exec: pass client mask to cpu_physical_memory_set_dirty_range
[sdk/emulator/qemu.git] / memory.c
1 /*
2  * Physical memory management
3  *
4  * Copyright 2011 Red Hat, Inc. and/or its affiliates
5  *
6  * Authors:
7  *  Avi Kivity <avi@redhat.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2.  See
10  * the COPYING file in the top-level directory.
11  *
12  * Contributions after 2012-01-13 are licensed under the terms of the
13  * GNU GPL, version 2 or (at your option) any later version.
14  */
15
16 #include "exec/memory.h"
17 #include "exec/address-spaces.h"
18 #include "exec/ioport.h"
19 #include "qapi/visitor.h"
20 #include "qemu/bitops.h"
21 #include "qom/object.h"
22 #include "trace.h"
23 #include <assert.h>
24
25 #include "exec/memory-internal.h"
26 #include "exec/ram_addr.h"
27 #include "sysemu/sysemu.h"
28
29 //#define DEBUG_UNASSIGNED
30
31 static unsigned memory_region_transaction_depth;
32 static bool memory_region_update_pending;
33 static bool ioeventfd_update_pending;
34 static bool global_dirty_log = false;
35
36 static QTAILQ_HEAD(memory_listeners, MemoryListener) memory_listeners
37     = QTAILQ_HEAD_INITIALIZER(memory_listeners);
38
39 static QTAILQ_HEAD(, AddressSpace) address_spaces
40     = QTAILQ_HEAD_INITIALIZER(address_spaces);
41
42 typedef struct AddrRange AddrRange;
43
44 /*
45  * Note that signed integers are needed for negative offsetting in aliases
46  * (large MemoryRegion::alias_offset).
47  */
48 struct AddrRange {
49     Int128 start;
50     Int128 size;
51 };
52
53 static AddrRange addrrange_make(Int128 start, Int128 size)
54 {
55     return (AddrRange) { start, size };
56 }
57
58 static bool addrrange_equal(AddrRange r1, AddrRange r2)
59 {
60     return int128_eq(r1.start, r2.start) && int128_eq(r1.size, r2.size);
61 }
62
63 static Int128 addrrange_end(AddrRange r)
64 {
65     return int128_add(r.start, r.size);
66 }
67
68 static AddrRange addrrange_shift(AddrRange range, Int128 delta)
69 {
70     int128_addto(&range.start, delta);
71     return range;
72 }
73
74 static bool addrrange_contains(AddrRange range, Int128 addr)
75 {
76     return int128_ge(addr, range.start)
77         && int128_lt(addr, addrrange_end(range));
78 }
79
80 static bool addrrange_intersects(AddrRange r1, AddrRange r2)
81 {
82     return addrrange_contains(r1, r2.start)
83         || addrrange_contains(r2, r1.start);
84 }
85
86 static AddrRange addrrange_intersection(AddrRange r1, AddrRange r2)
87 {
88     Int128 start = int128_max(r1.start, r2.start);
89     Int128 end = int128_min(addrrange_end(r1), addrrange_end(r2));
90     return addrrange_make(start, int128_sub(end, start));
91 }
92
93 enum ListenerDirection { Forward, Reverse };
94
95 static bool memory_listener_match(MemoryListener *listener,
96                                   MemoryRegionSection *section)
97 {
98     return !listener->address_space_filter
99         || listener->address_space_filter == section->address_space;
100 }
101
102 #define MEMORY_LISTENER_CALL_GLOBAL(_callback, _direction, _args...)    \
103     do {                                                                \
104         MemoryListener *_listener;                                      \
105                                                                         \
106         switch (_direction) {                                           \
107         case Forward:                                                   \
108             QTAILQ_FOREACH(_listener, &memory_listeners, link) {        \
109                 if (_listener->_callback) {                             \
110                     _listener->_callback(_listener, ##_args);           \
111                 }                                                       \
112             }                                                           \
113             break;                                                      \
114         case Reverse:                                                   \
115             QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners,        \
116                                    memory_listeners, link) {            \
117                 if (_listener->_callback) {                             \
118                     _listener->_callback(_listener, ##_args);           \
119                 }                                                       \
120             }                                                           \
121             break;                                                      \
122         default:                                                        \
123             abort();                                                    \
124         }                                                               \
125     } while (0)
126
127 #define MEMORY_LISTENER_CALL(_callback, _direction, _section, _args...) \
128     do {                                                                \
129         MemoryListener *_listener;                                      \
130                                                                         \
131         switch (_direction) {                                           \
132         case Forward:                                                   \
133             QTAILQ_FOREACH(_listener, &memory_listeners, link) {        \
134                 if (_listener->_callback                                \
135                     && memory_listener_match(_listener, _section)) {    \
136                     _listener->_callback(_listener, _section, ##_args); \
137                 }                                                       \
138             }                                                           \
139             break;                                                      \
140         case Reverse:                                                   \
141             QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners,        \
142                                    memory_listeners, link) {            \
143                 if (_listener->_callback                                \
144                     && memory_listener_match(_listener, _section)) {    \
145                     _listener->_callback(_listener, _section, ##_args); \
146                 }                                                       \
147             }                                                           \
148             break;                                                      \
149         default:                                                        \
150             abort();                                                    \
151         }                                                               \
152     } while (0)
153
154 /* No need to ref/unref .mr, the FlatRange keeps it alive.  */
155 #define MEMORY_LISTENER_UPDATE_REGION(fr, as, dir, callback, _args...)  \
156     MEMORY_LISTENER_CALL(callback, dir, (&(MemoryRegionSection) {       \
157         .mr = (fr)->mr,                                                 \
158         .address_space = (as),                                          \
159         .offset_within_region = (fr)->offset_in_region,                 \
160         .size = (fr)->addr.size,                                        \
161         .offset_within_address_space = int128_get64((fr)->addr.start),  \
162         .readonly = (fr)->readonly,                                     \
163               }), ##_args)
164
165 struct CoalescedMemoryRange {
166     AddrRange addr;
167     QTAILQ_ENTRY(CoalescedMemoryRange) link;
168 };
169
170 struct MemoryRegionIoeventfd {
171     AddrRange addr;
172     bool match_data;
173     uint64_t data;
174     EventNotifier *e;
175 };
176
177 static bool memory_region_ioeventfd_before(MemoryRegionIoeventfd a,
178                                            MemoryRegionIoeventfd b)
179 {
180     if (int128_lt(a.addr.start, b.addr.start)) {
181         return true;
182     } else if (int128_gt(a.addr.start, b.addr.start)) {
183         return false;
184     } else if (int128_lt(a.addr.size, b.addr.size)) {
185         return true;
186     } else if (int128_gt(a.addr.size, b.addr.size)) {
187         return false;
188     } else if (a.match_data < b.match_data) {
189         return true;
190     } else  if (a.match_data > b.match_data) {
191         return false;
192     } else if (a.match_data) {
193         if (a.data < b.data) {
194             return true;
195         } else if (a.data > b.data) {
196             return false;
197         }
198     }
199     if (a.e < b.e) {
200         return true;
201     } else if (a.e > b.e) {
202         return false;
203     }
204     return false;
205 }
206
207 static bool memory_region_ioeventfd_equal(MemoryRegionIoeventfd a,
208                                           MemoryRegionIoeventfd b)
209 {
210     return !memory_region_ioeventfd_before(a, b)
211         && !memory_region_ioeventfd_before(b, a);
212 }
213
214 typedef struct FlatRange FlatRange;
215 typedef struct FlatView FlatView;
216
217 /* Range of memory in the global map.  Addresses are absolute. */
218 struct FlatRange {
219     MemoryRegion *mr;
220     hwaddr offset_in_region;
221     AddrRange addr;
222     uint8_t dirty_log_mask;
223     bool romd_mode;
224     bool readonly;
225 };
226
227 /* Flattened global view of current active memory hierarchy.  Kept in sorted
228  * order.
229  */
230 struct FlatView {
231     struct rcu_head rcu;
232     unsigned ref;
233     FlatRange *ranges;
234     unsigned nr;
235     unsigned nr_allocated;
236 };
237
238 typedef struct AddressSpaceOps AddressSpaceOps;
239
240 #define FOR_EACH_FLAT_RANGE(var, view)          \
241     for (var = (view)->ranges; var < (view)->ranges + (view)->nr; ++var)
242
243 static bool flatrange_equal(FlatRange *a, FlatRange *b)
244 {
245     return a->mr == b->mr
246         && addrrange_equal(a->addr, b->addr)
247         && a->offset_in_region == b->offset_in_region
248         && a->romd_mode == b->romd_mode
249         && a->readonly == b->readonly;
250 }
251
252 static void flatview_init(FlatView *view)
253 {
254     view->ref = 1;
255     view->ranges = NULL;
256     view->nr = 0;
257     view->nr_allocated = 0;
258 }
259
260 /* Insert a range into a given position.  Caller is responsible for maintaining
261  * sorting order.
262  */
263 static void flatview_insert(FlatView *view, unsigned pos, FlatRange *range)
264 {
265     if (view->nr == view->nr_allocated) {
266         view->nr_allocated = MAX(2 * view->nr, 10);
267         view->ranges = g_realloc(view->ranges,
268                                     view->nr_allocated * sizeof(*view->ranges));
269     }
270     memmove(view->ranges + pos + 1, view->ranges + pos,
271             (view->nr - pos) * sizeof(FlatRange));
272     view->ranges[pos] = *range;
273     memory_region_ref(range->mr);
274     ++view->nr;
275 }
276
277 static void flatview_destroy(FlatView *view)
278 {
279     int i;
280
281     for (i = 0; i < view->nr; i++) {
282         memory_region_unref(view->ranges[i].mr);
283     }
284     g_free(view->ranges);
285     g_free(view);
286 }
287
288 static void flatview_ref(FlatView *view)
289 {
290     atomic_inc(&view->ref);
291 }
292
293 static void flatview_unref(FlatView *view)
294 {
295     if (atomic_fetch_dec(&view->ref) == 1) {
296         flatview_destroy(view);
297     }
298 }
299
300 static bool can_merge(FlatRange *r1, FlatRange *r2)
301 {
302     return int128_eq(addrrange_end(r1->addr), r2->addr.start)
303         && r1->mr == r2->mr
304         && int128_eq(int128_add(int128_make64(r1->offset_in_region),
305                                 r1->addr.size),
306                      int128_make64(r2->offset_in_region))
307         && r1->dirty_log_mask == r2->dirty_log_mask
308         && r1->romd_mode == r2->romd_mode
309         && r1->readonly == r2->readonly;
310 }
311
312 /* Attempt to simplify a view by merging adjacent ranges */
313 static void flatview_simplify(FlatView *view)
314 {
315     unsigned i, j;
316
317     i = 0;
318     while (i < view->nr) {
319         j = i + 1;
320         while (j < view->nr
321                && can_merge(&view->ranges[j-1], &view->ranges[j])) {
322             int128_addto(&view->ranges[i].addr.size, view->ranges[j].addr.size);
323             ++j;
324         }
325         ++i;
326         memmove(&view->ranges[i], &view->ranges[j],
327                 (view->nr - j) * sizeof(view->ranges[j]));
328         view->nr -= j - i;
329     }
330 }
331
332 static bool memory_region_big_endian(MemoryRegion *mr)
333 {
334 #ifdef TARGET_WORDS_BIGENDIAN
335     return mr->ops->endianness != DEVICE_LITTLE_ENDIAN;
336 #else
337     return mr->ops->endianness == DEVICE_BIG_ENDIAN;
338 #endif
339 }
340
341 static bool memory_region_wrong_endianness(MemoryRegion *mr)
342 {
343 #ifdef TARGET_WORDS_BIGENDIAN
344     return mr->ops->endianness == DEVICE_LITTLE_ENDIAN;
345 #else
346     return mr->ops->endianness == DEVICE_BIG_ENDIAN;
347 #endif
348 }
349
350 static void adjust_endianness(MemoryRegion *mr, uint64_t *data, unsigned size)
351 {
352     if (memory_region_wrong_endianness(mr)) {
353         switch (size) {
354         case 1:
355             break;
356         case 2:
357             *data = bswap16(*data);
358             break;
359         case 4:
360             *data = bswap32(*data);
361             break;
362         case 8:
363             *data = bswap64(*data);
364             break;
365         default:
366             abort();
367         }
368     }
369 }
370
371 static MemTxResult memory_region_oldmmio_read_accessor(MemoryRegion *mr,
372                                                        hwaddr addr,
373                                                        uint64_t *value,
374                                                        unsigned size,
375                                                        unsigned shift,
376                                                        uint64_t mask,
377                                                        MemTxAttrs attrs)
378 {
379     uint64_t tmp;
380
381     tmp = mr->ops->old_mmio.read[ctz32(size)](mr->opaque, addr);
382     trace_memory_region_ops_read(mr, addr, tmp, size);
383     *value |= (tmp & mask) << shift;
384     return MEMTX_OK;
385 }
386
387 static MemTxResult  memory_region_read_accessor(MemoryRegion *mr,
388                                                 hwaddr addr,
389                                                 uint64_t *value,
390                                                 unsigned size,
391                                                 unsigned shift,
392                                                 uint64_t mask,
393                                                 MemTxAttrs attrs)
394 {
395     uint64_t tmp;
396
397     if (mr->flush_coalesced_mmio) {
398         qemu_flush_coalesced_mmio_buffer();
399     }
400     tmp = mr->ops->read(mr->opaque, addr, size);
401     trace_memory_region_ops_read(mr, addr, tmp, size);
402     *value |= (tmp & mask) << shift;
403     return MEMTX_OK;
404 }
405
406 static MemTxResult memory_region_read_with_attrs_accessor(MemoryRegion *mr,
407                                                           hwaddr addr,
408                                                           uint64_t *value,
409                                                           unsigned size,
410                                                           unsigned shift,
411                                                           uint64_t mask,
412                                                           MemTxAttrs attrs)
413 {
414     uint64_t tmp = 0;
415     MemTxResult r;
416
417     if (mr->flush_coalesced_mmio) {
418         qemu_flush_coalesced_mmio_buffer();
419     }
420     r = mr->ops->read_with_attrs(mr->opaque, addr, &tmp, size, attrs);
421     trace_memory_region_ops_read(mr, addr, tmp, size);
422     *value |= (tmp & mask) << shift;
423     return r;
424 }
425
426 static MemTxResult memory_region_oldmmio_write_accessor(MemoryRegion *mr,
427                                                         hwaddr addr,
428                                                         uint64_t *value,
429                                                         unsigned size,
430                                                         unsigned shift,
431                                                         uint64_t mask,
432                                                         MemTxAttrs attrs)
433 {
434     uint64_t tmp;
435
436     tmp = (*value >> shift) & mask;
437     trace_memory_region_ops_write(mr, addr, tmp, size);
438     mr->ops->old_mmio.write[ctz32(size)](mr->opaque, addr, tmp);
439     return MEMTX_OK;
440 }
441
442 static MemTxResult memory_region_write_accessor(MemoryRegion *mr,
443                                                 hwaddr addr,
444                                                 uint64_t *value,
445                                                 unsigned size,
446                                                 unsigned shift,
447                                                 uint64_t mask,
448                                                 MemTxAttrs attrs)
449 {
450     uint64_t tmp;
451
452     if (mr->flush_coalesced_mmio) {
453         qemu_flush_coalesced_mmio_buffer();
454     }
455     tmp = (*value >> shift) & mask;
456     trace_memory_region_ops_write(mr, addr, tmp, size);
457     mr->ops->write(mr->opaque, addr, tmp, size);
458     return MEMTX_OK;
459 }
460
461 static MemTxResult memory_region_write_with_attrs_accessor(MemoryRegion *mr,
462                                                            hwaddr addr,
463                                                            uint64_t *value,
464                                                            unsigned size,
465                                                            unsigned shift,
466                                                            uint64_t mask,
467                                                            MemTxAttrs attrs)
468 {
469     uint64_t tmp;
470
471     if (mr->flush_coalesced_mmio) {
472         qemu_flush_coalesced_mmio_buffer();
473     }
474     tmp = (*value >> shift) & mask;
475     trace_memory_region_ops_write(mr, addr, tmp, size);
476     return mr->ops->write_with_attrs(mr->opaque, addr, tmp, size, attrs);
477 }
478
479 static MemTxResult access_with_adjusted_size(hwaddr addr,
480                                       uint64_t *value,
481                                       unsigned size,
482                                       unsigned access_size_min,
483                                       unsigned access_size_max,
484                                       MemTxResult (*access)(MemoryRegion *mr,
485                                                             hwaddr addr,
486                                                             uint64_t *value,
487                                                             unsigned size,
488                                                             unsigned shift,
489                                                             uint64_t mask,
490                                                             MemTxAttrs attrs),
491                                       MemoryRegion *mr,
492                                       MemTxAttrs attrs)
493 {
494     uint64_t access_mask;
495     unsigned access_size;
496     unsigned i;
497     MemTxResult r = MEMTX_OK;
498
499     if (!access_size_min) {
500         access_size_min = 1;
501     }
502     if (!access_size_max) {
503         access_size_max = 4;
504     }
505
506     /* FIXME: support unaligned access? */
507     access_size = MAX(MIN(size, access_size_max), access_size_min);
508     access_mask = -1ULL >> (64 - access_size * 8);
509     if (memory_region_big_endian(mr)) {
510         for (i = 0; i < size; i += access_size) {
511             r |= access(mr, addr + i, value, access_size,
512                         (size - access_size - i) * 8, access_mask, attrs);
513         }
514     } else {
515         for (i = 0; i < size; i += access_size) {
516             r |= access(mr, addr + i, value, access_size, i * 8,
517                         access_mask, attrs);
518         }
519     }
520     return r;
521 }
522
523 static AddressSpace *memory_region_to_address_space(MemoryRegion *mr)
524 {
525     AddressSpace *as;
526
527     while (mr->container) {
528         mr = mr->container;
529     }
530     QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
531         if (mr == as->root) {
532             return as;
533         }
534     }
535     return NULL;
536 }
537
538 /* Render a memory region into the global view.  Ranges in @view obscure
539  * ranges in @mr.
540  */
541 static void render_memory_region(FlatView *view,
542                                  MemoryRegion *mr,
543                                  Int128 base,
544                                  AddrRange clip,
545                                  bool readonly)
546 {
547     MemoryRegion *subregion;
548     unsigned i;
549     hwaddr offset_in_region;
550     Int128 remain;
551     Int128 now;
552     FlatRange fr;
553     AddrRange tmp;
554
555     if (!mr->enabled) {
556         return;
557     }
558
559     int128_addto(&base, int128_make64(mr->addr));
560     readonly |= mr->readonly;
561
562     tmp = addrrange_make(base, mr->size);
563
564     if (!addrrange_intersects(tmp, clip)) {
565         return;
566     }
567
568     clip = addrrange_intersection(tmp, clip);
569
570     if (mr->alias) {
571         int128_subfrom(&base, int128_make64(mr->alias->addr));
572         int128_subfrom(&base, int128_make64(mr->alias_offset));
573         render_memory_region(view, mr->alias, base, clip, readonly);
574         return;
575     }
576
577     /* Render subregions in priority order. */
578     QTAILQ_FOREACH(subregion, &mr->subregions, subregions_link) {
579         render_memory_region(view, subregion, base, clip, readonly);
580     }
581
582     if (!mr->terminates) {
583         return;
584     }
585
586     offset_in_region = int128_get64(int128_sub(clip.start, base));
587     base = clip.start;
588     remain = clip.size;
589
590     fr.mr = mr;
591     fr.dirty_log_mask = memory_region_get_dirty_log_mask(mr);
592     fr.romd_mode = mr->romd_mode;
593     fr.readonly = readonly;
594
595     /* Render the region itself into any gaps left by the current view. */
596     for (i = 0; i < view->nr && int128_nz(remain); ++i) {
597         if (int128_ge(base, addrrange_end(view->ranges[i].addr))) {
598             continue;
599         }
600         if (int128_lt(base, view->ranges[i].addr.start)) {
601             now = int128_min(remain,
602                              int128_sub(view->ranges[i].addr.start, base));
603             fr.offset_in_region = offset_in_region;
604             fr.addr = addrrange_make(base, now);
605             flatview_insert(view, i, &fr);
606             ++i;
607             int128_addto(&base, now);
608             offset_in_region += int128_get64(now);
609             int128_subfrom(&remain, now);
610         }
611         now = int128_sub(int128_min(int128_add(base, remain),
612                                     addrrange_end(view->ranges[i].addr)),
613                          base);
614         int128_addto(&base, now);
615         offset_in_region += int128_get64(now);
616         int128_subfrom(&remain, now);
617     }
618     if (int128_nz(remain)) {
619         fr.offset_in_region = offset_in_region;
620         fr.addr = addrrange_make(base, remain);
621         flatview_insert(view, i, &fr);
622     }
623 }
624
625 /* Render a memory topology into a list of disjoint absolute ranges. */
626 static FlatView *generate_memory_topology(MemoryRegion *mr)
627 {
628     FlatView *view;
629
630     view = g_new(FlatView, 1);
631     flatview_init(view);
632
633     if (mr) {
634         render_memory_region(view, mr, int128_zero(),
635                              addrrange_make(int128_zero(), int128_2_64()), false);
636     }
637     flatview_simplify(view);
638
639     return view;
640 }
641
642 static void address_space_add_del_ioeventfds(AddressSpace *as,
643                                              MemoryRegionIoeventfd *fds_new,
644                                              unsigned fds_new_nb,
645                                              MemoryRegionIoeventfd *fds_old,
646                                              unsigned fds_old_nb)
647 {
648     unsigned iold, inew;
649     MemoryRegionIoeventfd *fd;
650     MemoryRegionSection section;
651
652     /* Generate a symmetric difference of the old and new fd sets, adding
653      * and deleting as necessary.
654      */
655
656     iold = inew = 0;
657     while (iold < fds_old_nb || inew < fds_new_nb) {
658         if (iold < fds_old_nb
659             && (inew == fds_new_nb
660                 || memory_region_ioeventfd_before(fds_old[iold],
661                                                   fds_new[inew]))) {
662             fd = &fds_old[iold];
663             section = (MemoryRegionSection) {
664                 .address_space = as,
665                 .offset_within_address_space = int128_get64(fd->addr.start),
666                 .size = fd->addr.size,
667             };
668             MEMORY_LISTENER_CALL(eventfd_del, Forward, &section,
669                                  fd->match_data, fd->data, fd->e);
670             ++iold;
671         } else if (inew < fds_new_nb
672                    && (iold == fds_old_nb
673                        || memory_region_ioeventfd_before(fds_new[inew],
674                                                          fds_old[iold]))) {
675             fd = &fds_new[inew];
676             section = (MemoryRegionSection) {
677                 .address_space = as,
678                 .offset_within_address_space = int128_get64(fd->addr.start),
679                 .size = fd->addr.size,
680             };
681             MEMORY_LISTENER_CALL(eventfd_add, Reverse, &section,
682                                  fd->match_data, fd->data, fd->e);
683             ++inew;
684         } else {
685             ++iold;
686             ++inew;
687         }
688     }
689 }
690
691 static FlatView *address_space_get_flatview(AddressSpace *as)
692 {
693     FlatView *view;
694
695     rcu_read_lock();
696     view = atomic_rcu_read(&as->current_map);
697     flatview_ref(view);
698     rcu_read_unlock();
699     return view;
700 }
701
702 static void address_space_update_ioeventfds(AddressSpace *as)
703 {
704     FlatView *view;
705     FlatRange *fr;
706     unsigned ioeventfd_nb = 0;
707     MemoryRegionIoeventfd *ioeventfds = NULL;
708     AddrRange tmp;
709     unsigned i;
710
711     view = address_space_get_flatview(as);
712     FOR_EACH_FLAT_RANGE(fr, view) {
713         for (i = 0; i < fr->mr->ioeventfd_nb; ++i) {
714             tmp = addrrange_shift(fr->mr->ioeventfds[i].addr,
715                                   int128_sub(fr->addr.start,
716                                              int128_make64(fr->offset_in_region)));
717             if (addrrange_intersects(fr->addr, tmp)) {
718                 ++ioeventfd_nb;
719                 ioeventfds = g_realloc(ioeventfds,
720                                           ioeventfd_nb * sizeof(*ioeventfds));
721                 ioeventfds[ioeventfd_nb-1] = fr->mr->ioeventfds[i];
722                 ioeventfds[ioeventfd_nb-1].addr = tmp;
723             }
724         }
725     }
726
727     address_space_add_del_ioeventfds(as, ioeventfds, ioeventfd_nb,
728                                      as->ioeventfds, as->ioeventfd_nb);
729
730     g_free(as->ioeventfds);
731     as->ioeventfds = ioeventfds;
732     as->ioeventfd_nb = ioeventfd_nb;
733     flatview_unref(view);
734 }
735
736 static void address_space_update_topology_pass(AddressSpace *as,
737                                                const FlatView *old_view,
738                                                const FlatView *new_view,
739                                                bool adding)
740 {
741     unsigned iold, inew;
742     FlatRange *frold, *frnew;
743
744     /* Generate a symmetric difference of the old and new memory maps.
745      * Kill ranges in the old map, and instantiate ranges in the new map.
746      */
747     iold = inew = 0;
748     while (iold < old_view->nr || inew < new_view->nr) {
749         if (iold < old_view->nr) {
750             frold = &old_view->ranges[iold];
751         } else {
752             frold = NULL;
753         }
754         if (inew < new_view->nr) {
755             frnew = &new_view->ranges[inew];
756         } else {
757             frnew = NULL;
758         }
759
760         if (frold
761             && (!frnew
762                 || int128_lt(frold->addr.start, frnew->addr.start)
763                 || (int128_eq(frold->addr.start, frnew->addr.start)
764                     && !flatrange_equal(frold, frnew)))) {
765             /* In old but not in new, or in both but attributes changed. */
766
767             if (!adding) {
768                 MEMORY_LISTENER_UPDATE_REGION(frold, as, Reverse, region_del);
769             }
770
771             ++iold;
772         } else if (frold && frnew && flatrange_equal(frold, frnew)) {
773             /* In both and unchanged (except logging may have changed) */
774
775             if (adding) {
776                 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_nop);
777                 if (frnew->dirty_log_mask & ~frold->dirty_log_mask) {
778                     MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, log_start,
779                                                   frold->dirty_log_mask,
780                                                   frnew->dirty_log_mask);
781                 }
782                 if (frold->dirty_log_mask & ~frnew->dirty_log_mask) {
783                     MEMORY_LISTENER_UPDATE_REGION(frnew, as, Reverse, log_stop,
784                                                   frold->dirty_log_mask,
785                                                   frnew->dirty_log_mask);
786                 }
787             }
788
789             ++iold;
790             ++inew;
791         } else {
792             /* In new */
793
794             if (adding) {
795                 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_add);
796             }
797
798             ++inew;
799         }
800     }
801 }
802
803
804 static void address_space_update_topology(AddressSpace *as)
805 {
806     FlatView *old_view = address_space_get_flatview(as);
807     FlatView *new_view = generate_memory_topology(as->root);
808
809     address_space_update_topology_pass(as, old_view, new_view, false);
810     address_space_update_topology_pass(as, old_view, new_view, true);
811
812     /* Writes are protected by the BQL.  */
813     atomic_rcu_set(&as->current_map, new_view);
814     call_rcu(old_view, flatview_unref, rcu);
815
816     /* Note that all the old MemoryRegions are still alive up to this
817      * point.  This relieves most MemoryListeners from the need to
818      * ref/unref the MemoryRegions they get---unless they use them
819      * outside the iothread mutex, in which case precise reference
820      * counting is necessary.
821      */
822     flatview_unref(old_view);
823
824     address_space_update_ioeventfds(as);
825 }
826
827 void memory_region_transaction_begin(void)
828 {
829     qemu_flush_coalesced_mmio_buffer();
830     ++memory_region_transaction_depth;
831 }
832
833 static void memory_region_clear_pending(void)
834 {
835     memory_region_update_pending = false;
836     ioeventfd_update_pending = false;
837 }
838
839 void memory_region_transaction_commit(void)
840 {
841     AddressSpace *as;
842
843     assert(memory_region_transaction_depth);
844     --memory_region_transaction_depth;
845     if (!memory_region_transaction_depth) {
846         if (memory_region_update_pending) {
847             MEMORY_LISTENER_CALL_GLOBAL(begin, Forward);
848
849             QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
850                 address_space_update_topology(as);
851             }
852
853             MEMORY_LISTENER_CALL_GLOBAL(commit, Forward);
854         } else if (ioeventfd_update_pending) {
855             QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
856                 address_space_update_ioeventfds(as);
857             }
858         }
859         memory_region_clear_pending();
860    }
861 }
862
863 static void memory_region_destructor_none(MemoryRegion *mr)
864 {
865 }
866
867 static void memory_region_destructor_ram(MemoryRegion *mr)
868 {
869     qemu_ram_free(mr->ram_addr);
870 }
871
872 static void memory_region_destructor_alias(MemoryRegion *mr)
873 {
874     memory_region_unref(mr->alias);
875 }
876
877 static void memory_region_destructor_ram_from_ptr(MemoryRegion *mr)
878 {
879     qemu_ram_free_from_ptr(mr->ram_addr);
880 }
881
882 static void memory_region_destructor_rom_device(MemoryRegion *mr)
883 {
884     qemu_ram_free(mr->ram_addr & TARGET_PAGE_MASK);
885 }
886
887 static bool memory_region_need_escape(char c)
888 {
889     return c == '/' || c == '[' || c == '\\' || c == ']';
890 }
891
892 static char *memory_region_escape_name(const char *name)
893 {
894     const char *p;
895     char *escaped, *q;
896     uint8_t c;
897     size_t bytes = 0;
898
899     for (p = name; *p; p++) {
900         bytes += memory_region_need_escape(*p) ? 4 : 1;
901     }
902     if (bytes == p - name) {
903        return g_memdup(name, bytes + 1);
904     }
905
906     escaped = g_malloc(bytes + 1);
907     for (p = name, q = escaped; *p; p++) {
908         c = *p;
909         if (unlikely(memory_region_need_escape(c))) {
910             *q++ = '\\';
911             *q++ = 'x';
912             *q++ = "0123456789abcdef"[c >> 4];
913             c = "0123456789abcdef"[c & 15];
914         }
915         *q++ = c;
916     }
917     *q = 0;
918     return escaped;
919 }
920
921 void memory_region_init(MemoryRegion *mr,
922                         Object *owner,
923                         const char *name,
924                         uint64_t size)
925 {
926     if (!owner) {
927         owner = container_get(qdev_get_machine(), "/unattached");
928     }
929
930     object_initialize(mr, sizeof(*mr), TYPE_MEMORY_REGION);
931     mr->size = int128_make64(size);
932     if (size == UINT64_MAX) {
933         mr->size = int128_2_64();
934     }
935     mr->name = g_strdup(name);
936
937     if (name) {
938         char *escaped_name = memory_region_escape_name(name);
939         char *name_array = g_strdup_printf("%s[*]", escaped_name);
940         object_property_add_child(owner, name_array, OBJECT(mr), &error_abort);
941         object_unref(OBJECT(mr));
942         g_free(name_array);
943         g_free(escaped_name);
944     }
945 }
946
947 static void memory_region_get_addr(Object *obj, Visitor *v, void *opaque,
948                                    const char *name, Error **errp)
949 {
950     MemoryRegion *mr = MEMORY_REGION(obj);
951     uint64_t value = mr->addr;
952
953     visit_type_uint64(v, &value, name, errp);
954 }
955
956 static void memory_region_get_container(Object *obj, Visitor *v, void *opaque,
957                                         const char *name, Error **errp)
958 {
959     MemoryRegion *mr = MEMORY_REGION(obj);
960     gchar *path = (gchar *)"";
961
962     if (mr->container) {
963         path = object_get_canonical_path(OBJECT(mr->container));
964     }
965     visit_type_str(v, &path, name, errp);
966     if (mr->container) {
967         g_free(path);
968     }
969 }
970
971 static Object *memory_region_resolve_container(Object *obj, void *opaque,
972                                                const char *part)
973 {
974     MemoryRegion *mr = MEMORY_REGION(obj);
975
976     return OBJECT(mr->container);
977 }
978
979 static void memory_region_get_priority(Object *obj, Visitor *v, void *opaque,
980                                        const char *name, Error **errp)
981 {
982     MemoryRegion *mr = MEMORY_REGION(obj);
983     int32_t value = mr->priority;
984
985     visit_type_int32(v, &value, name, errp);
986 }
987
988 static bool memory_region_get_may_overlap(Object *obj, Error **errp)
989 {
990     MemoryRegion *mr = MEMORY_REGION(obj);
991
992     return mr->may_overlap;
993 }
994
995 static void memory_region_get_size(Object *obj, Visitor *v, void *opaque,
996                                    const char *name, Error **errp)
997 {
998     MemoryRegion *mr = MEMORY_REGION(obj);
999     uint64_t value = memory_region_size(mr);
1000
1001     visit_type_uint64(v, &value, name, errp);
1002 }
1003
1004 static void memory_region_initfn(Object *obj)
1005 {
1006     MemoryRegion *mr = MEMORY_REGION(obj);
1007     ObjectProperty *op;
1008
1009     mr->ops = &unassigned_mem_ops;
1010     mr->enabled = true;
1011     mr->romd_mode = true;
1012     mr->destructor = memory_region_destructor_none;
1013     QTAILQ_INIT(&mr->subregions);
1014     QTAILQ_INIT(&mr->coalesced);
1015
1016     op = object_property_add(OBJECT(mr), "container",
1017                              "link<" TYPE_MEMORY_REGION ">",
1018                              memory_region_get_container,
1019                              NULL, /* memory_region_set_container */
1020                              NULL, NULL, &error_abort);
1021     op->resolve = memory_region_resolve_container;
1022
1023     object_property_add(OBJECT(mr), "addr", "uint64",
1024                         memory_region_get_addr,
1025                         NULL, /* memory_region_set_addr */
1026                         NULL, NULL, &error_abort);
1027     object_property_add(OBJECT(mr), "priority", "uint32",
1028                         memory_region_get_priority,
1029                         NULL, /* memory_region_set_priority */
1030                         NULL, NULL, &error_abort);
1031     object_property_add_bool(OBJECT(mr), "may-overlap",
1032                              memory_region_get_may_overlap,
1033                              NULL, /* memory_region_set_may_overlap */
1034                              &error_abort);
1035     object_property_add(OBJECT(mr), "size", "uint64",
1036                         memory_region_get_size,
1037                         NULL, /* memory_region_set_size, */
1038                         NULL, NULL, &error_abort);
1039 }
1040
1041 static uint64_t unassigned_mem_read(void *opaque, hwaddr addr,
1042                                     unsigned size)
1043 {
1044 #ifdef DEBUG_UNASSIGNED
1045     printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
1046 #endif
1047     if (current_cpu != NULL) {
1048         cpu_unassigned_access(current_cpu, addr, false, false, 0, size);
1049     }
1050     return 0;
1051 }
1052
1053 static void unassigned_mem_write(void *opaque, hwaddr addr,
1054                                  uint64_t val, unsigned size)
1055 {
1056 #ifdef DEBUG_UNASSIGNED
1057     printf("Unassigned mem write " TARGET_FMT_plx " = 0x%"PRIx64"\n", addr, val);
1058 #endif
1059     if (current_cpu != NULL) {
1060         cpu_unassigned_access(current_cpu, addr, true, false, 0, size);
1061     }
1062 }
1063
1064 static bool unassigned_mem_accepts(void *opaque, hwaddr addr,
1065                                    unsigned size, bool is_write)
1066 {
1067     return false;
1068 }
1069
1070 const MemoryRegionOps unassigned_mem_ops = {
1071     .valid.accepts = unassigned_mem_accepts,
1072     .endianness = DEVICE_NATIVE_ENDIAN,
1073 };
1074
1075 bool memory_region_access_valid(MemoryRegion *mr,
1076                                 hwaddr addr,
1077                                 unsigned size,
1078                                 bool is_write)
1079 {
1080     int access_size_min, access_size_max;
1081     int access_size, i;
1082
1083     if (!mr->ops->valid.unaligned && (addr & (size - 1))) {
1084         return false;
1085     }
1086
1087     if (!mr->ops->valid.accepts) {
1088         return true;
1089     }
1090
1091     access_size_min = mr->ops->valid.min_access_size;
1092     if (!mr->ops->valid.min_access_size) {
1093         access_size_min = 1;
1094     }
1095
1096     access_size_max = mr->ops->valid.max_access_size;
1097     if (!mr->ops->valid.max_access_size) {
1098         access_size_max = 4;
1099     }
1100
1101     access_size = MAX(MIN(size, access_size_max), access_size_min);
1102     for (i = 0; i < size; i += access_size) {
1103         if (!mr->ops->valid.accepts(mr->opaque, addr + i, access_size,
1104                                     is_write)) {
1105             return false;
1106         }
1107     }
1108
1109     return true;
1110 }
1111
1112 static MemTxResult memory_region_dispatch_read1(MemoryRegion *mr,
1113                                                 hwaddr addr,
1114                                                 uint64_t *pval,
1115                                                 unsigned size,
1116                                                 MemTxAttrs attrs)
1117 {
1118     *pval = 0;
1119
1120     if (mr->ops->read) {
1121         return access_with_adjusted_size(addr, pval, size,
1122                                          mr->ops->impl.min_access_size,
1123                                          mr->ops->impl.max_access_size,
1124                                          memory_region_read_accessor,
1125                                          mr, attrs);
1126     } else if (mr->ops->read_with_attrs) {
1127         return access_with_adjusted_size(addr, pval, size,
1128                                          mr->ops->impl.min_access_size,
1129                                          mr->ops->impl.max_access_size,
1130                                          memory_region_read_with_attrs_accessor,
1131                                          mr, attrs);
1132     } else {
1133         return access_with_adjusted_size(addr, pval, size, 1, 4,
1134                                          memory_region_oldmmio_read_accessor,
1135                                          mr, attrs);
1136     }
1137 }
1138
1139 MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
1140                                         hwaddr addr,
1141                                         uint64_t *pval,
1142                                         unsigned size,
1143                                         MemTxAttrs attrs)
1144 {
1145     MemTxResult r;
1146
1147     if (!memory_region_access_valid(mr, addr, size, false)) {
1148         *pval = unassigned_mem_read(mr, addr, size);
1149         return MEMTX_DECODE_ERROR;
1150     }
1151
1152     r = memory_region_dispatch_read1(mr, addr, pval, size, attrs);
1153     adjust_endianness(mr, pval, size);
1154     return r;
1155 }
1156
1157 MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
1158                                          hwaddr addr,
1159                                          uint64_t data,
1160                                          unsigned size,
1161                                          MemTxAttrs attrs)
1162 {
1163     if (!memory_region_access_valid(mr, addr, size, true)) {
1164         unassigned_mem_write(mr, addr, data, size);
1165         return MEMTX_DECODE_ERROR;
1166     }
1167
1168     adjust_endianness(mr, &data, size);
1169
1170     if (mr->ops->write) {
1171         return access_with_adjusted_size(addr, &data, size,
1172                                          mr->ops->impl.min_access_size,
1173                                          mr->ops->impl.max_access_size,
1174                                          memory_region_write_accessor, mr,
1175                                          attrs);
1176     } else if (mr->ops->write_with_attrs) {
1177         return
1178             access_with_adjusted_size(addr, &data, size,
1179                                       mr->ops->impl.min_access_size,
1180                                       mr->ops->impl.max_access_size,
1181                                       memory_region_write_with_attrs_accessor,
1182                                       mr, attrs);
1183     } else {
1184         return access_with_adjusted_size(addr, &data, size, 1, 4,
1185                                          memory_region_oldmmio_write_accessor,
1186                                          mr, attrs);
1187     }
1188 }
1189
1190 void memory_region_init_io(MemoryRegion *mr,
1191                            Object *owner,
1192                            const MemoryRegionOps *ops,
1193                            void *opaque,
1194                            const char *name,
1195                            uint64_t size)
1196 {
1197     memory_region_init(mr, owner, name, size);
1198     mr->ops = ops;
1199     mr->opaque = opaque;
1200     mr->terminates = true;
1201     mr->ram_addr = ~(ram_addr_t)0;
1202 }
1203
1204 void memory_region_init_ram(MemoryRegion *mr,
1205                             Object *owner,
1206                             const char *name,
1207                             uint64_t size,
1208                             Error **errp)
1209 {
1210     memory_region_init(mr, owner, name, size);
1211     mr->ram = true;
1212     mr->terminates = true;
1213     mr->destructor = memory_region_destructor_ram;
1214     mr->ram_addr = qemu_ram_alloc(size, mr, errp);
1215     mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1216 }
1217
1218 void memory_region_init_resizeable_ram(MemoryRegion *mr,
1219                                        Object *owner,
1220                                        const char *name,
1221                                        uint64_t size,
1222                                        uint64_t max_size,
1223                                        void (*resized)(const char*,
1224                                                        uint64_t length,
1225                                                        void *host),
1226                                        Error **errp)
1227 {
1228     memory_region_init(mr, owner, name, size);
1229     mr->ram = true;
1230     mr->terminates = true;
1231     mr->destructor = memory_region_destructor_ram;
1232     mr->ram_addr = qemu_ram_alloc_resizeable(size, max_size, resized, mr, errp);
1233     mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1234 }
1235
1236 #ifdef __linux__
1237 void memory_region_init_ram_from_file(MemoryRegion *mr,
1238                                       struct Object *owner,
1239                                       const char *name,
1240                                       uint64_t size,
1241                                       bool share,
1242                                       const char *path,
1243                                       Error **errp)
1244 {
1245     memory_region_init(mr, owner, name, size);
1246     mr->ram = true;
1247     mr->terminates = true;
1248     mr->destructor = memory_region_destructor_ram;
1249     mr->ram_addr = qemu_ram_alloc_from_file(size, mr, share, path, errp);
1250     mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1251 }
1252 #endif
1253
1254 void memory_region_init_ram_ptr(MemoryRegion *mr,
1255                                 Object *owner,
1256                                 const char *name,
1257                                 uint64_t size,
1258                                 void *ptr)
1259 {
1260     memory_region_init(mr, owner, name, size);
1261     mr->ram = true;
1262     mr->terminates = true;
1263     mr->destructor = memory_region_destructor_ram_from_ptr;
1264     mr->dirty_log_mask = tcg_enabled() ? (1 << DIRTY_MEMORY_CODE) : 0;
1265
1266     /* qemu_ram_alloc_from_ptr cannot fail with ptr != NULL.  */
1267     assert(ptr != NULL);
1268     mr->ram_addr = qemu_ram_alloc_from_ptr(size, ptr, mr, &error_abort);
1269 }
1270
1271 void memory_region_set_skip_dump(MemoryRegion *mr)
1272 {
1273     mr->skip_dump = true;
1274 }
1275
1276 void memory_region_init_alias(MemoryRegion *mr,
1277                               Object *owner,
1278                               const char *name,
1279                               MemoryRegion *orig,
1280                               hwaddr offset,
1281                               uint64_t size)
1282 {
1283     memory_region_init(mr, owner, name, size);
1284     memory_region_ref(orig);
1285     mr->destructor = memory_region_destructor_alias;
1286     mr->alias = orig;
1287     mr->alias_offset = offset;
1288 }
1289
1290 void memory_region_init_rom_device(MemoryRegion *mr,
1291                                    Object *owner,
1292                                    const MemoryRegionOps *ops,
1293                                    void *opaque,
1294                                    const char *name,
1295                                    uint64_t size,
1296                                    Error **errp)
1297 {
1298     memory_region_init(mr, owner, name, size);
1299     mr->ops = ops;
1300     mr->opaque = opaque;
1301     mr->terminates = true;
1302     mr->rom_device = true;
1303     mr->destructor = memory_region_destructor_rom_device;
1304     mr->ram_addr = qemu_ram_alloc(size, mr, errp);
1305 }
1306
1307 void memory_region_init_iommu(MemoryRegion *mr,
1308                               Object *owner,
1309                               const MemoryRegionIOMMUOps *ops,
1310                               const char *name,
1311                               uint64_t size)
1312 {
1313     memory_region_init(mr, owner, name, size);
1314     mr->iommu_ops = ops,
1315     mr->terminates = true;  /* then re-forwards */
1316     notifier_list_init(&mr->iommu_notify);
1317 }
1318
1319 void memory_region_init_reservation(MemoryRegion *mr,
1320                                     Object *owner,
1321                                     const char *name,
1322                                     uint64_t size)
1323 {
1324     memory_region_init_io(mr, owner, &unassigned_mem_ops, mr, name, size);
1325 }
1326
1327 static void memory_region_finalize(Object *obj)
1328 {
1329     MemoryRegion *mr = MEMORY_REGION(obj);
1330
1331     assert(QTAILQ_EMPTY(&mr->subregions));
1332     mr->destructor(mr);
1333     memory_region_clear_coalescing(mr);
1334     g_free((char *)mr->name);
1335     g_free(mr->ioeventfds);
1336 }
1337
1338 Object *memory_region_owner(MemoryRegion *mr)
1339 {
1340     Object *obj = OBJECT(mr);
1341     return obj->parent;
1342 }
1343
1344 void memory_region_ref(MemoryRegion *mr)
1345 {
1346     /* MMIO callbacks most likely will access data that belongs
1347      * to the owner, hence the need to ref/unref the owner whenever
1348      * the memory region is in use.
1349      *
1350      * The memory region is a child of its owner.  As long as the
1351      * owner doesn't call unparent itself on the memory region,
1352      * ref-ing the owner will also keep the memory region alive.
1353      * Memory regions without an owner are supposed to never go away,
1354      * but we still ref/unref them for debugging purposes.
1355      */
1356     Object *obj = OBJECT(mr);
1357     if (obj && obj->parent) {
1358         object_ref(obj->parent);
1359     } else {
1360         object_ref(obj);
1361     }
1362 }
1363
1364 void memory_region_unref(MemoryRegion *mr)
1365 {
1366     Object *obj = OBJECT(mr);
1367     if (obj && obj->parent) {
1368         object_unref(obj->parent);
1369     } else {
1370         object_unref(obj);
1371     }
1372 }
1373
1374 uint64_t memory_region_size(MemoryRegion *mr)
1375 {
1376     if (int128_eq(mr->size, int128_2_64())) {
1377         return UINT64_MAX;
1378     }
1379     return int128_get64(mr->size);
1380 }
1381
1382 const char *memory_region_name(const MemoryRegion *mr)
1383 {
1384     if (!mr->name) {
1385         ((MemoryRegion *)mr)->name =
1386             object_get_canonical_path_component(OBJECT(mr));
1387     }
1388     return mr->name;
1389 }
1390
1391 bool memory_region_is_ram(MemoryRegion *mr)
1392 {
1393     return mr->ram;
1394 }
1395
1396 bool memory_region_is_skip_dump(MemoryRegion *mr)
1397 {
1398     return mr->skip_dump;
1399 }
1400
1401 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr)
1402 {
1403     uint8_t mask = mr->dirty_log_mask;
1404     if (global_dirty_log) {
1405         mask |= (1 << DIRTY_MEMORY_MIGRATION);
1406     }
1407     return mask;
1408 }
1409
1410 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client)
1411 {
1412     return memory_region_get_dirty_log_mask(mr) & (1 << client);
1413 }
1414
1415 bool memory_region_is_rom(MemoryRegion *mr)
1416 {
1417     return mr->ram && mr->readonly;
1418 }
1419
1420 bool memory_region_is_iommu(MemoryRegion *mr)
1421 {
1422     return mr->iommu_ops;
1423 }
1424
1425 void memory_region_register_iommu_notifier(MemoryRegion *mr, Notifier *n)
1426 {
1427     notifier_list_add(&mr->iommu_notify, n);
1428 }
1429
1430 void memory_region_unregister_iommu_notifier(Notifier *n)
1431 {
1432     notifier_remove(n);
1433 }
1434
1435 void memory_region_notify_iommu(MemoryRegion *mr,
1436                                 IOMMUTLBEntry entry)
1437 {
1438     assert(memory_region_is_iommu(mr));
1439     notifier_list_notify(&mr->iommu_notify, &entry);
1440 }
1441
1442 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client)
1443 {
1444     uint8_t mask = 1 << client;
1445
1446     assert(client == DIRTY_MEMORY_VGA);
1447     memory_region_transaction_begin();
1448     mr->dirty_log_mask = (mr->dirty_log_mask & ~mask) | (log * mask);
1449     memory_region_update_pending |= mr->enabled;
1450     memory_region_transaction_commit();
1451 }
1452
1453 bool memory_region_get_dirty(MemoryRegion *mr, hwaddr addr,
1454                              hwaddr size, unsigned client)
1455 {
1456     assert(mr->terminates);
1457     return cpu_physical_memory_get_dirty(mr->ram_addr + addr, size, client);
1458 }
1459
1460 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
1461                              hwaddr size)
1462 {
1463     assert(mr->terminates);
1464     cpu_physical_memory_set_dirty_range(mr->ram_addr + addr, size,
1465                                         memory_region_get_dirty_log_mask(mr));
1466 }
1467
1468 bool memory_region_test_and_clear_dirty(MemoryRegion *mr, hwaddr addr,
1469                                         hwaddr size, unsigned client)
1470 {
1471     bool ret;
1472     assert(mr->terminates);
1473     ret = cpu_physical_memory_get_dirty(mr->ram_addr + addr, size, client);
1474     if (ret) {
1475         cpu_physical_memory_reset_dirty(mr->ram_addr + addr, size, client);
1476     }
1477     return ret;
1478 }
1479
1480
1481 void memory_region_sync_dirty_bitmap(MemoryRegion *mr)
1482 {
1483     AddressSpace *as;
1484     FlatRange *fr;
1485
1486     QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1487         FlatView *view = address_space_get_flatview(as);
1488         FOR_EACH_FLAT_RANGE(fr, view) {
1489             if (fr->mr == mr) {
1490                 MEMORY_LISTENER_UPDATE_REGION(fr, as, Forward, log_sync);
1491             }
1492         }
1493         flatview_unref(view);
1494     }
1495 }
1496
1497 void memory_region_set_readonly(MemoryRegion *mr, bool readonly)
1498 {
1499     if (mr->readonly != readonly) {
1500         memory_region_transaction_begin();
1501         mr->readonly = readonly;
1502         memory_region_update_pending |= mr->enabled;
1503         memory_region_transaction_commit();
1504     }
1505 }
1506
1507 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode)
1508 {
1509     if (mr->romd_mode != romd_mode) {
1510         memory_region_transaction_begin();
1511         mr->romd_mode = romd_mode;
1512         memory_region_update_pending |= mr->enabled;
1513         memory_region_transaction_commit();
1514     }
1515 }
1516
1517 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
1518                                hwaddr size, unsigned client)
1519 {
1520     assert(mr->terminates);
1521     cpu_physical_memory_reset_dirty(mr->ram_addr + addr, size, client);
1522 }
1523
1524 int memory_region_get_fd(MemoryRegion *mr)
1525 {
1526     if (mr->alias) {
1527         return memory_region_get_fd(mr->alias);
1528     }
1529
1530     assert(mr->terminates);
1531
1532     return qemu_get_ram_fd(mr->ram_addr & TARGET_PAGE_MASK);
1533 }
1534
1535 void *memory_region_get_ram_ptr(MemoryRegion *mr)
1536 {
1537     if (mr->alias) {
1538         return memory_region_get_ram_ptr(mr->alias) + mr->alias_offset;
1539     }
1540
1541     assert(mr->terminates);
1542
1543     return qemu_get_ram_ptr(mr->ram_addr & TARGET_PAGE_MASK);
1544 }
1545
1546 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize, Error **errp)
1547 {
1548     assert(mr->terminates);
1549
1550     qemu_ram_resize(mr->ram_addr, newsize, errp);
1551 }
1552
1553 static void memory_region_update_coalesced_range_as(MemoryRegion *mr, AddressSpace *as)
1554 {
1555     FlatView *view;
1556     FlatRange *fr;
1557     CoalescedMemoryRange *cmr;
1558     AddrRange tmp;
1559     MemoryRegionSection section;
1560
1561     view = address_space_get_flatview(as);
1562     FOR_EACH_FLAT_RANGE(fr, view) {
1563         if (fr->mr == mr) {
1564             section = (MemoryRegionSection) {
1565                 .address_space = as,
1566                 .offset_within_address_space = int128_get64(fr->addr.start),
1567                 .size = fr->addr.size,
1568             };
1569
1570             MEMORY_LISTENER_CALL(coalesced_mmio_del, Reverse, &section,
1571                                  int128_get64(fr->addr.start),
1572                                  int128_get64(fr->addr.size));
1573             QTAILQ_FOREACH(cmr, &mr->coalesced, link) {
1574                 tmp = addrrange_shift(cmr->addr,
1575                                       int128_sub(fr->addr.start,
1576                                                  int128_make64(fr->offset_in_region)));
1577                 if (!addrrange_intersects(tmp, fr->addr)) {
1578                     continue;
1579                 }
1580                 tmp = addrrange_intersection(tmp, fr->addr);
1581                 MEMORY_LISTENER_CALL(coalesced_mmio_add, Forward, &section,
1582                                      int128_get64(tmp.start),
1583                                      int128_get64(tmp.size));
1584             }
1585         }
1586     }
1587     flatview_unref(view);
1588 }
1589
1590 static void memory_region_update_coalesced_range(MemoryRegion *mr)
1591 {
1592     AddressSpace *as;
1593
1594     QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1595         memory_region_update_coalesced_range_as(mr, as);
1596     }
1597 }
1598
1599 void memory_region_set_coalescing(MemoryRegion *mr)
1600 {
1601     memory_region_clear_coalescing(mr);
1602     memory_region_add_coalescing(mr, 0, int128_get64(mr->size));
1603 }
1604
1605 void memory_region_add_coalescing(MemoryRegion *mr,
1606                                   hwaddr offset,
1607                                   uint64_t size)
1608 {
1609     CoalescedMemoryRange *cmr = g_malloc(sizeof(*cmr));
1610
1611     cmr->addr = addrrange_make(int128_make64(offset), int128_make64(size));
1612     QTAILQ_INSERT_TAIL(&mr->coalesced, cmr, link);
1613     memory_region_update_coalesced_range(mr);
1614     memory_region_set_flush_coalesced(mr);
1615 }
1616
1617 void memory_region_clear_coalescing(MemoryRegion *mr)
1618 {
1619     CoalescedMemoryRange *cmr;
1620     bool updated = false;
1621
1622     qemu_flush_coalesced_mmio_buffer();
1623     mr->flush_coalesced_mmio = false;
1624
1625     while (!QTAILQ_EMPTY(&mr->coalesced)) {
1626         cmr = QTAILQ_FIRST(&mr->coalesced);
1627         QTAILQ_REMOVE(&mr->coalesced, cmr, link);
1628         g_free(cmr);
1629         updated = true;
1630     }
1631
1632     if (updated) {
1633         memory_region_update_coalesced_range(mr);
1634     }
1635 }
1636
1637 void memory_region_set_flush_coalesced(MemoryRegion *mr)
1638 {
1639     mr->flush_coalesced_mmio = true;
1640 }
1641
1642 void memory_region_clear_flush_coalesced(MemoryRegion *mr)
1643 {
1644     qemu_flush_coalesced_mmio_buffer();
1645     if (QTAILQ_EMPTY(&mr->coalesced)) {
1646         mr->flush_coalesced_mmio = false;
1647     }
1648 }
1649
1650 void memory_region_add_eventfd(MemoryRegion *mr,
1651                                hwaddr addr,
1652                                unsigned size,
1653                                bool match_data,
1654                                uint64_t data,
1655                                EventNotifier *e)
1656 {
1657     MemoryRegionIoeventfd mrfd = {
1658         .addr.start = int128_make64(addr),
1659         .addr.size = int128_make64(size),
1660         .match_data = match_data,
1661         .data = data,
1662         .e = e,
1663     };
1664     unsigned i;
1665
1666     adjust_endianness(mr, &mrfd.data, size);
1667     memory_region_transaction_begin();
1668     for (i = 0; i < mr->ioeventfd_nb; ++i) {
1669         if (memory_region_ioeventfd_before(mrfd, mr->ioeventfds[i])) {
1670             break;
1671         }
1672     }
1673     ++mr->ioeventfd_nb;
1674     mr->ioeventfds = g_realloc(mr->ioeventfds,
1675                                   sizeof(*mr->ioeventfds) * mr->ioeventfd_nb);
1676     memmove(&mr->ioeventfds[i+1], &mr->ioeventfds[i],
1677             sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb-1 - i));
1678     mr->ioeventfds[i] = mrfd;
1679     ioeventfd_update_pending |= mr->enabled;
1680     memory_region_transaction_commit();
1681 }
1682
1683 void memory_region_del_eventfd(MemoryRegion *mr,
1684                                hwaddr addr,
1685                                unsigned size,
1686                                bool match_data,
1687                                uint64_t data,
1688                                EventNotifier *e)
1689 {
1690     MemoryRegionIoeventfd mrfd = {
1691         .addr.start = int128_make64(addr),
1692         .addr.size = int128_make64(size),
1693         .match_data = match_data,
1694         .data = data,
1695         .e = e,
1696     };
1697     unsigned i;
1698
1699     adjust_endianness(mr, &mrfd.data, size);
1700     memory_region_transaction_begin();
1701     for (i = 0; i < mr->ioeventfd_nb; ++i) {
1702         if (memory_region_ioeventfd_equal(mrfd, mr->ioeventfds[i])) {
1703             break;
1704         }
1705     }
1706     assert(i != mr->ioeventfd_nb);
1707     memmove(&mr->ioeventfds[i], &mr->ioeventfds[i+1],
1708             sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb - (i+1)));
1709     --mr->ioeventfd_nb;
1710     mr->ioeventfds = g_realloc(mr->ioeventfds,
1711                                   sizeof(*mr->ioeventfds)*mr->ioeventfd_nb + 1);
1712     ioeventfd_update_pending |= mr->enabled;
1713     memory_region_transaction_commit();
1714 }
1715
1716 static void memory_region_update_container_subregions(MemoryRegion *subregion)
1717 {
1718     hwaddr offset = subregion->addr;
1719     MemoryRegion *mr = subregion->container;
1720     MemoryRegion *other;
1721
1722     memory_region_transaction_begin();
1723
1724     memory_region_ref(subregion);
1725     QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
1726         if (subregion->may_overlap || other->may_overlap) {
1727             continue;
1728         }
1729         if (int128_ge(int128_make64(offset),
1730                       int128_add(int128_make64(other->addr), other->size))
1731             || int128_le(int128_add(int128_make64(offset), subregion->size),
1732                          int128_make64(other->addr))) {
1733             continue;
1734         }
1735 #if 0
1736         printf("warning: subregion collision %llx/%llx (%s) "
1737                "vs %llx/%llx (%s)\n",
1738                (unsigned long long)offset,
1739                (unsigned long long)int128_get64(subregion->size),
1740                subregion->name,
1741                (unsigned long long)other->addr,
1742                (unsigned long long)int128_get64(other->size),
1743                other->name);
1744 #endif
1745     }
1746     QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
1747         if (subregion->priority >= other->priority) {
1748             QTAILQ_INSERT_BEFORE(other, subregion, subregions_link);
1749             goto done;
1750         }
1751     }
1752     QTAILQ_INSERT_TAIL(&mr->subregions, subregion, subregions_link);
1753 done:
1754     memory_region_update_pending |= mr->enabled && subregion->enabled;
1755     memory_region_transaction_commit();
1756 }
1757
1758 static void memory_region_add_subregion_common(MemoryRegion *mr,
1759                                                hwaddr offset,
1760                                                MemoryRegion *subregion)
1761 {
1762     assert(!subregion->container);
1763     subregion->container = mr;
1764     subregion->addr = offset;
1765     memory_region_update_container_subregions(subregion);
1766 }
1767
1768 void memory_region_add_subregion(MemoryRegion *mr,
1769                                  hwaddr offset,
1770                                  MemoryRegion *subregion)
1771 {
1772     subregion->may_overlap = false;
1773     subregion->priority = 0;
1774     memory_region_add_subregion_common(mr, offset, subregion);
1775 }
1776
1777 void memory_region_add_subregion_overlap(MemoryRegion *mr,
1778                                          hwaddr offset,
1779                                          MemoryRegion *subregion,
1780                                          int priority)
1781 {
1782     subregion->may_overlap = true;
1783     subregion->priority = priority;
1784     memory_region_add_subregion_common(mr, offset, subregion);
1785 }
1786
1787 void memory_region_del_subregion(MemoryRegion *mr,
1788                                  MemoryRegion *subregion)
1789 {
1790     memory_region_transaction_begin();
1791     assert(subregion->container == mr);
1792     subregion->container = NULL;
1793     QTAILQ_REMOVE(&mr->subregions, subregion, subregions_link);
1794     memory_region_unref(subregion);
1795     memory_region_update_pending |= mr->enabled && subregion->enabled;
1796     memory_region_transaction_commit();
1797 }
1798
1799 void memory_region_set_enabled(MemoryRegion *mr, bool enabled)
1800 {
1801     if (enabled == mr->enabled) {
1802         return;
1803     }
1804     memory_region_transaction_begin();
1805     mr->enabled = enabled;
1806     memory_region_update_pending = true;
1807     memory_region_transaction_commit();
1808 }
1809
1810 void memory_region_set_size(MemoryRegion *mr, uint64_t size)
1811 {
1812     Int128 s = int128_make64(size);
1813
1814     if (size == UINT64_MAX) {
1815         s = int128_2_64();
1816     }
1817     if (int128_eq(s, mr->size)) {
1818         return;
1819     }
1820     memory_region_transaction_begin();
1821     mr->size = s;
1822     memory_region_update_pending = true;
1823     memory_region_transaction_commit();
1824 }
1825
1826 static void memory_region_readd_subregion(MemoryRegion *mr)
1827 {
1828     MemoryRegion *container = mr->container;
1829
1830     if (container) {
1831         memory_region_transaction_begin();
1832         memory_region_ref(mr);
1833         memory_region_del_subregion(container, mr);
1834         mr->container = container;
1835         memory_region_update_container_subregions(mr);
1836         memory_region_unref(mr);
1837         memory_region_transaction_commit();
1838     }
1839 }
1840
1841 void memory_region_set_address(MemoryRegion *mr, hwaddr addr)
1842 {
1843     if (addr != mr->addr) {
1844         mr->addr = addr;
1845         memory_region_readd_subregion(mr);
1846     }
1847 }
1848
1849 void memory_region_set_alias_offset(MemoryRegion *mr, hwaddr offset)
1850 {
1851     assert(mr->alias);
1852
1853     if (offset == mr->alias_offset) {
1854         return;
1855     }
1856
1857     memory_region_transaction_begin();
1858     mr->alias_offset = offset;
1859     memory_region_update_pending |= mr->enabled;
1860     memory_region_transaction_commit();
1861 }
1862
1863 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr)
1864 {
1865     return mr->ram_addr;
1866 }
1867
1868 uint64_t memory_region_get_alignment(const MemoryRegion *mr)
1869 {
1870     return mr->align;
1871 }
1872
1873 static int cmp_flatrange_addr(const void *addr_, const void *fr_)
1874 {
1875     const AddrRange *addr = addr_;
1876     const FlatRange *fr = fr_;
1877
1878     if (int128_le(addrrange_end(*addr), fr->addr.start)) {
1879         return -1;
1880     } else if (int128_ge(addr->start, addrrange_end(fr->addr))) {
1881         return 1;
1882     }
1883     return 0;
1884 }
1885
1886 static FlatRange *flatview_lookup(FlatView *view, AddrRange addr)
1887 {
1888     return bsearch(&addr, view->ranges, view->nr,
1889                    sizeof(FlatRange), cmp_flatrange_addr);
1890 }
1891
1892 bool memory_region_present(MemoryRegion *container, hwaddr addr)
1893 {
1894     MemoryRegion *mr = memory_region_find(container, addr, 1).mr;
1895     if (!mr || (mr == container)) {
1896         return false;
1897     }
1898     memory_region_unref(mr);
1899     return true;
1900 }
1901
1902 bool memory_region_is_mapped(MemoryRegion *mr)
1903 {
1904     return mr->container ? true : false;
1905 }
1906
1907 MemoryRegionSection memory_region_find(MemoryRegion *mr,
1908                                        hwaddr addr, uint64_t size)
1909 {
1910     MemoryRegionSection ret = { .mr = NULL };
1911     MemoryRegion *root;
1912     AddressSpace *as;
1913     AddrRange range;
1914     FlatView *view;
1915     FlatRange *fr;
1916
1917     addr += mr->addr;
1918     for (root = mr; root->container; ) {
1919         root = root->container;
1920         addr += root->addr;
1921     }
1922
1923     as = memory_region_to_address_space(root);
1924     if (!as) {
1925         return ret;
1926     }
1927     range = addrrange_make(int128_make64(addr), int128_make64(size));
1928
1929     rcu_read_lock();
1930     view = atomic_rcu_read(&as->current_map);
1931     fr = flatview_lookup(view, range);
1932     if (!fr) {
1933         goto out;
1934     }
1935
1936     while (fr > view->ranges && addrrange_intersects(fr[-1].addr, range)) {
1937         --fr;
1938     }
1939
1940     ret.mr = fr->mr;
1941     ret.address_space = as;
1942     range = addrrange_intersection(range, fr->addr);
1943     ret.offset_within_region = fr->offset_in_region;
1944     ret.offset_within_region += int128_get64(int128_sub(range.start,
1945                                                         fr->addr.start));
1946     ret.size = range.size;
1947     ret.offset_within_address_space = int128_get64(range.start);
1948     ret.readonly = fr->readonly;
1949     memory_region_ref(ret.mr);
1950 out:
1951     rcu_read_unlock();
1952     return ret;
1953 }
1954
1955 void address_space_sync_dirty_bitmap(AddressSpace *as)
1956 {
1957     FlatView *view;
1958     FlatRange *fr;
1959
1960     view = address_space_get_flatview(as);
1961     FOR_EACH_FLAT_RANGE(fr, view) {
1962         MEMORY_LISTENER_UPDATE_REGION(fr, as, Forward, log_sync);
1963     }
1964     flatview_unref(view);
1965 }
1966
1967 void memory_global_dirty_log_start(void)
1968 {
1969     global_dirty_log = true;
1970
1971     MEMORY_LISTENER_CALL_GLOBAL(log_global_start, Forward);
1972
1973     /* Refresh DIRTY_LOG_MIGRATION bit.  */
1974     memory_region_transaction_begin();
1975     memory_region_update_pending = true;
1976     memory_region_transaction_commit();
1977 }
1978
1979 void memory_global_dirty_log_stop(void)
1980 {
1981     global_dirty_log = false;
1982
1983     /* Refresh DIRTY_LOG_MIGRATION bit.  */
1984     memory_region_transaction_begin();
1985     memory_region_update_pending = true;
1986     memory_region_transaction_commit();
1987
1988     MEMORY_LISTENER_CALL_GLOBAL(log_global_stop, Reverse);
1989 }
1990
1991 static void listener_add_address_space(MemoryListener *listener,
1992                                        AddressSpace *as)
1993 {
1994     FlatView *view;
1995     FlatRange *fr;
1996
1997     if (listener->address_space_filter
1998         && listener->address_space_filter != as) {
1999         return;
2000     }
2001
2002     if (global_dirty_log) {
2003         if (listener->log_global_start) {
2004             listener->log_global_start(listener);
2005         }
2006     }
2007
2008     view = address_space_get_flatview(as);
2009     FOR_EACH_FLAT_RANGE(fr, view) {
2010         MemoryRegionSection section = {
2011             .mr = fr->mr,
2012             .address_space = as,
2013             .offset_within_region = fr->offset_in_region,
2014             .size = fr->addr.size,
2015             .offset_within_address_space = int128_get64(fr->addr.start),
2016             .readonly = fr->readonly,
2017         };
2018         if (listener->region_add) {
2019             listener->region_add(listener, &section);
2020         }
2021     }
2022     flatview_unref(view);
2023 }
2024
2025 void memory_listener_register(MemoryListener *listener, AddressSpace *filter)
2026 {
2027     MemoryListener *other = NULL;
2028     AddressSpace *as;
2029
2030     listener->address_space_filter = filter;
2031     if (QTAILQ_EMPTY(&memory_listeners)
2032         || listener->priority >= QTAILQ_LAST(&memory_listeners,
2033                                              memory_listeners)->priority) {
2034         QTAILQ_INSERT_TAIL(&memory_listeners, listener, link);
2035     } else {
2036         QTAILQ_FOREACH(other, &memory_listeners, link) {
2037             if (listener->priority < other->priority) {
2038                 break;
2039             }
2040         }
2041         QTAILQ_INSERT_BEFORE(other, listener, link);
2042     }
2043
2044     QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
2045         listener_add_address_space(listener, as);
2046     }
2047 }
2048
2049 void memory_listener_unregister(MemoryListener *listener)
2050 {
2051     QTAILQ_REMOVE(&memory_listeners, listener, link);
2052 }
2053
2054 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name)
2055 {
2056     memory_region_ref(root);
2057     memory_region_transaction_begin();
2058     as->root = root;
2059     as->current_map = g_new(FlatView, 1);
2060     flatview_init(as->current_map);
2061     as->ioeventfd_nb = 0;
2062     as->ioeventfds = NULL;
2063     QTAILQ_INSERT_TAIL(&address_spaces, as, address_spaces_link);
2064     as->name = g_strdup(name ? name : "anonymous");
2065     address_space_init_dispatch(as);
2066     memory_region_update_pending |= root->enabled;
2067     memory_region_transaction_commit();
2068 }
2069
2070 static void do_address_space_destroy(AddressSpace *as)
2071 {
2072     MemoryListener *listener;
2073
2074     address_space_destroy_dispatch(as);
2075
2076     QTAILQ_FOREACH(listener, &memory_listeners, link) {
2077         assert(listener->address_space_filter != as);
2078     }
2079
2080     flatview_unref(as->current_map);
2081     g_free(as->name);
2082     g_free(as->ioeventfds);
2083     memory_region_unref(as->root);
2084 }
2085
2086 void address_space_destroy(AddressSpace *as)
2087 {
2088     MemoryRegion *root = as->root;
2089
2090     /* Flush out anything from MemoryListeners listening in on this */
2091     memory_region_transaction_begin();
2092     as->root = NULL;
2093     memory_region_transaction_commit();
2094     QTAILQ_REMOVE(&address_spaces, as, address_spaces_link);
2095     address_space_unregister(as);
2096
2097     /* At this point, as->dispatch and as->current_map are dummy
2098      * entries that the guest should never use.  Wait for the old
2099      * values to expire before freeing the data.
2100      */
2101     as->root = root;
2102     call_rcu(as, do_address_space_destroy, rcu);
2103 }
2104
2105 typedef struct MemoryRegionList MemoryRegionList;
2106
2107 struct MemoryRegionList {
2108     const MemoryRegion *mr;
2109     QTAILQ_ENTRY(MemoryRegionList) queue;
2110 };
2111
2112 typedef QTAILQ_HEAD(queue, MemoryRegionList) MemoryRegionListHead;
2113
2114 static void mtree_print_mr(fprintf_function mon_printf, void *f,
2115                            const MemoryRegion *mr, unsigned int level,
2116                            hwaddr base,
2117                            MemoryRegionListHead *alias_print_queue)
2118 {
2119     MemoryRegionList *new_ml, *ml, *next_ml;
2120     MemoryRegionListHead submr_print_queue;
2121     const MemoryRegion *submr;
2122     unsigned int i;
2123
2124     if (!mr) {
2125         return;
2126     }
2127
2128     for (i = 0; i < level; i++) {
2129         mon_printf(f, "  ");
2130     }
2131
2132     if (mr->alias) {
2133         MemoryRegionList *ml;
2134         bool found = false;
2135
2136         /* check if the alias is already in the queue */
2137         QTAILQ_FOREACH(ml, alias_print_queue, queue) {
2138             if (ml->mr == mr->alias) {
2139                 found = true;
2140             }
2141         }
2142
2143         if (!found) {
2144             ml = g_new(MemoryRegionList, 1);
2145             ml->mr = mr->alias;
2146             QTAILQ_INSERT_TAIL(alias_print_queue, ml, queue);
2147         }
2148         mon_printf(f, TARGET_FMT_plx "-" TARGET_FMT_plx
2149                    " (prio %d, %c%c): alias %s @%s " TARGET_FMT_plx
2150                    "-" TARGET_FMT_plx "%s\n",
2151                    base + mr->addr,
2152                    base + mr->addr
2153                    + (int128_nz(mr->size) ?
2154                       (hwaddr)int128_get64(int128_sub(mr->size,
2155                                                       int128_one())) : 0),
2156                    mr->priority,
2157                    mr->romd_mode ? 'R' : '-',
2158                    !mr->readonly && !(mr->rom_device && mr->romd_mode) ? 'W'
2159                                                                        : '-',
2160                    memory_region_name(mr),
2161                    memory_region_name(mr->alias),
2162                    mr->alias_offset,
2163                    mr->alias_offset
2164                    + (int128_nz(mr->size) ?
2165                       (hwaddr)int128_get64(int128_sub(mr->size,
2166                                                       int128_one())) : 0),
2167                    mr->enabled ? "" : " [disabled]");
2168     } else {
2169         mon_printf(f,
2170                    TARGET_FMT_plx "-" TARGET_FMT_plx " (prio %d, %c%c): %s%s\n",
2171                    base + mr->addr,
2172                    base + mr->addr
2173                    + (int128_nz(mr->size) ?
2174                       (hwaddr)int128_get64(int128_sub(mr->size,
2175                                                       int128_one())) : 0),
2176                    mr->priority,
2177                    mr->romd_mode ? 'R' : '-',
2178                    !mr->readonly && !(mr->rom_device && mr->romd_mode) ? 'W'
2179                                                                        : '-',
2180                    memory_region_name(mr),
2181                    mr->enabled ? "" : " [disabled]");
2182     }
2183
2184     QTAILQ_INIT(&submr_print_queue);
2185
2186     QTAILQ_FOREACH(submr, &mr->subregions, subregions_link) {
2187         new_ml = g_new(MemoryRegionList, 1);
2188         new_ml->mr = submr;
2189         QTAILQ_FOREACH(ml, &submr_print_queue, queue) {
2190             if (new_ml->mr->addr < ml->mr->addr ||
2191                 (new_ml->mr->addr == ml->mr->addr &&
2192                  new_ml->mr->priority > ml->mr->priority)) {
2193                 QTAILQ_INSERT_BEFORE(ml, new_ml, queue);
2194                 new_ml = NULL;
2195                 break;
2196             }
2197         }
2198         if (new_ml) {
2199             QTAILQ_INSERT_TAIL(&submr_print_queue, new_ml, queue);
2200         }
2201     }
2202
2203     QTAILQ_FOREACH(ml, &submr_print_queue, queue) {
2204         mtree_print_mr(mon_printf, f, ml->mr, level + 1, base + mr->addr,
2205                        alias_print_queue);
2206     }
2207
2208     QTAILQ_FOREACH_SAFE(ml, &submr_print_queue, queue, next_ml) {
2209         g_free(ml);
2210     }
2211 }
2212
2213 void mtree_info(fprintf_function mon_printf, void *f)
2214 {
2215     MemoryRegionListHead ml_head;
2216     MemoryRegionList *ml, *ml2;
2217     AddressSpace *as;
2218
2219     QTAILQ_INIT(&ml_head);
2220
2221     QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
2222         mon_printf(f, "address-space: %s\n", as->name);
2223         mtree_print_mr(mon_printf, f, as->root, 1, 0, &ml_head);
2224         mon_printf(f, "\n");
2225     }
2226
2227     /* print aliased regions */
2228     QTAILQ_FOREACH(ml, &ml_head, queue) {
2229         mon_printf(f, "memory-region: %s\n", memory_region_name(ml->mr));
2230         mtree_print_mr(mon_printf, f, ml->mr, 1, 0, &ml_head);
2231         mon_printf(f, "\n");
2232     }
2233
2234     QTAILQ_FOREACH_SAFE(ml, &ml_head, queue, ml2) {
2235         g_free(ml);
2236     }
2237 }
2238
2239 static const TypeInfo memory_region_info = {
2240     .parent             = TYPE_OBJECT,
2241     .name               = TYPE_MEMORY_REGION,
2242     .instance_size      = sizeof(MemoryRegion),
2243     .instance_init      = memory_region_initfn,
2244     .instance_finalize  = memory_region_finalize,
2245 };
2246
2247 static void memory_register_types(void)
2248 {
2249     type_register_static(&memory_region_info);
2250 }
2251
2252 type_init(memory_register_types)