btrfs-progs: build: add alias for check tests
[platform/upstream/btrfs-progs.git] / mkfs.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include "kerncompat.h"
20 #include "androidcompat.h"
21
22 #include <sys/ioctl.h>
23 #include <sys/mount.h>
24 #include "ioctl.h"
25 #include <stdio.h>
26 #include <stdlib.h>
27 #include <sys/types.h>
28 #include <sys/stat.h>
29 /* #include <sys/dir.h> included via androidcompat.h */
30 #include <fcntl.h>
31 #include <unistd.h>
32 #include <getopt.h>
33 #include <uuid/uuid.h>
34 #include <ctype.h>
35 #include <sys/xattr.h>
36 #include <limits.h>
37 #include <linux/limits.h>
38 #include <blkid/blkid.h>
39 #include <ftw.h>
40 #include "ctree.h"
41 #include "disk-io.h"
42 #include "volumes.h"
43 #include "transaction.h"
44 #include "utils.h"
45 #include "list_sort.h"
46
47 static u64 index_cnt = 2;
48 static int verbose = 1;
49
50 struct directory_name_entry {
51         char *dir_name;
52         char *path;
53         ino_t inum;
54         struct list_head list;
55 };
56
57 struct mkfs_allocation {
58         u64 data;
59         u64 metadata;
60         u64 mixed;
61         u64 system;
62 };
63
64 static int create_metadata_block_groups(struct btrfs_root *root, int mixed,
65                                 struct mkfs_allocation *allocation)
66 {
67         struct btrfs_trans_handle *trans;
68         u64 bytes_used;
69         u64 chunk_start = 0;
70         u64 chunk_size = 0;
71         int ret;
72
73         trans = btrfs_start_transaction(root, 1);
74         bytes_used = btrfs_super_bytes_used(root->fs_info->super_copy);
75
76         root->fs_info->system_allocs = 1;
77         ret = btrfs_make_block_group(trans, root, bytes_used,
78                                      BTRFS_BLOCK_GROUP_SYSTEM,
79                                      BTRFS_FIRST_CHUNK_TREE_OBJECTID,
80                                      0, BTRFS_MKFS_SYSTEM_GROUP_SIZE);
81         allocation->system += BTRFS_MKFS_SYSTEM_GROUP_SIZE;
82         if (ret)
83                 return ret;
84
85         if (mixed) {
86                 ret = btrfs_alloc_chunk(trans, root->fs_info->extent_root,
87                                         &chunk_start, &chunk_size,
88                                         BTRFS_BLOCK_GROUP_METADATA |
89                                         BTRFS_BLOCK_GROUP_DATA);
90                 if (ret == -ENOSPC) {
91                         error("no space to allocate data/metadata chunk");
92                         goto err;
93                 }
94                 if (ret)
95                         return ret;
96                 ret = btrfs_make_block_group(trans, root, 0,
97                                              BTRFS_BLOCK_GROUP_METADATA |
98                                              BTRFS_BLOCK_GROUP_DATA,
99                                              BTRFS_FIRST_CHUNK_TREE_OBJECTID,
100                                              chunk_start, chunk_size);
101                 if (ret)
102                         return ret;
103                 allocation->mixed += chunk_size;
104         } else {
105                 ret = btrfs_alloc_chunk(trans, root->fs_info->extent_root,
106                                         &chunk_start, &chunk_size,
107                                         BTRFS_BLOCK_GROUP_METADATA);
108                 if (ret == -ENOSPC) {
109                         error("no space to allocate metadata chunk");
110                         goto err;
111                 }
112                 if (ret)
113                         return ret;
114                 ret = btrfs_make_block_group(trans, root, 0,
115                                              BTRFS_BLOCK_GROUP_METADATA,
116                                              BTRFS_FIRST_CHUNK_TREE_OBJECTID,
117                                              chunk_start, chunk_size);
118                 allocation->metadata += chunk_size;
119                 if (ret)
120                         return ret;
121         }
122
123         root->fs_info->system_allocs = 0;
124         ret = btrfs_commit_transaction(trans, root);
125
126 err:
127         return ret;
128 }
129
130 static int create_data_block_groups(struct btrfs_trans_handle *trans,
131                 struct btrfs_root *root, int mixed,
132                 struct mkfs_allocation *allocation)
133 {
134         u64 chunk_start = 0;
135         u64 chunk_size = 0;
136         int ret = 0;
137
138         if (!mixed) {
139                 ret = btrfs_alloc_chunk(trans, root->fs_info->extent_root,
140                                         &chunk_start, &chunk_size,
141                                         BTRFS_BLOCK_GROUP_DATA);
142                 if (ret == -ENOSPC) {
143                         error("no space to allocate data chunk");
144                         goto err;
145                 }
146                 if (ret)
147                         return ret;
148                 ret = btrfs_make_block_group(trans, root, 0,
149                                              BTRFS_BLOCK_GROUP_DATA,
150                                              BTRFS_FIRST_CHUNK_TREE_OBJECTID,
151                                              chunk_start, chunk_size);
152                 allocation->data += chunk_size;
153                 if (ret)
154                         return ret;
155         }
156
157 err:
158         return ret;
159 }
160
161 static int make_root_dir(struct btrfs_trans_handle *trans, struct btrfs_root *root,
162                 struct mkfs_allocation *allocation)
163 {
164         struct btrfs_key location;
165         int ret;
166
167         ret = btrfs_make_root_dir(trans, root->fs_info->tree_root,
168                               BTRFS_ROOT_TREE_DIR_OBJECTID);
169         if (ret)
170                 goto err;
171         ret = btrfs_make_root_dir(trans, root, BTRFS_FIRST_FREE_OBJECTID);
172         if (ret)
173                 goto err;
174         memcpy(&location, &root->fs_info->fs_root->root_key, sizeof(location));
175         location.offset = (u64)-1;
176         ret = btrfs_insert_dir_item(trans, root->fs_info->tree_root,
177                         "default", 7,
178                         btrfs_super_root_dir(root->fs_info->super_copy),
179                         &location, BTRFS_FT_DIR, 0);
180         if (ret)
181                 goto err;
182
183         ret = btrfs_insert_inode_ref(trans, root->fs_info->tree_root,
184                              "default", 7, location.objectid,
185                              BTRFS_ROOT_TREE_DIR_OBJECTID, 0);
186         if (ret)
187                 goto err;
188
189 err:
190         return ret;
191 }
192
193 static int __recow_root(struct btrfs_trans_handle *trans,
194                          struct btrfs_root *root)
195 {
196         struct extent_buffer *tmp;
197         int ret;
198
199         if (trans->transid != btrfs_root_generation(&root->root_item)) {
200                 extent_buffer_get(root->node);
201                 ret = __btrfs_cow_block(trans, root, root->node,
202                                         NULL, 0, &tmp, 0, 0);
203                 if (ret)
204                         return ret;
205                 free_extent_buffer(tmp);
206         }
207
208         return 0;
209 }
210
211 static int recow_roots(struct btrfs_trans_handle *trans,
212                        struct btrfs_root *root)
213 {
214         struct btrfs_fs_info *info = root->fs_info;
215         int ret;
216
217         ret = __recow_root(trans, info->fs_root);
218         if (ret)
219                 return ret;
220         ret = __recow_root(trans, info->tree_root);
221         if (ret)
222                 return ret;
223         ret = __recow_root(trans, info->extent_root);
224         if (ret)
225                 return ret;
226         ret = __recow_root(trans, info->chunk_root);
227         if (ret)
228                 return ret;
229         ret = __recow_root(trans, info->dev_root);
230         if (ret)
231                 return ret;
232         ret = __recow_root(trans, info->csum_root);
233         if (ret)
234                 return ret;
235
236         return 0;
237 }
238
239 static int create_one_raid_group(struct btrfs_trans_handle *trans,
240                               struct btrfs_root *root, u64 type,
241                               struct mkfs_allocation *allocation)
242
243 {
244         u64 chunk_start;
245         u64 chunk_size;
246         int ret;
247
248         ret = btrfs_alloc_chunk(trans, root->fs_info->extent_root,
249                                 &chunk_start, &chunk_size, type);
250         if (ret == -ENOSPC) {
251                 error("not enough free space to allocate chunk");
252                 exit(1);
253         }
254         if (ret)
255                 return ret;
256
257         ret = btrfs_make_block_group(trans, root->fs_info->extent_root, 0,
258                                      type, BTRFS_FIRST_CHUNK_TREE_OBJECTID,
259                                      chunk_start, chunk_size);
260
261         type &= BTRFS_BLOCK_GROUP_TYPE_MASK;
262         if (type == BTRFS_BLOCK_GROUP_DATA) {
263                 allocation->data += chunk_size;
264         } else if (type == BTRFS_BLOCK_GROUP_METADATA) {
265                 allocation->metadata += chunk_size;
266         } else if (type == BTRFS_BLOCK_GROUP_SYSTEM) {
267                 allocation->system += chunk_size;
268         } else if (type ==
269                         (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA)) {
270                 allocation->mixed += chunk_size;
271         } else {
272                 error("unrecognized profile type: 0x%llx",
273                                 (unsigned long long)type);
274                 ret = -EINVAL;
275         }
276
277         return ret;
278 }
279
280 static int create_raid_groups(struct btrfs_trans_handle *trans,
281                               struct btrfs_root *root, u64 data_profile,
282                               u64 metadata_profile, int mixed,
283                               struct mkfs_allocation *allocation)
284 {
285         int ret;
286
287         if (metadata_profile) {
288                 u64 meta_flags = BTRFS_BLOCK_GROUP_METADATA;
289
290                 ret = create_one_raid_group(trans, root,
291                                             BTRFS_BLOCK_GROUP_SYSTEM |
292                                             metadata_profile, allocation);
293                 if (ret)
294                         return ret;
295
296                 if (mixed)
297                         meta_flags |= BTRFS_BLOCK_GROUP_DATA;
298
299                 ret = create_one_raid_group(trans, root, meta_flags |
300                                             metadata_profile, allocation);
301                 if (ret)
302                         return ret;
303
304         }
305         if (!mixed && data_profile) {
306                 ret = create_one_raid_group(trans, root,
307                                             BTRFS_BLOCK_GROUP_DATA |
308                                             data_profile, allocation);
309                 if (ret)
310                         return ret;
311         }
312         ret = recow_roots(trans, root);
313
314         return ret;
315 }
316
317 static int create_data_reloc_tree(struct btrfs_trans_handle *trans,
318                                   struct btrfs_root *root)
319 {
320         struct btrfs_key location;
321         struct btrfs_root_item root_item;
322         struct extent_buffer *tmp;
323         u64 objectid = BTRFS_DATA_RELOC_TREE_OBJECTID;
324         int ret;
325
326         ret = btrfs_copy_root(trans, root, root->node, &tmp, objectid);
327         if (ret)
328                 return ret;
329
330         memcpy(&root_item, &root->root_item, sizeof(root_item));
331         btrfs_set_root_bytenr(&root_item, tmp->start);
332         btrfs_set_root_level(&root_item, btrfs_header_level(tmp));
333         btrfs_set_root_generation(&root_item, trans->transid);
334         free_extent_buffer(tmp);
335
336         location.objectid = objectid;
337         location.type = BTRFS_ROOT_ITEM_KEY;
338         location.offset = 0;
339         ret = btrfs_insert_root(trans, root->fs_info->tree_root,
340                                 &location, &root_item);
341
342         return ret;
343 }
344
345 static void print_usage(int ret)
346 {
347         printf("usage: mkfs.btrfs [options] dev [ dev ... ]\n");
348         printf("options:\n");
349         printf("\t-A|--alloc-start START  the offset to start the FS\n");
350         printf("\t-b|--byte-count SIZE    total number of bytes in the FS\n");
351         printf("\t-d|--data PROFILE       data profile, raid0, raid1, raid5, raid6, raid10, dup or single\n");
352         printf("\t-f|--force              force overwrite of existing filesystem\n");
353         printf("\t-l|--leafsize SIZE      deprecated, alias for nodesize\n");
354         printf("\t-L|--label LABEL        set a label\n");
355         printf("\t-m|--metadata PROFILE   metadata profile, values like data profile\n");
356         printf("\t-M|--mixed              mix metadata and data together\n");
357         printf("\t-n|--nodesize SIZE      size of btree nodes\n");
358         printf("\t-s|--sectorsize SIZE    min block allocation (may not mountable by current kernel)\n");
359         printf("\t-r|--rootdir DIR        the source directory\n");
360         printf("\t-K|--nodiscard          do not perform whole device TRIM\n");
361         printf("\t-O|--features LIST      comma separated list of filesystem features, use '-O list-all' to list features\n");
362         printf("\t-U|--uuid UUID          specify the filesystem UUID\n");
363         printf("\t-q|--quiet              no messages except errors\n");
364         printf("\t-V|--version            print the mkfs.btrfs version and exit\n");
365         exit(ret);
366 }
367
368 static u64 parse_profile(char *s)
369 {
370         if (strcasecmp(s, "raid0") == 0) {
371                 return BTRFS_BLOCK_GROUP_RAID0;
372         } else if (strcasecmp(s, "raid1") == 0) {
373                 return BTRFS_BLOCK_GROUP_RAID1;
374         } else if (strcasecmp(s, "raid5") == 0) {
375                 return BTRFS_BLOCK_GROUP_RAID5;
376         } else if (strcasecmp(s, "raid6") == 0) {
377                 return BTRFS_BLOCK_GROUP_RAID6;
378         } else if (strcasecmp(s, "raid10") == 0) {
379                 return BTRFS_BLOCK_GROUP_RAID10;
380         } else if (strcasecmp(s, "dup") == 0) {
381                 return BTRFS_BLOCK_GROUP_DUP;
382         } else if (strcasecmp(s, "single") == 0) {
383                 return 0;
384         } else {
385                 error("unknown profile %s", s);
386                 exit(1);
387         }
388         /* not reached */
389         return 0;
390 }
391
392 static char *parse_label(char *input)
393 {
394         int len = strlen(input);
395
396         if (len >= BTRFS_LABEL_SIZE) {
397                 error("label %s is too long (max %d)", input,
398                         BTRFS_LABEL_SIZE - 1);
399                 exit(1);
400         }
401         return strdup(input);
402 }
403
404 static int add_directory_items(struct btrfs_trans_handle *trans,
405                                struct btrfs_root *root, u64 objectid,
406                                ino_t parent_inum, const char *name,
407                                struct stat *st, int *dir_index_cnt)
408 {
409         int ret;
410         int name_len;
411         struct btrfs_key location;
412         u8 filetype = 0;
413
414         name_len = strlen(name);
415
416         location.objectid = objectid;
417         location.offset = 0;
418         location.type = BTRFS_INODE_ITEM_KEY;
419
420         if (S_ISDIR(st->st_mode))
421                 filetype = BTRFS_FT_DIR;
422         if (S_ISREG(st->st_mode))
423                 filetype = BTRFS_FT_REG_FILE;
424         if (S_ISLNK(st->st_mode))
425                 filetype = BTRFS_FT_SYMLINK;
426
427         ret = btrfs_insert_dir_item(trans, root, name, name_len,
428                                     parent_inum, &location,
429                                     filetype, index_cnt);
430         if (ret)
431                 return ret;
432         ret = btrfs_insert_inode_ref(trans, root, name, name_len,
433                                      objectid, parent_inum, index_cnt);
434         *dir_index_cnt = index_cnt;
435         index_cnt++;
436
437         return ret;
438 }
439
440 static int fill_inode_item(struct btrfs_trans_handle *trans,
441                            struct btrfs_root *root,
442                            struct btrfs_inode_item *dst, struct stat *src)
443 {
444         u64 blocks = 0;
445         u64 sectorsize = root->sectorsize;
446
447         /*
448          * btrfs_inode_item has some reserved fields
449          * and represents on-disk inode entry, so
450          * zero everything to prevent information leak
451          */
452         memset(dst, 0, sizeof (*dst));
453
454         btrfs_set_stack_inode_generation(dst, trans->transid);
455         btrfs_set_stack_inode_size(dst, src->st_size);
456         btrfs_set_stack_inode_nbytes(dst, 0);
457         btrfs_set_stack_inode_block_group(dst, 0);
458         btrfs_set_stack_inode_nlink(dst, src->st_nlink);
459         btrfs_set_stack_inode_uid(dst, src->st_uid);
460         btrfs_set_stack_inode_gid(dst, src->st_gid);
461         btrfs_set_stack_inode_mode(dst, src->st_mode);
462         btrfs_set_stack_inode_rdev(dst, 0);
463         btrfs_set_stack_inode_flags(dst, 0);
464         btrfs_set_stack_timespec_sec(&dst->atime, src->st_atime);
465         btrfs_set_stack_timespec_nsec(&dst->atime, 0);
466         btrfs_set_stack_timespec_sec(&dst->ctime, src->st_ctime);
467         btrfs_set_stack_timespec_nsec(&dst->ctime, 0);
468         btrfs_set_stack_timespec_sec(&dst->mtime, src->st_mtime);
469         btrfs_set_stack_timespec_nsec(&dst->mtime, 0);
470         btrfs_set_stack_timespec_sec(&dst->otime, 0);
471         btrfs_set_stack_timespec_nsec(&dst->otime, 0);
472
473         if (S_ISDIR(src->st_mode)) {
474                 btrfs_set_stack_inode_size(dst, 0);
475                 btrfs_set_stack_inode_nlink(dst, 1);
476         }
477         if (S_ISREG(src->st_mode)) {
478                 btrfs_set_stack_inode_size(dst, (u64)src->st_size);
479                 if (src->st_size <= BTRFS_MAX_INLINE_DATA_SIZE(root))
480                         btrfs_set_stack_inode_nbytes(dst, src->st_size);
481                 else {
482                         blocks = src->st_size / sectorsize;
483                         if (src->st_size % sectorsize)
484                                 blocks += 1;
485                         blocks *= sectorsize;
486                         btrfs_set_stack_inode_nbytes(dst, blocks);
487                 }
488         }
489         if (S_ISLNK(src->st_mode))
490                 btrfs_set_stack_inode_nbytes(dst, src->st_size + 1);
491
492         return 0;
493 }
494
495 static int directory_select(const struct direct *entry)
496 {
497         if ((strncmp(entry->d_name, ".", entry->d_reclen) == 0) ||
498                 (strncmp(entry->d_name, "..", entry->d_reclen) == 0))
499                 return 0;
500         else
501                 return 1;
502 }
503
504 static void free_namelist(struct direct **files, int count)
505 {
506         int i;
507
508         if (count < 0)
509                 return;
510
511         for (i = 0; i < count; ++i)
512                 free(files[i]);
513         free(files);
514 }
515
516 static u64 calculate_dir_inode_size(char *dirname)
517 {
518         int count, i;
519         struct direct **files, *cur_file;
520         u64 dir_inode_size = 0;
521
522         count = scandir(dirname, &files, directory_select, NULL);
523
524         for (i = 0; i < count; i++) {
525                 cur_file = files[i];
526                 dir_inode_size += strlen(cur_file->d_name);
527         }
528
529         free_namelist(files, count);
530
531         dir_inode_size *= 2;
532         return dir_inode_size;
533 }
534
535 static int add_inode_items(struct btrfs_trans_handle *trans,
536                            struct btrfs_root *root,
537                            struct stat *st, char *name,
538                            u64 self_objectid, ino_t parent_inum,
539                            int dir_index_cnt, struct btrfs_inode_item *inode_ret)
540 {
541         int ret;
542         struct btrfs_inode_item btrfs_inode;
543         u64 objectid;
544         u64 inode_size = 0;
545
546         fill_inode_item(trans, root, &btrfs_inode, st);
547         objectid = self_objectid;
548
549         if (S_ISDIR(st->st_mode)) {
550                 inode_size = calculate_dir_inode_size(name);
551                 btrfs_set_stack_inode_size(&btrfs_inode, inode_size);
552         }
553
554         ret = btrfs_insert_inode(trans, root, objectid, &btrfs_inode);
555
556         *inode_ret = btrfs_inode;
557         return ret;
558 }
559
560 static int add_xattr_item(struct btrfs_trans_handle *trans,
561                           struct btrfs_root *root, u64 objectid,
562                           const char *file_name)
563 {
564         int ret;
565         int cur_name_len;
566         char xattr_list[XATTR_LIST_MAX];
567         char *cur_name;
568         char cur_value[XATTR_SIZE_MAX];
569         char delimiter = '\0';
570         char *next_location = xattr_list;
571
572         ret = llistxattr(file_name, xattr_list, XATTR_LIST_MAX);
573         if (ret < 0) {
574                 if(errno == ENOTSUP)
575                         return 0;
576                 error("getting a list of xattr failed for %s: %s", file_name,
577                                 strerror(errno));
578                 return ret;
579         }
580         if (ret == 0)
581                 return ret;
582
583         cur_name = strtok(xattr_list, &delimiter);
584         while (cur_name != NULL) {
585                 cur_name_len = strlen(cur_name);
586                 next_location += cur_name_len + 1;
587
588                 ret = getxattr(file_name, cur_name, cur_value, XATTR_SIZE_MAX);
589                 if (ret < 0) {
590                         if(errno == ENOTSUP)
591                                 return 0;
592                         error("gettig a xattr value failed for %s attr %s: %s",
593                                 file_name, cur_name, strerror(errno));
594                         return ret;
595                 }
596
597                 ret = btrfs_insert_xattr_item(trans, root, cur_name,
598                                               cur_name_len, cur_value,
599                                               ret, objectid);
600                 if (ret) {
601                         error("inserting a xattr item failed for %s: %s",
602                                         file_name, strerror(-ret));
603                 }
604
605                 cur_name = strtok(next_location, &delimiter);
606         }
607
608         return ret;
609 }
610
611 static int add_symbolic_link(struct btrfs_trans_handle *trans,
612                              struct btrfs_root *root,
613                              u64 objectid, const char *path_name)
614 {
615         int ret;
616         char buf[PATH_MAX];
617
618         ret = readlink(path_name, buf, sizeof(buf));
619         if (ret <= 0) {
620                 error("readlink failed for %s: %s", path_name, strerror(errno));
621                 goto fail;
622         }
623         if (ret >= sizeof(buf)) {
624                 error("symlink too long for %s", path_name);
625                 ret = -1;
626                 goto fail;
627         }
628
629         buf[ret] = '\0'; /* readlink does not do it for us */
630         ret = btrfs_insert_inline_extent(trans, root, objectid, 0,
631                                          buf, ret + 1);
632 fail:
633         return ret;
634 }
635
636 static int add_file_items(struct btrfs_trans_handle *trans,
637                           struct btrfs_root *root,
638                           struct btrfs_inode_item *btrfs_inode, u64 objectid,
639                           ino_t parent_inum, struct stat *st,
640                           const char *path_name, int out_fd)
641 {
642         int ret = -1;
643         ssize_t ret_read;
644         u64 bytes_read = 0;
645         struct btrfs_key key;
646         int blocks;
647         u32 sectorsize = root->sectorsize;
648         u64 first_block = 0;
649         u64 file_pos = 0;
650         u64 cur_bytes;
651         u64 total_bytes;
652         struct extent_buffer *eb = NULL;
653         int fd;
654
655         if (st->st_size == 0)
656                 return 0;
657
658         fd = open(path_name, O_RDONLY);
659         if (fd == -1) {
660                 error("cannot open %s: %s", path_name, strerror(errno));
661                 return ret;
662         }
663
664         blocks = st->st_size / sectorsize;
665         if (st->st_size % sectorsize)
666                 blocks += 1;
667
668         if (st->st_size <= BTRFS_MAX_INLINE_DATA_SIZE(root)) {
669                 char *buffer = malloc(st->st_size);
670
671                 if (!buffer) {
672                         ret = -ENOMEM;
673                         goto end;
674                 }
675
676                 ret_read = pread64(fd, buffer, st->st_size, bytes_read);
677                 if (ret_read == -1) {
678                         error("cannot read %s at offset %llu length %llu: %s",
679                                 path_name, (unsigned long long)bytes_read,
680                                 (unsigned long long)st->st_size,
681                                 strerror(errno));
682                         free(buffer);
683                         goto end;
684                 }
685
686                 ret = btrfs_insert_inline_extent(trans, root, objectid, 0,
687                                                  buffer, st->st_size);
688                 free(buffer);
689                 goto end;
690         }
691
692         /* round up our st_size to the FS blocksize */
693         total_bytes = (u64)blocks * sectorsize;
694
695         /*
696          * do our IO in extent buffers so it can work
697          * against any raid type
698          */
699         eb = calloc(1, sizeof(*eb) + sectorsize);
700         if (!eb) {
701                 ret = -ENOMEM;
702                 goto end;
703         }
704
705 again:
706
707         /*
708          * keep our extent size at 1MB max, this makes it easier to work inside
709          * the tiny block groups created during mkfs
710          */
711         cur_bytes = min(total_bytes, 1024ULL * 1024);
712         ret = btrfs_reserve_extent(trans, root, cur_bytes, 0, 0, (u64)-1,
713                                    &key, 1);
714         if (ret)
715                 goto end;
716
717         first_block = key.objectid;
718         bytes_read = 0;
719
720         while (bytes_read < cur_bytes) {
721
722                 memset(eb->data, 0, sectorsize);
723
724                 ret_read = pread64(fd, eb->data, sectorsize, file_pos + bytes_read);
725                 if (ret_read == -1) {
726                         error("cannot read %s at offset %llu length %llu: %s",
727                                 path_name,
728                                 (unsigned long long)file_pos + bytes_read,
729                                 (unsigned long long)sectorsize,
730                                 strerror(errno));
731                         goto end;
732                 }
733
734                 eb->start = first_block + bytes_read;
735                 eb->len = sectorsize;
736
737                 /*
738                  * we're doing the csum before we record the extent, but
739                  * that's ok
740                  */
741                 ret = btrfs_csum_file_block(trans, root->fs_info->csum_root,
742                                             first_block + bytes_read + sectorsize,
743                                             first_block + bytes_read,
744                                             eb->data, sectorsize);
745                 if (ret)
746                         goto end;
747
748                 ret = write_and_map_eb(trans, root, eb);
749                 if (ret) {
750                         error("failed to write %s", path_name);
751                         goto end;
752                 }
753
754                 bytes_read += sectorsize;
755         }
756
757         if (bytes_read) {
758                 ret = btrfs_record_file_extent(trans, root, objectid, btrfs_inode,
759                                                file_pos, first_block, cur_bytes);
760                 if (ret)
761                         goto end;
762
763         }
764
765         file_pos += cur_bytes;
766         total_bytes -= cur_bytes;
767
768         if (total_bytes)
769                 goto again;
770
771 end:
772         free(eb);
773         close(fd);
774         return ret;
775 }
776
777 static char *make_path(char *dir, char *name)
778 {
779         char *path;
780
781         path = malloc(strlen(dir) + strlen(name) + 2);
782         if (!path)
783                 return NULL;
784         strcpy(path, dir);
785         if (dir[strlen(dir) - 1] != '/')
786                 strcat(path, "/");
787         strcat(path, name);
788         return path;
789 }
790
791 static int traverse_directory(struct btrfs_trans_handle *trans,
792                               struct btrfs_root *root, char *dir_name,
793                               struct directory_name_entry *dir_head, int out_fd)
794 {
795         int ret = 0;
796
797         struct btrfs_inode_item cur_inode;
798         struct btrfs_inode_item *inode_item;
799         int count, i, dir_index_cnt;
800         struct direct **files;
801         struct stat st;
802         struct directory_name_entry *dir_entry, *parent_dir_entry;
803         struct direct *cur_file;
804         ino_t parent_inum, cur_inum;
805         ino_t highest_inum = 0;
806         char *parent_dir_name;
807         char real_path[PATH_MAX];
808         struct btrfs_path path;
809         struct extent_buffer *leaf;
810         struct btrfs_key root_dir_key;
811         u64 root_dir_inode_size = 0;
812
813         /* Add list for source directory */
814         dir_entry = malloc(sizeof(struct directory_name_entry));
815         if (!dir_entry)
816                 return -ENOMEM;
817         dir_entry->dir_name = dir_name;
818         dir_entry->path = realpath(dir_name, real_path);
819         if (!dir_entry->path) {
820                 error("realpath  failed for %s: %s", dir_name, strerror(errno));
821                 ret = -1;
822                 goto fail_no_dir;
823         }
824
825         parent_inum = highest_inum + BTRFS_FIRST_FREE_OBJECTID;
826         dir_entry->inum = parent_inum;
827         list_add_tail(&dir_entry->list, &dir_head->list);
828
829         btrfs_init_path(&path);
830
831         root_dir_key.objectid = btrfs_root_dirid(&root->root_item);
832         root_dir_key.offset = 0;
833         root_dir_key.type = BTRFS_INODE_ITEM_KEY;
834         ret = btrfs_lookup_inode(trans, root, &path, &root_dir_key, 1);
835         if (ret) {
836                 error("failed to lookup root dir: %d", ret);
837                 goto fail_no_dir;
838         }
839
840         leaf = path.nodes[0];
841         inode_item = btrfs_item_ptr(leaf, path.slots[0],
842                                     struct btrfs_inode_item);
843
844         root_dir_inode_size = calculate_dir_inode_size(dir_name);
845         btrfs_set_inode_size(leaf, inode_item, root_dir_inode_size);
846         btrfs_mark_buffer_dirty(leaf);
847
848         btrfs_release_path(&path);
849
850         do {
851                 parent_dir_entry = list_entry(dir_head->list.next,
852                                               struct directory_name_entry,
853                                               list);
854                 list_del(&parent_dir_entry->list);
855
856                 parent_inum = parent_dir_entry->inum;
857                 parent_dir_name = parent_dir_entry->dir_name;
858                 if (chdir(parent_dir_entry->path)) {
859                         error("chdir failed for %s: %s",
860                                 parent_dir_name, strerror(errno));
861                         ret = -1;
862                         goto fail_no_files;
863                 }
864
865                 count = scandir(parent_dir_entry->path, &files,
866                                 directory_select, NULL);
867                 if (count == -1)
868                 {
869                         error("scandir failed for %s: %s",
870                                 parent_dir_name, strerror (errno));
871                         ret = -1;
872                         goto fail;
873                 }
874
875                 for (i = 0; i < count; i++) {
876                         cur_file = files[i];
877
878                         if (lstat(cur_file->d_name, &st) == -1) {
879                                 error("lstat failed for %s: %s",
880                                         cur_file->d_name, strerror(errno));
881                                 ret = -1;
882                                 goto fail;
883                         }
884
885                         cur_inum = st.st_ino;
886                         ret = add_directory_items(trans, root,
887                                                   cur_inum, parent_inum,
888                                                   cur_file->d_name,
889                                                   &st, &dir_index_cnt);
890                         if (ret) {
891                                 error("unable to add directory items for %s: %d",
892                                         cur_file->d_name, ret);
893                                 goto fail;
894                         }
895
896                         ret = add_inode_items(trans, root, &st,
897                                               cur_file->d_name, cur_inum,
898                                               parent_inum, dir_index_cnt,
899                                               &cur_inode);
900                         if (ret == -EEXIST) {
901                                 if (st.st_nlink <= 1) {
902                                         error(
903                         "item %s already exists but has wrong st_nlink %ld <= 1",
904                                                 cur_file->d_name, st.st_nlink);
905                                         goto fail;
906                                 }
907                                 continue;
908                         }
909                         if (ret) {
910                                 error("unable to add inode items for %s: %d",
911                                         cur_file->d_name, ret);
912                                 goto fail;
913                         }
914
915                         ret = add_xattr_item(trans, root,
916                                              cur_inum, cur_file->d_name);
917                         if (ret) {
918                                 error("unable to add xattr items for %s: %d",
919                                         cur_file->d_name, ret);
920                                 if(ret != -ENOTSUP)
921                                         goto fail;
922                         }
923
924                         if (S_ISDIR(st.st_mode)) {
925                                 dir_entry = malloc(sizeof(struct directory_name_entry));
926                                 if (!dir_entry) {
927                                         ret = -ENOMEM;
928                                         goto fail;
929                                 }
930                                 dir_entry->dir_name = cur_file->d_name;
931                                 dir_entry->path = make_path(parent_dir_entry->path,
932                                                             cur_file->d_name);
933                                 dir_entry->inum = cur_inum;
934                                 list_add_tail(&dir_entry->list, &dir_head->list);
935                         } else if (S_ISREG(st.st_mode)) {
936                                 ret = add_file_items(trans, root, &cur_inode,
937                                                      cur_inum, parent_inum, &st,
938                                                      cur_file->d_name, out_fd);
939                                 if (ret) {
940                                         error("unable to add file items for %s: %d",
941                                                 cur_file->d_name, ret);
942                                         goto fail;
943                                 }
944                         } else if (S_ISLNK(st.st_mode)) {
945                                 ret = add_symbolic_link(trans, root,
946                                                         cur_inum, cur_file->d_name);
947                                 if (ret) {
948                                         error("unable to add symlink for %s: %d",
949                                                 cur_file->d_name, ret);
950                                         goto fail;
951                                 }
952                         }
953                 }
954
955                 free_namelist(files, count);
956                 free(parent_dir_entry);
957
958                 index_cnt = 2;
959
960         } while (!list_empty(&dir_head->list));
961
962 out:
963         return !!ret;
964 fail:
965         free_namelist(files, count);
966 fail_no_files:
967         free(parent_dir_entry);
968         goto out;
969 fail_no_dir:
970         free(dir_entry);
971         goto out;
972 }
973
974 static int create_chunks(struct btrfs_trans_handle *trans,
975                          struct btrfs_root *root, u64 num_of_meta_chunks,
976                          u64 size_of_data,
977                          struct mkfs_allocation *allocation)
978 {
979         u64 chunk_start;
980         u64 chunk_size;
981         u64 meta_type = BTRFS_BLOCK_GROUP_METADATA;
982         u64 data_type = BTRFS_BLOCK_GROUP_DATA;
983         u64 minimum_data_chunk_size = 8 * 1024 * 1024;
984         u64 i;
985         int ret;
986
987         for (i = 0; i < num_of_meta_chunks; i++) {
988                 ret = btrfs_alloc_chunk(trans, root->fs_info->extent_root,
989                                         &chunk_start, &chunk_size, meta_type);
990                 if (ret)
991                         return ret;
992                 ret = btrfs_make_block_group(trans, root->fs_info->extent_root, 0,
993                                              meta_type, BTRFS_FIRST_CHUNK_TREE_OBJECTID,
994                                              chunk_start, chunk_size);
995                 allocation->metadata += chunk_size;
996                 if (ret)
997                         return ret;
998                 set_extent_dirty(&root->fs_info->free_space_cache,
999                                  chunk_start, chunk_start + chunk_size - 1, 0);
1000         }
1001
1002         if (size_of_data < minimum_data_chunk_size)
1003                 size_of_data = minimum_data_chunk_size;
1004
1005         ret = btrfs_alloc_data_chunk(trans, root->fs_info->extent_root,
1006                                      &chunk_start, size_of_data, data_type, 0);
1007         if (ret)
1008                 return ret;
1009         ret = btrfs_make_block_group(trans, root->fs_info->extent_root, 0,
1010                                      data_type, BTRFS_FIRST_CHUNK_TREE_OBJECTID,
1011                                      chunk_start, size_of_data);
1012         allocation->data += size_of_data;
1013         if (ret)
1014                 return ret;
1015         set_extent_dirty(&root->fs_info->free_space_cache,
1016                          chunk_start, chunk_start + size_of_data - 1, 0);
1017         return ret;
1018 }
1019
1020 static int make_image(char *source_dir, struct btrfs_root *root, int out_fd)
1021 {
1022         int ret;
1023         struct btrfs_trans_handle *trans;
1024         struct stat root_st;
1025         struct directory_name_entry dir_head;
1026         struct directory_name_entry *dir_entry = NULL;
1027
1028         ret = lstat(source_dir, &root_st);
1029         if (ret) {
1030                 error("unable to lstat %s: %s", source_dir, strerror(errno));
1031                 ret = -errno;
1032                 goto out;
1033         }
1034
1035         INIT_LIST_HEAD(&dir_head.list);
1036
1037         trans = btrfs_start_transaction(root, 1);
1038         ret = traverse_directory(trans, root, source_dir, &dir_head, out_fd);
1039         if (ret) {
1040                 error("unable to traverse directory %s: %d", source_dir, ret);
1041                 goto fail;
1042         }
1043         ret = btrfs_commit_transaction(trans, root);
1044         if (ret) {
1045                 error("transaction commit failed: %d", ret);
1046                 goto out;
1047         }
1048
1049         if (verbose)
1050                 printf("Making image is completed.\n");
1051         return 0;
1052 fail:
1053         while (!list_empty(&dir_head.list)) {
1054                 dir_entry = list_entry(dir_head.list.next,
1055                                        struct directory_name_entry, list);
1056                 list_del(&dir_entry->list);
1057                 free(dir_entry);
1058         }
1059 out:
1060         return ret;
1061 }
1062
1063 /*
1064  * This ignores symlinks with unreadable targets and subdirs that can't
1065  * be read.  It's a best-effort to give a rough estimate of the size of
1066  * a subdir.  It doesn't guarantee that prepopulating btrfs from this
1067  * tree won't still run out of space.
1068  */
1069 static u64 global_total_size;
1070 static u64 fs_block_size;
1071 static int ftw_add_entry_size(const char *fpath, const struct stat *st,
1072                               int type)
1073 {
1074         if (type == FTW_F || type == FTW_D)
1075                 global_total_size += round_up(st->st_size, fs_block_size);
1076
1077         return 0;
1078 }
1079
1080 static u64 size_sourcedir(char *dir_name, u64 sectorsize,
1081                           u64 *num_of_meta_chunks_ret, u64 *size_of_data_ret)
1082 {
1083         u64 dir_size = 0;
1084         u64 total_size = 0;
1085         int ret;
1086         u64 default_chunk_size = 8 * 1024 * 1024;       /* 8MB */
1087         u64 allocated_meta_size = 8 * 1024 * 1024;      /* 8MB */
1088         u64 allocated_total_size = 20 * 1024 * 1024;    /* 20MB */
1089         u64 num_of_meta_chunks = 0;
1090         u64 num_of_data_chunks = 0;
1091         u64 num_of_allocated_meta_chunks =
1092                         allocated_meta_size / default_chunk_size;
1093
1094         global_total_size = 0;
1095         fs_block_size = sectorsize;
1096         ret = ftw(dir_name, ftw_add_entry_size, 10);
1097         dir_size = global_total_size;
1098         if (ret < 0) {
1099                 error("ftw subdir walk of %s failed: %s", dir_name,
1100                         strerror(errno));
1101                 exit(1);
1102         }
1103
1104         num_of_data_chunks = (dir_size + default_chunk_size - 1) /
1105                 default_chunk_size;
1106
1107         num_of_meta_chunks = (dir_size / 2) / default_chunk_size;
1108         if (((dir_size / 2) % default_chunk_size) != 0)
1109                 num_of_meta_chunks++;
1110         if (num_of_meta_chunks <= num_of_allocated_meta_chunks)
1111                 num_of_meta_chunks = 0;
1112         else
1113                 num_of_meta_chunks -= num_of_allocated_meta_chunks;
1114
1115         total_size = allocated_total_size +
1116                      (num_of_data_chunks * default_chunk_size) +
1117                      (num_of_meta_chunks * default_chunk_size);
1118
1119         *num_of_meta_chunks_ret = num_of_meta_chunks;
1120         *size_of_data_ret = num_of_data_chunks * default_chunk_size;
1121         return total_size;
1122 }
1123
1124 static int zero_output_file(int out_fd, u64 size)
1125 {
1126         int loop_num;
1127         u64 location = 0;
1128         char buf[4096];
1129         int ret = 0, i;
1130         ssize_t written;
1131
1132         memset(buf, 0, 4096);
1133         loop_num = size / 4096;
1134         for (i = 0; i < loop_num; i++) {
1135                 written = pwrite64(out_fd, buf, 4096, location);
1136                 if (written != 4096)
1137                         ret = -EIO;
1138                 location += 4096;
1139         }
1140         return ret;
1141 }
1142
1143 static int is_ssd(const char *file)
1144 {
1145         blkid_probe probe;
1146         char wholedisk[PATH_MAX];
1147         char sysfs_path[PATH_MAX];
1148         dev_t devno;
1149         int fd;
1150         char rotational;
1151         int ret;
1152
1153         probe = blkid_new_probe_from_filename(file);
1154         if (!probe)
1155                 return 0;
1156
1157         /* Device number of this disk (possibly a partition) */
1158         devno = blkid_probe_get_devno(probe);
1159         if (!devno) {
1160                 blkid_free_probe(probe);
1161                 return 0;
1162         }
1163
1164         /* Get whole disk name (not full path) for this devno */
1165         ret = blkid_devno_to_wholedisk(devno,
1166                         wholedisk, sizeof(wholedisk), NULL);
1167         if (ret) {
1168                 blkid_free_probe(probe);
1169                 return 0;
1170         }
1171
1172         snprintf(sysfs_path, PATH_MAX, "/sys/block/%s/queue/rotational",
1173                  wholedisk);
1174
1175         blkid_free_probe(probe);
1176
1177         fd = open(sysfs_path, O_RDONLY);
1178         if (fd < 0) {
1179                 return 0;
1180         }
1181
1182         if (read(fd, &rotational, 1) < 1) {
1183                 close(fd);
1184                 return 0;
1185         }
1186         close(fd);
1187
1188         return rotational == '0';
1189 }
1190
1191 static int _cmp_device_by_id(void *priv, struct list_head *a,
1192                              struct list_head *b)
1193 {
1194         return list_entry(a, struct btrfs_device, dev_list)->devid -
1195                list_entry(b, struct btrfs_device, dev_list)->devid;
1196 }
1197
1198 static void list_all_devices(struct btrfs_root *root)
1199 {
1200         struct btrfs_fs_devices *fs_devices;
1201         struct btrfs_device *device;
1202         int number_of_devices = 0;
1203         u64 total_block_count = 0;
1204
1205         fs_devices = root->fs_info->fs_devices;
1206
1207         list_for_each_entry(device, &fs_devices->devices, dev_list)
1208                 number_of_devices++;
1209
1210         list_sort(NULL, &fs_devices->devices, _cmp_device_by_id);
1211
1212         printf("Number of devices:  %d\n", number_of_devices);
1213         /* printf("Total devices size: %10s\n", */
1214                 /* pretty_size(total_block_count)); */
1215         printf("Devices:\n");
1216         printf("   ID        SIZE  PATH\n");
1217         list_for_each_entry(device, &fs_devices->devices, dev_list) {
1218                 printf("  %3llu  %10s  %s\n",
1219                         device->devid,
1220                         pretty_size(device->total_bytes),
1221                         device->name);
1222                 total_block_count += device->total_bytes;
1223         }
1224
1225         printf("\n");
1226 }
1227
1228 static int is_temp_block_group(struct extent_buffer *node,
1229                                struct btrfs_block_group_item *bgi,
1230                                u64 data_profile, u64 meta_profile,
1231                                u64 sys_profile)
1232 {
1233         u64 flag = btrfs_disk_block_group_flags(node, bgi);
1234         u64 flag_type = flag & BTRFS_BLOCK_GROUP_TYPE_MASK;
1235         u64 flag_profile = flag & BTRFS_BLOCK_GROUP_PROFILE_MASK;
1236         u64 used = btrfs_disk_block_group_used(node, bgi);
1237
1238         /*
1239          * Chunks meets all the following conditions is a temp chunk
1240          * 1) Empty chunk
1241          * Temp chunk is always empty.
1242          *
1243          * 2) profile mismatch with mkfs profile.
1244          * Temp chunk is always in SINGLE
1245          *
1246          * 3) Size differs with mkfs_alloc
1247          * Special case for SINGLE/SINGLE btrfs.
1248          * In that case, temp data chunk and real data chunk are always empty.
1249          * So we need to use mkfs_alloc to be sure which chunk is the newly
1250          * allocated.
1251          *
1252          * Normally, new chunk size is equal to mkfs one (One chunk)
1253          * If it has multiple chunks, we just refuse to delete any one.
1254          * As they are all single, so no real problem will happen.
1255          * So only use condition 1) and 2) to judge them.
1256          */
1257         if (used != 0)
1258                 return 0;
1259         switch (flag_type) {
1260         case BTRFS_BLOCK_GROUP_DATA:
1261         case BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA:
1262                 data_profile &= BTRFS_BLOCK_GROUP_PROFILE_MASK;
1263                 if (flag_profile != data_profile)
1264                         return 1;
1265                 break;
1266         case BTRFS_BLOCK_GROUP_METADATA:
1267                 meta_profile &= BTRFS_BLOCK_GROUP_PROFILE_MASK;
1268                 if (flag_profile != meta_profile)
1269                         return 1;
1270                 break;
1271         case BTRFS_BLOCK_GROUP_SYSTEM:
1272                 sys_profile &= BTRFS_BLOCK_GROUP_PROFILE_MASK;
1273                 if (flag_profile != sys_profile)
1274                         return 1;
1275                 break;
1276         }
1277         return 0;
1278 }
1279
1280 /* Note: if current is a block group, it will skip it anyway */
1281 static int next_block_group(struct btrfs_root *root,
1282                             struct btrfs_path *path)
1283 {
1284         struct btrfs_key key;
1285         int ret = 0;
1286
1287         while (1) {
1288                 ret = btrfs_next_item(root, path);
1289                 if (ret)
1290                         goto out;
1291
1292                 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1293                 if (key.type == BTRFS_BLOCK_GROUP_ITEM_KEY)
1294                         goto out;
1295         }
1296 out:
1297         return ret;
1298 }
1299
1300 /* This function will cleanup  */
1301 static int cleanup_temp_chunks(struct btrfs_fs_info *fs_info,
1302                                struct mkfs_allocation *alloc,
1303                                u64 data_profile, u64 meta_profile,
1304                                u64 sys_profile)
1305 {
1306         struct btrfs_trans_handle *trans = NULL;
1307         struct btrfs_block_group_item *bgi;
1308         struct btrfs_root *root = fs_info->extent_root;
1309         struct btrfs_key key;
1310         struct btrfs_key found_key;
1311         struct btrfs_path *path;
1312         int ret = 0;
1313
1314         path = btrfs_alloc_path();
1315         if (!path) {
1316                 ret = -ENOMEM;
1317                 goto out;
1318         }
1319
1320         trans = btrfs_start_transaction(root, 1);
1321
1322         key.objectid = 0;
1323         key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
1324         key.offset = 0;
1325
1326         while (1) {
1327                 /*
1328                  * as the rest of the loop may modify the tree, we need to
1329                  * start a new search each time.
1330                  */
1331                 ret = btrfs_search_slot(trans, root, &key, path, 0, 0);
1332                 if (ret < 0)
1333                         goto out;
1334
1335                 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1336                                       path->slots[0]);
1337                 if (found_key.objectid < key.objectid)
1338                         goto out;
1339                 if (found_key.type != BTRFS_BLOCK_GROUP_ITEM_KEY) {
1340                         ret = next_block_group(root, path);
1341                         if (ret < 0)
1342                                 goto out;
1343                         if (ret > 0) {
1344                                 ret = 0;
1345                                 goto out;
1346                         }
1347                         btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1348                                               path->slots[0]);
1349                 }
1350
1351                 bgi = btrfs_item_ptr(path->nodes[0], path->slots[0],
1352                                      struct btrfs_block_group_item);
1353                 if (is_temp_block_group(path->nodes[0], bgi,
1354                                         data_profile, meta_profile,
1355                                         sys_profile)) {
1356                         u64 flags = btrfs_disk_block_group_flags(path->nodes[0],
1357                                                              bgi);
1358
1359                         ret = btrfs_free_block_group(trans, fs_info,
1360                                         found_key.objectid, found_key.offset);
1361                         if (ret < 0)
1362                                 goto out;
1363
1364                         if ((flags & BTRFS_BLOCK_GROUP_TYPE_MASK) ==
1365                             BTRFS_BLOCK_GROUP_DATA)
1366                                 alloc->data -= found_key.offset;
1367                         else if ((flags & BTRFS_BLOCK_GROUP_TYPE_MASK) ==
1368                                  BTRFS_BLOCK_GROUP_METADATA)
1369                                 alloc->metadata -= found_key.offset;
1370                         else if ((flags & BTRFS_BLOCK_GROUP_TYPE_MASK) ==
1371                                  BTRFS_BLOCK_GROUP_SYSTEM)
1372                                 alloc->system -= found_key.offset;
1373                         else if ((flags & BTRFS_BLOCK_GROUP_TYPE_MASK) ==
1374                                  (BTRFS_BLOCK_GROUP_METADATA |
1375                                   BTRFS_BLOCK_GROUP_DATA))
1376                                 alloc->mixed -= found_key.offset;
1377                 }
1378                 btrfs_release_path(path);
1379                 key.objectid = found_key.objectid + found_key.offset;
1380         }
1381 out:
1382         if (trans)
1383                 btrfs_commit_transaction(trans, root);
1384         btrfs_free_path(path);
1385         return ret;
1386 }
1387
1388 int main(int argc, char **argv)
1389 {
1390         char *file;
1391         struct btrfs_root *root;
1392         struct btrfs_fs_info *fs_info;
1393         struct btrfs_trans_handle *trans;
1394         char *label = NULL;
1395         u64 block_count = 0;
1396         u64 dev_block_count = 0;
1397         u64 blocks[7];
1398         u64 alloc_start = 0;
1399         u64 metadata_profile = 0;
1400         u64 data_profile = 0;
1401         u32 nodesize = max_t(u32, sysconf(_SC_PAGESIZE),
1402                         BTRFS_MKFS_DEFAULT_NODE_SIZE);
1403         u32 sectorsize = 4096;
1404         u32 stripesize = 4096;
1405         int zero_end = 1;
1406         int fd;
1407         int ret;
1408         int i;
1409         int mixed = 0;
1410         int nodesize_forced = 0;
1411         int data_profile_opt = 0;
1412         int metadata_profile_opt = 0;
1413         int discard = 1;
1414         int ssd = 0;
1415         int force_overwrite = 0;
1416         char *source_dir = NULL;
1417         int source_dir_set = 0;
1418         u64 num_of_meta_chunks = 0;
1419         u64 size_of_data = 0;
1420         u64 source_dir_size = 0;
1421         int dev_cnt = 0;
1422         int saved_optind;
1423         char fs_uuid[BTRFS_UUID_UNPARSED_SIZE] = { 0 };
1424         u64 features = BTRFS_MKFS_DEFAULT_FEATURES;
1425         struct mkfs_allocation allocation = { 0 };
1426         struct btrfs_mkfs_config mkfs_cfg;
1427
1428         while(1) {
1429                 int c;
1430                 static const struct option long_options[] = {
1431                         { "alloc-start", required_argument, NULL, 'A'},
1432                         { "byte-count", required_argument, NULL, 'b' },
1433                         { "force", no_argument, NULL, 'f' },
1434                         { "leafsize", required_argument, NULL, 'l' },
1435                         { "label", required_argument, NULL, 'L'},
1436                         { "metadata", required_argument, NULL, 'm' },
1437                         { "mixed", no_argument, NULL, 'M' },
1438                         { "nodesize", required_argument, NULL, 'n' },
1439                         { "sectorsize", required_argument, NULL, 's' },
1440                         { "data", required_argument, NULL, 'd' },
1441                         { "version", no_argument, NULL, 'V' },
1442                         { "rootdir", required_argument, NULL, 'r' },
1443                         { "nodiscard", no_argument, NULL, 'K' },
1444                         { "features", required_argument, NULL, 'O' },
1445                         { "uuid", required_argument, NULL, 'U' },
1446                         { "quiet", 0, NULL, 'q' },
1447                         { "help", no_argument, NULL, GETOPT_VAL_HELP },
1448                         { NULL, 0, NULL, 0}
1449                 };
1450
1451                 c = getopt_long(argc, argv, "A:b:fl:n:s:m:d:L:O:r:U:VMKq",
1452                                 long_options, NULL);
1453                 if (c < 0)
1454                         break;
1455                 switch(c) {
1456                         case 'A':
1457                                 alloc_start = parse_size(optarg);
1458                                 break;
1459                         case 'f':
1460                                 force_overwrite = 1;
1461                                 break;
1462                         case 'd':
1463                                 data_profile = parse_profile(optarg);
1464                                 data_profile_opt = 1;
1465                                 break;
1466                         case 'l':
1467                                 warning("--leafsize is deprecated, use --nodesize");
1468                         case 'n':
1469                                 nodesize = parse_size(optarg);
1470                                 nodesize_forced = 1;
1471                                 break;
1472                         case 'L':
1473                                 label = parse_label(optarg);
1474                                 break;
1475                         case 'm':
1476                                 metadata_profile = parse_profile(optarg);
1477                                 metadata_profile_opt = 1;
1478                                 break;
1479                         case 'M':
1480                                 mixed = 1;
1481                                 break;
1482                         case 'O': {
1483                                 char *orig = strdup(optarg);
1484                                 char *tmp = orig;
1485
1486                                 tmp = btrfs_parse_fs_features(tmp, &features);
1487                                 if (tmp) {
1488                                         error("unrecognized filesystem feature '%s'",
1489                                                         tmp);
1490                                         free(orig);
1491                                         exit(1);
1492                                 }
1493                                 free(orig);
1494                                 if (features & BTRFS_FEATURE_LIST_ALL) {
1495                                         btrfs_list_all_fs_features(0);
1496                                         exit(0);
1497                                 }
1498                                 break;
1499                                 }
1500                         case 's':
1501                                 sectorsize = parse_size(optarg);
1502                                 break;
1503                         case 'b':
1504                                 block_count = parse_size(optarg);
1505                                 zero_end = 0;
1506                                 break;
1507                         case 'V':
1508                                 printf("mkfs.btrfs, part of %s\n",
1509                                                 PACKAGE_STRING);
1510                                 exit(0);
1511                                 break;
1512                         case 'r':
1513                                 source_dir = optarg;
1514                                 source_dir_set = 1;
1515                                 break;
1516                         case 'U':
1517                                 strncpy(fs_uuid, optarg,
1518                                         BTRFS_UUID_UNPARSED_SIZE - 1);
1519                                 break;
1520                         case 'K':
1521                                 discard = 0;
1522                                 break;
1523                         case 'q':
1524                                 verbose = 0;
1525                                 break;
1526                         case GETOPT_VAL_HELP:
1527                         default:
1528                                 print_usage(c != GETOPT_VAL_HELP);
1529                 }
1530         }
1531
1532         if (verbose) {
1533                 printf("%s\n", PACKAGE_STRING);
1534                 printf("See %s for more information.\n\n", PACKAGE_URL);
1535         }
1536
1537         sectorsize = max(sectorsize, (u32)sysconf(_SC_PAGESIZE));
1538         stripesize = sectorsize;
1539         saved_optind = optind;
1540         dev_cnt = argc - optind;
1541         if (dev_cnt == 0)
1542                 print_usage(1);
1543
1544         if (source_dir_set && dev_cnt > 1) {
1545                 error("the option -r is limited to a single device");
1546                 exit(1);
1547         }
1548
1549         if (*fs_uuid) {
1550                 uuid_t dummy_uuid;
1551
1552                 if (uuid_parse(fs_uuid, dummy_uuid) != 0) {
1553                         error("could not parse UUID: %s", fs_uuid);
1554                         exit(1);
1555                 }
1556                 if (!test_uuid_unique(fs_uuid)) {
1557                         error("non-unique UUID: %s", fs_uuid);
1558                         exit(1);
1559                 }
1560         }
1561
1562         while (dev_cnt-- > 0) {
1563                 file = argv[optind++];
1564                 if (is_block_device(file) == 1)
1565                         if (test_dev_for_mkfs(file, force_overwrite))
1566                                 exit(1);
1567         }
1568
1569         optind = saved_optind;
1570         dev_cnt = argc - optind;
1571
1572         file = argv[optind++];
1573         ssd = is_ssd(file);
1574
1575         /*
1576         * Set default profiles according to number of added devices.
1577         * For mixed groups defaults are single/single.
1578         */
1579         if (!mixed) {
1580                 if (!metadata_profile_opt) {
1581                         if (dev_cnt == 1 && ssd && verbose)
1582                                 printf("Detected a SSD, turning off metadata "
1583                                 "duplication.  Mkfs with -m dup if you want to "
1584                                 "force metadata duplication.\n");
1585
1586                         metadata_profile = (dev_cnt > 1) ?
1587                                         BTRFS_BLOCK_GROUP_RAID1 : (ssd) ?
1588                                         0: BTRFS_BLOCK_GROUP_DUP;
1589                 }
1590                 if (!data_profile_opt) {
1591                         data_profile = (dev_cnt > 1) ?
1592                                 BTRFS_BLOCK_GROUP_RAID0 : 0; /* raid0 or single */
1593                 }
1594         } else {
1595                 u32 best_nodesize = max_t(u32, sysconf(_SC_PAGESIZE), sectorsize);
1596
1597                 if (metadata_profile_opt || data_profile_opt) {
1598                         if (metadata_profile != data_profile) {
1599                                 error(
1600         "with mixed block groups data and metadata profiles must be the same");
1601                                 exit(1);
1602                         }
1603                 }
1604
1605                 if (!nodesize_forced)
1606                         nodesize = best_nodesize;
1607         }
1608
1609         /*
1610          * FS features that can be set by other means than -O
1611          * just set the bit here
1612          */
1613         if (mixed)
1614                 features |= BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS;
1615
1616         if ((data_profile | metadata_profile) &
1617             (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)) {
1618                 features |= BTRFS_FEATURE_INCOMPAT_RAID56;
1619         }
1620
1621         if (btrfs_check_nodesize(nodesize, sectorsize,
1622                                  features))
1623                 exit(1);
1624
1625         if (sectorsize < sizeof(struct btrfs_super_block)) {
1626                 error("sectorsize smaller than superblock: %u < %zu",
1627                                 sectorsize, sizeof(struct btrfs_super_block));
1628                 exit(1);
1629         }
1630
1631         /* Check device/block_count after the nodesize is determined */
1632         if (block_count && block_count < btrfs_min_dev_size(nodesize)) {
1633                 error("size %llu is too small to make a usable filesystem",
1634                         block_count);
1635                 error("minimum size for btrfs filesystem is %llu",
1636                         btrfs_min_dev_size(nodesize));
1637                 exit(1);
1638         }
1639         for (i = saved_optind; i < saved_optind + dev_cnt; i++) {
1640                 char *path;
1641
1642                 path = argv[i];
1643                 ret = test_minimum_size(path, nodesize);
1644                 if (ret < 0) {
1645                         error("failed to check size for %s: %s",
1646                                 path, strerror(-ret));
1647                         exit (1);
1648                 }
1649                 if (ret > 0) {
1650                         error("'%s' is too small to make a usable filesystem",
1651                                 path);
1652                         error("minimum size for each btrfs device is %llu",
1653                                 btrfs_min_dev_size(nodesize));
1654                         exit(1);
1655                 }
1656         }
1657         ret = test_num_disk_vs_raid(metadata_profile, data_profile,
1658                         dev_cnt, mixed, ssd);
1659         if (ret)
1660                 exit(1);
1661
1662         dev_cnt--;
1663
1664         if (!source_dir_set) {
1665                 /*
1666                  * open without O_EXCL so that the problem should not
1667                  * occur by the following processing.
1668                  * (btrfs_register_one_device() fails if O_EXCL is on)
1669                  */
1670                 fd = open(file, O_RDWR);
1671                 if (fd < 0) {
1672                         error("unable to open %s: %s", file, strerror(errno));
1673                         exit(1);
1674                 }
1675                 ret = btrfs_prepare_device(fd, file, &dev_block_count,
1676                                 block_count,
1677                                 (zero_end ? PREP_DEVICE_ZERO_END : 0) |
1678                                 (discard ? PREP_DEVICE_DISCARD : 0) |
1679                                 (verbose ? PREP_DEVICE_VERBOSE : 0));
1680                 if (ret) {
1681                         close(fd);
1682                         exit(1);
1683                 }
1684                 if (block_count && block_count > dev_block_count) {
1685                         error("%s is smaller than requested size, expected %llu, found %llu",
1686                                         file,
1687                                         (unsigned long long)block_count,
1688                                         (unsigned long long)dev_block_count);
1689                         exit(1);
1690                 }
1691         } else {
1692                 fd = open(file, O_CREAT | O_RDWR,
1693                                 S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP | S_IROTH);
1694                 if (fd < 0) {
1695                         error("unable to open %s: %s", file, strerror(errno));
1696                         exit(1);
1697                 }
1698
1699                 source_dir_size = size_sourcedir(source_dir, sectorsize,
1700                                              &num_of_meta_chunks, &size_of_data);
1701                 if(block_count < source_dir_size)
1702                         block_count = source_dir_size;
1703                 ret = zero_output_file(fd, block_count);
1704                 if (ret) {
1705                         error("unable to zero the output file");
1706                         exit(1);
1707                 }
1708                 /* our "device" is the new image file */
1709                 dev_block_count = block_count;
1710         }
1711
1712         /* To create the first block group and chunk 0 in make_btrfs */
1713         if (dev_block_count < BTRFS_MKFS_SYSTEM_GROUP_SIZE) {
1714                 error("device is too small to make filesystem, must be at least %llu",
1715                                 (unsigned long long)BTRFS_MKFS_SYSTEM_GROUP_SIZE);
1716                 exit(1);
1717         }
1718
1719         blocks[0] = BTRFS_SUPER_INFO_OFFSET;
1720         for (i = 1; i < 7; i++) {
1721                 blocks[i] = BTRFS_SUPER_INFO_OFFSET + 1024 * 1024 +
1722                         nodesize * i;
1723         }
1724
1725         if (group_profile_max_safe_loss(metadata_profile) <
1726                 group_profile_max_safe_loss(data_profile)){
1727                 warning("metadata has lower redundancy than data!\n");
1728         }
1729
1730         mkfs_cfg.label = label;
1731         memcpy(mkfs_cfg.fs_uuid, fs_uuid, sizeof(mkfs_cfg.fs_uuid));
1732         memcpy(mkfs_cfg.blocks, blocks, sizeof(blocks));
1733         mkfs_cfg.num_bytes = dev_block_count;
1734         mkfs_cfg.nodesize = nodesize;
1735         mkfs_cfg.sectorsize = sectorsize;
1736         mkfs_cfg.stripesize = stripesize;
1737         mkfs_cfg.features = features;
1738
1739         ret = make_btrfs(fd, &mkfs_cfg, NULL);
1740         if (ret) {
1741                 error("error during mkfs: %s", strerror(-ret));
1742                 exit(1);
1743         }
1744
1745         fs_info = open_ctree_fs_info(file, 0, 0, 0,
1746                         OPEN_CTREE_WRITES | OPEN_CTREE_FS_PARTIAL);
1747         if (!fs_info) {
1748                 error("open ctree failed");
1749                 close(fd);
1750                 exit(1);
1751         }
1752         root = fs_info->fs_root;
1753         fs_info->alloc_start = alloc_start;
1754
1755         ret = create_metadata_block_groups(root, mixed, &allocation);
1756         if (ret) {
1757                 error("failed to create default block groups: %d", ret);
1758                 exit(1);
1759         }
1760
1761         trans = btrfs_start_transaction(root, 1);
1762         if (!trans) {
1763                 error("failed to start transaction");
1764                 exit(1);
1765         }
1766
1767         ret = create_data_block_groups(trans, root, mixed, &allocation);
1768         if (ret) {
1769                 error("failed to create default data block groups: %d", ret);
1770                 exit(1);
1771         }
1772
1773         ret = make_root_dir(trans, root, &allocation);
1774         if (ret) {
1775                 error("failed to setup the root directory: %d", ret);
1776                 exit(1);
1777         }
1778
1779         ret = btrfs_commit_transaction(trans, root);
1780         if (ret) {
1781                 error("unable to commit transaction: %d", ret);
1782                 goto out;
1783         }
1784
1785         trans = btrfs_start_transaction(root, 1);
1786         if (!trans) {
1787                 error("failed to start transaction");
1788                 exit(1);
1789         }
1790
1791         if (dev_cnt == 0)
1792                 goto raid_groups;
1793
1794         while (dev_cnt-- > 0) {
1795                 file = argv[optind++];
1796
1797                 /*
1798                  * open without O_EXCL so that the problem should not
1799                  * occur by the following processing.
1800                  * (btrfs_register_one_device() fails if O_EXCL is on)
1801                  */
1802                 fd = open(file, O_RDWR);
1803                 if (fd < 0) {
1804                         error("unable to open %s: %s", file, strerror(errno));
1805                         exit(1);
1806                 }
1807                 ret = btrfs_device_already_in_root(root, fd,
1808                                                    BTRFS_SUPER_INFO_OFFSET);
1809                 if (ret) {
1810                         error("skipping duplicate device %s in the filesystem",
1811                                 file);
1812                         close(fd);
1813                         continue;
1814                 }
1815                 ret = btrfs_prepare_device(fd, file, &dev_block_count,
1816                                 block_count,
1817                                 (verbose ? PREP_DEVICE_VERBOSE : 0) |
1818                                 (zero_end ? PREP_DEVICE_ZERO_END : 0) |
1819                                 (discard ? PREP_DEVICE_DISCARD : 0));
1820                 if (ret) {
1821                         close(fd);
1822                         exit(1);
1823                 }
1824
1825                 ret = btrfs_add_to_fsid(trans, root, fd, file, dev_block_count,
1826                                         sectorsize, sectorsize, sectorsize);
1827                 if (ret) {
1828                         error("unable to add %s to filesystem: %d", file, ret);
1829                         goto out;
1830                 }
1831                 if (verbose >= 2) {
1832                         struct btrfs_device *device;
1833
1834                         device = container_of(fs_info->fs_devices->devices.next,
1835                                         struct btrfs_device, dev_list);
1836                         printf("adding device %s id %llu\n", file,
1837                                 (unsigned long long)device->devid);
1838                 }
1839         }
1840
1841 raid_groups:
1842         if (!source_dir_set) {
1843                 ret = create_raid_groups(trans, root, data_profile,
1844                                  metadata_profile, mixed, &allocation);
1845                 if (ret) {
1846                         error("unable to create raid groups: %d", ret);
1847                         goto out;
1848                 }
1849         }
1850
1851         ret = create_data_reloc_tree(trans, root);
1852         if (ret) {
1853                 error("unable to create data reloc tree: %d", ret);
1854                 goto out;
1855         }
1856
1857         ret = btrfs_commit_transaction(trans, root);
1858         if (ret) {
1859                 error("unable to commit transaction: %d", ret);
1860                 goto out;
1861         }
1862
1863         if (source_dir_set) {
1864                 trans = btrfs_start_transaction(root, 1);
1865                 ret = create_chunks(trans, root,
1866                                     num_of_meta_chunks, size_of_data,
1867                                     &allocation);
1868                 if (ret) {
1869                         error("unable to create chunks: %d", ret);
1870                         goto out;
1871                 }
1872                 ret = btrfs_commit_transaction(trans, root);
1873                 if (ret) {
1874                         error("transaction commit failed: %d", ret);
1875                         goto out;
1876                 }
1877
1878                 ret = make_image(source_dir, root, fd);
1879                 if (ret) {
1880                         error("error wihle filling filesystem: %d", ret);
1881                         goto out;
1882                 }
1883         }
1884         ret = cleanup_temp_chunks(fs_info, &allocation, data_profile,
1885                                   metadata_profile, metadata_profile);
1886         if (ret < 0) {
1887                 error("failed to cleanup temporary chunks: %d", ret);
1888                 goto out;
1889         }
1890
1891         if (verbose) {
1892                 char features_buf[64];
1893
1894                 printf("Label:              %s\n", label);
1895                 printf("UUID:               %s\n", fs_uuid);
1896                 printf("Node size:          %u\n", nodesize);
1897                 printf("Sector size:        %u\n", sectorsize);
1898                 printf("Filesystem size:    %s\n",
1899                         pretty_size(btrfs_super_total_bytes(fs_info->super_copy)));
1900                 printf("Block group profiles:\n");
1901                 if (allocation.data)
1902                         printf("  Data:             %-8s %16s\n",
1903                                 btrfs_group_profile_str(data_profile),
1904                                 pretty_size(allocation.data));
1905                 if (allocation.metadata)
1906                         printf("  Metadata:         %-8s %16s\n",
1907                                 btrfs_group_profile_str(metadata_profile),
1908                                 pretty_size(allocation.metadata));
1909                 if (allocation.mixed)
1910                         printf("  Data+Metadata:    %-8s %16s\n",
1911                                 btrfs_group_profile_str(data_profile),
1912                                 pretty_size(allocation.mixed));
1913                 printf("  System:           %-8s %16s\n",
1914                         btrfs_group_profile_str(metadata_profile),
1915                         pretty_size(allocation.system));
1916                 printf("SSD detected:       %s\n", ssd ? "yes" : "no");
1917                 btrfs_parse_features_to_string(features_buf, features);
1918                 printf("Incompat features:  %s", features_buf);
1919                 printf("\n");
1920
1921                 list_all_devices(root);
1922         }
1923
1924         /*
1925          * The filesystem is now fully set up, commit the remaining changes and
1926          * fix the signature as the last step before closing the devices.
1927          */
1928         fs_info->finalize_on_close = 1;
1929 out:
1930         ret = close_ctree(root);
1931
1932         if (!ret) {
1933                 optind = saved_optind;
1934                 dev_cnt = argc - optind;
1935                 while (dev_cnt-- > 0) {
1936                         file = argv[optind++];
1937                         if (is_block_device(file) == 1)
1938                                 btrfs_register_one_device(file);
1939                 }
1940         }
1941
1942         btrfs_close_all_devices();
1943         free(label);
1944
1945         return !!ret;
1946 }