i2c: smbus: Add a way to instantiate SPD EEPROMs automatically
[platform/kernel/linux-starfive.git] / mm / compaction.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * linux/mm/compaction.c
4  *
5  * Memory compaction for the reduction of external fragmentation. Note that
6  * this heavily depends upon page migration to do all the real heavy
7  * lifting
8  *
9  * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
10  */
11 #include <linux/cpu.h>
12 #include <linux/swap.h>
13 #include <linux/migrate.h>
14 #include <linux/compaction.h>
15 #include <linux/mm_inline.h>
16 #include <linux/sched/signal.h>
17 #include <linux/backing-dev.h>
18 #include <linux/sysctl.h>
19 #include <linux/sysfs.h>
20 #include <linux/page-isolation.h>
21 #include <linux/kasan.h>
22 #include <linux/kthread.h>
23 #include <linux/freezer.h>
24 #include <linux/page_owner.h>
25 #include <linux/psi.h>
26 #include "internal.h"
27
28 #ifdef CONFIG_COMPACTION
29 static inline void count_compact_event(enum vm_event_item item)
30 {
31         count_vm_event(item);
32 }
33
34 static inline void count_compact_events(enum vm_event_item item, long delta)
35 {
36         count_vm_events(item, delta);
37 }
38 #else
39 #define count_compact_event(item) do { } while (0)
40 #define count_compact_events(item, delta) do { } while (0)
41 #endif
42
43 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
44
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/compaction.h>
47
48 #define block_start_pfn(pfn, order)     round_down(pfn, 1UL << (order))
49 #define block_end_pfn(pfn, order)       ALIGN((pfn) + 1, 1UL << (order))
50 #define pageblock_start_pfn(pfn)        block_start_pfn(pfn, pageblock_order)
51 #define pageblock_end_pfn(pfn)          block_end_pfn(pfn, pageblock_order)
52
53 static unsigned long release_freepages(struct list_head *freelist)
54 {
55         struct page *page, *next;
56         unsigned long high_pfn = 0;
57
58         list_for_each_entry_safe(page, next, freelist, lru) {
59                 unsigned long pfn = page_to_pfn(page);
60                 list_del(&page->lru);
61                 __free_page(page);
62                 if (pfn > high_pfn)
63                         high_pfn = pfn;
64         }
65
66         return high_pfn;
67 }
68
69 static void split_map_pages(struct list_head *list)
70 {
71         unsigned int i, order, nr_pages;
72         struct page *page, *next;
73         LIST_HEAD(tmp_list);
74
75         list_for_each_entry_safe(page, next, list, lru) {
76                 list_del(&page->lru);
77
78                 order = page_private(page);
79                 nr_pages = 1 << order;
80
81                 post_alloc_hook(page, order, __GFP_MOVABLE);
82                 if (order)
83                         split_page(page, order);
84
85                 for (i = 0; i < nr_pages; i++) {
86                         list_add(&page->lru, &tmp_list);
87                         page++;
88                 }
89         }
90
91         list_splice(&tmp_list, list);
92 }
93
94 #ifdef CONFIG_COMPACTION
95
96 int PageMovable(struct page *page)
97 {
98         struct address_space *mapping;
99
100         VM_BUG_ON_PAGE(!PageLocked(page), page);
101         if (!__PageMovable(page))
102                 return 0;
103
104         mapping = page_mapping(page);
105         if (mapping && mapping->a_ops && mapping->a_ops->isolate_page)
106                 return 1;
107
108         return 0;
109 }
110 EXPORT_SYMBOL(PageMovable);
111
112 void __SetPageMovable(struct page *page, struct address_space *mapping)
113 {
114         VM_BUG_ON_PAGE(!PageLocked(page), page);
115         VM_BUG_ON_PAGE((unsigned long)mapping & PAGE_MAPPING_MOVABLE, page);
116         page->mapping = (void *)((unsigned long)mapping | PAGE_MAPPING_MOVABLE);
117 }
118 EXPORT_SYMBOL(__SetPageMovable);
119
120 void __ClearPageMovable(struct page *page)
121 {
122         VM_BUG_ON_PAGE(!PageLocked(page), page);
123         VM_BUG_ON_PAGE(!PageMovable(page), page);
124         /*
125          * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE
126          * flag so that VM can catch up released page by driver after isolation.
127          * With it, VM migration doesn't try to put it back.
128          */
129         page->mapping = (void *)((unsigned long)page->mapping &
130                                 PAGE_MAPPING_MOVABLE);
131 }
132 EXPORT_SYMBOL(__ClearPageMovable);
133
134 /* Do not skip compaction more than 64 times */
135 #define COMPACT_MAX_DEFER_SHIFT 6
136
137 /*
138  * Compaction is deferred when compaction fails to result in a page
139  * allocation success. 1 << compact_defer_limit compactions are skipped up
140  * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
141  */
142 void defer_compaction(struct zone *zone, int order)
143 {
144         zone->compact_considered = 0;
145         zone->compact_defer_shift++;
146
147         if (order < zone->compact_order_failed)
148                 zone->compact_order_failed = order;
149
150         if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
151                 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
152
153         trace_mm_compaction_defer_compaction(zone, order);
154 }
155
156 /* Returns true if compaction should be skipped this time */
157 bool compaction_deferred(struct zone *zone, int order)
158 {
159         unsigned long defer_limit = 1UL << zone->compact_defer_shift;
160
161         if (order < zone->compact_order_failed)
162                 return false;
163
164         /* Avoid possible overflow */
165         if (++zone->compact_considered > defer_limit)
166                 zone->compact_considered = defer_limit;
167
168         if (zone->compact_considered >= defer_limit)
169                 return false;
170
171         trace_mm_compaction_deferred(zone, order);
172
173         return true;
174 }
175
176 /*
177  * Update defer tracking counters after successful compaction of given order,
178  * which means an allocation either succeeded (alloc_success == true) or is
179  * expected to succeed.
180  */
181 void compaction_defer_reset(struct zone *zone, int order,
182                 bool alloc_success)
183 {
184         if (alloc_success) {
185                 zone->compact_considered = 0;
186                 zone->compact_defer_shift = 0;
187         }
188         if (order >= zone->compact_order_failed)
189                 zone->compact_order_failed = order + 1;
190
191         trace_mm_compaction_defer_reset(zone, order);
192 }
193
194 /* Returns true if restarting compaction after many failures */
195 bool compaction_restarting(struct zone *zone, int order)
196 {
197         if (order < zone->compact_order_failed)
198                 return false;
199
200         return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
201                 zone->compact_considered >= 1UL << zone->compact_defer_shift;
202 }
203
204 /* Returns true if the pageblock should be scanned for pages to isolate. */
205 static inline bool isolation_suitable(struct compact_control *cc,
206                                         struct page *page)
207 {
208         if (cc->ignore_skip_hint)
209                 return true;
210
211         return !get_pageblock_skip(page);
212 }
213
214 static void reset_cached_positions(struct zone *zone)
215 {
216         zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
217         zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
218         zone->compact_cached_free_pfn =
219                                 pageblock_start_pfn(zone_end_pfn(zone) - 1);
220 }
221
222 /*
223  * Compound pages of >= pageblock_order should consistenly be skipped until
224  * released. It is always pointless to compact pages of such order (if they are
225  * migratable), and the pageblocks they occupy cannot contain any free pages.
226  */
227 static bool pageblock_skip_persistent(struct page *page)
228 {
229         if (!PageCompound(page))
230                 return false;
231
232         page = compound_head(page);
233
234         if (compound_order(page) >= pageblock_order)
235                 return true;
236
237         return false;
238 }
239
240 static bool
241 __reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source,
242                                                         bool check_target)
243 {
244         struct page *page = pfn_to_online_page(pfn);
245         struct page *block_page;
246         struct page *end_page;
247         unsigned long block_pfn;
248
249         if (!page)
250                 return false;
251         if (zone != page_zone(page))
252                 return false;
253         if (pageblock_skip_persistent(page))
254                 return false;
255
256         /*
257          * If skip is already cleared do no further checking once the
258          * restart points have been set.
259          */
260         if (check_source && check_target && !get_pageblock_skip(page))
261                 return true;
262
263         /*
264          * If clearing skip for the target scanner, do not select a
265          * non-movable pageblock as the starting point.
266          */
267         if (!check_source && check_target &&
268             get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
269                 return false;
270
271         /* Ensure the start of the pageblock or zone is online and valid */
272         block_pfn = pageblock_start_pfn(pfn);
273         block_pfn = max(block_pfn, zone->zone_start_pfn);
274         block_page = pfn_to_online_page(block_pfn);
275         if (block_page) {
276                 page = block_page;
277                 pfn = block_pfn;
278         }
279
280         /* Ensure the end of the pageblock or zone is online and valid */
281         block_pfn = pageblock_end_pfn(pfn) - 1;
282         block_pfn = min(block_pfn, zone_end_pfn(zone) - 1);
283         end_page = pfn_to_online_page(block_pfn);
284         if (!end_page)
285                 return false;
286
287         /*
288          * Only clear the hint if a sample indicates there is either a
289          * free page or an LRU page in the block. One or other condition
290          * is necessary for the block to be a migration source/target.
291          */
292         do {
293                 if (pfn_valid_within(pfn)) {
294                         if (check_source && PageLRU(page)) {
295                                 clear_pageblock_skip(page);
296                                 return true;
297                         }
298
299                         if (check_target && PageBuddy(page)) {
300                                 clear_pageblock_skip(page);
301                                 return true;
302                         }
303                 }
304
305                 page += (1 << PAGE_ALLOC_COSTLY_ORDER);
306                 pfn += (1 << PAGE_ALLOC_COSTLY_ORDER);
307         } while (page <= end_page);
308
309         return false;
310 }
311
312 /*
313  * This function is called to clear all cached information on pageblocks that
314  * should be skipped for page isolation when the migrate and free page scanner
315  * meet.
316  */
317 static void __reset_isolation_suitable(struct zone *zone)
318 {
319         unsigned long migrate_pfn = zone->zone_start_pfn;
320         unsigned long free_pfn = zone_end_pfn(zone) - 1;
321         unsigned long reset_migrate = free_pfn;
322         unsigned long reset_free = migrate_pfn;
323         bool source_set = false;
324         bool free_set = false;
325
326         if (!zone->compact_blockskip_flush)
327                 return;
328
329         zone->compact_blockskip_flush = false;
330
331         /*
332          * Walk the zone and update pageblock skip information. Source looks
333          * for PageLRU while target looks for PageBuddy. When the scanner
334          * is found, both PageBuddy and PageLRU are checked as the pageblock
335          * is suitable as both source and target.
336          */
337         for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages,
338                                         free_pfn -= pageblock_nr_pages) {
339                 cond_resched();
340
341                 /* Update the migrate PFN */
342                 if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) &&
343                     migrate_pfn < reset_migrate) {
344                         source_set = true;
345                         reset_migrate = migrate_pfn;
346                         zone->compact_init_migrate_pfn = reset_migrate;
347                         zone->compact_cached_migrate_pfn[0] = reset_migrate;
348                         zone->compact_cached_migrate_pfn[1] = reset_migrate;
349                 }
350
351                 /* Update the free PFN */
352                 if (__reset_isolation_pfn(zone, free_pfn, free_set, true) &&
353                     free_pfn > reset_free) {
354                         free_set = true;
355                         reset_free = free_pfn;
356                         zone->compact_init_free_pfn = reset_free;
357                         zone->compact_cached_free_pfn = reset_free;
358                 }
359         }
360
361         /* Leave no distance if no suitable block was reset */
362         if (reset_migrate >= reset_free) {
363                 zone->compact_cached_migrate_pfn[0] = migrate_pfn;
364                 zone->compact_cached_migrate_pfn[1] = migrate_pfn;
365                 zone->compact_cached_free_pfn = free_pfn;
366         }
367 }
368
369 void reset_isolation_suitable(pg_data_t *pgdat)
370 {
371         int zoneid;
372
373         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
374                 struct zone *zone = &pgdat->node_zones[zoneid];
375                 if (!populated_zone(zone))
376                         continue;
377
378                 /* Only flush if a full compaction finished recently */
379                 if (zone->compact_blockskip_flush)
380                         __reset_isolation_suitable(zone);
381         }
382 }
383
384 /*
385  * Sets the pageblock skip bit if it was clear. Note that this is a hint as
386  * locks are not required for read/writers. Returns true if it was already set.
387  */
388 static bool test_and_set_skip(struct compact_control *cc, struct page *page,
389                                                         unsigned long pfn)
390 {
391         bool skip;
392
393         /* Do no update if skip hint is being ignored */
394         if (cc->ignore_skip_hint)
395                 return false;
396
397         if (!IS_ALIGNED(pfn, pageblock_nr_pages))
398                 return false;
399
400         skip = get_pageblock_skip(page);
401         if (!skip && !cc->no_set_skip_hint)
402                 set_pageblock_skip(page);
403
404         return skip;
405 }
406
407 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
408 {
409         struct zone *zone = cc->zone;
410
411         pfn = pageblock_end_pfn(pfn);
412
413         /* Set for isolation rather than compaction */
414         if (cc->no_set_skip_hint)
415                 return;
416
417         if (pfn > zone->compact_cached_migrate_pfn[0])
418                 zone->compact_cached_migrate_pfn[0] = pfn;
419         if (cc->mode != MIGRATE_ASYNC &&
420             pfn > zone->compact_cached_migrate_pfn[1])
421                 zone->compact_cached_migrate_pfn[1] = pfn;
422 }
423
424 /*
425  * If no pages were isolated then mark this pageblock to be skipped in the
426  * future. The information is later cleared by __reset_isolation_suitable().
427  */
428 static void update_pageblock_skip(struct compact_control *cc,
429                         struct page *page, unsigned long pfn)
430 {
431         struct zone *zone = cc->zone;
432
433         if (cc->no_set_skip_hint)
434                 return;
435
436         if (!page)
437                 return;
438
439         set_pageblock_skip(page);
440
441         /* Update where async and sync compaction should restart */
442         if (pfn < zone->compact_cached_free_pfn)
443                 zone->compact_cached_free_pfn = pfn;
444 }
445 #else
446 static inline bool isolation_suitable(struct compact_control *cc,
447                                         struct page *page)
448 {
449         return true;
450 }
451
452 static inline bool pageblock_skip_persistent(struct page *page)
453 {
454         return false;
455 }
456
457 static inline void update_pageblock_skip(struct compact_control *cc,
458                         struct page *page, unsigned long pfn)
459 {
460 }
461
462 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
463 {
464 }
465
466 static bool test_and_set_skip(struct compact_control *cc, struct page *page,
467                                                         unsigned long pfn)
468 {
469         return false;
470 }
471 #endif /* CONFIG_COMPACTION */
472
473 /*
474  * Compaction requires the taking of some coarse locks that are potentially
475  * very heavily contended. For async compaction, trylock and record if the
476  * lock is contended. The lock will still be acquired but compaction will
477  * abort when the current block is finished regardless of success rate.
478  * Sync compaction acquires the lock.
479  *
480  * Always returns true which makes it easier to track lock state in callers.
481  */
482 static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags,
483                                                 struct compact_control *cc)
484         __acquires(lock)
485 {
486         /* Track if the lock is contended in async mode */
487         if (cc->mode == MIGRATE_ASYNC && !cc->contended) {
488                 if (spin_trylock_irqsave(lock, *flags))
489                         return true;
490
491                 cc->contended = true;
492         }
493
494         spin_lock_irqsave(lock, *flags);
495         return true;
496 }
497
498 /*
499  * Compaction requires the taking of some coarse locks that are potentially
500  * very heavily contended. The lock should be periodically unlocked to avoid
501  * having disabled IRQs for a long time, even when there is nobody waiting on
502  * the lock. It might also be that allowing the IRQs will result in
503  * need_resched() becoming true. If scheduling is needed, async compaction
504  * aborts. Sync compaction schedules.
505  * Either compaction type will also abort if a fatal signal is pending.
506  * In either case if the lock was locked, it is dropped and not regained.
507  *
508  * Returns true if compaction should abort due to fatal signal pending, or
509  *              async compaction due to need_resched()
510  * Returns false when compaction can continue (sync compaction might have
511  *              scheduled)
512  */
513 static bool compact_unlock_should_abort(spinlock_t *lock,
514                 unsigned long flags, bool *locked, struct compact_control *cc)
515 {
516         if (*locked) {
517                 spin_unlock_irqrestore(lock, flags);
518                 *locked = false;
519         }
520
521         if (fatal_signal_pending(current)) {
522                 cc->contended = true;
523                 return true;
524         }
525
526         cond_resched();
527
528         return false;
529 }
530
531 /*
532  * Isolate free pages onto a private freelist. If @strict is true, will abort
533  * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
534  * (even though it may still end up isolating some pages).
535  */
536 static unsigned long isolate_freepages_block(struct compact_control *cc,
537                                 unsigned long *start_pfn,
538                                 unsigned long end_pfn,
539                                 struct list_head *freelist,
540                                 unsigned int stride,
541                                 bool strict)
542 {
543         int nr_scanned = 0, total_isolated = 0;
544         struct page *cursor;
545         unsigned long flags = 0;
546         bool locked = false;
547         unsigned long blockpfn = *start_pfn;
548         unsigned int order;
549
550         /* Strict mode is for isolation, speed is secondary */
551         if (strict)
552                 stride = 1;
553
554         cursor = pfn_to_page(blockpfn);
555
556         /* Isolate free pages. */
557         for (; blockpfn < end_pfn; blockpfn += stride, cursor += stride) {
558                 int isolated;
559                 struct page *page = cursor;
560
561                 /*
562                  * Periodically drop the lock (if held) regardless of its
563                  * contention, to give chance to IRQs. Abort if fatal signal
564                  * pending or async compaction detects need_resched()
565                  */
566                 if (!(blockpfn % SWAP_CLUSTER_MAX)
567                     && compact_unlock_should_abort(&cc->zone->lock, flags,
568                                                                 &locked, cc))
569                         break;
570
571                 nr_scanned++;
572                 if (!pfn_valid_within(blockpfn))
573                         goto isolate_fail;
574
575                 /*
576                  * For compound pages such as THP and hugetlbfs, we can save
577                  * potentially a lot of iterations if we skip them at once.
578                  * The check is racy, but we can consider only valid values
579                  * and the only danger is skipping too much.
580                  */
581                 if (PageCompound(page)) {
582                         const unsigned int order = compound_order(page);
583
584                         if (likely(order < MAX_ORDER)) {
585                                 blockpfn += (1UL << order) - 1;
586                                 cursor += (1UL << order) - 1;
587                         }
588                         goto isolate_fail;
589                 }
590
591                 if (!PageBuddy(page))
592                         goto isolate_fail;
593
594                 /*
595                  * If we already hold the lock, we can skip some rechecking.
596                  * Note that if we hold the lock now, checked_pageblock was
597                  * already set in some previous iteration (or strict is true),
598                  * so it is correct to skip the suitable migration target
599                  * recheck as well.
600                  */
601                 if (!locked) {
602                         locked = compact_lock_irqsave(&cc->zone->lock,
603                                                                 &flags, cc);
604
605                         /* Recheck this is a buddy page under lock */
606                         if (!PageBuddy(page))
607                                 goto isolate_fail;
608                 }
609
610                 /* Found a free page, will break it into order-0 pages */
611                 order = page_order(page);
612                 isolated = __isolate_free_page(page, order);
613                 if (!isolated)
614                         break;
615                 set_page_private(page, order);
616
617                 total_isolated += isolated;
618                 cc->nr_freepages += isolated;
619                 list_add_tail(&page->lru, freelist);
620
621                 if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
622                         blockpfn += isolated;
623                         break;
624                 }
625                 /* Advance to the end of split page */
626                 blockpfn += isolated - 1;
627                 cursor += isolated - 1;
628                 continue;
629
630 isolate_fail:
631                 if (strict)
632                         break;
633                 else
634                         continue;
635
636         }
637
638         if (locked)
639                 spin_unlock_irqrestore(&cc->zone->lock, flags);
640
641         /*
642          * There is a tiny chance that we have read bogus compound_order(),
643          * so be careful to not go outside of the pageblock.
644          */
645         if (unlikely(blockpfn > end_pfn))
646                 blockpfn = end_pfn;
647
648         trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
649                                         nr_scanned, total_isolated);
650
651         /* Record how far we have got within the block */
652         *start_pfn = blockpfn;
653
654         /*
655          * If strict isolation is requested by CMA then check that all the
656          * pages requested were isolated. If there were any failures, 0 is
657          * returned and CMA will fail.
658          */
659         if (strict && blockpfn < end_pfn)
660                 total_isolated = 0;
661
662         cc->total_free_scanned += nr_scanned;
663         if (total_isolated)
664                 count_compact_events(COMPACTISOLATED, total_isolated);
665         return total_isolated;
666 }
667
668 /**
669  * isolate_freepages_range() - isolate free pages.
670  * @cc:        Compaction control structure.
671  * @start_pfn: The first PFN to start isolating.
672  * @end_pfn:   The one-past-last PFN.
673  *
674  * Non-free pages, invalid PFNs, or zone boundaries within the
675  * [start_pfn, end_pfn) range are considered errors, cause function to
676  * undo its actions and return zero.
677  *
678  * Otherwise, function returns one-past-the-last PFN of isolated page
679  * (which may be greater then end_pfn if end fell in a middle of
680  * a free page).
681  */
682 unsigned long
683 isolate_freepages_range(struct compact_control *cc,
684                         unsigned long start_pfn, unsigned long end_pfn)
685 {
686         unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
687         LIST_HEAD(freelist);
688
689         pfn = start_pfn;
690         block_start_pfn = pageblock_start_pfn(pfn);
691         if (block_start_pfn < cc->zone->zone_start_pfn)
692                 block_start_pfn = cc->zone->zone_start_pfn;
693         block_end_pfn = pageblock_end_pfn(pfn);
694
695         for (; pfn < end_pfn; pfn += isolated,
696                                 block_start_pfn = block_end_pfn,
697                                 block_end_pfn += pageblock_nr_pages) {
698                 /* Protect pfn from changing by isolate_freepages_block */
699                 unsigned long isolate_start_pfn = pfn;
700
701                 block_end_pfn = min(block_end_pfn, end_pfn);
702
703                 /*
704                  * pfn could pass the block_end_pfn if isolated freepage
705                  * is more than pageblock order. In this case, we adjust
706                  * scanning range to right one.
707                  */
708                 if (pfn >= block_end_pfn) {
709                         block_start_pfn = pageblock_start_pfn(pfn);
710                         block_end_pfn = pageblock_end_pfn(pfn);
711                         block_end_pfn = min(block_end_pfn, end_pfn);
712                 }
713
714                 if (!pageblock_pfn_to_page(block_start_pfn,
715                                         block_end_pfn, cc->zone))
716                         break;
717
718                 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
719                                         block_end_pfn, &freelist, 0, true);
720
721                 /*
722                  * In strict mode, isolate_freepages_block() returns 0 if
723                  * there are any holes in the block (ie. invalid PFNs or
724                  * non-free pages).
725                  */
726                 if (!isolated)
727                         break;
728
729                 /*
730                  * If we managed to isolate pages, it is always (1 << n) *
731                  * pageblock_nr_pages for some non-negative n.  (Max order
732                  * page may span two pageblocks).
733                  */
734         }
735
736         /* __isolate_free_page() does not map the pages */
737         split_map_pages(&freelist);
738
739         if (pfn < end_pfn) {
740                 /* Loop terminated early, cleanup. */
741                 release_freepages(&freelist);
742                 return 0;
743         }
744
745         /* We don't use freelists for anything. */
746         return pfn;
747 }
748
749 /* Similar to reclaim, but different enough that they don't share logic */
750 static bool too_many_isolated(pg_data_t *pgdat)
751 {
752         unsigned long active, inactive, isolated;
753
754         inactive = node_page_state(pgdat, NR_INACTIVE_FILE) +
755                         node_page_state(pgdat, NR_INACTIVE_ANON);
756         active = node_page_state(pgdat, NR_ACTIVE_FILE) +
757                         node_page_state(pgdat, NR_ACTIVE_ANON);
758         isolated = node_page_state(pgdat, NR_ISOLATED_FILE) +
759                         node_page_state(pgdat, NR_ISOLATED_ANON);
760
761         return isolated > (inactive + active) / 2;
762 }
763
764 /**
765  * isolate_migratepages_block() - isolate all migrate-able pages within
766  *                                a single pageblock
767  * @cc:         Compaction control structure.
768  * @low_pfn:    The first PFN to isolate
769  * @end_pfn:    The one-past-the-last PFN to isolate, within same pageblock
770  * @isolate_mode: Isolation mode to be used.
771  *
772  * Isolate all pages that can be migrated from the range specified by
773  * [low_pfn, end_pfn). The range is expected to be within same pageblock.
774  * Returns zero if there is a fatal signal pending, otherwise PFN of the
775  * first page that was not scanned (which may be both less, equal to or more
776  * than end_pfn).
777  *
778  * The pages are isolated on cc->migratepages list (not required to be empty),
779  * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
780  * is neither read nor updated.
781  */
782 static unsigned long
783 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
784                         unsigned long end_pfn, isolate_mode_t isolate_mode)
785 {
786         pg_data_t *pgdat = cc->zone->zone_pgdat;
787         unsigned long nr_scanned = 0, nr_isolated = 0;
788         struct lruvec *lruvec;
789         unsigned long flags = 0;
790         bool locked = false;
791         struct page *page = NULL, *valid_page = NULL;
792         unsigned long start_pfn = low_pfn;
793         bool skip_on_failure = false;
794         unsigned long next_skip_pfn = 0;
795         bool skip_updated = false;
796
797         /*
798          * Ensure that there are not too many pages isolated from the LRU
799          * list by either parallel reclaimers or compaction. If there are,
800          * delay for some time until fewer pages are isolated
801          */
802         while (unlikely(too_many_isolated(pgdat))) {
803                 /* async migration should just abort */
804                 if (cc->mode == MIGRATE_ASYNC)
805                         return 0;
806
807                 congestion_wait(BLK_RW_ASYNC, HZ/10);
808
809                 if (fatal_signal_pending(current))
810                         return 0;
811         }
812
813         cond_resched();
814
815         if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
816                 skip_on_failure = true;
817                 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
818         }
819
820         /* Time to isolate some pages for migration */
821         for (; low_pfn < end_pfn; low_pfn++) {
822
823                 if (skip_on_failure && low_pfn >= next_skip_pfn) {
824                         /*
825                          * We have isolated all migration candidates in the
826                          * previous order-aligned block, and did not skip it due
827                          * to failure. We should migrate the pages now and
828                          * hopefully succeed compaction.
829                          */
830                         if (nr_isolated)
831                                 break;
832
833                         /*
834                          * We failed to isolate in the previous order-aligned
835                          * block. Set the new boundary to the end of the
836                          * current block. Note we can't simply increase
837                          * next_skip_pfn by 1 << order, as low_pfn might have
838                          * been incremented by a higher number due to skipping
839                          * a compound or a high-order buddy page in the
840                          * previous loop iteration.
841                          */
842                         next_skip_pfn = block_end_pfn(low_pfn, cc->order);
843                 }
844
845                 /*
846                  * Periodically drop the lock (if held) regardless of its
847                  * contention, to give chance to IRQs. Abort completely if
848                  * a fatal signal is pending.
849                  */
850                 if (!(low_pfn % SWAP_CLUSTER_MAX)
851                     && compact_unlock_should_abort(&pgdat->lru_lock,
852                                             flags, &locked, cc)) {
853                         low_pfn = 0;
854                         goto fatal_pending;
855                 }
856
857                 if (!pfn_valid_within(low_pfn))
858                         goto isolate_fail;
859                 nr_scanned++;
860
861                 page = pfn_to_page(low_pfn);
862
863                 /*
864                  * Check if the pageblock has already been marked skipped.
865                  * Only the aligned PFN is checked as the caller isolates
866                  * COMPACT_CLUSTER_MAX at a time so the second call must
867                  * not falsely conclude that the block should be skipped.
868                  */
869                 if (!valid_page && IS_ALIGNED(low_pfn, pageblock_nr_pages)) {
870                         if (!cc->ignore_skip_hint && get_pageblock_skip(page)) {
871                                 low_pfn = end_pfn;
872                                 goto isolate_abort;
873                         }
874                         valid_page = page;
875                 }
876
877                 /*
878                  * Skip if free. We read page order here without zone lock
879                  * which is generally unsafe, but the race window is small and
880                  * the worst thing that can happen is that we skip some
881                  * potential isolation targets.
882                  */
883                 if (PageBuddy(page)) {
884                         unsigned long freepage_order = page_order_unsafe(page);
885
886                         /*
887                          * Without lock, we cannot be sure that what we got is
888                          * a valid page order. Consider only values in the
889                          * valid order range to prevent low_pfn overflow.
890                          */
891                         if (freepage_order > 0 && freepage_order < MAX_ORDER)
892                                 low_pfn += (1UL << freepage_order) - 1;
893                         continue;
894                 }
895
896                 /*
897                  * Regardless of being on LRU, compound pages such as THP and
898                  * hugetlbfs are not to be compacted unless we are attempting
899                  * an allocation much larger than the huge page size (eg CMA).
900                  * We can potentially save a lot of iterations if we skip them
901                  * at once. The check is racy, but we can consider only valid
902                  * values and the only danger is skipping too much.
903                  */
904                 if (PageCompound(page) && !cc->alloc_contig) {
905                         const unsigned int order = compound_order(page);
906
907                         if (likely(order < MAX_ORDER))
908                                 low_pfn += (1UL << order) - 1;
909                         goto isolate_fail;
910                 }
911
912                 /*
913                  * Check may be lockless but that's ok as we recheck later.
914                  * It's possible to migrate LRU and non-lru movable pages.
915                  * Skip any other type of page
916                  */
917                 if (!PageLRU(page)) {
918                         /*
919                          * __PageMovable can return false positive so we need
920                          * to verify it under page_lock.
921                          */
922                         if (unlikely(__PageMovable(page)) &&
923                                         !PageIsolated(page)) {
924                                 if (locked) {
925                                         spin_unlock_irqrestore(&pgdat->lru_lock,
926                                                                         flags);
927                                         locked = false;
928                                 }
929
930                                 if (!isolate_movable_page(page, isolate_mode))
931                                         goto isolate_success;
932                         }
933
934                         goto isolate_fail;
935                 }
936
937                 /*
938                  * Migration will fail if an anonymous page is pinned in memory,
939                  * so avoid taking lru_lock and isolating it unnecessarily in an
940                  * admittedly racy check.
941                  */
942                 if (!page_mapping(page) &&
943                     page_count(page) > page_mapcount(page))
944                         goto isolate_fail;
945
946                 /*
947                  * Only allow to migrate anonymous pages in GFP_NOFS context
948                  * because those do not depend on fs locks.
949                  */
950                 if (!(cc->gfp_mask & __GFP_FS) && page_mapping(page))
951                         goto isolate_fail;
952
953                 /* If we already hold the lock, we can skip some rechecking */
954                 if (!locked) {
955                         locked = compact_lock_irqsave(&pgdat->lru_lock,
956                                                                 &flags, cc);
957
958                         /* Try get exclusive access under lock */
959                         if (!skip_updated) {
960                                 skip_updated = true;
961                                 if (test_and_set_skip(cc, page, low_pfn))
962                                         goto isolate_abort;
963                         }
964
965                         /* Recheck PageLRU and PageCompound under lock */
966                         if (!PageLRU(page))
967                                 goto isolate_fail;
968
969                         /*
970                          * Page become compound since the non-locked check,
971                          * and it's on LRU. It can only be a THP so the order
972                          * is safe to read and it's 0 for tail pages.
973                          */
974                         if (unlikely(PageCompound(page) && !cc->alloc_contig)) {
975                                 low_pfn += compound_nr(page) - 1;
976                                 goto isolate_fail;
977                         }
978                 }
979
980                 lruvec = mem_cgroup_page_lruvec(page, pgdat);
981
982                 /* Try isolate the page */
983                 if (__isolate_lru_page(page, isolate_mode) != 0)
984                         goto isolate_fail;
985
986                 /* The whole page is taken off the LRU; skip the tail pages. */
987                 if (PageCompound(page))
988                         low_pfn += compound_nr(page) - 1;
989
990                 /* Successfully isolated */
991                 del_page_from_lru_list(page, lruvec, page_lru(page));
992                 mod_node_page_state(page_pgdat(page),
993                                 NR_ISOLATED_ANON + page_is_file_lru(page),
994                                 hpage_nr_pages(page));
995
996 isolate_success:
997                 list_add(&page->lru, &cc->migratepages);
998                 cc->nr_migratepages++;
999                 nr_isolated++;
1000
1001                 /*
1002                  * Avoid isolating too much unless this block is being
1003                  * rescanned (e.g. dirty/writeback pages, parallel allocation)
1004                  * or a lock is contended. For contention, isolate quickly to
1005                  * potentially remove one source of contention.
1006                  */
1007                 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX &&
1008                     !cc->rescan && !cc->contended) {
1009                         ++low_pfn;
1010                         break;
1011                 }
1012
1013                 continue;
1014 isolate_fail:
1015                 if (!skip_on_failure)
1016                         continue;
1017
1018                 /*
1019                  * We have isolated some pages, but then failed. Release them
1020                  * instead of migrating, as we cannot form the cc->order buddy
1021                  * page anyway.
1022                  */
1023                 if (nr_isolated) {
1024                         if (locked) {
1025                                 spin_unlock_irqrestore(&pgdat->lru_lock, flags);
1026                                 locked = false;
1027                         }
1028                         putback_movable_pages(&cc->migratepages);
1029                         cc->nr_migratepages = 0;
1030                         nr_isolated = 0;
1031                 }
1032
1033                 if (low_pfn < next_skip_pfn) {
1034                         low_pfn = next_skip_pfn - 1;
1035                         /*
1036                          * The check near the loop beginning would have updated
1037                          * next_skip_pfn too, but this is a bit simpler.
1038                          */
1039                         next_skip_pfn += 1UL << cc->order;
1040                 }
1041         }
1042
1043         /*
1044          * The PageBuddy() check could have potentially brought us outside
1045          * the range to be scanned.
1046          */
1047         if (unlikely(low_pfn > end_pfn))
1048                 low_pfn = end_pfn;
1049
1050 isolate_abort:
1051         if (locked)
1052                 spin_unlock_irqrestore(&pgdat->lru_lock, flags);
1053
1054         /*
1055          * Updated the cached scanner pfn once the pageblock has been scanned
1056          * Pages will either be migrated in which case there is no point
1057          * scanning in the near future or migration failed in which case the
1058          * failure reason may persist. The block is marked for skipping if
1059          * there were no pages isolated in the block or if the block is
1060          * rescanned twice in a row.
1061          */
1062         if (low_pfn == end_pfn && (!nr_isolated || cc->rescan)) {
1063                 if (valid_page && !skip_updated)
1064                         set_pageblock_skip(valid_page);
1065                 update_cached_migrate(cc, low_pfn);
1066         }
1067
1068         trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
1069                                                 nr_scanned, nr_isolated);
1070
1071 fatal_pending:
1072         cc->total_migrate_scanned += nr_scanned;
1073         if (nr_isolated)
1074                 count_compact_events(COMPACTISOLATED, nr_isolated);
1075
1076         return low_pfn;
1077 }
1078
1079 /**
1080  * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
1081  * @cc:        Compaction control structure.
1082  * @start_pfn: The first PFN to start isolating.
1083  * @end_pfn:   The one-past-last PFN.
1084  *
1085  * Returns zero if isolation fails fatally due to e.g. pending signal.
1086  * Otherwise, function returns one-past-the-last PFN of isolated page
1087  * (which may be greater than end_pfn if end fell in a middle of a THP page).
1088  */
1089 unsigned long
1090 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
1091                                                         unsigned long end_pfn)
1092 {
1093         unsigned long pfn, block_start_pfn, block_end_pfn;
1094
1095         /* Scan block by block. First and last block may be incomplete */
1096         pfn = start_pfn;
1097         block_start_pfn = pageblock_start_pfn(pfn);
1098         if (block_start_pfn < cc->zone->zone_start_pfn)
1099                 block_start_pfn = cc->zone->zone_start_pfn;
1100         block_end_pfn = pageblock_end_pfn(pfn);
1101
1102         for (; pfn < end_pfn; pfn = block_end_pfn,
1103                                 block_start_pfn = block_end_pfn,
1104                                 block_end_pfn += pageblock_nr_pages) {
1105
1106                 block_end_pfn = min(block_end_pfn, end_pfn);
1107
1108                 if (!pageblock_pfn_to_page(block_start_pfn,
1109                                         block_end_pfn, cc->zone))
1110                         continue;
1111
1112                 pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
1113                                                         ISOLATE_UNEVICTABLE);
1114
1115                 if (!pfn)
1116                         break;
1117
1118                 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
1119                         break;
1120         }
1121
1122         return pfn;
1123 }
1124
1125 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
1126 #ifdef CONFIG_COMPACTION
1127
1128 static bool suitable_migration_source(struct compact_control *cc,
1129                                                         struct page *page)
1130 {
1131         int block_mt;
1132
1133         if (pageblock_skip_persistent(page))
1134                 return false;
1135
1136         if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
1137                 return true;
1138
1139         block_mt = get_pageblock_migratetype(page);
1140
1141         if (cc->migratetype == MIGRATE_MOVABLE)
1142                 return is_migrate_movable(block_mt);
1143         else
1144                 return block_mt == cc->migratetype;
1145 }
1146
1147 /* Returns true if the page is within a block suitable for migration to */
1148 static bool suitable_migration_target(struct compact_control *cc,
1149                                                         struct page *page)
1150 {
1151         /* If the page is a large free page, then disallow migration */
1152         if (PageBuddy(page)) {
1153                 /*
1154                  * We are checking page_order without zone->lock taken. But
1155                  * the only small danger is that we skip a potentially suitable
1156                  * pageblock, so it's not worth to check order for valid range.
1157                  */
1158                 if (page_order_unsafe(page) >= pageblock_order)
1159                         return false;
1160         }
1161
1162         if (cc->ignore_block_suitable)
1163                 return true;
1164
1165         /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1166         if (is_migrate_movable(get_pageblock_migratetype(page)))
1167                 return true;
1168
1169         /* Otherwise skip the block */
1170         return false;
1171 }
1172
1173 static inline unsigned int
1174 freelist_scan_limit(struct compact_control *cc)
1175 {
1176         unsigned short shift = BITS_PER_LONG - 1;
1177
1178         return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1;
1179 }
1180
1181 /*
1182  * Test whether the free scanner has reached the same or lower pageblock than
1183  * the migration scanner, and compaction should thus terminate.
1184  */
1185 static inline bool compact_scanners_met(struct compact_control *cc)
1186 {
1187         return (cc->free_pfn >> pageblock_order)
1188                 <= (cc->migrate_pfn >> pageblock_order);
1189 }
1190
1191 /*
1192  * Used when scanning for a suitable migration target which scans freelists
1193  * in reverse. Reorders the list such as the unscanned pages are scanned
1194  * first on the next iteration of the free scanner
1195  */
1196 static void
1197 move_freelist_head(struct list_head *freelist, struct page *freepage)
1198 {
1199         LIST_HEAD(sublist);
1200
1201         if (!list_is_last(freelist, &freepage->lru)) {
1202                 list_cut_before(&sublist, freelist, &freepage->lru);
1203                 if (!list_empty(&sublist))
1204                         list_splice_tail(&sublist, freelist);
1205         }
1206 }
1207
1208 /*
1209  * Similar to move_freelist_head except used by the migration scanner
1210  * when scanning forward. It's possible for these list operations to
1211  * move against each other if they search the free list exactly in
1212  * lockstep.
1213  */
1214 static void
1215 move_freelist_tail(struct list_head *freelist, struct page *freepage)
1216 {
1217         LIST_HEAD(sublist);
1218
1219         if (!list_is_first(freelist, &freepage->lru)) {
1220                 list_cut_position(&sublist, freelist, &freepage->lru);
1221                 if (!list_empty(&sublist))
1222                         list_splice_tail(&sublist, freelist);
1223         }
1224 }
1225
1226 static void
1227 fast_isolate_around(struct compact_control *cc, unsigned long pfn, unsigned long nr_isolated)
1228 {
1229         unsigned long start_pfn, end_pfn;
1230         struct page *page = pfn_to_page(pfn);
1231
1232         /* Do not search around if there are enough pages already */
1233         if (cc->nr_freepages >= cc->nr_migratepages)
1234                 return;
1235
1236         /* Minimise scanning during async compaction */
1237         if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC)
1238                 return;
1239
1240         /* Pageblock boundaries */
1241         start_pfn = pageblock_start_pfn(pfn);
1242         end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone)) - 1;
1243
1244         /* Scan before */
1245         if (start_pfn != pfn) {
1246                 isolate_freepages_block(cc, &start_pfn, pfn, &cc->freepages, 1, false);
1247                 if (cc->nr_freepages >= cc->nr_migratepages)
1248                         return;
1249         }
1250
1251         /* Scan after */
1252         start_pfn = pfn + nr_isolated;
1253         if (start_pfn < end_pfn)
1254                 isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false);
1255
1256         /* Skip this pageblock in the future as it's full or nearly full */
1257         if (cc->nr_freepages < cc->nr_migratepages)
1258                 set_pageblock_skip(page);
1259 }
1260
1261 /* Search orders in round-robin fashion */
1262 static int next_search_order(struct compact_control *cc, int order)
1263 {
1264         order--;
1265         if (order < 0)
1266                 order = cc->order - 1;
1267
1268         /* Search wrapped around? */
1269         if (order == cc->search_order) {
1270                 cc->search_order--;
1271                 if (cc->search_order < 0)
1272                         cc->search_order = cc->order - 1;
1273                 return -1;
1274         }
1275
1276         return order;
1277 }
1278
1279 static unsigned long
1280 fast_isolate_freepages(struct compact_control *cc)
1281 {
1282         unsigned int limit = min(1U, freelist_scan_limit(cc) >> 1);
1283         unsigned int nr_scanned = 0;
1284         unsigned long low_pfn, min_pfn, high_pfn = 0, highest = 0;
1285         unsigned long nr_isolated = 0;
1286         unsigned long distance;
1287         struct page *page = NULL;
1288         bool scan_start = false;
1289         int order;
1290
1291         /* Full compaction passes in a negative order */
1292         if (cc->order <= 0)
1293                 return cc->free_pfn;
1294
1295         /*
1296          * If starting the scan, use a deeper search and use the highest
1297          * PFN found if a suitable one is not found.
1298          */
1299         if (cc->free_pfn >= cc->zone->compact_init_free_pfn) {
1300                 limit = pageblock_nr_pages >> 1;
1301                 scan_start = true;
1302         }
1303
1304         /*
1305          * Preferred point is in the top quarter of the scan space but take
1306          * a pfn from the top half if the search is problematic.
1307          */
1308         distance = (cc->free_pfn - cc->migrate_pfn);
1309         low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2));
1310         min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1));
1311
1312         if (WARN_ON_ONCE(min_pfn > low_pfn))
1313                 low_pfn = min_pfn;
1314
1315         /*
1316          * Search starts from the last successful isolation order or the next
1317          * order to search after a previous failure
1318          */
1319         cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order);
1320
1321         for (order = cc->search_order;
1322              !page && order >= 0;
1323              order = next_search_order(cc, order)) {
1324                 struct free_area *area = &cc->zone->free_area[order];
1325                 struct list_head *freelist;
1326                 struct page *freepage;
1327                 unsigned long flags;
1328                 unsigned int order_scanned = 0;
1329
1330                 if (!area->nr_free)
1331                         continue;
1332
1333                 spin_lock_irqsave(&cc->zone->lock, flags);
1334                 freelist = &area->free_list[MIGRATE_MOVABLE];
1335                 list_for_each_entry_reverse(freepage, freelist, lru) {
1336                         unsigned long pfn;
1337
1338                         order_scanned++;
1339                         nr_scanned++;
1340                         pfn = page_to_pfn(freepage);
1341
1342                         if (pfn >= highest)
1343                                 highest = pageblock_start_pfn(pfn);
1344
1345                         if (pfn >= low_pfn) {
1346                                 cc->fast_search_fail = 0;
1347                                 cc->search_order = order;
1348                                 page = freepage;
1349                                 break;
1350                         }
1351
1352                         if (pfn >= min_pfn && pfn > high_pfn) {
1353                                 high_pfn = pfn;
1354
1355                                 /* Shorten the scan if a candidate is found */
1356                                 limit >>= 1;
1357                         }
1358
1359                         if (order_scanned >= limit)
1360                                 break;
1361                 }
1362
1363                 /* Use a minimum pfn if a preferred one was not found */
1364                 if (!page && high_pfn) {
1365                         page = pfn_to_page(high_pfn);
1366
1367                         /* Update freepage for the list reorder below */
1368                         freepage = page;
1369                 }
1370
1371                 /* Reorder to so a future search skips recent pages */
1372                 move_freelist_head(freelist, freepage);
1373
1374                 /* Isolate the page if available */
1375                 if (page) {
1376                         if (__isolate_free_page(page, order)) {
1377                                 set_page_private(page, order);
1378                                 nr_isolated = 1 << order;
1379                                 cc->nr_freepages += nr_isolated;
1380                                 list_add_tail(&page->lru, &cc->freepages);
1381                                 count_compact_events(COMPACTISOLATED, nr_isolated);
1382                         } else {
1383                                 /* If isolation fails, abort the search */
1384                                 order = cc->search_order + 1;
1385                                 page = NULL;
1386                         }
1387                 }
1388
1389                 spin_unlock_irqrestore(&cc->zone->lock, flags);
1390
1391                 /*
1392                  * Smaller scan on next order so the total scan ig related
1393                  * to freelist_scan_limit.
1394                  */
1395                 if (order_scanned >= limit)
1396                         limit = min(1U, limit >> 1);
1397         }
1398
1399         if (!page) {
1400                 cc->fast_search_fail++;
1401                 if (scan_start) {
1402                         /*
1403                          * Use the highest PFN found above min. If one was
1404                          * not found, be pessemistic for direct compaction
1405                          * and use the min mark.
1406                          */
1407                         if (highest) {
1408                                 page = pfn_to_page(highest);
1409                                 cc->free_pfn = highest;
1410                         } else {
1411                                 if (cc->direct_compaction && pfn_valid(min_pfn)) {
1412                                         page = pfn_to_page(min_pfn);
1413                                         cc->free_pfn = min_pfn;
1414                                 }
1415                         }
1416                 }
1417         }
1418
1419         if (highest && highest >= cc->zone->compact_cached_free_pfn) {
1420                 highest -= pageblock_nr_pages;
1421                 cc->zone->compact_cached_free_pfn = highest;
1422         }
1423
1424         cc->total_free_scanned += nr_scanned;
1425         if (!page)
1426                 return cc->free_pfn;
1427
1428         low_pfn = page_to_pfn(page);
1429         fast_isolate_around(cc, low_pfn, nr_isolated);
1430         return low_pfn;
1431 }
1432
1433 /*
1434  * Based on information in the current compact_control, find blocks
1435  * suitable for isolating free pages from and then isolate them.
1436  */
1437 static void isolate_freepages(struct compact_control *cc)
1438 {
1439         struct zone *zone = cc->zone;
1440         struct page *page;
1441         unsigned long block_start_pfn;  /* start of current pageblock */
1442         unsigned long isolate_start_pfn; /* exact pfn we start at */
1443         unsigned long block_end_pfn;    /* end of current pageblock */
1444         unsigned long low_pfn;       /* lowest pfn scanner is able to scan */
1445         struct list_head *freelist = &cc->freepages;
1446         unsigned int stride;
1447
1448         /* Try a small search of the free lists for a candidate */
1449         isolate_start_pfn = fast_isolate_freepages(cc);
1450         if (cc->nr_freepages)
1451                 goto splitmap;
1452
1453         /*
1454          * Initialise the free scanner. The starting point is where we last
1455          * successfully isolated from, zone-cached value, or the end of the
1456          * zone when isolating for the first time. For looping we also need
1457          * this pfn aligned down to the pageblock boundary, because we do
1458          * block_start_pfn -= pageblock_nr_pages in the for loop.
1459          * For ending point, take care when isolating in last pageblock of a
1460          * a zone which ends in the middle of a pageblock.
1461          * The low boundary is the end of the pageblock the migration scanner
1462          * is using.
1463          */
1464         isolate_start_pfn = cc->free_pfn;
1465         block_start_pfn = pageblock_start_pfn(isolate_start_pfn);
1466         block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1467                                                 zone_end_pfn(zone));
1468         low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1469         stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1;
1470
1471         /*
1472          * Isolate free pages until enough are available to migrate the
1473          * pages on cc->migratepages. We stop searching if the migrate
1474          * and free page scanners meet or enough free pages are isolated.
1475          */
1476         for (; block_start_pfn >= low_pfn;
1477                                 block_end_pfn = block_start_pfn,
1478                                 block_start_pfn -= pageblock_nr_pages,
1479                                 isolate_start_pfn = block_start_pfn) {
1480                 unsigned long nr_isolated;
1481
1482                 /*
1483                  * This can iterate a massively long zone without finding any
1484                  * suitable migration targets, so periodically check resched.
1485                  */
1486                 if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)))
1487                         cond_resched();
1488
1489                 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1490                                                                         zone);
1491                 if (!page)
1492                         continue;
1493
1494                 /* Check the block is suitable for migration */
1495                 if (!suitable_migration_target(cc, page))
1496                         continue;
1497
1498                 /* If isolation recently failed, do not retry */
1499                 if (!isolation_suitable(cc, page))
1500                         continue;
1501
1502                 /* Found a block suitable for isolating free pages from. */
1503                 nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn,
1504                                         block_end_pfn, freelist, stride, false);
1505
1506                 /* Update the skip hint if the full pageblock was scanned */
1507                 if (isolate_start_pfn == block_end_pfn)
1508                         update_pageblock_skip(cc, page, block_start_pfn);
1509
1510                 /* Are enough freepages isolated? */
1511                 if (cc->nr_freepages >= cc->nr_migratepages) {
1512                         if (isolate_start_pfn >= block_end_pfn) {
1513                                 /*
1514                                  * Restart at previous pageblock if more
1515                                  * freepages can be isolated next time.
1516                                  */
1517                                 isolate_start_pfn =
1518                                         block_start_pfn - pageblock_nr_pages;
1519                         }
1520                         break;
1521                 } else if (isolate_start_pfn < block_end_pfn) {
1522                         /*
1523                          * If isolation failed early, do not continue
1524                          * needlessly.
1525                          */
1526                         break;
1527                 }
1528
1529                 /* Adjust stride depending on isolation */
1530                 if (nr_isolated) {
1531                         stride = 1;
1532                         continue;
1533                 }
1534                 stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1);
1535         }
1536
1537         /*
1538          * Record where the free scanner will restart next time. Either we
1539          * broke from the loop and set isolate_start_pfn based on the last
1540          * call to isolate_freepages_block(), or we met the migration scanner
1541          * and the loop terminated due to isolate_start_pfn < low_pfn
1542          */
1543         cc->free_pfn = isolate_start_pfn;
1544
1545 splitmap:
1546         /* __isolate_free_page() does not map the pages */
1547         split_map_pages(freelist);
1548 }
1549
1550 /*
1551  * This is a migrate-callback that "allocates" freepages by taking pages
1552  * from the isolated freelists in the block we are migrating to.
1553  */
1554 static struct page *compaction_alloc(struct page *migratepage,
1555                                         unsigned long data)
1556 {
1557         struct compact_control *cc = (struct compact_control *)data;
1558         struct page *freepage;
1559
1560         if (list_empty(&cc->freepages)) {
1561                 isolate_freepages(cc);
1562
1563                 if (list_empty(&cc->freepages))
1564                         return NULL;
1565         }
1566
1567         freepage = list_entry(cc->freepages.next, struct page, lru);
1568         list_del(&freepage->lru);
1569         cc->nr_freepages--;
1570
1571         return freepage;
1572 }
1573
1574 /*
1575  * This is a migrate-callback that "frees" freepages back to the isolated
1576  * freelist.  All pages on the freelist are from the same zone, so there is no
1577  * special handling needed for NUMA.
1578  */
1579 static void compaction_free(struct page *page, unsigned long data)
1580 {
1581         struct compact_control *cc = (struct compact_control *)data;
1582
1583         list_add(&page->lru, &cc->freepages);
1584         cc->nr_freepages++;
1585 }
1586
1587 /* possible outcome of isolate_migratepages */
1588 typedef enum {
1589         ISOLATE_ABORT,          /* Abort compaction now */
1590         ISOLATE_NONE,           /* No pages isolated, continue scanning */
1591         ISOLATE_SUCCESS,        /* Pages isolated, migrate */
1592 } isolate_migrate_t;
1593
1594 /*
1595  * Allow userspace to control policy on scanning the unevictable LRU for
1596  * compactable pages.
1597  */
1598 #ifdef CONFIG_PREEMPT_RT
1599 int sysctl_compact_unevictable_allowed __read_mostly = 0;
1600 #else
1601 int sysctl_compact_unevictable_allowed __read_mostly = 1;
1602 #endif
1603
1604 static inline void
1605 update_fast_start_pfn(struct compact_control *cc, unsigned long pfn)
1606 {
1607         if (cc->fast_start_pfn == ULONG_MAX)
1608                 return;
1609
1610         if (!cc->fast_start_pfn)
1611                 cc->fast_start_pfn = pfn;
1612
1613         cc->fast_start_pfn = min(cc->fast_start_pfn, pfn);
1614 }
1615
1616 static inline unsigned long
1617 reinit_migrate_pfn(struct compact_control *cc)
1618 {
1619         if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX)
1620                 return cc->migrate_pfn;
1621
1622         cc->migrate_pfn = cc->fast_start_pfn;
1623         cc->fast_start_pfn = ULONG_MAX;
1624
1625         return cc->migrate_pfn;
1626 }
1627
1628 /*
1629  * Briefly search the free lists for a migration source that already has
1630  * some free pages to reduce the number of pages that need migration
1631  * before a pageblock is free.
1632  */
1633 static unsigned long fast_find_migrateblock(struct compact_control *cc)
1634 {
1635         unsigned int limit = freelist_scan_limit(cc);
1636         unsigned int nr_scanned = 0;
1637         unsigned long distance;
1638         unsigned long pfn = cc->migrate_pfn;
1639         unsigned long high_pfn;
1640         int order;
1641
1642         /* Skip hints are relied on to avoid repeats on the fast search */
1643         if (cc->ignore_skip_hint)
1644                 return pfn;
1645
1646         /*
1647          * If the migrate_pfn is not at the start of a zone or the start
1648          * of a pageblock then assume this is a continuation of a previous
1649          * scan restarted due to COMPACT_CLUSTER_MAX.
1650          */
1651         if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn))
1652                 return pfn;
1653
1654         /*
1655          * For smaller orders, just linearly scan as the number of pages
1656          * to migrate should be relatively small and does not necessarily
1657          * justify freeing up a large block for a small allocation.
1658          */
1659         if (cc->order <= PAGE_ALLOC_COSTLY_ORDER)
1660                 return pfn;
1661
1662         /*
1663          * Only allow kcompactd and direct requests for movable pages to
1664          * quickly clear out a MOVABLE pageblock for allocation. This
1665          * reduces the risk that a large movable pageblock is freed for
1666          * an unmovable/reclaimable small allocation.
1667          */
1668         if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE)
1669                 return pfn;
1670
1671         /*
1672          * When starting the migration scanner, pick any pageblock within the
1673          * first half of the search space. Otherwise try and pick a pageblock
1674          * within the first eighth to reduce the chances that a migration
1675          * target later becomes a source.
1676          */
1677         distance = (cc->free_pfn - cc->migrate_pfn) >> 1;
1678         if (cc->migrate_pfn != cc->zone->zone_start_pfn)
1679                 distance >>= 2;
1680         high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance);
1681
1682         for (order = cc->order - 1;
1683              order >= PAGE_ALLOC_COSTLY_ORDER && pfn == cc->migrate_pfn && nr_scanned < limit;
1684              order--) {
1685                 struct free_area *area = &cc->zone->free_area[order];
1686                 struct list_head *freelist;
1687                 unsigned long flags;
1688                 struct page *freepage;
1689
1690                 if (!area->nr_free)
1691                         continue;
1692
1693                 spin_lock_irqsave(&cc->zone->lock, flags);
1694                 freelist = &area->free_list[MIGRATE_MOVABLE];
1695                 list_for_each_entry(freepage, freelist, lru) {
1696                         unsigned long free_pfn;
1697
1698                         nr_scanned++;
1699                         free_pfn = page_to_pfn(freepage);
1700                         if (free_pfn < high_pfn) {
1701                                 /*
1702                                  * Avoid if skipped recently. Ideally it would
1703                                  * move to the tail but even safe iteration of
1704                                  * the list assumes an entry is deleted, not
1705                                  * reordered.
1706                                  */
1707                                 if (get_pageblock_skip(freepage)) {
1708                                         if (list_is_last(freelist, &freepage->lru))
1709                                                 break;
1710
1711                                         continue;
1712                                 }
1713
1714                                 /* Reorder to so a future search skips recent pages */
1715                                 move_freelist_tail(freelist, freepage);
1716
1717                                 update_fast_start_pfn(cc, free_pfn);
1718                                 pfn = pageblock_start_pfn(free_pfn);
1719                                 cc->fast_search_fail = 0;
1720                                 set_pageblock_skip(freepage);
1721                                 break;
1722                         }
1723
1724                         if (nr_scanned >= limit) {
1725                                 cc->fast_search_fail++;
1726                                 move_freelist_tail(freelist, freepage);
1727                                 break;
1728                         }
1729                 }
1730                 spin_unlock_irqrestore(&cc->zone->lock, flags);
1731         }
1732
1733         cc->total_migrate_scanned += nr_scanned;
1734
1735         /*
1736          * If fast scanning failed then use a cached entry for a page block
1737          * that had free pages as the basis for starting a linear scan.
1738          */
1739         if (pfn == cc->migrate_pfn)
1740                 pfn = reinit_migrate_pfn(cc);
1741
1742         return pfn;
1743 }
1744
1745 /*
1746  * Isolate all pages that can be migrated from the first suitable block,
1747  * starting at the block pointed to by the migrate scanner pfn within
1748  * compact_control.
1749  */
1750 static isolate_migrate_t isolate_migratepages(struct compact_control *cc)
1751 {
1752         unsigned long block_start_pfn;
1753         unsigned long block_end_pfn;
1754         unsigned long low_pfn;
1755         struct page *page;
1756         const isolate_mode_t isolate_mode =
1757                 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1758                 (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1759         bool fast_find_block;
1760
1761         /*
1762          * Start at where we last stopped, or beginning of the zone as
1763          * initialized by compact_zone(). The first failure will use
1764          * the lowest PFN as the starting point for linear scanning.
1765          */
1766         low_pfn = fast_find_migrateblock(cc);
1767         block_start_pfn = pageblock_start_pfn(low_pfn);
1768         if (block_start_pfn < cc->zone->zone_start_pfn)
1769                 block_start_pfn = cc->zone->zone_start_pfn;
1770
1771         /*
1772          * fast_find_migrateblock marks a pageblock skipped so to avoid
1773          * the isolation_suitable check below, check whether the fast
1774          * search was successful.
1775          */
1776         fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail;
1777
1778         /* Only scan within a pageblock boundary */
1779         block_end_pfn = pageblock_end_pfn(low_pfn);
1780
1781         /*
1782          * Iterate over whole pageblocks until we find the first suitable.
1783          * Do not cross the free scanner.
1784          */
1785         for (; block_end_pfn <= cc->free_pfn;
1786                         fast_find_block = false,
1787                         low_pfn = block_end_pfn,
1788                         block_start_pfn = block_end_pfn,
1789                         block_end_pfn += pageblock_nr_pages) {
1790
1791                 /*
1792                  * This can potentially iterate a massively long zone with
1793                  * many pageblocks unsuitable, so periodically check if we
1794                  * need to schedule.
1795                  */
1796                 if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)))
1797                         cond_resched();
1798
1799                 page = pageblock_pfn_to_page(block_start_pfn,
1800                                                 block_end_pfn, cc->zone);
1801                 if (!page)
1802                         continue;
1803
1804                 /*
1805                  * If isolation recently failed, do not retry. Only check the
1806                  * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock
1807                  * to be visited multiple times. Assume skip was checked
1808                  * before making it "skip" so other compaction instances do
1809                  * not scan the same block.
1810                  */
1811                 if (IS_ALIGNED(low_pfn, pageblock_nr_pages) &&
1812                     !fast_find_block && !isolation_suitable(cc, page))
1813                         continue;
1814
1815                 /*
1816                  * For async compaction, also only scan in MOVABLE blocks
1817                  * without huge pages. Async compaction is optimistic to see
1818                  * if the minimum amount of work satisfies the allocation.
1819                  * The cached PFN is updated as it's possible that all
1820                  * remaining blocks between source and target are unsuitable
1821                  * and the compaction scanners fail to meet.
1822                  */
1823                 if (!suitable_migration_source(cc, page)) {
1824                         update_cached_migrate(cc, block_end_pfn);
1825                         continue;
1826                 }
1827
1828                 /* Perform the isolation */
1829                 low_pfn = isolate_migratepages_block(cc, low_pfn,
1830                                                 block_end_pfn, isolate_mode);
1831
1832                 if (!low_pfn)
1833                         return ISOLATE_ABORT;
1834
1835                 /*
1836                  * Either we isolated something and proceed with migration. Or
1837                  * we failed and compact_zone should decide if we should
1838                  * continue or not.
1839                  */
1840                 break;
1841         }
1842
1843         /* Record where migration scanner will be restarted. */
1844         cc->migrate_pfn = low_pfn;
1845
1846         return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1847 }
1848
1849 /*
1850  * order == -1 is expected when compacting via
1851  * /proc/sys/vm/compact_memory
1852  */
1853 static inline bool is_via_compact_memory(int order)
1854 {
1855         return order == -1;
1856 }
1857
1858 static enum compact_result __compact_finished(struct compact_control *cc)
1859 {
1860         unsigned int order;
1861         const int migratetype = cc->migratetype;
1862         int ret;
1863
1864         /* Compaction run completes if the migrate and free scanner meet */
1865         if (compact_scanners_met(cc)) {
1866                 /* Let the next compaction start anew. */
1867                 reset_cached_positions(cc->zone);
1868
1869                 /*
1870                  * Mark that the PG_migrate_skip information should be cleared
1871                  * by kswapd when it goes to sleep. kcompactd does not set the
1872                  * flag itself as the decision to be clear should be directly
1873                  * based on an allocation request.
1874                  */
1875                 if (cc->direct_compaction)
1876                         cc->zone->compact_blockskip_flush = true;
1877
1878                 if (cc->whole_zone)
1879                         return COMPACT_COMPLETE;
1880                 else
1881                         return COMPACT_PARTIAL_SKIPPED;
1882         }
1883
1884         if (is_via_compact_memory(cc->order))
1885                 return COMPACT_CONTINUE;
1886
1887         /*
1888          * Always finish scanning a pageblock to reduce the possibility of
1889          * fallbacks in the future. This is particularly important when
1890          * migration source is unmovable/reclaimable but it's not worth
1891          * special casing.
1892          */
1893         if (!IS_ALIGNED(cc->migrate_pfn, pageblock_nr_pages))
1894                 return COMPACT_CONTINUE;
1895
1896         /* Direct compactor: Is a suitable page free? */
1897         ret = COMPACT_NO_SUITABLE_PAGE;
1898         for (order = cc->order; order < MAX_ORDER; order++) {
1899                 struct free_area *area = &cc->zone->free_area[order];
1900                 bool can_steal;
1901
1902                 /* Job done if page is free of the right migratetype */
1903                 if (!free_area_empty(area, migratetype))
1904                         return COMPACT_SUCCESS;
1905
1906 #ifdef CONFIG_CMA
1907                 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
1908                 if (migratetype == MIGRATE_MOVABLE &&
1909                         !free_area_empty(area, MIGRATE_CMA))
1910                         return COMPACT_SUCCESS;
1911 #endif
1912                 /*
1913                  * Job done if allocation would steal freepages from
1914                  * other migratetype buddy lists.
1915                  */
1916                 if (find_suitable_fallback(area, order, migratetype,
1917                                                 true, &can_steal) != -1) {
1918
1919                         /* movable pages are OK in any pageblock */
1920                         if (migratetype == MIGRATE_MOVABLE)
1921                                 return COMPACT_SUCCESS;
1922
1923                         /*
1924                          * We are stealing for a non-movable allocation. Make
1925                          * sure we finish compacting the current pageblock
1926                          * first so it is as free as possible and we won't
1927                          * have to steal another one soon. This only applies
1928                          * to sync compaction, as async compaction operates
1929                          * on pageblocks of the same migratetype.
1930                          */
1931                         if (cc->mode == MIGRATE_ASYNC ||
1932                                         IS_ALIGNED(cc->migrate_pfn,
1933                                                         pageblock_nr_pages)) {
1934                                 return COMPACT_SUCCESS;
1935                         }
1936
1937                         ret = COMPACT_CONTINUE;
1938                         break;
1939                 }
1940         }
1941
1942         if (cc->contended || fatal_signal_pending(current))
1943                 ret = COMPACT_CONTENDED;
1944
1945         return ret;
1946 }
1947
1948 static enum compact_result compact_finished(struct compact_control *cc)
1949 {
1950         int ret;
1951
1952         ret = __compact_finished(cc);
1953         trace_mm_compaction_finished(cc->zone, cc->order, ret);
1954         if (ret == COMPACT_NO_SUITABLE_PAGE)
1955                 ret = COMPACT_CONTINUE;
1956
1957         return ret;
1958 }
1959
1960 /*
1961  * compaction_suitable: Is this suitable to run compaction on this zone now?
1962  * Returns
1963  *   COMPACT_SKIPPED  - If there are too few free pages for compaction
1964  *   COMPACT_SUCCESS  - If the allocation would succeed without compaction
1965  *   COMPACT_CONTINUE - If compaction should run now
1966  */
1967 static enum compact_result __compaction_suitable(struct zone *zone, int order,
1968                                         unsigned int alloc_flags,
1969                                         int classzone_idx,
1970                                         unsigned long wmark_target)
1971 {
1972         unsigned long watermark;
1973
1974         if (is_via_compact_memory(order))
1975                 return COMPACT_CONTINUE;
1976
1977         watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
1978         /*
1979          * If watermarks for high-order allocation are already met, there
1980          * should be no need for compaction at all.
1981          */
1982         if (zone_watermark_ok(zone, order, watermark, classzone_idx,
1983                                                                 alloc_flags))
1984                 return COMPACT_SUCCESS;
1985
1986         /*
1987          * Watermarks for order-0 must be met for compaction to be able to
1988          * isolate free pages for migration targets. This means that the
1989          * watermark and alloc_flags have to match, or be more pessimistic than
1990          * the check in __isolate_free_page(). We don't use the direct
1991          * compactor's alloc_flags, as they are not relevant for freepage
1992          * isolation. We however do use the direct compactor's classzone_idx to
1993          * skip over zones where lowmem reserves would prevent allocation even
1994          * if compaction succeeds.
1995          * For costly orders, we require low watermark instead of min for
1996          * compaction to proceed to increase its chances.
1997          * ALLOC_CMA is used, as pages in CMA pageblocks are considered
1998          * suitable migration targets
1999          */
2000         watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
2001                                 low_wmark_pages(zone) : min_wmark_pages(zone);
2002         watermark += compact_gap(order);
2003         if (!__zone_watermark_ok(zone, 0, watermark, classzone_idx,
2004                                                 ALLOC_CMA, wmark_target))
2005                 return COMPACT_SKIPPED;
2006
2007         return COMPACT_CONTINUE;
2008 }
2009
2010 enum compact_result compaction_suitable(struct zone *zone, int order,
2011                                         unsigned int alloc_flags,
2012                                         int classzone_idx)
2013 {
2014         enum compact_result ret;
2015         int fragindex;
2016
2017         ret = __compaction_suitable(zone, order, alloc_flags, classzone_idx,
2018                                     zone_page_state(zone, NR_FREE_PAGES));
2019         /*
2020          * fragmentation index determines if allocation failures are due to
2021          * low memory or external fragmentation
2022          *
2023          * index of -1000 would imply allocations might succeed depending on
2024          * watermarks, but we already failed the high-order watermark check
2025          * index towards 0 implies failure is due to lack of memory
2026          * index towards 1000 implies failure is due to fragmentation
2027          *
2028          * Only compact if a failure would be due to fragmentation. Also
2029          * ignore fragindex for non-costly orders where the alternative to
2030          * a successful reclaim/compaction is OOM. Fragindex and the
2031          * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
2032          * excessive compaction for costly orders, but it should not be at the
2033          * expense of system stability.
2034          */
2035         if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) {
2036                 fragindex = fragmentation_index(zone, order);
2037                 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
2038                         ret = COMPACT_NOT_SUITABLE_ZONE;
2039         }
2040
2041         trace_mm_compaction_suitable(zone, order, ret);
2042         if (ret == COMPACT_NOT_SUITABLE_ZONE)
2043                 ret = COMPACT_SKIPPED;
2044
2045         return ret;
2046 }
2047
2048 bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
2049                 int alloc_flags)
2050 {
2051         struct zone *zone;
2052         struct zoneref *z;
2053
2054         /*
2055          * Make sure at least one zone would pass __compaction_suitable if we continue
2056          * retrying the reclaim.
2057          */
2058         for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
2059                                         ac->nodemask) {
2060                 unsigned long available;
2061                 enum compact_result compact_result;
2062
2063                 /*
2064                  * Do not consider all the reclaimable memory because we do not
2065                  * want to trash just for a single high order allocation which
2066                  * is even not guaranteed to appear even if __compaction_suitable
2067                  * is happy about the watermark check.
2068                  */
2069                 available = zone_reclaimable_pages(zone) / order;
2070                 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
2071                 compact_result = __compaction_suitable(zone, order, alloc_flags,
2072                                 ac_classzone_idx(ac), available);
2073                 if (compact_result != COMPACT_SKIPPED)
2074                         return true;
2075         }
2076
2077         return false;
2078 }
2079
2080 static enum compact_result
2081 compact_zone(struct compact_control *cc, struct capture_control *capc)
2082 {
2083         enum compact_result ret;
2084         unsigned long start_pfn = cc->zone->zone_start_pfn;
2085         unsigned long end_pfn = zone_end_pfn(cc->zone);
2086         unsigned long last_migrated_pfn;
2087         const bool sync = cc->mode != MIGRATE_ASYNC;
2088         bool update_cached;
2089
2090         /*
2091          * These counters track activities during zone compaction.  Initialize
2092          * them before compacting a new zone.
2093          */
2094         cc->total_migrate_scanned = 0;
2095         cc->total_free_scanned = 0;
2096         cc->nr_migratepages = 0;
2097         cc->nr_freepages = 0;
2098         INIT_LIST_HEAD(&cc->freepages);
2099         INIT_LIST_HEAD(&cc->migratepages);
2100
2101         cc->migratetype = gfpflags_to_migratetype(cc->gfp_mask);
2102         ret = compaction_suitable(cc->zone, cc->order, cc->alloc_flags,
2103                                                         cc->classzone_idx);
2104         /* Compaction is likely to fail */
2105         if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED)
2106                 return ret;
2107
2108         /* huh, compaction_suitable is returning something unexpected */
2109         VM_BUG_ON(ret != COMPACT_CONTINUE);
2110
2111         /*
2112          * Clear pageblock skip if there were failures recently and compaction
2113          * is about to be retried after being deferred.
2114          */
2115         if (compaction_restarting(cc->zone, cc->order))
2116                 __reset_isolation_suitable(cc->zone);
2117
2118         /*
2119          * Setup to move all movable pages to the end of the zone. Used cached
2120          * information on where the scanners should start (unless we explicitly
2121          * want to compact the whole zone), but check that it is initialised
2122          * by ensuring the values are within zone boundaries.
2123          */
2124         cc->fast_start_pfn = 0;
2125         if (cc->whole_zone) {
2126                 cc->migrate_pfn = start_pfn;
2127                 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2128         } else {
2129                 cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync];
2130                 cc->free_pfn = cc->zone->compact_cached_free_pfn;
2131                 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
2132                         cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2133                         cc->zone->compact_cached_free_pfn = cc->free_pfn;
2134                 }
2135                 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
2136                         cc->migrate_pfn = start_pfn;
2137                         cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
2138                         cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
2139                 }
2140
2141                 if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn)
2142                         cc->whole_zone = true;
2143         }
2144
2145         last_migrated_pfn = 0;
2146
2147         /*
2148          * Migrate has separate cached PFNs for ASYNC and SYNC* migration on
2149          * the basis that some migrations will fail in ASYNC mode. However,
2150          * if the cached PFNs match and pageblocks are skipped due to having
2151          * no isolation candidates, then the sync state does not matter.
2152          * Until a pageblock with isolation candidates is found, keep the
2153          * cached PFNs in sync to avoid revisiting the same blocks.
2154          */
2155         update_cached = !sync &&
2156                 cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1];
2157
2158         trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
2159                                 cc->free_pfn, end_pfn, sync);
2160
2161         migrate_prep_local();
2162
2163         while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) {
2164                 int err;
2165                 unsigned long start_pfn = cc->migrate_pfn;
2166
2167                 /*
2168                  * Avoid multiple rescans which can happen if a page cannot be
2169                  * isolated (dirty/writeback in async mode) or if the migrated
2170                  * pages are being allocated before the pageblock is cleared.
2171                  * The first rescan will capture the entire pageblock for
2172                  * migration. If it fails, it'll be marked skip and scanning
2173                  * will proceed as normal.
2174                  */
2175                 cc->rescan = false;
2176                 if (pageblock_start_pfn(last_migrated_pfn) ==
2177                     pageblock_start_pfn(start_pfn)) {
2178                         cc->rescan = true;
2179                 }
2180
2181                 switch (isolate_migratepages(cc)) {
2182                 case ISOLATE_ABORT:
2183                         ret = COMPACT_CONTENDED;
2184                         putback_movable_pages(&cc->migratepages);
2185                         cc->nr_migratepages = 0;
2186                         goto out;
2187                 case ISOLATE_NONE:
2188                         if (update_cached) {
2189                                 cc->zone->compact_cached_migrate_pfn[1] =
2190                                         cc->zone->compact_cached_migrate_pfn[0];
2191                         }
2192
2193                         /*
2194                          * We haven't isolated and migrated anything, but
2195                          * there might still be unflushed migrations from
2196                          * previous cc->order aligned block.
2197                          */
2198                         goto check_drain;
2199                 case ISOLATE_SUCCESS:
2200                         update_cached = false;
2201                         last_migrated_pfn = start_pfn;
2202                         ;
2203                 }
2204
2205                 err = migrate_pages(&cc->migratepages, compaction_alloc,
2206                                 compaction_free, (unsigned long)cc, cc->mode,
2207                                 MR_COMPACTION);
2208
2209                 trace_mm_compaction_migratepages(cc->nr_migratepages, err,
2210                                                         &cc->migratepages);
2211
2212                 /* All pages were either migrated or will be released */
2213                 cc->nr_migratepages = 0;
2214                 if (err) {
2215                         putback_movable_pages(&cc->migratepages);
2216                         /*
2217                          * migrate_pages() may return -ENOMEM when scanners meet
2218                          * and we want compact_finished() to detect it
2219                          */
2220                         if (err == -ENOMEM && !compact_scanners_met(cc)) {
2221                                 ret = COMPACT_CONTENDED;
2222                                 goto out;
2223                         }
2224                         /*
2225                          * We failed to migrate at least one page in the current
2226                          * order-aligned block, so skip the rest of it.
2227                          */
2228                         if (cc->direct_compaction &&
2229                                                 (cc->mode == MIGRATE_ASYNC)) {
2230                                 cc->migrate_pfn = block_end_pfn(
2231                                                 cc->migrate_pfn - 1, cc->order);
2232                                 /* Draining pcplists is useless in this case */
2233                                 last_migrated_pfn = 0;
2234                         }
2235                 }
2236
2237 check_drain:
2238                 /*
2239                  * Has the migration scanner moved away from the previous
2240                  * cc->order aligned block where we migrated from? If yes,
2241                  * flush the pages that were freed, so that they can merge and
2242                  * compact_finished() can detect immediately if allocation
2243                  * would succeed.
2244                  */
2245                 if (cc->order > 0 && last_migrated_pfn) {
2246                         int cpu;
2247                         unsigned long current_block_start =
2248                                 block_start_pfn(cc->migrate_pfn, cc->order);
2249
2250                         if (last_migrated_pfn < current_block_start) {
2251                                 cpu = get_cpu();
2252                                 lru_add_drain_cpu(cpu);
2253                                 drain_local_pages(cc->zone);
2254                                 put_cpu();
2255                                 /* No more flushing until we migrate again */
2256                                 last_migrated_pfn = 0;
2257                         }
2258                 }
2259
2260                 /* Stop if a page has been captured */
2261                 if (capc && capc->page) {
2262                         ret = COMPACT_SUCCESS;
2263                         break;
2264                 }
2265         }
2266
2267 out:
2268         /*
2269          * Release free pages and update where the free scanner should restart,
2270          * so we don't leave any returned pages behind in the next attempt.
2271          */
2272         if (cc->nr_freepages > 0) {
2273                 unsigned long free_pfn = release_freepages(&cc->freepages);
2274
2275                 cc->nr_freepages = 0;
2276                 VM_BUG_ON(free_pfn == 0);
2277                 /* The cached pfn is always the first in a pageblock */
2278                 free_pfn = pageblock_start_pfn(free_pfn);
2279                 /*
2280                  * Only go back, not forward. The cached pfn might have been
2281                  * already reset to zone end in compact_finished()
2282                  */
2283                 if (free_pfn > cc->zone->compact_cached_free_pfn)
2284                         cc->zone->compact_cached_free_pfn = free_pfn;
2285         }
2286
2287         count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
2288         count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
2289
2290         trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
2291                                 cc->free_pfn, end_pfn, sync, ret);
2292
2293         return ret;
2294 }
2295
2296 static enum compact_result compact_zone_order(struct zone *zone, int order,
2297                 gfp_t gfp_mask, enum compact_priority prio,
2298                 unsigned int alloc_flags, int classzone_idx,
2299                 struct page **capture)
2300 {
2301         enum compact_result ret;
2302         struct compact_control cc = {
2303                 .order = order,
2304                 .search_order = order,
2305                 .gfp_mask = gfp_mask,
2306                 .zone = zone,
2307                 .mode = (prio == COMPACT_PRIO_ASYNC) ?
2308                                         MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT,
2309                 .alloc_flags = alloc_flags,
2310                 .classzone_idx = classzone_idx,
2311                 .direct_compaction = true,
2312                 .whole_zone = (prio == MIN_COMPACT_PRIORITY),
2313                 .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
2314                 .ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
2315         };
2316         struct capture_control capc = {
2317                 .cc = &cc,
2318                 .page = NULL,
2319         };
2320
2321         current->capture_control = &capc;
2322
2323         ret = compact_zone(&cc, &capc);
2324
2325         VM_BUG_ON(!list_empty(&cc.freepages));
2326         VM_BUG_ON(!list_empty(&cc.migratepages));
2327
2328         *capture = capc.page;
2329         current->capture_control = NULL;
2330
2331         return ret;
2332 }
2333
2334 int sysctl_extfrag_threshold = 500;
2335
2336 /**
2337  * try_to_compact_pages - Direct compact to satisfy a high-order allocation
2338  * @gfp_mask: The GFP mask of the current allocation
2339  * @order: The order of the current allocation
2340  * @alloc_flags: The allocation flags of the current allocation
2341  * @ac: The context of current allocation
2342  * @prio: Determines how hard direct compaction should try to succeed
2343  * @capture: Pointer to free page created by compaction will be stored here
2344  *
2345  * This is the main entry point for direct page compaction.
2346  */
2347 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
2348                 unsigned int alloc_flags, const struct alloc_context *ac,
2349                 enum compact_priority prio, struct page **capture)
2350 {
2351         int may_perform_io = gfp_mask & __GFP_IO;
2352         struct zoneref *z;
2353         struct zone *zone;
2354         enum compact_result rc = COMPACT_SKIPPED;
2355
2356         /*
2357          * Check if the GFP flags allow compaction - GFP_NOIO is really
2358          * tricky context because the migration might require IO
2359          */
2360         if (!may_perform_io)
2361                 return COMPACT_SKIPPED;
2362
2363         trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
2364
2365         /* Compact each zone in the list */
2366         for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
2367                                                                 ac->nodemask) {
2368                 enum compact_result status;
2369
2370                 if (prio > MIN_COMPACT_PRIORITY
2371                                         && compaction_deferred(zone, order)) {
2372                         rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
2373                         continue;
2374                 }
2375
2376                 status = compact_zone_order(zone, order, gfp_mask, prio,
2377                                 alloc_flags, ac_classzone_idx(ac), capture);
2378                 rc = max(status, rc);
2379
2380                 /* The allocation should succeed, stop compacting */
2381                 if (status == COMPACT_SUCCESS) {
2382                         /*
2383                          * We think the allocation will succeed in this zone,
2384                          * but it is not certain, hence the false. The caller
2385                          * will repeat this with true if allocation indeed
2386                          * succeeds in this zone.
2387                          */
2388                         compaction_defer_reset(zone, order, false);
2389
2390                         break;
2391                 }
2392
2393                 if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
2394                                         status == COMPACT_PARTIAL_SKIPPED))
2395                         /*
2396                          * We think that allocation won't succeed in this zone
2397                          * so we defer compaction there. If it ends up
2398                          * succeeding after all, it will be reset.
2399                          */
2400                         defer_compaction(zone, order);
2401
2402                 /*
2403                  * We might have stopped compacting due to need_resched() in
2404                  * async compaction, or due to a fatal signal detected. In that
2405                  * case do not try further zones
2406                  */
2407                 if ((prio == COMPACT_PRIO_ASYNC && need_resched())
2408                                         || fatal_signal_pending(current))
2409                         break;
2410         }
2411
2412         return rc;
2413 }
2414
2415
2416 /* Compact all zones within a node */
2417 static void compact_node(int nid)
2418 {
2419         pg_data_t *pgdat = NODE_DATA(nid);
2420         int zoneid;
2421         struct zone *zone;
2422         struct compact_control cc = {
2423                 .order = -1,
2424                 .mode = MIGRATE_SYNC,
2425                 .ignore_skip_hint = true,
2426                 .whole_zone = true,
2427                 .gfp_mask = GFP_KERNEL,
2428         };
2429
2430
2431         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2432
2433                 zone = &pgdat->node_zones[zoneid];
2434                 if (!populated_zone(zone))
2435                         continue;
2436
2437                 cc.zone = zone;
2438
2439                 compact_zone(&cc, NULL);
2440
2441                 VM_BUG_ON(!list_empty(&cc.freepages));
2442                 VM_BUG_ON(!list_empty(&cc.migratepages));
2443         }
2444 }
2445
2446 /* Compact all nodes in the system */
2447 static void compact_nodes(void)
2448 {
2449         int nid;
2450
2451         /* Flush pending updates to the LRU lists */
2452         lru_add_drain_all();
2453
2454         for_each_online_node(nid)
2455                 compact_node(nid);
2456 }
2457
2458 /* The written value is actually unused, all memory is compacted */
2459 int sysctl_compact_memory;
2460
2461 /*
2462  * This is the entry point for compacting all nodes via
2463  * /proc/sys/vm/compact_memory
2464  */
2465 int sysctl_compaction_handler(struct ctl_table *table, int write,
2466                         void __user *buffer, size_t *length, loff_t *ppos)
2467 {
2468         if (write)
2469                 compact_nodes();
2470
2471         return 0;
2472 }
2473
2474 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
2475 static ssize_t sysfs_compact_node(struct device *dev,
2476                         struct device_attribute *attr,
2477                         const char *buf, size_t count)
2478 {
2479         int nid = dev->id;
2480
2481         if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
2482                 /* Flush pending updates to the LRU lists */
2483                 lru_add_drain_all();
2484
2485                 compact_node(nid);
2486         }
2487
2488         return count;
2489 }
2490 static DEVICE_ATTR(compact, 0200, NULL, sysfs_compact_node);
2491
2492 int compaction_register_node(struct node *node)
2493 {
2494         return device_create_file(&node->dev, &dev_attr_compact);
2495 }
2496
2497 void compaction_unregister_node(struct node *node)
2498 {
2499         return device_remove_file(&node->dev, &dev_attr_compact);
2500 }
2501 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
2502
2503 static inline bool kcompactd_work_requested(pg_data_t *pgdat)
2504 {
2505         return pgdat->kcompactd_max_order > 0 || kthread_should_stop();
2506 }
2507
2508 static bool kcompactd_node_suitable(pg_data_t *pgdat)
2509 {
2510         int zoneid;
2511         struct zone *zone;
2512         enum zone_type classzone_idx = pgdat->kcompactd_classzone_idx;
2513
2514         for (zoneid = 0; zoneid <= classzone_idx; zoneid++) {
2515                 zone = &pgdat->node_zones[zoneid];
2516
2517                 if (!populated_zone(zone))
2518                         continue;
2519
2520                 if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
2521                                         classzone_idx) == COMPACT_CONTINUE)
2522                         return true;
2523         }
2524
2525         return false;
2526 }
2527
2528 static void kcompactd_do_work(pg_data_t *pgdat)
2529 {
2530         /*
2531          * With no special task, compact all zones so that a page of requested
2532          * order is allocatable.
2533          */
2534         int zoneid;
2535         struct zone *zone;
2536         struct compact_control cc = {
2537                 .order = pgdat->kcompactd_max_order,
2538                 .search_order = pgdat->kcompactd_max_order,
2539                 .classzone_idx = pgdat->kcompactd_classzone_idx,
2540                 .mode = MIGRATE_SYNC_LIGHT,
2541                 .ignore_skip_hint = false,
2542                 .gfp_mask = GFP_KERNEL,
2543         };
2544         trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
2545                                                         cc.classzone_idx);
2546         count_compact_event(KCOMPACTD_WAKE);
2547
2548         for (zoneid = 0; zoneid <= cc.classzone_idx; zoneid++) {
2549                 int status;
2550
2551                 zone = &pgdat->node_zones[zoneid];
2552                 if (!populated_zone(zone))
2553                         continue;
2554
2555                 if (compaction_deferred(zone, cc.order))
2556                         continue;
2557
2558                 if (compaction_suitable(zone, cc.order, 0, zoneid) !=
2559                                                         COMPACT_CONTINUE)
2560                         continue;
2561
2562                 if (kthread_should_stop())
2563                         return;
2564
2565                 cc.zone = zone;
2566                 status = compact_zone(&cc, NULL);
2567
2568                 if (status == COMPACT_SUCCESS) {
2569                         compaction_defer_reset(zone, cc.order, false);
2570                 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
2571                         /*
2572                          * Buddy pages may become stranded on pcps that could
2573                          * otherwise coalesce on the zone's free area for
2574                          * order >= cc.order.  This is ratelimited by the
2575                          * upcoming deferral.
2576                          */
2577                         drain_all_pages(zone);
2578
2579                         /*
2580                          * We use sync migration mode here, so we defer like
2581                          * sync direct compaction does.
2582                          */
2583                         defer_compaction(zone, cc.order);
2584                 }
2585
2586                 count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2587                                      cc.total_migrate_scanned);
2588                 count_compact_events(KCOMPACTD_FREE_SCANNED,
2589                                      cc.total_free_scanned);
2590
2591                 VM_BUG_ON(!list_empty(&cc.freepages));
2592                 VM_BUG_ON(!list_empty(&cc.migratepages));
2593         }
2594
2595         /*
2596          * Regardless of success, we are done until woken up next. But remember
2597          * the requested order/classzone_idx in case it was higher/tighter than
2598          * our current ones
2599          */
2600         if (pgdat->kcompactd_max_order <= cc.order)
2601                 pgdat->kcompactd_max_order = 0;
2602         if (pgdat->kcompactd_classzone_idx >= cc.classzone_idx)
2603                 pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
2604 }
2605
2606 void wakeup_kcompactd(pg_data_t *pgdat, int order, int classzone_idx)
2607 {
2608         if (!order)
2609                 return;
2610
2611         if (pgdat->kcompactd_max_order < order)
2612                 pgdat->kcompactd_max_order = order;
2613
2614         if (pgdat->kcompactd_classzone_idx > classzone_idx)
2615                 pgdat->kcompactd_classzone_idx = classzone_idx;
2616
2617         /*
2618          * Pairs with implicit barrier in wait_event_freezable()
2619          * such that wakeups are not missed.
2620          */
2621         if (!wq_has_sleeper(&pgdat->kcompactd_wait))
2622                 return;
2623
2624         if (!kcompactd_node_suitable(pgdat))
2625                 return;
2626
2627         trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
2628                                                         classzone_idx);
2629         wake_up_interruptible(&pgdat->kcompactd_wait);
2630 }
2631
2632 /*
2633  * The background compaction daemon, started as a kernel thread
2634  * from the init process.
2635  */
2636 static int kcompactd(void *p)
2637 {
2638         pg_data_t *pgdat = (pg_data_t*)p;
2639         struct task_struct *tsk = current;
2640
2641         const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2642
2643         if (!cpumask_empty(cpumask))
2644                 set_cpus_allowed_ptr(tsk, cpumask);
2645
2646         set_freezable();
2647
2648         pgdat->kcompactd_max_order = 0;
2649         pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
2650
2651         while (!kthread_should_stop()) {
2652                 unsigned long pflags;
2653
2654                 trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
2655                 wait_event_freezable(pgdat->kcompactd_wait,
2656                                 kcompactd_work_requested(pgdat));
2657
2658                 psi_memstall_enter(&pflags);
2659                 kcompactd_do_work(pgdat);
2660                 psi_memstall_leave(&pflags);
2661         }
2662
2663         return 0;
2664 }
2665
2666 /*
2667  * This kcompactd start function will be called by init and node-hot-add.
2668  * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
2669  */
2670 int kcompactd_run(int nid)
2671 {
2672         pg_data_t *pgdat = NODE_DATA(nid);
2673         int ret = 0;
2674
2675         if (pgdat->kcompactd)
2676                 return 0;
2677
2678         pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
2679         if (IS_ERR(pgdat->kcompactd)) {
2680                 pr_err("Failed to start kcompactd on node %d\n", nid);
2681                 ret = PTR_ERR(pgdat->kcompactd);
2682                 pgdat->kcompactd = NULL;
2683         }
2684         return ret;
2685 }
2686
2687 /*
2688  * Called by memory hotplug when all memory in a node is offlined. Caller must
2689  * hold mem_hotplug_begin/end().
2690  */
2691 void kcompactd_stop(int nid)
2692 {
2693         struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
2694
2695         if (kcompactd) {
2696                 kthread_stop(kcompactd);
2697                 NODE_DATA(nid)->kcompactd = NULL;
2698         }
2699 }
2700
2701 /*
2702  * It's optimal to keep kcompactd on the same CPUs as their memory, but
2703  * not required for correctness. So if the last cpu in a node goes
2704  * away, we get changed to run anywhere: as the first one comes back,
2705  * restore their cpu bindings.
2706  */
2707 static int kcompactd_cpu_online(unsigned int cpu)
2708 {
2709         int nid;
2710
2711         for_each_node_state(nid, N_MEMORY) {
2712                 pg_data_t *pgdat = NODE_DATA(nid);
2713                 const struct cpumask *mask;
2714
2715                 mask = cpumask_of_node(pgdat->node_id);
2716
2717                 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2718                         /* One of our CPUs online: restore mask */
2719                         set_cpus_allowed_ptr(pgdat->kcompactd, mask);
2720         }
2721         return 0;
2722 }
2723
2724 static int __init kcompactd_init(void)
2725 {
2726         int nid;
2727         int ret;
2728
2729         ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
2730                                         "mm/compaction:online",
2731                                         kcompactd_cpu_online, NULL);
2732         if (ret < 0) {
2733                 pr_err("kcompactd: failed to register hotplug callbacks.\n");
2734                 return ret;
2735         }
2736
2737         for_each_node_state(nid, N_MEMORY)
2738                 kcompactd_run(nid);
2739         return 0;
2740 }
2741 subsys_initcall(kcompactd_init)
2742
2743 #endif /* CONFIG_COMPACTION */