1 // SPDX-License-Identifier: GPL-2.0
3 * linux/mm/compaction.c
5 * Memory compaction for the reduction of external fragmentation. Note that
6 * this heavily depends upon page migration to do all the real heavy
9 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
11 #include <linux/cpu.h>
12 #include <linux/swap.h>
13 #include <linux/migrate.h>
14 #include <linux/compaction.h>
15 #include <linux/mm_inline.h>
16 #include <linux/sched/signal.h>
17 #include <linux/backing-dev.h>
18 #include <linux/sysctl.h>
19 #include <linux/sysfs.h>
20 #include <linux/page-isolation.h>
21 #include <linux/kasan.h>
22 #include <linux/kthread.h>
23 #include <linux/freezer.h>
24 #include <linux/page_owner.h>
25 #include <linux/psi.h>
28 #ifdef CONFIG_COMPACTION
30 * Fragmentation score check interval for proactive compaction purposes.
32 #define HPAGE_FRAG_CHECK_INTERVAL_MSEC (500)
34 static inline void count_compact_event(enum vm_event_item item)
39 static inline void count_compact_events(enum vm_event_item item, long delta)
41 count_vm_events(item, delta);
44 #define count_compact_event(item) do { } while (0)
45 #define count_compact_events(item, delta) do { } while (0)
48 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
50 #define CREATE_TRACE_POINTS
51 #include <trace/events/compaction.h>
53 #define block_start_pfn(pfn, order) round_down(pfn, 1UL << (order))
54 #define block_end_pfn(pfn, order) ALIGN((pfn) + 1, 1UL << (order))
57 * Page order with-respect-to which proactive compaction
58 * calculates external fragmentation, which is used as
59 * the "fragmentation score" of a node/zone.
61 #if defined CONFIG_TRANSPARENT_HUGEPAGE
62 #define COMPACTION_HPAGE_ORDER HPAGE_PMD_ORDER
63 #elif defined CONFIG_HUGETLBFS
64 #define COMPACTION_HPAGE_ORDER HUGETLB_PAGE_ORDER
66 #define COMPACTION_HPAGE_ORDER (PMD_SHIFT - PAGE_SHIFT)
69 static unsigned long release_freepages(struct list_head *freelist)
71 struct page *page, *next;
72 unsigned long high_pfn = 0;
74 list_for_each_entry_safe(page, next, freelist, lru) {
75 unsigned long pfn = page_to_pfn(page);
85 static void split_map_pages(struct list_head *list)
87 unsigned int i, order, nr_pages;
88 struct page *page, *next;
91 list_for_each_entry_safe(page, next, list, lru) {
94 order = page_private(page);
95 nr_pages = 1 << order;
97 post_alloc_hook(page, order, __GFP_MOVABLE);
99 split_page(page, order);
101 for (i = 0; i < nr_pages; i++) {
102 list_add(&page->lru, &tmp_list);
107 list_splice(&tmp_list, list);
110 #ifdef CONFIG_COMPACTION
111 bool PageMovable(struct page *page)
113 const struct movable_operations *mops;
115 VM_BUG_ON_PAGE(!PageLocked(page), page);
116 if (!__PageMovable(page))
119 mops = page_movable_ops(page);
126 void __SetPageMovable(struct page *page, const struct movable_operations *mops)
128 VM_BUG_ON_PAGE(!PageLocked(page), page);
129 VM_BUG_ON_PAGE((unsigned long)mops & PAGE_MAPPING_MOVABLE, page);
130 page->mapping = (void *)((unsigned long)mops | PAGE_MAPPING_MOVABLE);
132 EXPORT_SYMBOL(__SetPageMovable);
134 void __ClearPageMovable(struct page *page)
136 VM_BUG_ON_PAGE(!PageMovable(page), page);
138 * This page still has the type of a movable page, but it's
139 * actually not movable any more.
141 page->mapping = (void *)PAGE_MAPPING_MOVABLE;
143 EXPORT_SYMBOL(__ClearPageMovable);
145 /* Do not skip compaction more than 64 times */
146 #define COMPACT_MAX_DEFER_SHIFT 6
149 * Compaction is deferred when compaction fails to result in a page
150 * allocation success. 1 << compact_defer_shift, compactions are skipped up
151 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
153 static void defer_compaction(struct zone *zone, int order)
155 zone->compact_considered = 0;
156 zone->compact_defer_shift++;
158 if (order < zone->compact_order_failed)
159 zone->compact_order_failed = order;
161 if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
162 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
164 trace_mm_compaction_defer_compaction(zone, order);
167 /* Returns true if compaction should be skipped this time */
168 static bool compaction_deferred(struct zone *zone, int order)
170 unsigned long defer_limit = 1UL << zone->compact_defer_shift;
172 if (order < zone->compact_order_failed)
175 /* Avoid possible overflow */
176 if (++zone->compact_considered >= defer_limit) {
177 zone->compact_considered = defer_limit;
181 trace_mm_compaction_deferred(zone, order);
187 * Update defer tracking counters after successful compaction of given order,
188 * which means an allocation either succeeded (alloc_success == true) or is
189 * expected to succeed.
191 void compaction_defer_reset(struct zone *zone, int order,
195 zone->compact_considered = 0;
196 zone->compact_defer_shift = 0;
198 if (order >= zone->compact_order_failed)
199 zone->compact_order_failed = order + 1;
201 trace_mm_compaction_defer_reset(zone, order);
204 /* Returns true if restarting compaction after many failures */
205 static bool compaction_restarting(struct zone *zone, int order)
207 if (order < zone->compact_order_failed)
210 return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
211 zone->compact_considered >= 1UL << zone->compact_defer_shift;
214 /* Returns true if the pageblock should be scanned for pages to isolate. */
215 static inline bool isolation_suitable(struct compact_control *cc,
218 if (cc->ignore_skip_hint)
221 return !get_pageblock_skip(page);
224 static void reset_cached_positions(struct zone *zone)
226 zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
227 zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
228 zone->compact_cached_free_pfn =
229 pageblock_start_pfn(zone_end_pfn(zone) - 1);
233 * Compound pages of >= pageblock_order should consistently be skipped until
234 * released. It is always pointless to compact pages of such order (if they are
235 * migratable), and the pageblocks they occupy cannot contain any free pages.
237 static bool pageblock_skip_persistent(struct page *page)
239 if (!PageCompound(page))
242 page = compound_head(page);
244 if (compound_order(page) >= pageblock_order)
251 __reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source,
254 struct page *page = pfn_to_online_page(pfn);
255 struct page *block_page;
256 struct page *end_page;
257 unsigned long block_pfn;
261 if (zone != page_zone(page))
263 if (pageblock_skip_persistent(page))
267 * If skip is already cleared do no further checking once the
268 * restart points have been set.
270 if (check_source && check_target && !get_pageblock_skip(page))
274 * If clearing skip for the target scanner, do not select a
275 * non-movable pageblock as the starting point.
277 if (!check_source && check_target &&
278 get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
281 /* Ensure the start of the pageblock or zone is online and valid */
282 block_pfn = pageblock_start_pfn(pfn);
283 block_pfn = max(block_pfn, zone->zone_start_pfn);
284 block_page = pfn_to_online_page(block_pfn);
290 /* Ensure the end of the pageblock or zone is online and valid */
291 block_pfn = pageblock_end_pfn(pfn) - 1;
292 block_pfn = min(block_pfn, zone_end_pfn(zone) - 1);
293 end_page = pfn_to_online_page(block_pfn);
298 * Only clear the hint if a sample indicates there is either a
299 * free page or an LRU page in the block. One or other condition
300 * is necessary for the block to be a migration source/target.
303 if (check_source && PageLRU(page)) {
304 clear_pageblock_skip(page);
308 if (check_target && PageBuddy(page)) {
309 clear_pageblock_skip(page);
313 page += (1 << PAGE_ALLOC_COSTLY_ORDER);
314 } while (page <= end_page);
320 * This function is called to clear all cached information on pageblocks that
321 * should be skipped for page isolation when the migrate and free page scanner
324 static void __reset_isolation_suitable(struct zone *zone)
326 unsigned long migrate_pfn = zone->zone_start_pfn;
327 unsigned long free_pfn = zone_end_pfn(zone) - 1;
328 unsigned long reset_migrate = free_pfn;
329 unsigned long reset_free = migrate_pfn;
330 bool source_set = false;
331 bool free_set = false;
333 if (!zone->compact_blockskip_flush)
336 zone->compact_blockskip_flush = false;
339 * Walk the zone and update pageblock skip information. Source looks
340 * for PageLRU while target looks for PageBuddy. When the scanner
341 * is found, both PageBuddy and PageLRU are checked as the pageblock
342 * is suitable as both source and target.
344 for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages,
345 free_pfn -= pageblock_nr_pages) {
348 /* Update the migrate PFN */
349 if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) &&
350 migrate_pfn < reset_migrate) {
352 reset_migrate = migrate_pfn;
353 zone->compact_init_migrate_pfn = reset_migrate;
354 zone->compact_cached_migrate_pfn[0] = reset_migrate;
355 zone->compact_cached_migrate_pfn[1] = reset_migrate;
358 /* Update the free PFN */
359 if (__reset_isolation_pfn(zone, free_pfn, free_set, true) &&
360 free_pfn > reset_free) {
362 reset_free = free_pfn;
363 zone->compact_init_free_pfn = reset_free;
364 zone->compact_cached_free_pfn = reset_free;
368 /* Leave no distance if no suitable block was reset */
369 if (reset_migrate >= reset_free) {
370 zone->compact_cached_migrate_pfn[0] = migrate_pfn;
371 zone->compact_cached_migrate_pfn[1] = migrate_pfn;
372 zone->compact_cached_free_pfn = free_pfn;
376 void reset_isolation_suitable(pg_data_t *pgdat)
380 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
381 struct zone *zone = &pgdat->node_zones[zoneid];
382 if (!populated_zone(zone))
385 /* Only flush if a full compaction finished recently */
386 if (zone->compact_blockskip_flush)
387 __reset_isolation_suitable(zone);
392 * Sets the pageblock skip bit if it was clear. Note that this is a hint as
393 * locks are not required for read/writers. Returns true if it was already set.
395 static bool test_and_set_skip(struct compact_control *cc, struct page *page,
400 /* Do no update if skip hint is being ignored */
401 if (cc->ignore_skip_hint)
404 if (!pageblock_aligned(pfn))
407 skip = get_pageblock_skip(page);
408 if (!skip && !cc->no_set_skip_hint)
409 set_pageblock_skip(page);
414 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
416 struct zone *zone = cc->zone;
418 pfn = pageblock_end_pfn(pfn);
420 /* Set for isolation rather than compaction */
421 if (cc->no_set_skip_hint)
424 if (pfn > zone->compact_cached_migrate_pfn[0])
425 zone->compact_cached_migrate_pfn[0] = pfn;
426 if (cc->mode != MIGRATE_ASYNC &&
427 pfn > zone->compact_cached_migrate_pfn[1])
428 zone->compact_cached_migrate_pfn[1] = pfn;
432 * If no pages were isolated then mark this pageblock to be skipped in the
433 * future. The information is later cleared by __reset_isolation_suitable().
435 static void update_pageblock_skip(struct compact_control *cc,
436 struct page *page, unsigned long pfn)
438 struct zone *zone = cc->zone;
440 if (cc->no_set_skip_hint)
446 set_pageblock_skip(page);
448 /* Update where async and sync compaction should restart */
449 if (pfn < zone->compact_cached_free_pfn)
450 zone->compact_cached_free_pfn = pfn;
453 static inline bool isolation_suitable(struct compact_control *cc,
459 static inline bool pageblock_skip_persistent(struct page *page)
464 static inline void update_pageblock_skip(struct compact_control *cc,
465 struct page *page, unsigned long pfn)
469 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
473 static bool test_and_set_skip(struct compact_control *cc, struct page *page,
478 #endif /* CONFIG_COMPACTION */
481 * Compaction requires the taking of some coarse locks that are potentially
482 * very heavily contended. For async compaction, trylock and record if the
483 * lock is contended. The lock will still be acquired but compaction will
484 * abort when the current block is finished regardless of success rate.
485 * Sync compaction acquires the lock.
487 * Always returns true which makes it easier to track lock state in callers.
489 static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags,
490 struct compact_control *cc)
493 /* Track if the lock is contended in async mode */
494 if (cc->mode == MIGRATE_ASYNC && !cc->contended) {
495 if (spin_trylock_irqsave(lock, *flags))
498 cc->contended = true;
501 spin_lock_irqsave(lock, *flags);
506 * Compaction requires the taking of some coarse locks that are potentially
507 * very heavily contended. The lock should be periodically unlocked to avoid
508 * having disabled IRQs for a long time, even when there is nobody waiting on
509 * the lock. It might also be that allowing the IRQs will result in
510 * need_resched() becoming true. If scheduling is needed, compaction schedules.
511 * Either compaction type will also abort if a fatal signal is pending.
512 * In either case if the lock was locked, it is dropped and not regained.
514 * Returns true if compaction should abort due to fatal signal pending.
515 * Returns false when compaction can continue.
517 static bool compact_unlock_should_abort(spinlock_t *lock,
518 unsigned long flags, bool *locked, struct compact_control *cc)
521 spin_unlock_irqrestore(lock, flags);
525 if (fatal_signal_pending(current)) {
526 cc->contended = true;
536 * Isolate free pages onto a private freelist. If @strict is true, will abort
537 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
538 * (even though it may still end up isolating some pages).
540 static unsigned long isolate_freepages_block(struct compact_control *cc,
541 unsigned long *start_pfn,
542 unsigned long end_pfn,
543 struct list_head *freelist,
547 int nr_scanned = 0, total_isolated = 0;
549 unsigned long flags = 0;
551 unsigned long blockpfn = *start_pfn;
554 /* Strict mode is for isolation, speed is secondary */
558 cursor = pfn_to_page(blockpfn);
560 /* Isolate free pages. */
561 for (; blockpfn < end_pfn; blockpfn += stride, cursor += stride) {
563 struct page *page = cursor;
566 * Periodically drop the lock (if held) regardless of its
567 * contention, to give chance to IRQs. Abort if fatal signal
570 if (!(blockpfn % COMPACT_CLUSTER_MAX)
571 && compact_unlock_should_abort(&cc->zone->lock, flags,
578 * For compound pages such as THP and hugetlbfs, we can save
579 * potentially a lot of iterations if we skip them at once.
580 * The check is racy, but we can consider only valid values
581 * and the only danger is skipping too much.
583 if (PageCompound(page)) {
584 const unsigned int order = compound_order(page);
586 if (likely(order < MAX_ORDER)) {
587 blockpfn += (1UL << order) - 1;
588 cursor += (1UL << order) - 1;
593 if (!PageBuddy(page))
596 /* If we already hold the lock, we can skip some rechecking. */
598 locked = compact_lock_irqsave(&cc->zone->lock,
601 /* Recheck this is a buddy page under lock */
602 if (!PageBuddy(page))
606 /* Found a free page, will break it into order-0 pages */
607 order = buddy_order(page);
608 isolated = __isolate_free_page(page, order);
611 set_page_private(page, order);
613 nr_scanned += isolated - 1;
614 total_isolated += isolated;
615 cc->nr_freepages += isolated;
616 list_add_tail(&page->lru, freelist);
618 if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
619 blockpfn += isolated;
622 /* Advance to the end of split page */
623 blockpfn += isolated - 1;
624 cursor += isolated - 1;
636 spin_unlock_irqrestore(&cc->zone->lock, flags);
639 * There is a tiny chance that we have read bogus compound_order(),
640 * so be careful to not go outside of the pageblock.
642 if (unlikely(blockpfn > end_pfn))
645 trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
646 nr_scanned, total_isolated);
648 /* Record how far we have got within the block */
649 *start_pfn = blockpfn;
652 * If strict isolation is requested by CMA then check that all the
653 * pages requested were isolated. If there were any failures, 0 is
654 * returned and CMA will fail.
656 if (strict && blockpfn < end_pfn)
659 cc->total_free_scanned += nr_scanned;
661 count_compact_events(COMPACTISOLATED, total_isolated);
662 return total_isolated;
666 * isolate_freepages_range() - isolate free pages.
667 * @cc: Compaction control structure.
668 * @start_pfn: The first PFN to start isolating.
669 * @end_pfn: The one-past-last PFN.
671 * Non-free pages, invalid PFNs, or zone boundaries within the
672 * [start_pfn, end_pfn) range are considered errors, cause function to
673 * undo its actions and return zero.
675 * Otherwise, function returns one-past-the-last PFN of isolated page
676 * (which may be greater then end_pfn if end fell in a middle of
680 isolate_freepages_range(struct compact_control *cc,
681 unsigned long start_pfn, unsigned long end_pfn)
683 unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
687 block_start_pfn = pageblock_start_pfn(pfn);
688 if (block_start_pfn < cc->zone->zone_start_pfn)
689 block_start_pfn = cc->zone->zone_start_pfn;
690 block_end_pfn = pageblock_end_pfn(pfn);
692 for (; pfn < end_pfn; pfn += isolated,
693 block_start_pfn = block_end_pfn,
694 block_end_pfn += pageblock_nr_pages) {
695 /* Protect pfn from changing by isolate_freepages_block */
696 unsigned long isolate_start_pfn = pfn;
698 block_end_pfn = min(block_end_pfn, end_pfn);
701 * pfn could pass the block_end_pfn if isolated freepage
702 * is more than pageblock order. In this case, we adjust
703 * scanning range to right one.
705 if (pfn >= block_end_pfn) {
706 block_start_pfn = pageblock_start_pfn(pfn);
707 block_end_pfn = pageblock_end_pfn(pfn);
708 block_end_pfn = min(block_end_pfn, end_pfn);
711 if (!pageblock_pfn_to_page(block_start_pfn,
712 block_end_pfn, cc->zone))
715 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
716 block_end_pfn, &freelist, 0, true);
719 * In strict mode, isolate_freepages_block() returns 0 if
720 * there are any holes in the block (ie. invalid PFNs or
727 * If we managed to isolate pages, it is always (1 << n) *
728 * pageblock_nr_pages for some non-negative n. (Max order
729 * page may span two pageblocks).
733 /* __isolate_free_page() does not map the pages */
734 split_map_pages(&freelist);
737 /* Loop terminated early, cleanup. */
738 release_freepages(&freelist);
742 /* We don't use freelists for anything. */
746 /* Similar to reclaim, but different enough that they don't share logic */
747 static bool too_many_isolated(pg_data_t *pgdat)
751 unsigned long active, inactive, isolated;
753 inactive = node_page_state(pgdat, NR_INACTIVE_FILE) +
754 node_page_state(pgdat, NR_INACTIVE_ANON);
755 active = node_page_state(pgdat, NR_ACTIVE_FILE) +
756 node_page_state(pgdat, NR_ACTIVE_ANON);
757 isolated = node_page_state(pgdat, NR_ISOLATED_FILE) +
758 node_page_state(pgdat, NR_ISOLATED_ANON);
760 too_many = isolated > (inactive + active) / 2;
762 wake_throttle_isolated(pgdat);
768 * isolate_migratepages_block() - isolate all migrate-able pages within
770 * @cc: Compaction control structure.
771 * @low_pfn: The first PFN to isolate
772 * @end_pfn: The one-past-the-last PFN to isolate, within same pageblock
773 * @mode: Isolation mode to be used.
775 * Isolate all pages that can be migrated from the range specified by
776 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
777 * Returns errno, like -EAGAIN or -EINTR in case e.g signal pending or congestion,
778 * -ENOMEM in case we could not allocate a page, or 0.
779 * cc->migrate_pfn will contain the next pfn to scan.
781 * The pages are isolated on cc->migratepages list (not required to be empty),
782 * and cc->nr_migratepages is updated accordingly.
785 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
786 unsigned long end_pfn, isolate_mode_t mode)
788 pg_data_t *pgdat = cc->zone->zone_pgdat;
789 unsigned long nr_scanned = 0, nr_isolated = 0;
790 struct lruvec *lruvec;
791 unsigned long flags = 0;
792 struct lruvec *locked = NULL;
793 struct page *page = NULL, *valid_page = NULL;
794 struct address_space *mapping;
795 unsigned long start_pfn = low_pfn;
796 bool skip_on_failure = false;
797 unsigned long next_skip_pfn = 0;
798 bool skip_updated = false;
801 cc->migrate_pfn = low_pfn;
804 * Ensure that there are not too many pages isolated from the LRU
805 * list by either parallel reclaimers or compaction. If there are,
806 * delay for some time until fewer pages are isolated
808 while (unlikely(too_many_isolated(pgdat))) {
809 /* stop isolation if there are still pages not migrated */
810 if (cc->nr_migratepages)
813 /* async migration should just abort */
814 if (cc->mode == MIGRATE_ASYNC)
817 reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
819 if (fatal_signal_pending(current))
825 if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
826 skip_on_failure = true;
827 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
830 /* Time to isolate some pages for migration */
831 for (; low_pfn < end_pfn; low_pfn++) {
833 if (skip_on_failure && low_pfn >= next_skip_pfn) {
835 * We have isolated all migration candidates in the
836 * previous order-aligned block, and did not skip it due
837 * to failure. We should migrate the pages now and
838 * hopefully succeed compaction.
844 * We failed to isolate in the previous order-aligned
845 * block. Set the new boundary to the end of the
846 * current block. Note we can't simply increase
847 * next_skip_pfn by 1 << order, as low_pfn might have
848 * been incremented by a higher number due to skipping
849 * a compound or a high-order buddy page in the
850 * previous loop iteration.
852 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
856 * Periodically drop the lock (if held) regardless of its
857 * contention, to give chance to IRQs. Abort completely if
858 * a fatal signal is pending.
860 if (!(low_pfn % COMPACT_CLUSTER_MAX)) {
862 unlock_page_lruvec_irqrestore(locked, flags);
866 if (fatal_signal_pending(current)) {
867 cc->contended = true;
878 page = pfn_to_page(low_pfn);
881 * Check if the pageblock has already been marked skipped.
882 * Only the aligned PFN is checked as the caller isolates
883 * COMPACT_CLUSTER_MAX at a time so the second call must
884 * not falsely conclude that the block should be skipped.
886 if (!valid_page && pageblock_aligned(low_pfn)) {
887 if (!isolation_suitable(cc, page)) {
895 if (PageHuge(page) && cc->alloc_contig) {
896 ret = isolate_or_dissolve_huge_page(page, &cc->migratepages);
899 * Fail isolation in case isolate_or_dissolve_huge_page()
900 * reports an error. In case of -ENOMEM, abort right away.
903 /* Do not report -EBUSY down the chain */
906 low_pfn += compound_nr(page) - 1;
910 if (PageHuge(page)) {
912 * Hugepage was successfully isolated and placed
913 * on the cc->migratepages list.
915 low_pfn += compound_nr(page) - 1;
916 goto isolate_success_no_list;
920 * Ok, the hugepage was dissolved. Now these pages are
921 * Buddy and cannot be re-allocated because they are
922 * isolated. Fall-through as the check below handles
928 * Skip if free. We read page order here without zone lock
929 * which is generally unsafe, but the race window is small and
930 * the worst thing that can happen is that we skip some
931 * potential isolation targets.
933 if (PageBuddy(page)) {
934 unsigned long freepage_order = buddy_order_unsafe(page);
937 * Without lock, we cannot be sure that what we got is
938 * a valid page order. Consider only values in the
939 * valid order range to prevent low_pfn overflow.
941 if (freepage_order > 0 && freepage_order < MAX_ORDER)
942 low_pfn += (1UL << freepage_order) - 1;
947 * Regardless of being on LRU, compound pages such as THP and
948 * hugetlbfs are not to be compacted unless we are attempting
949 * an allocation much larger than the huge page size (eg CMA).
950 * We can potentially save a lot of iterations if we skip them
951 * at once. The check is racy, but we can consider only valid
952 * values and the only danger is skipping too much.
954 if (PageCompound(page) && !cc->alloc_contig) {
955 const unsigned int order = compound_order(page);
957 if (likely(order < MAX_ORDER))
958 low_pfn += (1UL << order) - 1;
963 * Check may be lockless but that's ok as we recheck later.
964 * It's possible to migrate LRU and non-lru movable pages.
965 * Skip any other type of page
967 if (!PageLRU(page)) {
969 * __PageMovable can return false positive so we need
970 * to verify it under page_lock.
972 if (unlikely(__PageMovable(page)) &&
973 !PageIsolated(page)) {
975 unlock_page_lruvec_irqrestore(locked, flags);
979 if (isolate_movable_page(page, mode))
980 goto isolate_success;
987 * Be careful not to clear PageLRU until after we're
988 * sure the page is not being freed elsewhere -- the
989 * page release code relies on it.
991 if (unlikely(!get_page_unless_zero(page)))
995 * Migration will fail if an anonymous page is pinned in memory,
996 * so avoid taking lru_lock and isolating it unnecessarily in an
997 * admittedly racy check.
999 mapping = page_mapping(page);
1000 if (!mapping && (page_count(page) - 1) > total_mapcount(page))
1001 goto isolate_fail_put;
1004 * Only allow to migrate anonymous pages in GFP_NOFS context
1005 * because those do not depend on fs locks.
1007 if (!(cc->gfp_mask & __GFP_FS) && mapping)
1008 goto isolate_fail_put;
1010 /* Only take pages on LRU: a check now makes later tests safe */
1012 goto isolate_fail_put;
1014 /* Compaction might skip unevictable pages but CMA takes them */
1015 if (!(mode & ISOLATE_UNEVICTABLE) && PageUnevictable(page))
1016 goto isolate_fail_put;
1019 * To minimise LRU disruption, the caller can indicate with
1020 * ISOLATE_ASYNC_MIGRATE that it only wants to isolate pages
1021 * it will be able to migrate without blocking - clean pages
1022 * for the most part. PageWriteback would require blocking.
1024 if ((mode & ISOLATE_ASYNC_MIGRATE) && PageWriteback(page))
1025 goto isolate_fail_put;
1027 if ((mode & ISOLATE_ASYNC_MIGRATE) && PageDirty(page)) {
1031 * Only pages without mappings or that have a
1032 * ->migrate_folio callback are possible to migrate
1033 * without blocking. However, we can be racing with
1034 * truncation so it's necessary to lock the page
1035 * to stabilise the mapping as truncation holds
1036 * the page lock until after the page is removed
1037 * from the page cache.
1039 if (!trylock_page(page))
1040 goto isolate_fail_put;
1042 mapping = page_mapping(page);
1043 migrate_dirty = !mapping ||
1044 mapping->a_ops->migrate_folio;
1047 goto isolate_fail_put;
1050 /* Try isolate the page */
1051 if (!TestClearPageLRU(page))
1052 goto isolate_fail_put;
1054 lruvec = folio_lruvec(page_folio(page));
1056 /* If we already hold the lock, we can skip some rechecking */
1057 if (lruvec != locked) {
1059 unlock_page_lruvec_irqrestore(locked, flags);
1061 compact_lock_irqsave(&lruvec->lru_lock, &flags, cc);
1064 lruvec_memcg_debug(lruvec, page_folio(page));
1066 /* Try get exclusive access under lock */
1067 if (!skip_updated) {
1068 skip_updated = true;
1069 if (test_and_set_skip(cc, page, low_pfn))
1074 * Page become compound since the non-locked check,
1075 * and it's on LRU. It can only be a THP so the order
1076 * is safe to read and it's 0 for tail pages.
1078 if (unlikely(PageCompound(page) && !cc->alloc_contig)) {
1079 low_pfn += compound_nr(page) - 1;
1081 goto isolate_fail_put;
1085 /* The whole page is taken off the LRU; skip the tail pages. */
1086 if (PageCompound(page))
1087 low_pfn += compound_nr(page) - 1;
1089 /* Successfully isolated */
1090 del_page_from_lru_list(page, lruvec);
1091 mod_node_page_state(page_pgdat(page),
1092 NR_ISOLATED_ANON + page_is_file_lru(page),
1093 thp_nr_pages(page));
1096 list_add(&page->lru, &cc->migratepages);
1097 isolate_success_no_list:
1098 cc->nr_migratepages += compound_nr(page);
1099 nr_isolated += compound_nr(page);
1100 nr_scanned += compound_nr(page) - 1;
1103 * Avoid isolating too much unless this block is being
1104 * fully scanned (e.g. dirty/writeback pages, parallel allocation)
1105 * or a lock is contended. For contention, isolate quickly to
1106 * potentially remove one source of contention.
1108 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX &&
1109 !cc->finish_pageblock && !cc->contended) {
1117 /* Avoid potential deadlock in freeing page under lru_lock */
1119 unlock_page_lruvec_irqrestore(locked, flags);
1125 if (!skip_on_failure && ret != -ENOMEM)
1129 * We have isolated some pages, but then failed. Release them
1130 * instead of migrating, as we cannot form the cc->order buddy
1135 unlock_page_lruvec_irqrestore(locked, flags);
1138 putback_movable_pages(&cc->migratepages);
1139 cc->nr_migratepages = 0;
1143 if (low_pfn < next_skip_pfn) {
1144 low_pfn = next_skip_pfn - 1;
1146 * The check near the loop beginning would have updated
1147 * next_skip_pfn too, but this is a bit simpler.
1149 next_skip_pfn += 1UL << cc->order;
1157 * The PageBuddy() check could have potentially brought us outside
1158 * the range to be scanned.
1160 if (unlikely(low_pfn > end_pfn))
1167 unlock_page_lruvec_irqrestore(locked, flags);
1174 * Update the cached scanner pfn once the pageblock has been scanned.
1175 * Pages will either be migrated in which case there is no point
1176 * scanning in the near future or migration failed in which case the
1177 * failure reason may persist. The block is marked for skipping if
1178 * there were no pages isolated in the block or if the block is
1179 * rescanned twice in a row.
1181 if (low_pfn == end_pfn && (!nr_isolated || cc->finish_pageblock)) {
1182 if (valid_page && !skip_updated)
1183 set_pageblock_skip(valid_page);
1184 update_cached_migrate(cc, low_pfn);
1187 trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
1188 nr_scanned, nr_isolated);
1191 cc->total_migrate_scanned += nr_scanned;
1193 count_compact_events(COMPACTISOLATED, nr_isolated);
1195 cc->migrate_pfn = low_pfn;
1201 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
1202 * @cc: Compaction control structure.
1203 * @start_pfn: The first PFN to start isolating.
1204 * @end_pfn: The one-past-last PFN.
1206 * Returns -EAGAIN when contented, -EINTR in case of a signal pending, -ENOMEM
1207 * in case we could not allocate a page, or 0.
1210 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
1211 unsigned long end_pfn)
1213 unsigned long pfn, block_start_pfn, block_end_pfn;
1216 /* Scan block by block. First and last block may be incomplete */
1218 block_start_pfn = pageblock_start_pfn(pfn);
1219 if (block_start_pfn < cc->zone->zone_start_pfn)
1220 block_start_pfn = cc->zone->zone_start_pfn;
1221 block_end_pfn = pageblock_end_pfn(pfn);
1223 for (; pfn < end_pfn; pfn = block_end_pfn,
1224 block_start_pfn = block_end_pfn,
1225 block_end_pfn += pageblock_nr_pages) {
1227 block_end_pfn = min(block_end_pfn, end_pfn);
1229 if (!pageblock_pfn_to_page(block_start_pfn,
1230 block_end_pfn, cc->zone))
1233 ret = isolate_migratepages_block(cc, pfn, block_end_pfn,
1234 ISOLATE_UNEVICTABLE);
1239 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX)
1246 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
1247 #ifdef CONFIG_COMPACTION
1249 static bool suitable_migration_source(struct compact_control *cc,
1254 if (pageblock_skip_persistent(page))
1257 if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
1260 block_mt = get_pageblock_migratetype(page);
1262 if (cc->migratetype == MIGRATE_MOVABLE)
1263 return is_migrate_movable(block_mt);
1265 return block_mt == cc->migratetype;
1268 /* Returns true if the page is within a block suitable for migration to */
1269 static bool suitable_migration_target(struct compact_control *cc,
1272 /* If the page is a large free page, then disallow migration */
1273 if (PageBuddy(page)) {
1275 * We are checking page_order without zone->lock taken. But
1276 * the only small danger is that we skip a potentially suitable
1277 * pageblock, so it's not worth to check order for valid range.
1279 if (buddy_order_unsafe(page) >= pageblock_order)
1283 if (cc->ignore_block_suitable)
1286 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1287 if (is_migrate_movable(get_pageblock_migratetype(page)))
1290 /* Otherwise skip the block */
1294 static inline unsigned int
1295 freelist_scan_limit(struct compact_control *cc)
1297 unsigned short shift = BITS_PER_LONG - 1;
1299 return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1;
1303 * Test whether the free scanner has reached the same or lower pageblock than
1304 * the migration scanner, and compaction should thus terminate.
1306 static inline bool compact_scanners_met(struct compact_control *cc)
1308 return (cc->free_pfn >> pageblock_order)
1309 <= (cc->migrate_pfn >> pageblock_order);
1313 * Used when scanning for a suitable migration target which scans freelists
1314 * in reverse. Reorders the list such as the unscanned pages are scanned
1315 * first on the next iteration of the free scanner
1318 move_freelist_head(struct list_head *freelist, struct page *freepage)
1322 if (!list_is_last(freelist, &freepage->lru)) {
1323 list_cut_before(&sublist, freelist, &freepage->lru);
1324 list_splice_tail(&sublist, freelist);
1329 * Similar to move_freelist_head except used by the migration scanner
1330 * when scanning forward. It's possible for these list operations to
1331 * move against each other if they search the free list exactly in
1335 move_freelist_tail(struct list_head *freelist, struct page *freepage)
1339 if (!list_is_first(freelist, &freepage->lru)) {
1340 list_cut_position(&sublist, freelist, &freepage->lru);
1341 list_splice_tail(&sublist, freelist);
1346 fast_isolate_around(struct compact_control *cc, unsigned long pfn)
1348 unsigned long start_pfn, end_pfn;
1351 /* Do not search around if there are enough pages already */
1352 if (cc->nr_freepages >= cc->nr_migratepages)
1355 /* Minimise scanning during async compaction */
1356 if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC)
1359 /* Pageblock boundaries */
1360 start_pfn = max(pageblock_start_pfn(pfn), cc->zone->zone_start_pfn);
1361 end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone));
1363 page = pageblock_pfn_to_page(start_pfn, end_pfn, cc->zone);
1367 isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false);
1369 /* Skip this pageblock in the future as it's full or nearly full */
1370 if (cc->nr_freepages < cc->nr_migratepages)
1371 set_pageblock_skip(page);
1376 /* Search orders in round-robin fashion */
1377 static int next_search_order(struct compact_control *cc, int order)
1381 order = cc->order - 1;
1383 /* Search wrapped around? */
1384 if (order == cc->search_order) {
1386 if (cc->search_order < 0)
1387 cc->search_order = cc->order - 1;
1394 static unsigned long
1395 fast_isolate_freepages(struct compact_control *cc)
1397 unsigned int limit = max(1U, freelist_scan_limit(cc) >> 1);
1398 unsigned int nr_scanned = 0;
1399 unsigned long low_pfn, min_pfn, highest = 0;
1400 unsigned long nr_isolated = 0;
1401 unsigned long distance;
1402 struct page *page = NULL;
1403 bool scan_start = false;
1406 /* Full compaction passes in a negative order */
1408 return cc->free_pfn;
1411 * If starting the scan, use a deeper search and use the highest
1412 * PFN found if a suitable one is not found.
1414 if (cc->free_pfn >= cc->zone->compact_init_free_pfn) {
1415 limit = pageblock_nr_pages >> 1;
1420 * Preferred point is in the top quarter of the scan space but take
1421 * a pfn from the top half if the search is problematic.
1423 distance = (cc->free_pfn - cc->migrate_pfn);
1424 low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2));
1425 min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1));
1427 if (WARN_ON_ONCE(min_pfn > low_pfn))
1431 * Search starts from the last successful isolation order or the next
1432 * order to search after a previous failure
1434 cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order);
1436 for (order = cc->search_order;
1437 !page && order >= 0;
1438 order = next_search_order(cc, order)) {
1439 struct free_area *area = &cc->zone->free_area[order];
1440 struct list_head *freelist;
1441 struct page *freepage;
1442 unsigned long flags;
1443 unsigned int order_scanned = 0;
1444 unsigned long high_pfn = 0;
1449 spin_lock_irqsave(&cc->zone->lock, flags);
1450 freelist = &area->free_list[MIGRATE_MOVABLE];
1451 list_for_each_entry_reverse(freepage, freelist, lru) {
1456 pfn = page_to_pfn(freepage);
1459 highest = max(pageblock_start_pfn(pfn),
1460 cc->zone->zone_start_pfn);
1462 if (pfn >= low_pfn) {
1463 cc->fast_search_fail = 0;
1464 cc->search_order = order;
1469 if (pfn >= min_pfn && pfn > high_pfn) {
1472 /* Shorten the scan if a candidate is found */
1476 if (order_scanned >= limit)
1480 /* Use a minimum pfn if a preferred one was not found */
1481 if (!page && high_pfn) {
1482 page = pfn_to_page(high_pfn);
1484 /* Update freepage for the list reorder below */
1488 /* Reorder to so a future search skips recent pages */
1489 move_freelist_head(freelist, freepage);
1491 /* Isolate the page if available */
1493 if (__isolate_free_page(page, order)) {
1494 set_page_private(page, order);
1495 nr_isolated = 1 << order;
1496 nr_scanned += nr_isolated - 1;
1497 cc->nr_freepages += nr_isolated;
1498 list_add_tail(&page->lru, &cc->freepages);
1499 count_compact_events(COMPACTISOLATED, nr_isolated);
1501 /* If isolation fails, abort the search */
1502 order = cc->search_order + 1;
1507 spin_unlock_irqrestore(&cc->zone->lock, flags);
1510 * Smaller scan on next order so the total scan is related
1511 * to freelist_scan_limit.
1513 if (order_scanned >= limit)
1514 limit = max(1U, limit >> 1);
1518 cc->fast_search_fail++;
1521 * Use the highest PFN found above min. If one was
1522 * not found, be pessimistic for direct compaction
1523 * and use the min mark.
1525 if (highest >= min_pfn) {
1526 page = pfn_to_page(highest);
1527 cc->free_pfn = highest;
1529 if (cc->direct_compaction && pfn_valid(min_pfn)) {
1530 page = pageblock_pfn_to_page(min_pfn,
1531 min(pageblock_end_pfn(min_pfn),
1532 zone_end_pfn(cc->zone)),
1534 cc->free_pfn = min_pfn;
1540 if (highest && highest >= cc->zone->compact_cached_free_pfn) {
1541 highest -= pageblock_nr_pages;
1542 cc->zone->compact_cached_free_pfn = highest;
1545 cc->total_free_scanned += nr_scanned;
1547 return cc->free_pfn;
1549 low_pfn = page_to_pfn(page);
1550 fast_isolate_around(cc, low_pfn);
1555 * Based on information in the current compact_control, find blocks
1556 * suitable for isolating free pages from and then isolate them.
1558 static void isolate_freepages(struct compact_control *cc)
1560 struct zone *zone = cc->zone;
1562 unsigned long block_start_pfn; /* start of current pageblock */
1563 unsigned long isolate_start_pfn; /* exact pfn we start at */
1564 unsigned long block_end_pfn; /* end of current pageblock */
1565 unsigned long low_pfn; /* lowest pfn scanner is able to scan */
1566 struct list_head *freelist = &cc->freepages;
1567 unsigned int stride;
1569 /* Try a small search of the free lists for a candidate */
1570 fast_isolate_freepages(cc);
1571 if (cc->nr_freepages)
1575 * Initialise the free scanner. The starting point is where we last
1576 * successfully isolated from, zone-cached value, or the end of the
1577 * zone when isolating for the first time. For looping we also need
1578 * this pfn aligned down to the pageblock boundary, because we do
1579 * block_start_pfn -= pageblock_nr_pages in the for loop.
1580 * For ending point, take care when isolating in last pageblock of a
1581 * zone which ends in the middle of a pageblock.
1582 * The low boundary is the end of the pageblock the migration scanner
1585 isolate_start_pfn = cc->free_pfn;
1586 block_start_pfn = pageblock_start_pfn(isolate_start_pfn);
1587 block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1588 zone_end_pfn(zone));
1589 low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1590 stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1;
1593 * Isolate free pages until enough are available to migrate the
1594 * pages on cc->migratepages. We stop searching if the migrate
1595 * and free page scanners meet or enough free pages are isolated.
1597 for (; block_start_pfn >= low_pfn;
1598 block_end_pfn = block_start_pfn,
1599 block_start_pfn -= pageblock_nr_pages,
1600 isolate_start_pfn = block_start_pfn) {
1601 unsigned long nr_isolated;
1604 * This can iterate a massively long zone without finding any
1605 * suitable migration targets, so periodically check resched.
1607 if (!(block_start_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages)))
1610 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1615 /* Check the block is suitable for migration */
1616 if (!suitable_migration_target(cc, page))
1619 /* If isolation recently failed, do not retry */
1620 if (!isolation_suitable(cc, page))
1623 /* Found a block suitable for isolating free pages from. */
1624 nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn,
1625 block_end_pfn, freelist, stride, false);
1627 /* Update the skip hint if the full pageblock was scanned */
1628 if (isolate_start_pfn == block_end_pfn)
1629 update_pageblock_skip(cc, page, block_start_pfn);
1631 /* Are enough freepages isolated? */
1632 if (cc->nr_freepages >= cc->nr_migratepages) {
1633 if (isolate_start_pfn >= block_end_pfn) {
1635 * Restart at previous pageblock if more
1636 * freepages can be isolated next time.
1639 block_start_pfn - pageblock_nr_pages;
1642 } else if (isolate_start_pfn < block_end_pfn) {
1644 * If isolation failed early, do not continue
1650 /* Adjust stride depending on isolation */
1655 stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1);
1659 * Record where the free scanner will restart next time. Either we
1660 * broke from the loop and set isolate_start_pfn based on the last
1661 * call to isolate_freepages_block(), or we met the migration scanner
1662 * and the loop terminated due to isolate_start_pfn < low_pfn
1664 cc->free_pfn = isolate_start_pfn;
1667 /* __isolate_free_page() does not map the pages */
1668 split_map_pages(freelist);
1672 * This is a migrate-callback that "allocates" freepages by taking pages
1673 * from the isolated freelists in the block we are migrating to.
1675 static struct page *compaction_alloc(struct page *migratepage,
1678 struct compact_control *cc = (struct compact_control *)data;
1679 struct page *freepage;
1681 if (list_empty(&cc->freepages)) {
1682 isolate_freepages(cc);
1684 if (list_empty(&cc->freepages))
1688 freepage = list_entry(cc->freepages.next, struct page, lru);
1689 list_del(&freepage->lru);
1696 * This is a migrate-callback that "frees" freepages back to the isolated
1697 * freelist. All pages on the freelist are from the same zone, so there is no
1698 * special handling needed for NUMA.
1700 static void compaction_free(struct page *page, unsigned long data)
1702 struct compact_control *cc = (struct compact_control *)data;
1704 list_add(&page->lru, &cc->freepages);
1708 /* possible outcome of isolate_migratepages */
1710 ISOLATE_ABORT, /* Abort compaction now */
1711 ISOLATE_NONE, /* No pages isolated, continue scanning */
1712 ISOLATE_SUCCESS, /* Pages isolated, migrate */
1713 } isolate_migrate_t;
1716 * Allow userspace to control policy on scanning the unevictable LRU for
1717 * compactable pages.
1719 int sysctl_compact_unevictable_allowed __read_mostly = CONFIG_COMPACT_UNEVICTABLE_DEFAULT;
1722 update_fast_start_pfn(struct compact_control *cc, unsigned long pfn)
1724 if (cc->fast_start_pfn == ULONG_MAX)
1727 if (!cc->fast_start_pfn)
1728 cc->fast_start_pfn = pfn;
1730 cc->fast_start_pfn = min(cc->fast_start_pfn, pfn);
1733 static inline unsigned long
1734 reinit_migrate_pfn(struct compact_control *cc)
1736 if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX)
1737 return cc->migrate_pfn;
1739 cc->migrate_pfn = cc->fast_start_pfn;
1740 cc->fast_start_pfn = ULONG_MAX;
1742 return cc->migrate_pfn;
1746 * Briefly search the free lists for a migration source that already has
1747 * some free pages to reduce the number of pages that need migration
1748 * before a pageblock is free.
1750 static unsigned long fast_find_migrateblock(struct compact_control *cc)
1752 unsigned int limit = freelist_scan_limit(cc);
1753 unsigned int nr_scanned = 0;
1754 unsigned long distance;
1755 unsigned long pfn = cc->migrate_pfn;
1756 unsigned long high_pfn;
1758 bool found_block = false;
1760 /* Skip hints are relied on to avoid repeats on the fast search */
1761 if (cc->ignore_skip_hint)
1765 * If the pageblock should be finished then do not select a different
1768 if (cc->finish_pageblock)
1772 * If the migrate_pfn is not at the start of a zone or the start
1773 * of a pageblock then assume this is a continuation of a previous
1774 * scan restarted due to COMPACT_CLUSTER_MAX.
1776 if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn))
1780 * For smaller orders, just linearly scan as the number of pages
1781 * to migrate should be relatively small and does not necessarily
1782 * justify freeing up a large block for a small allocation.
1784 if (cc->order <= PAGE_ALLOC_COSTLY_ORDER)
1788 * Only allow kcompactd and direct requests for movable pages to
1789 * quickly clear out a MOVABLE pageblock for allocation. This
1790 * reduces the risk that a large movable pageblock is freed for
1791 * an unmovable/reclaimable small allocation.
1793 if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE)
1797 * When starting the migration scanner, pick any pageblock within the
1798 * first half of the search space. Otherwise try and pick a pageblock
1799 * within the first eighth to reduce the chances that a migration
1800 * target later becomes a source.
1802 distance = (cc->free_pfn - cc->migrate_pfn) >> 1;
1803 if (cc->migrate_pfn != cc->zone->zone_start_pfn)
1805 high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance);
1807 for (order = cc->order - 1;
1808 order >= PAGE_ALLOC_COSTLY_ORDER && !found_block && nr_scanned < limit;
1810 struct free_area *area = &cc->zone->free_area[order];
1811 struct list_head *freelist;
1812 unsigned long flags;
1813 struct page *freepage;
1818 spin_lock_irqsave(&cc->zone->lock, flags);
1819 freelist = &area->free_list[MIGRATE_MOVABLE];
1820 list_for_each_entry(freepage, freelist, lru) {
1821 unsigned long free_pfn;
1823 if (nr_scanned++ >= limit) {
1824 move_freelist_tail(freelist, freepage);
1828 free_pfn = page_to_pfn(freepage);
1829 if (free_pfn < high_pfn) {
1831 * Avoid if skipped recently. Ideally it would
1832 * move to the tail but even safe iteration of
1833 * the list assumes an entry is deleted, not
1836 if (get_pageblock_skip(freepage))
1839 /* Reorder to so a future search skips recent pages */
1840 move_freelist_tail(freelist, freepage);
1842 update_fast_start_pfn(cc, free_pfn);
1843 pfn = pageblock_start_pfn(free_pfn);
1844 if (pfn < cc->zone->zone_start_pfn)
1845 pfn = cc->zone->zone_start_pfn;
1846 cc->fast_search_fail = 0;
1848 set_pageblock_skip(freepage);
1852 spin_unlock_irqrestore(&cc->zone->lock, flags);
1855 cc->total_migrate_scanned += nr_scanned;
1858 * If fast scanning failed then use a cached entry for a page block
1859 * that had free pages as the basis for starting a linear scan.
1862 cc->fast_search_fail++;
1863 pfn = reinit_migrate_pfn(cc);
1869 * Isolate all pages that can be migrated from the first suitable block,
1870 * starting at the block pointed to by the migrate scanner pfn within
1873 static isolate_migrate_t isolate_migratepages(struct compact_control *cc)
1875 unsigned long block_start_pfn;
1876 unsigned long block_end_pfn;
1877 unsigned long low_pfn;
1879 const isolate_mode_t isolate_mode =
1880 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1881 (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1882 bool fast_find_block;
1885 * Start at where we last stopped, or beginning of the zone as
1886 * initialized by compact_zone(). The first failure will use
1887 * the lowest PFN as the starting point for linear scanning.
1889 low_pfn = fast_find_migrateblock(cc);
1890 block_start_pfn = pageblock_start_pfn(low_pfn);
1891 if (block_start_pfn < cc->zone->zone_start_pfn)
1892 block_start_pfn = cc->zone->zone_start_pfn;
1895 * fast_find_migrateblock marks a pageblock skipped so to avoid
1896 * the isolation_suitable check below, check whether the fast
1897 * search was successful.
1899 fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail;
1901 /* Only scan within a pageblock boundary */
1902 block_end_pfn = pageblock_end_pfn(low_pfn);
1905 * Iterate over whole pageblocks until we find the first suitable.
1906 * Do not cross the free scanner.
1908 for (; block_end_pfn <= cc->free_pfn;
1909 fast_find_block = false,
1910 cc->migrate_pfn = low_pfn = block_end_pfn,
1911 block_start_pfn = block_end_pfn,
1912 block_end_pfn += pageblock_nr_pages) {
1915 * This can potentially iterate a massively long zone with
1916 * many pageblocks unsuitable, so periodically check if we
1919 if (!(low_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages)))
1922 page = pageblock_pfn_to_page(block_start_pfn,
1923 block_end_pfn, cc->zone);
1928 * If isolation recently failed, do not retry. Only check the
1929 * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock
1930 * to be visited multiple times. Assume skip was checked
1931 * before making it "skip" so other compaction instances do
1932 * not scan the same block.
1934 if (pageblock_aligned(low_pfn) &&
1935 !fast_find_block && !isolation_suitable(cc, page))
1939 * For async direct compaction, only scan the pageblocks of the
1940 * same migratetype without huge pages. Async direct compaction
1941 * is optimistic to see if the minimum amount of work satisfies
1942 * the allocation. The cached PFN is updated as it's possible
1943 * that all remaining blocks between source and target are
1944 * unsuitable and the compaction scanners fail to meet.
1946 if (!suitable_migration_source(cc, page)) {
1947 update_cached_migrate(cc, block_end_pfn);
1951 /* Perform the isolation */
1952 if (isolate_migratepages_block(cc, low_pfn, block_end_pfn,
1954 return ISOLATE_ABORT;
1957 * Either we isolated something and proceed with migration. Or
1958 * we failed and compact_zone should decide if we should
1964 return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1968 * order == -1 is expected when compacting via
1969 * /proc/sys/vm/compact_memory
1971 static inline bool is_via_compact_memory(int order)
1977 * Determine whether kswapd is (or recently was!) running on this node.
1979 * pgdat_kswapd_lock() pins pgdat->kswapd, so a concurrent kswapd_stop() can't
1982 static bool kswapd_is_running(pg_data_t *pgdat)
1986 pgdat_kswapd_lock(pgdat);
1987 running = pgdat->kswapd && task_is_running(pgdat->kswapd);
1988 pgdat_kswapd_unlock(pgdat);
1994 * A zone's fragmentation score is the external fragmentation wrt to the
1995 * COMPACTION_HPAGE_ORDER. It returns a value in the range [0, 100].
1997 static unsigned int fragmentation_score_zone(struct zone *zone)
1999 return extfrag_for_order(zone, COMPACTION_HPAGE_ORDER);
2003 * A weighted zone's fragmentation score is the external fragmentation
2004 * wrt to the COMPACTION_HPAGE_ORDER scaled by the zone's size. It
2005 * returns a value in the range [0, 100].
2007 * The scaling factor ensures that proactive compaction focuses on larger
2008 * zones like ZONE_NORMAL, rather than smaller, specialized zones like
2009 * ZONE_DMA32. For smaller zones, the score value remains close to zero,
2010 * and thus never exceeds the high threshold for proactive compaction.
2012 static unsigned int fragmentation_score_zone_weighted(struct zone *zone)
2014 unsigned long score;
2016 score = zone->present_pages * fragmentation_score_zone(zone);
2017 return div64_ul(score, zone->zone_pgdat->node_present_pages + 1);
2021 * The per-node proactive (background) compaction process is started by its
2022 * corresponding kcompactd thread when the node's fragmentation score
2023 * exceeds the high threshold. The compaction process remains active till
2024 * the node's score falls below the low threshold, or one of the back-off
2025 * conditions is met.
2027 static unsigned int fragmentation_score_node(pg_data_t *pgdat)
2029 unsigned int score = 0;
2032 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2035 zone = &pgdat->node_zones[zoneid];
2036 if (!populated_zone(zone))
2038 score += fragmentation_score_zone_weighted(zone);
2044 static unsigned int fragmentation_score_wmark(pg_data_t *pgdat, bool low)
2046 unsigned int wmark_low;
2049 * Cap the low watermark to avoid excessive compaction
2050 * activity in case a user sets the proactiveness tunable
2051 * close to 100 (maximum).
2053 wmark_low = max(100U - sysctl_compaction_proactiveness, 5U);
2054 return low ? wmark_low : min(wmark_low + 10, 100U);
2057 static bool should_proactive_compact_node(pg_data_t *pgdat)
2061 if (!sysctl_compaction_proactiveness || kswapd_is_running(pgdat))
2064 wmark_high = fragmentation_score_wmark(pgdat, false);
2065 return fragmentation_score_node(pgdat) > wmark_high;
2068 static enum compact_result __compact_finished(struct compact_control *cc)
2071 const int migratetype = cc->migratetype;
2074 /* Compaction run completes if the migrate and free scanner meet */
2075 if (compact_scanners_met(cc)) {
2076 /* Let the next compaction start anew. */
2077 reset_cached_positions(cc->zone);
2080 * Mark that the PG_migrate_skip information should be cleared
2081 * by kswapd when it goes to sleep. kcompactd does not set the
2082 * flag itself as the decision to be clear should be directly
2083 * based on an allocation request.
2085 if (cc->direct_compaction)
2086 cc->zone->compact_blockskip_flush = true;
2089 return COMPACT_COMPLETE;
2091 return COMPACT_PARTIAL_SKIPPED;
2094 if (cc->proactive_compaction) {
2095 int score, wmark_low;
2098 pgdat = cc->zone->zone_pgdat;
2099 if (kswapd_is_running(pgdat))
2100 return COMPACT_PARTIAL_SKIPPED;
2102 score = fragmentation_score_zone(cc->zone);
2103 wmark_low = fragmentation_score_wmark(pgdat, true);
2105 if (score > wmark_low)
2106 ret = COMPACT_CONTINUE;
2108 ret = COMPACT_SUCCESS;
2113 if (is_via_compact_memory(cc->order))
2114 return COMPACT_CONTINUE;
2117 * Always finish scanning a pageblock to reduce the possibility of
2118 * fallbacks in the future. This is particularly important when
2119 * migration source is unmovable/reclaimable but it's not worth
2122 if (!pageblock_aligned(cc->migrate_pfn))
2123 return COMPACT_CONTINUE;
2125 /* Direct compactor: Is a suitable page free? */
2126 ret = COMPACT_NO_SUITABLE_PAGE;
2127 for (order = cc->order; order < MAX_ORDER; order++) {
2128 struct free_area *area = &cc->zone->free_area[order];
2131 /* Job done if page is free of the right migratetype */
2132 if (!free_area_empty(area, migratetype))
2133 return COMPACT_SUCCESS;
2136 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
2137 if (migratetype == MIGRATE_MOVABLE &&
2138 !free_area_empty(area, MIGRATE_CMA))
2139 return COMPACT_SUCCESS;
2142 * Job done if allocation would steal freepages from
2143 * other migratetype buddy lists.
2145 if (find_suitable_fallback(area, order, migratetype,
2146 true, &can_steal) != -1)
2148 * Movable pages are OK in any pageblock. If we are
2149 * stealing for a non-movable allocation, make sure
2150 * we finish compacting the current pageblock first
2151 * (which is assured by the above migrate_pfn align
2152 * check) so it is as free as possible and we won't
2153 * have to steal another one soon.
2155 return COMPACT_SUCCESS;
2159 if (cc->contended || fatal_signal_pending(current))
2160 ret = COMPACT_CONTENDED;
2165 static enum compact_result compact_finished(struct compact_control *cc)
2169 ret = __compact_finished(cc);
2170 trace_mm_compaction_finished(cc->zone, cc->order, ret);
2171 if (ret == COMPACT_NO_SUITABLE_PAGE)
2172 ret = COMPACT_CONTINUE;
2177 static enum compact_result __compaction_suitable(struct zone *zone, int order,
2178 unsigned int alloc_flags,
2179 int highest_zoneidx,
2180 unsigned long wmark_target)
2182 unsigned long watermark;
2184 if (is_via_compact_memory(order))
2185 return COMPACT_CONTINUE;
2187 watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
2189 * If watermarks for high-order allocation are already met, there
2190 * should be no need for compaction at all.
2192 if (zone_watermark_ok(zone, order, watermark, highest_zoneidx,
2194 return COMPACT_SUCCESS;
2197 * Watermarks for order-0 must be met for compaction to be able to
2198 * isolate free pages for migration targets. This means that the
2199 * watermark and alloc_flags have to match, or be more pessimistic than
2200 * the check in __isolate_free_page(). We don't use the direct
2201 * compactor's alloc_flags, as they are not relevant for freepage
2202 * isolation. We however do use the direct compactor's highest_zoneidx
2203 * to skip over zones where lowmem reserves would prevent allocation
2204 * even if compaction succeeds.
2205 * For costly orders, we require low watermark instead of min for
2206 * compaction to proceed to increase its chances.
2207 * ALLOC_CMA is used, as pages in CMA pageblocks are considered
2208 * suitable migration targets
2210 watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
2211 low_wmark_pages(zone) : min_wmark_pages(zone);
2212 watermark += compact_gap(order);
2213 if (!__zone_watermark_ok(zone, 0, watermark, highest_zoneidx,
2214 ALLOC_CMA, wmark_target))
2215 return COMPACT_SKIPPED;
2217 return COMPACT_CONTINUE;
2221 * compaction_suitable: Is this suitable to run compaction on this zone now?
2223 * COMPACT_SKIPPED - If there are too few free pages for compaction
2224 * COMPACT_SUCCESS - If the allocation would succeed without compaction
2225 * COMPACT_CONTINUE - If compaction should run now
2227 enum compact_result compaction_suitable(struct zone *zone, int order,
2228 unsigned int alloc_flags,
2229 int highest_zoneidx)
2231 enum compact_result ret;
2234 ret = __compaction_suitable(zone, order, alloc_flags, highest_zoneidx,
2235 zone_page_state(zone, NR_FREE_PAGES));
2237 * fragmentation index determines if allocation failures are due to
2238 * low memory or external fragmentation
2240 * index of -1000 would imply allocations might succeed depending on
2241 * watermarks, but we already failed the high-order watermark check
2242 * index towards 0 implies failure is due to lack of memory
2243 * index towards 1000 implies failure is due to fragmentation
2245 * Only compact if a failure would be due to fragmentation. Also
2246 * ignore fragindex for non-costly orders where the alternative to
2247 * a successful reclaim/compaction is OOM. Fragindex and the
2248 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
2249 * excessive compaction for costly orders, but it should not be at the
2250 * expense of system stability.
2252 if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) {
2253 fragindex = fragmentation_index(zone, order);
2254 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
2255 ret = COMPACT_NOT_SUITABLE_ZONE;
2258 trace_mm_compaction_suitable(zone, order, ret);
2259 if (ret == COMPACT_NOT_SUITABLE_ZONE)
2260 ret = COMPACT_SKIPPED;
2265 bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
2272 * Make sure at least one zone would pass __compaction_suitable if we continue
2273 * retrying the reclaim.
2275 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2276 ac->highest_zoneidx, ac->nodemask) {
2277 unsigned long available;
2278 enum compact_result compact_result;
2281 * Do not consider all the reclaimable memory because we do not
2282 * want to trash just for a single high order allocation which
2283 * is even not guaranteed to appear even if __compaction_suitable
2284 * is happy about the watermark check.
2286 available = zone_reclaimable_pages(zone) / order;
2287 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
2288 compact_result = __compaction_suitable(zone, order, alloc_flags,
2289 ac->highest_zoneidx, available);
2290 if (compact_result == COMPACT_CONTINUE)
2297 static enum compact_result
2298 compact_zone(struct compact_control *cc, struct capture_control *capc)
2300 enum compact_result ret;
2301 unsigned long start_pfn = cc->zone->zone_start_pfn;
2302 unsigned long end_pfn = zone_end_pfn(cc->zone);
2303 unsigned long last_migrated_pfn;
2304 const bool sync = cc->mode != MIGRATE_ASYNC;
2306 unsigned int nr_succeeded = 0;
2309 * These counters track activities during zone compaction. Initialize
2310 * them before compacting a new zone.
2312 cc->total_migrate_scanned = 0;
2313 cc->total_free_scanned = 0;
2314 cc->nr_migratepages = 0;
2315 cc->nr_freepages = 0;
2316 INIT_LIST_HEAD(&cc->freepages);
2317 INIT_LIST_HEAD(&cc->migratepages);
2319 cc->migratetype = gfp_migratetype(cc->gfp_mask);
2320 ret = compaction_suitable(cc->zone, cc->order, cc->alloc_flags,
2321 cc->highest_zoneidx);
2322 /* Compaction is likely to fail */
2323 if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED)
2327 * Clear pageblock skip if there were failures recently and compaction
2328 * is about to be retried after being deferred.
2330 if (compaction_restarting(cc->zone, cc->order))
2331 __reset_isolation_suitable(cc->zone);
2334 * Setup to move all movable pages to the end of the zone. Used cached
2335 * information on where the scanners should start (unless we explicitly
2336 * want to compact the whole zone), but check that it is initialised
2337 * by ensuring the values are within zone boundaries.
2339 cc->fast_start_pfn = 0;
2340 if (cc->whole_zone) {
2341 cc->migrate_pfn = start_pfn;
2342 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2344 cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync];
2345 cc->free_pfn = cc->zone->compact_cached_free_pfn;
2346 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
2347 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2348 cc->zone->compact_cached_free_pfn = cc->free_pfn;
2350 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
2351 cc->migrate_pfn = start_pfn;
2352 cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
2353 cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
2356 if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn)
2357 cc->whole_zone = true;
2360 last_migrated_pfn = 0;
2363 * Migrate has separate cached PFNs for ASYNC and SYNC* migration on
2364 * the basis that some migrations will fail in ASYNC mode. However,
2365 * if the cached PFNs match and pageblocks are skipped due to having
2366 * no isolation candidates, then the sync state does not matter.
2367 * Until a pageblock with isolation candidates is found, keep the
2368 * cached PFNs in sync to avoid revisiting the same blocks.
2370 update_cached = !sync &&
2371 cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1];
2373 trace_mm_compaction_begin(cc, start_pfn, end_pfn, sync);
2375 /* lru_add_drain_all could be expensive with involving other CPUs */
2378 while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) {
2380 unsigned long iteration_start_pfn = cc->migrate_pfn;
2383 * Avoid multiple rescans of the same pageblock which can
2384 * happen if a page cannot be isolated (dirty/writeback in
2385 * async mode) or if the migrated pages are being allocated
2386 * before the pageblock is cleared. The first rescan will
2387 * capture the entire pageblock for migration. If it fails,
2388 * it'll be marked skip and scanning will proceed as normal.
2390 cc->finish_pageblock = false;
2391 if (pageblock_start_pfn(last_migrated_pfn) ==
2392 pageblock_start_pfn(iteration_start_pfn)) {
2393 cc->finish_pageblock = true;
2397 switch (isolate_migratepages(cc)) {
2399 ret = COMPACT_CONTENDED;
2400 putback_movable_pages(&cc->migratepages);
2401 cc->nr_migratepages = 0;
2404 if (update_cached) {
2405 cc->zone->compact_cached_migrate_pfn[1] =
2406 cc->zone->compact_cached_migrate_pfn[0];
2410 * We haven't isolated and migrated anything, but
2411 * there might still be unflushed migrations from
2412 * previous cc->order aligned block.
2415 case ISOLATE_SUCCESS:
2416 update_cached = false;
2417 last_migrated_pfn = iteration_start_pfn;
2420 err = migrate_pages(&cc->migratepages, compaction_alloc,
2421 compaction_free, (unsigned long)cc, cc->mode,
2422 MR_COMPACTION, &nr_succeeded);
2424 trace_mm_compaction_migratepages(cc, nr_succeeded);
2426 /* All pages were either migrated or will be released */
2427 cc->nr_migratepages = 0;
2429 putback_movable_pages(&cc->migratepages);
2431 * migrate_pages() may return -ENOMEM when scanners meet
2432 * and we want compact_finished() to detect it
2434 if (err == -ENOMEM && !compact_scanners_met(cc)) {
2435 ret = COMPACT_CONTENDED;
2439 * If an ASYNC or SYNC_LIGHT fails to migrate a page
2440 * within the current order-aligned block, scan the
2441 * remainder of the pageblock. This will mark the
2442 * pageblock "skip" to avoid rescanning in the near
2443 * future. This will isolate more pages than necessary
2444 * for the request but avoid loops due to
2445 * fast_find_migrateblock revisiting blocks that were
2446 * recently partially scanned.
2448 if (cc->direct_compaction && !cc->finish_pageblock &&
2449 (cc->mode < MIGRATE_SYNC)) {
2450 cc->finish_pageblock = true;
2453 * Draining pcplists does not help THP if
2454 * any page failed to migrate. Even after
2455 * drain, the pageblock will not be free.
2457 if (cc->order == COMPACTION_HPAGE_ORDER)
2458 last_migrated_pfn = 0;
2464 /* Stop if a page has been captured */
2465 if (capc && capc->page) {
2466 ret = COMPACT_SUCCESS;
2472 * Has the migration scanner moved away from the previous
2473 * cc->order aligned block where we migrated from? If yes,
2474 * flush the pages that were freed, so that they can merge and
2475 * compact_finished() can detect immediately if allocation
2478 if (cc->order > 0 && last_migrated_pfn) {
2479 unsigned long current_block_start =
2480 block_start_pfn(cc->migrate_pfn, cc->order);
2482 if (last_migrated_pfn < current_block_start) {
2483 lru_add_drain_cpu_zone(cc->zone);
2484 /* No more flushing until we migrate again */
2485 last_migrated_pfn = 0;
2492 * Release free pages and update where the free scanner should restart,
2493 * so we don't leave any returned pages behind in the next attempt.
2495 if (cc->nr_freepages > 0) {
2496 unsigned long free_pfn = release_freepages(&cc->freepages);
2498 cc->nr_freepages = 0;
2499 VM_BUG_ON(free_pfn == 0);
2500 /* The cached pfn is always the first in a pageblock */
2501 free_pfn = pageblock_start_pfn(free_pfn);
2503 * Only go back, not forward. The cached pfn might have been
2504 * already reset to zone end in compact_finished()
2506 if (free_pfn > cc->zone->compact_cached_free_pfn)
2507 cc->zone->compact_cached_free_pfn = free_pfn;
2510 count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
2511 count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
2513 trace_mm_compaction_end(cc, start_pfn, end_pfn, sync, ret);
2515 VM_BUG_ON(!list_empty(&cc->freepages));
2516 VM_BUG_ON(!list_empty(&cc->migratepages));
2521 static enum compact_result compact_zone_order(struct zone *zone, int order,
2522 gfp_t gfp_mask, enum compact_priority prio,
2523 unsigned int alloc_flags, int highest_zoneidx,
2524 struct page **capture)
2526 enum compact_result ret;
2527 struct compact_control cc = {
2529 .search_order = order,
2530 .gfp_mask = gfp_mask,
2532 .mode = (prio == COMPACT_PRIO_ASYNC) ?
2533 MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT,
2534 .alloc_flags = alloc_flags,
2535 .highest_zoneidx = highest_zoneidx,
2536 .direct_compaction = true,
2537 .whole_zone = (prio == MIN_COMPACT_PRIORITY),
2538 .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
2539 .ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
2541 struct capture_control capc = {
2547 * Make sure the structs are really initialized before we expose the
2548 * capture control, in case we are interrupted and the interrupt handler
2552 WRITE_ONCE(current->capture_control, &capc);
2554 ret = compact_zone(&cc, &capc);
2557 * Make sure we hide capture control first before we read the captured
2558 * page pointer, otherwise an interrupt could free and capture a page
2559 * and we would leak it.
2561 WRITE_ONCE(current->capture_control, NULL);
2562 *capture = READ_ONCE(capc.page);
2564 * Technically, it is also possible that compaction is skipped but
2565 * the page is still captured out of luck(IRQ came and freed the page).
2566 * Returning COMPACT_SUCCESS in such cases helps in properly accounting
2567 * the COMPACT[STALL|FAIL] when compaction is skipped.
2570 ret = COMPACT_SUCCESS;
2575 int sysctl_extfrag_threshold = 500;
2578 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
2579 * @gfp_mask: The GFP mask of the current allocation
2580 * @order: The order of the current allocation
2581 * @alloc_flags: The allocation flags of the current allocation
2582 * @ac: The context of current allocation
2583 * @prio: Determines how hard direct compaction should try to succeed
2584 * @capture: Pointer to free page created by compaction will be stored here
2586 * This is the main entry point for direct page compaction.
2588 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
2589 unsigned int alloc_flags, const struct alloc_context *ac,
2590 enum compact_priority prio, struct page **capture)
2592 int may_perform_io = (__force int)(gfp_mask & __GFP_IO);
2595 enum compact_result rc = COMPACT_SKIPPED;
2598 * Check if the GFP flags allow compaction - GFP_NOIO is really
2599 * tricky context because the migration might require IO
2601 if (!may_perform_io)
2602 return COMPACT_SKIPPED;
2604 trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
2606 /* Compact each zone in the list */
2607 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2608 ac->highest_zoneidx, ac->nodemask) {
2609 enum compact_result status;
2611 if (prio > MIN_COMPACT_PRIORITY
2612 && compaction_deferred(zone, order)) {
2613 rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
2617 status = compact_zone_order(zone, order, gfp_mask, prio,
2618 alloc_flags, ac->highest_zoneidx, capture);
2619 rc = max(status, rc);
2621 /* The allocation should succeed, stop compacting */
2622 if (status == COMPACT_SUCCESS) {
2624 * We think the allocation will succeed in this zone,
2625 * but it is not certain, hence the false. The caller
2626 * will repeat this with true if allocation indeed
2627 * succeeds in this zone.
2629 compaction_defer_reset(zone, order, false);
2634 if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
2635 status == COMPACT_PARTIAL_SKIPPED))
2637 * We think that allocation won't succeed in this zone
2638 * so we defer compaction there. If it ends up
2639 * succeeding after all, it will be reset.
2641 defer_compaction(zone, order);
2644 * We might have stopped compacting due to need_resched() in
2645 * async compaction, or due to a fatal signal detected. In that
2646 * case do not try further zones
2648 if ((prio == COMPACT_PRIO_ASYNC && need_resched())
2649 || fatal_signal_pending(current))
2657 * Compact all zones within a node till each zone's fragmentation score
2658 * reaches within proactive compaction thresholds (as determined by the
2659 * proactiveness tunable).
2661 * It is possible that the function returns before reaching score targets
2662 * due to various back-off conditions, such as, contention on per-node or
2665 static void proactive_compact_node(pg_data_t *pgdat)
2669 struct compact_control cc = {
2671 .mode = MIGRATE_SYNC_LIGHT,
2672 .ignore_skip_hint = true,
2674 .gfp_mask = GFP_KERNEL,
2675 .proactive_compaction = true,
2678 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2679 zone = &pgdat->node_zones[zoneid];
2680 if (!populated_zone(zone))
2685 compact_zone(&cc, NULL);
2687 count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2688 cc.total_migrate_scanned);
2689 count_compact_events(KCOMPACTD_FREE_SCANNED,
2690 cc.total_free_scanned);
2694 /* Compact all zones within a node */
2695 static void compact_node(int nid)
2697 pg_data_t *pgdat = NODE_DATA(nid);
2700 struct compact_control cc = {
2702 .mode = MIGRATE_SYNC,
2703 .ignore_skip_hint = true,
2705 .gfp_mask = GFP_KERNEL,
2709 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2711 zone = &pgdat->node_zones[zoneid];
2712 if (!populated_zone(zone))
2717 compact_zone(&cc, NULL);
2721 /* Compact all nodes in the system */
2722 static void compact_nodes(void)
2726 /* Flush pending updates to the LRU lists */
2727 lru_add_drain_all();
2729 for_each_online_node(nid)
2734 * Tunable for proactive compaction. It determines how
2735 * aggressively the kernel should compact memory in the
2736 * background. It takes values in the range [0, 100].
2738 unsigned int __read_mostly sysctl_compaction_proactiveness = 20;
2740 int compaction_proactiveness_sysctl_handler(struct ctl_table *table, int write,
2741 void *buffer, size_t *length, loff_t *ppos)
2745 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
2749 if (write && sysctl_compaction_proactiveness) {
2750 for_each_online_node(nid) {
2751 pg_data_t *pgdat = NODE_DATA(nid);
2753 if (pgdat->proactive_compact_trigger)
2756 pgdat->proactive_compact_trigger = true;
2757 trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, -1,
2758 pgdat->nr_zones - 1);
2759 wake_up_interruptible(&pgdat->kcompactd_wait);
2767 * This is the entry point for compacting all nodes via
2768 * /proc/sys/vm/compact_memory
2770 int sysctl_compaction_handler(struct ctl_table *table, int write,
2771 void *buffer, size_t *length, loff_t *ppos)
2779 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
2780 static ssize_t compact_store(struct device *dev,
2781 struct device_attribute *attr,
2782 const char *buf, size_t count)
2786 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
2787 /* Flush pending updates to the LRU lists */
2788 lru_add_drain_all();
2795 static DEVICE_ATTR_WO(compact);
2797 int compaction_register_node(struct node *node)
2799 return device_create_file(&node->dev, &dev_attr_compact);
2802 void compaction_unregister_node(struct node *node)
2804 return device_remove_file(&node->dev, &dev_attr_compact);
2806 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
2808 static inline bool kcompactd_work_requested(pg_data_t *pgdat)
2810 return pgdat->kcompactd_max_order > 0 || kthread_should_stop() ||
2811 pgdat->proactive_compact_trigger;
2814 static bool kcompactd_node_suitable(pg_data_t *pgdat)
2818 enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx;
2820 for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) {
2821 zone = &pgdat->node_zones[zoneid];
2823 if (!populated_zone(zone))
2826 if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
2827 highest_zoneidx) == COMPACT_CONTINUE)
2834 static void kcompactd_do_work(pg_data_t *pgdat)
2837 * With no special task, compact all zones so that a page of requested
2838 * order is allocatable.
2842 struct compact_control cc = {
2843 .order = pgdat->kcompactd_max_order,
2844 .search_order = pgdat->kcompactd_max_order,
2845 .highest_zoneidx = pgdat->kcompactd_highest_zoneidx,
2846 .mode = MIGRATE_SYNC_LIGHT,
2847 .ignore_skip_hint = false,
2848 .gfp_mask = GFP_KERNEL,
2850 trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
2851 cc.highest_zoneidx);
2852 count_compact_event(KCOMPACTD_WAKE);
2854 for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) {
2857 zone = &pgdat->node_zones[zoneid];
2858 if (!populated_zone(zone))
2861 if (compaction_deferred(zone, cc.order))
2864 if (compaction_suitable(zone, cc.order, 0, zoneid) !=
2868 if (kthread_should_stop())
2872 status = compact_zone(&cc, NULL);
2874 if (status == COMPACT_SUCCESS) {
2875 compaction_defer_reset(zone, cc.order, false);
2876 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
2878 * Buddy pages may become stranded on pcps that could
2879 * otherwise coalesce on the zone's free area for
2880 * order >= cc.order. This is ratelimited by the
2881 * upcoming deferral.
2883 drain_all_pages(zone);
2886 * We use sync migration mode here, so we defer like
2887 * sync direct compaction does.
2889 defer_compaction(zone, cc.order);
2892 count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2893 cc.total_migrate_scanned);
2894 count_compact_events(KCOMPACTD_FREE_SCANNED,
2895 cc.total_free_scanned);
2899 * Regardless of success, we are done until woken up next. But remember
2900 * the requested order/highest_zoneidx in case it was higher/tighter
2901 * than our current ones
2903 if (pgdat->kcompactd_max_order <= cc.order)
2904 pgdat->kcompactd_max_order = 0;
2905 if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx)
2906 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
2909 void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx)
2914 if (pgdat->kcompactd_max_order < order)
2915 pgdat->kcompactd_max_order = order;
2917 if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx)
2918 pgdat->kcompactd_highest_zoneidx = highest_zoneidx;
2921 * Pairs with implicit barrier in wait_event_freezable()
2922 * such that wakeups are not missed.
2924 if (!wq_has_sleeper(&pgdat->kcompactd_wait))
2927 if (!kcompactd_node_suitable(pgdat))
2930 trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
2932 wake_up_interruptible(&pgdat->kcompactd_wait);
2936 * The background compaction daemon, started as a kernel thread
2937 * from the init process.
2939 static int kcompactd(void *p)
2941 pg_data_t *pgdat = (pg_data_t *)p;
2942 struct task_struct *tsk = current;
2943 long default_timeout = msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC);
2944 long timeout = default_timeout;
2946 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2948 if (!cpumask_empty(cpumask))
2949 set_cpus_allowed_ptr(tsk, cpumask);
2953 pgdat->kcompactd_max_order = 0;
2954 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
2956 while (!kthread_should_stop()) {
2957 unsigned long pflags;
2960 * Avoid the unnecessary wakeup for proactive compaction
2961 * when it is disabled.
2963 if (!sysctl_compaction_proactiveness)
2964 timeout = MAX_SCHEDULE_TIMEOUT;
2965 trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
2966 if (wait_event_freezable_timeout(pgdat->kcompactd_wait,
2967 kcompactd_work_requested(pgdat), timeout) &&
2968 !pgdat->proactive_compact_trigger) {
2970 psi_memstall_enter(&pflags);
2971 kcompactd_do_work(pgdat);
2972 psi_memstall_leave(&pflags);
2974 * Reset the timeout value. The defer timeout from
2975 * proactive compaction is lost here but that is fine
2976 * as the condition of the zone changing substantionally
2977 * then carrying on with the previous defer interval is
2980 timeout = default_timeout;
2985 * Start the proactive work with default timeout. Based
2986 * on the fragmentation score, this timeout is updated.
2988 timeout = default_timeout;
2989 if (should_proactive_compact_node(pgdat)) {
2990 unsigned int prev_score, score;
2992 prev_score = fragmentation_score_node(pgdat);
2993 proactive_compact_node(pgdat);
2994 score = fragmentation_score_node(pgdat);
2996 * Defer proactive compaction if the fragmentation
2997 * score did not go down i.e. no progress made.
2999 if (unlikely(score >= prev_score))
3001 default_timeout << COMPACT_MAX_DEFER_SHIFT;
3003 if (unlikely(pgdat->proactive_compact_trigger))
3004 pgdat->proactive_compact_trigger = false;
3011 * This kcompactd start function will be called by init and node-hot-add.
3012 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
3014 void kcompactd_run(int nid)
3016 pg_data_t *pgdat = NODE_DATA(nid);
3018 if (pgdat->kcompactd)
3021 pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
3022 if (IS_ERR(pgdat->kcompactd)) {
3023 pr_err("Failed to start kcompactd on node %d\n", nid);
3024 pgdat->kcompactd = NULL;
3029 * Called by memory hotplug when all memory in a node is offlined. Caller must
3030 * be holding mem_hotplug_begin/done().
3032 void kcompactd_stop(int nid)
3034 struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
3037 kthread_stop(kcompactd);
3038 NODE_DATA(nid)->kcompactd = NULL;
3043 * It's optimal to keep kcompactd on the same CPUs as their memory, but
3044 * not required for correctness. So if the last cpu in a node goes
3045 * away, we get changed to run anywhere: as the first one comes back,
3046 * restore their cpu bindings.
3048 static int kcompactd_cpu_online(unsigned int cpu)
3052 for_each_node_state(nid, N_MEMORY) {
3053 pg_data_t *pgdat = NODE_DATA(nid);
3054 const struct cpumask *mask;
3056 mask = cpumask_of_node(pgdat->node_id);
3058 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3059 /* One of our CPUs online: restore mask */
3060 if (pgdat->kcompactd)
3061 set_cpus_allowed_ptr(pgdat->kcompactd, mask);
3066 static int __init kcompactd_init(void)
3071 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3072 "mm/compaction:online",
3073 kcompactd_cpu_online, NULL);
3075 pr_err("kcompactd: failed to register hotplug callbacks.\n");
3079 for_each_node_state(nid, N_MEMORY)
3083 subsys_initcall(kcompactd_init)
3085 #endif /* CONFIG_COMPACTION */