Merge branches '3.14/fbdev', '3.14/dss-misc' and '3.14/dss-fclk' into for-next
[platform/adaptation/renesas_rcar/renesas_kernel.git] / mm / bootmem.c
1 /*
2  *  bootmem - A boot-time physical memory allocator and configurator
3  *
4  *  Copyright (C) 1999 Ingo Molnar
5  *                1999 Kanoj Sarcar, SGI
6  *                2008 Johannes Weiner
7  *
8  * Access to this subsystem has to be serialized externally (which is true
9  * for the boot process anyway).
10  */
11 #include <linux/init.h>
12 #include <linux/pfn.h>
13 #include <linux/slab.h>
14 #include <linux/bootmem.h>
15 #include <linux/export.h>
16 #include <linux/kmemleak.h>
17 #include <linux/range.h>
18 #include <linux/memblock.h>
19
20 #include <asm/bug.h>
21 #include <asm/io.h>
22 #include <asm/processor.h>
23
24 #include "internal.h"
25
26 #ifndef CONFIG_NEED_MULTIPLE_NODES
27 struct pglist_data __refdata contig_page_data = {
28         .bdata = &bootmem_node_data[0]
29 };
30 EXPORT_SYMBOL(contig_page_data);
31 #endif
32
33 unsigned long max_low_pfn;
34 unsigned long min_low_pfn;
35 unsigned long max_pfn;
36
37 bootmem_data_t bootmem_node_data[MAX_NUMNODES] __initdata;
38
39 static struct list_head bdata_list __initdata = LIST_HEAD_INIT(bdata_list);
40
41 static int bootmem_debug;
42
43 static int __init bootmem_debug_setup(char *buf)
44 {
45         bootmem_debug = 1;
46         return 0;
47 }
48 early_param("bootmem_debug", bootmem_debug_setup);
49
50 #define bdebug(fmt, args...) ({                         \
51         if (unlikely(bootmem_debug))                    \
52                 printk(KERN_INFO                        \
53                         "bootmem::%s " fmt,             \
54                         __func__, ## args);             \
55 })
56
57 static unsigned long __init bootmap_bytes(unsigned long pages)
58 {
59         unsigned long bytes = DIV_ROUND_UP(pages, 8);
60
61         return ALIGN(bytes, sizeof(long));
62 }
63
64 /**
65  * bootmem_bootmap_pages - calculate bitmap size in pages
66  * @pages: number of pages the bitmap has to represent
67  */
68 unsigned long __init bootmem_bootmap_pages(unsigned long pages)
69 {
70         unsigned long bytes = bootmap_bytes(pages);
71
72         return PAGE_ALIGN(bytes) >> PAGE_SHIFT;
73 }
74
75 /*
76  * link bdata in order
77  */
78 static void __init link_bootmem(bootmem_data_t *bdata)
79 {
80         bootmem_data_t *ent;
81
82         list_for_each_entry(ent, &bdata_list, list) {
83                 if (bdata->node_min_pfn < ent->node_min_pfn) {
84                         list_add_tail(&bdata->list, &ent->list);
85                         return;
86                 }
87         }
88
89         list_add_tail(&bdata->list, &bdata_list);
90 }
91
92 /*
93  * Called once to set up the allocator itself.
94  */
95 static unsigned long __init init_bootmem_core(bootmem_data_t *bdata,
96         unsigned long mapstart, unsigned long start, unsigned long end)
97 {
98         unsigned long mapsize;
99
100         mminit_validate_memmodel_limits(&start, &end);
101         bdata->node_bootmem_map = phys_to_virt(PFN_PHYS(mapstart));
102         bdata->node_min_pfn = start;
103         bdata->node_low_pfn = end;
104         link_bootmem(bdata);
105
106         /*
107          * Initially all pages are reserved - setup_arch() has to
108          * register free RAM areas explicitly.
109          */
110         mapsize = bootmap_bytes(end - start);
111         memset(bdata->node_bootmem_map, 0xff, mapsize);
112
113         bdebug("nid=%td start=%lx map=%lx end=%lx mapsize=%lx\n",
114                 bdata - bootmem_node_data, start, mapstart, end, mapsize);
115
116         return mapsize;
117 }
118
119 /**
120  * init_bootmem_node - register a node as boot memory
121  * @pgdat: node to register
122  * @freepfn: pfn where the bitmap for this node is to be placed
123  * @startpfn: first pfn on the node
124  * @endpfn: first pfn after the node
125  *
126  * Returns the number of bytes needed to hold the bitmap for this node.
127  */
128 unsigned long __init init_bootmem_node(pg_data_t *pgdat, unsigned long freepfn,
129                                 unsigned long startpfn, unsigned long endpfn)
130 {
131         return init_bootmem_core(pgdat->bdata, freepfn, startpfn, endpfn);
132 }
133
134 /**
135  * init_bootmem - register boot memory
136  * @start: pfn where the bitmap is to be placed
137  * @pages: number of available physical pages
138  *
139  * Returns the number of bytes needed to hold the bitmap.
140  */
141 unsigned long __init init_bootmem(unsigned long start, unsigned long pages)
142 {
143         max_low_pfn = pages;
144         min_low_pfn = start;
145         return init_bootmem_core(NODE_DATA(0)->bdata, start, 0, pages);
146 }
147
148 /*
149  * free_bootmem_late - free bootmem pages directly to page allocator
150  * @addr: starting physical address of the range
151  * @size: size of the range in bytes
152  *
153  * This is only useful when the bootmem allocator has already been torn
154  * down, but we are still initializing the system.  Pages are given directly
155  * to the page allocator, no bootmem metadata is updated because it is gone.
156  */
157 void __init free_bootmem_late(unsigned long physaddr, unsigned long size)
158 {
159         unsigned long cursor, end;
160
161         kmemleak_free_part(__va(physaddr), size);
162
163         cursor = PFN_UP(physaddr);
164         end = PFN_DOWN(physaddr + size);
165
166         for (; cursor < end; cursor++) {
167                 __free_pages_bootmem(pfn_to_page(cursor), 0);
168                 totalram_pages++;
169         }
170 }
171
172 static unsigned long __init free_all_bootmem_core(bootmem_data_t *bdata)
173 {
174         struct page *page;
175         unsigned long *map, start, end, pages, count = 0;
176
177         if (!bdata->node_bootmem_map)
178                 return 0;
179
180         map = bdata->node_bootmem_map;
181         start = bdata->node_min_pfn;
182         end = bdata->node_low_pfn;
183
184         bdebug("nid=%td start=%lx end=%lx\n",
185                 bdata - bootmem_node_data, start, end);
186
187         while (start < end) {
188                 unsigned long idx, vec;
189                 unsigned shift;
190
191                 idx = start - bdata->node_min_pfn;
192                 shift = idx & (BITS_PER_LONG - 1);
193                 /*
194                  * vec holds at most BITS_PER_LONG map bits,
195                  * bit 0 corresponds to start.
196                  */
197                 vec = ~map[idx / BITS_PER_LONG];
198
199                 if (shift) {
200                         vec >>= shift;
201                         if (end - start >= BITS_PER_LONG)
202                                 vec |= ~map[idx / BITS_PER_LONG + 1] <<
203                                         (BITS_PER_LONG - shift);
204                 }
205                 /*
206                  * If we have a properly aligned and fully unreserved
207                  * BITS_PER_LONG block of pages in front of us, free
208                  * it in one go.
209                  */
210                 if (IS_ALIGNED(start, BITS_PER_LONG) && vec == ~0UL) {
211                         int order = ilog2(BITS_PER_LONG);
212
213                         __free_pages_bootmem(pfn_to_page(start), order);
214                         count += BITS_PER_LONG;
215                         start += BITS_PER_LONG;
216                 } else {
217                         unsigned long cur = start;
218
219                         start = ALIGN(start + 1, BITS_PER_LONG);
220                         while (vec && cur != start) {
221                                 if (vec & 1) {
222                                         page = pfn_to_page(cur);
223                                         __free_pages_bootmem(page, 0);
224                                         count++;
225                                 }
226                                 vec >>= 1;
227                                 ++cur;
228                         }
229                 }
230         }
231
232         page = virt_to_page(bdata->node_bootmem_map);
233         pages = bdata->node_low_pfn - bdata->node_min_pfn;
234         pages = bootmem_bootmap_pages(pages);
235         count += pages;
236         while (pages--)
237                 __free_pages_bootmem(page++, 0);
238
239         bdebug("nid=%td released=%lx\n", bdata - bootmem_node_data, count);
240
241         return count;
242 }
243
244 static int reset_managed_pages_done __initdata;
245
246 static inline void __init reset_node_managed_pages(pg_data_t *pgdat)
247 {
248         struct zone *z;
249
250         if (reset_managed_pages_done)
251                 return;
252
253         for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
254                 z->managed_pages = 0;
255 }
256
257 void __init reset_all_zones_managed_pages(void)
258 {
259         struct pglist_data *pgdat;
260
261         for_each_online_pgdat(pgdat)
262                 reset_node_managed_pages(pgdat);
263         reset_managed_pages_done = 1;
264 }
265
266 /**
267  * free_all_bootmem - release free pages to the buddy allocator
268  *
269  * Returns the number of pages actually released.
270  */
271 unsigned long __init free_all_bootmem(void)
272 {
273         unsigned long total_pages = 0;
274         bootmem_data_t *bdata;
275
276         reset_all_zones_managed_pages();
277
278         list_for_each_entry(bdata, &bdata_list, list)
279                 total_pages += free_all_bootmem_core(bdata);
280
281         totalram_pages += total_pages;
282
283         return total_pages;
284 }
285
286 static void __init __free(bootmem_data_t *bdata,
287                         unsigned long sidx, unsigned long eidx)
288 {
289         unsigned long idx;
290
291         bdebug("nid=%td start=%lx end=%lx\n", bdata - bootmem_node_data,
292                 sidx + bdata->node_min_pfn,
293                 eidx + bdata->node_min_pfn);
294
295         if (bdata->hint_idx > sidx)
296                 bdata->hint_idx = sidx;
297
298         for (idx = sidx; idx < eidx; idx++)
299                 if (!test_and_clear_bit(idx, bdata->node_bootmem_map))
300                         BUG();
301 }
302
303 static int __init __reserve(bootmem_data_t *bdata, unsigned long sidx,
304                         unsigned long eidx, int flags)
305 {
306         unsigned long idx;
307         int exclusive = flags & BOOTMEM_EXCLUSIVE;
308
309         bdebug("nid=%td start=%lx end=%lx flags=%x\n",
310                 bdata - bootmem_node_data,
311                 sidx + bdata->node_min_pfn,
312                 eidx + bdata->node_min_pfn,
313                 flags);
314
315         for (idx = sidx; idx < eidx; idx++)
316                 if (test_and_set_bit(idx, bdata->node_bootmem_map)) {
317                         if (exclusive) {
318                                 __free(bdata, sidx, idx);
319                                 return -EBUSY;
320                         }
321                         bdebug("silent double reserve of PFN %lx\n",
322                                 idx + bdata->node_min_pfn);
323                 }
324         return 0;
325 }
326
327 static int __init mark_bootmem_node(bootmem_data_t *bdata,
328                                 unsigned long start, unsigned long end,
329                                 int reserve, int flags)
330 {
331         unsigned long sidx, eidx;
332
333         bdebug("nid=%td start=%lx end=%lx reserve=%d flags=%x\n",
334                 bdata - bootmem_node_data, start, end, reserve, flags);
335
336         BUG_ON(start < bdata->node_min_pfn);
337         BUG_ON(end > bdata->node_low_pfn);
338
339         sidx = start - bdata->node_min_pfn;
340         eidx = end - bdata->node_min_pfn;
341
342         if (reserve)
343                 return __reserve(bdata, sidx, eidx, flags);
344         else
345                 __free(bdata, sidx, eidx);
346         return 0;
347 }
348
349 static int __init mark_bootmem(unsigned long start, unsigned long end,
350                                 int reserve, int flags)
351 {
352         unsigned long pos;
353         bootmem_data_t *bdata;
354
355         pos = start;
356         list_for_each_entry(bdata, &bdata_list, list) {
357                 int err;
358                 unsigned long max;
359
360                 if (pos < bdata->node_min_pfn ||
361                     pos >= bdata->node_low_pfn) {
362                         BUG_ON(pos != start);
363                         continue;
364                 }
365
366                 max = min(bdata->node_low_pfn, end);
367
368                 err = mark_bootmem_node(bdata, pos, max, reserve, flags);
369                 if (reserve && err) {
370                         mark_bootmem(start, pos, 0, 0);
371                         return err;
372                 }
373
374                 if (max == end)
375                         return 0;
376                 pos = bdata->node_low_pfn;
377         }
378         BUG();
379 }
380
381 /**
382  * free_bootmem_node - mark a page range as usable
383  * @pgdat: node the range resides on
384  * @physaddr: starting address of the range
385  * @size: size of the range in bytes
386  *
387  * Partial pages will be considered reserved and left as they are.
388  *
389  * The range must reside completely on the specified node.
390  */
391 void __init free_bootmem_node(pg_data_t *pgdat, unsigned long physaddr,
392                               unsigned long size)
393 {
394         unsigned long start, end;
395
396         kmemleak_free_part(__va(physaddr), size);
397
398         start = PFN_UP(physaddr);
399         end = PFN_DOWN(physaddr + size);
400
401         mark_bootmem_node(pgdat->bdata, start, end, 0, 0);
402 }
403
404 /**
405  * free_bootmem - mark a page range as usable
406  * @addr: starting physical address of the range
407  * @size: size of the range in bytes
408  *
409  * Partial pages will be considered reserved and left as they are.
410  *
411  * The range must be contiguous but may span node boundaries.
412  */
413 void __init free_bootmem(unsigned long physaddr, unsigned long size)
414 {
415         unsigned long start, end;
416
417         kmemleak_free_part(__va(physaddr), size);
418
419         start = PFN_UP(physaddr);
420         end = PFN_DOWN(physaddr + size);
421
422         mark_bootmem(start, end, 0, 0);
423 }
424
425 /**
426  * reserve_bootmem_node - mark a page range as reserved
427  * @pgdat: node the range resides on
428  * @physaddr: starting address of the range
429  * @size: size of the range in bytes
430  * @flags: reservation flags (see linux/bootmem.h)
431  *
432  * Partial pages will be reserved.
433  *
434  * The range must reside completely on the specified node.
435  */
436 int __init reserve_bootmem_node(pg_data_t *pgdat, unsigned long physaddr,
437                                  unsigned long size, int flags)
438 {
439         unsigned long start, end;
440
441         start = PFN_DOWN(physaddr);
442         end = PFN_UP(physaddr + size);
443
444         return mark_bootmem_node(pgdat->bdata, start, end, 1, flags);
445 }
446
447 /**
448  * reserve_bootmem - mark a page range as reserved
449  * @addr: starting address of the range
450  * @size: size of the range in bytes
451  * @flags: reservation flags (see linux/bootmem.h)
452  *
453  * Partial pages will be reserved.
454  *
455  * The range must be contiguous but may span node boundaries.
456  */
457 int __init reserve_bootmem(unsigned long addr, unsigned long size,
458                             int flags)
459 {
460         unsigned long start, end;
461
462         start = PFN_DOWN(addr);
463         end = PFN_UP(addr + size);
464
465         return mark_bootmem(start, end, 1, flags);
466 }
467
468 static unsigned long __init align_idx(struct bootmem_data *bdata,
469                                       unsigned long idx, unsigned long step)
470 {
471         unsigned long base = bdata->node_min_pfn;
472
473         /*
474          * Align the index with respect to the node start so that the
475          * combination of both satisfies the requested alignment.
476          */
477
478         return ALIGN(base + idx, step) - base;
479 }
480
481 static unsigned long __init align_off(struct bootmem_data *bdata,
482                                       unsigned long off, unsigned long align)
483 {
484         unsigned long base = PFN_PHYS(bdata->node_min_pfn);
485
486         /* Same as align_idx for byte offsets */
487
488         return ALIGN(base + off, align) - base;
489 }
490
491 static void * __init alloc_bootmem_bdata(struct bootmem_data *bdata,
492                                         unsigned long size, unsigned long align,
493                                         unsigned long goal, unsigned long limit)
494 {
495         unsigned long fallback = 0;
496         unsigned long min, max, start, sidx, midx, step;
497
498         bdebug("nid=%td size=%lx [%lu pages] align=%lx goal=%lx limit=%lx\n",
499                 bdata - bootmem_node_data, size, PAGE_ALIGN(size) >> PAGE_SHIFT,
500                 align, goal, limit);
501
502         BUG_ON(!size);
503         BUG_ON(align & (align - 1));
504         BUG_ON(limit && goal + size > limit);
505
506         if (!bdata->node_bootmem_map)
507                 return NULL;
508
509         min = bdata->node_min_pfn;
510         max = bdata->node_low_pfn;
511
512         goal >>= PAGE_SHIFT;
513         limit >>= PAGE_SHIFT;
514
515         if (limit && max > limit)
516                 max = limit;
517         if (max <= min)
518                 return NULL;
519
520         step = max(align >> PAGE_SHIFT, 1UL);
521
522         if (goal && min < goal && goal < max)
523                 start = ALIGN(goal, step);
524         else
525                 start = ALIGN(min, step);
526
527         sidx = start - bdata->node_min_pfn;
528         midx = max - bdata->node_min_pfn;
529
530         if (bdata->hint_idx > sidx) {
531                 /*
532                  * Handle the valid case of sidx being zero and still
533                  * catch the fallback below.
534                  */
535                 fallback = sidx + 1;
536                 sidx = align_idx(bdata, bdata->hint_idx, step);
537         }
538
539         while (1) {
540                 int merge;
541                 void *region;
542                 unsigned long eidx, i, start_off, end_off;
543 find_block:
544                 sidx = find_next_zero_bit(bdata->node_bootmem_map, midx, sidx);
545                 sidx = align_idx(bdata, sidx, step);
546                 eidx = sidx + PFN_UP(size);
547
548                 if (sidx >= midx || eidx > midx)
549                         break;
550
551                 for (i = sidx; i < eidx; i++)
552                         if (test_bit(i, bdata->node_bootmem_map)) {
553                                 sidx = align_idx(bdata, i, step);
554                                 if (sidx == i)
555                                         sidx += step;
556                                 goto find_block;
557                         }
558
559                 if (bdata->last_end_off & (PAGE_SIZE - 1) &&
560                                 PFN_DOWN(bdata->last_end_off) + 1 == sidx)
561                         start_off = align_off(bdata, bdata->last_end_off, align);
562                 else
563                         start_off = PFN_PHYS(sidx);
564
565                 merge = PFN_DOWN(start_off) < sidx;
566                 end_off = start_off + size;
567
568                 bdata->last_end_off = end_off;
569                 bdata->hint_idx = PFN_UP(end_off);
570
571                 /*
572                  * Reserve the area now:
573                  */
574                 if (__reserve(bdata, PFN_DOWN(start_off) + merge,
575                                 PFN_UP(end_off), BOOTMEM_EXCLUSIVE))
576                         BUG();
577
578                 region = phys_to_virt(PFN_PHYS(bdata->node_min_pfn) +
579                                 start_off);
580                 memset(region, 0, size);
581                 /*
582                  * The min_count is set to 0 so that bootmem allocated blocks
583                  * are never reported as leaks.
584                  */
585                 kmemleak_alloc(region, size, 0, 0);
586                 return region;
587         }
588
589         if (fallback) {
590                 sidx = align_idx(bdata, fallback - 1, step);
591                 fallback = 0;
592                 goto find_block;
593         }
594
595         return NULL;
596 }
597
598 static void * __init alloc_bootmem_core(unsigned long size,
599                                         unsigned long align,
600                                         unsigned long goal,
601                                         unsigned long limit)
602 {
603         bootmem_data_t *bdata;
604         void *region;
605
606         if (WARN_ON_ONCE(slab_is_available()))
607                 return kzalloc(size, GFP_NOWAIT);
608
609         list_for_each_entry(bdata, &bdata_list, list) {
610                 if (goal && bdata->node_low_pfn <= PFN_DOWN(goal))
611                         continue;
612                 if (limit && bdata->node_min_pfn >= PFN_DOWN(limit))
613                         break;
614
615                 region = alloc_bootmem_bdata(bdata, size, align, goal, limit);
616                 if (region)
617                         return region;
618         }
619
620         return NULL;
621 }
622
623 static void * __init ___alloc_bootmem_nopanic(unsigned long size,
624                                               unsigned long align,
625                                               unsigned long goal,
626                                               unsigned long limit)
627 {
628         void *ptr;
629
630 restart:
631         ptr = alloc_bootmem_core(size, align, goal, limit);
632         if (ptr)
633                 return ptr;
634         if (goal) {
635                 goal = 0;
636                 goto restart;
637         }
638
639         return NULL;
640 }
641
642 /**
643  * __alloc_bootmem_nopanic - allocate boot memory without panicking
644  * @size: size of the request in bytes
645  * @align: alignment of the region
646  * @goal: preferred starting address of the region
647  *
648  * The goal is dropped if it can not be satisfied and the allocation will
649  * fall back to memory below @goal.
650  *
651  * Allocation may happen on any node in the system.
652  *
653  * Returns NULL on failure.
654  */
655 void * __init __alloc_bootmem_nopanic(unsigned long size, unsigned long align,
656                                         unsigned long goal)
657 {
658         unsigned long limit = 0;
659
660         return ___alloc_bootmem_nopanic(size, align, goal, limit);
661 }
662
663 static void * __init ___alloc_bootmem(unsigned long size, unsigned long align,
664                                         unsigned long goal, unsigned long limit)
665 {
666         void *mem = ___alloc_bootmem_nopanic(size, align, goal, limit);
667
668         if (mem)
669                 return mem;
670         /*
671          * Whoops, we cannot satisfy the allocation request.
672          */
673         printk(KERN_ALERT "bootmem alloc of %lu bytes failed!\n", size);
674         panic("Out of memory");
675         return NULL;
676 }
677
678 /**
679  * __alloc_bootmem - allocate boot memory
680  * @size: size of the request in bytes
681  * @align: alignment of the region
682  * @goal: preferred starting address of the region
683  *
684  * The goal is dropped if it can not be satisfied and the allocation will
685  * fall back to memory below @goal.
686  *
687  * Allocation may happen on any node in the system.
688  *
689  * The function panics if the request can not be satisfied.
690  */
691 void * __init __alloc_bootmem(unsigned long size, unsigned long align,
692                               unsigned long goal)
693 {
694         unsigned long limit = 0;
695
696         return ___alloc_bootmem(size, align, goal, limit);
697 }
698
699 void * __init ___alloc_bootmem_node_nopanic(pg_data_t *pgdat,
700                                 unsigned long size, unsigned long align,
701                                 unsigned long goal, unsigned long limit)
702 {
703         void *ptr;
704
705         if (WARN_ON_ONCE(slab_is_available()))
706                 return kzalloc(size, GFP_NOWAIT);
707 again:
708
709         /* do not panic in alloc_bootmem_bdata() */
710         if (limit && goal + size > limit)
711                 limit = 0;
712
713         ptr = alloc_bootmem_bdata(pgdat->bdata, size, align, goal, limit);
714         if (ptr)
715                 return ptr;
716
717         ptr = alloc_bootmem_core(size, align, goal, limit);
718         if (ptr)
719                 return ptr;
720
721         if (goal) {
722                 goal = 0;
723                 goto again;
724         }
725
726         return NULL;
727 }
728
729 void * __init __alloc_bootmem_node_nopanic(pg_data_t *pgdat, unsigned long size,
730                                    unsigned long align, unsigned long goal)
731 {
732         if (WARN_ON_ONCE(slab_is_available()))
733                 return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
734
735         return ___alloc_bootmem_node_nopanic(pgdat, size, align, goal, 0);
736 }
737
738 void * __init ___alloc_bootmem_node(pg_data_t *pgdat, unsigned long size,
739                                     unsigned long align, unsigned long goal,
740                                     unsigned long limit)
741 {
742         void *ptr;
743
744         ptr = ___alloc_bootmem_node_nopanic(pgdat, size, align, goal, 0);
745         if (ptr)
746                 return ptr;
747
748         printk(KERN_ALERT "bootmem alloc of %lu bytes failed!\n", size);
749         panic("Out of memory");
750         return NULL;
751 }
752
753 /**
754  * __alloc_bootmem_node - allocate boot memory from a specific node
755  * @pgdat: node to allocate from
756  * @size: size of the request in bytes
757  * @align: alignment of the region
758  * @goal: preferred starting address of the region
759  *
760  * The goal is dropped if it can not be satisfied and the allocation will
761  * fall back to memory below @goal.
762  *
763  * Allocation may fall back to any node in the system if the specified node
764  * can not hold the requested memory.
765  *
766  * The function panics if the request can not be satisfied.
767  */
768 void * __init __alloc_bootmem_node(pg_data_t *pgdat, unsigned long size,
769                                    unsigned long align, unsigned long goal)
770 {
771         if (WARN_ON_ONCE(slab_is_available()))
772                 return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
773
774         return  ___alloc_bootmem_node(pgdat, size, align, goal, 0);
775 }
776
777 void * __init __alloc_bootmem_node_high(pg_data_t *pgdat, unsigned long size,
778                                    unsigned long align, unsigned long goal)
779 {
780 #ifdef MAX_DMA32_PFN
781         unsigned long end_pfn;
782
783         if (WARN_ON_ONCE(slab_is_available()))
784                 return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
785
786         /* update goal according ...MAX_DMA32_PFN */
787         end_pfn = pgdat_end_pfn(pgdat);
788
789         if (end_pfn > MAX_DMA32_PFN + (128 >> (20 - PAGE_SHIFT)) &&
790             (goal >> PAGE_SHIFT) < MAX_DMA32_PFN) {
791                 void *ptr;
792                 unsigned long new_goal;
793
794                 new_goal = MAX_DMA32_PFN << PAGE_SHIFT;
795                 ptr = alloc_bootmem_bdata(pgdat->bdata, size, align,
796                                                  new_goal, 0);
797                 if (ptr)
798                         return ptr;
799         }
800 #endif
801
802         return __alloc_bootmem_node(pgdat, size, align, goal);
803
804 }
805
806 #ifndef ARCH_LOW_ADDRESS_LIMIT
807 #define ARCH_LOW_ADDRESS_LIMIT  0xffffffffUL
808 #endif
809
810 /**
811  * __alloc_bootmem_low - allocate low boot memory
812  * @size: size of the request in bytes
813  * @align: alignment of the region
814  * @goal: preferred starting address of the region
815  *
816  * The goal is dropped if it can not be satisfied and the allocation will
817  * fall back to memory below @goal.
818  *
819  * Allocation may happen on any node in the system.
820  *
821  * The function panics if the request can not be satisfied.
822  */
823 void * __init __alloc_bootmem_low(unsigned long size, unsigned long align,
824                                   unsigned long goal)
825 {
826         return ___alloc_bootmem(size, align, goal, ARCH_LOW_ADDRESS_LIMIT);
827 }
828
829 void * __init __alloc_bootmem_low_nopanic(unsigned long size,
830                                           unsigned long align,
831                                           unsigned long goal)
832 {
833         return ___alloc_bootmem_nopanic(size, align, goal,
834                                         ARCH_LOW_ADDRESS_LIMIT);
835 }
836
837 /**
838  * __alloc_bootmem_low_node - allocate low boot memory from a specific node
839  * @pgdat: node to allocate from
840  * @size: size of the request in bytes
841  * @align: alignment of the region
842  * @goal: preferred starting address of the region
843  *
844  * The goal is dropped if it can not be satisfied and the allocation will
845  * fall back to memory below @goal.
846  *
847  * Allocation may fall back to any node in the system if the specified node
848  * can not hold the requested memory.
849  *
850  * The function panics if the request can not be satisfied.
851  */
852 void * __init __alloc_bootmem_low_node(pg_data_t *pgdat, unsigned long size,
853                                        unsigned long align, unsigned long goal)
854 {
855         if (WARN_ON_ONCE(slab_is_available()))
856                 return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
857
858         return ___alloc_bootmem_node(pgdat, size, align,
859                                      goal, ARCH_LOW_ADDRESS_LIMIT);
860 }