Merge remote-tracking branch 'remotes/bonzini/tags/for-upstream' into staging
[sdk/emulator/qemu.git] / memory.c
1 /*
2  * Physical memory management
3  *
4  * Copyright 2011 Red Hat, Inc. and/or its affiliates
5  *
6  * Authors:
7  *  Avi Kivity <avi@redhat.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2.  See
10  * the COPYING file in the top-level directory.
11  *
12  * Contributions after 2012-01-13 are licensed under the terms of the
13  * GNU GPL, version 2 or (at your option) any later version.
14  */
15
16 #include "exec/memory.h"
17 #include "exec/address-spaces.h"
18 #include "exec/ioport.h"
19 #include "qapi/visitor.h"
20 #include "qemu/bitops.h"
21 #include "qom/object.h"
22 #include "trace.h"
23 #include <assert.h>
24
25 #include "exec/memory-internal.h"
26 #include "exec/ram_addr.h"
27 #include "sysemu/sysemu.h"
28
29 //#define DEBUG_UNASSIGNED
30
31 #define RAM_ADDR_INVALID (~(ram_addr_t)0)
32
33 static unsigned memory_region_transaction_depth;
34 static bool memory_region_update_pending;
35 static bool ioeventfd_update_pending;
36 static bool global_dirty_log = false;
37
38 static QTAILQ_HEAD(memory_listeners, MemoryListener) memory_listeners
39     = QTAILQ_HEAD_INITIALIZER(memory_listeners);
40
41 static QTAILQ_HEAD(, AddressSpace) address_spaces
42     = QTAILQ_HEAD_INITIALIZER(address_spaces);
43
44 typedef struct AddrRange AddrRange;
45
46 /*
47  * Note that signed integers are needed for negative offsetting in aliases
48  * (large MemoryRegion::alias_offset).
49  */
50 struct AddrRange {
51     Int128 start;
52     Int128 size;
53 };
54
55 static AddrRange addrrange_make(Int128 start, Int128 size)
56 {
57     return (AddrRange) { start, size };
58 }
59
60 static bool addrrange_equal(AddrRange r1, AddrRange r2)
61 {
62     return int128_eq(r1.start, r2.start) && int128_eq(r1.size, r2.size);
63 }
64
65 static Int128 addrrange_end(AddrRange r)
66 {
67     return int128_add(r.start, r.size);
68 }
69
70 static AddrRange addrrange_shift(AddrRange range, Int128 delta)
71 {
72     int128_addto(&range.start, delta);
73     return range;
74 }
75
76 static bool addrrange_contains(AddrRange range, Int128 addr)
77 {
78     return int128_ge(addr, range.start)
79         && int128_lt(addr, addrrange_end(range));
80 }
81
82 static bool addrrange_intersects(AddrRange r1, AddrRange r2)
83 {
84     return addrrange_contains(r1, r2.start)
85         || addrrange_contains(r2, r1.start);
86 }
87
88 static AddrRange addrrange_intersection(AddrRange r1, AddrRange r2)
89 {
90     Int128 start = int128_max(r1.start, r2.start);
91     Int128 end = int128_min(addrrange_end(r1), addrrange_end(r2));
92     return addrrange_make(start, int128_sub(end, start));
93 }
94
95 enum ListenerDirection { Forward, Reverse };
96
97 static bool memory_listener_match(MemoryListener *listener,
98                                   MemoryRegionSection *section)
99 {
100     return !listener->address_space_filter
101         || listener->address_space_filter == section->address_space;
102 }
103
104 #define MEMORY_LISTENER_CALL_GLOBAL(_callback, _direction, _args...)    \
105     do {                                                                \
106         MemoryListener *_listener;                                      \
107                                                                         \
108         switch (_direction) {                                           \
109         case Forward:                                                   \
110             QTAILQ_FOREACH(_listener, &memory_listeners, link) {        \
111                 if (_listener->_callback) {                             \
112                     _listener->_callback(_listener, ##_args);           \
113                 }                                                       \
114             }                                                           \
115             break;                                                      \
116         case Reverse:                                                   \
117             QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners,        \
118                                    memory_listeners, link) {            \
119                 if (_listener->_callback) {                             \
120                     _listener->_callback(_listener, ##_args);           \
121                 }                                                       \
122             }                                                           \
123             break;                                                      \
124         default:                                                        \
125             abort();                                                    \
126         }                                                               \
127     } while (0)
128
129 #define MEMORY_LISTENER_CALL(_callback, _direction, _section, _args...) \
130     do {                                                                \
131         MemoryListener *_listener;                                      \
132                                                                         \
133         switch (_direction) {                                           \
134         case Forward:                                                   \
135             QTAILQ_FOREACH(_listener, &memory_listeners, link) {        \
136                 if (_listener->_callback                                \
137                     && memory_listener_match(_listener, _section)) {    \
138                     _listener->_callback(_listener, _section, ##_args); \
139                 }                                                       \
140             }                                                           \
141             break;                                                      \
142         case Reverse:                                                   \
143             QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners,        \
144                                    memory_listeners, link) {            \
145                 if (_listener->_callback                                \
146                     && memory_listener_match(_listener, _section)) {    \
147                     _listener->_callback(_listener, _section, ##_args); \
148                 }                                                       \
149             }                                                           \
150             break;                                                      \
151         default:                                                        \
152             abort();                                                    \
153         }                                                               \
154     } while (0)
155
156 /* No need to ref/unref .mr, the FlatRange keeps it alive.  */
157 #define MEMORY_LISTENER_UPDATE_REGION(fr, as, dir, callback, _args...)  \
158     MEMORY_LISTENER_CALL(callback, dir, (&(MemoryRegionSection) {       \
159         .mr = (fr)->mr,                                                 \
160         .address_space = (as),                                          \
161         .offset_within_region = (fr)->offset_in_region,                 \
162         .size = (fr)->addr.size,                                        \
163         .offset_within_address_space = int128_get64((fr)->addr.start),  \
164         .readonly = (fr)->readonly,                                     \
165               }), ##_args)
166
167 struct CoalescedMemoryRange {
168     AddrRange addr;
169     QTAILQ_ENTRY(CoalescedMemoryRange) link;
170 };
171
172 struct MemoryRegionIoeventfd {
173     AddrRange addr;
174     bool match_data;
175     uint64_t data;
176     EventNotifier *e;
177 };
178
179 static bool memory_region_ioeventfd_before(MemoryRegionIoeventfd a,
180                                            MemoryRegionIoeventfd b)
181 {
182     if (int128_lt(a.addr.start, b.addr.start)) {
183         return true;
184     } else if (int128_gt(a.addr.start, b.addr.start)) {
185         return false;
186     } else if (int128_lt(a.addr.size, b.addr.size)) {
187         return true;
188     } else if (int128_gt(a.addr.size, b.addr.size)) {
189         return false;
190     } else if (a.match_data < b.match_data) {
191         return true;
192     } else  if (a.match_data > b.match_data) {
193         return false;
194     } else if (a.match_data) {
195         if (a.data < b.data) {
196             return true;
197         } else if (a.data > b.data) {
198             return false;
199         }
200     }
201     if (a.e < b.e) {
202         return true;
203     } else if (a.e > b.e) {
204         return false;
205     }
206     return false;
207 }
208
209 static bool memory_region_ioeventfd_equal(MemoryRegionIoeventfd a,
210                                           MemoryRegionIoeventfd b)
211 {
212     return !memory_region_ioeventfd_before(a, b)
213         && !memory_region_ioeventfd_before(b, a);
214 }
215
216 typedef struct FlatRange FlatRange;
217 typedef struct FlatView FlatView;
218
219 /* Range of memory in the global map.  Addresses are absolute. */
220 struct FlatRange {
221     MemoryRegion *mr;
222     hwaddr offset_in_region;
223     AddrRange addr;
224     uint8_t dirty_log_mask;
225     bool romd_mode;
226     bool readonly;
227 };
228
229 /* Flattened global view of current active memory hierarchy.  Kept in sorted
230  * order.
231  */
232 struct FlatView {
233     struct rcu_head rcu;
234     unsigned ref;
235     FlatRange *ranges;
236     unsigned nr;
237     unsigned nr_allocated;
238 };
239
240 typedef struct AddressSpaceOps AddressSpaceOps;
241
242 #define FOR_EACH_FLAT_RANGE(var, view)          \
243     for (var = (view)->ranges; var < (view)->ranges + (view)->nr; ++var)
244
245 static bool flatrange_equal(FlatRange *a, FlatRange *b)
246 {
247     return a->mr == b->mr
248         && addrrange_equal(a->addr, b->addr)
249         && a->offset_in_region == b->offset_in_region
250         && a->romd_mode == b->romd_mode
251         && a->readonly == b->readonly;
252 }
253
254 static void flatview_init(FlatView *view)
255 {
256     view->ref = 1;
257     view->ranges = NULL;
258     view->nr = 0;
259     view->nr_allocated = 0;
260 }
261
262 /* Insert a range into a given position.  Caller is responsible for maintaining
263  * sorting order.
264  */
265 static void flatview_insert(FlatView *view, unsigned pos, FlatRange *range)
266 {
267     if (view->nr == view->nr_allocated) {
268         view->nr_allocated = MAX(2 * view->nr, 10);
269         view->ranges = g_realloc(view->ranges,
270                                     view->nr_allocated * sizeof(*view->ranges));
271     }
272     memmove(view->ranges + pos + 1, view->ranges + pos,
273             (view->nr - pos) * sizeof(FlatRange));
274     view->ranges[pos] = *range;
275     memory_region_ref(range->mr);
276     ++view->nr;
277 }
278
279 static void flatview_destroy(FlatView *view)
280 {
281     int i;
282
283     for (i = 0; i < view->nr; i++) {
284         memory_region_unref(view->ranges[i].mr);
285     }
286     g_free(view->ranges);
287     g_free(view);
288 }
289
290 static void flatview_ref(FlatView *view)
291 {
292     atomic_inc(&view->ref);
293 }
294
295 static void flatview_unref(FlatView *view)
296 {
297     if (atomic_fetch_dec(&view->ref) == 1) {
298         flatview_destroy(view);
299     }
300 }
301
302 static bool can_merge(FlatRange *r1, FlatRange *r2)
303 {
304     return int128_eq(addrrange_end(r1->addr), r2->addr.start)
305         && r1->mr == r2->mr
306         && int128_eq(int128_add(int128_make64(r1->offset_in_region),
307                                 r1->addr.size),
308                      int128_make64(r2->offset_in_region))
309         && r1->dirty_log_mask == r2->dirty_log_mask
310         && r1->romd_mode == r2->romd_mode
311         && r1->readonly == r2->readonly;
312 }
313
314 /* Attempt to simplify a view by merging adjacent ranges */
315 static void flatview_simplify(FlatView *view)
316 {
317     unsigned i, j;
318
319     i = 0;
320     while (i < view->nr) {
321         j = i + 1;
322         while (j < view->nr
323                && can_merge(&view->ranges[j-1], &view->ranges[j])) {
324             int128_addto(&view->ranges[i].addr.size, view->ranges[j].addr.size);
325             ++j;
326         }
327         ++i;
328         memmove(&view->ranges[i], &view->ranges[j],
329                 (view->nr - j) * sizeof(view->ranges[j]));
330         view->nr -= j - i;
331     }
332 }
333
334 static bool memory_region_big_endian(MemoryRegion *mr)
335 {
336 #ifdef TARGET_WORDS_BIGENDIAN
337     return mr->ops->endianness != DEVICE_LITTLE_ENDIAN;
338 #else
339     return mr->ops->endianness == DEVICE_BIG_ENDIAN;
340 #endif
341 }
342
343 static bool memory_region_wrong_endianness(MemoryRegion *mr)
344 {
345 #ifdef TARGET_WORDS_BIGENDIAN
346     return mr->ops->endianness == DEVICE_LITTLE_ENDIAN;
347 #else
348     return mr->ops->endianness == DEVICE_BIG_ENDIAN;
349 #endif
350 }
351
352 static void adjust_endianness(MemoryRegion *mr, uint64_t *data, unsigned size)
353 {
354     if (memory_region_wrong_endianness(mr)) {
355         switch (size) {
356         case 1:
357             break;
358         case 2:
359             *data = bswap16(*data);
360             break;
361         case 4:
362             *data = bswap32(*data);
363             break;
364         case 8:
365             *data = bswap64(*data);
366             break;
367         default:
368             abort();
369         }
370     }
371 }
372
373 static MemTxResult memory_region_oldmmio_read_accessor(MemoryRegion *mr,
374                                                        hwaddr addr,
375                                                        uint64_t *value,
376                                                        unsigned size,
377                                                        unsigned shift,
378                                                        uint64_t mask,
379                                                        MemTxAttrs attrs)
380 {
381     uint64_t tmp;
382
383     tmp = mr->ops->old_mmio.read[ctz32(size)](mr->opaque, addr);
384     trace_memory_region_ops_read(mr, addr, tmp, size);
385     *value |= (tmp & mask) << shift;
386     return MEMTX_OK;
387 }
388
389 static MemTxResult  memory_region_read_accessor(MemoryRegion *mr,
390                                                 hwaddr addr,
391                                                 uint64_t *value,
392                                                 unsigned size,
393                                                 unsigned shift,
394                                                 uint64_t mask,
395                                                 MemTxAttrs attrs)
396 {
397     uint64_t tmp;
398
399     if (mr->flush_coalesced_mmio) {
400         qemu_flush_coalesced_mmio_buffer();
401     }
402     tmp = mr->ops->read(mr->opaque, addr, size);
403     trace_memory_region_ops_read(mr, addr, tmp, size);
404     *value |= (tmp & mask) << shift;
405     return MEMTX_OK;
406 }
407
408 static MemTxResult memory_region_read_with_attrs_accessor(MemoryRegion *mr,
409                                                           hwaddr addr,
410                                                           uint64_t *value,
411                                                           unsigned size,
412                                                           unsigned shift,
413                                                           uint64_t mask,
414                                                           MemTxAttrs attrs)
415 {
416     uint64_t tmp = 0;
417     MemTxResult r;
418
419     if (mr->flush_coalesced_mmio) {
420         qemu_flush_coalesced_mmio_buffer();
421     }
422     r = mr->ops->read_with_attrs(mr->opaque, addr, &tmp, size, attrs);
423     trace_memory_region_ops_read(mr, addr, tmp, size);
424     *value |= (tmp & mask) << shift;
425     return r;
426 }
427
428 static MemTxResult memory_region_oldmmio_write_accessor(MemoryRegion *mr,
429                                                         hwaddr addr,
430                                                         uint64_t *value,
431                                                         unsigned size,
432                                                         unsigned shift,
433                                                         uint64_t mask,
434                                                         MemTxAttrs attrs)
435 {
436     uint64_t tmp;
437
438     tmp = (*value >> shift) & mask;
439     trace_memory_region_ops_write(mr, addr, tmp, size);
440     mr->ops->old_mmio.write[ctz32(size)](mr->opaque, addr, tmp);
441     return MEMTX_OK;
442 }
443
444 static MemTxResult memory_region_write_accessor(MemoryRegion *mr,
445                                                 hwaddr addr,
446                                                 uint64_t *value,
447                                                 unsigned size,
448                                                 unsigned shift,
449                                                 uint64_t mask,
450                                                 MemTxAttrs attrs)
451 {
452     uint64_t tmp;
453
454     if (mr->flush_coalesced_mmio) {
455         qemu_flush_coalesced_mmio_buffer();
456     }
457     tmp = (*value >> shift) & mask;
458     trace_memory_region_ops_write(mr, addr, tmp, size);
459     mr->ops->write(mr->opaque, addr, tmp, size);
460     return MEMTX_OK;
461 }
462
463 static MemTxResult memory_region_write_with_attrs_accessor(MemoryRegion *mr,
464                                                            hwaddr addr,
465                                                            uint64_t *value,
466                                                            unsigned size,
467                                                            unsigned shift,
468                                                            uint64_t mask,
469                                                            MemTxAttrs attrs)
470 {
471     uint64_t tmp;
472
473     if (mr->flush_coalesced_mmio) {
474         qemu_flush_coalesced_mmio_buffer();
475     }
476     tmp = (*value >> shift) & mask;
477     trace_memory_region_ops_write(mr, addr, tmp, size);
478     return mr->ops->write_with_attrs(mr->opaque, addr, tmp, size, attrs);
479 }
480
481 static MemTxResult access_with_adjusted_size(hwaddr addr,
482                                       uint64_t *value,
483                                       unsigned size,
484                                       unsigned access_size_min,
485                                       unsigned access_size_max,
486                                       MemTxResult (*access)(MemoryRegion *mr,
487                                                             hwaddr addr,
488                                                             uint64_t *value,
489                                                             unsigned size,
490                                                             unsigned shift,
491                                                             uint64_t mask,
492                                                             MemTxAttrs attrs),
493                                       MemoryRegion *mr,
494                                       MemTxAttrs attrs)
495 {
496     uint64_t access_mask;
497     unsigned access_size;
498     unsigned i;
499     MemTxResult r = MEMTX_OK;
500
501     if (!access_size_min) {
502         access_size_min = 1;
503     }
504     if (!access_size_max) {
505         access_size_max = 4;
506     }
507
508     /* FIXME: support unaligned access? */
509     access_size = MAX(MIN(size, access_size_max), access_size_min);
510     access_mask = -1ULL >> (64 - access_size * 8);
511     if (memory_region_big_endian(mr)) {
512         for (i = 0; i < size; i += access_size) {
513             r |= access(mr, addr + i, value, access_size,
514                         (size - access_size - i) * 8, access_mask, attrs);
515         }
516     } else {
517         for (i = 0; i < size; i += access_size) {
518             r |= access(mr, addr + i, value, access_size, i * 8,
519                         access_mask, attrs);
520         }
521     }
522     return r;
523 }
524
525 static AddressSpace *memory_region_to_address_space(MemoryRegion *mr)
526 {
527     AddressSpace *as;
528
529     while (mr->container) {
530         mr = mr->container;
531     }
532     QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
533         if (mr == as->root) {
534             return as;
535         }
536     }
537     return NULL;
538 }
539
540 /* Render a memory region into the global view.  Ranges in @view obscure
541  * ranges in @mr.
542  */
543 static void render_memory_region(FlatView *view,
544                                  MemoryRegion *mr,
545                                  Int128 base,
546                                  AddrRange clip,
547                                  bool readonly)
548 {
549     MemoryRegion *subregion;
550     unsigned i;
551     hwaddr offset_in_region;
552     Int128 remain;
553     Int128 now;
554     FlatRange fr;
555     AddrRange tmp;
556
557     if (!mr->enabled) {
558         return;
559     }
560
561     int128_addto(&base, int128_make64(mr->addr));
562     readonly |= mr->readonly;
563
564     tmp = addrrange_make(base, mr->size);
565
566     if (!addrrange_intersects(tmp, clip)) {
567         return;
568     }
569
570     clip = addrrange_intersection(tmp, clip);
571
572     if (mr->alias) {
573         int128_subfrom(&base, int128_make64(mr->alias->addr));
574         int128_subfrom(&base, int128_make64(mr->alias_offset));
575         render_memory_region(view, mr->alias, base, clip, readonly);
576         return;
577     }
578
579     /* Render subregions in priority order. */
580     QTAILQ_FOREACH(subregion, &mr->subregions, subregions_link) {
581         render_memory_region(view, subregion, base, clip, readonly);
582     }
583
584     if (!mr->terminates) {
585         return;
586     }
587
588     offset_in_region = int128_get64(int128_sub(clip.start, base));
589     base = clip.start;
590     remain = clip.size;
591
592     fr.mr = mr;
593     fr.dirty_log_mask = memory_region_get_dirty_log_mask(mr);
594     fr.romd_mode = mr->romd_mode;
595     fr.readonly = readonly;
596
597     /* Render the region itself into any gaps left by the current view. */
598     for (i = 0; i < view->nr && int128_nz(remain); ++i) {
599         if (int128_ge(base, addrrange_end(view->ranges[i].addr))) {
600             continue;
601         }
602         if (int128_lt(base, view->ranges[i].addr.start)) {
603             now = int128_min(remain,
604                              int128_sub(view->ranges[i].addr.start, base));
605             fr.offset_in_region = offset_in_region;
606             fr.addr = addrrange_make(base, now);
607             flatview_insert(view, i, &fr);
608             ++i;
609             int128_addto(&base, now);
610             offset_in_region += int128_get64(now);
611             int128_subfrom(&remain, now);
612         }
613         now = int128_sub(int128_min(int128_add(base, remain),
614                                     addrrange_end(view->ranges[i].addr)),
615                          base);
616         int128_addto(&base, now);
617         offset_in_region += int128_get64(now);
618         int128_subfrom(&remain, now);
619     }
620     if (int128_nz(remain)) {
621         fr.offset_in_region = offset_in_region;
622         fr.addr = addrrange_make(base, remain);
623         flatview_insert(view, i, &fr);
624     }
625 }
626
627 /* Render a memory topology into a list of disjoint absolute ranges. */
628 static FlatView *generate_memory_topology(MemoryRegion *mr)
629 {
630     FlatView *view;
631
632     view = g_new(FlatView, 1);
633     flatview_init(view);
634
635     if (mr) {
636         render_memory_region(view, mr, int128_zero(),
637                              addrrange_make(int128_zero(), int128_2_64()), false);
638     }
639     flatview_simplify(view);
640
641     return view;
642 }
643
644 static void address_space_add_del_ioeventfds(AddressSpace *as,
645                                              MemoryRegionIoeventfd *fds_new,
646                                              unsigned fds_new_nb,
647                                              MemoryRegionIoeventfd *fds_old,
648                                              unsigned fds_old_nb)
649 {
650     unsigned iold, inew;
651     MemoryRegionIoeventfd *fd;
652     MemoryRegionSection section;
653
654     /* Generate a symmetric difference of the old and new fd sets, adding
655      * and deleting as necessary.
656      */
657
658     iold = inew = 0;
659     while (iold < fds_old_nb || inew < fds_new_nb) {
660         if (iold < fds_old_nb
661             && (inew == fds_new_nb
662                 || memory_region_ioeventfd_before(fds_old[iold],
663                                                   fds_new[inew]))) {
664             fd = &fds_old[iold];
665             section = (MemoryRegionSection) {
666                 .address_space = as,
667                 .offset_within_address_space = int128_get64(fd->addr.start),
668                 .size = fd->addr.size,
669             };
670             MEMORY_LISTENER_CALL(eventfd_del, Forward, &section,
671                                  fd->match_data, fd->data, fd->e);
672             ++iold;
673         } else if (inew < fds_new_nb
674                    && (iold == fds_old_nb
675                        || memory_region_ioeventfd_before(fds_new[inew],
676                                                          fds_old[iold]))) {
677             fd = &fds_new[inew];
678             section = (MemoryRegionSection) {
679                 .address_space = as,
680                 .offset_within_address_space = int128_get64(fd->addr.start),
681                 .size = fd->addr.size,
682             };
683             MEMORY_LISTENER_CALL(eventfd_add, Reverse, &section,
684                                  fd->match_data, fd->data, fd->e);
685             ++inew;
686         } else {
687             ++iold;
688             ++inew;
689         }
690     }
691 }
692
693 static FlatView *address_space_get_flatview(AddressSpace *as)
694 {
695     FlatView *view;
696
697     rcu_read_lock();
698     view = atomic_rcu_read(&as->current_map);
699     flatview_ref(view);
700     rcu_read_unlock();
701     return view;
702 }
703
704 static void address_space_update_ioeventfds(AddressSpace *as)
705 {
706     FlatView *view;
707     FlatRange *fr;
708     unsigned ioeventfd_nb = 0;
709     MemoryRegionIoeventfd *ioeventfds = NULL;
710     AddrRange tmp;
711     unsigned i;
712
713     view = address_space_get_flatview(as);
714     FOR_EACH_FLAT_RANGE(fr, view) {
715         for (i = 0; i < fr->mr->ioeventfd_nb; ++i) {
716             tmp = addrrange_shift(fr->mr->ioeventfds[i].addr,
717                                   int128_sub(fr->addr.start,
718                                              int128_make64(fr->offset_in_region)));
719             if (addrrange_intersects(fr->addr, tmp)) {
720                 ++ioeventfd_nb;
721                 ioeventfds = g_realloc(ioeventfds,
722                                           ioeventfd_nb * sizeof(*ioeventfds));
723                 ioeventfds[ioeventfd_nb-1] = fr->mr->ioeventfds[i];
724                 ioeventfds[ioeventfd_nb-1].addr = tmp;
725             }
726         }
727     }
728
729     address_space_add_del_ioeventfds(as, ioeventfds, ioeventfd_nb,
730                                      as->ioeventfds, as->ioeventfd_nb);
731
732     g_free(as->ioeventfds);
733     as->ioeventfds = ioeventfds;
734     as->ioeventfd_nb = ioeventfd_nb;
735     flatview_unref(view);
736 }
737
738 static void address_space_update_topology_pass(AddressSpace *as,
739                                                const FlatView *old_view,
740                                                const FlatView *new_view,
741                                                bool adding)
742 {
743     unsigned iold, inew;
744     FlatRange *frold, *frnew;
745
746     /* Generate a symmetric difference of the old and new memory maps.
747      * Kill ranges in the old map, and instantiate ranges in the new map.
748      */
749     iold = inew = 0;
750     while (iold < old_view->nr || inew < new_view->nr) {
751         if (iold < old_view->nr) {
752             frold = &old_view->ranges[iold];
753         } else {
754             frold = NULL;
755         }
756         if (inew < new_view->nr) {
757             frnew = &new_view->ranges[inew];
758         } else {
759             frnew = NULL;
760         }
761
762         if (frold
763             && (!frnew
764                 || int128_lt(frold->addr.start, frnew->addr.start)
765                 || (int128_eq(frold->addr.start, frnew->addr.start)
766                     && !flatrange_equal(frold, frnew)))) {
767             /* In old but not in new, or in both but attributes changed. */
768
769             if (!adding) {
770                 MEMORY_LISTENER_UPDATE_REGION(frold, as, Reverse, region_del);
771             }
772
773             ++iold;
774         } else if (frold && frnew && flatrange_equal(frold, frnew)) {
775             /* In both and unchanged (except logging may have changed) */
776
777             if (adding) {
778                 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_nop);
779                 if (frnew->dirty_log_mask & ~frold->dirty_log_mask) {
780                     MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, log_start,
781                                                   frold->dirty_log_mask,
782                                                   frnew->dirty_log_mask);
783                 }
784                 if (frold->dirty_log_mask & ~frnew->dirty_log_mask) {
785                     MEMORY_LISTENER_UPDATE_REGION(frnew, as, Reverse, log_stop,
786                                                   frold->dirty_log_mask,
787                                                   frnew->dirty_log_mask);
788                 }
789             }
790
791             ++iold;
792             ++inew;
793         } else {
794             /* In new */
795
796             if (adding) {
797                 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_add);
798             }
799
800             ++inew;
801         }
802     }
803 }
804
805
806 static void address_space_update_topology(AddressSpace *as)
807 {
808     FlatView *old_view = address_space_get_flatview(as);
809     FlatView *new_view = generate_memory_topology(as->root);
810
811     address_space_update_topology_pass(as, old_view, new_view, false);
812     address_space_update_topology_pass(as, old_view, new_view, true);
813
814     /* Writes are protected by the BQL.  */
815     atomic_rcu_set(&as->current_map, new_view);
816     call_rcu(old_view, flatview_unref, rcu);
817
818     /* Note that all the old MemoryRegions are still alive up to this
819      * point.  This relieves most MemoryListeners from the need to
820      * ref/unref the MemoryRegions they get---unless they use them
821      * outside the iothread mutex, in which case precise reference
822      * counting is necessary.
823      */
824     flatview_unref(old_view);
825
826     address_space_update_ioeventfds(as);
827 }
828
829 void memory_region_transaction_begin(void)
830 {
831     qemu_flush_coalesced_mmio_buffer();
832     ++memory_region_transaction_depth;
833 }
834
835 static void memory_region_clear_pending(void)
836 {
837     memory_region_update_pending = false;
838     ioeventfd_update_pending = false;
839 }
840
841 void memory_region_transaction_commit(void)
842 {
843     AddressSpace *as;
844
845     assert(memory_region_transaction_depth);
846     --memory_region_transaction_depth;
847     if (!memory_region_transaction_depth) {
848         if (memory_region_update_pending) {
849             MEMORY_LISTENER_CALL_GLOBAL(begin, Forward);
850
851             QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
852                 address_space_update_topology(as);
853             }
854
855             MEMORY_LISTENER_CALL_GLOBAL(commit, Forward);
856         } else if (ioeventfd_update_pending) {
857             QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
858                 address_space_update_ioeventfds(as);
859             }
860         }
861         memory_region_clear_pending();
862    }
863 }
864
865 static void memory_region_destructor_none(MemoryRegion *mr)
866 {
867 }
868
869 static void memory_region_destructor_ram(MemoryRegion *mr)
870 {
871     qemu_ram_free(mr->ram_addr);
872 }
873
874 static void memory_region_destructor_alias(MemoryRegion *mr)
875 {
876     memory_region_unref(mr->alias);
877 }
878
879 static void memory_region_destructor_ram_from_ptr(MemoryRegion *mr)
880 {
881     qemu_ram_free_from_ptr(mr->ram_addr);
882 }
883
884 static void memory_region_destructor_rom_device(MemoryRegion *mr)
885 {
886     qemu_ram_free(mr->ram_addr & TARGET_PAGE_MASK);
887 }
888
889 static bool memory_region_need_escape(char c)
890 {
891     return c == '/' || c == '[' || c == '\\' || c == ']';
892 }
893
894 static char *memory_region_escape_name(const char *name)
895 {
896     const char *p;
897     char *escaped, *q;
898     uint8_t c;
899     size_t bytes = 0;
900
901     for (p = name; *p; p++) {
902         bytes += memory_region_need_escape(*p) ? 4 : 1;
903     }
904     if (bytes == p - name) {
905        return g_memdup(name, bytes + 1);
906     }
907
908     escaped = g_malloc(bytes + 1);
909     for (p = name, q = escaped; *p; p++) {
910         c = *p;
911         if (unlikely(memory_region_need_escape(c))) {
912             *q++ = '\\';
913             *q++ = 'x';
914             *q++ = "0123456789abcdef"[c >> 4];
915             c = "0123456789abcdef"[c & 15];
916         }
917         *q++ = c;
918     }
919     *q = 0;
920     return escaped;
921 }
922
923 void memory_region_init(MemoryRegion *mr,
924                         Object *owner,
925                         const char *name,
926                         uint64_t size)
927 {
928     if (!owner) {
929         owner = container_get(qdev_get_machine(), "/unattached");
930     }
931
932     object_initialize(mr, sizeof(*mr), TYPE_MEMORY_REGION);
933     mr->size = int128_make64(size);
934     if (size == UINT64_MAX) {
935         mr->size = int128_2_64();
936     }
937     mr->name = g_strdup(name);
938
939     if (name) {
940         char *escaped_name = memory_region_escape_name(name);
941         char *name_array = g_strdup_printf("%s[*]", escaped_name);
942         object_property_add_child(owner, name_array, OBJECT(mr), &error_abort);
943         object_unref(OBJECT(mr));
944         g_free(name_array);
945         g_free(escaped_name);
946     }
947 }
948
949 static void memory_region_get_addr(Object *obj, Visitor *v, void *opaque,
950                                    const char *name, Error **errp)
951 {
952     MemoryRegion *mr = MEMORY_REGION(obj);
953     uint64_t value = mr->addr;
954
955     visit_type_uint64(v, &value, name, errp);
956 }
957
958 static void memory_region_get_container(Object *obj, Visitor *v, void *opaque,
959                                         const char *name, Error **errp)
960 {
961     MemoryRegion *mr = MEMORY_REGION(obj);
962     gchar *path = (gchar *)"";
963
964     if (mr->container) {
965         path = object_get_canonical_path(OBJECT(mr->container));
966     }
967     visit_type_str(v, &path, name, errp);
968     if (mr->container) {
969         g_free(path);
970     }
971 }
972
973 static Object *memory_region_resolve_container(Object *obj, void *opaque,
974                                                const char *part)
975 {
976     MemoryRegion *mr = MEMORY_REGION(obj);
977
978     return OBJECT(mr->container);
979 }
980
981 static void memory_region_get_priority(Object *obj, Visitor *v, void *opaque,
982                                        const char *name, Error **errp)
983 {
984     MemoryRegion *mr = MEMORY_REGION(obj);
985     int32_t value = mr->priority;
986
987     visit_type_int32(v, &value, name, errp);
988 }
989
990 static bool memory_region_get_may_overlap(Object *obj, Error **errp)
991 {
992     MemoryRegion *mr = MEMORY_REGION(obj);
993
994     return mr->may_overlap;
995 }
996
997 static void memory_region_get_size(Object *obj, Visitor *v, void *opaque,
998                                    const char *name, Error **errp)
999 {
1000     MemoryRegion *mr = MEMORY_REGION(obj);
1001     uint64_t value = memory_region_size(mr);
1002
1003     visit_type_uint64(v, &value, name, errp);
1004 }
1005
1006 static void memory_region_initfn(Object *obj)
1007 {
1008     MemoryRegion *mr = MEMORY_REGION(obj);
1009     ObjectProperty *op;
1010
1011     mr->ops = &unassigned_mem_ops;
1012     mr->ram_addr = RAM_ADDR_INVALID;
1013     mr->enabled = true;
1014     mr->romd_mode = true;
1015     mr->destructor = memory_region_destructor_none;
1016     QTAILQ_INIT(&mr->subregions);
1017     QTAILQ_INIT(&mr->coalesced);
1018
1019     op = object_property_add(OBJECT(mr), "container",
1020                              "link<" TYPE_MEMORY_REGION ">",
1021                              memory_region_get_container,
1022                              NULL, /* memory_region_set_container */
1023                              NULL, NULL, &error_abort);
1024     op->resolve = memory_region_resolve_container;
1025
1026     object_property_add(OBJECT(mr), "addr", "uint64",
1027                         memory_region_get_addr,
1028                         NULL, /* memory_region_set_addr */
1029                         NULL, NULL, &error_abort);
1030     object_property_add(OBJECT(mr), "priority", "uint32",
1031                         memory_region_get_priority,
1032                         NULL, /* memory_region_set_priority */
1033                         NULL, NULL, &error_abort);
1034     object_property_add_bool(OBJECT(mr), "may-overlap",
1035                              memory_region_get_may_overlap,
1036                              NULL, /* memory_region_set_may_overlap */
1037                              &error_abort);
1038     object_property_add(OBJECT(mr), "size", "uint64",
1039                         memory_region_get_size,
1040                         NULL, /* memory_region_set_size, */
1041                         NULL, NULL, &error_abort);
1042 }
1043
1044 static uint64_t unassigned_mem_read(void *opaque, hwaddr addr,
1045                                     unsigned size)
1046 {
1047 #ifdef DEBUG_UNASSIGNED
1048     printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
1049 #endif
1050     if (current_cpu != NULL) {
1051         cpu_unassigned_access(current_cpu, addr, false, false, 0, size);
1052     }
1053     return 0;
1054 }
1055
1056 static void unassigned_mem_write(void *opaque, hwaddr addr,
1057                                  uint64_t val, unsigned size)
1058 {
1059 #ifdef DEBUG_UNASSIGNED
1060     printf("Unassigned mem write " TARGET_FMT_plx " = 0x%"PRIx64"\n", addr, val);
1061 #endif
1062     if (current_cpu != NULL) {
1063         cpu_unassigned_access(current_cpu, addr, true, false, 0, size);
1064     }
1065 }
1066
1067 static bool unassigned_mem_accepts(void *opaque, hwaddr addr,
1068                                    unsigned size, bool is_write)
1069 {
1070     return false;
1071 }
1072
1073 const MemoryRegionOps unassigned_mem_ops = {
1074     .valid.accepts = unassigned_mem_accepts,
1075     .endianness = DEVICE_NATIVE_ENDIAN,
1076 };
1077
1078 bool memory_region_access_valid(MemoryRegion *mr,
1079                                 hwaddr addr,
1080                                 unsigned size,
1081                                 bool is_write)
1082 {
1083     int access_size_min, access_size_max;
1084     int access_size, i;
1085
1086     if (!mr->ops->valid.unaligned && (addr & (size - 1))) {
1087         return false;
1088     }
1089
1090     if (!mr->ops->valid.accepts) {
1091         return true;
1092     }
1093
1094     access_size_min = mr->ops->valid.min_access_size;
1095     if (!mr->ops->valid.min_access_size) {
1096         access_size_min = 1;
1097     }
1098
1099     access_size_max = mr->ops->valid.max_access_size;
1100     if (!mr->ops->valid.max_access_size) {
1101         access_size_max = 4;
1102     }
1103
1104     access_size = MAX(MIN(size, access_size_max), access_size_min);
1105     for (i = 0; i < size; i += access_size) {
1106         if (!mr->ops->valid.accepts(mr->opaque, addr + i, access_size,
1107                                     is_write)) {
1108             return false;
1109         }
1110     }
1111
1112     return true;
1113 }
1114
1115 static MemTxResult memory_region_dispatch_read1(MemoryRegion *mr,
1116                                                 hwaddr addr,
1117                                                 uint64_t *pval,
1118                                                 unsigned size,
1119                                                 MemTxAttrs attrs)
1120 {
1121     *pval = 0;
1122
1123     if (mr->ops->read) {
1124         return access_with_adjusted_size(addr, pval, size,
1125                                          mr->ops->impl.min_access_size,
1126                                          mr->ops->impl.max_access_size,
1127                                          memory_region_read_accessor,
1128                                          mr, attrs);
1129     } else if (mr->ops->read_with_attrs) {
1130         return access_with_adjusted_size(addr, pval, size,
1131                                          mr->ops->impl.min_access_size,
1132                                          mr->ops->impl.max_access_size,
1133                                          memory_region_read_with_attrs_accessor,
1134                                          mr, attrs);
1135     } else {
1136         return access_with_adjusted_size(addr, pval, size, 1, 4,
1137                                          memory_region_oldmmio_read_accessor,
1138                                          mr, attrs);
1139     }
1140 }
1141
1142 MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
1143                                         hwaddr addr,
1144                                         uint64_t *pval,
1145                                         unsigned size,
1146                                         MemTxAttrs attrs)
1147 {
1148     MemTxResult r;
1149
1150     if (!memory_region_access_valid(mr, addr, size, false)) {
1151         *pval = unassigned_mem_read(mr, addr, size);
1152         return MEMTX_DECODE_ERROR;
1153     }
1154
1155     r = memory_region_dispatch_read1(mr, addr, pval, size, attrs);
1156     adjust_endianness(mr, pval, size);
1157     return r;
1158 }
1159
1160 MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
1161                                          hwaddr addr,
1162                                          uint64_t data,
1163                                          unsigned size,
1164                                          MemTxAttrs attrs)
1165 {
1166     if (!memory_region_access_valid(mr, addr, size, true)) {
1167         unassigned_mem_write(mr, addr, data, size);
1168         return MEMTX_DECODE_ERROR;
1169     }
1170
1171     adjust_endianness(mr, &data, size);
1172
1173     if (mr->ops->write) {
1174         return access_with_adjusted_size(addr, &data, size,
1175                                          mr->ops->impl.min_access_size,
1176                                          mr->ops->impl.max_access_size,
1177                                          memory_region_write_accessor, mr,
1178                                          attrs);
1179     } else if (mr->ops->write_with_attrs) {
1180         return
1181             access_with_adjusted_size(addr, &data, size,
1182                                       mr->ops->impl.min_access_size,
1183                                       mr->ops->impl.max_access_size,
1184                                       memory_region_write_with_attrs_accessor,
1185                                       mr, attrs);
1186     } else {
1187         return access_with_adjusted_size(addr, &data, size, 1, 4,
1188                                          memory_region_oldmmio_write_accessor,
1189                                          mr, attrs);
1190     }
1191 }
1192
1193 void memory_region_init_io(MemoryRegion *mr,
1194                            Object *owner,
1195                            const MemoryRegionOps *ops,
1196                            void *opaque,
1197                            const char *name,
1198                            uint64_t size)
1199 {
1200     memory_region_init(mr, owner, name, size);
1201     mr->ops = ops;
1202     mr->opaque = opaque;
1203     mr->terminates = true;
1204 }
1205
1206 void memory_region_init_ram(MemoryRegion *mr,
1207                             Object *owner,
1208                             const char *name,
1209                             uint64_t size,
1210                             Error **errp)
1211 {
1212     memory_region_init(mr, owner, name, size);
1213     mr->ram = true;
1214     mr->terminates = true;
1215     mr->destructor = memory_region_destructor_ram;
1216     mr->ram_addr = qemu_ram_alloc(size, mr, errp);
1217     mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1218 }
1219
1220 void memory_region_init_resizeable_ram(MemoryRegion *mr,
1221                                        Object *owner,
1222                                        const char *name,
1223                                        uint64_t size,
1224                                        uint64_t max_size,
1225                                        void (*resized)(const char*,
1226                                                        uint64_t length,
1227                                                        void *host),
1228                                        Error **errp)
1229 {
1230     memory_region_init(mr, owner, name, size);
1231     mr->ram = true;
1232     mr->terminates = true;
1233     mr->destructor = memory_region_destructor_ram;
1234     mr->ram_addr = qemu_ram_alloc_resizeable(size, max_size, resized, mr, errp);
1235     mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1236 }
1237
1238 #ifdef __linux__
1239 void memory_region_init_ram_from_file(MemoryRegion *mr,
1240                                       struct Object *owner,
1241                                       const char *name,
1242                                       uint64_t size,
1243                                       bool share,
1244                                       const char *path,
1245                                       Error **errp)
1246 {
1247     memory_region_init(mr, owner, name, size);
1248     mr->ram = true;
1249     mr->terminates = true;
1250     mr->destructor = memory_region_destructor_ram;
1251     mr->ram_addr = qemu_ram_alloc_from_file(size, mr, share, path, errp);
1252     mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1253 }
1254 #endif
1255
1256 void memory_region_init_ram_ptr(MemoryRegion *mr,
1257                                 Object *owner,
1258                                 const char *name,
1259                                 uint64_t size,
1260                                 void *ptr)
1261 {
1262     memory_region_init(mr, owner, name, size);
1263     mr->ram = true;
1264     mr->terminates = true;
1265     mr->destructor = memory_region_destructor_ram_from_ptr;
1266     mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1267
1268     /* qemu_ram_alloc_from_ptr cannot fail with ptr != NULL.  */
1269     assert(ptr != NULL);
1270     mr->ram_addr = qemu_ram_alloc_from_ptr(size, ptr, mr, &error_abort);
1271 }
1272
1273 void memory_region_set_skip_dump(MemoryRegion *mr)
1274 {
1275     mr->skip_dump = true;
1276 }
1277
1278 void memory_region_init_alias(MemoryRegion *mr,
1279                               Object *owner,
1280                               const char *name,
1281                               MemoryRegion *orig,
1282                               hwaddr offset,
1283                               uint64_t size)
1284 {
1285     memory_region_init(mr, owner, name, size);
1286     memory_region_ref(orig);
1287     mr->destructor = memory_region_destructor_alias;
1288     mr->alias = orig;
1289     mr->alias_offset = offset;
1290 }
1291
1292 void memory_region_init_rom_device(MemoryRegion *mr,
1293                                    Object *owner,
1294                                    const MemoryRegionOps *ops,
1295                                    void *opaque,
1296                                    const char *name,
1297                                    uint64_t size,
1298                                    Error **errp)
1299 {
1300     memory_region_init(mr, owner, name, size);
1301     mr->ops = ops;
1302     mr->opaque = opaque;
1303     mr->terminates = true;
1304     mr->rom_device = true;
1305     mr->destructor = memory_region_destructor_rom_device;
1306     mr->ram_addr = qemu_ram_alloc(size, mr, errp);
1307 }
1308
1309 void memory_region_init_iommu(MemoryRegion *mr,
1310                               Object *owner,
1311                               const MemoryRegionIOMMUOps *ops,
1312                               const char *name,
1313                               uint64_t size)
1314 {
1315     memory_region_init(mr, owner, name, size);
1316     mr->iommu_ops = ops,
1317     mr->terminates = true;  /* then re-forwards */
1318     notifier_list_init(&mr->iommu_notify);
1319 }
1320
1321 void memory_region_init_reservation(MemoryRegion *mr,
1322                                     Object *owner,
1323                                     const char *name,
1324                                     uint64_t size)
1325 {
1326     memory_region_init_io(mr, owner, &unassigned_mem_ops, mr, name, size);
1327 }
1328
1329 static void memory_region_finalize(Object *obj)
1330 {
1331     MemoryRegion *mr = MEMORY_REGION(obj);
1332
1333     assert(QTAILQ_EMPTY(&mr->subregions));
1334     mr->destructor(mr);
1335     memory_region_clear_coalescing(mr);
1336     g_free((char *)mr->name);
1337     g_free(mr->ioeventfds);
1338 }
1339
1340 Object *memory_region_owner(MemoryRegion *mr)
1341 {
1342     Object *obj = OBJECT(mr);
1343     return obj->parent;
1344 }
1345
1346 void memory_region_ref(MemoryRegion *mr)
1347 {
1348     /* MMIO callbacks most likely will access data that belongs
1349      * to the owner, hence the need to ref/unref the owner whenever
1350      * the memory region is in use.
1351      *
1352      * The memory region is a child of its owner.  As long as the
1353      * owner doesn't call unparent itself on the memory region,
1354      * ref-ing the owner will also keep the memory region alive.
1355      * Memory regions without an owner are supposed to never go away,
1356      * but we still ref/unref them for debugging purposes.
1357      */
1358     Object *obj = OBJECT(mr);
1359     if (obj && obj->parent) {
1360         object_ref(obj->parent);
1361     } else {
1362         object_ref(obj);
1363     }
1364 }
1365
1366 void memory_region_unref(MemoryRegion *mr)
1367 {
1368     Object *obj = OBJECT(mr);
1369     if (obj && obj->parent) {
1370         object_unref(obj->parent);
1371     } else {
1372         object_unref(obj);
1373     }
1374 }
1375
1376 uint64_t memory_region_size(MemoryRegion *mr)
1377 {
1378     if (int128_eq(mr->size, int128_2_64())) {
1379         return UINT64_MAX;
1380     }
1381     return int128_get64(mr->size);
1382 }
1383
1384 const char *memory_region_name(const MemoryRegion *mr)
1385 {
1386     if (!mr->name) {
1387         ((MemoryRegion *)mr)->name =
1388             object_get_canonical_path_component(OBJECT(mr));
1389     }
1390     return mr->name;
1391 }
1392
1393 bool memory_region_is_ram(MemoryRegion *mr)
1394 {
1395     return mr->ram;
1396 }
1397
1398 bool memory_region_is_skip_dump(MemoryRegion *mr)
1399 {
1400     return mr->skip_dump;
1401 }
1402
1403 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr)
1404 {
1405     uint8_t mask = mr->dirty_log_mask;
1406     if (global_dirty_log) {
1407         mask |= (1 << DIRTY_MEMORY_MIGRATION);
1408     }
1409     return mask;
1410 }
1411
1412 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client)
1413 {
1414     return memory_region_get_dirty_log_mask(mr) & (1 << client);
1415 }
1416
1417 bool memory_region_is_rom(MemoryRegion *mr)
1418 {
1419     return mr->ram && mr->readonly;
1420 }
1421
1422 bool memory_region_is_iommu(MemoryRegion *mr)
1423 {
1424     return mr->iommu_ops;
1425 }
1426
1427 void memory_region_register_iommu_notifier(MemoryRegion *mr, Notifier *n)
1428 {
1429     notifier_list_add(&mr->iommu_notify, n);
1430 }
1431
1432 void memory_region_unregister_iommu_notifier(Notifier *n)
1433 {
1434     notifier_remove(n);
1435 }
1436
1437 void memory_region_notify_iommu(MemoryRegion *mr,
1438                                 IOMMUTLBEntry entry)
1439 {
1440     assert(memory_region_is_iommu(mr));
1441     notifier_list_notify(&mr->iommu_notify, &entry);
1442 }
1443
1444 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client)
1445 {
1446     uint8_t mask = 1 << client;
1447
1448     assert(client == DIRTY_MEMORY_VGA);
1449     memory_region_transaction_begin();
1450     mr->dirty_log_mask = (mr->dirty_log_mask & ~mask) | (log * mask);
1451     memory_region_update_pending |= mr->enabled;
1452     memory_region_transaction_commit();
1453 }
1454
1455 bool memory_region_get_dirty(MemoryRegion *mr, hwaddr addr,
1456                              hwaddr size, unsigned client)
1457 {
1458     assert(mr->ram_addr != RAM_ADDR_INVALID);
1459     return cpu_physical_memory_get_dirty(mr->ram_addr + addr, size, client);
1460 }
1461
1462 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
1463                              hwaddr size)
1464 {
1465     assert(mr->ram_addr != RAM_ADDR_INVALID);
1466     cpu_physical_memory_set_dirty_range(mr->ram_addr + addr, size,
1467                                         memory_region_get_dirty_log_mask(mr));
1468 }
1469
1470 bool memory_region_test_and_clear_dirty(MemoryRegion *mr, hwaddr addr,
1471                                         hwaddr size, unsigned client)
1472 {
1473     assert(mr->ram_addr != RAM_ADDR_INVALID);
1474     return cpu_physical_memory_test_and_clear_dirty(mr->ram_addr + addr,
1475                                                     size, client);
1476 }
1477
1478
1479 void memory_region_sync_dirty_bitmap(MemoryRegion *mr)
1480 {
1481     AddressSpace *as;
1482     FlatRange *fr;
1483
1484     QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1485         FlatView *view = address_space_get_flatview(as);
1486         FOR_EACH_FLAT_RANGE(fr, view) {
1487             if (fr->mr == mr) {
1488                 MEMORY_LISTENER_UPDATE_REGION(fr, as, Forward, log_sync);
1489             }
1490         }
1491         flatview_unref(view);
1492     }
1493 }
1494
1495 void memory_region_set_readonly(MemoryRegion *mr, bool readonly)
1496 {
1497     if (mr->readonly != readonly) {
1498         memory_region_transaction_begin();
1499         mr->readonly = readonly;
1500         memory_region_update_pending |= mr->enabled;
1501         memory_region_transaction_commit();
1502     }
1503 }
1504
1505 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode)
1506 {
1507     if (mr->romd_mode != romd_mode) {
1508         memory_region_transaction_begin();
1509         mr->romd_mode = romd_mode;
1510         memory_region_update_pending |= mr->enabled;
1511         memory_region_transaction_commit();
1512     }
1513 }
1514
1515 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
1516                                hwaddr size, unsigned client)
1517 {
1518     assert(mr->ram_addr != RAM_ADDR_INVALID);
1519     cpu_physical_memory_test_and_clear_dirty(mr->ram_addr + addr, size,
1520                                              client);
1521 }
1522
1523 int memory_region_get_fd(MemoryRegion *mr)
1524 {
1525     if (mr->alias) {
1526         return memory_region_get_fd(mr->alias);
1527     }
1528
1529     assert(mr->ram_addr != RAM_ADDR_INVALID);
1530
1531     return qemu_get_ram_fd(mr->ram_addr & TARGET_PAGE_MASK);
1532 }
1533
1534 void *memory_region_get_ram_ptr(MemoryRegion *mr)
1535 {
1536     if (mr->alias) {
1537         return memory_region_get_ram_ptr(mr->alias) + mr->alias_offset;
1538     }
1539
1540     assert(mr->ram_addr != RAM_ADDR_INVALID);
1541
1542     return qemu_get_ram_ptr(mr->ram_addr & TARGET_PAGE_MASK);
1543 }
1544
1545 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize, Error **errp)
1546 {
1547     assert(mr->ram_addr != RAM_ADDR_INVALID);
1548
1549     qemu_ram_resize(mr->ram_addr, newsize, errp);
1550 }
1551
1552 static void memory_region_update_coalesced_range_as(MemoryRegion *mr, AddressSpace *as)
1553 {
1554     FlatView *view;
1555     FlatRange *fr;
1556     CoalescedMemoryRange *cmr;
1557     AddrRange tmp;
1558     MemoryRegionSection section;
1559
1560     view = address_space_get_flatview(as);
1561     FOR_EACH_FLAT_RANGE(fr, view) {
1562         if (fr->mr == mr) {
1563             section = (MemoryRegionSection) {
1564                 .address_space = as,
1565                 .offset_within_address_space = int128_get64(fr->addr.start),
1566                 .size = fr->addr.size,
1567             };
1568
1569             MEMORY_LISTENER_CALL(coalesced_mmio_del, Reverse, &section,
1570                                  int128_get64(fr->addr.start),
1571                                  int128_get64(fr->addr.size));
1572             QTAILQ_FOREACH(cmr, &mr->coalesced, link) {
1573                 tmp = addrrange_shift(cmr->addr,
1574                                       int128_sub(fr->addr.start,
1575                                                  int128_make64(fr->offset_in_region)));
1576                 if (!addrrange_intersects(tmp, fr->addr)) {
1577                     continue;
1578                 }
1579                 tmp = addrrange_intersection(tmp, fr->addr);
1580                 MEMORY_LISTENER_CALL(coalesced_mmio_add, Forward, &section,
1581                                      int128_get64(tmp.start),
1582                                      int128_get64(tmp.size));
1583             }
1584         }
1585     }
1586     flatview_unref(view);
1587 }
1588
1589 static void memory_region_update_coalesced_range(MemoryRegion *mr)
1590 {
1591     AddressSpace *as;
1592
1593     QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1594         memory_region_update_coalesced_range_as(mr, as);
1595     }
1596 }
1597
1598 void memory_region_set_coalescing(MemoryRegion *mr)
1599 {
1600     memory_region_clear_coalescing(mr);
1601     memory_region_add_coalescing(mr, 0, int128_get64(mr->size));
1602 }
1603
1604 void memory_region_add_coalescing(MemoryRegion *mr,
1605                                   hwaddr offset,
1606                                   uint64_t size)
1607 {
1608     CoalescedMemoryRange *cmr = g_malloc(sizeof(*cmr));
1609
1610     cmr->addr = addrrange_make(int128_make64(offset), int128_make64(size));
1611     QTAILQ_INSERT_TAIL(&mr->coalesced, cmr, link);
1612     memory_region_update_coalesced_range(mr);
1613     memory_region_set_flush_coalesced(mr);
1614 }
1615
1616 void memory_region_clear_coalescing(MemoryRegion *mr)
1617 {
1618     CoalescedMemoryRange *cmr;
1619     bool updated = false;
1620
1621     qemu_flush_coalesced_mmio_buffer();
1622     mr->flush_coalesced_mmio = false;
1623
1624     while (!QTAILQ_EMPTY(&mr->coalesced)) {
1625         cmr = QTAILQ_FIRST(&mr->coalesced);
1626         QTAILQ_REMOVE(&mr->coalesced, cmr, link);
1627         g_free(cmr);
1628         updated = true;
1629     }
1630
1631     if (updated) {
1632         memory_region_update_coalesced_range(mr);
1633     }
1634 }
1635
1636 void memory_region_set_flush_coalesced(MemoryRegion *mr)
1637 {
1638     mr->flush_coalesced_mmio = true;
1639 }
1640
1641 void memory_region_clear_flush_coalesced(MemoryRegion *mr)
1642 {
1643     qemu_flush_coalesced_mmio_buffer();
1644     if (QTAILQ_EMPTY(&mr->coalesced)) {
1645         mr->flush_coalesced_mmio = false;
1646     }
1647 }
1648
1649 void memory_region_add_eventfd(MemoryRegion *mr,
1650                                hwaddr addr,
1651                                unsigned size,
1652                                bool match_data,
1653                                uint64_t data,
1654                                EventNotifier *e)
1655 {
1656     MemoryRegionIoeventfd mrfd = {
1657         .addr.start = int128_make64(addr),
1658         .addr.size = int128_make64(size),
1659         .match_data = match_data,
1660         .data = data,
1661         .e = e,
1662     };
1663     unsigned i;
1664
1665     adjust_endianness(mr, &mrfd.data, size);
1666     memory_region_transaction_begin();
1667     for (i = 0; i < mr->ioeventfd_nb; ++i) {
1668         if (memory_region_ioeventfd_before(mrfd, mr->ioeventfds[i])) {
1669             break;
1670         }
1671     }
1672     ++mr->ioeventfd_nb;
1673     mr->ioeventfds = g_realloc(mr->ioeventfds,
1674                                   sizeof(*mr->ioeventfds) * mr->ioeventfd_nb);
1675     memmove(&mr->ioeventfds[i+1], &mr->ioeventfds[i],
1676             sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb-1 - i));
1677     mr->ioeventfds[i] = mrfd;
1678     ioeventfd_update_pending |= mr->enabled;
1679     memory_region_transaction_commit();
1680 }
1681
1682 void memory_region_del_eventfd(MemoryRegion *mr,
1683                                hwaddr addr,
1684                                unsigned size,
1685                                bool match_data,
1686                                uint64_t data,
1687                                EventNotifier *e)
1688 {
1689     MemoryRegionIoeventfd mrfd = {
1690         .addr.start = int128_make64(addr),
1691         .addr.size = int128_make64(size),
1692         .match_data = match_data,
1693         .data = data,
1694         .e = e,
1695     };
1696     unsigned i;
1697
1698     adjust_endianness(mr, &mrfd.data, size);
1699     memory_region_transaction_begin();
1700     for (i = 0; i < mr->ioeventfd_nb; ++i) {
1701         if (memory_region_ioeventfd_equal(mrfd, mr->ioeventfds[i])) {
1702             break;
1703         }
1704     }
1705     assert(i != mr->ioeventfd_nb);
1706     memmove(&mr->ioeventfds[i], &mr->ioeventfds[i+1],
1707             sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb - (i+1)));
1708     --mr->ioeventfd_nb;
1709     mr->ioeventfds = g_realloc(mr->ioeventfds,
1710                                   sizeof(*mr->ioeventfds)*mr->ioeventfd_nb + 1);
1711     ioeventfd_update_pending |= mr->enabled;
1712     memory_region_transaction_commit();
1713 }
1714
1715 static void memory_region_update_container_subregions(MemoryRegion *subregion)
1716 {
1717     hwaddr offset = subregion->addr;
1718     MemoryRegion *mr = subregion->container;
1719     MemoryRegion *other;
1720
1721     memory_region_transaction_begin();
1722
1723     memory_region_ref(subregion);
1724     QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
1725         if (subregion->may_overlap || other->may_overlap) {
1726             continue;
1727         }
1728         if (int128_ge(int128_make64(offset),
1729                       int128_add(int128_make64(other->addr), other->size))
1730             || int128_le(int128_add(int128_make64(offset), subregion->size),
1731                          int128_make64(other->addr))) {
1732             continue;
1733         }
1734 #if 0
1735         printf("warning: subregion collision %llx/%llx (%s) "
1736                "vs %llx/%llx (%s)\n",
1737                (unsigned long long)offset,
1738                (unsigned long long)int128_get64(subregion->size),
1739                subregion->name,
1740                (unsigned long long)other->addr,
1741                (unsigned long long)int128_get64(other->size),
1742                other->name);
1743 #endif
1744     }
1745     QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
1746         if (subregion->priority >= other->priority) {
1747             QTAILQ_INSERT_BEFORE(other, subregion, subregions_link);
1748             goto done;
1749         }
1750     }
1751     QTAILQ_INSERT_TAIL(&mr->subregions, subregion, subregions_link);
1752 done:
1753     memory_region_update_pending |= mr->enabled && subregion->enabled;
1754     memory_region_transaction_commit();
1755 }
1756
1757 static void memory_region_add_subregion_common(MemoryRegion *mr,
1758                                                hwaddr offset,
1759                                                MemoryRegion *subregion)
1760 {
1761     assert(!subregion->container);
1762     subregion->container = mr;
1763     subregion->addr = offset;
1764     memory_region_update_container_subregions(subregion);
1765 }
1766
1767 void memory_region_add_subregion(MemoryRegion *mr,
1768                                  hwaddr offset,
1769                                  MemoryRegion *subregion)
1770 {
1771     subregion->may_overlap = false;
1772     subregion->priority = 0;
1773     memory_region_add_subregion_common(mr, offset, subregion);
1774 }
1775
1776 void memory_region_add_subregion_overlap(MemoryRegion *mr,
1777                                          hwaddr offset,
1778                                          MemoryRegion *subregion,
1779                                          int priority)
1780 {
1781     subregion->may_overlap = true;
1782     subregion->priority = priority;
1783     memory_region_add_subregion_common(mr, offset, subregion);
1784 }
1785
1786 void memory_region_del_subregion(MemoryRegion *mr,
1787                                  MemoryRegion *subregion)
1788 {
1789     memory_region_transaction_begin();
1790     assert(subregion->container == mr);
1791     subregion->container = NULL;
1792     QTAILQ_REMOVE(&mr->subregions, subregion, subregions_link);
1793     memory_region_unref(subregion);
1794     memory_region_update_pending |= mr->enabled && subregion->enabled;
1795     memory_region_transaction_commit();
1796 }
1797
1798 void memory_region_set_enabled(MemoryRegion *mr, bool enabled)
1799 {
1800     if (enabled == mr->enabled) {
1801         return;
1802     }
1803     memory_region_transaction_begin();
1804     mr->enabled = enabled;
1805     memory_region_update_pending = true;
1806     memory_region_transaction_commit();
1807 }
1808
1809 void memory_region_set_size(MemoryRegion *mr, uint64_t size)
1810 {
1811     Int128 s = int128_make64(size);
1812
1813     if (size == UINT64_MAX) {
1814         s = int128_2_64();
1815     }
1816     if (int128_eq(s, mr->size)) {
1817         return;
1818     }
1819     memory_region_transaction_begin();
1820     mr->size = s;
1821     memory_region_update_pending = true;
1822     memory_region_transaction_commit();
1823 }
1824
1825 static void memory_region_readd_subregion(MemoryRegion *mr)
1826 {
1827     MemoryRegion *container = mr->container;
1828
1829     if (container) {
1830         memory_region_transaction_begin();
1831         memory_region_ref(mr);
1832         memory_region_del_subregion(container, mr);
1833         mr->container = container;
1834         memory_region_update_container_subregions(mr);
1835         memory_region_unref(mr);
1836         memory_region_transaction_commit();
1837     }
1838 }
1839
1840 void memory_region_set_address(MemoryRegion *mr, hwaddr addr)
1841 {
1842     if (addr != mr->addr) {
1843         mr->addr = addr;
1844         memory_region_readd_subregion(mr);
1845     }
1846 }
1847
1848 void memory_region_set_alias_offset(MemoryRegion *mr, hwaddr offset)
1849 {
1850     assert(mr->alias);
1851
1852     if (offset == mr->alias_offset) {
1853         return;
1854     }
1855
1856     memory_region_transaction_begin();
1857     mr->alias_offset = offset;
1858     memory_region_update_pending |= mr->enabled;
1859     memory_region_transaction_commit();
1860 }
1861
1862 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr)
1863 {
1864     return mr->ram_addr;
1865 }
1866
1867 uint64_t memory_region_get_alignment(const MemoryRegion *mr)
1868 {
1869     return mr->align;
1870 }
1871
1872 static int cmp_flatrange_addr(const void *addr_, const void *fr_)
1873 {
1874     const AddrRange *addr = addr_;
1875     const FlatRange *fr = fr_;
1876
1877     if (int128_le(addrrange_end(*addr), fr->addr.start)) {
1878         return -1;
1879     } else if (int128_ge(addr->start, addrrange_end(fr->addr))) {
1880         return 1;
1881     }
1882     return 0;
1883 }
1884
1885 static FlatRange *flatview_lookup(FlatView *view, AddrRange addr)
1886 {
1887     return bsearch(&addr, view->ranges, view->nr,
1888                    sizeof(FlatRange), cmp_flatrange_addr);
1889 }
1890
1891 bool memory_region_present(MemoryRegion *container, hwaddr addr)
1892 {
1893     MemoryRegion *mr = memory_region_find(container, addr, 1).mr;
1894     if (!mr || (mr == container)) {
1895         return false;
1896     }
1897     memory_region_unref(mr);
1898     return true;
1899 }
1900
1901 bool memory_region_is_mapped(MemoryRegion *mr)
1902 {
1903     return mr->container ? true : false;
1904 }
1905
1906 MemoryRegionSection memory_region_find(MemoryRegion *mr,
1907                                        hwaddr addr, uint64_t size)
1908 {
1909     MemoryRegionSection ret = { .mr = NULL };
1910     MemoryRegion *root;
1911     AddressSpace *as;
1912     AddrRange range;
1913     FlatView *view;
1914     FlatRange *fr;
1915
1916     addr += mr->addr;
1917     for (root = mr; root->container; ) {
1918         root = root->container;
1919         addr += root->addr;
1920     }
1921
1922     as = memory_region_to_address_space(root);
1923     if (!as) {
1924         return ret;
1925     }
1926     range = addrrange_make(int128_make64(addr), int128_make64(size));
1927
1928     rcu_read_lock();
1929     view = atomic_rcu_read(&as->current_map);
1930     fr = flatview_lookup(view, range);
1931     if (!fr) {
1932         goto out;
1933     }
1934
1935     while (fr > view->ranges && addrrange_intersects(fr[-1].addr, range)) {
1936         --fr;
1937     }
1938
1939     ret.mr = fr->mr;
1940     ret.address_space = as;
1941     range = addrrange_intersection(range, fr->addr);
1942     ret.offset_within_region = fr->offset_in_region;
1943     ret.offset_within_region += int128_get64(int128_sub(range.start,
1944                                                         fr->addr.start));
1945     ret.size = range.size;
1946     ret.offset_within_address_space = int128_get64(range.start);
1947     ret.readonly = fr->readonly;
1948     memory_region_ref(ret.mr);
1949 out:
1950     rcu_read_unlock();
1951     return ret;
1952 }
1953
1954 void address_space_sync_dirty_bitmap(AddressSpace *as)
1955 {
1956     FlatView *view;
1957     FlatRange *fr;
1958
1959     view = address_space_get_flatview(as);
1960     FOR_EACH_FLAT_RANGE(fr, view) {
1961         MEMORY_LISTENER_UPDATE_REGION(fr, as, Forward, log_sync);
1962     }
1963     flatview_unref(view);
1964 }
1965
1966 void memory_global_dirty_log_start(void)
1967 {
1968     global_dirty_log = true;
1969
1970     MEMORY_LISTENER_CALL_GLOBAL(log_global_start, Forward);
1971
1972     /* Refresh DIRTY_LOG_MIGRATION bit.  */
1973     memory_region_transaction_begin();
1974     memory_region_update_pending = true;
1975     memory_region_transaction_commit();
1976 }
1977
1978 void memory_global_dirty_log_stop(void)
1979 {
1980     global_dirty_log = false;
1981
1982     /* Refresh DIRTY_LOG_MIGRATION bit.  */
1983     memory_region_transaction_begin();
1984     memory_region_update_pending = true;
1985     memory_region_transaction_commit();
1986
1987     MEMORY_LISTENER_CALL_GLOBAL(log_global_stop, Reverse);
1988 }
1989
1990 static void listener_add_address_space(MemoryListener *listener,
1991                                        AddressSpace *as)
1992 {
1993     FlatView *view;
1994     FlatRange *fr;
1995
1996     if (listener->address_space_filter
1997         && listener->address_space_filter != as) {
1998         return;
1999     }
2000
2001     if (global_dirty_log) {
2002         if (listener->log_global_start) {
2003             listener->log_global_start(listener);
2004         }
2005     }
2006
2007     view = address_space_get_flatview(as);
2008     FOR_EACH_FLAT_RANGE(fr, view) {
2009         MemoryRegionSection section = {
2010             .mr = fr->mr,
2011             .address_space = as,
2012             .offset_within_region = fr->offset_in_region,
2013             .size = fr->addr.size,
2014             .offset_within_address_space = int128_get64(fr->addr.start),
2015             .readonly = fr->readonly,
2016         };
2017         if (listener->region_add) {
2018             listener->region_add(listener, &section);
2019         }
2020     }
2021     flatview_unref(view);
2022 }
2023
2024 void memory_listener_register(MemoryListener *listener, AddressSpace *filter)
2025 {
2026     MemoryListener *other = NULL;
2027     AddressSpace *as;
2028
2029     listener->address_space_filter = filter;
2030     if (QTAILQ_EMPTY(&memory_listeners)
2031         || listener->priority >= QTAILQ_LAST(&memory_listeners,
2032                                              memory_listeners)->priority) {
2033         QTAILQ_INSERT_TAIL(&memory_listeners, listener, link);
2034     } else {
2035         QTAILQ_FOREACH(other, &memory_listeners, link) {
2036             if (listener->priority < other->priority) {
2037                 break;
2038             }
2039         }
2040         QTAILQ_INSERT_BEFORE(other, listener, link);
2041     }
2042
2043     QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
2044         listener_add_address_space(listener, as);
2045     }
2046 }
2047
2048 void memory_listener_unregister(MemoryListener *listener)
2049 {
2050     QTAILQ_REMOVE(&memory_listeners, listener, link);
2051 }
2052
2053 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name)
2054 {
2055     memory_region_ref(root);
2056     memory_region_transaction_begin();
2057     as->root = root;
2058     as->current_map = g_new(FlatView, 1);
2059     flatview_init(as->current_map);
2060     as->ioeventfd_nb = 0;
2061     as->ioeventfds = NULL;
2062     QTAILQ_INSERT_TAIL(&address_spaces, as, address_spaces_link);
2063     as->name = g_strdup(name ? name : "anonymous");
2064     address_space_init_dispatch(as);
2065     memory_region_update_pending |= root->enabled;
2066     memory_region_transaction_commit();
2067 }
2068
2069 static void do_address_space_destroy(AddressSpace *as)
2070 {
2071     MemoryListener *listener;
2072
2073     address_space_destroy_dispatch(as);
2074
2075     QTAILQ_FOREACH(listener, &memory_listeners, link) {
2076         assert(listener->address_space_filter != as);
2077     }
2078
2079     flatview_unref(as->current_map);
2080     g_free(as->name);
2081     g_free(as->ioeventfds);
2082     memory_region_unref(as->root);
2083 }
2084
2085 void address_space_destroy(AddressSpace *as)
2086 {
2087     MemoryRegion *root = as->root;
2088
2089     /* Flush out anything from MemoryListeners listening in on this */
2090     memory_region_transaction_begin();
2091     as->root = NULL;
2092     memory_region_transaction_commit();
2093     QTAILQ_REMOVE(&address_spaces, as, address_spaces_link);
2094     address_space_unregister(as);
2095
2096     /* At this point, as->dispatch and as->current_map are dummy
2097      * entries that the guest should never use.  Wait for the old
2098      * values to expire before freeing the data.
2099      */
2100     as->root = root;
2101     call_rcu(as, do_address_space_destroy, rcu);
2102 }
2103
2104 typedef struct MemoryRegionList MemoryRegionList;
2105
2106 struct MemoryRegionList {
2107     const MemoryRegion *mr;
2108     QTAILQ_ENTRY(MemoryRegionList) queue;
2109 };
2110
2111 typedef QTAILQ_HEAD(queue, MemoryRegionList) MemoryRegionListHead;
2112
2113 static void mtree_print_mr(fprintf_function mon_printf, void *f,
2114                            const MemoryRegion *mr, unsigned int level,
2115                            hwaddr base,
2116                            MemoryRegionListHead *alias_print_queue)
2117 {
2118     MemoryRegionList *new_ml, *ml, *next_ml;
2119     MemoryRegionListHead submr_print_queue;
2120     const MemoryRegion *submr;
2121     unsigned int i;
2122
2123     if (!mr) {
2124         return;
2125     }
2126
2127     for (i = 0; i < level; i++) {
2128         mon_printf(f, "  ");
2129     }
2130
2131     if (mr->alias) {
2132         MemoryRegionList *ml;
2133         bool found = false;
2134
2135         /* check if the alias is already in the queue */
2136         QTAILQ_FOREACH(ml, alias_print_queue, queue) {
2137             if (ml->mr == mr->alias) {
2138                 found = true;
2139             }
2140         }
2141
2142         if (!found) {
2143             ml = g_new(MemoryRegionList, 1);
2144             ml->mr = mr->alias;
2145             QTAILQ_INSERT_TAIL(alias_print_queue, ml, queue);
2146         }
2147         mon_printf(f, TARGET_FMT_plx "-" TARGET_FMT_plx
2148                    " (prio %d, %c%c): alias %s @%s " TARGET_FMT_plx
2149                    "-" TARGET_FMT_plx "%s\n",
2150                    base + mr->addr,
2151                    base + mr->addr
2152                    + (int128_nz(mr->size) ?
2153                       (hwaddr)int128_get64(int128_sub(mr->size,
2154                                                       int128_one())) : 0),
2155                    mr->priority,
2156                    mr->romd_mode ? 'R' : '-',
2157                    !mr->readonly && !(mr->rom_device && mr->romd_mode) ? 'W'
2158                                                                        : '-',
2159                    memory_region_name(mr),
2160                    memory_region_name(mr->alias),
2161                    mr->alias_offset,
2162                    mr->alias_offset
2163                    + (int128_nz(mr->size) ?
2164                       (hwaddr)int128_get64(int128_sub(mr->size,
2165                                                       int128_one())) : 0),
2166                    mr->enabled ? "" : " [disabled]");
2167     } else {
2168         mon_printf(f,
2169                    TARGET_FMT_plx "-" TARGET_FMT_plx " (prio %d, %c%c): %s%s\n",
2170                    base + mr->addr,
2171                    base + mr->addr
2172                    + (int128_nz(mr->size) ?
2173                       (hwaddr)int128_get64(int128_sub(mr->size,
2174                                                       int128_one())) : 0),
2175                    mr->priority,
2176                    mr->romd_mode ? 'R' : '-',
2177                    !mr->readonly && !(mr->rom_device && mr->romd_mode) ? 'W'
2178                                                                        : '-',
2179                    memory_region_name(mr),
2180                    mr->enabled ? "" : " [disabled]");
2181     }
2182
2183     QTAILQ_INIT(&submr_print_queue);
2184
2185     QTAILQ_FOREACH(submr, &mr->subregions, subregions_link) {
2186         new_ml = g_new(MemoryRegionList, 1);
2187         new_ml->mr = submr;
2188         QTAILQ_FOREACH(ml, &submr_print_queue, queue) {
2189             if (new_ml->mr->addr < ml->mr->addr ||
2190                 (new_ml->mr->addr == ml->mr->addr &&
2191                  new_ml->mr->priority > ml->mr->priority)) {
2192                 QTAILQ_INSERT_BEFORE(ml, new_ml, queue);
2193                 new_ml = NULL;
2194                 break;
2195             }
2196         }
2197         if (new_ml) {
2198             QTAILQ_INSERT_TAIL(&submr_print_queue, new_ml, queue);
2199         }
2200     }
2201
2202     QTAILQ_FOREACH(ml, &submr_print_queue, queue) {
2203         mtree_print_mr(mon_printf, f, ml->mr, level + 1, base + mr->addr,
2204                        alias_print_queue);
2205     }
2206
2207     QTAILQ_FOREACH_SAFE(ml, &submr_print_queue, queue, next_ml) {
2208         g_free(ml);
2209     }
2210 }
2211
2212 void mtree_info(fprintf_function mon_printf, void *f)
2213 {
2214     MemoryRegionListHead ml_head;
2215     MemoryRegionList *ml, *ml2;
2216     AddressSpace *as;
2217
2218     QTAILQ_INIT(&ml_head);
2219
2220     QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
2221         mon_printf(f, "address-space: %s\n", as->name);
2222         mtree_print_mr(mon_printf, f, as->root, 1, 0, &ml_head);
2223         mon_printf(f, "\n");
2224     }
2225
2226     /* print aliased regions */
2227     QTAILQ_FOREACH(ml, &ml_head, queue) {
2228         mon_printf(f, "memory-region: %s\n", memory_region_name(ml->mr));
2229         mtree_print_mr(mon_printf, f, ml->mr, 1, 0, &ml_head);
2230         mon_printf(f, "\n");
2231     }
2232
2233     QTAILQ_FOREACH_SAFE(ml, &ml_head, queue, ml2) {
2234         g_free(ml);
2235     }
2236 }
2237
2238 static const TypeInfo memory_region_info = {
2239     .parent             = TYPE_OBJECT,
2240     .name               = TYPE_MEMORY_REGION,
2241     .instance_size      = sizeof(MemoryRegion),
2242     .instance_init      = memory_region_initfn,
2243     .instance_finalize  = memory_region_finalize,
2244 };
2245
2246 static void memory_register_types(void)
2247 {
2248     type_register_static(&memory_region_info);
2249 }
2250
2251 type_init(memory_register_types)