2 * RDMA protocol and interfaces
4 * Copyright IBM, Corp. 2010-2013
7 * Michael R. Hines <mrhines@us.ibm.com>
8 * Jiuxing Liu <jl@us.ibm.com>
10 * This work is licensed under the terms of the GNU GPL, version 2 or
11 * later. See the COPYING file in the top-level directory.
14 #include "qemu-common.h"
15 #include "migration/migration.h"
16 #include "migration/qemu-file.h"
17 #include "exec/cpu-common.h"
18 #include "qemu/main-loop.h"
19 #include "qemu/sockets.h"
20 #include "qemu/bitmap.h"
21 #include "block/coroutine.h"
23 #include <sys/types.h>
24 #include <sys/socket.h>
26 #include <arpa/inet.h>
28 #include <rdma/rdma_cma.h>
31 //#define DEBUG_RDMA_VERBOSE
32 //#define DEBUG_RDMA_REALLY_VERBOSE
35 #define DPRINTF(fmt, ...) \
36 do { printf("rdma: " fmt, ## __VA_ARGS__); } while (0)
38 #define DPRINTF(fmt, ...) \
42 #ifdef DEBUG_RDMA_VERBOSE
43 #define DDPRINTF(fmt, ...) \
44 do { printf("rdma: " fmt, ## __VA_ARGS__); } while (0)
46 #define DDPRINTF(fmt, ...) \
50 #ifdef DEBUG_RDMA_REALLY_VERBOSE
51 #define DDDPRINTF(fmt, ...) \
52 do { printf("rdma: " fmt, ## __VA_ARGS__); } while (0)
54 #define DDDPRINTF(fmt, ...) \
59 * Print and error on both the Monitor and the Log file.
61 #define ERROR(errp, fmt, ...) \
63 fprintf(stderr, "RDMA ERROR: " fmt, ## __VA_ARGS__); \
64 if (errp && (*(errp) == NULL)) { \
65 error_setg(errp, "RDMA ERROR: " fmt, ## __VA_ARGS__); \
69 #define RDMA_RESOLVE_TIMEOUT_MS 10000
71 /* Do not merge data if larger than this. */
72 #define RDMA_MERGE_MAX (2 * 1024 * 1024)
73 #define RDMA_SIGNALED_SEND_MAX (RDMA_MERGE_MAX / 4096)
75 #define RDMA_REG_CHUNK_SHIFT 20 /* 1 MB */
78 * This is only for non-live state being migrated.
79 * Instead of RDMA_WRITE messages, we use RDMA_SEND
80 * messages for that state, which requires a different
81 * delivery design than main memory.
83 #define RDMA_SEND_INCREMENT 32768
86 * Maximum size infiniband SEND message
88 #define RDMA_CONTROL_MAX_BUFFER (512 * 1024)
89 #define RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE 4096
91 #define RDMA_CONTROL_VERSION_CURRENT 1
93 * Capabilities for negotiation.
95 #define RDMA_CAPABILITY_PIN_ALL 0x01
98 * Add the other flags above to this list of known capabilities
99 * as they are introduced.
101 static uint32_t known_capabilities = RDMA_CAPABILITY_PIN_ALL;
103 #define CHECK_ERROR_STATE() \
105 if (rdma->error_state) { \
106 if (!rdma->error_reported) { \
107 fprintf(stderr, "RDMA is in an error state waiting migration" \
109 rdma->error_reported = 1; \
111 return rdma->error_state; \
116 * A work request ID is 64-bits and we split up these bits
119 * bits 0-15 : type of control message, 2^16
120 * bits 16-29: ram block index, 2^14
121 * bits 30-63: ram block chunk number, 2^34
123 * The last two bit ranges are only used for RDMA writes,
124 * in order to track their completion and potentially
125 * also track unregistration status of the message.
127 #define RDMA_WRID_TYPE_SHIFT 0UL
128 #define RDMA_WRID_BLOCK_SHIFT 16UL
129 #define RDMA_WRID_CHUNK_SHIFT 30UL
131 #define RDMA_WRID_TYPE_MASK \
132 ((1UL << RDMA_WRID_BLOCK_SHIFT) - 1UL)
134 #define RDMA_WRID_BLOCK_MASK \
135 (~RDMA_WRID_TYPE_MASK & ((1UL << RDMA_WRID_CHUNK_SHIFT) - 1UL))
137 #define RDMA_WRID_CHUNK_MASK (~RDMA_WRID_BLOCK_MASK & ~RDMA_WRID_TYPE_MASK)
140 * RDMA migration protocol:
141 * 1. RDMA Writes (data messages, i.e. RAM)
142 * 2. IB Send/Recv (control channel messages)
146 RDMA_WRID_RDMA_WRITE = 1,
147 RDMA_WRID_SEND_CONTROL = 2000,
148 RDMA_WRID_RECV_CONTROL = 4000,
151 const char *wrid_desc[] = {
152 [RDMA_WRID_NONE] = "NONE",
153 [RDMA_WRID_RDMA_WRITE] = "WRITE RDMA",
154 [RDMA_WRID_SEND_CONTROL] = "CONTROL SEND",
155 [RDMA_WRID_RECV_CONTROL] = "CONTROL RECV",
159 * Work request IDs for IB SEND messages only (not RDMA writes).
160 * This is used by the migration protocol to transmit
161 * control messages (such as device state and registration commands)
163 * We could use more WRs, but we have enough for now.
173 * SEND/RECV IB Control Messages.
176 RDMA_CONTROL_NONE = 0,
178 RDMA_CONTROL_READY, /* ready to receive */
179 RDMA_CONTROL_QEMU_FILE, /* QEMUFile-transmitted bytes */
180 RDMA_CONTROL_RAM_BLOCKS_REQUEST, /* RAMBlock synchronization */
181 RDMA_CONTROL_RAM_BLOCKS_RESULT, /* RAMBlock synchronization */
182 RDMA_CONTROL_COMPRESS, /* page contains repeat values */
183 RDMA_CONTROL_REGISTER_REQUEST, /* dynamic page registration */
184 RDMA_CONTROL_REGISTER_RESULT, /* key to use after registration */
185 RDMA_CONTROL_REGISTER_FINISHED, /* current iteration finished */
186 RDMA_CONTROL_UNREGISTER_REQUEST, /* dynamic UN-registration */
187 RDMA_CONTROL_UNREGISTER_FINISHED, /* unpinning finished */
190 const char *control_desc[] = {
191 [RDMA_CONTROL_NONE] = "NONE",
192 [RDMA_CONTROL_ERROR] = "ERROR",
193 [RDMA_CONTROL_READY] = "READY",
194 [RDMA_CONTROL_QEMU_FILE] = "QEMU FILE",
195 [RDMA_CONTROL_RAM_BLOCKS_REQUEST] = "RAM BLOCKS REQUEST",
196 [RDMA_CONTROL_RAM_BLOCKS_RESULT] = "RAM BLOCKS RESULT",
197 [RDMA_CONTROL_COMPRESS] = "COMPRESS",
198 [RDMA_CONTROL_REGISTER_REQUEST] = "REGISTER REQUEST",
199 [RDMA_CONTROL_REGISTER_RESULT] = "REGISTER RESULT",
200 [RDMA_CONTROL_REGISTER_FINISHED] = "REGISTER FINISHED",
201 [RDMA_CONTROL_UNREGISTER_REQUEST] = "UNREGISTER REQUEST",
202 [RDMA_CONTROL_UNREGISTER_FINISHED] = "UNREGISTER FINISHED",
206 * Memory and MR structures used to represent an IB Send/Recv work request.
207 * This is *not* used for RDMA writes, only IB Send/Recv.
210 uint8_t control[RDMA_CONTROL_MAX_BUFFER]; /* actual buffer to register */
211 struct ibv_mr *control_mr; /* registration metadata */
212 size_t control_len; /* length of the message */
213 uint8_t *control_curr; /* start of unconsumed bytes */
214 } RDMAWorkRequestData;
217 * Negotiate RDMA capabilities during connection-setup time.
224 static void caps_to_network(RDMACapabilities *cap)
226 cap->version = htonl(cap->version);
227 cap->flags = htonl(cap->flags);
230 static void network_to_caps(RDMACapabilities *cap)
232 cap->version = ntohl(cap->version);
233 cap->flags = ntohl(cap->flags);
237 * Representation of a RAMBlock from an RDMA perspective.
238 * This is not transmitted, only local.
239 * This and subsequent structures cannot be linked lists
240 * because we're using a single IB message to transmit
241 * the information. It's small anyway, so a list is overkill.
243 typedef struct RDMALocalBlock {
244 uint8_t *local_host_addr; /* local virtual address */
245 uint64_t remote_host_addr; /* remote virtual address */
248 struct ibv_mr **pmr; /* MRs for chunk-level registration */
249 struct ibv_mr *mr; /* MR for non-chunk-level registration */
250 uint32_t *remote_keys; /* rkeys for chunk-level registration */
251 uint32_t remote_rkey; /* rkeys for non-chunk-level registration */
252 int index; /* which block are we */
255 unsigned long *transit_bitmap;
256 unsigned long *unregister_bitmap;
260 * Also represents a RAMblock, but only on the dest.
261 * This gets transmitted by the dest during connection-time
262 * to the source VM and then is used to populate the
263 * corresponding RDMALocalBlock with
264 * the information needed to perform the actual RDMA.
266 typedef struct QEMU_PACKED RDMARemoteBlock {
267 uint64_t remote_host_addr;
270 uint32_t remote_rkey;
274 static uint64_t htonll(uint64_t v)
276 union { uint32_t lv[2]; uint64_t llv; } u;
277 u.lv[0] = htonl(v >> 32);
278 u.lv[1] = htonl(v & 0xFFFFFFFFULL);
282 static uint64_t ntohll(uint64_t v) {
283 union { uint32_t lv[2]; uint64_t llv; } u;
285 return ((uint64_t)ntohl(u.lv[0]) << 32) | (uint64_t) ntohl(u.lv[1]);
288 static void remote_block_to_network(RDMARemoteBlock *rb)
290 rb->remote_host_addr = htonll(rb->remote_host_addr);
291 rb->offset = htonll(rb->offset);
292 rb->length = htonll(rb->length);
293 rb->remote_rkey = htonl(rb->remote_rkey);
296 static void network_to_remote_block(RDMARemoteBlock *rb)
298 rb->remote_host_addr = ntohll(rb->remote_host_addr);
299 rb->offset = ntohll(rb->offset);
300 rb->length = ntohll(rb->length);
301 rb->remote_rkey = ntohl(rb->remote_rkey);
305 * Virtual address of the above structures used for transmitting
306 * the RAMBlock descriptions at connection-time.
307 * This structure is *not* transmitted.
309 typedef struct RDMALocalBlocks {
311 bool init; /* main memory init complete */
312 RDMALocalBlock *block;
316 * Main data structure for RDMA state.
317 * While there is only one copy of this structure being allocated right now,
318 * this is the place where one would start if you wanted to consider
319 * having more than one RDMA connection open at the same time.
321 typedef struct RDMAContext {
325 RDMAWorkRequestData wr_data[RDMA_WRID_MAX + 1];
328 * This is used by *_exchange_send() to figure out whether or not
329 * the initial "READY" message has already been received or not.
330 * This is because other functions may potentially poll() and detect
331 * the READY message before send() does, in which case we need to
332 * know if it completed.
334 int control_ready_expected;
336 /* number of outstanding writes */
339 /* store info about current buffer so that we can
340 merge it with future sends */
341 uint64_t current_addr;
342 uint64_t current_length;
343 /* index of ram block the current buffer belongs to */
345 /* index of the chunk in the current ram block */
351 * infiniband-specific variables for opening the device
352 * and maintaining connection state and so forth.
354 * cm_id also has ibv_context, rdma_event_channel, and ibv_qp in
355 * cm_id->verbs, cm_id->channel, and cm_id->qp.
357 struct rdma_cm_id *cm_id; /* connection manager ID */
358 struct rdma_cm_id *listen_id;
360 struct ibv_context *verbs;
361 struct rdma_event_channel *channel;
362 struct ibv_qp *qp; /* queue pair */
363 struct ibv_comp_channel *comp_channel; /* completion channel */
364 struct ibv_pd *pd; /* protection domain */
365 struct ibv_cq *cq; /* completion queue */
368 * If a previous write failed (perhaps because of a failed
369 * memory registration, then do not attempt any future work
370 * and remember the error state.
376 * Description of ram blocks used throughout the code.
378 RDMALocalBlocks local_ram_blocks;
379 RDMARemoteBlock *block;
382 * Migration on *destination* started.
383 * Then use coroutine yield function.
384 * Source runs in a thread, so we don't care.
386 int migration_started_on_destination;
388 int total_registrations;
391 int unregister_current, unregister_next;
392 uint64_t unregistrations[RDMA_SIGNALED_SEND_MAX];
394 GHashTable *blockmap;
399 * Interface to the rest of the migration call stack.
401 typedef struct QEMUFileRDMA {
408 * Main structure for IB Send/Recv control messages.
409 * This gets prepended at the beginning of every Send/Recv.
411 typedef struct QEMU_PACKED {
412 uint32_t len; /* Total length of data portion */
413 uint32_t type; /* which control command to perform */
414 uint32_t repeat; /* number of commands in data portion of same type */
418 static void control_to_network(RDMAControlHeader *control)
420 control->type = htonl(control->type);
421 control->len = htonl(control->len);
422 control->repeat = htonl(control->repeat);
425 static void network_to_control(RDMAControlHeader *control)
427 control->type = ntohl(control->type);
428 control->len = ntohl(control->len);
429 control->repeat = ntohl(control->repeat);
433 * Register a single Chunk.
434 * Information sent by the source VM to inform the dest
435 * to register an single chunk of memory before we can perform
436 * the actual RDMA operation.
438 typedef struct QEMU_PACKED {
440 uint64_t current_addr; /* offset into the ramblock of the chunk */
441 uint64_t chunk; /* chunk to lookup if unregistering */
443 uint32_t current_index; /* which ramblock the chunk belongs to */
445 uint64_t chunks; /* how many sequential chunks to register */
448 static void register_to_network(RDMARegister *reg)
450 reg->key.current_addr = htonll(reg->key.current_addr);
451 reg->current_index = htonl(reg->current_index);
452 reg->chunks = htonll(reg->chunks);
455 static void network_to_register(RDMARegister *reg)
457 reg->key.current_addr = ntohll(reg->key.current_addr);
458 reg->current_index = ntohl(reg->current_index);
459 reg->chunks = ntohll(reg->chunks);
462 typedef struct QEMU_PACKED {
463 uint32_t value; /* if zero, we will madvise() */
464 uint32_t block_idx; /* which ram block index */
465 uint64_t offset; /* where in the remote ramblock this chunk */
466 uint64_t length; /* length of the chunk */
469 static void compress_to_network(RDMACompress *comp)
471 comp->value = htonl(comp->value);
472 comp->block_idx = htonl(comp->block_idx);
473 comp->offset = htonll(comp->offset);
474 comp->length = htonll(comp->length);
477 static void network_to_compress(RDMACompress *comp)
479 comp->value = ntohl(comp->value);
480 comp->block_idx = ntohl(comp->block_idx);
481 comp->offset = ntohll(comp->offset);
482 comp->length = ntohll(comp->length);
486 * The result of the dest's memory registration produces an "rkey"
487 * which the source VM must reference in order to perform
488 * the RDMA operation.
490 typedef struct QEMU_PACKED {
494 } RDMARegisterResult;
496 static void result_to_network(RDMARegisterResult *result)
498 result->rkey = htonl(result->rkey);
499 result->host_addr = htonll(result->host_addr);
502 static void network_to_result(RDMARegisterResult *result)
504 result->rkey = ntohl(result->rkey);
505 result->host_addr = ntohll(result->host_addr);
508 const char *print_wrid(int wrid);
509 static int qemu_rdma_exchange_send(RDMAContext *rdma, RDMAControlHeader *head,
510 uint8_t *data, RDMAControlHeader *resp,
512 int (*callback)(RDMAContext *rdma));
514 static inline uint64_t ram_chunk_index(uint8_t *start, uint8_t *host)
516 return ((uintptr_t) host - (uintptr_t) start) >> RDMA_REG_CHUNK_SHIFT;
519 static inline uint8_t *ram_chunk_start(RDMALocalBlock *rdma_ram_block,
522 return (uint8_t *) (((uintptr_t) rdma_ram_block->local_host_addr)
523 + (i << RDMA_REG_CHUNK_SHIFT));
526 static inline uint8_t *ram_chunk_end(RDMALocalBlock *rdma_ram_block, uint64_t i)
528 uint8_t *result = ram_chunk_start(rdma_ram_block, i) +
529 (1UL << RDMA_REG_CHUNK_SHIFT);
531 if (result > (rdma_ram_block->local_host_addr + rdma_ram_block->length)) {
532 result = rdma_ram_block->local_host_addr + rdma_ram_block->length;
538 static int __qemu_rdma_add_block(RDMAContext *rdma, void *host_addr,
539 ram_addr_t block_offset, uint64_t length)
541 RDMALocalBlocks *local = &rdma->local_ram_blocks;
542 RDMALocalBlock *block = g_hash_table_lookup(rdma->blockmap,
543 (void *) block_offset);
544 RDMALocalBlock *old = local->block;
546 assert(block == NULL);
548 local->block = g_malloc0(sizeof(RDMALocalBlock) * (local->nb_blocks + 1));
550 if (local->nb_blocks) {
553 for (x = 0; x < local->nb_blocks; x++) {
554 g_hash_table_remove(rdma->blockmap, (void *)old[x].offset);
555 g_hash_table_insert(rdma->blockmap, (void *)old[x].offset,
558 memcpy(local->block, old, sizeof(RDMALocalBlock) * local->nb_blocks);
562 block = &local->block[local->nb_blocks];
564 block->local_host_addr = host_addr;
565 block->offset = block_offset;
566 block->length = length;
567 block->index = local->nb_blocks;
568 block->nb_chunks = ram_chunk_index(host_addr, host_addr + length) + 1UL;
569 block->transit_bitmap = bitmap_new(block->nb_chunks);
570 bitmap_clear(block->transit_bitmap, 0, block->nb_chunks);
571 block->unregister_bitmap = bitmap_new(block->nb_chunks);
572 bitmap_clear(block->unregister_bitmap, 0, block->nb_chunks);
573 block->remote_keys = g_malloc0(block->nb_chunks * sizeof(uint32_t));
575 block->is_ram_block = local->init ? false : true;
577 g_hash_table_insert(rdma->blockmap, (void *) block_offset, block);
579 DDPRINTF("Added Block: %d, addr: %" PRIu64 ", offset: %" PRIu64
580 " length: %" PRIu64 " end: %" PRIu64 " bits %" PRIu64 " chunks %d\n",
581 local->nb_blocks, (uint64_t) block->local_host_addr, block->offset,
582 block->length, (uint64_t) (block->local_host_addr + block->length),
583 BITS_TO_LONGS(block->nb_chunks) *
584 sizeof(unsigned long) * 8, block->nb_chunks);
592 * Memory regions need to be registered with the device and queue pairs setup
593 * in advanced before the migration starts. This tells us where the RAM blocks
594 * are so that we can register them individually.
596 static void qemu_rdma_init_one_block(void *host_addr,
597 ram_addr_t block_offset, ram_addr_t length, void *opaque)
599 __qemu_rdma_add_block(opaque, host_addr, block_offset, length);
603 * Identify the RAMBlocks and their quantity. They will be references to
604 * identify chunk boundaries inside each RAMBlock and also be referenced
605 * during dynamic page registration.
607 static int qemu_rdma_init_ram_blocks(RDMAContext *rdma)
609 RDMALocalBlocks *local = &rdma->local_ram_blocks;
611 assert(rdma->blockmap == NULL);
612 rdma->blockmap = g_hash_table_new(g_direct_hash, g_direct_equal);
613 memset(local, 0, sizeof *local);
614 qemu_ram_foreach_block(qemu_rdma_init_one_block, rdma);
615 DPRINTF("Allocated %d local ram block structures\n", local->nb_blocks);
616 rdma->block = (RDMARemoteBlock *) g_malloc0(sizeof(RDMARemoteBlock) *
617 rdma->local_ram_blocks.nb_blocks);
622 static int __qemu_rdma_delete_block(RDMAContext *rdma, ram_addr_t block_offset)
624 RDMALocalBlocks *local = &rdma->local_ram_blocks;
625 RDMALocalBlock *block = g_hash_table_lookup(rdma->blockmap,
626 (void *) block_offset);
627 RDMALocalBlock *old = local->block;
635 for (j = 0; j < block->nb_chunks; j++) {
636 if (!block->pmr[j]) {
639 ibv_dereg_mr(block->pmr[j]);
640 rdma->total_registrations--;
647 ibv_dereg_mr(block->mr);
648 rdma->total_registrations--;
652 g_free(block->transit_bitmap);
653 block->transit_bitmap = NULL;
655 g_free(block->unregister_bitmap);
656 block->unregister_bitmap = NULL;
658 g_free(block->remote_keys);
659 block->remote_keys = NULL;
661 for (x = 0; x < local->nb_blocks; x++) {
662 g_hash_table_remove(rdma->blockmap, (void *)old[x].offset);
665 if (local->nb_blocks > 1) {
667 local->block = g_malloc0(sizeof(RDMALocalBlock) *
668 (local->nb_blocks - 1));
671 memcpy(local->block, old, sizeof(RDMALocalBlock) * block->index);
674 if (block->index < (local->nb_blocks - 1)) {
675 memcpy(local->block + block->index, old + (block->index + 1),
676 sizeof(RDMALocalBlock) *
677 (local->nb_blocks - (block->index + 1)));
680 assert(block == local->block);
684 DDPRINTF("Deleted Block: %d, addr: %" PRIu64 ", offset: %" PRIu64
685 " length: %" PRIu64 " end: %" PRIu64 " bits %" PRIu64 " chunks %d\n",
686 local->nb_blocks, (uint64_t) block->local_host_addr, block->offset,
687 block->length, (uint64_t) (block->local_host_addr + block->length),
688 BITS_TO_LONGS(block->nb_chunks) *
689 sizeof(unsigned long) * 8, block->nb_chunks);
695 if (local->nb_blocks) {
696 for (x = 0; x < local->nb_blocks; x++) {
697 g_hash_table_insert(rdma->blockmap, (void *)local->block[x].offset,
706 * Put in the log file which RDMA device was opened and the details
707 * associated with that device.
709 static void qemu_rdma_dump_id(const char *who, struct ibv_context *verbs)
711 printf("%s RDMA Device opened: kernel name %s "
712 "uverbs device name %s, "
713 "infiniband_verbs class device path %s,"
714 " infiniband class device path %s\n",
717 verbs->device->dev_name,
718 verbs->device->dev_path,
719 verbs->device->ibdev_path);
723 * Put in the log file the RDMA gid addressing information,
724 * useful for folks who have trouble understanding the
725 * RDMA device hierarchy in the kernel.
727 static void qemu_rdma_dump_gid(const char *who, struct rdma_cm_id *id)
731 inet_ntop(AF_INET6, &id->route.addr.addr.ibaddr.sgid, sgid, sizeof sgid);
732 inet_ntop(AF_INET6, &id->route.addr.addr.ibaddr.dgid, dgid, sizeof dgid);
733 DPRINTF("%s Source GID: %s, Dest GID: %s\n", who, sgid, dgid);
737 * Figure out which RDMA device corresponds to the requested IP hostname
738 * Also create the initial connection manager identifiers for opening
741 static int qemu_rdma_resolve_host(RDMAContext *rdma, Error **errp)
744 struct addrinfo *res;
746 struct rdma_cm_event *cm_event;
747 char ip[40] = "unknown";
748 int af = rdma->ipv6 ? PF_INET6 : PF_INET;
750 if (rdma->host == NULL || !strcmp(rdma->host, "")) {
751 ERROR(errp, "RDMA hostname has not been set\n");
755 /* create CM channel */
756 rdma->channel = rdma_create_event_channel();
757 if (!rdma->channel) {
758 ERROR(errp, "could not create CM channel\n");
763 ret = rdma_create_id(rdma->channel, &rdma->cm_id, NULL, RDMA_PS_TCP);
765 ERROR(errp, "could not create channel id\n");
766 goto err_resolve_create_id;
769 snprintf(port_str, 16, "%d", rdma->port);
772 ret = getaddrinfo(rdma->host, port_str, NULL, &res);
774 ERROR(errp, "could not getaddrinfo address %s\n", rdma->host);
775 goto err_resolve_get_addr;
778 inet_ntop(af, &((struct sockaddr_in *) res->ai_addr)->sin_addr,
780 DPRINTF("%s => %s\n", rdma->host, ip);
782 /* resolve the first address */
783 ret = rdma_resolve_addr(rdma->cm_id, NULL, res->ai_addr,
784 RDMA_RESOLVE_TIMEOUT_MS);
786 ERROR(errp, "could not resolve address %s\n", rdma->host);
787 goto err_resolve_get_addr;
790 qemu_rdma_dump_gid("source_resolve_addr", rdma->cm_id);
792 ret = rdma_get_cm_event(rdma->channel, &cm_event);
794 ERROR(errp, "could not perform event_addr_resolved\n");
795 goto err_resolve_get_addr;
798 if (cm_event->event != RDMA_CM_EVENT_ADDR_RESOLVED) {
799 ERROR(errp, "result not equal to event_addr_resolved %s\n",
800 rdma_event_str(cm_event->event));
801 perror("rdma_resolve_addr");
802 goto err_resolve_get_addr;
804 rdma_ack_cm_event(cm_event);
807 ret = rdma_resolve_route(rdma->cm_id, RDMA_RESOLVE_TIMEOUT_MS);
809 ERROR(errp, "could not resolve rdma route\n");
810 goto err_resolve_get_addr;
813 ret = rdma_get_cm_event(rdma->channel, &cm_event);
815 ERROR(errp, "could not perform event_route_resolved\n");
816 goto err_resolve_get_addr;
818 if (cm_event->event != RDMA_CM_EVENT_ROUTE_RESOLVED) {
819 ERROR(errp, "result not equal to event_route_resolved: %s\n",
820 rdma_event_str(cm_event->event));
821 rdma_ack_cm_event(cm_event);
822 goto err_resolve_get_addr;
824 rdma_ack_cm_event(cm_event);
825 rdma->verbs = rdma->cm_id->verbs;
826 qemu_rdma_dump_id("source_resolve_host", rdma->cm_id->verbs);
827 qemu_rdma_dump_gid("source_resolve_host", rdma->cm_id);
830 err_resolve_get_addr:
831 rdma_destroy_id(rdma->cm_id);
833 err_resolve_create_id:
834 rdma_destroy_event_channel(rdma->channel);
835 rdma->channel = NULL;
841 * Create protection domain and completion queues
843 static int qemu_rdma_alloc_pd_cq(RDMAContext *rdma)
846 rdma->pd = ibv_alloc_pd(rdma->verbs);
848 fprintf(stderr, "failed to allocate protection domain\n");
852 /* create completion channel */
853 rdma->comp_channel = ibv_create_comp_channel(rdma->verbs);
854 if (!rdma->comp_channel) {
855 fprintf(stderr, "failed to allocate completion channel\n");
856 goto err_alloc_pd_cq;
860 * Completion queue can be filled by both read and write work requests,
861 * so must reflect the sum of both possible queue sizes.
863 rdma->cq = ibv_create_cq(rdma->verbs, (RDMA_SIGNALED_SEND_MAX * 3),
864 NULL, rdma->comp_channel, 0);
866 fprintf(stderr, "failed to allocate completion queue\n");
867 goto err_alloc_pd_cq;
874 ibv_dealloc_pd(rdma->pd);
876 if (rdma->comp_channel) {
877 ibv_destroy_comp_channel(rdma->comp_channel);
880 rdma->comp_channel = NULL;
886 * Create queue pairs.
888 static int qemu_rdma_alloc_qp(RDMAContext *rdma)
890 struct ibv_qp_init_attr attr = { 0 };
893 attr.cap.max_send_wr = RDMA_SIGNALED_SEND_MAX;
894 attr.cap.max_recv_wr = 3;
895 attr.cap.max_send_sge = 1;
896 attr.cap.max_recv_sge = 1;
897 attr.send_cq = rdma->cq;
898 attr.recv_cq = rdma->cq;
899 attr.qp_type = IBV_QPT_RC;
901 ret = rdma_create_qp(rdma->cm_id, rdma->pd, &attr);
906 rdma->qp = rdma->cm_id->qp;
910 static int qemu_rdma_reg_whole_ram_blocks(RDMAContext *rdma)
913 RDMALocalBlocks *local = &rdma->local_ram_blocks;
915 for (i = 0; i < local->nb_blocks; i++) {
918 local->block[i].local_host_addr,
919 local->block[i].length,
920 IBV_ACCESS_LOCAL_WRITE |
921 IBV_ACCESS_REMOTE_WRITE
923 if (!local->block[i].mr) {
924 perror("Failed to register local dest ram block!\n");
927 rdma->total_registrations++;
930 if (i >= local->nb_blocks) {
934 for (i--; i >= 0; i--) {
935 ibv_dereg_mr(local->block[i].mr);
936 rdma->total_registrations--;
944 * Find the ram block that corresponds to the page requested to be
945 * transmitted by QEMU.
947 * Once the block is found, also identify which 'chunk' within that
948 * block that the page belongs to.
950 * This search cannot fail or the migration will fail.
952 static int qemu_rdma_search_ram_block(RDMAContext *rdma,
953 uint64_t block_offset,
956 uint64_t *block_index,
957 uint64_t *chunk_index)
959 uint64_t current_addr = block_offset + offset;
960 RDMALocalBlock *block = g_hash_table_lookup(rdma->blockmap,
961 (void *) block_offset);
963 assert(current_addr >= block->offset);
964 assert((current_addr + length) <= (block->offset + block->length));
966 *block_index = block->index;
967 *chunk_index = ram_chunk_index(block->local_host_addr,
968 block->local_host_addr + (current_addr - block->offset));
974 * Register a chunk with IB. If the chunk was already registered
975 * previously, then skip.
977 * Also return the keys associated with the registration needed
978 * to perform the actual RDMA operation.
980 static int qemu_rdma_register_and_get_keys(RDMAContext *rdma,
981 RDMALocalBlock *block, uint8_t *host_addr,
982 uint32_t *lkey, uint32_t *rkey, int chunk,
983 uint8_t *chunk_start, uint8_t *chunk_end)
987 *lkey = block->mr->lkey;
990 *rkey = block->mr->rkey;
995 /* allocate memory to store chunk MRs */
997 block->pmr = g_malloc0(block->nb_chunks * sizeof(struct ibv_mr *));
1004 * If 'rkey', then we're the destination, so grant access to the source.
1006 * If 'lkey', then we're the source VM, so grant access only to ourselves.
1008 if (!block->pmr[chunk]) {
1009 uint64_t len = chunk_end - chunk_start;
1011 DDPRINTF("Registering %" PRIu64 " bytes @ %p\n",
1014 block->pmr[chunk] = ibv_reg_mr(rdma->pd,
1016 (rkey ? (IBV_ACCESS_LOCAL_WRITE |
1017 IBV_ACCESS_REMOTE_WRITE) : 0));
1019 if (!block->pmr[chunk]) {
1020 perror("Failed to register chunk!");
1021 fprintf(stderr, "Chunk details: block: %d chunk index %d"
1022 " start %" PRIu64 " end %" PRIu64 " host %" PRIu64
1023 " local %" PRIu64 " registrations: %d\n",
1024 block->index, chunk, (uint64_t) chunk_start,
1025 (uint64_t) chunk_end, (uint64_t) host_addr,
1026 (uint64_t) block->local_host_addr,
1027 rdma->total_registrations);
1030 rdma->total_registrations++;
1034 *lkey = block->pmr[chunk]->lkey;
1037 *rkey = block->pmr[chunk]->rkey;
1043 * Register (at connection time) the memory used for control
1046 static int qemu_rdma_reg_control(RDMAContext *rdma, int idx)
1048 rdma->wr_data[idx].control_mr = ibv_reg_mr(rdma->pd,
1049 rdma->wr_data[idx].control, RDMA_CONTROL_MAX_BUFFER,
1050 IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE);
1051 if (rdma->wr_data[idx].control_mr) {
1052 rdma->total_registrations++;
1055 fprintf(stderr, "qemu_rdma_reg_control failed!\n");
1059 const char *print_wrid(int wrid)
1061 if (wrid >= RDMA_WRID_RECV_CONTROL) {
1062 return wrid_desc[RDMA_WRID_RECV_CONTROL];
1064 return wrid_desc[wrid];
1068 * RDMA requires memory registration (mlock/pinning), but this is not good for
1071 * In preparation for the future where LRU information or workload-specific
1072 * writable writable working set memory access behavior is available to QEMU
1073 * it would be nice to have in place the ability to UN-register/UN-pin
1074 * particular memory regions from the RDMA hardware when it is determine that
1075 * those regions of memory will likely not be accessed again in the near future.
1077 * While we do not yet have such information right now, the following
1078 * compile-time option allows us to perform a non-optimized version of this
1081 * By uncommenting this option, you will cause *all* RDMA transfers to be
1082 * unregistered immediately after the transfer completes on both sides of the
1083 * connection. This has no effect in 'rdma-pin-all' mode, only regular mode.
1085 * This will have a terrible impact on migration performance, so until future
1086 * workload information or LRU information is available, do not attempt to use
1087 * this feature except for basic testing.
1089 //#define RDMA_UNREGISTRATION_EXAMPLE
1092 * Perform a non-optimized memory unregistration after every transfer
1093 * for demonsration purposes, only if pin-all is not requested.
1095 * Potential optimizations:
1096 * 1. Start a new thread to run this function continuously
1098 - and for receipt of unregister messages
1100 * 3. Use workload hints.
1102 static int qemu_rdma_unregister_waiting(RDMAContext *rdma)
1104 while (rdma->unregistrations[rdma->unregister_current]) {
1106 uint64_t wr_id = rdma->unregistrations[rdma->unregister_current];
1108 (wr_id & RDMA_WRID_CHUNK_MASK) >> RDMA_WRID_CHUNK_SHIFT;
1110 (wr_id & RDMA_WRID_BLOCK_MASK) >> RDMA_WRID_BLOCK_SHIFT;
1111 RDMALocalBlock *block =
1112 &(rdma->local_ram_blocks.block[index]);
1113 RDMARegister reg = { .current_index = index };
1114 RDMAControlHeader resp = { .type = RDMA_CONTROL_UNREGISTER_FINISHED,
1116 RDMAControlHeader head = { .len = sizeof(RDMARegister),
1117 .type = RDMA_CONTROL_UNREGISTER_REQUEST,
1121 DDPRINTF("Processing unregister for chunk: %" PRIu64
1122 " at position %d\n", chunk, rdma->unregister_current);
1124 rdma->unregistrations[rdma->unregister_current] = 0;
1125 rdma->unregister_current++;
1127 if (rdma->unregister_current == RDMA_SIGNALED_SEND_MAX) {
1128 rdma->unregister_current = 0;
1133 * Unregistration is speculative (because migration is single-threaded
1134 * and we cannot break the protocol's inifinband message ordering).
1135 * Thus, if the memory is currently being used for transmission,
1136 * then abort the attempt to unregister and try again
1137 * later the next time a completion is received for this memory.
1139 clear_bit(chunk, block->unregister_bitmap);
1141 if (test_bit(chunk, block->transit_bitmap)) {
1142 DDPRINTF("Cannot unregister inflight chunk: %" PRIu64 "\n", chunk);
1146 DDPRINTF("Sending unregister for chunk: %" PRIu64 "\n", chunk);
1148 ret = ibv_dereg_mr(block->pmr[chunk]);
1149 block->pmr[chunk] = NULL;
1150 block->remote_keys[chunk] = 0;
1153 perror("unregistration chunk failed");
1156 rdma->total_registrations--;
1158 reg.key.chunk = chunk;
1159 register_to_network(®);
1160 ret = qemu_rdma_exchange_send(rdma, &head, (uint8_t *) ®,
1166 DDPRINTF("Unregister for chunk: %" PRIu64 " complete.\n", chunk);
1172 static uint64_t qemu_rdma_make_wrid(uint64_t wr_id, uint64_t index,
1175 uint64_t result = wr_id & RDMA_WRID_TYPE_MASK;
1177 result |= (index << RDMA_WRID_BLOCK_SHIFT);
1178 result |= (chunk << RDMA_WRID_CHUNK_SHIFT);
1184 * Set bit for unregistration in the next iteration.
1185 * We cannot transmit right here, but will unpin later.
1187 static void qemu_rdma_signal_unregister(RDMAContext *rdma, uint64_t index,
1188 uint64_t chunk, uint64_t wr_id)
1190 if (rdma->unregistrations[rdma->unregister_next] != 0) {
1191 fprintf(stderr, "rdma migration: queue is full!\n");
1193 RDMALocalBlock *block = &(rdma->local_ram_blocks.block[index]);
1195 if (!test_and_set_bit(chunk, block->unregister_bitmap)) {
1196 DDPRINTF("Appending unregister chunk %" PRIu64
1197 " at position %d\n", chunk, rdma->unregister_next);
1199 rdma->unregistrations[rdma->unregister_next++] =
1200 qemu_rdma_make_wrid(wr_id, index, chunk);
1202 if (rdma->unregister_next == RDMA_SIGNALED_SEND_MAX) {
1203 rdma->unregister_next = 0;
1206 DDPRINTF("Unregister chunk %" PRIu64 " already in queue.\n",
1213 * Consult the connection manager to see a work request
1214 * (of any kind) has completed.
1215 * Return the work request ID that completed.
1217 static uint64_t qemu_rdma_poll(RDMAContext *rdma, uint64_t *wr_id_out)
1223 ret = ibv_poll_cq(rdma->cq, 1, &wc);
1226 *wr_id_out = RDMA_WRID_NONE;
1231 fprintf(stderr, "ibv_poll_cq return %d!\n", ret);
1235 wr_id = wc.wr_id & RDMA_WRID_TYPE_MASK;
1237 if (wc.status != IBV_WC_SUCCESS) {
1238 fprintf(stderr, "ibv_poll_cq wc.status=%d %s!\n",
1239 wc.status, ibv_wc_status_str(wc.status));
1240 fprintf(stderr, "ibv_poll_cq wrid=%s!\n", wrid_desc[wr_id]);
1245 if (rdma->control_ready_expected &&
1246 (wr_id >= RDMA_WRID_RECV_CONTROL)) {
1247 DDDPRINTF("completion %s #%" PRId64 " received (%" PRId64 ")"
1248 " left %d\n", wrid_desc[RDMA_WRID_RECV_CONTROL],
1249 wr_id - RDMA_WRID_RECV_CONTROL, wr_id, rdma->nb_sent);
1250 rdma->control_ready_expected = 0;
1253 if (wr_id == RDMA_WRID_RDMA_WRITE) {
1255 (wc.wr_id & RDMA_WRID_CHUNK_MASK) >> RDMA_WRID_CHUNK_SHIFT;
1257 (wc.wr_id & RDMA_WRID_BLOCK_MASK) >> RDMA_WRID_BLOCK_SHIFT;
1258 RDMALocalBlock *block = &(rdma->local_ram_blocks.block[index]);
1260 DDDPRINTF("completions %s (%" PRId64 ") left %d, "
1261 "block %" PRIu64 ", chunk: %" PRIu64 " %p %p\n",
1262 print_wrid(wr_id), wr_id, rdma->nb_sent, index, chunk,
1263 block->local_host_addr, (void *)block->remote_host_addr);
1265 clear_bit(chunk, block->transit_bitmap);
1267 if (rdma->nb_sent > 0) {
1271 if (!rdma->pin_all) {
1273 * FYI: If one wanted to signal a specific chunk to be unregistered
1274 * using LRU or workload-specific information, this is the function
1275 * you would call to do so. That chunk would then get asynchronously
1276 * unregistered later.
1278 #ifdef RDMA_UNREGISTRATION_EXAMPLE
1279 qemu_rdma_signal_unregister(rdma, index, chunk, wc.wr_id);
1283 DDDPRINTF("other completion %s (%" PRId64 ") received left %d\n",
1284 print_wrid(wr_id), wr_id, rdma->nb_sent);
1287 *wr_id_out = wc.wr_id;
1293 * Block until the next work request has completed.
1295 * First poll to see if a work request has already completed,
1298 * If we encounter completed work requests for IDs other than
1299 * the one we're interested in, then that's generally an error.
1301 * The only exception is actual RDMA Write completions. These
1302 * completions only need to be recorded, but do not actually
1303 * need further processing.
1305 static int qemu_rdma_block_for_wrid(RDMAContext *rdma, int wrid_requested)
1307 int num_cq_events = 0, ret = 0;
1310 uint64_t wr_id = RDMA_WRID_NONE, wr_id_in;
1312 if (ibv_req_notify_cq(rdma->cq, 0)) {
1316 while (wr_id != wrid_requested) {
1317 ret = qemu_rdma_poll(rdma, &wr_id_in);
1322 wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
1324 if (wr_id == RDMA_WRID_NONE) {
1327 if (wr_id != wrid_requested) {
1328 DDDPRINTF("A Wanted wrid %s (%d) but got %s (%" PRIu64 ")\n",
1329 print_wrid(wrid_requested),
1330 wrid_requested, print_wrid(wr_id), wr_id);
1334 if (wr_id == wrid_requested) {
1340 * Coroutine doesn't start until process_incoming_migration()
1341 * so don't yield unless we know we're running inside of a coroutine.
1343 if (rdma->migration_started_on_destination) {
1344 yield_until_fd_readable(rdma->comp_channel->fd);
1347 if (ibv_get_cq_event(rdma->comp_channel, &cq, &cq_ctx)) {
1348 perror("ibv_get_cq_event");
1349 goto err_block_for_wrid;
1354 if (ibv_req_notify_cq(cq, 0)) {
1355 goto err_block_for_wrid;
1358 while (wr_id != wrid_requested) {
1359 ret = qemu_rdma_poll(rdma, &wr_id_in);
1361 goto err_block_for_wrid;
1364 wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
1366 if (wr_id == RDMA_WRID_NONE) {
1369 if (wr_id != wrid_requested) {
1370 DDDPRINTF("B Wanted wrid %s (%d) but got %s (%" PRIu64 ")\n",
1371 print_wrid(wrid_requested), wrid_requested,
1372 print_wrid(wr_id), wr_id);
1376 if (wr_id == wrid_requested) {
1377 goto success_block_for_wrid;
1381 success_block_for_wrid:
1382 if (num_cq_events) {
1383 ibv_ack_cq_events(cq, num_cq_events);
1388 if (num_cq_events) {
1389 ibv_ack_cq_events(cq, num_cq_events);
1395 * Post a SEND message work request for the control channel
1396 * containing some data and block until the post completes.
1398 static int qemu_rdma_post_send_control(RDMAContext *rdma, uint8_t *buf,
1399 RDMAControlHeader *head)
1402 RDMAWorkRequestData *wr = &rdma->wr_data[RDMA_WRID_MAX];
1403 struct ibv_send_wr *bad_wr;
1404 struct ibv_sge sge = {
1405 .addr = (uint64_t)(wr->control),
1406 .length = head->len + sizeof(RDMAControlHeader),
1407 .lkey = wr->control_mr->lkey,
1409 struct ibv_send_wr send_wr = {
1410 .wr_id = RDMA_WRID_SEND_CONTROL,
1411 .opcode = IBV_WR_SEND,
1412 .send_flags = IBV_SEND_SIGNALED,
1417 DDDPRINTF("CONTROL: sending %s..\n", control_desc[head->type]);
1420 * We don't actually need to do a memcpy() in here if we used
1421 * the "sge" properly, but since we're only sending control messages
1422 * (not RAM in a performance-critical path), then its OK for now.
1424 * The copy makes the RDMAControlHeader simpler to manipulate
1425 * for the time being.
1427 memcpy(wr->control, head, sizeof(RDMAControlHeader));
1428 control_to_network((void *) wr->control);
1431 memcpy(wr->control + sizeof(RDMAControlHeader), buf, head->len);
1435 if (ibv_post_send(rdma->qp, &send_wr, &bad_wr)) {
1440 fprintf(stderr, "Failed to use post IB SEND for control!\n");
1444 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_SEND_CONTROL);
1446 fprintf(stderr, "rdma migration: send polling control error!\n");
1453 * Post a RECV work request in anticipation of some future receipt
1454 * of data on the control channel.
1456 static int qemu_rdma_post_recv_control(RDMAContext *rdma, int idx)
1458 struct ibv_recv_wr *bad_wr;
1459 struct ibv_sge sge = {
1460 .addr = (uint64_t)(rdma->wr_data[idx].control),
1461 .length = RDMA_CONTROL_MAX_BUFFER,
1462 .lkey = rdma->wr_data[idx].control_mr->lkey,
1465 struct ibv_recv_wr recv_wr = {
1466 .wr_id = RDMA_WRID_RECV_CONTROL + idx,
1472 if (ibv_post_recv(rdma->qp, &recv_wr, &bad_wr)) {
1480 * Block and wait for a RECV control channel message to arrive.
1482 static int qemu_rdma_exchange_get_response(RDMAContext *rdma,
1483 RDMAControlHeader *head, int expecting, int idx)
1485 int ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RECV_CONTROL + idx);
1488 fprintf(stderr, "rdma migration: recv polling control error!\n");
1492 network_to_control((void *) rdma->wr_data[idx].control);
1493 memcpy(head, rdma->wr_data[idx].control, sizeof(RDMAControlHeader));
1495 DDDPRINTF("CONTROL: %s receiving...\n", control_desc[expecting]);
1497 if (expecting == RDMA_CONTROL_NONE) {
1498 DDDPRINTF("Surprise: got %s (%d)\n",
1499 control_desc[head->type], head->type);
1500 } else if (head->type != expecting || head->type == RDMA_CONTROL_ERROR) {
1501 fprintf(stderr, "Was expecting a %s (%d) control message"
1502 ", but got: %s (%d), length: %d\n",
1503 control_desc[expecting], expecting,
1504 control_desc[head->type], head->type, head->len);
1512 * When a RECV work request has completed, the work request's
1513 * buffer is pointed at the header.
1515 * This will advance the pointer to the data portion
1516 * of the control message of the work request's buffer that
1517 * was populated after the work request finished.
1519 static void qemu_rdma_move_header(RDMAContext *rdma, int idx,
1520 RDMAControlHeader *head)
1522 rdma->wr_data[idx].control_len = head->len;
1523 rdma->wr_data[idx].control_curr =
1524 rdma->wr_data[idx].control + sizeof(RDMAControlHeader);
1528 * This is an 'atomic' high-level operation to deliver a single, unified
1529 * control-channel message.
1531 * Additionally, if the user is expecting some kind of reply to this message,
1532 * they can request a 'resp' response message be filled in by posting an
1533 * additional work request on behalf of the user and waiting for an additional
1536 * The extra (optional) response is used during registration to us from having
1537 * to perform an *additional* exchange of message just to provide a response by
1538 * instead piggy-backing on the acknowledgement.
1540 static int qemu_rdma_exchange_send(RDMAContext *rdma, RDMAControlHeader *head,
1541 uint8_t *data, RDMAControlHeader *resp,
1543 int (*callback)(RDMAContext *rdma))
1548 * Wait until the dest is ready before attempting to deliver the message
1549 * by waiting for a READY message.
1551 if (rdma->control_ready_expected) {
1552 RDMAControlHeader resp;
1553 ret = qemu_rdma_exchange_get_response(rdma,
1554 &resp, RDMA_CONTROL_READY, RDMA_WRID_READY);
1561 * If the user is expecting a response, post a WR in anticipation of it.
1564 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_DATA);
1566 fprintf(stderr, "rdma migration: error posting"
1567 " extra control recv for anticipated result!");
1573 * Post a WR to replace the one we just consumed for the READY message.
1575 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
1577 fprintf(stderr, "rdma migration: error posting first control recv!");
1582 * Deliver the control message that was requested.
1584 ret = qemu_rdma_post_send_control(rdma, data, head);
1587 fprintf(stderr, "Failed to send control buffer!\n");
1592 * If we're expecting a response, block and wait for it.
1596 DDPRINTF("Issuing callback before receiving response...\n");
1597 ret = callback(rdma);
1603 DDPRINTF("Waiting for response %s\n", control_desc[resp->type]);
1604 ret = qemu_rdma_exchange_get_response(rdma, resp,
1605 resp->type, RDMA_WRID_DATA);
1611 qemu_rdma_move_header(rdma, RDMA_WRID_DATA, resp);
1613 *resp_idx = RDMA_WRID_DATA;
1615 DDPRINTF("Response %s received.\n", control_desc[resp->type]);
1618 rdma->control_ready_expected = 1;
1624 * This is an 'atomic' high-level operation to receive a single, unified
1625 * control-channel message.
1627 static int qemu_rdma_exchange_recv(RDMAContext *rdma, RDMAControlHeader *head,
1630 RDMAControlHeader ready = {
1632 .type = RDMA_CONTROL_READY,
1638 * Inform the source that we're ready to receive a message.
1640 ret = qemu_rdma_post_send_control(rdma, NULL, &ready);
1643 fprintf(stderr, "Failed to send control buffer!\n");
1648 * Block and wait for the message.
1650 ret = qemu_rdma_exchange_get_response(rdma, head,
1651 expecting, RDMA_WRID_READY);
1657 qemu_rdma_move_header(rdma, RDMA_WRID_READY, head);
1660 * Post a new RECV work request to replace the one we just consumed.
1662 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
1664 fprintf(stderr, "rdma migration: error posting second control recv!");
1672 * Write an actual chunk of memory using RDMA.
1674 * If we're using dynamic registration on the dest-side, we have to
1675 * send a registration command first.
1677 static int qemu_rdma_write_one(QEMUFile *f, RDMAContext *rdma,
1678 int current_index, uint64_t current_addr,
1682 struct ibv_send_wr send_wr = { 0 };
1683 struct ibv_send_wr *bad_wr;
1684 int reg_result_idx, ret, count = 0;
1685 uint64_t chunk, chunks;
1686 uint8_t *chunk_start, *chunk_end;
1687 RDMALocalBlock *block = &(rdma->local_ram_blocks.block[current_index]);
1689 RDMARegisterResult *reg_result;
1690 RDMAControlHeader resp = { .type = RDMA_CONTROL_REGISTER_RESULT };
1691 RDMAControlHeader head = { .len = sizeof(RDMARegister),
1692 .type = RDMA_CONTROL_REGISTER_REQUEST,
1697 sge.addr = (uint64_t)(block->local_host_addr +
1698 (current_addr - block->offset));
1699 sge.length = length;
1701 chunk = ram_chunk_index(block->local_host_addr, (uint8_t *) sge.addr);
1702 chunk_start = ram_chunk_start(block, chunk);
1704 if (block->is_ram_block) {
1705 chunks = length / (1UL << RDMA_REG_CHUNK_SHIFT);
1707 if (chunks && ((length % (1UL << RDMA_REG_CHUNK_SHIFT)) == 0)) {
1711 chunks = block->length / (1UL << RDMA_REG_CHUNK_SHIFT);
1713 if (chunks && ((block->length % (1UL << RDMA_REG_CHUNK_SHIFT)) == 0)) {
1718 DDPRINTF("Writing %" PRIu64 " chunks, (%" PRIu64 " MB)\n",
1719 chunks + 1, (chunks + 1) * (1UL << RDMA_REG_CHUNK_SHIFT) / 1024 / 1024);
1721 chunk_end = ram_chunk_end(block, chunk + chunks);
1723 if (!rdma->pin_all) {
1724 #ifdef RDMA_UNREGISTRATION_EXAMPLE
1725 qemu_rdma_unregister_waiting(rdma);
1729 while (test_bit(chunk, block->transit_bitmap)) {
1731 DDPRINTF("(%d) Not clobbering: block: %d chunk %" PRIu64
1732 " current %" PRIu64 " len %" PRIu64 " %d %d\n",
1733 count++, current_index, chunk,
1734 sge.addr, length, rdma->nb_sent, block->nb_chunks);
1736 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE);
1739 fprintf(stderr, "Failed to Wait for previous write to complete "
1740 "block %d chunk %" PRIu64
1741 " current %" PRIu64 " len %" PRIu64 " %d\n",
1742 current_index, chunk, sge.addr, length, rdma->nb_sent);
1747 if (!rdma->pin_all || !block->is_ram_block) {
1748 if (!block->remote_keys[chunk]) {
1750 * This chunk has not yet been registered, so first check to see
1751 * if the entire chunk is zero. If so, tell the other size to
1752 * memset() + madvise() the entire chunk without RDMA.
1755 if (can_use_buffer_find_nonzero_offset((void *)sge.addr, length)
1756 && buffer_find_nonzero_offset((void *)sge.addr,
1757 length) == length) {
1758 RDMACompress comp = {
1759 .offset = current_addr,
1761 .block_idx = current_index,
1765 head.len = sizeof(comp);
1766 head.type = RDMA_CONTROL_COMPRESS;
1768 DDPRINTF("Entire chunk is zero, sending compress: %"
1770 "bytes, index: %d, offset: %" PRId64 "...\n",
1771 chunk, sge.length, current_index, current_addr);
1773 compress_to_network(&comp);
1774 ret = qemu_rdma_exchange_send(rdma, &head,
1775 (uint8_t *) &comp, NULL, NULL, NULL);
1781 acct_update_position(f, sge.length, true);
1787 * Otherwise, tell other side to register.
1789 reg.current_index = current_index;
1790 if (block->is_ram_block) {
1791 reg.key.current_addr = current_addr;
1793 reg.key.chunk = chunk;
1795 reg.chunks = chunks;
1797 DDPRINTF("Sending registration request chunk %" PRIu64 " for %d "
1798 "bytes, index: %d, offset: %" PRId64 "...\n",
1799 chunk, sge.length, current_index, current_addr);
1801 register_to_network(®);
1802 ret = qemu_rdma_exchange_send(rdma, &head, (uint8_t *) ®,
1803 &resp, ®_result_idx, NULL);
1808 /* try to overlap this single registration with the one we sent. */
1809 if (qemu_rdma_register_and_get_keys(rdma, block,
1810 (uint8_t *) sge.addr,
1811 &sge.lkey, NULL, chunk,
1812 chunk_start, chunk_end)) {
1813 fprintf(stderr, "cannot get lkey!\n");
1817 reg_result = (RDMARegisterResult *)
1818 rdma->wr_data[reg_result_idx].control_curr;
1820 network_to_result(reg_result);
1822 DDPRINTF("Received registration result:"
1823 " my key: %x their key %x, chunk %" PRIu64 "\n",
1824 block->remote_keys[chunk], reg_result->rkey, chunk);
1826 block->remote_keys[chunk] = reg_result->rkey;
1827 block->remote_host_addr = reg_result->host_addr;
1829 /* already registered before */
1830 if (qemu_rdma_register_and_get_keys(rdma, block,
1831 (uint8_t *)sge.addr,
1832 &sge.lkey, NULL, chunk,
1833 chunk_start, chunk_end)) {
1834 fprintf(stderr, "cannot get lkey!\n");
1839 send_wr.wr.rdma.rkey = block->remote_keys[chunk];
1841 send_wr.wr.rdma.rkey = block->remote_rkey;
1843 if (qemu_rdma_register_and_get_keys(rdma, block, (uint8_t *)sge.addr,
1844 &sge.lkey, NULL, chunk,
1845 chunk_start, chunk_end)) {
1846 fprintf(stderr, "cannot get lkey!\n");
1852 * Encode the ram block index and chunk within this wrid.
1853 * We will use this information at the time of completion
1854 * to figure out which bitmap to check against and then which
1855 * chunk in the bitmap to look for.
1857 send_wr.wr_id = qemu_rdma_make_wrid(RDMA_WRID_RDMA_WRITE,
1858 current_index, chunk);
1860 send_wr.opcode = IBV_WR_RDMA_WRITE;
1861 send_wr.send_flags = IBV_SEND_SIGNALED;
1862 send_wr.sg_list = &sge;
1863 send_wr.num_sge = 1;
1864 send_wr.wr.rdma.remote_addr = block->remote_host_addr +
1865 (current_addr - block->offset);
1867 DDDPRINTF("Posting chunk: %" PRIu64 ", addr: %lx"
1868 " remote: %lx, bytes %" PRIu32 "\n",
1869 chunk, sge.addr, send_wr.wr.rdma.remote_addr,
1873 * ibv_post_send() does not return negative error numbers,
1874 * per the specification they are positive - no idea why.
1876 ret = ibv_post_send(rdma->qp, &send_wr, &bad_wr);
1878 if (ret == ENOMEM) {
1879 DDPRINTF("send queue is full. wait a little....\n");
1880 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE);
1882 fprintf(stderr, "rdma migration: failed to make "
1883 "room in full send queue! %d\n", ret);
1889 } else if (ret > 0) {
1890 perror("rdma migration: post rdma write failed");
1894 set_bit(chunk, block->transit_bitmap);
1895 acct_update_position(f, sge.length, false);
1896 rdma->total_writes++;
1902 * Push out any unwritten RDMA operations.
1904 * We support sending out multiple chunks at the same time.
1905 * Not all of them need to get signaled in the completion queue.
1907 static int qemu_rdma_write_flush(QEMUFile *f, RDMAContext *rdma)
1911 if (!rdma->current_length) {
1915 ret = qemu_rdma_write_one(f, rdma,
1916 rdma->current_index, rdma->current_addr, rdma->current_length);
1924 DDDPRINTF("sent total: %d\n", rdma->nb_sent);
1927 rdma->current_length = 0;
1928 rdma->current_addr = 0;
1933 static inline int qemu_rdma_buffer_mergable(RDMAContext *rdma,
1934 uint64_t offset, uint64_t len)
1936 RDMALocalBlock *block =
1937 &(rdma->local_ram_blocks.block[rdma->current_index]);
1938 uint8_t *host_addr = block->local_host_addr + (offset - block->offset);
1939 uint8_t *chunk_end = ram_chunk_end(block, rdma->current_chunk);
1941 if (rdma->current_length == 0) {
1946 * Only merge into chunk sequentially.
1948 if (offset != (rdma->current_addr + rdma->current_length)) {
1952 if (rdma->current_index < 0) {
1956 if (offset < block->offset) {
1960 if ((offset + len) > (block->offset + block->length)) {
1964 if (rdma->current_chunk < 0) {
1968 if ((host_addr + len) > chunk_end) {
1976 * We're not actually writing here, but doing three things:
1978 * 1. Identify the chunk the buffer belongs to.
1979 * 2. If the chunk is full or the buffer doesn't belong to the current
1980 * chunk, then start a new chunk and flush() the old chunk.
1981 * 3. To keep the hardware busy, we also group chunks into batches
1982 * and only require that a batch gets acknowledged in the completion
1983 * qeueue instead of each individual chunk.
1985 static int qemu_rdma_write(QEMUFile *f, RDMAContext *rdma,
1986 uint64_t block_offset, uint64_t offset,
1989 uint64_t current_addr = block_offset + offset;
1990 uint64_t index = rdma->current_index;
1991 uint64_t chunk = rdma->current_chunk;
1994 /* If we cannot merge it, we flush the current buffer first. */
1995 if (!qemu_rdma_buffer_mergable(rdma, current_addr, len)) {
1996 ret = qemu_rdma_write_flush(f, rdma);
2000 rdma->current_length = 0;
2001 rdma->current_addr = current_addr;
2003 ret = qemu_rdma_search_ram_block(rdma, block_offset,
2004 offset, len, &index, &chunk);
2006 fprintf(stderr, "ram block search failed\n");
2009 rdma->current_index = index;
2010 rdma->current_chunk = chunk;
2014 rdma->current_length += len;
2016 /* flush it if buffer is too large */
2017 if (rdma->current_length >= RDMA_MERGE_MAX) {
2018 return qemu_rdma_write_flush(f, rdma);
2024 static void qemu_rdma_cleanup(RDMAContext *rdma)
2026 struct rdma_cm_event *cm_event;
2030 if (rdma->error_state) {
2031 RDMAControlHeader head = { .len = 0,
2032 .type = RDMA_CONTROL_ERROR,
2035 fprintf(stderr, "Early error. Sending error.\n");
2036 qemu_rdma_post_send_control(rdma, NULL, &head);
2039 ret = rdma_disconnect(rdma->cm_id);
2041 DDPRINTF("waiting for disconnect\n");
2042 ret = rdma_get_cm_event(rdma->channel, &cm_event);
2044 rdma_ack_cm_event(cm_event);
2047 DDPRINTF("Disconnected.\n");
2051 g_free(rdma->block);
2054 for (idx = 0; idx <= RDMA_WRID_MAX; idx++) {
2055 if (rdma->wr_data[idx].control_mr) {
2056 rdma->total_registrations--;
2057 ibv_dereg_mr(rdma->wr_data[idx].control_mr);
2059 rdma->wr_data[idx].control_mr = NULL;
2062 if (rdma->local_ram_blocks.block) {
2063 while (rdma->local_ram_blocks.nb_blocks) {
2064 __qemu_rdma_delete_block(rdma,
2065 rdma->local_ram_blocks.block->offset);
2070 ibv_destroy_qp(rdma->qp);
2074 ibv_destroy_cq(rdma->cq);
2077 if (rdma->comp_channel) {
2078 ibv_destroy_comp_channel(rdma->comp_channel);
2079 rdma->comp_channel = NULL;
2082 ibv_dealloc_pd(rdma->pd);
2085 if (rdma->listen_id) {
2086 rdma_destroy_id(rdma->listen_id);
2087 rdma->listen_id = NULL;
2090 rdma_destroy_id(rdma->cm_id);
2093 if (rdma->channel) {
2094 rdma_destroy_event_channel(rdma->channel);
2095 rdma->channel = NULL;
2100 static int qemu_rdma_source_init(RDMAContext *rdma, Error **errp, bool pin_all)
2103 Error *local_err = NULL, **temp = &local_err;
2106 * Will be validated against destination's actual capabilities
2107 * after the connect() completes.
2109 rdma->pin_all = pin_all;
2111 ret = qemu_rdma_resolve_host(rdma, temp);
2113 goto err_rdma_source_init;
2116 ret = qemu_rdma_alloc_pd_cq(rdma);
2118 ERROR(temp, "rdma migration: error allocating pd and cq! Your mlock()"
2119 " limits may be too low. Please check $ ulimit -a # and "
2120 "search for 'ulimit -l' in the output\n");
2121 goto err_rdma_source_init;
2124 ret = qemu_rdma_alloc_qp(rdma);
2126 ERROR(temp, "rdma migration: error allocating qp!\n");
2127 goto err_rdma_source_init;
2130 ret = qemu_rdma_init_ram_blocks(rdma);
2132 ERROR(temp, "rdma migration: error initializing ram blocks!\n");
2133 goto err_rdma_source_init;
2136 for (idx = 0; idx <= RDMA_WRID_MAX; idx++) {
2137 ret = qemu_rdma_reg_control(rdma, idx);
2139 ERROR(temp, "rdma migration: error registering %d control!\n",
2141 goto err_rdma_source_init;
2147 err_rdma_source_init:
2148 error_propagate(errp, local_err);
2149 qemu_rdma_cleanup(rdma);
2153 static int qemu_rdma_connect(RDMAContext *rdma, Error **errp)
2155 RDMACapabilities cap = {
2156 .version = RDMA_CONTROL_VERSION_CURRENT,
2159 struct rdma_conn_param conn_param = { .initiator_depth = 2,
2161 .private_data = &cap,
2162 .private_data_len = sizeof(cap),
2164 struct rdma_cm_event *cm_event;
2168 * Only negotiate the capability with destination if the user
2169 * on the source first requested the capability.
2171 if (rdma->pin_all) {
2172 DPRINTF("Server pin-all memory requested.\n");
2173 cap.flags |= RDMA_CAPABILITY_PIN_ALL;
2176 caps_to_network(&cap);
2178 ret = rdma_connect(rdma->cm_id, &conn_param);
2180 perror("rdma_connect");
2181 ERROR(errp, "connecting to destination!\n");
2182 rdma_destroy_id(rdma->cm_id);
2184 goto err_rdma_source_connect;
2187 ret = rdma_get_cm_event(rdma->channel, &cm_event);
2189 perror("rdma_get_cm_event after rdma_connect");
2190 ERROR(errp, "connecting to destination!\n");
2191 rdma_ack_cm_event(cm_event);
2192 rdma_destroy_id(rdma->cm_id);
2194 goto err_rdma_source_connect;
2197 if (cm_event->event != RDMA_CM_EVENT_ESTABLISHED) {
2198 perror("rdma_get_cm_event != EVENT_ESTABLISHED after rdma_connect");
2199 ERROR(errp, "connecting to destination!\n");
2200 rdma_ack_cm_event(cm_event);
2201 rdma_destroy_id(rdma->cm_id);
2203 goto err_rdma_source_connect;
2206 memcpy(&cap, cm_event->param.conn.private_data, sizeof(cap));
2207 network_to_caps(&cap);
2210 * Verify that the *requested* capabilities are supported by the destination
2211 * and disable them otherwise.
2213 if (rdma->pin_all && !(cap.flags & RDMA_CAPABILITY_PIN_ALL)) {
2214 ERROR(errp, "Server cannot support pinning all memory. "
2215 "Will register memory dynamically.\n");
2216 rdma->pin_all = false;
2219 DPRINTF("Pin all memory: %s\n", rdma->pin_all ? "enabled" : "disabled");
2221 rdma_ack_cm_event(cm_event);
2223 ret = qemu_rdma_post_recv_control(rdma, 0);
2225 ERROR(errp, "posting second control recv!\n");
2226 goto err_rdma_source_connect;
2229 rdma->control_ready_expected = 1;
2233 err_rdma_source_connect:
2234 qemu_rdma_cleanup(rdma);
2238 static int qemu_rdma_dest_init(RDMAContext *rdma, Error **errp)
2240 int ret = -EINVAL, idx;
2241 int af = rdma->ipv6 ? PF_INET6 : PF_INET;
2242 struct sockaddr_in sin;
2243 struct rdma_cm_id *listen_id;
2244 char ip[40] = "unknown";
2245 struct addrinfo *res;
2248 for (idx = 0; idx <= RDMA_WRID_MAX; idx++) {
2249 rdma->wr_data[idx].control_len = 0;
2250 rdma->wr_data[idx].control_curr = NULL;
2253 if (rdma->host == NULL) {
2254 ERROR(errp, "RDMA host is not set!\n");
2255 rdma->error_state = -EINVAL;
2258 /* create CM channel */
2259 rdma->channel = rdma_create_event_channel();
2260 if (!rdma->channel) {
2261 ERROR(errp, "could not create rdma event channel\n");
2262 rdma->error_state = -EINVAL;
2267 ret = rdma_create_id(rdma->channel, &listen_id, NULL, RDMA_PS_TCP);
2269 ERROR(errp, "could not create cm_id!\n");
2270 goto err_dest_init_create_listen_id;
2273 memset(&sin, 0, sizeof(sin));
2274 sin.sin_family = af;
2275 sin.sin_port = htons(rdma->port);
2276 snprintf(port_str, 16, "%d", rdma->port);
2277 port_str[15] = '\0';
2279 if (rdma->host && strcmp("", rdma->host)) {
2280 ret = getaddrinfo(rdma->host, port_str, NULL, &res);
2282 ERROR(errp, "could not getaddrinfo address %s\n", rdma->host);
2283 goto err_dest_init_bind_addr;
2287 inet_ntop(af, &((struct sockaddr_in *) res->ai_addr)->sin_addr,
2290 ERROR(errp, "migration host and port not specified!\n");
2292 goto err_dest_init_bind_addr;
2295 DPRINTF("%s => %s\n", rdma->host, ip);
2297 ret = rdma_bind_addr(listen_id, res->ai_addr);
2299 ERROR(errp, "Error: could not rdma_bind_addr!\n");
2300 goto err_dest_init_bind_addr;
2303 rdma->listen_id = listen_id;
2304 qemu_rdma_dump_gid("dest_init", listen_id);
2307 err_dest_init_bind_addr:
2308 rdma_destroy_id(listen_id);
2309 err_dest_init_create_listen_id:
2310 rdma_destroy_event_channel(rdma->channel);
2311 rdma->channel = NULL;
2312 rdma->error_state = ret;
2317 static void *qemu_rdma_data_init(const char *host_port, Error **errp)
2319 RDMAContext *rdma = NULL;
2320 InetSocketAddress *addr;
2323 rdma = g_malloc0(sizeof(RDMAContext));
2324 memset(rdma, 0, sizeof(RDMAContext));
2325 rdma->current_index = -1;
2326 rdma->current_chunk = -1;
2328 addr = inet_parse(host_port, NULL);
2330 rdma->port = atoi(addr->port);
2331 rdma->host = g_strdup(addr->host);
2332 rdma->ipv6 = addr->ipv6;
2334 ERROR(errp, "bad RDMA migration address '%s'", host_port);
2344 * QEMUFile interface to the control channel.
2345 * SEND messages for control only.
2346 * pc.ram is handled with regular RDMA messages.
2348 static int qemu_rdma_put_buffer(void *opaque, const uint8_t *buf,
2349 int64_t pos, int size)
2351 QEMUFileRDMA *r = opaque;
2352 QEMUFile *f = r->file;
2353 RDMAContext *rdma = r->rdma;
2354 size_t remaining = size;
2355 uint8_t * data = (void *) buf;
2358 CHECK_ERROR_STATE();
2361 * Push out any writes that
2362 * we're queued up for pc.ram.
2364 ret = qemu_rdma_write_flush(f, rdma);
2366 rdma->error_state = ret;
2371 RDMAControlHeader head;
2373 r->len = MIN(remaining, RDMA_SEND_INCREMENT);
2374 remaining -= r->len;
2377 head.type = RDMA_CONTROL_QEMU_FILE;
2379 ret = qemu_rdma_exchange_send(rdma, &head, data, NULL, NULL, NULL);
2382 rdma->error_state = ret;
2392 static size_t qemu_rdma_fill(RDMAContext *rdma, uint8_t *buf,
2397 if (rdma->wr_data[idx].control_len) {
2398 DDDPRINTF("RDMA %" PRId64 " of %d bytes already in buffer\n",
2399 rdma->wr_data[idx].control_len, size);
2401 len = MIN(size, rdma->wr_data[idx].control_len);
2402 memcpy(buf, rdma->wr_data[idx].control_curr, len);
2403 rdma->wr_data[idx].control_curr += len;
2404 rdma->wr_data[idx].control_len -= len;
2411 * QEMUFile interface to the control channel.
2412 * RDMA links don't use bytestreams, so we have to
2413 * return bytes to QEMUFile opportunistically.
2415 static int qemu_rdma_get_buffer(void *opaque, uint8_t *buf,
2416 int64_t pos, int size)
2418 QEMUFileRDMA *r = opaque;
2419 RDMAContext *rdma = r->rdma;
2420 RDMAControlHeader head;
2423 CHECK_ERROR_STATE();
2426 * First, we hold on to the last SEND message we
2427 * were given and dish out the bytes until we run
2430 r->len = qemu_rdma_fill(r->rdma, buf, size, 0);
2436 * Once we run out, we block and wait for another
2437 * SEND message to arrive.
2439 ret = qemu_rdma_exchange_recv(rdma, &head, RDMA_CONTROL_QEMU_FILE);
2442 rdma->error_state = ret;
2447 * SEND was received with new bytes, now try again.
2449 return qemu_rdma_fill(r->rdma, buf, size, 0);
2453 * Block until all the outstanding chunks have been delivered by the hardware.
2455 static int qemu_rdma_drain_cq(QEMUFile *f, RDMAContext *rdma)
2459 if (qemu_rdma_write_flush(f, rdma) < 0) {
2463 while (rdma->nb_sent) {
2464 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE);
2466 fprintf(stderr, "rdma migration: complete polling error!\n");
2471 qemu_rdma_unregister_waiting(rdma);
2476 static int qemu_rdma_close(void *opaque)
2478 DPRINTF("Shutting down connection.\n");
2479 QEMUFileRDMA *r = opaque;
2481 qemu_rdma_cleanup(r->rdma);
2491 * This means that 'block_offset' is a full virtual address that does not
2492 * belong to a RAMBlock of the virtual machine and instead
2493 * represents a private malloc'd memory area that the caller wishes to
2497 * Offset is an offset to be added to block_offset and used
2498 * to also lookup the corresponding RAMBlock.
2501 * Initiate an transfer this size.
2504 * A 'hint' or 'advice' that means that we wish to speculatively
2505 * and asynchronously unregister this memory. In this case, there is no
2506 * guarantee that the unregister will actually happen, for example,
2507 * if the memory is being actively transmitted. Additionally, the memory
2508 * may be re-registered at any future time if a write within the same
2509 * chunk was requested again, even if you attempted to unregister it
2512 * @size < 0 : TODO, not yet supported
2513 * Unregister the memory NOW. This means that the caller does not
2514 * expect there to be any future RDMA transfers and we just want to clean
2515 * things up. This is used in case the upper layer owns the memory and
2516 * cannot wait for qemu_fclose() to occur.
2518 * @bytes_sent : User-specificed pointer to indicate how many bytes were
2519 * sent. Usually, this will not be more than a few bytes of
2520 * the protocol because most transfers are sent asynchronously.
2522 static size_t qemu_rdma_save_page(QEMUFile *f, void *opaque,
2523 ram_addr_t block_offset, ram_addr_t offset,
2524 size_t size, int *bytes_sent)
2526 QEMUFileRDMA *rfile = opaque;
2527 RDMAContext *rdma = rfile->rdma;
2530 CHECK_ERROR_STATE();
2536 * Add this page to the current 'chunk'. If the chunk
2537 * is full, or the page doen't belong to the current chunk,
2538 * an actual RDMA write will occur and a new chunk will be formed.
2540 ret = qemu_rdma_write(f, rdma, block_offset, offset, size);
2542 fprintf(stderr, "rdma migration: write error! %d\n", ret);
2547 * We always return 1 bytes because the RDMA
2548 * protocol is completely asynchronous. We do not yet know
2549 * whether an identified chunk is zero or not because we're
2550 * waiting for other pages to potentially be merged with
2551 * the current chunk. So, we have to call qemu_update_position()
2552 * later on when the actual write occurs.
2558 uint64_t index, chunk;
2560 /* TODO: Change QEMUFileOps prototype to be signed: size_t => long
2562 ret = qemu_rdma_drain_cq(f, rdma);
2564 fprintf(stderr, "rdma: failed to synchronously drain"
2565 " completion queue before unregistration.\n");
2571 ret = qemu_rdma_search_ram_block(rdma, block_offset,
2572 offset, size, &index, &chunk);
2575 fprintf(stderr, "ram block search failed\n");
2579 qemu_rdma_signal_unregister(rdma, index, chunk, 0);
2582 * TODO: Synchronous, guaranteed unregistration (should not occur during
2583 * fast-path). Otherwise, unregisters will process on the next call to
2584 * qemu_rdma_drain_cq()
2586 qemu_rdma_unregister_waiting(rdma);
2592 * Drain the Completion Queue if possible, but do not block,
2595 * If nothing to poll, the end of the iteration will do this
2596 * again to make sure we don't overflow the request queue.
2599 uint64_t wr_id, wr_id_in;
2600 int ret = qemu_rdma_poll(rdma, &wr_id_in);
2602 fprintf(stderr, "rdma migration: polling error! %d\n", ret);
2606 wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
2608 if (wr_id == RDMA_WRID_NONE) {
2613 return RAM_SAVE_CONTROL_DELAYED;
2615 rdma->error_state = ret;
2619 static int qemu_rdma_accept(RDMAContext *rdma)
2621 RDMACapabilities cap;
2622 struct rdma_conn_param conn_param = {
2623 .responder_resources = 2,
2624 .private_data = &cap,
2625 .private_data_len = sizeof(cap),
2627 struct rdma_cm_event *cm_event;
2628 struct ibv_context *verbs;
2632 ret = rdma_get_cm_event(rdma->channel, &cm_event);
2634 goto err_rdma_dest_wait;
2637 if (cm_event->event != RDMA_CM_EVENT_CONNECT_REQUEST) {
2638 rdma_ack_cm_event(cm_event);
2639 goto err_rdma_dest_wait;
2642 memcpy(&cap, cm_event->param.conn.private_data, sizeof(cap));
2644 network_to_caps(&cap);
2646 if (cap.version < 1 || cap.version > RDMA_CONTROL_VERSION_CURRENT) {
2647 fprintf(stderr, "Unknown source RDMA version: %d, bailing...\n",
2649 rdma_ack_cm_event(cm_event);
2650 goto err_rdma_dest_wait;
2654 * Respond with only the capabilities this version of QEMU knows about.
2656 cap.flags &= known_capabilities;
2659 * Enable the ones that we do know about.
2660 * Add other checks here as new ones are introduced.
2662 if (cap.flags & RDMA_CAPABILITY_PIN_ALL) {
2663 rdma->pin_all = true;
2666 rdma->cm_id = cm_event->id;
2667 verbs = cm_event->id->verbs;
2669 rdma_ack_cm_event(cm_event);
2671 DPRINTF("Memory pin all: %s\n", rdma->pin_all ? "enabled" : "disabled");
2673 caps_to_network(&cap);
2675 DPRINTF("verbs context after listen: %p\n", verbs);
2678 rdma->verbs = verbs;
2679 } else if (rdma->verbs != verbs) {
2680 fprintf(stderr, "ibv context not matching %p, %p!\n",
2681 rdma->verbs, verbs);
2682 goto err_rdma_dest_wait;
2685 qemu_rdma_dump_id("dest_init", verbs);
2687 ret = qemu_rdma_alloc_pd_cq(rdma);
2689 fprintf(stderr, "rdma migration: error allocating pd and cq!\n");
2690 goto err_rdma_dest_wait;
2693 ret = qemu_rdma_alloc_qp(rdma);
2695 fprintf(stderr, "rdma migration: error allocating qp!\n");
2696 goto err_rdma_dest_wait;
2699 ret = qemu_rdma_init_ram_blocks(rdma);
2701 fprintf(stderr, "rdma migration: error initializing ram blocks!\n");
2702 goto err_rdma_dest_wait;
2705 for (idx = 0; idx <= RDMA_WRID_MAX; idx++) {
2706 ret = qemu_rdma_reg_control(rdma, idx);
2708 fprintf(stderr, "rdma: error registering %d control!\n", idx);
2709 goto err_rdma_dest_wait;
2713 qemu_set_fd_handler2(rdma->channel->fd, NULL, NULL, NULL, NULL);
2715 ret = rdma_accept(rdma->cm_id, &conn_param);
2717 fprintf(stderr, "rdma_accept returns %d!\n", ret);
2718 goto err_rdma_dest_wait;
2721 ret = rdma_get_cm_event(rdma->channel, &cm_event);
2723 fprintf(stderr, "rdma_accept get_cm_event failed %d!\n", ret);
2724 goto err_rdma_dest_wait;
2727 if (cm_event->event != RDMA_CM_EVENT_ESTABLISHED) {
2728 fprintf(stderr, "rdma_accept not event established!\n");
2729 rdma_ack_cm_event(cm_event);
2730 goto err_rdma_dest_wait;
2733 rdma_ack_cm_event(cm_event);
2735 ret = qemu_rdma_post_recv_control(rdma, 0);
2737 fprintf(stderr, "rdma migration: error posting second control recv!\n");
2738 goto err_rdma_dest_wait;
2741 qemu_rdma_dump_gid("dest_connect", rdma->cm_id);
2746 rdma->error_state = ret;
2747 qemu_rdma_cleanup(rdma);
2752 * During each iteration of the migration, we listen for instructions
2753 * by the source VM to perform dynamic page registrations before they
2754 * can perform RDMA operations.
2756 * We respond with the 'rkey'.
2758 * Keep doing this until the source tells us to stop.
2760 static int qemu_rdma_registration_handle(QEMUFile *f, void *opaque,
2763 RDMAControlHeader reg_resp = { .len = sizeof(RDMARegisterResult),
2764 .type = RDMA_CONTROL_REGISTER_RESULT,
2767 RDMAControlHeader unreg_resp = { .len = 0,
2768 .type = RDMA_CONTROL_UNREGISTER_FINISHED,
2771 RDMAControlHeader blocks = { .type = RDMA_CONTROL_RAM_BLOCKS_RESULT,
2773 QEMUFileRDMA *rfile = opaque;
2774 RDMAContext *rdma = rfile->rdma;
2775 RDMALocalBlocks *local = &rdma->local_ram_blocks;
2776 RDMAControlHeader head;
2777 RDMARegister *reg, *registers;
2779 RDMARegisterResult *reg_result;
2780 static RDMARegisterResult results[RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE];
2781 RDMALocalBlock *block;
2788 CHECK_ERROR_STATE();
2791 DDDPRINTF("Waiting for next request %" PRIu64 "...\n", flags);
2793 ret = qemu_rdma_exchange_recv(rdma, &head, RDMA_CONTROL_NONE);
2799 if (head.repeat > RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE) {
2800 fprintf(stderr, "rdma: Too many requests in this message (%d)."
2801 "Bailing.\n", head.repeat);
2806 switch (head.type) {
2807 case RDMA_CONTROL_COMPRESS:
2808 comp = (RDMACompress *) rdma->wr_data[idx].control_curr;
2809 network_to_compress(comp);
2811 DDPRINTF("Zapping zero chunk: %" PRId64
2812 " bytes, index %d, offset %" PRId64 "\n",
2813 comp->length, comp->block_idx, comp->offset);
2814 block = &(rdma->local_ram_blocks.block[comp->block_idx]);
2816 host_addr = block->local_host_addr +
2817 (comp->offset - block->offset);
2819 ram_handle_compressed(host_addr, comp->value, comp->length);
2822 case RDMA_CONTROL_REGISTER_FINISHED:
2823 DDDPRINTF("Current registrations complete.\n");
2826 case RDMA_CONTROL_RAM_BLOCKS_REQUEST:
2827 DPRINTF("Initial setup info requested.\n");
2829 if (rdma->pin_all) {
2830 ret = qemu_rdma_reg_whole_ram_blocks(rdma);
2832 fprintf(stderr, "rdma migration: error dest "
2833 "registering ram blocks!\n");
2839 * Dest uses this to prepare to transmit the RAMBlock descriptions
2840 * to the source VM after connection setup.
2841 * Both sides use the "remote" structure to communicate and update
2842 * their "local" descriptions with what was sent.
2844 for (i = 0; i < local->nb_blocks; i++) {
2845 rdma->block[i].remote_host_addr =
2846 (uint64_t)(local->block[i].local_host_addr);
2848 if (rdma->pin_all) {
2849 rdma->block[i].remote_rkey = local->block[i].mr->rkey;
2852 rdma->block[i].offset = local->block[i].offset;
2853 rdma->block[i].length = local->block[i].length;
2855 remote_block_to_network(&rdma->block[i]);
2858 blocks.len = rdma->local_ram_blocks.nb_blocks
2859 * sizeof(RDMARemoteBlock);
2862 ret = qemu_rdma_post_send_control(rdma,
2863 (uint8_t *) rdma->block, &blocks);
2866 fprintf(stderr, "rdma migration: error sending remote info!\n");
2871 case RDMA_CONTROL_REGISTER_REQUEST:
2872 DDPRINTF("There are %d registration requests\n", head.repeat);
2874 reg_resp.repeat = head.repeat;
2875 registers = (RDMARegister *) rdma->wr_data[idx].control_curr;
2877 for (count = 0; count < head.repeat; count++) {
2879 uint8_t *chunk_start, *chunk_end;
2881 reg = ®isters[count];
2882 network_to_register(reg);
2884 reg_result = &results[count];
2886 DDPRINTF("Registration request (%d): index %d, current_addr %"
2887 PRIu64 " chunks: %" PRIu64 "\n", count,
2888 reg->current_index, reg->key.current_addr, reg->chunks);
2890 block = &(rdma->local_ram_blocks.block[reg->current_index]);
2891 if (block->is_ram_block) {
2892 host_addr = (block->local_host_addr +
2893 (reg->key.current_addr - block->offset));
2894 chunk = ram_chunk_index(block->local_host_addr,
2895 (uint8_t *) host_addr);
2897 chunk = reg->key.chunk;
2898 host_addr = block->local_host_addr +
2899 (reg->key.chunk * (1UL << RDMA_REG_CHUNK_SHIFT));
2901 chunk_start = ram_chunk_start(block, chunk);
2902 chunk_end = ram_chunk_end(block, chunk + reg->chunks);
2903 if (qemu_rdma_register_and_get_keys(rdma, block,
2904 (uint8_t *)host_addr, NULL, ®_result->rkey,
2905 chunk, chunk_start, chunk_end)) {
2906 fprintf(stderr, "cannot get rkey!\n");
2911 reg_result->host_addr = (uint64_t) block->local_host_addr;
2913 DDPRINTF("Registered rkey for this request: %x\n",
2916 result_to_network(reg_result);
2919 ret = qemu_rdma_post_send_control(rdma,
2920 (uint8_t *) results, ®_resp);
2923 fprintf(stderr, "Failed to send control buffer!\n");
2927 case RDMA_CONTROL_UNREGISTER_REQUEST:
2928 DDPRINTF("There are %d unregistration requests\n", head.repeat);
2929 unreg_resp.repeat = head.repeat;
2930 registers = (RDMARegister *) rdma->wr_data[idx].control_curr;
2932 for (count = 0; count < head.repeat; count++) {
2933 reg = ®isters[count];
2934 network_to_register(reg);
2936 DDPRINTF("Unregistration request (%d): "
2937 " index %d, chunk %" PRIu64 "\n",
2938 count, reg->current_index, reg->key.chunk);
2940 block = &(rdma->local_ram_blocks.block[reg->current_index]);
2942 ret = ibv_dereg_mr(block->pmr[reg->key.chunk]);
2943 block->pmr[reg->key.chunk] = NULL;
2946 perror("rdma unregistration chunk failed");
2951 rdma->total_registrations--;
2953 DDPRINTF("Unregistered chunk %" PRIu64 " successfully.\n",
2957 ret = qemu_rdma_post_send_control(rdma, NULL, &unreg_resp);
2960 fprintf(stderr, "Failed to send control buffer!\n");
2964 case RDMA_CONTROL_REGISTER_RESULT:
2965 fprintf(stderr, "Invalid RESULT message at dest.\n");
2969 fprintf(stderr, "Unknown control message %s\n",
2970 control_desc[head.type]);
2977 rdma->error_state = ret;
2982 static int qemu_rdma_registration_start(QEMUFile *f, void *opaque,
2985 QEMUFileRDMA *rfile = opaque;
2986 RDMAContext *rdma = rfile->rdma;
2988 CHECK_ERROR_STATE();
2990 DDDPRINTF("start section: %" PRIu64 "\n", flags);
2991 qemu_put_be64(f, RAM_SAVE_FLAG_HOOK);
2998 * Inform dest that dynamic registrations are done for now.
2999 * First, flush writes, if any.
3001 static int qemu_rdma_registration_stop(QEMUFile *f, void *opaque,
3004 Error *local_err = NULL, **errp = &local_err;
3005 QEMUFileRDMA *rfile = opaque;
3006 RDMAContext *rdma = rfile->rdma;
3007 RDMAControlHeader head = { .len = 0, .repeat = 1 };
3010 CHECK_ERROR_STATE();
3013 ret = qemu_rdma_drain_cq(f, rdma);
3019 if (flags == RAM_CONTROL_SETUP) {
3020 RDMAControlHeader resp = {.type = RDMA_CONTROL_RAM_BLOCKS_RESULT };
3021 RDMALocalBlocks *local = &rdma->local_ram_blocks;
3022 int reg_result_idx, i, j, nb_remote_blocks;
3024 head.type = RDMA_CONTROL_RAM_BLOCKS_REQUEST;
3025 DPRINTF("Sending registration setup for ram blocks...\n");
3028 * Make sure that we parallelize the pinning on both sides.
3029 * For very large guests, doing this serially takes a really
3030 * long time, so we have to 'interleave' the pinning locally
3031 * with the control messages by performing the pinning on this
3032 * side before we receive the control response from the other
3033 * side that the pinning has completed.
3035 ret = qemu_rdma_exchange_send(rdma, &head, NULL, &resp,
3036 ®_result_idx, rdma->pin_all ?
3037 qemu_rdma_reg_whole_ram_blocks : NULL);
3039 ERROR(errp, "receiving remote info!\n");
3043 qemu_rdma_move_header(rdma, reg_result_idx, &resp);
3045 rdma->wr_data[reg_result_idx].control_curr, resp.len);
3047 nb_remote_blocks = resp.len / sizeof(RDMARemoteBlock);
3050 * The protocol uses two different sets of rkeys (mutually exclusive):
3051 * 1. One key to represent the virtual address of the entire ram block.
3052 * (dynamic chunk registration disabled - pin everything with one rkey.)
3053 * 2. One to represent individual chunks within a ram block.
3054 * (dynamic chunk registration enabled - pin individual chunks.)
3056 * Once the capability is successfully negotiated, the destination transmits
3057 * the keys to use (or sends them later) including the virtual addresses
3058 * and then propagates the remote ram block descriptions to his local copy.
3061 if (local->nb_blocks != nb_remote_blocks) {
3062 ERROR(errp, "ram blocks mismatch #1! "
3063 "Your QEMU command line parameters are probably "
3064 "not identical on both the source and destination.\n");
3068 for (i = 0; i < nb_remote_blocks; i++) {
3069 network_to_remote_block(&rdma->block[i]);
3071 /* search local ram blocks */
3072 for (j = 0; j < local->nb_blocks; j++) {
3073 if (rdma->block[i].offset != local->block[j].offset) {
3077 if (rdma->block[i].length != local->block[j].length) {
3078 ERROR(errp, "ram blocks mismatch #2! "
3079 "Your QEMU command line parameters are probably "
3080 "not identical on both the source and destination.\n");
3083 local->block[j].remote_host_addr =
3084 rdma->block[i].remote_host_addr;
3085 local->block[j].remote_rkey = rdma->block[i].remote_rkey;
3089 if (j >= local->nb_blocks) {
3090 ERROR(errp, "ram blocks mismatch #3! "
3091 "Your QEMU command line parameters are probably "
3092 "not identical on both the source and destination.\n");
3098 DDDPRINTF("Sending registration finish %" PRIu64 "...\n", flags);
3100 head.type = RDMA_CONTROL_REGISTER_FINISHED;
3101 ret = qemu_rdma_exchange_send(rdma, &head, NULL, NULL, NULL, NULL);
3109 rdma->error_state = ret;
3113 static int qemu_rdma_get_fd(void *opaque)
3115 QEMUFileRDMA *rfile = opaque;
3116 RDMAContext *rdma = rfile->rdma;
3118 return rdma->comp_channel->fd;
3121 const QEMUFileOps rdma_read_ops = {
3122 .get_buffer = qemu_rdma_get_buffer,
3123 .get_fd = qemu_rdma_get_fd,
3124 .close = qemu_rdma_close,
3125 .hook_ram_load = qemu_rdma_registration_handle,
3128 const QEMUFileOps rdma_write_ops = {
3129 .put_buffer = qemu_rdma_put_buffer,
3130 .close = qemu_rdma_close,
3131 .before_ram_iterate = qemu_rdma_registration_start,
3132 .after_ram_iterate = qemu_rdma_registration_stop,
3133 .save_page = qemu_rdma_save_page,
3136 static void *qemu_fopen_rdma(RDMAContext *rdma, const char *mode)
3138 QEMUFileRDMA *r = g_malloc0(sizeof(QEMUFileRDMA));
3140 if (qemu_file_mode_is_not_valid(mode)) {
3146 if (mode[0] == 'w') {
3147 r->file = qemu_fopen_ops(r, &rdma_write_ops);
3149 r->file = qemu_fopen_ops(r, &rdma_read_ops);
3155 static void rdma_accept_incoming_migration(void *opaque)
3157 RDMAContext *rdma = opaque;
3160 Error *local_err = NULL, **errp = &local_err;
3162 DPRINTF("Accepting rdma connection...\n");
3163 ret = qemu_rdma_accept(rdma);
3166 ERROR(errp, "RDMA Migration initialization failed!\n");
3170 DPRINTF("Accepted migration\n");
3172 f = qemu_fopen_rdma(rdma, "rb");
3174 ERROR(errp, "could not qemu_fopen_rdma!\n");
3175 qemu_rdma_cleanup(rdma);
3179 rdma->migration_started_on_destination = 1;
3180 process_incoming_migration(f);
3183 void rdma_start_incoming_migration(const char *host_port, Error **errp)
3187 Error *local_err = NULL;
3189 DPRINTF("Starting RDMA-based incoming migration\n");
3190 rdma = qemu_rdma_data_init(host_port, &local_err);
3196 ret = qemu_rdma_dest_init(rdma, &local_err);
3202 DPRINTF("qemu_rdma_dest_init success\n");
3204 ret = rdma_listen(rdma->listen_id, 5);
3207 ERROR(errp, "listening on socket!\n");
3211 DPRINTF("rdma_listen success\n");
3213 qemu_set_fd_handler2(rdma->channel->fd, NULL,
3214 rdma_accept_incoming_migration, NULL,
3215 (void *)(intptr_t) rdma);
3218 error_propagate(errp, local_err);
3222 void rdma_start_outgoing_migration(void *opaque,
3223 const char *host_port, Error **errp)
3225 MigrationState *s = opaque;
3226 Error *local_err = NULL, **temp = &local_err;
3227 RDMAContext *rdma = qemu_rdma_data_init(host_port, &local_err);
3231 ERROR(temp, "Failed to initialize RDMA data structures! %d\n", ret);
3235 ret = qemu_rdma_source_init(rdma, &local_err,
3236 s->enabled_capabilities[MIGRATION_CAPABILITY_X_RDMA_PIN_ALL]);
3242 DPRINTF("qemu_rdma_source_init success\n");
3243 ret = qemu_rdma_connect(rdma, &local_err);
3249 DPRINTF("qemu_rdma_source_connect success\n");
3251 s->file = qemu_fopen_rdma(rdma, "wb");
3252 migrate_fd_connect(s);
3255 error_propagate(errp, local_err);
3257 migrate_fd_error(s);