thp: reduce usage of huge zero page's atomic counter
[platform/kernel/linux-exynos.git] / mm / bootmem.c
1 /*
2  *  bootmem - A boot-time physical memory allocator and configurator
3  *
4  *  Copyright (C) 1999 Ingo Molnar
5  *                1999 Kanoj Sarcar, SGI
6  *                2008 Johannes Weiner
7  *
8  * Access to this subsystem has to be serialized externally (which is true
9  * for the boot process anyway).
10  */
11 #include <linux/init.h>
12 #include <linux/pfn.h>
13 #include <linux/slab.h>
14 #include <linux/export.h>
15 #include <linux/kmemleak.h>
16 #include <linux/range.h>
17 #include <linux/bug.h>
18 #include <linux/io.h>
19 #include <linux/bootmem.h>
20
21 #include "internal.h"
22
23 #ifndef CONFIG_NEED_MULTIPLE_NODES
24 struct pglist_data __refdata contig_page_data = {
25         .bdata = &bootmem_node_data[0]
26 };
27 EXPORT_SYMBOL(contig_page_data);
28 #endif
29
30 unsigned long max_low_pfn;
31 unsigned long min_low_pfn;
32 unsigned long max_pfn;
33 unsigned long long max_possible_pfn;
34
35 bootmem_data_t bootmem_node_data[MAX_NUMNODES] __initdata;
36
37 static struct list_head bdata_list __initdata = LIST_HEAD_INIT(bdata_list);
38
39 static int bootmem_debug;
40
41 static int __init bootmem_debug_setup(char *buf)
42 {
43         bootmem_debug = 1;
44         return 0;
45 }
46 early_param("bootmem_debug", bootmem_debug_setup);
47
48 #define bdebug(fmt, args...) ({                         \
49         if (unlikely(bootmem_debug))                    \
50                 pr_info("bootmem::%s " fmt,             \
51                         __func__, ## args);             \
52 })
53
54 static unsigned long __init bootmap_bytes(unsigned long pages)
55 {
56         unsigned long bytes = DIV_ROUND_UP(pages, 8);
57
58         return ALIGN(bytes, sizeof(long));
59 }
60
61 /**
62  * bootmem_bootmap_pages - calculate bitmap size in pages
63  * @pages: number of pages the bitmap has to represent
64  */
65 unsigned long __init bootmem_bootmap_pages(unsigned long pages)
66 {
67         unsigned long bytes = bootmap_bytes(pages);
68
69         return PAGE_ALIGN(bytes) >> PAGE_SHIFT;
70 }
71
72 /*
73  * link bdata in order
74  */
75 static void __init link_bootmem(bootmem_data_t *bdata)
76 {
77         bootmem_data_t *ent;
78
79         list_for_each_entry(ent, &bdata_list, list) {
80                 if (bdata->node_min_pfn < ent->node_min_pfn) {
81                         list_add_tail(&bdata->list, &ent->list);
82                         return;
83                 }
84         }
85
86         list_add_tail(&bdata->list, &bdata_list);
87 }
88
89 /*
90  * Called once to set up the allocator itself.
91  */
92 static unsigned long __init init_bootmem_core(bootmem_data_t *bdata,
93         unsigned long mapstart, unsigned long start, unsigned long end)
94 {
95         unsigned long mapsize;
96
97         mminit_validate_memmodel_limits(&start, &end);
98         bdata->node_bootmem_map = phys_to_virt(PFN_PHYS(mapstart));
99         bdata->node_min_pfn = start;
100         bdata->node_low_pfn = end;
101         link_bootmem(bdata);
102
103         /*
104          * Initially all pages are reserved - setup_arch() has to
105          * register free RAM areas explicitly.
106          */
107         mapsize = bootmap_bytes(end - start);
108         memset(bdata->node_bootmem_map, 0xff, mapsize);
109
110         bdebug("nid=%td start=%lx map=%lx end=%lx mapsize=%lx\n",
111                 bdata - bootmem_node_data, start, mapstart, end, mapsize);
112
113         return mapsize;
114 }
115
116 /**
117  * init_bootmem_node - register a node as boot memory
118  * @pgdat: node to register
119  * @freepfn: pfn where the bitmap for this node is to be placed
120  * @startpfn: first pfn on the node
121  * @endpfn: first pfn after the node
122  *
123  * Returns the number of bytes needed to hold the bitmap for this node.
124  */
125 unsigned long __init init_bootmem_node(pg_data_t *pgdat, unsigned long freepfn,
126                                 unsigned long startpfn, unsigned long endpfn)
127 {
128         return init_bootmem_core(pgdat->bdata, freepfn, startpfn, endpfn);
129 }
130
131 /**
132  * init_bootmem - register boot memory
133  * @start: pfn where the bitmap is to be placed
134  * @pages: number of available physical pages
135  *
136  * Returns the number of bytes needed to hold the bitmap.
137  */
138 unsigned long __init init_bootmem(unsigned long start, unsigned long pages)
139 {
140         max_low_pfn = pages;
141         min_low_pfn = start;
142         return init_bootmem_core(NODE_DATA(0)->bdata, start, 0, pages);
143 }
144
145 /*
146  * free_bootmem_late - free bootmem pages directly to page allocator
147  * @addr: starting physical address of the range
148  * @size: size of the range in bytes
149  *
150  * This is only useful when the bootmem allocator has already been torn
151  * down, but we are still initializing the system.  Pages are given directly
152  * to the page allocator, no bootmem metadata is updated because it is gone.
153  */
154 void __init free_bootmem_late(unsigned long physaddr, unsigned long size)
155 {
156         unsigned long cursor, end;
157
158         kmemleak_free_part(__va(physaddr), size);
159
160         cursor = PFN_UP(physaddr);
161         end = PFN_DOWN(physaddr + size);
162
163         for (; cursor < end; cursor++) {
164                 __free_pages_bootmem(pfn_to_page(cursor), cursor, 0);
165                 totalram_pages++;
166         }
167 }
168
169 static unsigned long __init free_all_bootmem_core(bootmem_data_t *bdata)
170 {
171         struct page *page;
172         unsigned long *map, start, end, pages, cur, count = 0;
173
174         if (!bdata->node_bootmem_map)
175                 return 0;
176
177         map = bdata->node_bootmem_map;
178         start = bdata->node_min_pfn;
179         end = bdata->node_low_pfn;
180
181         bdebug("nid=%td start=%lx end=%lx\n",
182                 bdata - bootmem_node_data, start, end);
183
184         while (start < end) {
185                 unsigned long idx, vec;
186                 unsigned shift;
187
188                 idx = start - bdata->node_min_pfn;
189                 shift = idx & (BITS_PER_LONG - 1);
190                 /*
191                  * vec holds at most BITS_PER_LONG map bits,
192                  * bit 0 corresponds to start.
193                  */
194                 vec = ~map[idx / BITS_PER_LONG];
195
196                 if (shift) {
197                         vec >>= shift;
198                         if (end - start >= BITS_PER_LONG)
199                                 vec |= ~map[idx / BITS_PER_LONG + 1] <<
200                                         (BITS_PER_LONG - shift);
201                 }
202                 /*
203                  * If we have a properly aligned and fully unreserved
204                  * BITS_PER_LONG block of pages in front of us, free
205                  * it in one go.
206                  */
207                 if (IS_ALIGNED(start, BITS_PER_LONG) && vec == ~0UL) {
208                         int order = ilog2(BITS_PER_LONG);
209
210                         __free_pages_bootmem(pfn_to_page(start), start, order);
211                         count += BITS_PER_LONG;
212                         start += BITS_PER_LONG;
213                 } else {
214                         cur = start;
215
216                         start = ALIGN(start + 1, BITS_PER_LONG);
217                         while (vec && cur != start) {
218                                 if (vec & 1) {
219                                         page = pfn_to_page(cur);
220                                         __free_pages_bootmem(page, cur, 0);
221                                         count++;
222                                 }
223                                 vec >>= 1;
224                                 ++cur;
225                         }
226                 }
227         }
228
229         cur = bdata->node_min_pfn;
230         page = virt_to_page(bdata->node_bootmem_map);
231         pages = bdata->node_low_pfn - bdata->node_min_pfn;
232         pages = bootmem_bootmap_pages(pages);
233         count += pages;
234         while (pages--)
235                 __free_pages_bootmem(page++, cur++, 0);
236         bdata->node_bootmem_map = NULL;
237
238         bdebug("nid=%td released=%lx\n", bdata - bootmem_node_data, count);
239
240         return count;
241 }
242
243 static int reset_managed_pages_done __initdata;
244
245 void reset_node_managed_pages(pg_data_t *pgdat)
246 {
247         struct zone *z;
248
249         for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
250                 z->managed_pages = 0;
251 }
252
253 void __init reset_all_zones_managed_pages(void)
254 {
255         struct pglist_data *pgdat;
256
257         if (reset_managed_pages_done)
258                 return;
259
260         for_each_online_pgdat(pgdat)
261                 reset_node_managed_pages(pgdat);
262
263         reset_managed_pages_done = 1;
264 }
265
266 /**
267  * free_all_bootmem - release free pages to the buddy allocator
268  *
269  * Returns the number of pages actually released.
270  */
271 unsigned long __init free_all_bootmem(void)
272 {
273         unsigned long total_pages = 0;
274         bootmem_data_t *bdata;
275
276         reset_all_zones_managed_pages();
277
278         list_for_each_entry(bdata, &bdata_list, list)
279                 total_pages += free_all_bootmem_core(bdata);
280
281         totalram_pages += total_pages;
282
283         return total_pages;
284 }
285
286 static void __init __free(bootmem_data_t *bdata,
287                         unsigned long sidx, unsigned long eidx)
288 {
289         unsigned long idx;
290
291         bdebug("nid=%td start=%lx end=%lx\n", bdata - bootmem_node_data,
292                 sidx + bdata->node_min_pfn,
293                 eidx + bdata->node_min_pfn);
294
295         if (WARN_ON(bdata->node_bootmem_map == NULL))
296                 return;
297
298         if (bdata->hint_idx > sidx)
299                 bdata->hint_idx = sidx;
300
301         for (idx = sidx; idx < eidx; idx++)
302                 if (!test_and_clear_bit(idx, bdata->node_bootmem_map))
303                         BUG();
304 }
305
306 static int __init __reserve(bootmem_data_t *bdata, unsigned long sidx,
307                         unsigned long eidx, int flags)
308 {
309         unsigned long idx;
310         int exclusive = flags & BOOTMEM_EXCLUSIVE;
311
312         bdebug("nid=%td start=%lx end=%lx flags=%x\n",
313                 bdata - bootmem_node_data,
314                 sidx + bdata->node_min_pfn,
315                 eidx + bdata->node_min_pfn,
316                 flags);
317
318         if (WARN_ON(bdata->node_bootmem_map == NULL))
319                 return 0;
320
321         for (idx = sidx; idx < eidx; idx++)
322                 if (test_and_set_bit(idx, bdata->node_bootmem_map)) {
323                         if (exclusive) {
324                                 __free(bdata, sidx, idx);
325                                 return -EBUSY;
326                         }
327                         bdebug("silent double reserve of PFN %lx\n",
328                                 idx + bdata->node_min_pfn);
329                 }
330         return 0;
331 }
332
333 static int __init mark_bootmem_node(bootmem_data_t *bdata,
334                                 unsigned long start, unsigned long end,
335                                 int reserve, int flags)
336 {
337         unsigned long sidx, eidx;
338
339         bdebug("nid=%td start=%lx end=%lx reserve=%d flags=%x\n",
340                 bdata - bootmem_node_data, start, end, reserve, flags);
341
342         BUG_ON(start < bdata->node_min_pfn);
343         BUG_ON(end > bdata->node_low_pfn);
344
345         sidx = start - bdata->node_min_pfn;
346         eidx = end - bdata->node_min_pfn;
347
348         if (reserve)
349                 return __reserve(bdata, sidx, eidx, flags);
350         else
351                 __free(bdata, sidx, eidx);
352         return 0;
353 }
354
355 static int __init mark_bootmem(unsigned long start, unsigned long end,
356                                 int reserve, int flags)
357 {
358         unsigned long pos;
359         bootmem_data_t *bdata;
360
361         pos = start;
362         list_for_each_entry(bdata, &bdata_list, list) {
363                 int err;
364                 unsigned long max;
365
366                 if (pos < bdata->node_min_pfn ||
367                     pos >= bdata->node_low_pfn) {
368                         BUG_ON(pos != start);
369                         continue;
370                 }
371
372                 max = min(bdata->node_low_pfn, end);
373
374                 err = mark_bootmem_node(bdata, pos, max, reserve, flags);
375                 if (reserve && err) {
376                         mark_bootmem(start, pos, 0, 0);
377                         return err;
378                 }
379
380                 if (max == end)
381                         return 0;
382                 pos = bdata->node_low_pfn;
383         }
384         BUG();
385 }
386
387 /**
388  * free_bootmem_node - mark a page range as usable
389  * @pgdat: node the range resides on
390  * @physaddr: starting address of the range
391  * @size: size of the range in bytes
392  *
393  * Partial pages will be considered reserved and left as they are.
394  *
395  * The range must reside completely on the specified node.
396  */
397 void __init free_bootmem_node(pg_data_t *pgdat, unsigned long physaddr,
398                               unsigned long size)
399 {
400         unsigned long start, end;
401
402         kmemleak_free_part(__va(physaddr), size);
403
404         start = PFN_UP(physaddr);
405         end = PFN_DOWN(physaddr + size);
406
407         mark_bootmem_node(pgdat->bdata, start, end, 0, 0);
408 }
409
410 /**
411  * free_bootmem - mark a page range as usable
412  * @addr: starting physical address of the range
413  * @size: size of the range in bytes
414  *
415  * Partial pages will be considered reserved and left as they are.
416  *
417  * The range must be contiguous but may span node boundaries.
418  */
419 void __init free_bootmem(unsigned long physaddr, unsigned long size)
420 {
421         unsigned long start, end;
422
423         kmemleak_free_part(__va(physaddr), size);
424
425         start = PFN_UP(physaddr);
426         end = PFN_DOWN(physaddr + size);
427
428         mark_bootmem(start, end, 0, 0);
429 }
430
431 /**
432  * reserve_bootmem_node - mark a page range as reserved
433  * @pgdat: node the range resides on
434  * @physaddr: starting address of the range
435  * @size: size of the range in bytes
436  * @flags: reservation flags (see linux/bootmem.h)
437  *
438  * Partial pages will be reserved.
439  *
440  * The range must reside completely on the specified node.
441  */
442 int __init reserve_bootmem_node(pg_data_t *pgdat, unsigned long physaddr,
443                                  unsigned long size, int flags)
444 {
445         unsigned long start, end;
446
447         start = PFN_DOWN(physaddr);
448         end = PFN_UP(physaddr + size);
449
450         return mark_bootmem_node(pgdat->bdata, start, end, 1, flags);
451 }
452
453 /**
454  * reserve_bootmem - mark a page range as reserved
455  * @addr: starting address of the range
456  * @size: size of the range in bytes
457  * @flags: reservation flags (see linux/bootmem.h)
458  *
459  * Partial pages will be reserved.
460  *
461  * The range must be contiguous but may span node boundaries.
462  */
463 int __init reserve_bootmem(unsigned long addr, unsigned long size,
464                             int flags)
465 {
466         unsigned long start, end;
467
468         start = PFN_DOWN(addr);
469         end = PFN_UP(addr + size);
470
471         return mark_bootmem(start, end, 1, flags);
472 }
473
474 static unsigned long __init align_idx(struct bootmem_data *bdata,
475                                       unsigned long idx, unsigned long step)
476 {
477         unsigned long base = bdata->node_min_pfn;
478
479         /*
480          * Align the index with respect to the node start so that the
481          * combination of both satisfies the requested alignment.
482          */
483
484         return ALIGN(base + idx, step) - base;
485 }
486
487 static unsigned long __init align_off(struct bootmem_data *bdata,
488                                       unsigned long off, unsigned long align)
489 {
490         unsigned long base = PFN_PHYS(bdata->node_min_pfn);
491
492         /* Same as align_idx for byte offsets */
493
494         return ALIGN(base + off, align) - base;
495 }
496
497 static void * __init alloc_bootmem_bdata(struct bootmem_data *bdata,
498                                         unsigned long size, unsigned long align,
499                                         unsigned long goal, unsigned long limit)
500 {
501         unsigned long fallback = 0;
502         unsigned long min, max, start, sidx, midx, step;
503
504         bdebug("nid=%td size=%lx [%lu pages] align=%lx goal=%lx limit=%lx\n",
505                 bdata - bootmem_node_data, size, PAGE_ALIGN(size) >> PAGE_SHIFT,
506                 align, goal, limit);
507
508         BUG_ON(!size);
509         BUG_ON(align & (align - 1));
510         BUG_ON(limit && goal + size > limit);
511
512         if (!bdata->node_bootmem_map)
513                 return NULL;
514
515         min = bdata->node_min_pfn;
516         max = bdata->node_low_pfn;
517
518         goal >>= PAGE_SHIFT;
519         limit >>= PAGE_SHIFT;
520
521         if (limit && max > limit)
522                 max = limit;
523         if (max <= min)
524                 return NULL;
525
526         step = max(align >> PAGE_SHIFT, 1UL);
527
528         if (goal && min < goal && goal < max)
529                 start = ALIGN(goal, step);
530         else
531                 start = ALIGN(min, step);
532
533         sidx = start - bdata->node_min_pfn;
534         midx = max - bdata->node_min_pfn;
535
536         if (bdata->hint_idx > sidx) {
537                 /*
538                  * Handle the valid case of sidx being zero and still
539                  * catch the fallback below.
540                  */
541                 fallback = sidx + 1;
542                 sidx = align_idx(bdata, bdata->hint_idx, step);
543         }
544
545         while (1) {
546                 int merge;
547                 void *region;
548                 unsigned long eidx, i, start_off, end_off;
549 find_block:
550                 sidx = find_next_zero_bit(bdata->node_bootmem_map, midx, sidx);
551                 sidx = align_idx(bdata, sidx, step);
552                 eidx = sidx + PFN_UP(size);
553
554                 if (sidx >= midx || eidx > midx)
555                         break;
556
557                 for (i = sidx; i < eidx; i++)
558                         if (test_bit(i, bdata->node_bootmem_map)) {
559                                 sidx = align_idx(bdata, i, step);
560                                 if (sidx == i)
561                                         sidx += step;
562                                 goto find_block;
563                         }
564
565                 if (bdata->last_end_off & (PAGE_SIZE - 1) &&
566                                 PFN_DOWN(bdata->last_end_off) + 1 == sidx)
567                         start_off = align_off(bdata, bdata->last_end_off, align);
568                 else
569                         start_off = PFN_PHYS(sidx);
570
571                 merge = PFN_DOWN(start_off) < sidx;
572                 end_off = start_off + size;
573
574                 bdata->last_end_off = end_off;
575                 bdata->hint_idx = PFN_UP(end_off);
576
577                 /*
578                  * Reserve the area now:
579                  */
580                 if (__reserve(bdata, PFN_DOWN(start_off) + merge,
581                                 PFN_UP(end_off), BOOTMEM_EXCLUSIVE))
582                         BUG();
583
584                 region = phys_to_virt(PFN_PHYS(bdata->node_min_pfn) +
585                                 start_off);
586                 memset(region, 0, size);
587                 /*
588                  * The min_count is set to 0 so that bootmem allocated blocks
589                  * are never reported as leaks.
590                  */
591                 kmemleak_alloc(region, size, 0, 0);
592                 return region;
593         }
594
595         if (fallback) {
596                 sidx = align_idx(bdata, fallback - 1, step);
597                 fallback = 0;
598                 goto find_block;
599         }
600
601         return NULL;
602 }
603
604 static void * __init alloc_bootmem_core(unsigned long size,
605                                         unsigned long align,
606                                         unsigned long goal,
607                                         unsigned long limit)
608 {
609         bootmem_data_t *bdata;
610         void *region;
611
612         if (WARN_ON_ONCE(slab_is_available()))
613                 return kzalloc(size, GFP_NOWAIT);
614
615         list_for_each_entry(bdata, &bdata_list, list) {
616                 if (goal && bdata->node_low_pfn <= PFN_DOWN(goal))
617                         continue;
618                 if (limit && bdata->node_min_pfn >= PFN_DOWN(limit))
619                         break;
620
621                 region = alloc_bootmem_bdata(bdata, size, align, goal, limit);
622                 if (region)
623                         return region;
624         }
625
626         return NULL;
627 }
628
629 static void * __init ___alloc_bootmem_nopanic(unsigned long size,
630                                               unsigned long align,
631                                               unsigned long goal,
632                                               unsigned long limit)
633 {
634         void *ptr;
635
636 restart:
637         ptr = alloc_bootmem_core(size, align, goal, limit);
638         if (ptr)
639                 return ptr;
640         if (goal) {
641                 goal = 0;
642                 goto restart;
643         }
644
645         return NULL;
646 }
647
648 /**
649  * __alloc_bootmem_nopanic - allocate boot memory without panicking
650  * @size: size of the request in bytes
651  * @align: alignment of the region
652  * @goal: preferred starting address of the region
653  *
654  * The goal is dropped if it can not be satisfied and the allocation will
655  * fall back to memory below @goal.
656  *
657  * Allocation may happen on any node in the system.
658  *
659  * Returns NULL on failure.
660  */
661 void * __init __alloc_bootmem_nopanic(unsigned long size, unsigned long align,
662                                         unsigned long goal)
663 {
664         unsigned long limit = 0;
665
666         return ___alloc_bootmem_nopanic(size, align, goal, limit);
667 }
668
669 static void * __init ___alloc_bootmem(unsigned long size, unsigned long align,
670                                         unsigned long goal, unsigned long limit)
671 {
672         void *mem = ___alloc_bootmem_nopanic(size, align, goal, limit);
673
674         if (mem)
675                 return mem;
676         /*
677          * Whoops, we cannot satisfy the allocation request.
678          */
679         pr_alert("bootmem alloc of %lu bytes failed!\n", size);
680         panic("Out of memory");
681         return NULL;
682 }
683
684 /**
685  * __alloc_bootmem - allocate boot memory
686  * @size: size of the request in bytes
687  * @align: alignment of the region
688  * @goal: preferred starting address of the region
689  *
690  * The goal is dropped if it can not be satisfied and the allocation will
691  * fall back to memory below @goal.
692  *
693  * Allocation may happen on any node in the system.
694  *
695  * The function panics if the request can not be satisfied.
696  */
697 void * __init __alloc_bootmem(unsigned long size, unsigned long align,
698                               unsigned long goal)
699 {
700         unsigned long limit = 0;
701
702         return ___alloc_bootmem(size, align, goal, limit);
703 }
704
705 void * __init ___alloc_bootmem_node_nopanic(pg_data_t *pgdat,
706                                 unsigned long size, unsigned long align,
707                                 unsigned long goal, unsigned long limit)
708 {
709         void *ptr;
710
711         if (WARN_ON_ONCE(slab_is_available()))
712                 return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
713 again:
714
715         /* do not panic in alloc_bootmem_bdata() */
716         if (limit && goal + size > limit)
717                 limit = 0;
718
719         ptr = alloc_bootmem_bdata(pgdat->bdata, size, align, goal, limit);
720         if (ptr)
721                 return ptr;
722
723         ptr = alloc_bootmem_core(size, align, goal, limit);
724         if (ptr)
725                 return ptr;
726
727         if (goal) {
728                 goal = 0;
729                 goto again;
730         }
731
732         return NULL;
733 }
734
735 void * __init __alloc_bootmem_node_nopanic(pg_data_t *pgdat, unsigned long size,
736                                    unsigned long align, unsigned long goal)
737 {
738         return ___alloc_bootmem_node_nopanic(pgdat, size, align, goal, 0);
739 }
740
741 void * __init ___alloc_bootmem_node(pg_data_t *pgdat, unsigned long size,
742                                     unsigned long align, unsigned long goal,
743                                     unsigned long limit)
744 {
745         void *ptr;
746
747         ptr = ___alloc_bootmem_node_nopanic(pgdat, size, align, goal, 0);
748         if (ptr)
749                 return ptr;
750
751         pr_alert("bootmem alloc of %lu bytes failed!\n", size);
752         panic("Out of memory");
753         return NULL;
754 }
755
756 /**
757  * __alloc_bootmem_node - allocate boot memory from a specific node
758  * @pgdat: node to allocate from
759  * @size: size of the request in bytes
760  * @align: alignment of the region
761  * @goal: preferred starting address of the region
762  *
763  * The goal is dropped if it can not be satisfied and the allocation will
764  * fall back to memory below @goal.
765  *
766  * Allocation may fall back to any node in the system if the specified node
767  * can not hold the requested memory.
768  *
769  * The function panics if the request can not be satisfied.
770  */
771 void * __init __alloc_bootmem_node(pg_data_t *pgdat, unsigned long size,
772                                    unsigned long align, unsigned long goal)
773 {
774         if (WARN_ON_ONCE(slab_is_available()))
775                 return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
776
777         return  ___alloc_bootmem_node(pgdat, size, align, goal, 0);
778 }
779
780 void * __init __alloc_bootmem_node_high(pg_data_t *pgdat, unsigned long size,
781                                    unsigned long align, unsigned long goal)
782 {
783 #ifdef MAX_DMA32_PFN
784         unsigned long end_pfn;
785
786         if (WARN_ON_ONCE(slab_is_available()))
787                 return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
788
789         /* update goal according ...MAX_DMA32_PFN */
790         end_pfn = pgdat_end_pfn(pgdat);
791
792         if (end_pfn > MAX_DMA32_PFN + (128 >> (20 - PAGE_SHIFT)) &&
793             (goal >> PAGE_SHIFT) < MAX_DMA32_PFN) {
794                 void *ptr;
795                 unsigned long new_goal;
796
797                 new_goal = MAX_DMA32_PFN << PAGE_SHIFT;
798                 ptr = alloc_bootmem_bdata(pgdat->bdata, size, align,
799                                                  new_goal, 0);
800                 if (ptr)
801                         return ptr;
802         }
803 #endif
804
805         return __alloc_bootmem_node(pgdat, size, align, goal);
806
807 }
808
809 /**
810  * __alloc_bootmem_low - allocate low boot memory
811  * @size: size of the request in bytes
812  * @align: alignment of the region
813  * @goal: preferred starting address of the region
814  *
815  * The goal is dropped if it can not be satisfied and the allocation will
816  * fall back to memory below @goal.
817  *
818  * Allocation may happen on any node in the system.
819  *
820  * The function panics if the request can not be satisfied.
821  */
822 void * __init __alloc_bootmem_low(unsigned long size, unsigned long align,
823                                   unsigned long goal)
824 {
825         return ___alloc_bootmem(size, align, goal, ARCH_LOW_ADDRESS_LIMIT);
826 }
827
828 void * __init __alloc_bootmem_low_nopanic(unsigned long size,
829                                           unsigned long align,
830                                           unsigned long goal)
831 {
832         return ___alloc_bootmem_nopanic(size, align, goal,
833                                         ARCH_LOW_ADDRESS_LIMIT);
834 }
835
836 /**
837  * __alloc_bootmem_low_node - allocate low boot memory from a specific node
838  * @pgdat: node to allocate from
839  * @size: size of the request in bytes
840  * @align: alignment of the region
841  * @goal: preferred starting address of the region
842  *
843  * The goal is dropped if it can not be satisfied and the allocation will
844  * fall back to memory below @goal.
845  *
846  * Allocation may fall back to any node in the system if the specified node
847  * can not hold the requested memory.
848  *
849  * The function panics if the request can not be satisfied.
850  */
851 void * __init __alloc_bootmem_low_node(pg_data_t *pgdat, unsigned long size,
852                                        unsigned long align, unsigned long goal)
853 {
854         if (WARN_ON_ONCE(slab_is_available()))
855                 return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
856
857         return ___alloc_bootmem_node(pgdat, size, align,
858                                      goal, ARCH_LOW_ADDRESS_LIMIT);
859 }