sync to avoid revisiting the same blocks.
2367 update_cached = !sync &&
2368 cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1];
2370 trace_mm_compaction_begin(cc, start_pfn, end_pfn, sync);
2372 /* lru_add_drain_all could be expensive with involving other CPUs */
2375 while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) {
2377 unsigned long iteration_start_pfn = cc->migrate_pfn;
2380 * Avoid multiple rescans which can happen if a page cannot be
2381 * isolated (dirty/writeback in async mode) or if the migrated
2382 * pages are being allocated before the pageblock is cleared.
2383 * The first rescan will capture the entire pageblock for
2384 * migration. If it fails, it'll be marked skip and scanning
2385 * will proceed as normal.
2388 if (pageblock_start_pfn(last_migrated_pfn) ==
2389 pageblock_start_pfn(iteration_start_pfn)) {
2393 switch (isolate_migratepages(cc)) {
2395 ret = COMPACT_CONTENDED;
2396 putback_movable_pages(&cc->migratepages);
2397 cc->nr_migratepages = 0;
2400 if (update_cached) {
2401 cc->zone->compact_cached_migrate_pfn[1] =
2402 cc->zone->compact_cached_migrate_pfn[0];
2406 * We haven't isolated and migrated anything, but
2407 * there might still be unflushed migrations from
2408 * previous cc->order aligned block.
2411 case ISOLATE_SUCCESS:
2412 update_cached = false;
2413 last_migrated_pfn = iteration_start_pfn;
2416 err = migrate_pages(&cc->migratepages, compaction_alloc,
2417 compaction_free, (unsigned long)cc, cc->mode,
2418 MR_COMPACTION, &nr_succeeded);
2420 trace_mm_compaction_migratepages(cc, nr_succeeded);
2422 /* All pages were either migrated or will be released */
2423 cc->nr_migratepages = 0;
2425 putback_movable_pages(&cc->migratepages);
2427 * migrate_pages() may return -ENOMEM when scanners meet
2428 * and we want compact_finished() to detect it
2430 if (err == -ENOMEM && !compact_scanners_met(cc)) {
2431 ret = COMPACT_CONTENDED;
2435 * We failed to migrate at least one page in the current
2436 * order-aligned block, so skip the rest of it.
2438 if (cc->direct_compaction &&
2439 (cc->mode == MIGRATE_ASYNC)) {
2440 cc->migrate_pfn = block_end_pfn(
2441 cc->migrate_pfn - 1, cc->order);
2442 /* Draining pcplists is useless in this case */
2443 last_migrated_pfn = 0;
2449 * Has the migration scanner moved away from the previous
2450 * cc->order aligned block where we migrated from? If yes,
2451 * flush the pages that were freed, so that they can merge and
2452 * compact_finished() can detect immediately if allocation
2455 if (cc->order > 0 && last_migrated_pfn) {
2456 unsigned long current_block_start =
2457 block_start_pfn(cc->migrate_pfn, cc->order);
2459 if (last_migrated_pfn < current_block_start) {
2460 lru_add_drain_cpu_zone(cc->zone);
2461 /* No more flushing until we migrate again */
2462 last_migrated_pfn = 0;
2466 /* Stop if a page has been captured */
2467 if (capc && capc->page) {
2468 ret = COMPACT_SUCCESS;
2475 * Release free pages and update where the free scanner should restart,
2476 * so we don't leave any returned pages behind in the next attempt.
2478 if (cc->nr_freepages > 0) {
2479 unsigned long free_pfn = release_freepages(&cc->freepages);
2481 cc->nr_freepages = 0;
2482 VM_BUG_ON(free_pfn == 0);
2483 /* The cached pfn is always the first in a pageblock */
2484 free_pfn = pageblock_start_pfn(free_pfn);
2486 * Only go back, not forward. The cached pfn might have been
2487 * already reset to zone end in compact_finished()
2489 if (free_pfn > cc->zone->compact_cached_free_pfn)
2490 cc->zone->compact_cached_free_pfn = free_pfn;
2493 count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
2494 count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
2496 trace_mm_compaction_end(cc, start_pfn, end_pfn, sync, ret);
2501 static enum compact_result compact_zone_order(struct zone *zone, int order,
2502 gfp_t gfp_mask, enum compact_priority prio,
2503 unsigned int alloc_flags, int highest_zoneidx,
2504 struct page **capture)
2506 enum compact_result ret;
2507 struct compact_control cc = {
2509 .search_order = order,
2510 .gfp_mask = gfp_mask,
2512 .mode = (prio == COMPACT_PRIO_ASYNC) ?
2513 MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT,
2514 .alloc_flags = alloc_flags,
2515 .highest_zoneidx = highest_zoneidx,
2516 .direct_compaction = true,
2517 .whole_zone = (prio == MIN_COMPACT_PRIORITY),
2518 .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
2519 .ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
2521 struct capture_control capc = {
2527 * Make sure the structs are really initialized before we expose the
2528 * capture control, in case we are interrupted and the interrupt handler
2532 WRITE_ONCE(current->capture_control, &capc);
2534 ret = compact_zone(&cc, &capc);
2536 VM_BUG_ON(!list_empty(&cc.freepages));
2537 VM_BUG_ON(!list_empty(&cc.migratepages));
2540 * Make sure we hide capture control first before we read the captured
2541 * page pointer, otherwise an interrupt could free and capture a page
2542 * and we would leak it.
2544 WRITE_ONCE(current->capture_control, NULL);
2545 *capture = READ_ONCE(capc.page);
2547 * Technically, it is also possible that compaction is skipped but
2548 * the page is still captured out of luck(IRQ came and freed the page).
2549 * Returning COMPACT_SUCCESS in such cases helps in properly accounting
2550 * the COMPACT[STALL|FAIL] when compaction is skipped.
2553 ret = COMPACT_SUCCESS;
2558 int sysctl_extfrag_threshold = 500;
2561 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
2562 * @gfp_mask: The GFP mask of the current allocation
2563 * @order: The order of the current allocation
2564 * @alloc_flags: The allocation flags of the current allocation
2565 * @ac: The context of current allocation
2566 * @prio: Determines how hard direct compaction should try to succeed
2567 * @capture: Pointer to free page created by compaction will be stored here
2569 * This is the main entry point for direct page compaction.
2571 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
2572 unsigned int alloc_flags, const struct alloc_context *ac,
2573 enum compact_priority prio, struct page **capture)
2575 int may_perform_io = (__force int)(gfp_mask & __GFP_IO);
2578 enum compact_result rc = COMPACT_SKIPPED;
2581 * Check if the GFP flags allow compaction - GFP_NOIO is really
2582 * tricky context because the migration might require IO
2584 if (!may_perform_io)
2585 return COMPACT_SKIPPED;
2587 trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
2589 /* Compact each zone in the list */
2590 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2591 ac->highest_zoneidx, ac->nodemask) {
2592 enum compact_result status;
2594 if (prio > MIN_COMPACT_PRIORITY
2595 && compaction_deferred(zone, order)) {
2596 rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
2600 status = compact_zone_order(zone, order, gfp_mask, prio,
2601 alloc_flags, ac->highest_zoneidx, capture);
2602 rc = max(status, rc);
2604 /* The allocation should succeed, stop compacting */
2605 if (status == COMPACT_SUCCESS) {
2607 * We think the allocation will succeed in this zone,
2608 * but it is not certain, hence the false. The caller
2609 * will repeat this with true if allocation indeed
2610 * succeeds in this zone.
2612 compaction_defer_reset(zone, order, false);
2617 if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
2618 status == COMPACT_PARTIAL_SKIPPED))
2620 * We think that allocation won't succeed in this zone
2621 * so we defer compaction there. If it ends up
2622 * succeeding after all, it will be reset.
2624 defer_compaction(zone, order);
2627 * We might have stopped compacting due to need_resched() in
2628 * async compaction, or due to a fatal signal detected. In that
2629 * case do not try further zones
2631 if ((prio == COMPACT_PRIO_ASYNC && need_resched())
2632 || fatal_signal_pending(current))
2640 * Compact all zones within a node till each zone's fragmentation score
2641 * reaches within proactive compaction thresholds (as determined by the
2642 * proactiveness tunable).
2644 * It is possible that the function returns before reaching score targets
2645 * due to various back-off conditions, such as, contention on per-node or
2648 static void proactive_compact_node(pg_data_t *pgdat)
2652 struct compact_control cc = {
2654 .mode = MIGRATE_SYNC_LIGHT,
2655 .ignore_skip_hint = true,
2657 .gfp_mask = GFP_KERNEL,
2658 .proactive_compaction = true,
2661 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2662 zone = &pgdat->node_zones[zoneid];
2663 if (!populated_zone(zone))
2668 compact_zone(&cc, NULL);
2670 VM_BUG_ON(!list_empty(&cc.freepages));
2671 VM_BUG_ON(!list_empty(&cc.migratepages));
2675 /* Compact all zones within a node */
2676 static void compact_node(int nid)
2678 pg_data_t *pgdat = NODE_DATA(nid);
2681 struct compact_control cc = {
2683 .mode = MIGRATE_SYNC,
2684 .ignore_skip_hint = true,
2686 .gfp_mask = GFP_KERNEL,
2690 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2692 zone = &pgdat->node_zones[zoneid];
2693 if (!populated_zone(zone))
2698 compact_zone(&cc, NULL);
2700 VM_BUG_ON(!list_empty(&cc.freepages));
2701 VM_BUG_ON(!list_empty(&cc.migratepages));
2705 /* Compact all nodes in the system */
2706 static void compact_nodes(void)
2710 /* Flush pending updates to the LRU lists */
2711 lru_add_drain_all();
2713 for_each_online_node(nid)
2718 * Tunable for proactive compaction. It determines how
2719 * aggressively the kernel should compact memory in the
2720 * background. It takes values in the range [0, 100].
2722 unsigned int __read_mostly sysctl_compaction_proactiveness = 20;
2724 int compaction_proactiveness_sysctl_handler(struct ctl_table *table, int write,
2725 void *buffer, size_t *length, loff_t *ppos)
2729 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
2733 if (write && sysctl_compaction_proactiveness) {
2734 for_each_online_node(nid) {
2735 pg_data_t *pgdat = NODE_DATA(nid);
2737 if (pgdat->proactive_compact_trigger)
2740 pgdat->proactive_compact_trigger = true;
2741 wake_up_interruptible(&pgdat->kcompactd_wait);
2749 * This is the entry point for compacting all nodes via
2750 * /proc/sys/vm/compact_memory
2752 int sysctl_compaction_handler(struct ctl_table *table, int write,
2753 void *buffer, size_t *length, loff_t *ppos)
2761 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
2762 static ssize_t compact_store(struct device *dev,
2763 struct device_attribute *attr,
2764 const char *buf, size_t count)
2768 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
2769 /* Flush pending updates to the LRU lists */
2770 lru_add_drain_all();
2777 static DEVICE_ATTR_WO(compact);
2779 int compaction_register_node(struct node *node)
2781 return device_create_file(&node->dev, &dev_attr_compact);
2784 void compaction_unregister_node(struct node *node)
2786 return device_remove_file(&node->dev, &dev_attr_compact);
2788 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
2790 static inline bool kcompactd_work_requested(pg_data_t *pgdat)
2792 return pgdat->kcompactd_max_order > 0 || kthread_should_stop() ||
2793 pgdat->proactive_compact_trigger;
2796 static bool kcompactd_node_suitable(pg_data_t *pgdat)
2800 enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx;
2802 for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) {
2803 zone = &pgdat->node_zones[zoneid];
2805 if (!populated_zone(zone))
2808 if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
2809 highest_zoneidx) == COMPACT_CONTINUE)
2816 static void kcompactd_do_work(pg_data_t *pgdat)
2819 * With no special task, compact all zones so that a page of requested
2820 * order is allocatable.
2824 struct compact_control cc = {
2825 .order = pgdat->kcompactd_max_order,
2826 .search_order = pgdat->kcompactd_max_order,
2827 .highest_zoneidx = pgdat->kcompactd_highest_zoneidx,
2828 .mode = MIGRATE_SYNC_LIGHT,
2829 .ignore_skip_hint = false,
2830 .gfp_mask = GFP_KERNEL,
2832 trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
2833 cc.highest_zoneidx);
2834 count_compact_event(KCOMPACTD_WAKE);
2836 for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) {
2839 zone = &pgdat->node_zones[zoneid];
2840 if (!populated_zone(zone))
2843 if (compaction_deferred(zone, cc.order))
2846 if (compaction_suitable(zone, cc.order, 0, zoneid) !=
2850 if (kthread_should_stop())
2854 status = compact_zone(&cc, NULL);
2856 if (status == COMPACT_SUCCESS) {
2857 compaction_defer_reset(zone, cc.order, false);
2858 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
2860 * Buddy pages may become stranded on pcps that could
2861 * otherwise coalesce on the zone's free area for
2862 * order >= cc.order. This is ratelimited by the
2863 * upcoming deferral.
2865 drain_all_pages(zone);
2868 * We use sync migration mode here, so we defer like
2869 * sync direct compaction does.
2871 defer_compaction(zone, cc.order);
2874 count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2875 cc.total_migrate_scanned);
2876 count_compact_events(KCOMPACTD_FREE_SCANNED,
2877 cc.total_free_scanned);
2879 VM_BUG_ON(!list_empty(&cc.freepages));
2880 VM_BUG_ON(!list_empty(&cc.migratepages));
2884 * Regardless of success, we are done until woken up next. But remember
2885 * the requested order/highest_zoneidx in case it was higher/tighter
2886 * than our current ones
2888 if (pgdat->kcompactd_max_order <= cc.order)
2889 pgdat->kcompactd_max_order = 0;
2890 if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx)
2891 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
2894 void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx)
2899 if (pgdat->kcompactd_max_order < order)
2900 pgdat->kcompactd_max_order = order;
2902 if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx)
2903 pgdat->kcompactd_highest_zoneidx = highest_zoneidx;
2906 * Pairs with implicit barrier in wait_event_freezable()
2907 * such that wakeups are not missed.
2909 if (!wq_has_sleeper(&pgdat->kcompactd_wait))
2912 if (!kcompactd_node_suitable(pgdat))
2915 trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
2917 wake_up_interruptible(&pgdat->kcompactd_wait);
2921 * The background compaction daemon, started as a kernel thread
2922 * from the init process.
2924 static int kcompactd(void *p)
2926 pg_data_t *pgdat = (pg_data_t *)p;
2927 struct task_struct *tsk = current;
2928 long default_timeout = msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC);
2929 long timeout = default_timeout;
2931 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2933 if (!cpumask_empty(cpumask))
2934 set_cpus_allowed_ptr(tsk, cpumask);
2938 pgdat->kcompactd_max_order = 0;
2939 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
2941 while (!kthread_should_stop()) {
2942 unsigned long pflags;
2945 * Avoid the unnecessary wakeup for proactive compaction
2946 * when it is disabled.
2948 if (!sysctl_compaction_proactiveness)
2949 timeout = MAX_SCHEDULE_TIMEOUT;
2950 trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
2951 if (wait_event_freezable_timeout(pgdat->kcompactd_wait,
2952 kcompactd_work_requested(pgdat), timeout) &&
2953 !pgdat->proactive_compact_trigger) {
2955 psi_memstall_enter(&pflags);
2956 kcompactd_do_work(pgdat);
2957 psi_memstall_leave(&pflags);
2959 * Reset the timeout value. The defer timeout from
2960 * proactive compaction is lost here but that is fine
2961 * as the condition of the zone changing substantionally
2962 * then carrying on with the previous defer interval is
2965 timeout = default_timeout;
2970 * Start the proactive work with default timeout. Based
2971 * on the fragmentation score, this timeout is updated.
2973 timeout = default_timeout;
2974 if (should_proactive_compact_node(pgdat)) {
2975 unsigned int prev_score, score;
2977 prev_score = fragmentation_score_node(pgdat);
2978 proactive_compact_node(pgdat);
2979 score = fragmentation_score_node(pgdat);
2981 * Defer proactive compaction if the fragmentation
2982 * score did not go down i.e. no progress made.
2984 if (unlikely(score >= prev_score))
2986 default_timeout << COMPACT_MAX_DEFER_SHIFT;
2988 if (unlikely(pgdat->proactive_compact_trigger))
2989 pgdat->proactive_compact_trigger = false;
2996 * This kcompactd start function will be called by init and node-hot-add.
2997 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
2999 void kcompactd_run(int nid)
3001 pg_data_t *pgdat = NODE_DATA(nid);
3003 if (pgdat->kcompactd)
3006 pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
3007 if (IS_ERR(pgdat->kcompactd)) {
3008 pr_err("Failed to start kcompactd on node %d\n", nid);
3009 pgdat->kcompactd = NULL;
3014 * Called by memory hotplug when all memory in a node is offlined. Caller must
3015 * be holding mem_hotplug_begin/done().
3017 void kcompactd_stop(int nid)
3019 struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
3022 kthread_stop(kcompactd);
3023 NODE_DATA(nid)->kcompactd = NULL;
3028 * It's optimal to keep kcompactd on the same CPUs as their memory, but
3029 * not required for correctness. So if the last cpu in a node goes
3030 * away, we get changed to run anywhere: as the first one comes back,
3031 * restore their cpu bindings.
3033 static int kcompactd_cpu_online(unsigned int cpu)
3037 for_each_node_state(nid, N_MEMORY) {
3038 pg_data_t *pgdat = NODE_DATA(nid);
3039 const struct cpumask *mask;
3041 mask = cpumask_of_node(pgdat->node_id);
3043 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3044 /* One of our CPUs online: restore mask */
3045 if (pgdat->kcompactd)
3046 set_cpus_allowed_ptr(pgdat->kcompactd, mask);
3051 static int __init kcompactd_init(void)
3056 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3057 "mm/compaction:online",
3058 kcompactd_cpu_online, NULL);
3060 pr_err("kcompactd: failed to register hotplug callbacks.\n");
3064 for_each_node_state(nid, N_MEMORY)
3068 subsys_initcall(kcompactd_init)
3070 #endif /* CONFIG_COMPACTION */