Merge tag 'powerpc-4.9-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc...
[platform/kernel/linux-exynos.git] / mm / Kconfig
1 config SELECT_MEMORY_MODEL
2         def_bool y
3         depends on ARCH_SELECT_MEMORY_MODEL
4
5 choice
6         prompt "Memory model"
7         depends on SELECT_MEMORY_MODEL
8         default DISCONTIGMEM_MANUAL if ARCH_DISCONTIGMEM_DEFAULT
9         default SPARSEMEM_MANUAL if ARCH_SPARSEMEM_DEFAULT
10         default FLATMEM_MANUAL
11
12 config FLATMEM_MANUAL
13         bool "Flat Memory"
14         depends on !(ARCH_DISCONTIGMEM_ENABLE || ARCH_SPARSEMEM_ENABLE) || ARCH_FLATMEM_ENABLE
15         help
16           This option allows you to change some of the ways that
17           Linux manages its memory internally.  Most users will
18           only have one option here: FLATMEM.  This is normal
19           and a correct option.
20
21           Some users of more advanced features like NUMA and
22           memory hotplug may have different options here.
23           DISCONTIGMEM is a more mature, better tested system,
24           but is incompatible with memory hotplug and may suffer
25           decreased performance over SPARSEMEM.  If unsure between
26           "Sparse Memory" and "Discontiguous Memory", choose
27           "Discontiguous Memory".
28
29           If unsure, choose this option (Flat Memory) over any other.
30
31 config DISCONTIGMEM_MANUAL
32         bool "Discontiguous Memory"
33         depends on ARCH_DISCONTIGMEM_ENABLE
34         help
35           This option provides enhanced support for discontiguous
36           memory systems, over FLATMEM.  These systems have holes
37           in their physical address spaces, and this option provides
38           more efficient handling of these holes.  However, the vast
39           majority of hardware has quite flat address spaces, and
40           can have degraded performance from the extra overhead that
41           this option imposes.
42
43           Many NUMA configurations will have this as the only option.
44
45           If unsure, choose "Flat Memory" over this option.
46
47 config SPARSEMEM_MANUAL
48         bool "Sparse Memory"
49         depends on ARCH_SPARSEMEM_ENABLE
50         help
51           This will be the only option for some systems, including
52           memory hotplug systems.  This is normal.
53
54           For many other systems, this will be an alternative to
55           "Discontiguous Memory".  This option provides some potential
56           performance benefits, along with decreased code complexity,
57           but it is newer, and more experimental.
58
59           If unsure, choose "Discontiguous Memory" or "Flat Memory"
60           over this option.
61
62 endchoice
63
64 config DISCONTIGMEM
65         def_bool y
66         depends on (!SELECT_MEMORY_MODEL && ARCH_DISCONTIGMEM_ENABLE) || DISCONTIGMEM_MANUAL
67
68 config SPARSEMEM
69         def_bool y
70         depends on (!SELECT_MEMORY_MODEL && ARCH_SPARSEMEM_ENABLE) || SPARSEMEM_MANUAL
71
72 config FLATMEM
73         def_bool y
74         depends on (!DISCONTIGMEM && !SPARSEMEM) || FLATMEM_MANUAL
75
76 config FLAT_NODE_MEM_MAP
77         def_bool y
78         depends on !SPARSEMEM
79
80 #
81 # Both the NUMA code and DISCONTIGMEM use arrays of pg_data_t's
82 # to represent different areas of memory.  This variable allows
83 # those dependencies to exist individually.
84 #
85 config NEED_MULTIPLE_NODES
86         def_bool y
87         depends on DISCONTIGMEM || NUMA
88
89 config HAVE_MEMORY_PRESENT
90         def_bool y
91         depends on ARCH_HAVE_MEMORY_PRESENT || SPARSEMEM
92
93 #
94 # SPARSEMEM_EXTREME (which is the default) does some bootmem
95 # allocations when memory_present() is called.  If this cannot
96 # be done on your architecture, select this option.  However,
97 # statically allocating the mem_section[] array can potentially
98 # consume vast quantities of .bss, so be careful.
99 #
100 # This option will also potentially produce smaller runtime code
101 # with gcc 3.4 and later.
102 #
103 config SPARSEMEM_STATIC
104         bool
105
106 #
107 # Architecture platforms which require a two level mem_section in SPARSEMEM
108 # must select this option. This is usually for architecture platforms with
109 # an extremely sparse physical address space.
110 #
111 config SPARSEMEM_EXTREME
112         def_bool y
113         depends on SPARSEMEM && !SPARSEMEM_STATIC
114
115 config SPARSEMEM_VMEMMAP_ENABLE
116         bool
117
118 config SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
119         def_bool y
120         depends on SPARSEMEM && X86_64
121
122 config SPARSEMEM_VMEMMAP
123         bool "Sparse Memory virtual memmap"
124         depends on SPARSEMEM && SPARSEMEM_VMEMMAP_ENABLE
125         default y
126         help
127          SPARSEMEM_VMEMMAP uses a virtually mapped memmap to optimise
128          pfn_to_page and page_to_pfn operations.  This is the most
129          efficient option when sufficient kernel resources are available.
130
131 config HAVE_MEMBLOCK
132         bool
133
134 config HAVE_MEMBLOCK_NODE_MAP
135         bool
136
137 config HAVE_MEMBLOCK_PHYS_MAP
138         bool
139
140 config HAVE_GENERIC_RCU_GUP
141         bool
142
143 config ARCH_DISCARD_MEMBLOCK
144         bool
145
146 config NO_BOOTMEM
147         bool
148
149 config MEMORY_ISOLATION
150         bool
151
152 config MOVABLE_NODE
153         bool "Enable to assign a node which has only movable memory"
154         depends on HAVE_MEMBLOCK
155         depends on NO_BOOTMEM
156         depends on X86_64
157         depends on NUMA
158         default n
159         help
160           Allow a node to have only movable memory.  Pages used by the kernel,
161           such as direct mapping pages cannot be migrated.  So the corresponding
162           memory device cannot be hotplugged.  This option allows the following
163           two things:
164           - When the system is booting, node full of hotpluggable memory can
165           be arranged to have only movable memory so that the whole node can
166           be hot-removed. (need movable_node boot option specified).
167           - After the system is up, the option allows users to online all the
168           memory of a node as movable memory so that the whole node can be
169           hot-removed.
170
171           Users who don't use the memory hotplug feature are fine with this
172           option on since they don't specify movable_node boot option or they
173           don't online memory as movable.
174
175           Say Y here if you want to hotplug a whole node.
176           Say N here if you want kernel to use memory on all nodes evenly.
177
178 #
179 # Only be set on architectures that have completely implemented memory hotplug
180 # feature. If you are not sure, don't touch it.
181 #
182 config HAVE_BOOTMEM_INFO_NODE
183         def_bool n
184
185 # eventually, we can have this option just 'select SPARSEMEM'
186 config MEMORY_HOTPLUG
187         bool "Allow for memory hot-add"
188         depends on SPARSEMEM || X86_64_ACPI_NUMA
189         depends on ARCH_ENABLE_MEMORY_HOTPLUG
190         depends on !KASAN
191
192 config MEMORY_HOTPLUG_SPARSE
193         def_bool y
194         depends on SPARSEMEM && MEMORY_HOTPLUG
195
196 config MEMORY_HOTPLUG_DEFAULT_ONLINE
197         bool "Online the newly added memory blocks by default"
198         default n
199         depends on MEMORY_HOTPLUG
200         help
201           This option sets the default policy setting for memory hotplug
202           onlining policy (/sys/devices/system/memory/auto_online_blocks) which
203           determines what happens to newly added memory regions. Policy setting
204           can always be changed at runtime.
205           See Documentation/memory-hotplug.txt for more information.
206
207           Say Y here if you want all hot-plugged memory blocks to appear in
208           'online' state by default.
209           Say N here if you want the default policy to keep all hot-plugged
210           memory blocks in 'offline' state.
211
212 config MEMORY_HOTREMOVE
213         bool "Allow for memory hot remove"
214         select MEMORY_ISOLATION
215         select HAVE_BOOTMEM_INFO_NODE if (X86_64 || PPC64)
216         depends on MEMORY_HOTPLUG && ARCH_ENABLE_MEMORY_HOTREMOVE
217         depends on MIGRATION
218
219 # Heavily threaded applications may benefit from splitting the mm-wide
220 # page_table_lock, so that faults on different parts of the user address
221 # space can be handled with less contention: split it at this NR_CPUS.
222 # Default to 4 for wider testing, though 8 might be more appropriate.
223 # ARM's adjust_pte (unused if VIPT) depends on mm-wide page_table_lock.
224 # PA-RISC 7xxx's spinlock_t would enlarge struct page from 32 to 44 bytes.
225 # DEBUG_SPINLOCK and DEBUG_LOCK_ALLOC spinlock_t also enlarge struct page.
226 #
227 config SPLIT_PTLOCK_CPUS
228         int
229         default "999999" if !MMU
230         default "999999" if ARM && !CPU_CACHE_VIPT
231         default "999999" if PARISC && !PA20
232         default "4"
233
234 config ARCH_ENABLE_SPLIT_PMD_PTLOCK
235         bool
236
237 #
238 # support for memory balloon
239 config MEMORY_BALLOON
240         bool
241
242 #
243 # support for memory balloon compaction
244 config BALLOON_COMPACTION
245         bool "Allow for balloon memory compaction/migration"
246         def_bool y
247         depends on COMPACTION && MEMORY_BALLOON
248         help
249           Memory fragmentation introduced by ballooning might reduce
250           significantly the number of 2MB contiguous memory blocks that can be
251           used within a guest, thus imposing performance penalties associated
252           with the reduced number of transparent huge pages that could be used
253           by the guest workload. Allowing the compaction & migration for memory
254           pages enlisted as being part of memory balloon devices avoids the
255           scenario aforementioned and helps improving memory defragmentation.
256
257 #
258 # support for memory compaction
259 config COMPACTION
260         bool "Allow for memory compaction"
261         def_bool y
262         select MIGRATION
263         depends on MMU
264         help
265           Compaction is the only memory management component to form
266           high order (larger physically contiguous) memory blocks
267           reliably. The page allocator relies on compaction heavily and
268           the lack of the feature can lead to unexpected OOM killer
269           invocations for high order memory requests. You shouldn't
270           disable this option unless there really is a strong reason for
271           it and then we would be really interested to hear about that at
272           linux-mm@kvack.org.
273
274 #
275 # support for page migration
276 #
277 config MIGRATION
278         bool "Page migration"
279         def_bool y
280         depends on (NUMA || ARCH_ENABLE_MEMORY_HOTREMOVE || COMPACTION || CMA) && MMU
281         help
282           Allows the migration of the physical location of pages of processes
283           while the virtual addresses are not changed. This is useful in
284           two situations. The first is on NUMA systems to put pages nearer
285           to the processors accessing. The second is when allocating huge
286           pages as migration can relocate pages to satisfy a huge page
287           allocation instead of reclaiming.
288
289 config ARCH_ENABLE_HUGEPAGE_MIGRATION
290         bool
291
292 config PHYS_ADDR_T_64BIT
293         def_bool 64BIT || ARCH_PHYS_ADDR_T_64BIT
294
295 config BOUNCE
296         bool "Enable bounce buffers"
297         default y
298         depends on BLOCK && MMU && (ZONE_DMA || HIGHMEM)
299         help
300           Enable bounce buffers for devices that cannot access
301           the full range of memory available to the CPU. Enabled
302           by default when ZONE_DMA or HIGHMEM is selected, but you
303           may say n to override this.
304
305 # On the 'tile' arch, USB OHCI needs the bounce pool since tilegx will often
306 # have more than 4GB of memory, but we don't currently use the IOTLB to present
307 # a 32-bit address to OHCI.  So we need to use a bounce pool instead.
308 config NEED_BOUNCE_POOL
309         bool
310         default y if TILE && USB_OHCI_HCD
311
312 config NR_QUICK
313         int
314         depends on QUICKLIST
315         default "2" if AVR32
316         default "1"
317
318 config VIRT_TO_BUS
319         bool
320         help
321           An architecture should select this if it implements the
322           deprecated interface virt_to_bus().  All new architectures
323           should probably not select this.
324
325
326 config MMU_NOTIFIER
327         bool
328         select SRCU
329
330 config KSM
331         bool "Enable KSM for page merging"
332         depends on MMU
333         help
334           Enable Kernel Samepage Merging: KSM periodically scans those areas
335           of an application's address space that an app has advised may be
336           mergeable.  When it finds pages of identical content, it replaces
337           the many instances by a single page with that content, so
338           saving memory until one or another app needs to modify the content.
339           Recommended for use with KVM, or with other duplicative applications.
340           See Documentation/vm/ksm.txt for more information: KSM is inactive
341           until a program has madvised that an area is MADV_MERGEABLE, and
342           root has set /sys/kernel/mm/ksm/run to 1 (if CONFIG_SYSFS is set).
343
344 config DEFAULT_MMAP_MIN_ADDR
345         int "Low address space to protect from user allocation"
346         depends on MMU
347         default 4096
348         help
349           This is the portion of low virtual memory which should be protected
350           from userspace allocation.  Keeping a user from writing to low pages
351           can help reduce the impact of kernel NULL pointer bugs.
352
353           For most ia64, ppc64 and x86 users with lots of address space
354           a value of 65536 is reasonable and should cause no problems.
355           On arm and other archs it should not be higher than 32768.
356           Programs which use vm86 functionality or have some need to map
357           this low address space will need CAP_SYS_RAWIO or disable this
358           protection by setting the value to 0.
359
360           This value can be changed after boot using the
361           /proc/sys/vm/mmap_min_addr tunable.
362
363 config ARCH_SUPPORTS_MEMORY_FAILURE
364         bool
365
366 config MEMORY_FAILURE
367         depends on MMU
368         depends on ARCH_SUPPORTS_MEMORY_FAILURE
369         bool "Enable recovery from hardware memory errors"
370         select MEMORY_ISOLATION
371         select RAS
372         help
373           Enables code to recover from some memory failures on systems
374           with MCA recovery. This allows a system to continue running
375           even when some of its memory has uncorrected errors. This requires
376           special hardware support and typically ECC memory.
377
378 config HWPOISON_INJECT
379         tristate "HWPoison pages injector"
380         depends on MEMORY_FAILURE && DEBUG_KERNEL && PROC_FS
381         select PROC_PAGE_MONITOR
382
383 config NOMMU_INITIAL_TRIM_EXCESS
384         int "Turn on mmap() excess space trimming before booting"
385         depends on !MMU
386         default 1
387         help
388           The NOMMU mmap() frequently needs to allocate large contiguous chunks
389           of memory on which to store mappings, but it can only ask the system
390           allocator for chunks in 2^N*PAGE_SIZE amounts - which is frequently
391           more than it requires.  To deal with this, mmap() is able to trim off
392           the excess and return it to the allocator.
393
394           If trimming is enabled, the excess is trimmed off and returned to the
395           system allocator, which can cause extra fragmentation, particularly
396           if there are a lot of transient processes.
397
398           If trimming is disabled, the excess is kept, but not used, which for
399           long-term mappings means that the space is wasted.
400
401           Trimming can be dynamically controlled through a sysctl option
402           (/proc/sys/vm/nr_trim_pages) which specifies the minimum number of
403           excess pages there must be before trimming should occur, or zero if
404           no trimming is to occur.
405
406           This option specifies the initial value of this option.  The default
407           of 1 says that all excess pages should be trimmed.
408
409           See Documentation/nommu-mmap.txt for more information.
410
411 config TRANSPARENT_HUGEPAGE
412         bool "Transparent Hugepage Support"
413         depends on HAVE_ARCH_TRANSPARENT_HUGEPAGE
414         select COMPACTION
415         select RADIX_TREE_MULTIORDER
416         help
417           Transparent Hugepages allows the kernel to use huge pages and
418           huge tlb transparently to the applications whenever possible.
419           This feature can improve computing performance to certain
420           applications by speeding up page faults during memory
421           allocation, by reducing the number of tlb misses and by speeding
422           up the pagetable walking.
423
424           If memory constrained on embedded, you may want to say N.
425
426 choice
427         prompt "Transparent Hugepage Support sysfs defaults"
428         depends on TRANSPARENT_HUGEPAGE
429         default TRANSPARENT_HUGEPAGE_ALWAYS
430         help
431           Selects the sysfs defaults for Transparent Hugepage Support.
432
433         config TRANSPARENT_HUGEPAGE_ALWAYS
434                 bool "always"
435         help
436           Enabling Transparent Hugepage always, can increase the
437           memory footprint of applications without a guaranteed
438           benefit but it will work automatically for all applications.
439
440         config TRANSPARENT_HUGEPAGE_MADVISE
441                 bool "madvise"
442         help
443           Enabling Transparent Hugepage madvise, will only provide a
444           performance improvement benefit to the applications using
445           madvise(MADV_HUGEPAGE) but it won't risk to increase the
446           memory footprint of applications without a guaranteed
447           benefit.
448 endchoice
449
450 #
451 # We don't deposit page tables on file THP mapping,
452 # but Power makes use of them to address MMU quirk.
453 #
454 config  TRANSPARENT_HUGE_PAGECACHE
455         def_bool y
456         depends on TRANSPARENT_HUGEPAGE && !PPC
457
458 #
459 # UP and nommu archs use km based percpu allocator
460 #
461 config NEED_PER_CPU_KM
462         depends on !SMP
463         bool
464         default y
465
466 config CLEANCACHE
467         bool "Enable cleancache driver to cache clean pages if tmem is present"
468         default n
469         help
470           Cleancache can be thought of as a page-granularity victim cache
471           for clean pages that the kernel's pageframe replacement algorithm
472           (PFRA) would like to keep around, but can't since there isn't enough
473           memory.  So when the PFRA "evicts" a page, it first attempts to use
474           cleancache code to put the data contained in that page into
475           "transcendent memory", memory that is not directly accessible or
476           addressable by the kernel and is of unknown and possibly
477           time-varying size.  And when a cleancache-enabled
478           filesystem wishes to access a page in a file on disk, it first
479           checks cleancache to see if it already contains it; if it does,
480           the page is copied into the kernel and a disk access is avoided.
481           When a transcendent memory driver is available (such as zcache or
482           Xen transcendent memory), a significant I/O reduction
483           may be achieved.  When none is available, all cleancache calls
484           are reduced to a single pointer-compare-against-NULL resulting
485           in a negligible performance hit.
486
487           If unsure, say Y to enable cleancache
488
489 config FRONTSWAP
490         bool "Enable frontswap to cache swap pages if tmem is present"
491         depends on SWAP
492         default n
493         help
494           Frontswap is so named because it can be thought of as the opposite
495           of a "backing" store for a swap device.  The data is stored into
496           "transcendent memory", memory that is not directly accessible or
497           addressable by the kernel and is of unknown and possibly
498           time-varying size.  When space in transcendent memory is available,
499           a significant swap I/O reduction may be achieved.  When none is
500           available, all frontswap calls are reduced to a single pointer-
501           compare-against-NULL resulting in a negligible performance hit
502           and swap data is stored as normal on the matching swap device.
503
504           If unsure, say Y to enable frontswap.
505
506 config CMA
507         bool "Contiguous Memory Allocator"
508         depends on HAVE_MEMBLOCK && MMU
509         select MIGRATION
510         select MEMORY_ISOLATION
511         help
512           This enables the Contiguous Memory Allocator which allows other
513           subsystems to allocate big physically-contiguous blocks of memory.
514           CMA reserves a region of memory and allows only movable pages to
515           be allocated from it. This way, the kernel can use the memory for
516           pagecache and when a subsystem requests for contiguous area, the
517           allocated pages are migrated away to serve the contiguous request.
518
519           If unsure, say "n".
520
521 config CMA_DEBUG
522         bool "CMA debug messages (DEVELOPMENT)"
523         depends on DEBUG_KERNEL && CMA
524         help
525           Turns on debug messages in CMA.  This produces KERN_DEBUG
526           messages for every CMA call as well as various messages while
527           processing calls such as dma_alloc_from_contiguous().
528           This option does not affect warning and error messages.
529
530 config CMA_DEBUGFS
531         bool "CMA debugfs interface"
532         depends on CMA && DEBUG_FS
533         help
534           Turns on the DebugFS interface for CMA.
535
536 config CMA_AREAS
537         int "Maximum count of the CMA areas"
538         depends on CMA
539         default 7
540         help
541           CMA allows to create CMA areas for particular purpose, mainly,
542           used as device private area. This parameter sets the maximum
543           number of CMA area in the system.
544
545           If unsure, leave the default value "7".
546
547 config MEM_SOFT_DIRTY
548         bool "Track memory changes"
549         depends on CHECKPOINT_RESTORE && HAVE_ARCH_SOFT_DIRTY && PROC_FS
550         select PROC_PAGE_MONITOR
551         help
552           This option enables memory changes tracking by introducing a
553           soft-dirty bit on pte-s. This bit it set when someone writes
554           into a page just as regular dirty bit, but unlike the latter
555           it can be cleared by hands.
556
557           See Documentation/vm/soft-dirty.txt for more details.
558
559 config ZSWAP
560         bool "Compressed cache for swap pages (EXPERIMENTAL)"
561         depends on FRONTSWAP && CRYPTO=y
562         select CRYPTO_LZO
563         select ZPOOL
564         default n
565         help
566           A lightweight compressed cache for swap pages.  It takes
567           pages that are in the process of being swapped out and attempts to
568           compress them into a dynamically allocated RAM-based memory pool.
569           This can result in a significant I/O reduction on swap device and,
570           in the case where decompressing from RAM is faster that swap device
571           reads, can also improve workload performance.
572
573           This is marked experimental because it is a new feature (as of
574           v3.11) that interacts heavily with memory reclaim.  While these
575           interactions don't cause any known issues on simple memory setups,
576           they have not be fully explored on the large set of potential
577           configurations and workloads that exist.
578
579 config ZPOOL
580         tristate "Common API for compressed memory storage"
581         default n
582         help
583           Compressed memory storage API.  This allows using either zbud or
584           zsmalloc.
585
586 config ZBUD
587         tristate "Low (Up to 2x) density storage for compressed pages"
588         default n
589         help
590           A special purpose allocator for storing compressed pages.
591           It is designed to store up to two compressed pages per physical
592           page.  While this design limits storage density, it has simple and
593           deterministic reclaim properties that make it preferable to a higher
594           density approach when reclaim will be used.
595
596 config Z3FOLD
597         tristate "Up to 3x density storage for compressed pages"
598         depends on ZPOOL
599         default n
600         help
601           A special purpose allocator for storing compressed pages.
602           It is designed to store up to three compressed pages per physical
603           page. It is a ZBUD derivative so the simplicity and determinism are
604           still there.
605
606 config ZSMALLOC
607         tristate "Memory allocator for compressed pages"
608         depends on MMU
609         default n
610         help
611           zsmalloc is a slab-based memory allocator designed to store
612           compressed RAM pages.  zsmalloc uses virtual memory mapping
613           in order to reduce fragmentation.  However, this results in a
614           non-standard allocator interface where a handle, not a pointer, is
615           returned by an alloc().  This handle must be mapped in order to
616           access the allocated space.
617
618 config PGTABLE_MAPPING
619         bool "Use page table mapping to access object in zsmalloc"
620         depends on ZSMALLOC
621         help
622           By default, zsmalloc uses a copy-based object mapping method to
623           access allocations that span two pages. However, if a particular
624           architecture (ex, ARM) performs VM mapping faster than copying,
625           then you should select this. This causes zsmalloc to use page table
626           mapping rather than copying for object mapping.
627
628           You can check speed with zsmalloc benchmark:
629           https://github.com/spartacus06/zsmapbench
630
631 config ZSMALLOC_STAT
632         bool "Export zsmalloc statistics"
633         depends on ZSMALLOC
634         select DEBUG_FS
635         help
636           This option enables code in the zsmalloc to collect various
637           statistics about whats happening in zsmalloc and exports that
638           information to userspace via debugfs.
639           If unsure, say N.
640
641 config GENERIC_EARLY_IOREMAP
642         bool
643
644 config MAX_STACK_SIZE_MB
645         int "Maximum user stack size for 32-bit processes (MB)"
646         default 80
647         range 8 256 if METAG
648         range 8 2048
649         depends on STACK_GROWSUP && (!64BIT || COMPAT)
650         help
651           This is the maximum stack size in Megabytes in the VM layout of 32-bit
652           user processes when the stack grows upwards (currently only on parisc
653           and metag arch). The stack will be located at the highest memory
654           address minus the given value, unless the RLIMIT_STACK hard limit is
655           changed to a smaller value in which case that is used.
656
657           A sane initial value is 80 MB.
658
659 # For architectures that support deferred memory initialisation
660 config ARCH_SUPPORTS_DEFERRED_STRUCT_PAGE_INIT
661         bool
662
663 config DEFERRED_STRUCT_PAGE_INIT
664         bool "Defer initialisation of struct pages to kthreads"
665         default n
666         depends on ARCH_SUPPORTS_DEFERRED_STRUCT_PAGE_INIT
667         depends on NO_BOOTMEM && MEMORY_HOTPLUG
668         depends on !FLATMEM
669         help
670           Ordinarily all struct pages are initialised during early boot in a
671           single thread. On very large machines this can take a considerable
672           amount of time. If this option is set, large machines will bring up
673           a subset of memmap at boot and then initialise the rest in parallel
674           by starting one-off "pgdatinitX" kernel thread for each node X. This
675           has a potential performance impact on processes running early in the
676           lifetime of the system until these kthreads finish the
677           initialisation.
678
679 config IDLE_PAGE_TRACKING
680         bool "Enable idle page tracking"
681         depends on SYSFS && MMU
682         select PAGE_EXTENSION if !64BIT
683         help
684           This feature allows to estimate the amount of user pages that have
685           not been touched during a given period of time. This information can
686           be useful to tune memory cgroup limits and/or for job placement
687           within a compute cluster.
688
689           See Documentation/vm/idle_page_tracking.txt for more details.
690
691 config ZONE_DEVICE
692         bool "Device memory (pmem, etc...) hotplug support"
693         depends on MEMORY_HOTPLUG
694         depends on MEMORY_HOTREMOVE
695         depends on SPARSEMEM_VMEMMAP
696         depends on X86_64 #arch_add_memory() comprehends device memory
697
698         help
699           Device memory hotplug support allows for establishing pmem,
700           or other device driver discovered memory regions, in the
701           memmap. This allows pfn_to_page() lookups of otherwise
702           "device-physical" addresses which is needed for using a DAX
703           mapping in an O_DIRECT operation, among other things.
704
705           If FS_DAX is enabled, then say Y.
706
707 config FRAME_VECTOR
708         bool
709
710 config ARCH_USES_HIGH_VMA_FLAGS
711         bool
712 config ARCH_HAS_PKEYS
713         bool