memory: Define API for MemoryRegionOps to take attrs and return status
[sdk/emulator/qemu.git] / memory.c
1 /*
2  * Physical memory management
3  *
4  * Copyright 2011 Red Hat, Inc. and/or its affiliates
5  *
6  * Authors:
7  *  Avi Kivity <avi@redhat.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2.  See
10  * the COPYING file in the top-level directory.
11  *
12  * Contributions after 2012-01-13 are licensed under the terms of the
13  * GNU GPL, version 2 or (at your option) any later version.
14  */
15
16 #include "exec/memory.h"
17 #include "exec/address-spaces.h"
18 #include "exec/ioport.h"
19 #include "qapi/visitor.h"
20 #include "qemu/bitops.h"
21 #include "qom/object.h"
22 #include "trace.h"
23 #include <assert.h>
24
25 #include "exec/memory-internal.h"
26 #include "exec/ram_addr.h"
27 #include "sysemu/sysemu.h"
28
29 //#define DEBUG_UNASSIGNED
30
31 static unsigned memory_region_transaction_depth;
32 static bool memory_region_update_pending;
33 static bool ioeventfd_update_pending;
34 static bool global_dirty_log = false;
35
36 static QTAILQ_HEAD(memory_listeners, MemoryListener) memory_listeners
37     = QTAILQ_HEAD_INITIALIZER(memory_listeners);
38
39 static QTAILQ_HEAD(, AddressSpace) address_spaces
40     = QTAILQ_HEAD_INITIALIZER(address_spaces);
41
42 typedef struct AddrRange AddrRange;
43
44 /*
45  * Note that signed integers are needed for negative offsetting in aliases
46  * (large MemoryRegion::alias_offset).
47  */
48 struct AddrRange {
49     Int128 start;
50     Int128 size;
51 };
52
53 static AddrRange addrrange_make(Int128 start, Int128 size)
54 {
55     return (AddrRange) { start, size };
56 }
57
58 static bool addrrange_equal(AddrRange r1, AddrRange r2)
59 {
60     return int128_eq(r1.start, r2.start) && int128_eq(r1.size, r2.size);
61 }
62
63 static Int128 addrrange_end(AddrRange r)
64 {
65     return int128_add(r.start, r.size);
66 }
67
68 static AddrRange addrrange_shift(AddrRange range, Int128 delta)
69 {
70     int128_addto(&range.start, delta);
71     return range;
72 }
73
74 static bool addrrange_contains(AddrRange range, Int128 addr)
75 {
76     return int128_ge(addr, range.start)
77         && int128_lt(addr, addrrange_end(range));
78 }
79
80 static bool addrrange_intersects(AddrRange r1, AddrRange r2)
81 {
82     return addrrange_contains(r1, r2.start)
83         || addrrange_contains(r2, r1.start);
84 }
85
86 static AddrRange addrrange_intersection(AddrRange r1, AddrRange r2)
87 {
88     Int128 start = int128_max(r1.start, r2.start);
89     Int128 end = int128_min(addrrange_end(r1), addrrange_end(r2));
90     return addrrange_make(start, int128_sub(end, start));
91 }
92
93 enum ListenerDirection { Forward, Reverse };
94
95 static bool memory_listener_match(MemoryListener *listener,
96                                   MemoryRegionSection *section)
97 {
98     return !listener->address_space_filter
99         || listener->address_space_filter == section->address_space;
100 }
101
102 #define MEMORY_LISTENER_CALL_GLOBAL(_callback, _direction, _args...)    \
103     do {                                                                \
104         MemoryListener *_listener;                                      \
105                                                                         \
106         switch (_direction) {                                           \
107         case Forward:                                                   \
108             QTAILQ_FOREACH(_listener, &memory_listeners, link) {        \
109                 if (_listener->_callback) {                             \
110                     _listener->_callback(_listener, ##_args);           \
111                 }                                                       \
112             }                                                           \
113             break;                                                      \
114         case Reverse:                                                   \
115             QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners,        \
116                                    memory_listeners, link) {            \
117                 if (_listener->_callback) {                             \
118                     _listener->_callback(_listener, ##_args);           \
119                 }                                                       \
120             }                                                           \
121             break;                                                      \
122         default:                                                        \
123             abort();                                                    \
124         }                                                               \
125     } while (0)
126
127 #define MEMORY_LISTENER_CALL(_callback, _direction, _section, _args...) \
128     do {                                                                \
129         MemoryListener *_listener;                                      \
130                                                                         \
131         switch (_direction) {                                           \
132         case Forward:                                                   \
133             QTAILQ_FOREACH(_listener, &memory_listeners, link) {        \
134                 if (_listener->_callback                                \
135                     && memory_listener_match(_listener, _section)) {    \
136                     _listener->_callback(_listener, _section, ##_args); \
137                 }                                                       \
138             }                                                           \
139             break;                                                      \
140         case Reverse:                                                   \
141             QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners,        \
142                                    memory_listeners, link) {            \
143                 if (_listener->_callback                                \
144                     && memory_listener_match(_listener, _section)) {    \
145                     _listener->_callback(_listener, _section, ##_args); \
146                 }                                                       \
147             }                                                           \
148             break;                                                      \
149         default:                                                        \
150             abort();                                                    \
151         }                                                               \
152     } while (0)
153
154 /* No need to ref/unref .mr, the FlatRange keeps it alive.  */
155 #define MEMORY_LISTENER_UPDATE_REGION(fr, as, dir, callback)            \
156     MEMORY_LISTENER_CALL(callback, dir, (&(MemoryRegionSection) {       \
157         .mr = (fr)->mr,                                                 \
158         .address_space = (as),                                          \
159         .offset_within_region = (fr)->offset_in_region,                 \
160         .size = (fr)->addr.size,                                        \
161         .offset_within_address_space = int128_get64((fr)->addr.start),  \
162         .readonly = (fr)->readonly,                                     \
163               }))
164
165 struct CoalescedMemoryRange {
166     AddrRange addr;
167     QTAILQ_ENTRY(CoalescedMemoryRange) link;
168 };
169
170 struct MemoryRegionIoeventfd {
171     AddrRange addr;
172     bool match_data;
173     uint64_t data;
174     EventNotifier *e;
175 };
176
177 static bool memory_region_ioeventfd_before(MemoryRegionIoeventfd a,
178                                            MemoryRegionIoeventfd b)
179 {
180     if (int128_lt(a.addr.start, b.addr.start)) {
181         return true;
182     } else if (int128_gt(a.addr.start, b.addr.start)) {
183         return false;
184     } else if (int128_lt(a.addr.size, b.addr.size)) {
185         return true;
186     } else if (int128_gt(a.addr.size, b.addr.size)) {
187         return false;
188     } else if (a.match_data < b.match_data) {
189         return true;
190     } else  if (a.match_data > b.match_data) {
191         return false;
192     } else if (a.match_data) {
193         if (a.data < b.data) {
194             return true;
195         } else if (a.data > b.data) {
196             return false;
197         }
198     }
199     if (a.e < b.e) {
200         return true;
201     } else if (a.e > b.e) {
202         return false;
203     }
204     return false;
205 }
206
207 static bool memory_region_ioeventfd_equal(MemoryRegionIoeventfd a,
208                                           MemoryRegionIoeventfd b)
209 {
210     return !memory_region_ioeventfd_before(a, b)
211         && !memory_region_ioeventfd_before(b, a);
212 }
213
214 typedef struct FlatRange FlatRange;
215 typedef struct FlatView FlatView;
216
217 /* Range of memory in the global map.  Addresses are absolute. */
218 struct FlatRange {
219     MemoryRegion *mr;
220     hwaddr offset_in_region;
221     AddrRange addr;
222     uint8_t dirty_log_mask;
223     bool romd_mode;
224     bool readonly;
225 };
226
227 /* Flattened global view of current active memory hierarchy.  Kept in sorted
228  * order.
229  */
230 struct FlatView {
231     struct rcu_head rcu;
232     unsigned ref;
233     FlatRange *ranges;
234     unsigned nr;
235     unsigned nr_allocated;
236 };
237
238 typedef struct AddressSpaceOps AddressSpaceOps;
239
240 #define FOR_EACH_FLAT_RANGE(var, view)          \
241     for (var = (view)->ranges; var < (view)->ranges + (view)->nr; ++var)
242
243 static bool flatrange_equal(FlatRange *a, FlatRange *b)
244 {
245     return a->mr == b->mr
246         && addrrange_equal(a->addr, b->addr)
247         && a->offset_in_region == b->offset_in_region
248         && a->romd_mode == b->romd_mode
249         && a->readonly == b->readonly;
250 }
251
252 static void flatview_init(FlatView *view)
253 {
254     view->ref = 1;
255     view->ranges = NULL;
256     view->nr = 0;
257     view->nr_allocated = 0;
258 }
259
260 /* Insert a range into a given position.  Caller is responsible for maintaining
261  * sorting order.
262  */
263 static void flatview_insert(FlatView *view, unsigned pos, FlatRange *range)
264 {
265     if (view->nr == view->nr_allocated) {
266         view->nr_allocated = MAX(2 * view->nr, 10);
267         view->ranges = g_realloc(view->ranges,
268                                     view->nr_allocated * sizeof(*view->ranges));
269     }
270     memmove(view->ranges + pos + 1, view->ranges + pos,
271             (view->nr - pos) * sizeof(FlatRange));
272     view->ranges[pos] = *range;
273     memory_region_ref(range->mr);
274     ++view->nr;
275 }
276
277 static void flatview_destroy(FlatView *view)
278 {
279     int i;
280
281     for (i = 0; i < view->nr; i++) {
282         memory_region_unref(view->ranges[i].mr);
283     }
284     g_free(view->ranges);
285     g_free(view);
286 }
287
288 static void flatview_ref(FlatView *view)
289 {
290     atomic_inc(&view->ref);
291 }
292
293 static void flatview_unref(FlatView *view)
294 {
295     if (atomic_fetch_dec(&view->ref) == 1) {
296         flatview_destroy(view);
297     }
298 }
299
300 static bool can_merge(FlatRange *r1, FlatRange *r2)
301 {
302     return int128_eq(addrrange_end(r1->addr), r2->addr.start)
303         && r1->mr == r2->mr
304         && int128_eq(int128_add(int128_make64(r1->offset_in_region),
305                                 r1->addr.size),
306                      int128_make64(r2->offset_in_region))
307         && r1->dirty_log_mask == r2->dirty_log_mask
308         && r1->romd_mode == r2->romd_mode
309         && r1->readonly == r2->readonly;
310 }
311
312 /* Attempt to simplify a view by merging adjacent ranges */
313 static void flatview_simplify(FlatView *view)
314 {
315     unsigned i, j;
316
317     i = 0;
318     while (i < view->nr) {
319         j = i + 1;
320         while (j < view->nr
321                && can_merge(&view->ranges[j-1], &view->ranges[j])) {
322             int128_addto(&view->ranges[i].addr.size, view->ranges[j].addr.size);
323             ++j;
324         }
325         ++i;
326         memmove(&view->ranges[i], &view->ranges[j],
327                 (view->nr - j) * sizeof(view->ranges[j]));
328         view->nr -= j - i;
329     }
330 }
331
332 static bool memory_region_big_endian(MemoryRegion *mr)
333 {
334 #ifdef TARGET_WORDS_BIGENDIAN
335     return mr->ops->endianness != DEVICE_LITTLE_ENDIAN;
336 #else
337     return mr->ops->endianness == DEVICE_BIG_ENDIAN;
338 #endif
339 }
340
341 static bool memory_region_wrong_endianness(MemoryRegion *mr)
342 {
343 #ifdef TARGET_WORDS_BIGENDIAN
344     return mr->ops->endianness == DEVICE_LITTLE_ENDIAN;
345 #else
346     return mr->ops->endianness == DEVICE_BIG_ENDIAN;
347 #endif
348 }
349
350 static void adjust_endianness(MemoryRegion *mr, uint64_t *data, unsigned size)
351 {
352     if (memory_region_wrong_endianness(mr)) {
353         switch (size) {
354         case 1:
355             break;
356         case 2:
357             *data = bswap16(*data);
358             break;
359         case 4:
360             *data = bswap32(*data);
361             break;
362         case 8:
363             *data = bswap64(*data);
364             break;
365         default:
366             abort();
367         }
368     }
369 }
370
371 static MemTxResult memory_region_oldmmio_read_accessor(MemoryRegion *mr,
372                                                        hwaddr addr,
373                                                        uint64_t *value,
374                                                        unsigned size,
375                                                        unsigned shift,
376                                                        uint64_t mask,
377                                                        MemTxAttrs attrs)
378 {
379     uint64_t tmp;
380
381     tmp = mr->ops->old_mmio.read[ctz32(size)](mr->opaque, addr);
382     trace_memory_region_ops_read(mr, addr, tmp, size);
383     *value |= (tmp & mask) << shift;
384     return MEMTX_OK;
385 }
386
387 static MemTxResult  memory_region_read_accessor(MemoryRegion *mr,
388                                                 hwaddr addr,
389                                                 uint64_t *value,
390                                                 unsigned size,
391                                                 unsigned shift,
392                                                 uint64_t mask,
393                                                 MemTxAttrs attrs)
394 {
395     uint64_t tmp;
396
397     if (mr->flush_coalesced_mmio) {
398         qemu_flush_coalesced_mmio_buffer();
399     }
400     tmp = mr->ops->read(mr->opaque, addr, size);
401     trace_memory_region_ops_read(mr, addr, tmp, size);
402     *value |= (tmp & mask) << shift;
403     return MEMTX_OK;
404 }
405
406 static MemTxResult memory_region_read_with_attrs_accessor(MemoryRegion *mr,
407                                                           hwaddr addr,
408                                                           uint64_t *value,
409                                                           unsigned size,
410                                                           unsigned shift,
411                                                           uint64_t mask,
412                                                           MemTxAttrs attrs)
413 {
414     uint64_t tmp = 0;
415     MemTxResult r;
416
417     if (mr->flush_coalesced_mmio) {
418         qemu_flush_coalesced_mmio_buffer();
419     }
420     r = mr->ops->read_with_attrs(mr->opaque, addr, &tmp, size, attrs);
421     trace_memory_region_ops_read(mr, addr, tmp, size);
422     *value |= (tmp & mask) << shift;
423     return r;
424 }
425
426 static MemTxResult memory_region_oldmmio_write_accessor(MemoryRegion *mr,
427                                                         hwaddr addr,
428                                                         uint64_t *value,
429                                                         unsigned size,
430                                                         unsigned shift,
431                                                         uint64_t mask,
432                                                         MemTxAttrs attrs)
433 {
434     uint64_t tmp;
435
436     tmp = (*value >> shift) & mask;
437     trace_memory_region_ops_write(mr, addr, tmp, size);
438     mr->ops->old_mmio.write[ctz32(size)](mr->opaque, addr, tmp);
439     return MEMTX_OK;
440 }
441
442 static MemTxResult memory_region_write_accessor(MemoryRegion *mr,
443                                                 hwaddr addr,
444                                                 uint64_t *value,
445                                                 unsigned size,
446                                                 unsigned shift,
447                                                 uint64_t mask,
448                                                 MemTxAttrs attrs)
449 {
450     uint64_t tmp;
451
452     if (mr->flush_coalesced_mmio) {
453         qemu_flush_coalesced_mmio_buffer();
454     }
455     tmp = (*value >> shift) & mask;
456     trace_memory_region_ops_write(mr, addr, tmp, size);
457     mr->ops->write(mr->opaque, addr, tmp, size);
458     return MEMTX_OK;
459 }
460
461 static MemTxResult memory_region_write_with_attrs_accessor(MemoryRegion *mr,
462                                                            hwaddr addr,
463                                                            uint64_t *value,
464                                                            unsigned size,
465                                                            unsigned shift,
466                                                            uint64_t mask,
467                                                            MemTxAttrs attrs)
468 {
469     uint64_t tmp;
470
471     if (mr->flush_coalesced_mmio) {
472         qemu_flush_coalesced_mmio_buffer();
473     }
474     tmp = (*value >> shift) & mask;
475     trace_memory_region_ops_write(mr, addr, tmp, size);
476     return mr->ops->write_with_attrs(mr->opaque, addr, tmp, size, attrs);
477 }
478
479 static MemTxResult access_with_adjusted_size(hwaddr addr,
480                                       uint64_t *value,
481                                       unsigned size,
482                                       unsigned access_size_min,
483                                       unsigned access_size_max,
484                                       MemTxResult (*access)(MemoryRegion *mr,
485                                                             hwaddr addr,
486                                                             uint64_t *value,
487                                                             unsigned size,
488                                                             unsigned shift,
489                                                             uint64_t mask,
490                                                             MemTxAttrs attrs),
491                                       MemoryRegion *mr,
492                                       MemTxAttrs attrs)
493 {
494     uint64_t access_mask;
495     unsigned access_size;
496     unsigned i;
497     MemTxResult r = MEMTX_OK;
498
499     if (!access_size_min) {
500         access_size_min = 1;
501     }
502     if (!access_size_max) {
503         access_size_max = 4;
504     }
505
506     /* FIXME: support unaligned access? */
507     access_size = MAX(MIN(size, access_size_max), access_size_min);
508     access_mask = -1ULL >> (64 - access_size * 8);
509     if (memory_region_big_endian(mr)) {
510         for (i = 0; i < size; i += access_size) {
511             r |= access(mr, addr + i, value, access_size,
512                         (size - access_size - i) * 8, access_mask, attrs);
513         }
514     } else {
515         for (i = 0; i < size; i += access_size) {
516             r |= access(mr, addr + i, value, access_size, i * 8,
517                         access_mask, attrs);
518         }
519     }
520     return r;
521 }
522
523 static AddressSpace *memory_region_to_address_space(MemoryRegion *mr)
524 {
525     AddressSpace *as;
526
527     while (mr->container) {
528         mr = mr->container;
529     }
530     QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
531         if (mr == as->root) {
532             return as;
533         }
534     }
535     return NULL;
536 }
537
538 /* Render a memory region into the global view.  Ranges in @view obscure
539  * ranges in @mr.
540  */
541 static void render_memory_region(FlatView *view,
542                                  MemoryRegion *mr,
543                                  Int128 base,
544                                  AddrRange clip,
545                                  bool readonly)
546 {
547     MemoryRegion *subregion;
548     unsigned i;
549     hwaddr offset_in_region;
550     Int128 remain;
551     Int128 now;
552     FlatRange fr;
553     AddrRange tmp;
554
555     if (!mr->enabled) {
556         return;
557     }
558
559     int128_addto(&base, int128_make64(mr->addr));
560     readonly |= mr->readonly;
561
562     tmp = addrrange_make(base, mr->size);
563
564     if (!addrrange_intersects(tmp, clip)) {
565         return;
566     }
567
568     clip = addrrange_intersection(tmp, clip);
569
570     if (mr->alias) {
571         int128_subfrom(&base, int128_make64(mr->alias->addr));
572         int128_subfrom(&base, int128_make64(mr->alias_offset));
573         render_memory_region(view, mr->alias, base, clip, readonly);
574         return;
575     }
576
577     /* Render subregions in priority order. */
578     QTAILQ_FOREACH(subregion, &mr->subregions, subregions_link) {
579         render_memory_region(view, subregion, base, clip, readonly);
580     }
581
582     if (!mr->terminates) {
583         return;
584     }
585
586     offset_in_region = int128_get64(int128_sub(clip.start, base));
587     base = clip.start;
588     remain = clip.size;
589
590     fr.mr = mr;
591     fr.dirty_log_mask = mr->dirty_log_mask;
592     fr.romd_mode = mr->romd_mode;
593     fr.readonly = readonly;
594
595     /* Render the region itself into any gaps left by the current view. */
596     for (i = 0; i < view->nr && int128_nz(remain); ++i) {
597         if (int128_ge(base, addrrange_end(view->ranges[i].addr))) {
598             continue;
599         }
600         if (int128_lt(base, view->ranges[i].addr.start)) {
601             now = int128_min(remain,
602                              int128_sub(view->ranges[i].addr.start, base));
603             fr.offset_in_region = offset_in_region;
604             fr.addr = addrrange_make(base, now);
605             flatview_insert(view, i, &fr);
606             ++i;
607             int128_addto(&base, now);
608             offset_in_region += int128_get64(now);
609             int128_subfrom(&remain, now);
610         }
611         now = int128_sub(int128_min(int128_add(base, remain),
612                                     addrrange_end(view->ranges[i].addr)),
613                          base);
614         int128_addto(&base, now);
615         offset_in_region += int128_get64(now);
616         int128_subfrom(&remain, now);
617     }
618     if (int128_nz(remain)) {
619         fr.offset_in_region = offset_in_region;
620         fr.addr = addrrange_make(base, remain);
621         flatview_insert(view, i, &fr);
622     }
623 }
624
625 /* Render a memory topology into a list of disjoint absolute ranges. */
626 static FlatView *generate_memory_topology(MemoryRegion *mr)
627 {
628     FlatView *view;
629
630     view = g_new(FlatView, 1);
631     flatview_init(view);
632
633     if (mr) {
634         render_memory_region(view, mr, int128_zero(),
635                              addrrange_make(int128_zero(), int128_2_64()), false);
636     }
637     flatview_simplify(view);
638
639     return view;
640 }
641
642 static void address_space_add_del_ioeventfds(AddressSpace *as,
643                                              MemoryRegionIoeventfd *fds_new,
644                                              unsigned fds_new_nb,
645                                              MemoryRegionIoeventfd *fds_old,
646                                              unsigned fds_old_nb)
647 {
648     unsigned iold, inew;
649     MemoryRegionIoeventfd *fd;
650     MemoryRegionSection section;
651
652     /* Generate a symmetric difference of the old and new fd sets, adding
653      * and deleting as necessary.
654      */
655
656     iold = inew = 0;
657     while (iold < fds_old_nb || inew < fds_new_nb) {
658         if (iold < fds_old_nb
659             && (inew == fds_new_nb
660                 || memory_region_ioeventfd_before(fds_old[iold],
661                                                   fds_new[inew]))) {
662             fd = &fds_old[iold];
663             section = (MemoryRegionSection) {
664                 .address_space = as,
665                 .offset_within_address_space = int128_get64(fd->addr.start),
666                 .size = fd->addr.size,
667             };
668             MEMORY_LISTENER_CALL(eventfd_del, Forward, &section,
669                                  fd->match_data, fd->data, fd->e);
670             ++iold;
671         } else if (inew < fds_new_nb
672                    && (iold == fds_old_nb
673                        || memory_region_ioeventfd_before(fds_new[inew],
674                                                          fds_old[iold]))) {
675             fd = &fds_new[inew];
676             section = (MemoryRegionSection) {
677                 .address_space = as,
678                 .offset_within_address_space = int128_get64(fd->addr.start),
679                 .size = fd->addr.size,
680             };
681             MEMORY_LISTENER_CALL(eventfd_add, Reverse, &section,
682                                  fd->match_data, fd->data, fd->e);
683             ++inew;
684         } else {
685             ++iold;
686             ++inew;
687         }
688     }
689 }
690
691 static FlatView *address_space_get_flatview(AddressSpace *as)
692 {
693     FlatView *view;
694
695     rcu_read_lock();
696     view = atomic_rcu_read(&as->current_map);
697     flatview_ref(view);
698     rcu_read_unlock();
699     return view;
700 }
701
702 static void address_space_update_ioeventfds(AddressSpace *as)
703 {
704     FlatView *view;
705     FlatRange *fr;
706     unsigned ioeventfd_nb = 0;
707     MemoryRegionIoeventfd *ioeventfds = NULL;
708     AddrRange tmp;
709     unsigned i;
710
711     view = address_space_get_flatview(as);
712     FOR_EACH_FLAT_RANGE(fr, view) {
713         for (i = 0; i < fr->mr->ioeventfd_nb; ++i) {
714             tmp = addrrange_shift(fr->mr->ioeventfds[i].addr,
715                                   int128_sub(fr->addr.start,
716                                              int128_make64(fr->offset_in_region)));
717             if (addrrange_intersects(fr->addr, tmp)) {
718                 ++ioeventfd_nb;
719                 ioeventfds = g_realloc(ioeventfds,
720                                           ioeventfd_nb * sizeof(*ioeventfds));
721                 ioeventfds[ioeventfd_nb-1] = fr->mr->ioeventfds[i];
722                 ioeventfds[ioeventfd_nb-1].addr = tmp;
723             }
724         }
725     }
726
727     address_space_add_del_ioeventfds(as, ioeventfds, ioeventfd_nb,
728                                      as->ioeventfds, as->ioeventfd_nb);
729
730     g_free(as->ioeventfds);
731     as->ioeventfds = ioeventfds;
732     as->ioeventfd_nb = ioeventfd_nb;
733     flatview_unref(view);
734 }
735
736 static void address_space_update_topology_pass(AddressSpace *as,
737                                                const FlatView *old_view,
738                                                const FlatView *new_view,
739                                                bool adding)
740 {
741     unsigned iold, inew;
742     FlatRange *frold, *frnew;
743
744     /* Generate a symmetric difference of the old and new memory maps.
745      * Kill ranges in the old map, and instantiate ranges in the new map.
746      */
747     iold = inew = 0;
748     while (iold < old_view->nr || inew < new_view->nr) {
749         if (iold < old_view->nr) {
750             frold = &old_view->ranges[iold];
751         } else {
752             frold = NULL;
753         }
754         if (inew < new_view->nr) {
755             frnew = &new_view->ranges[inew];
756         } else {
757             frnew = NULL;
758         }
759
760         if (frold
761             && (!frnew
762                 || int128_lt(frold->addr.start, frnew->addr.start)
763                 || (int128_eq(frold->addr.start, frnew->addr.start)
764                     && !flatrange_equal(frold, frnew)))) {
765             /* In old but not in new, or in both but attributes changed. */
766
767             if (!adding) {
768                 MEMORY_LISTENER_UPDATE_REGION(frold, as, Reverse, region_del);
769             }
770
771             ++iold;
772         } else if (frold && frnew && flatrange_equal(frold, frnew)) {
773             /* In both and unchanged (except logging may have changed) */
774
775             if (adding) {
776                 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_nop);
777                 if (frold->dirty_log_mask && !frnew->dirty_log_mask) {
778                     MEMORY_LISTENER_UPDATE_REGION(frnew, as, Reverse, log_stop);
779                 } else if (frnew->dirty_log_mask && !frold->dirty_log_mask) {
780                     MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, log_start);
781                 }
782             }
783
784             ++iold;
785             ++inew;
786         } else {
787             /* In new */
788
789             if (adding) {
790                 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_add);
791             }
792
793             ++inew;
794         }
795     }
796 }
797
798
799 static void address_space_update_topology(AddressSpace *as)
800 {
801     FlatView *old_view = address_space_get_flatview(as);
802     FlatView *new_view = generate_memory_topology(as->root);
803
804     address_space_update_topology_pass(as, old_view, new_view, false);
805     address_space_update_topology_pass(as, old_view, new_view, true);
806
807     /* Writes are protected by the BQL.  */
808     atomic_rcu_set(&as->current_map, new_view);
809     call_rcu(old_view, flatview_unref, rcu);
810
811     /* Note that all the old MemoryRegions are still alive up to this
812      * point.  This relieves most MemoryListeners from the need to
813      * ref/unref the MemoryRegions they get---unless they use them
814      * outside the iothread mutex, in which case precise reference
815      * counting is necessary.
816      */
817     flatview_unref(old_view);
818
819     address_space_update_ioeventfds(as);
820 }
821
822 void memory_region_transaction_begin(void)
823 {
824     qemu_flush_coalesced_mmio_buffer();
825     ++memory_region_transaction_depth;
826 }
827
828 static void memory_region_clear_pending(void)
829 {
830     memory_region_update_pending = false;
831     ioeventfd_update_pending = false;
832 }
833
834 void memory_region_transaction_commit(void)
835 {
836     AddressSpace *as;
837
838     assert(memory_region_transaction_depth);
839     --memory_region_transaction_depth;
840     if (!memory_region_transaction_depth) {
841         if (memory_region_update_pending) {
842             MEMORY_LISTENER_CALL_GLOBAL(begin, Forward);
843
844             QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
845                 address_space_update_topology(as);
846             }
847
848             MEMORY_LISTENER_CALL_GLOBAL(commit, Forward);
849         } else if (ioeventfd_update_pending) {
850             QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
851                 address_space_update_ioeventfds(as);
852             }
853         }
854         memory_region_clear_pending();
855    }
856 }
857
858 static void memory_region_destructor_none(MemoryRegion *mr)
859 {
860 }
861
862 static void memory_region_destructor_ram(MemoryRegion *mr)
863 {
864     qemu_ram_free(mr->ram_addr);
865 }
866
867 static void memory_region_destructor_alias(MemoryRegion *mr)
868 {
869     memory_region_unref(mr->alias);
870 }
871
872 static void memory_region_destructor_ram_from_ptr(MemoryRegion *mr)
873 {
874     qemu_ram_free_from_ptr(mr->ram_addr);
875 }
876
877 static void memory_region_destructor_rom_device(MemoryRegion *mr)
878 {
879     qemu_ram_free(mr->ram_addr & TARGET_PAGE_MASK);
880 }
881
882 static bool memory_region_need_escape(char c)
883 {
884     return c == '/' || c == '[' || c == '\\' || c == ']';
885 }
886
887 static char *memory_region_escape_name(const char *name)
888 {
889     const char *p;
890     char *escaped, *q;
891     uint8_t c;
892     size_t bytes = 0;
893
894     for (p = name; *p; p++) {
895         bytes += memory_region_need_escape(*p) ? 4 : 1;
896     }
897     if (bytes == p - name) {
898        return g_memdup(name, bytes + 1);
899     }
900
901     escaped = g_malloc(bytes + 1);
902     for (p = name, q = escaped; *p; p++) {
903         c = *p;
904         if (unlikely(memory_region_need_escape(c))) {
905             *q++ = '\\';
906             *q++ = 'x';
907             *q++ = "0123456789abcdef"[c >> 4];
908             c = "0123456789abcdef"[c & 15];
909         }
910         *q++ = c;
911     }
912     *q = 0;
913     return escaped;
914 }
915
916 void memory_region_init(MemoryRegion *mr,
917                         Object *owner,
918                         const char *name,
919                         uint64_t size)
920 {
921     if (!owner) {
922         owner = container_get(qdev_get_machine(), "/unattached");
923     }
924
925     object_initialize(mr, sizeof(*mr), TYPE_MEMORY_REGION);
926     mr->size = int128_make64(size);
927     if (size == UINT64_MAX) {
928         mr->size = int128_2_64();
929     }
930     mr->name = g_strdup(name);
931
932     if (name) {
933         char *escaped_name = memory_region_escape_name(name);
934         char *name_array = g_strdup_printf("%s[*]", escaped_name);
935         object_property_add_child(owner, name_array, OBJECT(mr), &error_abort);
936         object_unref(OBJECT(mr));
937         g_free(name_array);
938         g_free(escaped_name);
939     }
940 }
941
942 static void memory_region_get_addr(Object *obj, Visitor *v, void *opaque,
943                                    const char *name, Error **errp)
944 {
945     MemoryRegion *mr = MEMORY_REGION(obj);
946     uint64_t value = mr->addr;
947
948     visit_type_uint64(v, &value, name, errp);
949 }
950
951 static void memory_region_get_container(Object *obj, Visitor *v, void *opaque,
952                                         const char *name, Error **errp)
953 {
954     MemoryRegion *mr = MEMORY_REGION(obj);
955     gchar *path = (gchar *)"";
956
957     if (mr->container) {
958         path = object_get_canonical_path(OBJECT(mr->container));
959     }
960     visit_type_str(v, &path, name, errp);
961     if (mr->container) {
962         g_free(path);
963     }
964 }
965
966 static Object *memory_region_resolve_container(Object *obj, void *opaque,
967                                                const char *part)
968 {
969     MemoryRegion *mr = MEMORY_REGION(obj);
970
971     return OBJECT(mr->container);
972 }
973
974 static void memory_region_get_priority(Object *obj, Visitor *v, void *opaque,
975                                        const char *name, Error **errp)
976 {
977     MemoryRegion *mr = MEMORY_REGION(obj);
978     int32_t value = mr->priority;
979
980     visit_type_int32(v, &value, name, errp);
981 }
982
983 static bool memory_region_get_may_overlap(Object *obj, Error **errp)
984 {
985     MemoryRegion *mr = MEMORY_REGION(obj);
986
987     return mr->may_overlap;
988 }
989
990 static void memory_region_get_size(Object *obj, Visitor *v, void *opaque,
991                                    const char *name, Error **errp)
992 {
993     MemoryRegion *mr = MEMORY_REGION(obj);
994     uint64_t value = memory_region_size(mr);
995
996     visit_type_uint64(v, &value, name, errp);
997 }
998
999 static void memory_region_initfn(Object *obj)
1000 {
1001     MemoryRegion *mr = MEMORY_REGION(obj);
1002     ObjectProperty *op;
1003
1004     mr->ops = &unassigned_mem_ops;
1005     mr->enabled = true;
1006     mr->romd_mode = true;
1007     mr->destructor = memory_region_destructor_none;
1008     QTAILQ_INIT(&mr->subregions);
1009     QTAILQ_INIT(&mr->coalesced);
1010
1011     op = object_property_add(OBJECT(mr), "container",
1012                              "link<" TYPE_MEMORY_REGION ">",
1013                              memory_region_get_container,
1014                              NULL, /* memory_region_set_container */
1015                              NULL, NULL, &error_abort);
1016     op->resolve = memory_region_resolve_container;
1017
1018     object_property_add(OBJECT(mr), "addr", "uint64",
1019                         memory_region_get_addr,
1020                         NULL, /* memory_region_set_addr */
1021                         NULL, NULL, &error_abort);
1022     object_property_add(OBJECT(mr), "priority", "uint32",
1023                         memory_region_get_priority,
1024                         NULL, /* memory_region_set_priority */
1025                         NULL, NULL, &error_abort);
1026     object_property_add_bool(OBJECT(mr), "may-overlap",
1027                              memory_region_get_may_overlap,
1028                              NULL, /* memory_region_set_may_overlap */
1029                              &error_abort);
1030     object_property_add(OBJECT(mr), "size", "uint64",
1031                         memory_region_get_size,
1032                         NULL, /* memory_region_set_size, */
1033                         NULL, NULL, &error_abort);
1034 }
1035
1036 static uint64_t unassigned_mem_read(void *opaque, hwaddr addr,
1037                                     unsigned size)
1038 {
1039 #ifdef DEBUG_UNASSIGNED
1040     printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
1041 #endif
1042     if (current_cpu != NULL) {
1043         cpu_unassigned_access(current_cpu, addr, false, false, 0, size);
1044     }
1045     return 0;
1046 }
1047
1048 static void unassigned_mem_write(void *opaque, hwaddr addr,
1049                                  uint64_t val, unsigned size)
1050 {
1051 #ifdef DEBUG_UNASSIGNED
1052     printf("Unassigned mem write " TARGET_FMT_plx " = 0x%"PRIx64"\n", addr, val);
1053 #endif
1054     if (current_cpu != NULL) {
1055         cpu_unassigned_access(current_cpu, addr, true, false, 0, size);
1056     }
1057 }
1058
1059 static bool unassigned_mem_accepts(void *opaque, hwaddr addr,
1060                                    unsigned size, bool is_write)
1061 {
1062     return false;
1063 }
1064
1065 const MemoryRegionOps unassigned_mem_ops = {
1066     .valid.accepts = unassigned_mem_accepts,
1067     .endianness = DEVICE_NATIVE_ENDIAN,
1068 };
1069
1070 bool memory_region_access_valid(MemoryRegion *mr,
1071                                 hwaddr addr,
1072                                 unsigned size,
1073                                 bool is_write)
1074 {
1075     int access_size_min, access_size_max;
1076     int access_size, i;
1077
1078     if (!mr->ops->valid.unaligned && (addr & (size - 1))) {
1079         return false;
1080     }
1081
1082     if (!mr->ops->valid.accepts) {
1083         return true;
1084     }
1085
1086     access_size_min = mr->ops->valid.min_access_size;
1087     if (!mr->ops->valid.min_access_size) {
1088         access_size_min = 1;
1089     }
1090
1091     access_size_max = mr->ops->valid.max_access_size;
1092     if (!mr->ops->valid.max_access_size) {
1093         access_size_max = 4;
1094     }
1095
1096     access_size = MAX(MIN(size, access_size_max), access_size_min);
1097     for (i = 0; i < size; i += access_size) {
1098         if (!mr->ops->valid.accepts(mr->opaque, addr + i, access_size,
1099                                     is_write)) {
1100             return false;
1101         }
1102     }
1103
1104     return true;
1105 }
1106
1107 static MemTxResult memory_region_dispatch_read1(MemoryRegion *mr,
1108                                                 hwaddr addr,
1109                                                 uint64_t *pval,
1110                                                 unsigned size,
1111                                                 MemTxAttrs attrs)
1112 {
1113     *pval = 0;
1114
1115     if (mr->ops->read) {
1116         return access_with_adjusted_size(addr, pval, size,
1117                                          mr->ops->impl.min_access_size,
1118                                          mr->ops->impl.max_access_size,
1119                                          memory_region_read_accessor,
1120                                          mr, attrs);
1121     } else if (mr->ops->read_with_attrs) {
1122         return access_with_adjusted_size(addr, pval, size,
1123                                          mr->ops->impl.min_access_size,
1124                                          mr->ops->impl.max_access_size,
1125                                          memory_region_read_with_attrs_accessor,
1126                                          mr, attrs);
1127     } else {
1128         return access_with_adjusted_size(addr, pval, size, 1, 4,
1129                                          memory_region_oldmmio_read_accessor,
1130                                          mr, attrs);
1131     }
1132 }
1133
1134 static MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
1135                                                hwaddr addr,
1136                                                uint64_t *pval,
1137                                                unsigned size,
1138                                                MemTxAttrs attrs)
1139 {
1140     MemTxResult r;
1141
1142     if (!memory_region_access_valid(mr, addr, size, false)) {
1143         *pval = unassigned_mem_read(mr, addr, size);
1144         return MEMTX_DECODE_ERROR;
1145     }
1146
1147     r = memory_region_dispatch_read1(mr, addr, pval, size, attrs);
1148     adjust_endianness(mr, pval, size);
1149     return r;
1150 }
1151
1152 static MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
1153                                                 hwaddr addr,
1154                                                 uint64_t data,
1155                                                 unsigned size,
1156                                                 MemTxAttrs attrs)
1157 {
1158     if (!memory_region_access_valid(mr, addr, size, true)) {
1159         unassigned_mem_write(mr, addr, data, size);
1160         return MEMTX_DECODE_ERROR;
1161     }
1162
1163     adjust_endianness(mr, &data, size);
1164
1165     if (mr->ops->write) {
1166         return access_with_adjusted_size(addr, &data, size,
1167                                          mr->ops->impl.min_access_size,
1168                                          mr->ops->impl.max_access_size,
1169                                          memory_region_write_accessor, mr,
1170                                          attrs);
1171     } else if (mr->ops->write_with_attrs) {
1172         return
1173             access_with_adjusted_size(addr, &data, size,
1174                                       mr->ops->impl.min_access_size,
1175                                       mr->ops->impl.max_access_size,
1176                                       memory_region_write_with_attrs_accessor,
1177                                       mr, attrs);
1178     } else {
1179         return access_with_adjusted_size(addr, &data, size, 1, 4,
1180                                          memory_region_oldmmio_write_accessor,
1181                                          mr, attrs);
1182     }
1183 }
1184
1185 void memory_region_init_io(MemoryRegion *mr,
1186                            Object *owner,
1187                            const MemoryRegionOps *ops,
1188                            void *opaque,
1189                            const char *name,
1190                            uint64_t size)
1191 {
1192     memory_region_init(mr, owner, name, size);
1193     mr->ops = ops;
1194     mr->opaque = opaque;
1195     mr->terminates = true;
1196     mr->ram_addr = ~(ram_addr_t)0;
1197 }
1198
1199 void memory_region_init_ram(MemoryRegion *mr,
1200                             Object *owner,
1201                             const char *name,
1202                             uint64_t size,
1203                             Error **errp)
1204 {
1205     memory_region_init(mr, owner, name, size);
1206     mr->ram = true;
1207     mr->terminates = true;
1208     mr->destructor = memory_region_destructor_ram;
1209     mr->ram_addr = qemu_ram_alloc(size, mr, errp);
1210 }
1211
1212 void memory_region_init_resizeable_ram(MemoryRegion *mr,
1213                                        Object *owner,
1214                                        const char *name,
1215                                        uint64_t size,
1216                                        uint64_t max_size,
1217                                        void (*resized)(const char*,
1218                                                        uint64_t length,
1219                                                        void *host),
1220                                        Error **errp)
1221 {
1222     memory_region_init(mr, owner, name, size);
1223     mr->ram = true;
1224     mr->terminates = true;
1225     mr->destructor = memory_region_destructor_ram;
1226     mr->ram_addr = qemu_ram_alloc_resizeable(size, max_size, resized, mr, errp);
1227 }
1228
1229 #ifdef __linux__
1230 void memory_region_init_ram_from_file(MemoryRegion *mr,
1231                                       struct Object *owner,
1232                                       const char *name,
1233                                       uint64_t size,
1234                                       bool share,
1235                                       const char *path,
1236                                       Error **errp)
1237 {
1238     memory_region_init(mr, owner, name, size);
1239     mr->ram = true;
1240     mr->terminates = true;
1241     mr->destructor = memory_region_destructor_ram;
1242     mr->ram_addr = qemu_ram_alloc_from_file(size, mr, share, path, errp);
1243 }
1244 #endif
1245
1246 void memory_region_init_ram_ptr(MemoryRegion *mr,
1247                                 Object *owner,
1248                                 const char *name,
1249                                 uint64_t size,
1250                                 void *ptr)
1251 {
1252     memory_region_init(mr, owner, name, size);
1253     mr->ram = true;
1254     mr->terminates = true;
1255     mr->destructor = memory_region_destructor_ram_from_ptr;
1256
1257     /* qemu_ram_alloc_from_ptr cannot fail with ptr != NULL.  */
1258     assert(ptr != NULL);
1259     mr->ram_addr = qemu_ram_alloc_from_ptr(size, ptr, mr, &error_abort);
1260 }
1261
1262 void memory_region_set_skip_dump(MemoryRegion *mr)
1263 {
1264     mr->skip_dump = true;
1265 }
1266
1267 void memory_region_init_alias(MemoryRegion *mr,
1268                               Object *owner,
1269                               const char *name,
1270                               MemoryRegion *orig,
1271                               hwaddr offset,
1272                               uint64_t size)
1273 {
1274     memory_region_init(mr, owner, name, size);
1275     memory_region_ref(orig);
1276     mr->destructor = memory_region_destructor_alias;
1277     mr->alias = orig;
1278     mr->alias_offset = offset;
1279 }
1280
1281 void memory_region_init_rom_device(MemoryRegion *mr,
1282                                    Object *owner,
1283                                    const MemoryRegionOps *ops,
1284                                    void *opaque,
1285                                    const char *name,
1286                                    uint64_t size,
1287                                    Error **errp)
1288 {
1289     memory_region_init(mr, owner, name, size);
1290     mr->ops = ops;
1291     mr->opaque = opaque;
1292     mr->terminates = true;
1293     mr->rom_device = true;
1294     mr->destructor = memory_region_destructor_rom_device;
1295     mr->ram_addr = qemu_ram_alloc(size, mr, errp);
1296 }
1297
1298 void memory_region_init_iommu(MemoryRegion *mr,
1299                               Object *owner,
1300                               const MemoryRegionIOMMUOps *ops,
1301                               const char *name,
1302                               uint64_t size)
1303 {
1304     memory_region_init(mr, owner, name, size);
1305     mr->iommu_ops = ops,
1306     mr->terminates = true;  /* then re-forwards */
1307     notifier_list_init(&mr->iommu_notify);
1308 }
1309
1310 void memory_region_init_reservation(MemoryRegion *mr,
1311                                     Object *owner,
1312                                     const char *name,
1313                                     uint64_t size)
1314 {
1315     memory_region_init_io(mr, owner, &unassigned_mem_ops, mr, name, size);
1316 }
1317
1318 static void memory_region_finalize(Object *obj)
1319 {
1320     MemoryRegion *mr = MEMORY_REGION(obj);
1321
1322     assert(QTAILQ_EMPTY(&mr->subregions));
1323     mr->destructor(mr);
1324     memory_region_clear_coalescing(mr);
1325     g_free((char *)mr->name);
1326     g_free(mr->ioeventfds);
1327 }
1328
1329 Object *memory_region_owner(MemoryRegion *mr)
1330 {
1331     Object *obj = OBJECT(mr);
1332     return obj->parent;
1333 }
1334
1335 void memory_region_ref(MemoryRegion *mr)
1336 {
1337     /* MMIO callbacks most likely will access data that belongs
1338      * to the owner, hence the need to ref/unref the owner whenever
1339      * the memory region is in use.
1340      *
1341      * The memory region is a child of its owner.  As long as the
1342      * owner doesn't call unparent itself on the memory region,
1343      * ref-ing the owner will also keep the memory region alive.
1344      * Memory regions without an owner are supposed to never go away,
1345      * but we still ref/unref them for debugging purposes.
1346      */
1347     Object *obj = OBJECT(mr);
1348     if (obj && obj->parent) {
1349         object_ref(obj->parent);
1350     } else {
1351         object_ref(obj);
1352     }
1353 }
1354
1355 void memory_region_unref(MemoryRegion *mr)
1356 {
1357     Object *obj = OBJECT(mr);
1358     if (obj && obj->parent) {
1359         object_unref(obj->parent);
1360     } else {
1361         object_unref(obj);
1362     }
1363 }
1364
1365 uint64_t memory_region_size(MemoryRegion *mr)
1366 {
1367     if (int128_eq(mr->size, int128_2_64())) {
1368         return UINT64_MAX;
1369     }
1370     return int128_get64(mr->size);
1371 }
1372
1373 const char *memory_region_name(const MemoryRegion *mr)
1374 {
1375     if (!mr->name) {
1376         ((MemoryRegion *)mr)->name =
1377             object_get_canonical_path_component(OBJECT(mr));
1378     }
1379     return mr->name;
1380 }
1381
1382 bool memory_region_is_ram(MemoryRegion *mr)
1383 {
1384     return mr->ram;
1385 }
1386
1387 bool memory_region_is_skip_dump(MemoryRegion *mr)
1388 {
1389     return mr->skip_dump;
1390 }
1391
1392 bool memory_region_is_logging(MemoryRegion *mr)
1393 {
1394     return mr->dirty_log_mask;
1395 }
1396
1397 bool memory_region_is_rom(MemoryRegion *mr)
1398 {
1399     return mr->ram && mr->readonly;
1400 }
1401
1402 bool memory_region_is_iommu(MemoryRegion *mr)
1403 {
1404     return mr->iommu_ops;
1405 }
1406
1407 void memory_region_register_iommu_notifier(MemoryRegion *mr, Notifier *n)
1408 {
1409     notifier_list_add(&mr->iommu_notify, n);
1410 }
1411
1412 void memory_region_unregister_iommu_notifier(Notifier *n)
1413 {
1414     notifier_remove(n);
1415 }
1416
1417 void memory_region_notify_iommu(MemoryRegion *mr,
1418                                 IOMMUTLBEntry entry)
1419 {
1420     assert(memory_region_is_iommu(mr));
1421     notifier_list_notify(&mr->iommu_notify, &entry);
1422 }
1423
1424 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client)
1425 {
1426     uint8_t mask = 1 << client;
1427
1428     memory_region_transaction_begin();
1429     mr->dirty_log_mask = (mr->dirty_log_mask & ~mask) | (log * mask);
1430     memory_region_update_pending |= mr->enabled;
1431     memory_region_transaction_commit();
1432 }
1433
1434 bool memory_region_get_dirty(MemoryRegion *mr, hwaddr addr,
1435                              hwaddr size, unsigned client)
1436 {
1437     assert(mr->terminates);
1438     return cpu_physical_memory_get_dirty(mr->ram_addr + addr, size, client);
1439 }
1440
1441 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
1442                              hwaddr size)
1443 {
1444     assert(mr->terminates);
1445     cpu_physical_memory_set_dirty_range(mr->ram_addr + addr, size);
1446 }
1447
1448 bool memory_region_test_and_clear_dirty(MemoryRegion *mr, hwaddr addr,
1449                                         hwaddr size, unsigned client)
1450 {
1451     bool ret;
1452     assert(mr->terminates);
1453     ret = cpu_physical_memory_get_dirty(mr->ram_addr + addr, size, client);
1454     if (ret) {
1455         cpu_physical_memory_reset_dirty(mr->ram_addr + addr, size, client);
1456     }
1457     return ret;
1458 }
1459
1460
1461 void memory_region_sync_dirty_bitmap(MemoryRegion *mr)
1462 {
1463     AddressSpace *as;
1464     FlatRange *fr;
1465
1466     QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1467         FlatView *view = address_space_get_flatview(as);
1468         FOR_EACH_FLAT_RANGE(fr, view) {
1469             if (fr->mr == mr) {
1470                 MEMORY_LISTENER_UPDATE_REGION(fr, as, Forward, log_sync);
1471             }
1472         }
1473         flatview_unref(view);
1474     }
1475 }
1476
1477 void memory_region_set_readonly(MemoryRegion *mr, bool readonly)
1478 {
1479     if (mr->readonly != readonly) {
1480         memory_region_transaction_begin();
1481         mr->readonly = readonly;
1482         memory_region_update_pending |= mr->enabled;
1483         memory_region_transaction_commit();
1484     }
1485 }
1486
1487 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode)
1488 {
1489     if (mr->romd_mode != romd_mode) {
1490         memory_region_transaction_begin();
1491         mr->romd_mode = romd_mode;
1492         memory_region_update_pending |= mr->enabled;
1493         memory_region_transaction_commit();
1494     }
1495 }
1496
1497 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
1498                                hwaddr size, unsigned client)
1499 {
1500     assert(mr->terminates);
1501     cpu_physical_memory_reset_dirty(mr->ram_addr + addr, size, client);
1502 }
1503
1504 int memory_region_get_fd(MemoryRegion *mr)
1505 {
1506     if (mr->alias) {
1507         return memory_region_get_fd(mr->alias);
1508     }
1509
1510     assert(mr->terminates);
1511
1512     return qemu_get_ram_fd(mr->ram_addr & TARGET_PAGE_MASK);
1513 }
1514
1515 void *memory_region_get_ram_ptr(MemoryRegion *mr)
1516 {
1517     if (mr->alias) {
1518         return memory_region_get_ram_ptr(mr->alias) + mr->alias_offset;
1519     }
1520
1521     assert(mr->terminates);
1522
1523     return qemu_get_ram_ptr(mr->ram_addr & TARGET_PAGE_MASK);
1524 }
1525
1526 static void memory_region_update_coalesced_range_as(MemoryRegion *mr, AddressSpace *as)
1527 {
1528     FlatView *view;
1529     FlatRange *fr;
1530     CoalescedMemoryRange *cmr;
1531     AddrRange tmp;
1532     MemoryRegionSection section;
1533
1534     view = address_space_get_flatview(as);
1535     FOR_EACH_FLAT_RANGE(fr, view) {
1536         if (fr->mr == mr) {
1537             section = (MemoryRegionSection) {
1538                 .address_space = as,
1539                 .offset_within_address_space = int128_get64(fr->addr.start),
1540                 .size = fr->addr.size,
1541             };
1542
1543             MEMORY_LISTENER_CALL(coalesced_mmio_del, Reverse, &section,
1544                                  int128_get64(fr->addr.start),
1545                                  int128_get64(fr->addr.size));
1546             QTAILQ_FOREACH(cmr, &mr->coalesced, link) {
1547                 tmp = addrrange_shift(cmr->addr,
1548                                       int128_sub(fr->addr.start,
1549                                                  int128_make64(fr->offset_in_region)));
1550                 if (!addrrange_intersects(tmp, fr->addr)) {
1551                     continue;
1552                 }
1553                 tmp = addrrange_intersection(tmp, fr->addr);
1554                 MEMORY_LISTENER_CALL(coalesced_mmio_add, Forward, &section,
1555                                      int128_get64(tmp.start),
1556                                      int128_get64(tmp.size));
1557             }
1558         }
1559     }
1560     flatview_unref(view);
1561 }
1562
1563 static void memory_region_update_coalesced_range(MemoryRegion *mr)
1564 {
1565     AddressSpace *as;
1566
1567     QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1568         memory_region_update_coalesced_range_as(mr, as);
1569     }
1570 }
1571
1572 void memory_region_set_coalescing(MemoryRegion *mr)
1573 {
1574     memory_region_clear_coalescing(mr);
1575     memory_region_add_coalescing(mr, 0, int128_get64(mr->size));
1576 }
1577
1578 void memory_region_add_coalescing(MemoryRegion *mr,
1579                                   hwaddr offset,
1580                                   uint64_t size)
1581 {
1582     CoalescedMemoryRange *cmr = g_malloc(sizeof(*cmr));
1583
1584     cmr->addr = addrrange_make(int128_make64(offset), int128_make64(size));
1585     QTAILQ_INSERT_TAIL(&mr->coalesced, cmr, link);
1586     memory_region_update_coalesced_range(mr);
1587     memory_region_set_flush_coalesced(mr);
1588 }
1589
1590 void memory_region_clear_coalescing(MemoryRegion *mr)
1591 {
1592     CoalescedMemoryRange *cmr;
1593     bool updated = false;
1594
1595     qemu_flush_coalesced_mmio_buffer();
1596     mr->flush_coalesced_mmio = false;
1597
1598     while (!QTAILQ_EMPTY(&mr->coalesced)) {
1599         cmr = QTAILQ_FIRST(&mr->coalesced);
1600         QTAILQ_REMOVE(&mr->coalesced, cmr, link);
1601         g_free(cmr);
1602         updated = true;
1603     }
1604
1605     if (updated) {
1606         memory_region_update_coalesced_range(mr);
1607     }
1608 }
1609
1610 void memory_region_set_flush_coalesced(MemoryRegion *mr)
1611 {
1612     mr->flush_coalesced_mmio = true;
1613 }
1614
1615 void memory_region_clear_flush_coalesced(MemoryRegion *mr)
1616 {
1617     qemu_flush_coalesced_mmio_buffer();
1618     if (QTAILQ_EMPTY(&mr->coalesced)) {
1619         mr->flush_coalesced_mmio = false;
1620     }
1621 }
1622
1623 void memory_region_add_eventfd(MemoryRegion *mr,
1624                                hwaddr addr,
1625                                unsigned size,
1626                                bool match_data,
1627                                uint64_t data,
1628                                EventNotifier *e)
1629 {
1630     MemoryRegionIoeventfd mrfd = {
1631         .addr.start = int128_make64(addr),
1632         .addr.size = int128_make64(size),
1633         .match_data = match_data,
1634         .data = data,
1635         .e = e,
1636     };
1637     unsigned i;
1638
1639     adjust_endianness(mr, &mrfd.data, size);
1640     memory_region_transaction_begin();
1641     for (i = 0; i < mr->ioeventfd_nb; ++i) {
1642         if (memory_region_ioeventfd_before(mrfd, mr->ioeventfds[i])) {
1643             break;
1644         }
1645     }
1646     ++mr->ioeventfd_nb;
1647     mr->ioeventfds = g_realloc(mr->ioeventfds,
1648                                   sizeof(*mr->ioeventfds) * mr->ioeventfd_nb);
1649     memmove(&mr->ioeventfds[i+1], &mr->ioeventfds[i],
1650             sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb-1 - i));
1651     mr->ioeventfds[i] = mrfd;
1652     ioeventfd_update_pending |= mr->enabled;
1653     memory_region_transaction_commit();
1654 }
1655
1656 void memory_region_del_eventfd(MemoryRegion *mr,
1657                                hwaddr addr,
1658                                unsigned size,
1659                                bool match_data,
1660                                uint64_t data,
1661                                EventNotifier *e)
1662 {
1663     MemoryRegionIoeventfd mrfd = {
1664         .addr.start = int128_make64(addr),
1665         .addr.size = int128_make64(size),
1666         .match_data = match_data,
1667         .data = data,
1668         .e = e,
1669     };
1670     unsigned i;
1671
1672     adjust_endianness(mr, &mrfd.data, size);
1673     memory_region_transaction_begin();
1674     for (i = 0; i < mr->ioeventfd_nb; ++i) {
1675         if (memory_region_ioeventfd_equal(mrfd, mr->ioeventfds[i])) {
1676             break;
1677         }
1678     }
1679     assert(i != mr->ioeventfd_nb);
1680     memmove(&mr->ioeventfds[i], &mr->ioeventfds[i+1],
1681             sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb - (i+1)));
1682     --mr->ioeventfd_nb;
1683     mr->ioeventfds = g_realloc(mr->ioeventfds,
1684                                   sizeof(*mr->ioeventfds)*mr->ioeventfd_nb + 1);
1685     ioeventfd_update_pending |= mr->enabled;
1686     memory_region_transaction_commit();
1687 }
1688
1689 static void memory_region_update_container_subregions(MemoryRegion *subregion)
1690 {
1691     hwaddr offset = subregion->addr;
1692     MemoryRegion *mr = subregion->container;
1693     MemoryRegion *other;
1694
1695     memory_region_transaction_begin();
1696
1697     memory_region_ref(subregion);
1698     QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
1699         if (subregion->may_overlap || other->may_overlap) {
1700             continue;
1701         }
1702         if (int128_ge(int128_make64(offset),
1703                       int128_add(int128_make64(other->addr), other->size))
1704             || int128_le(int128_add(int128_make64(offset), subregion->size),
1705                          int128_make64(other->addr))) {
1706             continue;
1707         }
1708 #if 0
1709         printf("warning: subregion collision %llx/%llx (%s) "
1710                "vs %llx/%llx (%s)\n",
1711                (unsigned long long)offset,
1712                (unsigned long long)int128_get64(subregion->size),
1713                subregion->name,
1714                (unsigned long long)other->addr,
1715                (unsigned long long)int128_get64(other->size),
1716                other->name);
1717 #endif
1718     }
1719     QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
1720         if (subregion->priority >= other->priority) {
1721             QTAILQ_INSERT_BEFORE(other, subregion, subregions_link);
1722             goto done;
1723         }
1724     }
1725     QTAILQ_INSERT_TAIL(&mr->subregions, subregion, subregions_link);
1726 done:
1727     memory_region_update_pending |= mr->enabled && subregion->enabled;
1728     memory_region_transaction_commit();
1729 }
1730
1731 static void memory_region_add_subregion_common(MemoryRegion *mr,
1732                                                hwaddr offset,
1733                                                MemoryRegion *subregion)
1734 {
1735     assert(!subregion->container);
1736     subregion->container = mr;
1737     subregion->addr = offset;
1738     memory_region_update_container_subregions(subregion);
1739 }
1740
1741 void memory_region_add_subregion(MemoryRegion *mr,
1742                                  hwaddr offset,
1743                                  MemoryRegion *subregion)
1744 {
1745     subregion->may_overlap = false;
1746     subregion->priority = 0;
1747     memory_region_add_subregion_common(mr, offset, subregion);
1748 }
1749
1750 void memory_region_add_subregion_overlap(MemoryRegion *mr,
1751                                          hwaddr offset,
1752                                          MemoryRegion *subregion,
1753                                          int priority)
1754 {
1755     subregion->may_overlap = true;
1756     subregion->priority = priority;
1757     memory_region_add_subregion_common(mr, offset, subregion);
1758 }
1759
1760 void memory_region_del_subregion(MemoryRegion *mr,
1761                                  MemoryRegion *subregion)
1762 {
1763     memory_region_transaction_begin();
1764     assert(subregion->container == mr);
1765     subregion->container = NULL;
1766     QTAILQ_REMOVE(&mr->subregions, subregion, subregions_link);
1767     memory_region_unref(subregion);
1768     memory_region_update_pending |= mr->enabled && subregion->enabled;
1769     memory_region_transaction_commit();
1770 }
1771
1772 void memory_region_set_enabled(MemoryRegion *mr, bool enabled)
1773 {
1774     if (enabled == mr->enabled) {
1775         return;
1776     }
1777     memory_region_transaction_begin();
1778     mr->enabled = enabled;
1779     memory_region_update_pending = true;
1780     memory_region_transaction_commit();
1781 }
1782
1783 void memory_region_set_size(MemoryRegion *mr, uint64_t size)
1784 {
1785     Int128 s = int128_make64(size);
1786
1787     if (size == UINT64_MAX) {
1788         s = int128_2_64();
1789     }
1790     if (int128_eq(s, mr->size)) {
1791         return;
1792     }
1793     memory_region_transaction_begin();
1794     mr->size = s;
1795     memory_region_update_pending = true;
1796     memory_region_transaction_commit();
1797 }
1798
1799 static void memory_region_readd_subregion(MemoryRegion *mr)
1800 {
1801     MemoryRegion *container = mr->container;
1802
1803     if (container) {
1804         memory_region_transaction_begin();
1805         memory_region_ref(mr);
1806         memory_region_del_subregion(container, mr);
1807         mr->container = container;
1808         memory_region_update_container_subregions(mr);
1809         memory_region_unref(mr);
1810         memory_region_transaction_commit();
1811     }
1812 }
1813
1814 void memory_region_set_address(MemoryRegion *mr, hwaddr addr)
1815 {
1816     if (addr != mr->addr) {
1817         mr->addr = addr;
1818         memory_region_readd_subregion(mr);
1819     }
1820 }
1821
1822 void memory_region_set_alias_offset(MemoryRegion *mr, hwaddr offset)
1823 {
1824     assert(mr->alias);
1825
1826     if (offset == mr->alias_offset) {
1827         return;
1828     }
1829
1830     memory_region_transaction_begin();
1831     mr->alias_offset = offset;
1832     memory_region_update_pending |= mr->enabled;
1833     memory_region_transaction_commit();
1834 }
1835
1836 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr)
1837 {
1838     return mr->ram_addr;
1839 }
1840
1841 uint64_t memory_region_get_alignment(const MemoryRegion *mr)
1842 {
1843     return mr->align;
1844 }
1845
1846 static int cmp_flatrange_addr(const void *addr_, const void *fr_)
1847 {
1848     const AddrRange *addr = addr_;
1849     const FlatRange *fr = fr_;
1850
1851     if (int128_le(addrrange_end(*addr), fr->addr.start)) {
1852         return -1;
1853     } else if (int128_ge(addr->start, addrrange_end(fr->addr))) {
1854         return 1;
1855     }
1856     return 0;
1857 }
1858
1859 static FlatRange *flatview_lookup(FlatView *view, AddrRange addr)
1860 {
1861     return bsearch(&addr, view->ranges, view->nr,
1862                    sizeof(FlatRange), cmp_flatrange_addr);
1863 }
1864
1865 bool memory_region_present(MemoryRegion *container, hwaddr addr)
1866 {
1867     MemoryRegion *mr = memory_region_find(container, addr, 1).mr;
1868     if (!mr || (mr == container)) {
1869         return false;
1870     }
1871     memory_region_unref(mr);
1872     return true;
1873 }
1874
1875 bool memory_region_is_mapped(MemoryRegion *mr)
1876 {
1877     return mr->container ? true : false;
1878 }
1879
1880 MemoryRegionSection memory_region_find(MemoryRegion *mr,
1881                                        hwaddr addr, uint64_t size)
1882 {
1883     MemoryRegionSection ret = { .mr = NULL };
1884     MemoryRegion *root;
1885     AddressSpace *as;
1886     AddrRange range;
1887     FlatView *view;
1888     FlatRange *fr;
1889
1890     addr += mr->addr;
1891     for (root = mr; root->container; ) {
1892         root = root->container;
1893         addr += root->addr;
1894     }
1895
1896     as = memory_region_to_address_space(root);
1897     if (!as) {
1898         return ret;
1899     }
1900     range = addrrange_make(int128_make64(addr), int128_make64(size));
1901
1902     rcu_read_lock();
1903     view = atomic_rcu_read(&as->current_map);
1904     fr = flatview_lookup(view, range);
1905     if (!fr) {
1906         goto out;
1907     }
1908
1909     while (fr > view->ranges && addrrange_intersects(fr[-1].addr, range)) {
1910         --fr;
1911     }
1912
1913     ret.mr = fr->mr;
1914     ret.address_space = as;
1915     range = addrrange_intersection(range, fr->addr);
1916     ret.offset_within_region = fr->offset_in_region;
1917     ret.offset_within_region += int128_get64(int128_sub(range.start,
1918                                                         fr->addr.start));
1919     ret.size = range.size;
1920     ret.offset_within_address_space = int128_get64(range.start);
1921     ret.readonly = fr->readonly;
1922     memory_region_ref(ret.mr);
1923 out:
1924     rcu_read_unlock();
1925     return ret;
1926 }
1927
1928 void address_space_sync_dirty_bitmap(AddressSpace *as)
1929 {
1930     FlatView *view;
1931     FlatRange *fr;
1932
1933     view = address_space_get_flatview(as);
1934     FOR_EACH_FLAT_RANGE(fr, view) {
1935         MEMORY_LISTENER_UPDATE_REGION(fr, as, Forward, log_sync);
1936     }
1937     flatview_unref(view);
1938 }
1939
1940 void memory_global_dirty_log_start(void)
1941 {
1942     global_dirty_log = true;
1943     MEMORY_LISTENER_CALL_GLOBAL(log_global_start, Forward);
1944 }
1945
1946 void memory_global_dirty_log_stop(void)
1947 {
1948     global_dirty_log = false;
1949     MEMORY_LISTENER_CALL_GLOBAL(log_global_stop, Reverse);
1950 }
1951
1952 static void listener_add_address_space(MemoryListener *listener,
1953                                        AddressSpace *as)
1954 {
1955     FlatView *view;
1956     FlatRange *fr;
1957
1958     if (listener->address_space_filter
1959         && listener->address_space_filter != as) {
1960         return;
1961     }
1962
1963     if (global_dirty_log) {
1964         if (listener->log_global_start) {
1965             listener->log_global_start(listener);
1966         }
1967     }
1968
1969     view = address_space_get_flatview(as);
1970     FOR_EACH_FLAT_RANGE(fr, view) {
1971         MemoryRegionSection section = {
1972             .mr = fr->mr,
1973             .address_space = as,
1974             .offset_within_region = fr->offset_in_region,
1975             .size = fr->addr.size,
1976             .offset_within_address_space = int128_get64(fr->addr.start),
1977             .readonly = fr->readonly,
1978         };
1979         if (listener->region_add) {
1980             listener->region_add(listener, &section);
1981         }
1982     }
1983     flatview_unref(view);
1984 }
1985
1986 void memory_listener_register(MemoryListener *listener, AddressSpace *filter)
1987 {
1988     MemoryListener *other = NULL;
1989     AddressSpace *as;
1990
1991     listener->address_space_filter = filter;
1992     if (QTAILQ_EMPTY(&memory_listeners)
1993         || listener->priority >= QTAILQ_LAST(&memory_listeners,
1994                                              memory_listeners)->priority) {
1995         QTAILQ_INSERT_TAIL(&memory_listeners, listener, link);
1996     } else {
1997         QTAILQ_FOREACH(other, &memory_listeners, link) {
1998             if (listener->priority < other->priority) {
1999                 break;
2000             }
2001         }
2002         QTAILQ_INSERT_BEFORE(other, listener, link);
2003     }
2004
2005     QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
2006         listener_add_address_space(listener, as);
2007     }
2008 }
2009
2010 void memory_listener_unregister(MemoryListener *listener)
2011 {
2012     QTAILQ_REMOVE(&memory_listeners, listener, link);
2013 }
2014
2015 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name)
2016 {
2017     memory_region_ref(root);
2018     memory_region_transaction_begin();
2019     as->root = root;
2020     as->current_map = g_new(FlatView, 1);
2021     flatview_init(as->current_map);
2022     as->ioeventfd_nb = 0;
2023     as->ioeventfds = NULL;
2024     QTAILQ_INSERT_TAIL(&address_spaces, as, address_spaces_link);
2025     as->name = g_strdup(name ? name : "anonymous");
2026     address_space_init_dispatch(as);
2027     memory_region_update_pending |= root->enabled;
2028     memory_region_transaction_commit();
2029 }
2030
2031 static void do_address_space_destroy(AddressSpace *as)
2032 {
2033     MemoryListener *listener;
2034
2035     address_space_destroy_dispatch(as);
2036
2037     QTAILQ_FOREACH(listener, &memory_listeners, link) {
2038         assert(listener->address_space_filter != as);
2039     }
2040
2041     flatview_unref(as->current_map);
2042     g_free(as->name);
2043     g_free(as->ioeventfds);
2044     memory_region_unref(as->root);
2045 }
2046
2047 void address_space_destroy(AddressSpace *as)
2048 {
2049     MemoryRegion *root = as->root;
2050
2051     /* Flush out anything from MemoryListeners listening in on this */
2052     memory_region_transaction_begin();
2053     as->root = NULL;
2054     memory_region_transaction_commit();
2055     QTAILQ_REMOVE(&address_spaces, as, address_spaces_link);
2056     address_space_unregister(as);
2057
2058     /* At this point, as->dispatch and as->current_map are dummy
2059      * entries that the guest should never use.  Wait for the old
2060      * values to expire before freeing the data.
2061      */
2062     as->root = root;
2063     call_rcu(as, do_address_space_destroy, rcu);
2064 }
2065
2066 bool io_mem_read(MemoryRegion *mr, hwaddr addr, uint64_t *pval, unsigned size)
2067 {
2068     return memory_region_dispatch_read(mr, addr, pval, size,
2069                                        MEMTXATTRS_UNSPECIFIED);
2070 }
2071
2072 bool io_mem_write(MemoryRegion *mr, hwaddr addr,
2073                   uint64_t val, unsigned size)
2074 {
2075     return memory_region_dispatch_write(mr, addr, val, size,
2076                                         MEMTXATTRS_UNSPECIFIED);
2077 }
2078
2079 typedef struct MemoryRegionList MemoryRegionList;
2080
2081 struct MemoryRegionList {
2082     const MemoryRegion *mr;
2083     QTAILQ_ENTRY(MemoryRegionList) queue;
2084 };
2085
2086 typedef QTAILQ_HEAD(queue, MemoryRegionList) MemoryRegionListHead;
2087
2088 static void mtree_print_mr(fprintf_function mon_printf, void *f,
2089                            const MemoryRegion *mr, unsigned int level,
2090                            hwaddr base,
2091                            MemoryRegionListHead *alias_print_queue)
2092 {
2093     MemoryRegionList *new_ml, *ml, *next_ml;
2094     MemoryRegionListHead submr_print_queue;
2095     const MemoryRegion *submr;
2096     unsigned int i;
2097
2098     if (!mr || !mr->enabled) {
2099         return;
2100     }
2101
2102     for (i = 0; i < level; i++) {
2103         mon_printf(f, "  ");
2104     }
2105
2106     if (mr->alias) {
2107         MemoryRegionList *ml;
2108         bool found = false;
2109
2110         /* check if the alias is already in the queue */
2111         QTAILQ_FOREACH(ml, alias_print_queue, queue) {
2112             if (ml->mr == mr->alias) {
2113                 found = true;
2114             }
2115         }
2116
2117         if (!found) {
2118             ml = g_new(MemoryRegionList, 1);
2119             ml->mr = mr->alias;
2120             QTAILQ_INSERT_TAIL(alias_print_queue, ml, queue);
2121         }
2122         mon_printf(f, TARGET_FMT_plx "-" TARGET_FMT_plx
2123                    " (prio %d, %c%c): alias %s @%s " TARGET_FMT_plx
2124                    "-" TARGET_FMT_plx "\n",
2125                    base + mr->addr,
2126                    base + mr->addr
2127                    + (int128_nz(mr->size) ?
2128                       (hwaddr)int128_get64(int128_sub(mr->size,
2129                                                       int128_one())) : 0),
2130                    mr->priority,
2131                    mr->romd_mode ? 'R' : '-',
2132                    !mr->readonly && !(mr->rom_device && mr->romd_mode) ? 'W'
2133                                                                        : '-',
2134                    memory_region_name(mr),
2135                    memory_region_name(mr->alias),
2136                    mr->alias_offset,
2137                    mr->alias_offset
2138                    + (int128_nz(mr->size) ?
2139                       (hwaddr)int128_get64(int128_sub(mr->size,
2140                                                       int128_one())) : 0));
2141     } else {
2142         mon_printf(f,
2143                    TARGET_FMT_plx "-" TARGET_FMT_plx " (prio %d, %c%c): %s\n",
2144                    base + mr->addr,
2145                    base + mr->addr
2146                    + (int128_nz(mr->size) ?
2147                       (hwaddr)int128_get64(int128_sub(mr->size,
2148                                                       int128_one())) : 0),
2149                    mr->priority,
2150                    mr->romd_mode ? 'R' : '-',
2151                    !mr->readonly && !(mr->rom_device && mr->romd_mode) ? 'W'
2152                                                                        : '-',
2153                    memory_region_name(mr));
2154     }
2155
2156     QTAILQ_INIT(&submr_print_queue);
2157
2158     QTAILQ_FOREACH(submr, &mr->subregions, subregions_link) {
2159         new_ml = g_new(MemoryRegionList, 1);
2160         new_ml->mr = submr;
2161         QTAILQ_FOREACH(ml, &submr_print_queue, queue) {
2162             if (new_ml->mr->addr < ml->mr->addr ||
2163                 (new_ml->mr->addr == ml->mr->addr &&
2164                  new_ml->mr->priority > ml->mr->priority)) {
2165                 QTAILQ_INSERT_BEFORE(ml, new_ml, queue);
2166                 new_ml = NULL;
2167                 break;
2168             }
2169         }
2170         if (new_ml) {
2171             QTAILQ_INSERT_TAIL(&submr_print_queue, new_ml, queue);
2172         }
2173     }
2174
2175     QTAILQ_FOREACH(ml, &submr_print_queue, queue) {
2176         mtree_print_mr(mon_printf, f, ml->mr, level + 1, base + mr->addr,
2177                        alias_print_queue);
2178     }
2179
2180     QTAILQ_FOREACH_SAFE(ml, &submr_print_queue, queue, next_ml) {
2181         g_free(ml);
2182     }
2183 }
2184
2185 void mtree_info(fprintf_function mon_printf, void *f)
2186 {
2187     MemoryRegionListHead ml_head;
2188     MemoryRegionList *ml, *ml2;
2189     AddressSpace *as;
2190
2191     QTAILQ_INIT(&ml_head);
2192
2193     QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
2194         mon_printf(f, "%s\n", as->name);
2195         mtree_print_mr(mon_printf, f, as->root, 0, 0, &ml_head);
2196     }
2197
2198     mon_printf(f, "aliases\n");
2199     /* print aliased regions */
2200     QTAILQ_FOREACH(ml, &ml_head, queue) {
2201         mon_printf(f, "%s\n", memory_region_name(ml->mr));
2202         mtree_print_mr(mon_printf, f, ml->mr, 0, 0, &ml_head);
2203     }
2204
2205     QTAILQ_FOREACH_SAFE(ml, &ml_head, queue, ml2) {
2206         g_free(ml);
2207     }
2208 }
2209
2210 static const TypeInfo memory_region_info = {
2211     .parent             = TYPE_OBJECT,
2212     .name               = TYPE_MEMORY_REGION,
2213     .instance_size      = sizeof(MemoryRegion),
2214     .instance_init      = memory_region_initfn,
2215     .instance_finalize  = memory_region_finalize,
2216 };
2217
2218 static void memory_register_types(void)
2219 {
2220     type_register_static(&memory_region_info);
2221 }
2222
2223 type_init(memory_register_types)