mm/page_ext: move functions around for minor cleanups to page_ext
[platform/kernel/linux-starfive.git] / mm / compaction.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * linux/mm/compaction.c
4  *
5  * Memory compaction for the reduction of external fragmentation. Note that
6  * this heavily depends upon page migration to do all the real heavy
7  * lifting
8  *
9  * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
10  */
11 #include <linux/cpu.h>
12 #include <linux/swap.h>
13 #include <linux/migrate.h>
14 #include <linux/compaction.h>
15 #include <linux/mm_inline.h>
16 #include <linux/sched/signal.h>
17 #include <linux/backing-dev.h>
18 #include <linux/sysctl.h>
19 #include <linux/sysfs.h>
20 #include <linux/page-isolation.h>
21 #include <linux/kasan.h>
22 #include <linux/kthread.h>
23 #include <linux/freezer.h>
24 #include <linux/page_owner.h>
25 #include <linux/psi.h>
26 #include "internal.h"
27
28 #ifdef CONFIG_COMPACTION
29 /*
30  * Fragmentation score check interval for proactive compaction purposes.
31  */
32 #define HPAGE_FRAG_CHECK_INTERVAL_MSEC  (500)
33
34 static inline void count_compact_event(enum vm_event_item item)
35 {
36         count_vm_event(item);
37 }
38
39 static inline void count_compact_events(enum vm_event_item item, long delta)
40 {
41         count_vm_events(item, delta);
42 }
43 #else
44 #define count_compact_event(item) do { } while (0)
45 #define count_compact_events(item, delta) do { } while (0)
46 #endif
47
48 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
49
50 #define CREATE_TRACE_POINTS
51 #include <trace/events/compaction.h>
52
53 #define block_start_pfn(pfn, order)     round_down(pfn, 1UL << (order))
54 #define block_end_pfn(pfn, order)       ALIGN((pfn) + 1, 1UL << (order))
55
56 /*
57  * Page order with-respect-to which proactive compaction
58  * calculates external fragmentation, which is used as
59  * the "fragmentation score" of a node/zone.
60  */
61 #if defined CONFIG_TRANSPARENT_HUGEPAGE
62 #define COMPACTION_HPAGE_ORDER  HPAGE_PMD_ORDER
63 #elif defined CONFIG_HUGETLBFS
64 #define COMPACTION_HPAGE_ORDER  HUGETLB_PAGE_ORDER
65 #else
66 #define COMPACTION_HPAGE_ORDER  (PMD_SHIFT - PAGE_SHIFT)
67 #endif
68
69 static unsigned long release_freepages(struct list_head *freelist)
70 {
71         struct page *page, *next;
72         unsigned long high_pfn = 0;
73
74         list_for_each_entry_safe(page, next, freelist, lru) {
75                 unsigned long pfn = page_to_pfn(page);
76                 list_del(&page->lru);
77                 __free_page(page);
78                 if (pfn > high_pfn)
79                         high_pfn = pfn;
80         }
81
82         return high_pfn;
83 }
84
85 static void split_map_pages(struct list_head *list)
86 {
87         unsigned int i, order, nr_pages;
88         struct page *page, *next;
89         LIST_HEAD(tmp_list);
90
91         list_for_each_entry_safe(page, next, list, lru) {
92                 list_del(&page->lru);
93
94                 order = page_private(page);
95                 nr_pages = 1 << order;
96
97                 post_alloc_hook(page, order, __GFP_MOVABLE);
98                 if (order)
99                         split_page(page, order);
100
101                 for (i = 0; i < nr_pages; i++) {
102                         list_add(&page->lru, &tmp_list);
103                         page++;
104                 }
105         }
106
107         list_splice(&tmp_list, list);
108 }
109
110 #ifdef CONFIG_COMPACTION
111 bool PageMovable(struct page *page)
112 {
113         const struct movable_operations *mops;
114
115         VM_BUG_ON_PAGE(!PageLocked(page), page);
116         if (!__PageMovable(page))
117                 return false;
118
119         mops = page_movable_ops(page);
120         if (mops)
121                 return true;
122
123         return false;
124 }
125
126 void __SetPageMovable(struct page *page, const struct movable_operations *mops)
127 {
128         VM_BUG_ON_PAGE(!PageLocked(page), page);
129         VM_BUG_ON_PAGE((unsigned long)mops & PAGE_MAPPING_MOVABLE, page);
130         page->mapping = (void *)((unsigned long)mops | PAGE_MAPPING_MOVABLE);
131 }
132 EXPORT_SYMBOL(__SetPageMovable);
133
134 void __ClearPageMovable(struct page *page)
135 {
136         VM_BUG_ON_PAGE(!PageMovable(page), page);
137         /*
138          * This page still has the type of a movable page, but it's
139          * actually not movable any more.
140          */
141         page->mapping = (void *)PAGE_MAPPING_MOVABLE;
142 }
143 EXPORT_SYMBOL(__ClearPageMovable);
144
145 /* Do not skip compaction more than 64 times */
146 #define COMPACT_MAX_DEFER_SHIFT 6
147
148 /*
149  * Compaction is deferred when compaction fails to result in a page
150  * allocation success. 1 << compact_defer_shift, compactions are skipped up
151  * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
152  */
153 static void defer_compaction(struct zone *zone, int order)
154 {
155         zone->compact_considered = 0;
156         zone->compact_defer_shift++;
157
158         if (order < zone->compact_order_failed)
159                 zone->compact_order_failed = order;
160
161         if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
162                 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
163
164         trace_mm_compaction_defer_compaction(zone, order);
165 }
166
167 /* Returns true if compaction should be skipped this time */
168 static bool compaction_deferred(struct zone *zone, int order)
169 {
170         unsigned long defer_limit = 1UL << zone->compact_defer_shift;
171
172         if (order < zone->compact_order_failed)
173                 return false;
174
175         /* Avoid possible overflow */
176         if (++zone->compact_considered >= defer_limit) {
177                 zone->compact_considered = defer_limit;
178                 return false;
179         }
180
181         trace_mm_compaction_deferred(zone, order);
182
183         return true;
184 }
185
186 /*
187  * Update defer tracking counters after successful compaction of given order,
188  * which means an allocation either succeeded (alloc_success == true) or is
189  * expected to succeed.
190  */
191 void compaction_defer_reset(struct zone *zone, int order,
192                 bool alloc_success)
193 {
194         if (alloc_success) {
195                 zone->compact_considered = 0;
196                 zone->compact_defer_shift = 0;
197         }
198         if (order >= zone->compact_order_failed)
199                 zone->compact_order_failed = order + 1;
200
201         trace_mm_compaction_defer_reset(zone, order);
202 }
203
204 /* Returns true if restarting compaction after many failures */
205 static bool compaction_restarting(struct zone *zone, int order)
206 {
207         if (order < zone->compact_order_failed)
208                 return false;
209
210         return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
211                 zone->compact_considered >= 1UL << zone->compact_defer_shift;
212 }
213
214 /* Returns true if the pageblock should be scanned for pages to isolate. */
215 static inline bool isolation_suitable(struct compact_control *cc,
216                                         struct page *page)
217 {
218         if (cc->ignore_skip_hint)
219                 return true;
220
221         return !get_pageblock_skip(page);
222 }
223
224 static void reset_cached_positions(struct zone *zone)
225 {
226         zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
227         zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
228         zone->compact_cached_free_pfn =
229                                 pageblock_start_pfn(zone_end_pfn(zone) - 1);
230 }
231
232 #ifdef CONFIG_SPARSEMEM
233 /*
234  * If the PFN falls into an offline section, return the start PFN of the
235  * next online section. If the PFN falls into an online section or if
236  * there is no next online section, return 0.
237  */
238 static unsigned long skip_offline_sections(unsigned long start_pfn)
239 {
240         unsigned long start_nr = pfn_to_section_nr(start_pfn);
241
242         if (online_section_nr(start_nr))
243                 return 0;
244
245         while (++start_nr <= __highest_present_section_nr) {
246                 if (online_section_nr(start_nr))
247                         return section_nr_to_pfn(start_nr);
248         }
249
250         return 0;
251 }
252
253 /*
254  * If the PFN falls into an offline section, return the end PFN of the
255  * next online section in reverse. If the PFN falls into an online section
256  * or if there is no next online section in reverse, return 0.
257  */
258 static unsigned long skip_offline_sections_reverse(unsigned long start_pfn)
259 {
260         unsigned long start_nr = pfn_to_section_nr(start_pfn);
261
262         if (!start_nr || online_section_nr(start_nr))
263                 return 0;
264
265         while (start_nr-- > 0) {
266                 if (online_section_nr(start_nr))
267                         return section_nr_to_pfn(start_nr) + PAGES_PER_SECTION;
268         }
269
270         return 0;
271 }
272 #else
273 static unsigned long skip_offline_sections(unsigned long start_pfn)
274 {
275         return 0;
276 }
277
278 static unsigned long skip_offline_sections_reverse(unsigned long start_pfn)
279 {
280         return 0;
281 }
282 #endif
283
284 /*
285  * Compound pages of >= pageblock_order should consistently be skipped until
286  * released. It is always pointless to compact pages of such order (if they are
287  * migratable), and the pageblocks they occupy cannot contain any free pages.
288  */
289 static bool pageblock_skip_persistent(struct page *page)
290 {
291         if (!PageCompound(page))
292                 return false;
293
294         page = compound_head(page);
295
296         if (compound_order(page) >= pageblock_order)
297                 return true;
298
299         return false;
300 }
301
302 static bool
303 __reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source,
304                                                         bool check_target)
305 {
306         struct page *page = pfn_to_online_page(pfn);
307         struct page *block_page;
308         struct page *end_page;
309         unsigned long block_pfn;
310
311         if (!page)
312                 return false;
313         if (zone != page_zone(page))
314                 return false;
315         if (pageblock_skip_persistent(page))
316                 return false;
317
318         /*
319          * If skip is already cleared do no further checking once the
320          * restart points have been set.
321          */
322         if (check_source && check_target && !get_pageblock_skip(page))
323                 return true;
324
325         /*
326          * If clearing skip for the target scanner, do not select a
327          * non-movable pageblock as the starting point.
328          */
329         if (!check_source && check_target &&
330             get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
331                 return false;
332
333         /* Ensure the start of the pageblock or zone is online and valid */
334         block_pfn = pageblock_start_pfn(pfn);
335         block_pfn = max(block_pfn, zone->zone_start_pfn);
336         block_page = pfn_to_online_page(block_pfn);
337         if (block_page) {
338                 page = block_page;
339                 pfn = block_pfn;
340         }
341
342         /* Ensure the end of the pageblock or zone is online and valid */
343         block_pfn = pageblock_end_pfn(pfn) - 1;
344         block_pfn = min(block_pfn, zone_end_pfn(zone) - 1);
345         end_page = pfn_to_online_page(block_pfn);
346         if (!end_page)
347                 return false;
348
349         /*
350          * Only clear the hint if a sample indicates there is either a
351          * free page or an LRU page in the block. One or other condition
352          * is necessary for the block to be a migration source/target.
353          */
354         do {
355                 if (check_source && PageLRU(page)) {
356                         clear_pageblock_skip(page);
357                         return true;
358                 }
359
360                 if (check_target && PageBuddy(page)) {
361                         clear_pageblock_skip(page);
362                         return true;
363                 }
364
365                 page += (1 << PAGE_ALLOC_COSTLY_ORDER);
366         } while (page <= end_page);
367
368         return false;
369 }
370
371 /*
372  * This function is called to clear all cached information on pageblocks that
373  * should be skipped for page isolation when the migrate and free page scanner
374  * meet.
375  */
376 static void __reset_isolation_suitable(struct zone *zone)
377 {
378         unsigned long migrate_pfn = zone->zone_start_pfn;
379         unsigned long free_pfn = zone_end_pfn(zone) - 1;
380         unsigned long reset_migrate = free_pfn;
381         unsigned long reset_free = migrate_pfn;
382         bool source_set = false;
383         bool free_set = false;
384
385         if (!zone->compact_blockskip_flush)
386                 return;
387
388         zone->compact_blockskip_flush = false;
389
390         /*
391          * Walk the zone and update pageblock skip information. Source looks
392          * for PageLRU while target looks for PageBuddy. When the scanner
393          * is found, both PageBuddy and PageLRU are checked as the pageblock
394          * is suitable as both source and target.
395          */
396         for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages,
397                                         free_pfn -= pageblock_nr_pages) {
398                 cond_resched();
399
400                 /* Update the migrate PFN */
401                 if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) &&
402                     migrate_pfn < reset_migrate) {
403                         source_set = true;
404                         reset_migrate = migrate_pfn;
405                         zone->compact_init_migrate_pfn = reset_migrate;
406                         zone->compact_cached_migrate_pfn[0] = reset_migrate;
407                         zone->compact_cached_migrate_pfn[1] = reset_migrate;
408                 }
409
410                 /* Update the free PFN */
411                 if (__reset_isolation_pfn(zone, free_pfn, free_set, true) &&
412                     free_pfn > reset_free) {
413                         free_set = true;
414                         reset_free = free_pfn;
415                         zone->compact_init_free_pfn = reset_free;
416                         zone->compact_cached_free_pfn = reset_free;
417                 }
418         }
419
420         /* Leave no distance if no suitable block was reset */
421         if (reset_migrate >= reset_free) {
422                 zone->compact_cached_migrate_pfn[0] = migrate_pfn;
423                 zone->compact_cached_migrate_pfn[1] = migrate_pfn;
424                 zone->compact_cached_free_pfn = free_pfn;
425         }
426 }
427
428 void reset_isolation_suitable(pg_data_t *pgdat)
429 {
430         int zoneid;
431
432         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
433                 struct zone *zone = &pgdat->node_zones[zoneid];
434                 if (!populated_zone(zone))
435                         continue;
436
437                 /* Only flush if a full compaction finished recently */
438                 if (zone->compact_blockskip_flush)
439                         __reset_isolation_suitable(zone);
440         }
441 }
442
443 /*
444  * Sets the pageblock skip bit if it was clear. Note that this is a hint as
445  * locks are not required for read/writers. Returns true if it was already set.
446  */
447 static bool test_and_set_skip(struct compact_control *cc, struct page *page)
448 {
449         bool skip;
450
451         /* Do not update if skip hint is being ignored */
452         if (cc->ignore_skip_hint)
453                 return false;
454
455         skip = get_pageblock_skip(page);
456         if (!skip && !cc->no_set_skip_hint)
457                 set_pageblock_skip(page);
458
459         return skip;
460 }
461
462 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
463 {
464         struct zone *zone = cc->zone;
465
466         pfn = pageblock_end_pfn(pfn);
467
468         /* Set for isolation rather than compaction */
469         if (cc->no_set_skip_hint)
470                 return;
471
472         if (pfn > zone->compact_cached_migrate_pfn[0])
473                 zone->compact_cached_migrate_pfn[0] = pfn;
474         if (cc->mode != MIGRATE_ASYNC &&
475             pfn > zone->compact_cached_migrate_pfn[1])
476                 zone->compact_cached_migrate_pfn[1] = pfn;
477 }
478
479 /*
480  * If no pages were isolated then mark this pageblock to be skipped in the
481  * future. The information is later cleared by __reset_isolation_suitable().
482  */
483 static void update_pageblock_skip(struct compact_control *cc,
484                         struct page *page, unsigned long pfn)
485 {
486         struct zone *zone = cc->zone;
487
488         if (cc->no_set_skip_hint)
489                 return;
490
491         set_pageblock_skip(page);
492
493         /* Update where async and sync compaction should restart */
494         if (pfn < zone->compact_cached_free_pfn)
495                 zone->compact_cached_free_pfn = pfn;
496 }
497 #else
498 static inline bool isolation_suitable(struct compact_control *cc,
499                                         struct page *page)
500 {
501         return true;
502 }
503
504 static inline bool pageblock_skip_persistent(struct page *page)
505 {
506         return false;
507 }
508
509 static inline void update_pageblock_skip(struct compact_control *cc,
510                         struct page *page, unsigned long pfn)
511 {
512 }
513
514 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
515 {
516 }
517
518 static bool test_and_set_skip(struct compact_control *cc, struct page *page)
519 {
520         return false;
521 }
522 #endif /* CONFIG_COMPACTION */
523
524 /*
525  * Compaction requires the taking of some coarse locks that are potentially
526  * very heavily contended. For async compaction, trylock and record if the
527  * lock is contended. The lock will still be acquired but compaction will
528  * abort when the current block is finished regardless of success rate.
529  * Sync compaction acquires the lock.
530  *
531  * Always returns true which makes it easier to track lock state in callers.
532  */
533 static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags,
534                                                 struct compact_control *cc)
535         __acquires(lock)
536 {
537         /* Track if the lock is contended in async mode */
538         if (cc->mode == MIGRATE_ASYNC && !cc->contended) {
539                 if (spin_trylock_irqsave(lock, *flags))
540                         return true;
541
542                 cc->contended = true;
543         }
544
545         spin_lock_irqsave(lock, *flags);
546         return true;
547 }
548
549 /*
550  * Compaction requires the taking of some coarse locks that are potentially
551  * very heavily contended. The lock should be periodically unlocked to avoid
552  * having disabled IRQs for a long time, even when there is nobody waiting on
553  * the lock. It might also be that allowing the IRQs will result in
554  * need_resched() becoming true. If scheduling is needed, compaction schedules.
555  * Either compaction type will also abort if a fatal signal is pending.
556  * In either case if the lock was locked, it is dropped and not regained.
557  *
558  * Returns true if compaction should abort due to fatal signal pending.
559  * Returns false when compaction can continue.
560  */
561 static bool compact_unlock_should_abort(spinlock_t *lock,
562                 unsigned long flags, bool *locked, struct compact_control *cc)
563 {
564         if (*locked) {
565                 spin_unlock_irqrestore(lock, flags);
566                 *locked = false;
567         }
568
569         if (fatal_signal_pending(current)) {
570                 cc->contended = true;
571                 return true;
572         }
573
574         cond_resched();
575
576         return false;
577 }
578
579 /*
580  * Isolate free pages onto a private freelist. If @strict is true, will abort
581  * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
582  * (even though it may still end up isolating some pages).
583  */
584 static unsigned long isolate_freepages_block(struct compact_control *cc,
585                                 unsigned long *start_pfn,
586                                 unsigned long end_pfn,
587                                 struct list_head *freelist,
588                                 unsigned int stride,
589                                 bool strict)
590 {
591         int nr_scanned = 0, total_isolated = 0;
592         struct page *cursor;
593         unsigned long flags = 0;
594         bool locked = false;
595         unsigned long blockpfn = *start_pfn;
596         unsigned int order;
597
598         /* Strict mode is for isolation, speed is secondary */
599         if (strict)
600                 stride = 1;
601
602         cursor = pfn_to_page(blockpfn);
603
604         /* Isolate free pages. */
605         for (; blockpfn < end_pfn; blockpfn += stride, cursor += stride) {
606                 int isolated;
607                 struct page *page = cursor;
608
609                 /*
610                  * Periodically drop the lock (if held) regardless of its
611                  * contention, to give chance to IRQs. Abort if fatal signal
612                  * pending.
613                  */
614                 if (!(blockpfn % COMPACT_CLUSTER_MAX)
615                     && compact_unlock_should_abort(&cc->zone->lock, flags,
616                                                                 &locked, cc))
617                         break;
618
619                 nr_scanned++;
620
621                 /*
622                  * For compound pages such as THP and hugetlbfs, we can save
623                  * potentially a lot of iterations if we skip them at once.
624                  * The check is racy, but we can consider only valid values
625                  * and the only danger is skipping too much.
626                  */
627                 if (PageCompound(page)) {
628                         const unsigned int order = compound_order(page);
629
630                         if (likely(order <= MAX_ORDER)) {
631                                 blockpfn += (1UL << order) - 1;
632                                 cursor += (1UL << order) - 1;
633                                 nr_scanned += (1UL << order) - 1;
634                         }
635                         goto isolate_fail;
636                 }
637
638                 if (!PageBuddy(page))
639                         goto isolate_fail;
640
641                 /* If we already hold the lock, we can skip some rechecking. */
642                 if (!locked) {
643                         locked = compact_lock_irqsave(&cc->zone->lock,
644                                                                 &flags, cc);
645
646                         /* Recheck this is a buddy page under lock */
647                         if (!PageBuddy(page))
648                                 goto isolate_fail;
649                 }
650
651                 /* Found a free page, will break it into order-0 pages */
652                 order = buddy_order(page);
653                 isolated = __isolate_free_page(page, order);
654                 if (!isolated)
655                         break;
656                 set_page_private(page, order);
657
658                 nr_scanned += isolated - 1;
659                 total_isolated += isolated;
660                 cc->nr_freepages += isolated;
661                 list_add_tail(&page->lru, freelist);
662
663                 if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
664                         blockpfn += isolated;
665                         break;
666                 }
667                 /* Advance to the end of split page */
668                 blockpfn += isolated - 1;
669                 cursor += isolated - 1;
670                 continue;
671
672 isolate_fail:
673                 if (strict)
674                         break;
675                 else
676                         continue;
677
678         }
679
680         if (locked)
681                 spin_unlock_irqrestore(&cc->zone->lock, flags);
682
683         /*
684          * There is a tiny chance that we have read bogus compound_order(),
685          * so be careful to not go outside of the pageblock.
686          */
687         if (unlikely(blockpfn > end_pfn))
688                 blockpfn = end_pfn;
689
690         trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
691                                         nr_scanned, total_isolated);
692
693         /* Record how far we have got within the block */
694         *start_pfn = blockpfn;
695
696         /*
697          * If strict isolation is requested by CMA then check that all the
698          * pages requested were isolated. If there were any failures, 0 is
699          * returned and CMA will fail.
700          */
701         if (strict && blockpfn < end_pfn)
702                 total_isolated = 0;
703
704         cc->total_free_scanned += nr_scanned;
705         if (total_isolated)
706                 count_compact_events(COMPACTISOLATED, total_isolated);
707         return total_isolated;
708 }
709
710 /**
711  * isolate_freepages_range() - isolate free pages.
712  * @cc:        Compaction control structure.
713  * @start_pfn: The first PFN to start isolating.
714  * @end_pfn:   The one-past-last PFN.
715  *
716  * Non-free pages, invalid PFNs, or zone boundaries within the
717  * [start_pfn, end_pfn) range are considered errors, cause function to
718  * undo its actions and return zero.
719  *
720  * Otherwise, function returns one-past-the-last PFN of isolated page
721  * (which may be greater then end_pfn if end fell in a middle of
722  * a free page).
723  */
724 unsigned long
725 isolate_freepages_range(struct compact_control *cc,
726                         unsigned long start_pfn, unsigned long end_pfn)
727 {
728         unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
729         LIST_HEAD(freelist);
730
731         pfn = start_pfn;
732         block_start_pfn = pageblock_start_pfn(pfn);
733         if (block_start_pfn < cc->zone->zone_start_pfn)
734                 block_start_pfn = cc->zone->zone_start_pfn;
735         block_end_pfn = pageblock_end_pfn(pfn);
736
737         for (; pfn < end_pfn; pfn += isolated,
738                                 block_start_pfn = block_end_pfn,
739                                 block_end_pfn += pageblock_nr_pages) {
740                 /* Protect pfn from changing by isolate_freepages_block */
741                 unsigned long isolate_start_pfn = pfn;
742
743                 block_end_pfn = min(block_end_pfn, end_pfn);
744
745                 /*
746                  * pfn could pass the block_end_pfn if isolated freepage
747                  * is more than pageblock order. In this case, we adjust
748                  * scanning range to right one.
749                  */
750                 if (pfn >= block_end_pfn) {
751                         block_start_pfn = pageblock_start_pfn(pfn);
752                         block_end_pfn = pageblock_end_pfn(pfn);
753                         block_end_pfn = min(block_end_pfn, end_pfn);
754                 }
755
756                 if (!pageblock_pfn_to_page(block_start_pfn,
757                                         block_end_pfn, cc->zone))
758                         break;
759
760                 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
761                                         block_end_pfn, &freelist, 0, true);
762
763                 /*
764                  * In strict mode, isolate_freepages_block() returns 0 if
765                  * there are any holes in the block (ie. invalid PFNs or
766                  * non-free pages).
767                  */
768                 if (!isolated)
769                         break;
770
771                 /*
772                  * If we managed to isolate pages, it is always (1 << n) *
773                  * pageblock_nr_pages for some non-negative n.  (Max order
774                  * page may span two pageblocks).
775                  */
776         }
777
778         /* __isolate_free_page() does not map the pages */
779         split_map_pages(&freelist);
780
781         if (pfn < end_pfn) {
782                 /* Loop terminated early, cleanup. */
783                 release_freepages(&freelist);
784                 return 0;
785         }
786
787         /* We don't use freelists for anything. */
788         return pfn;
789 }
790
791 /* Similar to reclaim, but different enough that they don't share logic */
792 static bool too_many_isolated(struct compact_control *cc)
793 {
794         pg_data_t *pgdat = cc->zone->zone_pgdat;
795         bool too_many;
796
797         unsigned long active, inactive, isolated;
798
799         inactive = node_page_state(pgdat, NR_INACTIVE_FILE) +
800                         node_page_state(pgdat, NR_INACTIVE_ANON);
801         active = node_page_state(pgdat, NR_ACTIVE_FILE) +
802                         node_page_state(pgdat, NR_ACTIVE_ANON);
803         isolated = node_page_state(pgdat, NR_ISOLATED_FILE) +
804                         node_page_state(pgdat, NR_ISOLATED_ANON);
805
806         /*
807          * Allow GFP_NOFS to isolate past the limit set for regular
808          * compaction runs. This prevents an ABBA deadlock when other
809          * compactors have already isolated to the limit, but are
810          * blocked on filesystem locks held by the GFP_NOFS thread.
811          */
812         if (cc->gfp_mask & __GFP_FS) {
813                 inactive >>= 3;
814                 active >>= 3;
815         }
816
817         too_many = isolated > (inactive + active) / 2;
818         if (!too_many)
819                 wake_throttle_isolated(pgdat);
820
821         return too_many;
822 }
823
824 /**
825  * isolate_migratepages_block() - isolate all migrate-able pages within
826  *                                a single pageblock
827  * @cc:         Compaction control structure.
828  * @low_pfn:    The first PFN to isolate
829  * @end_pfn:    The one-past-the-last PFN to isolate, within same pageblock
830  * @mode:       Isolation mode to be used.
831  *
832  * Isolate all pages that can be migrated from the range specified by
833  * [low_pfn, end_pfn). The range is expected to be within same pageblock.
834  * Returns errno, like -EAGAIN or -EINTR in case e.g signal pending or congestion,
835  * -ENOMEM in case we could not allocate a page, or 0.
836  * cc->migrate_pfn will contain the next pfn to scan.
837  *
838  * The pages are isolated on cc->migratepages list (not required to be empty),
839  * and cc->nr_migratepages is updated accordingly.
840  */
841 static int
842 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
843                         unsigned long end_pfn, isolate_mode_t mode)
844 {
845         pg_data_t *pgdat = cc->zone->zone_pgdat;
846         unsigned long nr_scanned = 0, nr_isolated = 0;
847         struct lruvec *lruvec;
848         unsigned long flags = 0;
849         struct lruvec *locked = NULL;
850         struct folio *folio = NULL;
851         struct page *page = NULL, *valid_page = NULL;
852         struct address_space *mapping;
853         unsigned long start_pfn = low_pfn;
854         bool skip_on_failure = false;
855         unsigned long next_skip_pfn = 0;
856         bool skip_updated = false;
857         int ret = 0;
858
859         cc->migrate_pfn = low_pfn;
860
861         /*
862          * Ensure that there are not too many pages isolated from the LRU
863          * list by either parallel reclaimers or compaction. If there are,
864          * delay for some time until fewer pages are isolated
865          */
866         while (unlikely(too_many_isolated(cc))) {
867                 /* stop isolation if there are still pages not migrated */
868                 if (cc->nr_migratepages)
869                         return -EAGAIN;
870
871                 /* async migration should just abort */
872                 if (cc->mode == MIGRATE_ASYNC)
873                         return -EAGAIN;
874
875                 reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
876
877                 if (fatal_signal_pending(current))
878                         return -EINTR;
879         }
880
881         cond_resched();
882
883         if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
884                 skip_on_failure = true;
885                 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
886         }
887
888         /* Time to isolate some pages for migration */
889         for (; low_pfn < end_pfn; low_pfn++) {
890
891                 if (skip_on_failure && low_pfn >= next_skip_pfn) {
892                         /*
893                          * We have isolated all migration candidates in the
894                          * previous order-aligned block, and did not skip it due
895                          * to failure. We should migrate the pages now and
896                          * hopefully succeed compaction.
897                          */
898                         if (nr_isolated)
899                                 break;
900
901                         /*
902                          * We failed to isolate in the previous order-aligned
903                          * block. Set the new boundary to the end of the
904                          * current block. Note we can't simply increase
905                          * next_skip_pfn by 1 << order, as low_pfn might have
906                          * been incremented by a higher number due to skipping
907                          * a compound or a high-order buddy page in the
908                          * previous loop iteration.
909                          */
910                         next_skip_pfn = block_end_pfn(low_pfn, cc->order);
911                 }
912
913                 /*
914                  * Periodically drop the lock (if held) regardless of its
915                  * contention, to give chance to IRQs. Abort completely if
916                  * a fatal signal is pending.
917                  */
918                 if (!(low_pfn % COMPACT_CLUSTER_MAX)) {
919                         if (locked) {
920                                 unlock_page_lruvec_irqrestore(locked, flags);
921                                 locked = NULL;
922                         }
923
924                         if (fatal_signal_pending(current)) {
925                                 cc->contended = true;
926                                 ret = -EINTR;
927
928                                 goto fatal_pending;
929                         }
930
931                         cond_resched();
932                 }
933
934                 nr_scanned++;
935
936                 page = pfn_to_page(low_pfn);
937
938                 /*
939                  * Check if the pageblock has already been marked skipped.
940                  * Only the aligned PFN is checked as the caller isolates
941                  * COMPACT_CLUSTER_MAX at a time so the second call must
942                  * not falsely conclude that the block should be skipped.
943                  */
944                 if (!valid_page && pageblock_aligned(low_pfn)) {
945                         if (!isolation_suitable(cc, page)) {
946                                 low_pfn = end_pfn;
947                                 folio = NULL;
948                                 goto isolate_abort;
949                         }
950                         valid_page = page;
951                 }
952
953                 if (PageHuge(page) && cc->alloc_contig) {
954                         if (locked) {
955                                 unlock_page_lruvec_irqrestore(locked, flags);
956                                 locked = NULL;
957                         }
958
959                         ret = isolate_or_dissolve_huge_page(page, &cc->migratepages);
960
961                         /*
962                          * Fail isolation in case isolate_or_dissolve_huge_page()
963                          * reports an error. In case of -ENOMEM, abort right away.
964                          */
965                         if (ret < 0) {
966                                  /* Do not report -EBUSY down the chain */
967                                 if (ret == -EBUSY)
968                                         ret = 0;
969                                 low_pfn += compound_nr(page) - 1;
970                                 nr_scanned += compound_nr(page) - 1;
971                                 goto isolate_fail;
972                         }
973
974                         if (PageHuge(page)) {
975                                 /*
976                                  * Hugepage was successfully isolated and placed
977                                  * on the cc->migratepages list.
978                                  */
979                                 folio = page_folio(page);
980                                 low_pfn += folio_nr_pages(folio) - 1;
981                                 goto isolate_success_no_list;
982                         }
983
984                         /*
985                          * Ok, the hugepage was dissolved. Now these pages are
986                          * Buddy and cannot be re-allocated because they are
987                          * isolated. Fall-through as the check below handles
988                          * Buddy pages.
989                          */
990                 }
991
992                 /*
993                  * Skip if free. We read page order here without zone lock
994                  * which is generally unsafe, but the race window is small and
995                  * the worst thing that can happen is that we skip some
996                  * potential isolation targets.
997                  */
998                 if (PageBuddy(page)) {
999                         unsigned long freepage_order = buddy_order_unsafe(page);
1000
1001                         /*
1002                          * Without lock, we cannot be sure that what we got is
1003                          * a valid page order. Consider only values in the
1004                          * valid order range to prevent low_pfn overflow.
1005                          */
1006                         if (freepage_order > 0 && freepage_order <= MAX_ORDER) {
1007                                 low_pfn += (1UL << freepage_order) - 1;
1008                                 nr_scanned += (1UL << freepage_order) - 1;
1009                         }
1010                         continue;
1011                 }
1012
1013                 /*
1014                  * Regardless of being on LRU, compound pages such as THP and
1015                  * hugetlbfs are not to be compacted unless we are attempting
1016                  * an allocation much larger than the huge page size (eg CMA).
1017                  * We can potentially save a lot of iterations if we skip them
1018                  * at once. The check is racy, but we can consider only valid
1019                  * values and the only danger is skipping too much.
1020                  */
1021                 if (PageCompound(page) && !cc->alloc_contig) {
1022                         const unsigned int order = compound_order(page);
1023
1024                         if (likely(order <= MAX_ORDER)) {
1025                                 low_pfn += (1UL << order) - 1;
1026                                 nr_scanned += (1UL << order) - 1;
1027                         }
1028                         goto isolate_fail;
1029                 }
1030
1031                 /*
1032                  * Check may be lockless but that's ok as we recheck later.
1033                  * It's possible to migrate LRU and non-lru movable pages.
1034                  * Skip any other type of page
1035                  */
1036                 if (!PageLRU(page)) {
1037                         /*
1038                          * __PageMovable can return false positive so we need
1039                          * to verify it under page_lock.
1040                          */
1041                         if (unlikely(__PageMovable(page)) &&
1042                                         !PageIsolated(page)) {
1043                                 if (locked) {
1044                                         unlock_page_lruvec_irqrestore(locked, flags);
1045                                         locked = NULL;
1046                                 }
1047
1048                                 if (isolate_movable_page(page, mode)) {
1049                                         folio = page_folio(page);
1050                                         goto isolate_success;
1051                                 }
1052                         }
1053
1054                         goto isolate_fail;
1055                 }
1056
1057                 /*
1058                  * Be careful not to clear PageLRU until after we're
1059                  * sure the page is not being freed elsewhere -- the
1060                  * page release code relies on it.
1061                  */
1062                 folio = folio_get_nontail_page(page);
1063                 if (unlikely(!folio))
1064                         goto isolate_fail;
1065
1066                 /*
1067                  * Migration will fail if an anonymous page is pinned in memory,
1068                  * so avoid taking lru_lock and isolating it unnecessarily in an
1069                  * admittedly racy check.
1070                  */
1071                 mapping = folio_mapping(folio);
1072                 if (!mapping && (folio_ref_count(folio) - 1) > folio_mapcount(folio))
1073                         goto isolate_fail_put;
1074
1075                 /*
1076                  * Only allow to migrate anonymous pages in GFP_NOFS context
1077                  * because those do not depend on fs locks.
1078                  */
1079                 if (!(cc->gfp_mask & __GFP_FS) && mapping)
1080                         goto isolate_fail_put;
1081
1082                 /* Only take pages on LRU: a check now makes later tests safe */
1083                 if (!folio_test_lru(folio))
1084                         goto isolate_fail_put;
1085
1086                 /* Compaction might skip unevictable pages but CMA takes them */
1087                 if (!(mode & ISOLATE_UNEVICTABLE) && folio_test_unevictable(folio))
1088                         goto isolate_fail_put;
1089
1090                 /*
1091                  * To minimise LRU disruption, the caller can indicate with
1092                  * ISOLATE_ASYNC_MIGRATE that it only wants to isolate pages
1093                  * it will be able to migrate without blocking - clean pages
1094                  * for the most part.  PageWriteback would require blocking.
1095                  */
1096                 if ((mode & ISOLATE_ASYNC_MIGRATE) && folio_test_writeback(folio))
1097                         goto isolate_fail_put;
1098
1099                 if ((mode & ISOLATE_ASYNC_MIGRATE) && folio_test_dirty(folio)) {
1100                         bool migrate_dirty;
1101
1102                         /*
1103                          * Only pages without mappings or that have a
1104                          * ->migrate_folio callback are possible to migrate
1105                          * without blocking. However, we can be racing with
1106                          * truncation so it's necessary to lock the page
1107                          * to stabilise the mapping as truncation holds
1108                          * the page lock until after the page is removed
1109                          * from the page cache.
1110                          */
1111                         if (!folio_trylock(folio))
1112                                 goto isolate_fail_put;
1113
1114                         mapping = folio_mapping(folio);
1115                         migrate_dirty = !mapping ||
1116                                         mapping->a_ops->migrate_folio;
1117                         folio_unlock(folio);
1118                         if (!migrate_dirty)
1119                                 goto isolate_fail_put;
1120                 }
1121
1122                 /* Try isolate the folio */
1123                 if (!folio_test_clear_lru(folio))
1124                         goto isolate_fail_put;
1125
1126                 lruvec = folio_lruvec(folio);
1127
1128                 /* If we already hold the lock, we can skip some rechecking */
1129                 if (lruvec != locked) {
1130                         if (locked)
1131                                 unlock_page_lruvec_irqrestore(locked, flags);
1132
1133                         compact_lock_irqsave(&lruvec->lru_lock, &flags, cc);
1134                         locked = lruvec;
1135
1136                         lruvec_memcg_debug(lruvec, folio);
1137
1138                         /*
1139                          * Try get exclusive access under lock. If marked for
1140                          * skip, the scan is aborted unless the current context
1141                          * is a rescan to reach the end of the pageblock.
1142                          */
1143                         if (!skip_updated && valid_page) {
1144                                 skip_updated = true;
1145                                 if (test_and_set_skip(cc, valid_page) &&
1146                                     !cc->finish_pageblock) {
1147                                         goto isolate_abort;
1148                                 }
1149                         }
1150
1151                         /*
1152                          * folio become large since the non-locked check,
1153                          * and it's on LRU.
1154                          */
1155                         if (unlikely(folio_test_large(folio) && !cc->alloc_contig)) {
1156                                 low_pfn += folio_nr_pages(folio) - 1;
1157                                 nr_scanned += folio_nr_pages(folio) - 1;
1158                                 folio_set_lru(folio);
1159                                 goto isolate_fail_put;
1160                         }
1161                 }
1162
1163                 /* The folio is taken off the LRU */
1164                 if (folio_test_large(folio))
1165                         low_pfn += folio_nr_pages(folio) - 1;
1166
1167                 /* Successfully isolated */
1168                 lruvec_del_folio(lruvec, folio);
1169                 node_stat_mod_folio(folio,
1170                                 NR_ISOLATED_ANON + folio_is_file_lru(folio),
1171                                 folio_nr_pages(folio));
1172
1173 isolate_success:
1174                 list_add(&folio->lru, &cc->migratepages);
1175 isolate_success_no_list:
1176                 cc->nr_migratepages += folio_nr_pages(folio);
1177                 nr_isolated += folio_nr_pages(folio);
1178                 nr_scanned += folio_nr_pages(folio) - 1;
1179
1180                 /*
1181                  * Avoid isolating too much unless this block is being
1182                  * fully scanned (e.g. dirty/writeback pages, parallel allocation)
1183                  * or a lock is contended. For contention, isolate quickly to
1184                  * potentially remove one source of contention.
1185                  */
1186                 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX &&
1187                     !cc->finish_pageblock && !cc->contended) {
1188                         ++low_pfn;
1189                         break;
1190                 }
1191
1192                 continue;
1193
1194 isolate_fail_put:
1195                 /* Avoid potential deadlock in freeing page under lru_lock */
1196                 if (locked) {
1197                         unlock_page_lruvec_irqrestore(locked, flags);
1198                         locked = NULL;
1199                 }
1200                 folio_put(folio);
1201
1202 isolate_fail:
1203                 if (!skip_on_failure && ret != -ENOMEM)
1204                         continue;
1205
1206                 /*
1207                  * We have isolated some pages, but then failed. Release them
1208                  * instead of migrating, as we cannot form the cc->order buddy
1209                  * page anyway.
1210                  */
1211                 if (nr_isolated) {
1212                         if (locked) {
1213                                 unlock_page_lruvec_irqrestore(locked, flags);
1214                                 locked = NULL;
1215                         }
1216                         putback_movable_pages(&cc->migratepages);
1217                         cc->nr_migratepages = 0;
1218                         nr_isolated = 0;
1219                 }
1220
1221                 if (low_pfn < next_skip_pfn) {
1222                         low_pfn = next_skip_pfn - 1;
1223                         /*
1224                          * The check near the loop beginning would have updated
1225                          * next_skip_pfn too, but this is a bit simpler.
1226                          */
1227                         next_skip_pfn += 1UL << cc->order;
1228                 }
1229
1230                 if (ret == -ENOMEM)
1231                         break;
1232         }
1233
1234         /*
1235          * The PageBuddy() check could have potentially brought us outside
1236          * the range to be scanned.
1237          */
1238         if (unlikely(low_pfn > end_pfn))
1239                 low_pfn = end_pfn;
1240
1241         folio = NULL;
1242
1243 isolate_abort:
1244         if (locked)
1245                 unlock_page_lruvec_irqrestore(locked, flags);
1246         if (folio) {
1247                 folio_set_lru(folio);
1248                 folio_put(folio);
1249         }
1250
1251         /*
1252          * Update the cached scanner pfn once the pageblock has been scanned.
1253          * Pages will either be migrated in which case there is no point
1254          * scanning in the near future or migration failed in which case the
1255          * failure reason may persist. The block is marked for skipping if
1256          * there were no pages isolated in the block or if the block is
1257          * rescanned twice in a row.
1258          */
1259         if (low_pfn == end_pfn && (!nr_isolated || cc->finish_pageblock)) {
1260                 if (!cc->no_set_skip_hint && valid_page && !skip_updated)
1261                         set_pageblock_skip(valid_page);
1262                 update_cached_migrate(cc, low_pfn);
1263         }
1264
1265         trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
1266                                                 nr_scanned, nr_isolated);
1267
1268 fatal_pending:
1269         cc->total_migrate_scanned += nr_scanned;
1270         if (nr_isolated)
1271                 count_compact_events(COMPACTISOLATED, nr_isolated);
1272
1273         cc->migrate_pfn = low_pfn;
1274
1275         return ret;
1276 }
1277
1278 /**
1279  * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
1280  * @cc:        Compaction control structure.
1281  * @start_pfn: The first PFN to start isolating.
1282  * @end_pfn:   The one-past-last PFN.
1283  *
1284  * Returns -EAGAIN when contented, -EINTR in case of a signal pending, -ENOMEM
1285  * in case we could not allocate a page, or 0.
1286  */
1287 int
1288 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
1289                                                         unsigned long end_pfn)
1290 {
1291         unsigned long pfn, block_start_pfn, block_end_pfn;
1292         int ret = 0;
1293
1294         /* Scan block by block. First and last block may be incomplete */
1295         pfn = start_pfn;
1296         block_start_pfn = pageblock_start_pfn(pfn);
1297         if (block_start_pfn < cc->zone->zone_start_pfn)
1298                 block_start_pfn = cc->zone->zone_start_pfn;
1299         block_end_pfn = pageblock_end_pfn(pfn);
1300
1301         for (; pfn < end_pfn; pfn = block_end_pfn,
1302                                 block_start_pfn = block_end_pfn,
1303                                 block_end_pfn += pageblock_nr_pages) {
1304
1305                 block_end_pfn = min(block_end_pfn, end_pfn);
1306
1307                 if (!pageblock_pfn_to_page(block_start_pfn,
1308                                         block_end_pfn, cc->zone))
1309                         continue;
1310
1311                 ret = isolate_migratepages_block(cc, pfn, block_end_pfn,
1312                                                  ISOLATE_UNEVICTABLE);
1313
1314                 if (ret)
1315                         break;
1316
1317                 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX)
1318                         break;
1319         }
1320
1321         return ret;
1322 }
1323
1324 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
1325 #ifdef CONFIG_COMPACTION
1326
1327 static bool suitable_migration_source(struct compact_control *cc,
1328                                                         struct page *page)
1329 {
1330         int block_mt;
1331
1332         if (pageblock_skip_persistent(page))
1333                 return false;
1334
1335         if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
1336                 return true;
1337
1338         block_mt = get_pageblock_migratetype(page);
1339
1340         if (cc->migratetype == MIGRATE_MOVABLE)
1341                 return is_migrate_movable(block_mt);
1342         else
1343                 return block_mt == cc->migratetype;
1344 }
1345
1346 /* Returns true if the page is within a block suitable for migration to */
1347 static bool suitable_migration_target(struct compact_control *cc,
1348                                                         struct page *page)
1349 {
1350         /* If the page is a large free page, then disallow migration */
1351         if (PageBuddy(page)) {
1352                 /*
1353                  * We are checking page_order without zone->lock taken. But
1354                  * the only small danger is that we skip a potentially suitable
1355                  * pageblock, so it's not worth to check order for valid range.
1356                  */
1357                 if (buddy_order_unsafe(page) >= pageblock_order)
1358                         return false;
1359         }
1360
1361         if (cc->ignore_block_suitable)
1362                 return true;
1363
1364         /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1365         if (is_migrate_movable(get_pageblock_migratetype(page)))
1366                 return true;
1367
1368         /* Otherwise skip the block */
1369         return false;
1370 }
1371
1372 static inline unsigned int
1373 freelist_scan_limit(struct compact_control *cc)
1374 {
1375         unsigned short shift = BITS_PER_LONG - 1;
1376
1377         return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1;
1378 }
1379
1380 /*
1381  * Test whether the free scanner has reached the same or lower pageblock than
1382  * the migration scanner, and compaction should thus terminate.
1383  */
1384 static inline bool compact_scanners_met(struct compact_control *cc)
1385 {
1386         return (cc->free_pfn >> pageblock_order)
1387                 <= (cc->migrate_pfn >> pageblock_order);
1388 }
1389
1390 /*
1391  * Used when scanning for a suitable migration target which scans freelists
1392  * in reverse. Reorders the list such as the unscanned pages are scanned
1393  * first on the next iteration of the free scanner
1394  */
1395 static void
1396 move_freelist_head(struct list_head *freelist, struct page *freepage)
1397 {
1398         LIST_HEAD(sublist);
1399
1400         if (!list_is_last(freelist, &freepage->lru)) {
1401                 list_cut_before(&sublist, freelist, &freepage->lru);
1402                 list_splice_tail(&sublist, freelist);
1403         }
1404 }
1405
1406 /*
1407  * Similar to move_freelist_head except used by the migration scanner
1408  * when scanning forward. It's possible for these list operations to
1409  * move against each other if they search the free list exactly in
1410  * lockstep.
1411  */
1412 static void
1413 move_freelist_tail(struct list_head *freelist, struct page *freepage)
1414 {
1415         LIST_HEAD(sublist);
1416
1417         if (!list_is_first(freelist, &freepage->lru)) {
1418                 list_cut_position(&sublist, freelist, &freepage->lru);
1419                 list_splice_tail(&sublist, freelist);
1420         }
1421 }
1422
1423 static void
1424 fast_isolate_around(struct compact_control *cc, unsigned long pfn)
1425 {
1426         unsigned long start_pfn, end_pfn;
1427         struct page *page;
1428
1429         /* Do not search around if there are enough pages already */
1430         if (cc->nr_freepages >= cc->nr_migratepages)
1431                 return;
1432
1433         /* Minimise scanning during async compaction */
1434         if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC)
1435                 return;
1436
1437         /* Pageblock boundaries */
1438         start_pfn = max(pageblock_start_pfn(pfn), cc->zone->zone_start_pfn);
1439         end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone));
1440
1441         page = pageblock_pfn_to_page(start_pfn, end_pfn, cc->zone);
1442         if (!page)
1443                 return;
1444
1445         isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false);
1446
1447         /* Skip this pageblock in the future as it's full or nearly full */
1448         if (start_pfn == end_pfn)
1449                 set_pageblock_skip(page);
1450
1451         return;
1452 }
1453
1454 /* Search orders in round-robin fashion */
1455 static int next_search_order(struct compact_control *cc, int order)
1456 {
1457         order--;
1458         if (order < 0)
1459                 order = cc->order - 1;
1460
1461         /* Search wrapped around? */
1462         if (order == cc->search_order) {
1463                 cc->search_order--;
1464                 if (cc->search_order < 0)
1465                         cc->search_order = cc->order - 1;
1466                 return -1;
1467         }
1468
1469         return order;
1470 }
1471
1472 static void fast_isolate_freepages(struct compact_control *cc)
1473 {
1474         unsigned int limit = max(1U, freelist_scan_limit(cc) >> 1);
1475         unsigned int nr_scanned = 0, total_isolated = 0;
1476         unsigned long low_pfn, min_pfn, highest = 0;
1477         unsigned long nr_isolated = 0;
1478         unsigned long distance;
1479         struct page *page = NULL;
1480         bool scan_start = false;
1481         int order;
1482
1483         /* Full compaction passes in a negative order */
1484         if (cc->order <= 0)
1485                 return;
1486
1487         /*
1488          * If starting the scan, use a deeper search and use the highest
1489          * PFN found if a suitable one is not found.
1490          */
1491         if (cc->free_pfn >= cc->zone->compact_init_free_pfn) {
1492                 limit = pageblock_nr_pages >> 1;
1493                 scan_start = true;
1494         }
1495
1496         /*
1497          * Preferred point is in the top quarter of the scan space but take
1498          * a pfn from the top half if the search is problematic.
1499          */
1500         distance = (cc->free_pfn - cc->migrate_pfn);
1501         low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2));
1502         min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1));
1503
1504         if (WARN_ON_ONCE(min_pfn > low_pfn))
1505                 low_pfn = min_pfn;
1506
1507         /*
1508          * Search starts from the last successful isolation order or the next
1509          * order to search after a previous failure
1510          */
1511         cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order);
1512
1513         for (order = cc->search_order;
1514              !page && order >= 0;
1515              order = next_search_order(cc, order)) {
1516                 struct free_area *area = &cc->zone->free_area[order];
1517                 struct list_head *freelist;
1518                 struct page *freepage;
1519                 unsigned long flags;
1520                 unsigned int order_scanned = 0;
1521                 unsigned long high_pfn = 0;
1522
1523                 if (!area->nr_free)
1524                         continue;
1525
1526                 spin_lock_irqsave(&cc->zone->lock, flags);
1527                 freelist = &area->free_list[MIGRATE_MOVABLE];
1528                 list_for_each_entry_reverse(freepage, freelist, buddy_list) {
1529                         unsigned long pfn;
1530
1531                         order_scanned++;
1532                         nr_scanned++;
1533                         pfn = page_to_pfn(freepage);
1534
1535                         if (pfn >= highest)
1536                                 highest = max(pageblock_start_pfn(pfn),
1537                                               cc->zone->zone_start_pfn);
1538
1539                         if (pfn >= low_pfn) {
1540                                 cc->fast_search_fail = 0;
1541                                 cc->search_order = order;
1542                                 page = freepage;
1543                                 break;
1544                         }
1545
1546                         if (pfn >= min_pfn && pfn > high_pfn) {
1547                                 high_pfn = pfn;
1548
1549                                 /* Shorten the scan if a candidate is found */
1550                                 limit >>= 1;
1551                         }
1552
1553                         if (order_scanned >= limit)
1554                                 break;
1555                 }
1556
1557                 /* Use a minimum pfn if a preferred one was not found */
1558                 if (!page && high_pfn) {
1559                         page = pfn_to_page(high_pfn);
1560
1561                         /* Update freepage for the list reorder below */
1562                         freepage = page;
1563                 }
1564
1565                 /* Reorder to so a future search skips recent pages */
1566                 move_freelist_head(freelist, freepage);
1567
1568                 /* Isolate the page if available */
1569                 if (page) {
1570                         if (__isolate_free_page(page, order)) {
1571                                 set_page_private(page, order);
1572                                 nr_isolated = 1 << order;
1573                                 nr_scanned += nr_isolated - 1;
1574                                 total_isolated += nr_isolated;
1575                                 cc->nr_freepages += nr_isolated;
1576                                 list_add_tail(&page->lru, &cc->freepages);
1577                                 count_compact_events(COMPACTISOLATED, nr_isolated);
1578                         } else {
1579                                 /* If isolation fails, abort the search */
1580                                 order = cc->search_order + 1;
1581                                 page = NULL;
1582                         }
1583                 }
1584
1585                 spin_unlock_irqrestore(&cc->zone->lock, flags);
1586
1587                 /* Skip fast search if enough freepages isolated */
1588                 if (cc->nr_freepages >= cc->nr_migratepages)
1589                         break;
1590
1591                 /*
1592                  * Smaller scan on next order so the total scan is related
1593                  * to freelist_scan_limit.
1594                  */
1595                 if (order_scanned >= limit)
1596                         limit = max(1U, limit >> 1);
1597         }
1598
1599         trace_mm_compaction_fast_isolate_freepages(min_pfn, cc->free_pfn,
1600                                                    nr_scanned, total_isolated);
1601
1602         if (!page) {
1603                 cc->fast_search_fail++;
1604                 if (scan_start) {
1605                         /*
1606                          * Use the highest PFN found above min. If one was
1607                          * not found, be pessimistic for direct compaction
1608                          * and use the min mark.
1609                          */
1610                         if (highest >= min_pfn) {
1611                                 page = pfn_to_page(highest);
1612                                 cc->free_pfn = highest;
1613                         } else {
1614                                 if (cc->direct_compaction && pfn_valid(min_pfn)) {
1615                                         page = pageblock_pfn_to_page(min_pfn,
1616                                                 min(pageblock_end_pfn(min_pfn),
1617                                                     zone_end_pfn(cc->zone)),
1618                                                 cc->zone);
1619                                         cc->free_pfn = min_pfn;
1620                                 }
1621                         }
1622                 }
1623         }
1624
1625         if (highest && highest >= cc->zone->compact_cached_free_pfn) {
1626                 highest -= pageblock_nr_pages;
1627                 cc->zone->compact_cached_free_pfn = highest;
1628         }
1629
1630         cc->total_free_scanned += nr_scanned;
1631         if (!page)
1632                 return;
1633
1634         low_pfn = page_to_pfn(page);
1635         fast_isolate_around(cc, low_pfn);
1636 }
1637
1638 /*
1639  * Based on information in the current compact_control, find blocks
1640  * suitable for isolating free pages from and then isolate them.
1641  */
1642 static void isolate_freepages(struct compact_control *cc)
1643 {
1644         struct zone *zone = cc->zone;
1645         struct page *page;
1646         unsigned long block_start_pfn;  /* start of current pageblock */
1647         unsigned long isolate_start_pfn; /* exact pfn we start at */
1648         unsigned long block_end_pfn;    /* end of current pageblock */
1649         unsigned long low_pfn;       /* lowest pfn scanner is able to scan */
1650         struct list_head *freelist = &cc->freepages;
1651         unsigned int stride;
1652
1653         /* Try a small search of the free lists for a candidate */
1654         fast_isolate_freepages(cc);
1655         if (cc->nr_freepages)
1656                 goto splitmap;
1657
1658         /*
1659          * Initialise the free scanner. The starting point is where we last
1660          * successfully isolated from, zone-cached value, or the end of the
1661          * zone when isolating for the first time. For looping we also need
1662          * this pfn aligned down to the pageblock boundary, because we do
1663          * block_start_pfn -= pageblock_nr_pages in the for loop.
1664          * For ending point, take care when isolating in last pageblock of a
1665          * zone which ends in the middle of a pageblock.
1666          * The low boundary is the end of the pageblock the migration scanner
1667          * is using.
1668          */
1669         isolate_start_pfn = cc->free_pfn;
1670         block_start_pfn = pageblock_start_pfn(isolate_start_pfn);
1671         block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1672                                                 zone_end_pfn(zone));
1673         low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1674         stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1;
1675
1676         /*
1677          * Isolate free pages until enough are available to migrate the
1678          * pages on cc->migratepages. We stop searching if the migrate
1679          * and free page scanners meet or enough free pages are isolated.
1680          */
1681         for (; block_start_pfn >= low_pfn;
1682                                 block_end_pfn = block_start_pfn,
1683                                 block_start_pfn -= pageblock_nr_pages,
1684                                 isolate_start_pfn = block_start_pfn) {
1685                 unsigned long nr_isolated;
1686
1687                 /*
1688                  * This can iterate a massively long zone without finding any
1689                  * suitable migration targets, so periodically check resched.
1690                  */
1691                 if (!(block_start_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages)))
1692                         cond_resched();
1693
1694                 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1695                                                                         zone);
1696                 if (!page) {
1697                         unsigned long next_pfn;
1698
1699                         next_pfn = skip_offline_sections_reverse(block_start_pfn);
1700                         if (next_pfn)
1701                                 block_start_pfn = max(next_pfn, low_pfn);
1702
1703                         continue;
1704                 }
1705
1706                 /* Check the block is suitable for migration */
1707                 if (!suitable_migration_target(cc, page))
1708                         continue;
1709
1710                 /* If isolation recently failed, do not retry */
1711                 if (!isolation_suitable(cc, page))
1712                         continue;
1713
1714                 /* Found a block suitable for isolating free pages from. */
1715                 nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn,
1716                                         block_end_pfn, freelist, stride, false);
1717
1718                 /* Update the skip hint if the full pageblock was scanned */
1719                 if (isolate_start_pfn == block_end_pfn)
1720                         update_pageblock_skip(cc, page, block_start_pfn);
1721
1722                 /* Are enough freepages isolated? */
1723                 if (cc->nr_freepages >= cc->nr_migratepages) {
1724                         if (isolate_start_pfn >= block_end_pfn) {
1725                                 /*
1726                                  * Restart at previous pageblock if more
1727                                  * freepages can be isolated next time.
1728                                  */
1729                                 isolate_start_pfn =
1730                                         block_start_pfn - pageblock_nr_pages;
1731                         }
1732                         break;
1733                 } else if (isolate_start_pfn < block_end_pfn) {
1734                         /*
1735                          * If isolation failed early, do not continue
1736                          * needlessly.
1737                          */
1738                         break;
1739                 }
1740
1741                 /* Adjust stride depending on isolation */
1742                 if (nr_isolated) {
1743                         stride = 1;
1744                         continue;
1745                 }
1746                 stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1);
1747         }
1748
1749         /*
1750          * Record where the free scanner will restart next time. Either we
1751          * broke from the loop and set isolate_start_pfn based on the last
1752          * call to isolate_freepages_block(), or we met the migration scanner
1753          * and the loop terminated due to isolate_start_pfn < low_pfn
1754          */
1755         cc->free_pfn = isolate_start_pfn;
1756
1757 splitmap:
1758         /* __isolate_free_page() does not map the pages */
1759         split_map_pages(freelist);
1760 }
1761
1762 /*
1763  * This is a migrate-callback that "allocates" freepages by taking pages
1764  * from the isolated freelists in the block we are migrating to.
1765  */
1766 static struct folio *compaction_alloc(struct folio *src, unsigned long data)
1767 {
1768         struct compact_control *cc = (struct compact_control *)data;
1769         struct folio *dst;
1770
1771         if (list_empty(&cc->freepages)) {
1772                 isolate_freepages(cc);
1773
1774                 if (list_empty(&cc->freepages))
1775                         return NULL;
1776         }
1777
1778         dst = list_entry(cc->freepages.next, struct folio, lru);
1779         list_del(&dst->lru);
1780         cc->nr_freepages--;
1781
1782         return dst;
1783 }
1784
1785 /*
1786  * This is a migrate-callback that "frees" freepages back to the isolated
1787  * freelist.  All pages on the freelist are from the same zone, so there is no
1788  * special handling needed for NUMA.
1789  */
1790 static void compaction_free(struct folio *dst, unsigned long data)
1791 {
1792         struct compact_control *cc = (struct compact_control *)data;
1793
1794         list_add(&dst->lru, &cc->freepages);
1795         cc->nr_freepages++;
1796 }
1797
1798 /* possible outcome of isolate_migratepages */
1799 typedef enum {
1800         ISOLATE_ABORT,          /* Abort compaction now */
1801         ISOLATE_NONE,           /* No pages isolated, continue scanning */
1802         ISOLATE_SUCCESS,        /* Pages isolated, migrate */
1803 } isolate_migrate_t;
1804
1805 /*
1806  * Allow userspace to control policy on scanning the unevictable LRU for
1807  * compactable pages.
1808  */
1809 static int sysctl_compact_unevictable_allowed __read_mostly = CONFIG_COMPACT_UNEVICTABLE_DEFAULT;
1810 /*
1811  * Tunable for proactive compaction. It determines how
1812  * aggressively the kernel should compact memory in the
1813  * background. It takes values in the range [0, 100].
1814  */
1815 static unsigned int __read_mostly sysctl_compaction_proactiveness = 20;
1816 static int sysctl_extfrag_threshold = 500;
1817 static int __read_mostly sysctl_compact_memory;
1818
1819 static inline void
1820 update_fast_start_pfn(struct compact_control *cc, unsigned long pfn)
1821 {
1822         if (cc->fast_start_pfn == ULONG_MAX)
1823                 return;
1824
1825         if (!cc->fast_start_pfn)
1826                 cc->fast_start_pfn = pfn;
1827
1828         cc->fast_start_pfn = min(cc->fast_start_pfn, pfn);
1829 }
1830
1831 static inline unsigned long
1832 reinit_migrate_pfn(struct compact_control *cc)
1833 {
1834         if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX)
1835                 return cc->migrate_pfn;
1836
1837         cc->migrate_pfn = cc->fast_start_pfn;
1838         cc->fast_start_pfn = ULONG_MAX;
1839
1840         return cc->migrate_pfn;
1841 }
1842
1843 /*
1844  * Briefly search the free lists for a migration source that already has
1845  * some free pages to reduce the number of pages that need migration
1846  * before a pageblock is free.
1847  */
1848 static unsigned long fast_find_migrateblock(struct compact_control *cc)
1849 {
1850         unsigned int limit = freelist_scan_limit(cc);
1851         unsigned int nr_scanned = 0;
1852         unsigned long distance;
1853         unsigned long pfn = cc->migrate_pfn;
1854         unsigned long high_pfn;
1855         int order;
1856         bool found_block = false;
1857
1858         /* Skip hints are relied on to avoid repeats on the fast search */
1859         if (cc->ignore_skip_hint)
1860                 return pfn;
1861
1862         /*
1863          * If the pageblock should be finished then do not select a different
1864          * pageblock.
1865          */
1866         if (cc->finish_pageblock)
1867                 return pfn;
1868
1869         /*
1870          * If the migrate_pfn is not at the start of a zone or the start
1871          * of a pageblock then assume this is a continuation of a previous
1872          * scan restarted due to COMPACT_CLUSTER_MAX.
1873          */
1874         if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn))
1875                 return pfn;
1876
1877         /*
1878          * For smaller orders, just linearly scan as the number of pages
1879          * to migrate should be relatively small and does not necessarily
1880          * justify freeing up a large block for a small allocation.
1881          */
1882         if (cc->order <= PAGE_ALLOC_COSTLY_ORDER)
1883                 return pfn;
1884
1885         /*
1886          * Only allow kcompactd and direct requests for movable pages to
1887          * quickly clear out a MOVABLE pageblock for allocation. This
1888          * reduces the risk that a large movable pageblock is freed for
1889          * an unmovable/reclaimable small allocation.
1890          */
1891         if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE)
1892                 return pfn;
1893
1894         /*
1895          * When starting the migration scanner, pick any pageblock within the
1896          * first half of the search space. Otherwise try and pick a pageblock
1897          * within the first eighth to reduce the chances that a migration
1898          * target later becomes a source.
1899          */
1900         distance = (cc->free_pfn - cc->migrate_pfn) >> 1;
1901         if (cc->migrate_pfn != cc->zone->zone_start_pfn)
1902                 distance >>= 2;
1903         high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance);
1904
1905         for (order = cc->order - 1;
1906              order >= PAGE_ALLOC_COSTLY_ORDER && !found_block && nr_scanned < limit;
1907              order--) {
1908                 struct free_area *area = &cc->zone->free_area[order];
1909                 struct list_head *freelist;
1910                 unsigned long flags;
1911                 struct page *freepage;
1912
1913                 if (!area->nr_free)
1914                         continue;
1915
1916                 spin_lock_irqsave(&cc->zone->lock, flags);
1917                 freelist = &area->free_list[MIGRATE_MOVABLE];
1918                 list_for_each_entry(freepage, freelist, buddy_list) {
1919                         unsigned long free_pfn;
1920
1921                         if (nr_scanned++ >= limit) {
1922                                 move_freelist_tail(freelist, freepage);
1923                                 break;
1924                         }
1925
1926                         free_pfn = page_to_pfn(freepage);
1927                         if (free_pfn < high_pfn) {
1928                                 /*
1929                                  * Avoid if skipped recently. Ideally it would
1930                                  * move to the tail but even safe iteration of
1931                                  * the list assumes an entry is deleted, not
1932                                  * reordered.
1933                                  */
1934                                 if (get_pageblock_skip(freepage))
1935                                         continue;
1936
1937                                 /* Reorder to so a future search skips recent pages */
1938                                 move_freelist_tail(freelist, freepage);
1939
1940                                 update_fast_start_pfn(cc, free_pfn);
1941                                 pfn = pageblock_start_pfn(free_pfn);
1942                                 if (pfn < cc->zone->zone_start_pfn)
1943                                         pfn = cc->zone->zone_start_pfn;
1944                                 cc->fast_search_fail = 0;
1945                                 found_block = true;
1946                                 break;
1947                         }
1948                 }
1949                 spin_unlock_irqrestore(&cc->zone->lock, flags);
1950         }
1951
1952         cc->total_migrate_scanned += nr_scanned;
1953
1954         /*
1955          * If fast scanning failed then use a cached entry for a page block
1956          * that had free pages as the basis for starting a linear scan.
1957          */
1958         if (!found_block) {
1959                 cc->fast_search_fail++;
1960                 pfn = reinit_migrate_pfn(cc);
1961         }
1962         return pfn;
1963 }
1964
1965 /*
1966  * Isolate all pages that can be migrated from the first suitable block,
1967  * starting at the block pointed to by the migrate scanner pfn within
1968  * compact_control.
1969  */
1970 static isolate_migrate_t isolate_migratepages(struct compact_control *cc)
1971 {
1972         unsigned long block_start_pfn;
1973         unsigned long block_end_pfn;
1974         unsigned long low_pfn;
1975         struct page *page;
1976         const isolate_mode_t isolate_mode =
1977                 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1978                 (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1979         bool fast_find_block;
1980
1981         /*
1982          * Start at where we last stopped, or beginning of the zone as
1983          * initialized by compact_zone(). The first failure will use
1984          * the lowest PFN as the starting point for linear scanning.
1985          */
1986         low_pfn = fast_find_migrateblock(cc);
1987         block_start_pfn = pageblock_start_pfn(low_pfn);
1988         if (block_start_pfn < cc->zone->zone_start_pfn)
1989                 block_start_pfn = cc->zone->zone_start_pfn;
1990
1991         /*
1992          * fast_find_migrateblock marks a pageblock skipped so to avoid
1993          * the isolation_suitable check below, check whether the fast
1994          * search was successful.
1995          */
1996         fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail;
1997
1998         /* Only scan within a pageblock boundary */
1999         block_end_pfn = pageblock_end_pfn(low_pfn);
2000
2001         /*
2002          * Iterate over whole pageblocks until we find the first suitable.
2003          * Do not cross the free scanner.
2004          */
2005         for (; block_end_pfn <= cc->free_pfn;
2006                         fast_find_block = false,
2007                         cc->migrate_pfn = low_pfn = block_end_pfn,
2008                         block_start_pfn = block_end_pfn,
2009                         block_end_pfn += pageblock_nr_pages) {
2010
2011                 /*
2012                  * This can potentially iterate a massively long zone with
2013                  * many pageblocks unsuitable, so periodically check if we
2014                  * need to schedule.
2015                  */
2016                 if (!(low_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages)))
2017                         cond_resched();
2018
2019                 page = pageblock_pfn_to_page(block_start_pfn,
2020                                                 block_end_pfn, cc->zone);
2021                 if (!page) {
2022                         unsigned long next_pfn;
2023
2024                         next_pfn = skip_offline_sections(block_start_pfn);
2025                         if (next_pfn)
2026                                 block_end_pfn = min(next_pfn, cc->free_pfn);
2027                         continue;
2028                 }
2029
2030                 /*
2031                  * If isolation recently failed, do not retry. Only check the
2032                  * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock
2033                  * to be visited multiple times. Assume skip was checked
2034                  * before making it "skip" so other compaction instances do
2035                  * not scan the same block.
2036                  */
2037                 if (pageblock_aligned(low_pfn) &&
2038                     !fast_find_block && !isolation_suitable(cc, page))
2039                         continue;
2040
2041                 /*
2042                  * For async direct compaction, only scan the pageblocks of the
2043                  * same migratetype without huge pages. Async direct compaction
2044                  * is optimistic to see if the minimum amount of work satisfies
2045                  * the allocation. The cached PFN is updated as it's possible
2046                  * that all remaining blocks between source and target are
2047                  * unsuitable and the compaction scanners fail to meet.
2048                  */
2049                 if (!suitable_migration_source(cc, page)) {
2050                         update_cached_migrate(cc, block_end_pfn);
2051                         continue;
2052                 }
2053
2054                 /* Perform the isolation */
2055                 if (isolate_migratepages_block(cc, low_pfn, block_end_pfn,
2056                                                 isolate_mode))
2057                         return ISOLATE_ABORT;
2058
2059                 /*
2060                  * Either we isolated something and proceed with migration. Or
2061                  * we failed and compact_zone should decide if we should
2062                  * continue or not.
2063                  */
2064                 break;
2065         }
2066
2067         return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
2068 }
2069
2070 /*
2071  * order == -1 is expected when compacting via
2072  * /proc/sys/vm/compact_memory
2073  */
2074 static inline bool is_via_compact_memory(int order)
2075 {
2076         return order == -1;
2077 }
2078
2079 /*
2080  * Determine whether kswapd is (or recently was!) running on this node.
2081  *
2082  * pgdat_kswapd_lock() pins pgdat->kswapd, so a concurrent kswapd_stop() can't
2083  * zero it.
2084  */
2085 static bool kswapd_is_running(pg_data_t *pgdat)
2086 {
2087         bool running;
2088
2089         pgdat_kswapd_lock(pgdat);
2090         running = pgdat->kswapd && task_is_running(pgdat->kswapd);
2091         pgdat_kswapd_unlock(pgdat);
2092
2093         return running;
2094 }
2095
2096 /*
2097  * A zone's fragmentation score is the external fragmentation wrt to the
2098  * COMPACTION_HPAGE_ORDER. It returns a value in the range [0, 100].
2099  */
2100 static unsigned int fragmentation_score_zone(struct zone *zone)
2101 {
2102         return extfrag_for_order(zone, COMPACTION_HPAGE_ORDER);
2103 }
2104
2105 /*
2106  * A weighted zone's fragmentation score is the external fragmentation
2107  * wrt to the COMPACTION_HPAGE_ORDER scaled by the zone's size. It
2108  * returns a value in the range [0, 100].
2109  *
2110  * The scaling factor ensures that proactive compaction focuses on larger
2111  * zones like ZONE_NORMAL, rather than smaller, specialized zones like
2112  * ZONE_DMA32. For smaller zones, the score value remains close to zero,
2113  * and thus never exceeds the high threshold for proactive compaction.
2114  */
2115 static unsigned int fragmentation_score_zone_weighted(struct zone *zone)
2116 {
2117         unsigned long score;
2118
2119         score = zone->present_pages * fragmentation_score_zone(zone);
2120         return div64_ul(score, zone->zone_pgdat->node_present_pages + 1);
2121 }
2122
2123 /*
2124  * The per-node proactive (background) compaction process is started by its
2125  * corresponding kcompactd thread when the node's fragmentation score
2126  * exceeds the high threshold. The compaction process remains active till
2127  * the node's score falls below the low threshold, or one of the back-off
2128  * conditions is met.
2129  */
2130 static unsigned int fragmentation_score_node(pg_data_t *pgdat)
2131 {
2132         unsigned int score = 0;
2133         int zoneid;
2134
2135         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2136                 struct zone *zone;
2137
2138                 zone = &pgdat->node_zones[zoneid];
2139                 if (!populated_zone(zone))
2140                         continue;
2141                 score += fragmentation_score_zone_weighted(zone);
2142         }
2143
2144         return score;
2145 }
2146
2147 static unsigned int fragmentation_score_wmark(pg_data_t *pgdat, bool low)
2148 {
2149         unsigned int wmark_low;
2150
2151         /*
2152          * Cap the low watermark to avoid excessive compaction
2153          * activity in case a user sets the proactiveness tunable
2154          * close to 100 (maximum).
2155          */
2156         wmark_low = max(100U - sysctl_compaction_proactiveness, 5U);
2157         return low ? wmark_low : min(wmark_low + 10, 100U);
2158 }
2159
2160 static bool should_proactive_compact_node(pg_data_t *pgdat)
2161 {
2162         int wmark_high;
2163
2164         if (!sysctl_compaction_proactiveness || kswapd_is_running(pgdat))
2165                 return false;
2166
2167         wmark_high = fragmentation_score_wmark(pgdat, false);
2168         return fragmentation_score_node(pgdat) > wmark_high;
2169 }
2170
2171 static enum compact_result __compact_finished(struct compact_control *cc)
2172 {
2173         unsigned int order;
2174         const int migratetype = cc->migratetype;
2175         int ret;
2176
2177         /* Compaction run completes if the migrate and free scanner meet */
2178         if (compact_scanners_met(cc)) {
2179                 /* Let the next compaction start anew. */
2180                 reset_cached_positions(cc->zone);
2181
2182                 /*
2183                  * Mark that the PG_migrate_skip information should be cleared
2184                  * by kswapd when it goes to sleep. kcompactd does not set the
2185                  * flag itself as the decision to be clear should be directly
2186                  * based on an allocation request.
2187                  */
2188                 if (cc->direct_compaction)
2189                         cc->zone->compact_blockskip_flush = true;
2190
2191                 if (cc->whole_zone)
2192                         return COMPACT_COMPLETE;
2193                 else
2194                         return COMPACT_PARTIAL_SKIPPED;
2195         }
2196
2197         if (cc->proactive_compaction) {
2198                 int score, wmark_low;
2199                 pg_data_t *pgdat;
2200
2201                 pgdat = cc->zone->zone_pgdat;
2202                 if (kswapd_is_running(pgdat))
2203                         return COMPACT_PARTIAL_SKIPPED;
2204
2205                 score = fragmentation_score_zone(cc->zone);
2206                 wmark_low = fragmentation_score_wmark(pgdat, true);
2207
2208                 if (score > wmark_low)
2209                         ret = COMPACT_CONTINUE;
2210                 else
2211                         ret = COMPACT_SUCCESS;
2212
2213                 goto out;
2214         }
2215
2216         if (is_via_compact_memory(cc->order))
2217                 return COMPACT_CONTINUE;
2218
2219         /*
2220          * Always finish scanning a pageblock to reduce the possibility of
2221          * fallbacks in the future. This is particularly important when
2222          * migration source is unmovable/reclaimable but it's not worth
2223          * special casing.
2224          */
2225         if (!pageblock_aligned(cc->migrate_pfn))
2226                 return COMPACT_CONTINUE;
2227
2228         /* Direct compactor: Is a suitable page free? */
2229         ret = COMPACT_NO_SUITABLE_PAGE;
2230         for (order = cc->order; order <= MAX_ORDER; order++) {
2231                 struct free_area *area = &cc->zone->free_area[order];
2232                 bool can_steal;
2233
2234                 /* Job done if page is free of the right migratetype */
2235                 if (!free_area_empty(area, migratetype))
2236                         return COMPACT_SUCCESS;
2237
2238 #ifdef CONFIG_CMA
2239                 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
2240                 if (migratetype == MIGRATE_MOVABLE &&
2241                         !free_area_empty(area, MIGRATE_CMA))
2242                         return COMPACT_SUCCESS;
2243 #endif
2244                 /*
2245                  * Job done if allocation would steal freepages from
2246                  * other migratetype buddy lists.
2247                  */
2248                 if (find_suitable_fallback(area, order, migratetype,
2249                                                 true, &can_steal) != -1)
2250                         /*
2251                          * Movable pages are OK in any pageblock. If we are
2252                          * stealing for a non-movable allocation, make sure
2253                          * we finish compacting the current pageblock first
2254                          * (which is assured by the above migrate_pfn align
2255                          * check) so it is as free as possible and we won't
2256                          * have to steal another one soon.
2257                          */
2258                         return COMPACT_SUCCESS;
2259         }
2260
2261 out:
2262         if (cc->contended || fatal_signal_pending(current))
2263                 ret = COMPACT_CONTENDED;
2264
2265         return ret;
2266 }
2267
2268 static enum compact_result compact_finished(struct compact_control *cc)
2269 {
2270         int ret;
2271
2272         ret = __compact_finished(cc);
2273         trace_mm_compaction_finished(cc->zone, cc->order, ret);
2274         if (ret == COMPACT_NO_SUITABLE_PAGE)
2275                 ret = COMPACT_CONTINUE;
2276
2277         return ret;
2278 }
2279
2280 static bool __compaction_suitable(struct zone *zone, int order,
2281                                   int highest_zoneidx,
2282                                   unsigned long wmark_target)
2283 {
2284         unsigned long watermark;
2285         /*
2286          * Watermarks for order-0 must be met for compaction to be able to
2287          * isolate free pages for migration targets. This means that the
2288          * watermark and alloc_flags have to match, or be more pessimistic than
2289          * the check in __isolate_free_page(). We don't use the direct
2290          * compactor's alloc_flags, as they are not relevant for freepage
2291          * isolation. We however do use the direct compactor's highest_zoneidx
2292          * to skip over zones where lowmem reserves would prevent allocation
2293          * even if compaction succeeds.
2294          * For costly orders, we require low watermark instead of min for
2295          * compaction to proceed to increase its chances.
2296          * ALLOC_CMA is used, as pages in CMA pageblocks are considered
2297          * suitable migration targets
2298          */
2299         watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
2300                                 low_wmark_pages(zone) : min_wmark_pages(zone);
2301         watermark += compact_gap(order);
2302         return __zone_watermark_ok(zone, 0, watermark, highest_zoneidx,
2303                                    ALLOC_CMA, wmark_target);
2304 }
2305
2306 /*
2307  * compaction_suitable: Is this suitable to run compaction on this zone now?
2308  */
2309 bool compaction_suitable(struct zone *zone, int order, int highest_zoneidx)
2310 {
2311         enum compact_result compact_result;
2312         bool suitable;
2313
2314         suitable = __compaction_suitable(zone, order, highest_zoneidx,
2315                                          zone_page_state(zone, NR_FREE_PAGES));
2316         /*
2317          * fragmentation index determines if allocation failures are due to
2318          * low memory or external fragmentation
2319          *
2320          * index of -1000 would imply allocations might succeed depending on
2321          * watermarks, but we already failed the high-order watermark check
2322          * index towards 0 implies failure is due to lack of memory
2323          * index towards 1000 implies failure is due to fragmentation
2324          *
2325          * Only compact if a failure would be due to fragmentation. Also
2326          * ignore fragindex for non-costly orders where the alternative to
2327          * a successful reclaim/compaction is OOM. Fragindex and the
2328          * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
2329          * excessive compaction for costly orders, but it should not be at the
2330          * expense of system stability.
2331          */
2332         if (suitable) {
2333                 compact_result = COMPACT_CONTINUE;
2334                 if (order > PAGE_ALLOC_COSTLY_ORDER) {
2335                         int fragindex = fragmentation_index(zone, order);
2336
2337                         if (fragindex >= 0 &&
2338                             fragindex <= sysctl_extfrag_threshold) {
2339                                 suitable = false;
2340                                 compact_result = COMPACT_NOT_SUITABLE_ZONE;
2341                         }
2342                 }
2343         } else {
2344                 compact_result = COMPACT_SKIPPED;
2345         }
2346
2347         trace_mm_compaction_suitable(zone, order, compact_result);
2348
2349         return suitable;
2350 }
2351
2352 bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
2353                 int alloc_flags)
2354 {
2355         struct zone *zone;
2356         struct zoneref *z;
2357
2358         /*
2359          * Make sure at least one zone would pass __compaction_suitable if we continue
2360          * retrying the reclaim.
2361          */
2362         for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2363                                 ac->highest_zoneidx, ac->nodemask) {
2364                 unsigned long available;
2365
2366                 /*
2367                  * Do not consider all the reclaimable memory because we do not
2368                  * want to trash just for a single high order allocation which
2369                  * is even not guaranteed to appear even if __compaction_suitable
2370                  * is happy about the watermark check.
2371                  */
2372                 available = zone_reclaimable_pages(zone) / order;
2373                 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
2374                 if (__compaction_suitable(zone, order, ac->highest_zoneidx,
2375                                           available))
2376                         return true;
2377         }
2378
2379         return false;
2380 }
2381
2382 static enum compact_result
2383 compact_zone(struct compact_control *cc, struct capture_control *capc)
2384 {
2385         enum compact_result ret;
2386         unsigned long start_pfn = cc->zone->zone_start_pfn;
2387         unsigned long end_pfn = zone_end_pfn(cc->zone);
2388         unsigned long last_migrated_pfn;
2389         const bool sync = cc->mode != MIGRATE_ASYNC;
2390         bool update_cached;
2391         unsigned int nr_succeeded = 0;
2392
2393         /*
2394          * These counters track activities during zone compaction.  Initialize
2395          * them before compacting a new zone.
2396          */
2397         cc->total_migrate_scanned = 0;
2398         cc->total_free_scanned = 0;
2399         cc->nr_migratepages = 0;
2400         cc->nr_freepages = 0;
2401         INIT_LIST_HEAD(&cc->freepages);
2402         INIT_LIST_HEAD(&cc->migratepages);
2403
2404         cc->migratetype = gfp_migratetype(cc->gfp_mask);
2405
2406         if (!is_via_compact_memory(cc->order)) {
2407                 unsigned long watermark;
2408
2409                 /* Allocation can already succeed, nothing to do */
2410                 watermark = wmark_pages(cc->zone,
2411                                         cc->alloc_flags & ALLOC_WMARK_MASK);
2412                 if (zone_watermark_ok(cc->zone, cc->order, watermark,
2413                                       cc->highest_zoneidx, cc->alloc_flags))
2414                         return COMPACT_SUCCESS;
2415
2416                 /* Compaction is likely to fail */
2417                 if (!compaction_suitable(cc->zone, cc->order,
2418                                          cc->highest_zoneidx))
2419                         return COMPACT_SKIPPED;
2420         }
2421
2422         /*
2423          * Clear pageblock skip if there were failures recently and compaction
2424          * is about to be retried after being deferred.
2425          */
2426         if (compaction_restarting(cc->zone, cc->order))
2427                 __reset_isolation_suitable(cc->zone);
2428
2429         /*
2430          * Setup to move all movable pages to the end of the zone. Used cached
2431          * information on where the scanners should start (unless we explicitly
2432          * want to compact the whole zone), but check that it is initialised
2433          * by ensuring the values are within zone boundaries.
2434          */
2435         cc->fast_start_pfn = 0;
2436         if (cc->whole_zone) {
2437                 cc->migrate_pfn = start_pfn;
2438                 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2439         } else {
2440                 cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync];
2441                 cc->free_pfn = cc->zone->compact_cached_free_pfn;
2442                 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
2443                         cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2444                         cc->zone->compact_cached_free_pfn = cc->free_pfn;
2445                 }
2446                 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
2447                         cc->migrate_pfn = start_pfn;
2448                         cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
2449                         cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
2450                 }
2451
2452                 if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn)
2453                         cc->whole_zone = true;
2454         }
2455
2456         last_migrated_pfn = 0;
2457
2458         /*
2459          * Migrate has separate cached PFNs for ASYNC and SYNC* migration on
2460          * the basis that some migrations will fail in ASYNC mode. However,
2461          * if the cached PFNs match and pageblocks are skipped due to having
2462          * no isolation candidates, then the sync state does not matter.
2463          * Until a pageblock with isolation candidates is found, keep the
2464          * cached PFNs in sync to avoid revisiting the same blocks.
2465          */
2466         update_cached = !sync &&
2467                 cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1];
2468
2469         trace_mm_compaction_begin(cc, start_pfn, end_pfn, sync);
2470
2471         /* lru_add_drain_all could be expensive with involving other CPUs */
2472         lru_add_drain();
2473
2474         while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) {
2475                 int err;
2476                 unsigned long iteration_start_pfn = cc->migrate_pfn;
2477
2478                 /*
2479                  * Avoid multiple rescans of the same pageblock which can
2480                  * happen if a page cannot be isolated (dirty/writeback in
2481                  * async mode) or if the migrated pages are being allocated
2482                  * before the pageblock is cleared.  The first rescan will
2483                  * capture the entire pageblock for migration. If it fails,
2484                  * it'll be marked skip and scanning will proceed as normal.
2485                  */
2486                 cc->finish_pageblock = false;
2487                 if (pageblock_start_pfn(last_migrated_pfn) ==
2488                     pageblock_start_pfn(iteration_start_pfn)) {
2489                         cc->finish_pageblock = true;
2490                 }
2491
2492 rescan:
2493                 switch (isolate_migratepages(cc)) {
2494                 case ISOLATE_ABORT:
2495                         ret = COMPACT_CONTENDED;
2496                         putback_movable_pages(&cc->migratepages);
2497                         cc->nr_migratepages = 0;
2498                         goto out;
2499                 case ISOLATE_NONE:
2500                         if (update_cached) {
2501                                 cc->zone->compact_cached_migrate_pfn[1] =
2502                                         cc->zone->compact_cached_migrate_pfn[0];
2503                         }
2504
2505                         /*
2506                          * We haven't isolated and migrated anything, but
2507                          * there might still be unflushed migrations from
2508                          * previous cc->order aligned block.
2509                          */
2510                         goto check_drain;
2511                 case ISOLATE_SUCCESS:
2512                         update_cached = false;
2513                         last_migrated_pfn = iteration_start_pfn;
2514                 }
2515
2516                 err = migrate_pages(&cc->migratepages, compaction_alloc,
2517                                 compaction_free, (unsigned long)cc, cc->mode,
2518                                 MR_COMPACTION, &nr_succeeded);
2519
2520                 trace_mm_compaction_migratepages(cc, nr_succeeded);
2521
2522                 /* All pages were either migrated or will be released */
2523                 cc->nr_migratepages = 0;
2524                 if (err) {
2525                         putback_movable_pages(&cc->migratepages);
2526                         /*
2527                          * migrate_pages() may return -ENOMEM when scanners meet
2528                          * and we want compact_finished() to detect it
2529                          */
2530                         if (err == -ENOMEM && !compact_scanners_met(cc)) {
2531                                 ret = COMPACT_CONTENDED;
2532                                 goto out;
2533                         }
2534                         /*
2535                          * If an ASYNC or SYNC_LIGHT fails to migrate a page
2536                          * within the current order-aligned block and
2537                          * fast_find_migrateblock may be used then scan the
2538                          * remainder of the pageblock. This will mark the
2539                          * pageblock "skip" to avoid rescanning in the near
2540                          * future. This will isolate more pages than necessary
2541                          * for the request but avoid loops due to
2542                          * fast_find_migrateblock revisiting blocks that were
2543                          * recently partially scanned.
2544                          */
2545                         if (!pageblock_aligned(cc->migrate_pfn) &&
2546                             !cc->ignore_skip_hint && !cc->finish_pageblock &&
2547                             (cc->mode < MIGRATE_SYNC)) {
2548                                 cc->finish_pageblock = true;
2549
2550                                 /*
2551                                  * Draining pcplists does not help THP if
2552                                  * any page failed to migrate. Even after
2553                                  * drain, the pageblock will not be free.
2554                                  */
2555                                 if (cc->order == COMPACTION_HPAGE_ORDER)
2556                                         last_migrated_pfn = 0;
2557
2558                                 goto rescan;
2559                         }
2560                 }
2561
2562                 /* Stop if a page has been captured */
2563                 if (capc && capc->page) {
2564                         ret = COMPACT_SUCCESS;
2565                         break;
2566                 }
2567
2568 check_drain:
2569                 /*
2570                  * Has the migration scanner moved away from the previous
2571                  * cc->order aligned block where we migrated from? If yes,
2572                  * flush the pages that were freed, so that they can merge and
2573                  * compact_finished() can detect immediately if allocation
2574                  * would succeed.
2575                  */
2576                 if (cc->order > 0 && last_migrated_pfn) {
2577                         unsigned long current_block_start =
2578                                 block_start_pfn(cc->migrate_pfn, cc->order);
2579
2580                         if (last_migrated_pfn < current_block_start) {
2581                                 lru_add_drain_cpu_zone(cc->zone);
2582                                 /* No more flushing until we migrate again */
2583                                 last_migrated_pfn = 0;
2584                         }
2585                 }
2586         }
2587
2588 out:
2589         /*
2590          * Release free pages and update where the free scanner should restart,
2591          * so we don't leave any returned pages behind in the next attempt.
2592          */
2593         if (cc->nr_freepages > 0) {
2594                 unsigned long free_pfn = release_freepages(&cc->freepages);
2595
2596                 cc->nr_freepages = 0;
2597                 VM_BUG_ON(free_pfn == 0);
2598                 /* The cached pfn is always the first in a pageblock */
2599                 free_pfn = pageblock_start_pfn(free_pfn);
2600                 /*
2601                  * Only go back, not forward. The cached pfn might have been
2602                  * already reset to zone end in compact_finished()
2603                  */
2604                 if (free_pfn > cc->zone->compact_cached_free_pfn)
2605                         cc->zone->compact_cached_free_pfn = free_pfn;
2606         }
2607
2608         count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
2609         count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
2610
2611         trace_mm_compaction_end(cc, start_pfn, end_pfn, sync, ret);
2612
2613         VM_BUG_ON(!list_empty(&cc->freepages));
2614         VM_BUG_ON(!list_empty(&cc->migratepages));
2615
2616         return ret;
2617 }
2618
2619 static enum compact_result compact_zone_order(struct zone *zone, int order,
2620                 gfp_t gfp_mask, enum compact_priority prio,
2621                 unsigned int alloc_flags, int highest_zoneidx,
2622                 struct page **capture)
2623 {
2624         enum compact_result ret;
2625         struct compact_control cc = {
2626                 .order = order,
2627                 .search_order = order,
2628                 .gfp_mask = gfp_mask,
2629                 .zone = zone,
2630                 .mode = (prio == COMPACT_PRIO_ASYNC) ?
2631                                         MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT,
2632                 .alloc_flags = alloc_flags,
2633                 .highest_zoneidx = highest_zoneidx,
2634                 .direct_compaction = true,
2635                 .whole_zone = (prio == MIN_COMPACT_PRIORITY),
2636                 .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
2637                 .ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
2638         };
2639         struct capture_control capc = {
2640                 .cc = &cc,
2641                 .page = NULL,
2642         };
2643
2644         /*
2645          * Make sure the structs are really initialized before we expose the
2646          * capture control, in case we are interrupted and the interrupt handler
2647          * frees a page.
2648          */
2649         barrier();
2650         WRITE_ONCE(current->capture_control, &capc);
2651
2652         ret = compact_zone(&cc, &capc);
2653
2654         /*
2655          * Make sure we hide capture control first before we read the captured
2656          * page pointer, otherwise an interrupt could free and capture a page
2657          * and we would leak it.
2658          */
2659         WRITE_ONCE(current->capture_control, NULL);
2660         *capture = READ_ONCE(capc.page);
2661         /*
2662          * Technically, it is also possible that compaction is skipped but
2663          * the page is still captured out of luck(IRQ came and freed the page).
2664          * Returning COMPACT_SUCCESS in such cases helps in properly accounting
2665          * the COMPACT[STALL|FAIL] when compaction is skipped.
2666          */
2667         if (*capture)
2668                 ret = COMPACT_SUCCESS;
2669
2670         return ret;
2671 }
2672
2673 /**
2674  * try_to_compact_pages - Direct compact to satisfy a high-order allocation
2675  * @gfp_mask: The GFP mask of the current allocation
2676  * @order: The order of the current allocation
2677  * @alloc_flags: The allocation flags of the current allocation
2678  * @ac: The context of current allocation
2679  * @prio: Determines how hard direct compaction should try to succeed
2680  * @capture: Pointer to free page created by compaction will be stored here
2681  *
2682  * This is the main entry point for direct page compaction.
2683  */
2684 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
2685                 unsigned int alloc_flags, const struct alloc_context *ac,
2686                 enum compact_priority prio, struct page **capture)
2687 {
2688         int may_perform_io = (__force int)(gfp_mask & __GFP_IO);
2689         struct zoneref *z;
2690         struct zone *zone;
2691         enum compact_result rc = COMPACT_SKIPPED;
2692
2693         /*
2694          * Check if the GFP flags allow compaction - GFP_NOIO is really
2695          * tricky context because the migration might require IO
2696          */
2697         if (!may_perform_io)
2698                 return COMPACT_SKIPPED;
2699
2700         trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
2701
2702         /* Compact each zone in the list */
2703         for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2704                                         ac->highest_zoneidx, ac->nodemask) {
2705                 enum compact_result status;
2706
2707                 if (prio > MIN_COMPACT_PRIORITY
2708                                         && compaction_deferred(zone, order)) {
2709                         rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
2710                         continue;
2711                 }
2712
2713                 status = compact_zone_order(zone, order, gfp_mask, prio,
2714                                 alloc_flags, ac->highest_zoneidx, capture);
2715                 rc = max(status, rc);
2716
2717                 /* The allocation should succeed, stop compacting */
2718                 if (status == COMPACT_SUCCESS) {
2719                         /*
2720                          * We think the allocation will succeed in this zone,
2721                          * but it is not certain, hence the false. The caller
2722                          * will repeat this with true if allocation indeed
2723                          * succeeds in this zone.
2724                          */
2725                         compaction_defer_reset(zone, order, false);
2726
2727                         break;
2728                 }
2729
2730                 if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
2731                                         status == COMPACT_PARTIAL_SKIPPED))
2732                         /*
2733                          * We think that allocation won't succeed in this zone
2734                          * so we defer compaction there. If it ends up
2735                          * succeeding after all, it will be reset.
2736                          */
2737                         defer_compaction(zone, order);
2738
2739                 /*
2740                  * We might have stopped compacting due to need_resched() in
2741                  * async compaction, or due to a fatal signal detected. In that
2742                  * case do not try further zones
2743                  */
2744                 if ((prio == COMPACT_PRIO_ASYNC && need_resched())
2745                                         || fatal_signal_pending(current))
2746                         break;
2747         }
2748
2749         return rc;
2750 }
2751
2752 /*
2753  * Compact all zones within a node till each zone's fragmentation score
2754  * reaches within proactive compaction thresholds (as determined by the
2755  * proactiveness tunable).
2756  *
2757  * It is possible that the function returns before reaching score targets
2758  * due to various back-off conditions, such as, contention on per-node or
2759  * per-zone locks.
2760  */
2761 static void proactive_compact_node(pg_data_t *pgdat)
2762 {
2763         int zoneid;
2764         struct zone *zone;
2765         struct compact_control cc = {
2766                 .order = -1,
2767                 .mode = MIGRATE_SYNC_LIGHT,
2768                 .ignore_skip_hint = true,
2769                 .whole_zone = true,
2770                 .gfp_mask = GFP_KERNEL,
2771                 .proactive_compaction = true,
2772         };
2773
2774         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2775                 zone = &pgdat->node_zones[zoneid];
2776                 if (!populated_zone(zone))
2777                         continue;
2778
2779                 cc.zone = zone;
2780
2781                 compact_zone(&cc, NULL);
2782
2783                 count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2784                                      cc.total_migrate_scanned);
2785                 count_compact_events(KCOMPACTD_FREE_SCANNED,
2786                                      cc.total_free_scanned);
2787         }
2788 }
2789
2790 /* Compact all zones within a node */
2791 static void compact_node(int nid)
2792 {
2793         pg_data_t *pgdat = NODE_DATA(nid);
2794         int zoneid;
2795         struct zone *zone;
2796         struct compact_control cc = {
2797                 .order = -1,
2798                 .mode = MIGRATE_SYNC,
2799                 .ignore_skip_hint = true,
2800                 .whole_zone = true,
2801                 .gfp_mask = GFP_KERNEL,
2802         };
2803
2804
2805         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2806
2807                 zone = &pgdat->node_zones[zoneid];
2808                 if (!populated_zone(zone))
2809                         continue;
2810
2811                 cc.zone = zone;
2812
2813                 compact_zone(&cc, NULL);
2814         }
2815 }
2816
2817 /* Compact all nodes in the system */
2818 static void compact_nodes(void)
2819 {
2820         int nid;
2821
2822         /* Flush pending updates to the LRU lists */
2823         lru_add_drain_all();
2824
2825         for_each_online_node(nid)
2826                 compact_node(nid);
2827 }
2828
2829 static int compaction_proactiveness_sysctl_handler(struct ctl_table *table, int write,
2830                 void *buffer, size_t *length, loff_t *ppos)
2831 {
2832         int rc, nid;
2833
2834         rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
2835         if (rc)
2836                 return rc;
2837
2838         if (write && sysctl_compaction_proactiveness) {
2839                 for_each_online_node(nid) {
2840                         pg_data_t *pgdat = NODE_DATA(nid);
2841
2842                         if (pgdat->proactive_compact_trigger)
2843                                 continue;
2844
2845                         pgdat->proactive_compact_trigger = true;
2846                         trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, -1,
2847                                                              pgdat->nr_zones - 1);
2848                         wake_up_interruptible(&pgdat->kcompactd_wait);
2849                 }
2850         }
2851
2852         return 0;
2853 }
2854
2855 /*
2856  * This is the entry point for compacting all nodes via
2857  * /proc/sys/vm/compact_memory
2858  */
2859 static int sysctl_compaction_handler(struct ctl_table *table, int write,
2860                         void *buffer, size_t *length, loff_t *ppos)
2861 {
2862         int ret;
2863
2864         ret = proc_dointvec(table, write, buffer, length, ppos);
2865         if (ret)
2866                 return ret;
2867
2868         if (sysctl_compact_memory != 1)
2869                 return -EINVAL;
2870
2871         if (write)
2872                 compact_nodes();
2873
2874         return 0;
2875 }
2876
2877 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
2878 static ssize_t compact_store(struct device *dev,
2879                              struct device_attribute *attr,
2880                              const char *buf, size_t count)
2881 {
2882         int nid = dev->id;
2883
2884         if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
2885                 /* Flush pending updates to the LRU lists */
2886                 lru_add_drain_all();
2887
2888                 compact_node(nid);
2889         }
2890
2891         return count;
2892 }
2893 static DEVICE_ATTR_WO(compact);
2894
2895 int compaction_register_node(struct node *node)
2896 {
2897         return device_create_file(&node->dev, &dev_attr_compact);
2898 }
2899
2900 void compaction_unregister_node(struct node *node)
2901 {
2902         return device_remove_file(&node->dev, &dev_attr_compact);
2903 }
2904 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
2905
2906 static inline bool kcompactd_work_requested(pg_data_t *pgdat)
2907 {
2908         return pgdat->kcompactd_max_order > 0 || kthread_should_stop() ||
2909                 pgdat->proactive_compact_trigger;
2910 }
2911
2912 static bool kcompactd_node_suitable(pg_data_t *pgdat)
2913 {
2914         int zoneid;
2915         struct zone *zone;
2916         enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx;
2917
2918         for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) {
2919                 zone = &pgdat->node_zones[zoneid];
2920
2921                 if (!populated_zone(zone))
2922                         continue;
2923
2924                 /* Allocation can already succeed, check other zones */
2925                 if (zone_watermark_ok(zone, pgdat->kcompactd_max_order,
2926                                       min_wmark_pages(zone),
2927                                       highest_zoneidx, 0))
2928                         continue;
2929
2930                 if (compaction_suitable(zone, pgdat->kcompactd_max_order,
2931                                         highest_zoneidx))
2932                         return true;
2933         }
2934
2935         return false;
2936 }
2937
2938 static void kcompactd_do_work(pg_data_t *pgdat)
2939 {
2940         /*
2941          * With no special task, compact all zones so that a page of requested
2942          * order is allocatable.
2943          */
2944         int zoneid;
2945         struct zone *zone;
2946         struct compact_control cc = {
2947                 .order = pgdat->kcompactd_max_order,
2948                 .search_order = pgdat->kcompactd_max_order,
2949                 .highest_zoneidx = pgdat->kcompactd_highest_zoneidx,
2950                 .mode = MIGRATE_SYNC_LIGHT,
2951                 .ignore_skip_hint = false,
2952                 .gfp_mask = GFP_KERNEL,
2953         };
2954         trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
2955                                                         cc.highest_zoneidx);
2956         count_compact_event(KCOMPACTD_WAKE);
2957
2958         for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) {
2959                 int status;
2960
2961                 zone = &pgdat->node_zones[zoneid];
2962                 if (!populated_zone(zone))
2963                         continue;
2964
2965                 if (compaction_deferred(zone, cc.order))
2966                         continue;
2967
2968                 /* Allocation can already succeed, nothing to do */
2969                 if (zone_watermark_ok(zone, cc.order,
2970                                       min_wmark_pages(zone), zoneid, 0))
2971                         continue;
2972
2973                 if (!compaction_suitable(zone, cc.order, zoneid))
2974                         continue;
2975
2976                 if (kthread_should_stop())
2977                         return;
2978
2979                 cc.zone = zone;
2980                 status = compact_zone(&cc, NULL);
2981
2982                 if (status == COMPACT_SUCCESS) {
2983                         compaction_defer_reset(zone, cc.order, false);
2984                 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
2985                         /*
2986                          * Buddy pages may become stranded on pcps that could
2987                          * otherwise coalesce on the zone's free area for
2988                          * order >= cc.order.  This is ratelimited by the
2989                          * upcoming deferral.
2990                          */
2991                         drain_all_pages(zone);
2992
2993                         /*
2994                          * We use sync migration mode here, so we defer like
2995                          * sync direct compaction does.
2996                          */
2997                         defer_compaction(zone, cc.order);
2998                 }
2999
3000                 count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
3001                                      cc.total_migrate_scanned);
3002                 count_compact_events(KCOMPACTD_FREE_SCANNED,
3003                                      cc.total_free_scanned);
3004         }
3005
3006         /*
3007          * Regardless of success, we are done until woken up next. But remember
3008          * the requested order/highest_zoneidx in case it was higher/tighter
3009          * than our current ones
3010          */
3011         if (pgdat->kcompactd_max_order <= cc.order)
3012                 pgdat->kcompactd_max_order = 0;
3013         if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx)
3014                 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
3015 }
3016
3017 void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx)
3018 {
3019         if (!order)
3020                 return;
3021
3022         if (pgdat->kcompactd_max_order < order)
3023                 pgdat->kcompactd_max_order = order;
3024
3025         if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx)
3026                 pgdat->kcompactd_highest_zoneidx = highest_zoneidx;
3027
3028         /*
3029          * Pairs with implicit barrier in wait_event_freezable()
3030          * such that wakeups are not missed.
3031          */
3032         if (!wq_has_sleeper(&pgdat->kcompactd_wait))
3033                 return;
3034
3035         if (!kcompactd_node_suitable(pgdat))
3036                 return;
3037
3038         trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
3039                                                         highest_zoneidx);
3040         wake_up_interruptible(&pgdat->kcompactd_wait);
3041 }
3042
3043 /*
3044  * The background compaction daemon, started as a kernel thread
3045  * from the init process.
3046  */
3047 static int kcompactd(void *p)
3048 {
3049         pg_data_t *pgdat = (pg_data_t *)p;
3050         struct task_struct *tsk = current;
3051         long default_timeout = msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC);
3052         long timeout = default_timeout;
3053
3054         const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3055
3056         if (!cpumask_empty(cpumask))
3057                 set_cpus_allowed_ptr(tsk, cpumask);
3058
3059         set_freezable();
3060
3061         pgdat->kcompactd_max_order = 0;
3062         pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
3063
3064         while (!kthread_should_stop()) {
3065                 unsigned long pflags;
3066
3067                 /*
3068                  * Avoid the unnecessary wakeup for proactive compaction
3069                  * when it is disabled.
3070                  */
3071                 if (!sysctl_compaction_proactiveness)
3072                         timeout = MAX_SCHEDULE_TIMEOUT;
3073                 trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
3074                 if (wait_event_freezable_timeout(pgdat->kcompactd_wait,
3075                         kcompactd_work_requested(pgdat), timeout) &&
3076                         !pgdat->proactive_compact_trigger) {
3077
3078                         psi_memstall_enter(&pflags);
3079                         kcompactd_do_work(pgdat);
3080                         psi_memstall_leave(&pflags);
3081                         /*
3082                          * Reset the timeout value. The defer timeout from
3083                          * proactive compaction is lost here but that is fine
3084                          * as the condition of the zone changing substantionally
3085                          * then carrying on with the previous defer interval is
3086                          * not useful.
3087                          */
3088                         timeout = default_timeout;
3089                         continue;
3090                 }
3091
3092                 /*
3093                  * Start the proactive work with default timeout. Based
3094                  * on the fragmentation score, this timeout is updated.
3095                  */
3096                 timeout = default_timeout;
3097                 if (should_proactive_compact_node(pgdat)) {
3098                         unsigned int prev_score, score;
3099
3100                         prev_score = fragmentation_score_node(pgdat);
3101                         proactive_compact_node(pgdat);
3102                         score = fragmentation_score_node(pgdat);
3103                         /*
3104                          * Defer proactive compaction if the fragmentation
3105                          * score did not go down i.e. no progress made.
3106                          */
3107                         if (unlikely(score >= prev_score))
3108                                 timeout =
3109                                    default_timeout << COMPACT_MAX_DEFER_SHIFT;
3110                 }
3111                 if (unlikely(pgdat->proactive_compact_trigger))
3112                         pgdat->proactive_compact_trigger = false;
3113         }
3114
3115         return 0;
3116 }
3117
3118 /*
3119  * This kcompactd start function will be called by init and node-hot-add.
3120  * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
3121  */
3122 void __meminit kcompactd_run(int nid)
3123 {
3124         pg_data_t *pgdat = NODE_DATA(nid);
3125
3126         if (pgdat->kcompactd)
3127                 return;
3128
3129         pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
3130         if (IS_ERR(pgdat->kcompactd)) {
3131                 pr_err("Failed to start kcompactd on node %d\n", nid);
3132                 pgdat->kcompactd = NULL;
3133         }
3134 }
3135
3136 /*
3137  * Called by memory hotplug when all memory in a node is offlined. Caller must
3138  * be holding mem_hotplug_begin/done().
3139  */
3140 void __meminit kcompactd_stop(int nid)
3141 {
3142         struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
3143
3144         if (kcompactd) {
3145                 kthread_stop(kcompactd);
3146                 NODE_DATA(nid)->kcompactd = NULL;
3147         }
3148 }
3149
3150 /*
3151  * It's optimal to keep kcompactd on the same CPUs as their memory, but
3152  * not required for correctness. So if the last cpu in a node goes
3153  * away, we get changed to run anywhere: as the first one comes back,
3154  * restore their cpu bindings.
3155  */
3156 static int kcompactd_cpu_online(unsigned int cpu)
3157 {
3158         int nid;
3159
3160         for_each_node_state(nid, N_MEMORY) {
3161                 pg_data_t *pgdat = NODE_DATA(nid);
3162                 const struct cpumask *mask;
3163
3164                 mask = cpumask_of_node(pgdat->node_id);
3165
3166                 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3167                         /* One of our CPUs online: restore mask */
3168                         if (pgdat->kcompactd)
3169                                 set_cpus_allowed_ptr(pgdat->kcompactd, mask);
3170         }
3171         return 0;
3172 }
3173
3174 static int proc_dointvec_minmax_warn_RT_change(struct ctl_table *table,
3175                 int write, void *buffer, size_t *lenp, loff_t *ppos)
3176 {
3177         int ret, old;
3178
3179         if (!IS_ENABLED(CONFIG_PREEMPT_RT) || !write)
3180                 return proc_dointvec_minmax(table, write, buffer, lenp, ppos);
3181
3182         old = *(int *)table->data;
3183         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
3184         if (ret)
3185                 return ret;
3186         if (old != *(int *)table->data)
3187                 pr_warn_once("sysctl attribute %s changed by %s[%d]\n",
3188                              table->procname, current->comm,
3189                              task_pid_nr(current));
3190         return ret;
3191 }
3192
3193 static struct ctl_table vm_compaction[] = {
3194         {
3195                 .procname       = "compact_memory",
3196                 .data           = &sysctl_compact_memory,
3197                 .maxlen         = sizeof(int),
3198                 .mode           = 0200,
3199                 .proc_handler   = sysctl_compaction_handler,
3200         },
3201         {
3202                 .procname       = "compaction_proactiveness",
3203                 .data           = &sysctl_compaction_proactiveness,
3204                 .maxlen         = sizeof(sysctl_compaction_proactiveness),
3205                 .mode           = 0644,
3206                 .proc_handler   = compaction_proactiveness_sysctl_handler,
3207                 .extra1         = SYSCTL_ZERO,
3208                 .extra2         = SYSCTL_ONE_HUNDRED,
3209         },
3210         {
3211                 .procname       = "extfrag_threshold",
3212                 .data           = &sysctl_extfrag_threshold,
3213                 .maxlen         = sizeof(int),
3214                 .mode           = 0644,
3215                 .proc_handler   = proc_dointvec_minmax,
3216                 .extra1         = SYSCTL_ZERO,
3217                 .extra2         = SYSCTL_ONE_THOUSAND,
3218         },
3219         {
3220                 .procname       = "compact_unevictable_allowed",
3221                 .data           = &sysctl_compact_unevictable_allowed,
3222                 .maxlen         = sizeof(int),
3223                 .mode           = 0644,
3224                 .proc_handler   = proc_dointvec_minmax_warn_RT_change,
3225                 .extra1         = SYSCTL_ZERO,
3226                 .extra2         = SYSCTL_ONE,
3227         },
3228         { }
3229 };
3230
3231 static int __init kcompactd_init(void)
3232 {
3233         int nid;
3234         int ret;
3235
3236         ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3237                                         "mm/compaction:online",
3238                                         kcompactd_cpu_online, NULL);
3239         if (ret < 0) {
3240                 pr_err("kcompactd: failed to register hotplug callbacks.\n");
3241                 return ret;
3242         }
3243
3244         for_each_node_state(nid, N_MEMORY)
3245                 kcompactd_run(nid);
3246         register_sysctl_init("vm", vm_compaction);
3247         return 0;
3248 }
3249 subsys_initcall(kcompactd_init)
3250
3251 #endif /* CONFIG_COMPACTION */