shortcut: added back and controller shortcut info
[sdk/emulator/qemu.git] / memory.c
1 /*
2  * Physical memory management
3  *
4  * Copyright 2011 Red Hat, Inc. and/or its affiliates
5  *
6  * Authors:
7  *  Avi Kivity <avi@redhat.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2.  See
10  * the COPYING file in the top-level directory.
11  *
12  * Contributions after 2012-01-13 are licensed under the terms of the
13  * GNU GPL, version 2 or (at your option) any later version.
14  */
15
16 #include "exec/memory.h"
17 #include "exec/address-spaces.h"
18 #include "exec/ioport.h"
19 #include "qapi/visitor.h"
20 #include "qemu/bitops.h"
21 #include "qom/object.h"
22 #include "trace.h"
23 #include <assert.h>
24
25 #include "exec/memory-internal.h"
26 #include "exec/ram_addr.h"
27 #include "sysemu/sysemu.h"
28
29 //#define DEBUG_UNASSIGNED
30
31 static unsigned memory_region_transaction_depth;
32 static bool memory_region_update_pending;
33 static bool ioeventfd_update_pending;
34 static bool global_dirty_log = false;
35
36 /* flat_view_mutex is taken around reading as->current_map; the critical
37  * section is extremely short, so I'm using a single mutex for every AS.
38  * We could also RCU for the read-side.
39  *
40  * The BQL is taken around transaction commits, hence both locks are taken
41  * while writing to as->current_map (with the BQL taken outside).
42  */
43 static QemuMutex flat_view_mutex;
44
45 static QTAILQ_HEAD(memory_listeners, MemoryListener) memory_listeners
46     = QTAILQ_HEAD_INITIALIZER(memory_listeners);
47
48 static QTAILQ_HEAD(, AddressSpace) address_spaces
49     = QTAILQ_HEAD_INITIALIZER(address_spaces);
50
51 static void memory_init(void)
52 {
53     qemu_mutex_init(&flat_view_mutex);
54 }
55
56 typedef struct AddrRange AddrRange;
57
58 /*
59  * Note that signed integers are needed for negative offsetting in aliases
60  * (large MemoryRegion::alias_offset).
61  */
62 struct AddrRange {
63     Int128 start;
64     Int128 size;
65 };
66
67 static AddrRange addrrange_make(Int128 start, Int128 size)
68 {
69     return (AddrRange) { start, size };
70 }
71
72 static bool addrrange_equal(AddrRange r1, AddrRange r2)
73 {
74     return int128_eq(r1.start, r2.start) && int128_eq(r1.size, r2.size);
75 }
76
77 static Int128 addrrange_end(AddrRange r)
78 {
79     return int128_add(r.start, r.size);
80 }
81
82 static AddrRange addrrange_shift(AddrRange range, Int128 delta)
83 {
84     int128_addto(&range.start, delta);
85     return range;
86 }
87
88 static bool addrrange_contains(AddrRange range, Int128 addr)
89 {
90     return int128_ge(addr, range.start)
91         && int128_lt(addr, addrrange_end(range));
92 }
93
94 static bool addrrange_intersects(AddrRange r1, AddrRange r2)
95 {
96     return addrrange_contains(r1, r2.start)
97         || addrrange_contains(r2, r1.start);
98 }
99
100 static AddrRange addrrange_intersection(AddrRange r1, AddrRange r2)
101 {
102     Int128 start = int128_max(r1.start, r2.start);
103     Int128 end = int128_min(addrrange_end(r1), addrrange_end(r2));
104     return addrrange_make(start, int128_sub(end, start));
105 }
106
107 enum ListenerDirection { Forward, Reverse };
108
109 static bool memory_listener_match(MemoryListener *listener,
110                                   MemoryRegionSection *section)
111 {
112     return !listener->address_space_filter
113         || listener->address_space_filter == section->address_space;
114 }
115
116 #define MEMORY_LISTENER_CALL_GLOBAL(_callback, _direction, _args...)    \
117     do {                                                                \
118         MemoryListener *_listener;                                      \
119                                                                         \
120         switch (_direction) {                                           \
121         case Forward:                                                   \
122             QTAILQ_FOREACH(_listener, &memory_listeners, link) {        \
123                 if (_listener->_callback) {                             \
124                     _listener->_callback(_listener, ##_args);           \
125                 }                                                       \
126             }                                                           \
127             break;                                                      \
128         case Reverse:                                                   \
129             QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners,        \
130                                    memory_listeners, link) {            \
131                 if (_listener->_callback) {                             \
132                     _listener->_callback(_listener, ##_args);           \
133                 }                                                       \
134             }                                                           \
135             break;                                                      \
136         default:                                                        \
137             abort();                                                    \
138         }                                                               \
139     } while (0)
140
141 #define MEMORY_LISTENER_CALL(_callback, _direction, _section, _args...) \
142     do {                                                                \
143         MemoryListener *_listener;                                      \
144                                                                         \
145         switch (_direction) {                                           \
146         case Forward:                                                   \
147             QTAILQ_FOREACH(_listener, &memory_listeners, link) {        \
148                 if (_listener->_callback                                \
149                     && memory_listener_match(_listener, _section)) {    \
150                     _listener->_callback(_listener, _section, ##_args); \
151                 }                                                       \
152             }                                                           \
153             break;                                                      \
154         case Reverse:                                                   \
155             QTAILQ_FOREACH_REVERSE(_listener, &memory_listeners,        \
156                                    memory_listeners, link) {            \
157                 if (_listener->_callback                                \
158                     && memory_listener_match(_listener, _section)) {    \
159                     _listener->_callback(_listener, _section, ##_args); \
160                 }                                                       \
161             }                                                           \
162             break;                                                      \
163         default:                                                        \
164             abort();                                                    \
165         }                                                               \
166     } while (0)
167
168 /* No need to ref/unref .mr, the FlatRange keeps it alive.  */
169 #define MEMORY_LISTENER_UPDATE_REGION(fr, as, dir, callback)            \
170     MEMORY_LISTENER_CALL(callback, dir, (&(MemoryRegionSection) {       \
171         .mr = (fr)->mr,                                                 \
172         .address_space = (as),                                          \
173         .offset_within_region = (fr)->offset_in_region,                 \
174         .size = (fr)->addr.size,                                        \
175         .offset_within_address_space = int128_get64((fr)->addr.start),  \
176         .readonly = (fr)->readonly,                                     \
177               }))
178
179 struct CoalescedMemoryRange {
180     AddrRange addr;
181     QTAILQ_ENTRY(CoalescedMemoryRange) link;
182 };
183
184 struct MemoryRegionIoeventfd {
185     AddrRange addr;
186     bool match_data;
187     uint64_t data;
188     EventNotifier *e;
189 };
190
191 static bool memory_region_ioeventfd_before(MemoryRegionIoeventfd a,
192                                            MemoryRegionIoeventfd b)
193 {
194     if (int128_lt(a.addr.start, b.addr.start)) {
195         return true;
196     } else if (int128_gt(a.addr.start, b.addr.start)) {
197         return false;
198     } else if (int128_lt(a.addr.size, b.addr.size)) {
199         return true;
200     } else if (int128_gt(a.addr.size, b.addr.size)) {
201         return false;
202     } else if (a.match_data < b.match_data) {
203         return true;
204     } else  if (a.match_data > b.match_data) {
205         return false;
206     } else if (a.match_data) {
207         if (a.data < b.data) {
208             return true;
209         } else if (a.data > b.data) {
210             return false;
211         }
212     }
213     if (a.e < b.e) {
214         return true;
215     } else if (a.e > b.e) {
216         return false;
217     }
218     return false;
219 }
220
221 static bool memory_region_ioeventfd_equal(MemoryRegionIoeventfd a,
222                                           MemoryRegionIoeventfd b)
223 {
224     return !memory_region_ioeventfd_before(a, b)
225         && !memory_region_ioeventfd_before(b, a);
226 }
227
228 typedef struct FlatRange FlatRange;
229 typedef struct FlatView FlatView;
230
231 /* Range of memory in the global map.  Addresses are absolute. */
232 struct FlatRange {
233     MemoryRegion *mr;
234     hwaddr offset_in_region;
235     AddrRange addr;
236     uint8_t dirty_log_mask;
237     bool romd_mode;
238     bool readonly;
239 };
240
241 /* Flattened global view of current active memory hierarchy.  Kept in sorted
242  * order.
243  */
244 struct FlatView {
245     unsigned ref;
246     FlatRange *ranges;
247     unsigned nr;
248     unsigned nr_allocated;
249 };
250
251 typedef struct AddressSpaceOps AddressSpaceOps;
252
253 #define FOR_EACH_FLAT_RANGE(var, view)          \
254     for (var = (view)->ranges; var < (view)->ranges + (view)->nr; ++var)
255
256 static bool flatrange_equal(FlatRange *a, FlatRange *b)
257 {
258     return a->mr == b->mr
259         && addrrange_equal(a->addr, b->addr)
260         && a->offset_in_region == b->offset_in_region
261         && a->romd_mode == b->romd_mode
262         && a->readonly == b->readonly;
263 }
264
265 static void flatview_init(FlatView *view)
266 {
267     view->ref = 1;
268     view->ranges = NULL;
269     view->nr = 0;
270     view->nr_allocated = 0;
271 }
272
273 /* Insert a range into a given position.  Caller is responsible for maintaining
274  * sorting order.
275  */
276 static void flatview_insert(FlatView *view, unsigned pos, FlatRange *range)
277 {
278     if (view->nr == view->nr_allocated) {
279         view->nr_allocated = MAX(2 * view->nr, 10);
280         view->ranges = g_realloc(view->ranges,
281                                     view->nr_allocated * sizeof(*view->ranges));
282     }
283     memmove(view->ranges + pos + 1, view->ranges + pos,
284             (view->nr - pos) * sizeof(FlatRange));
285     view->ranges[pos] = *range;
286     memory_region_ref(range->mr);
287     ++view->nr;
288 }
289
290 static void flatview_destroy(FlatView *view)
291 {
292     int i;
293
294     for (i = 0; i < view->nr; i++) {
295         memory_region_unref(view->ranges[i].mr);
296     }
297     g_free(view->ranges);
298     g_free(view);
299 }
300
301 static void flatview_ref(FlatView *view)
302 {
303     atomic_inc(&view->ref);
304 }
305
306 static void flatview_unref(FlatView *view)
307 {
308     if (atomic_fetch_dec(&view->ref) == 1) {
309         flatview_destroy(view);
310     }
311 }
312
313 static bool can_merge(FlatRange *r1, FlatRange *r2)
314 {
315     return int128_eq(addrrange_end(r1->addr), r2->addr.start)
316         && r1->mr == r2->mr
317         && int128_eq(int128_add(int128_make64(r1->offset_in_region),
318                                 r1->addr.size),
319                      int128_make64(r2->offset_in_region))
320         && r1->dirty_log_mask == r2->dirty_log_mask
321         && r1->romd_mode == r2->romd_mode
322         && r1->readonly == r2->readonly;
323 }
324
325 /* Attempt to simplify a view by merging adjacent ranges */
326 static void flatview_simplify(FlatView *view)
327 {
328     unsigned i, j;
329
330     i = 0;
331     while (i < view->nr) {
332         j = i + 1;
333         while (j < view->nr
334                && can_merge(&view->ranges[j-1], &view->ranges[j])) {
335             int128_addto(&view->ranges[i].addr.size, view->ranges[j].addr.size);
336             ++j;
337         }
338         ++i;
339         memmove(&view->ranges[i], &view->ranges[j],
340                 (view->nr - j) * sizeof(view->ranges[j]));
341         view->nr -= j - i;
342     }
343 }
344
345 static bool memory_region_big_endian(MemoryRegion *mr)
346 {
347 #ifdef TARGET_WORDS_BIGENDIAN
348     return mr->ops->endianness != DEVICE_LITTLE_ENDIAN;
349 #else
350     return mr->ops->endianness == DEVICE_BIG_ENDIAN;
351 #endif
352 }
353
354 static bool memory_region_wrong_endianness(MemoryRegion *mr)
355 {
356 #ifdef TARGET_WORDS_BIGENDIAN
357     return mr->ops->endianness == DEVICE_LITTLE_ENDIAN;
358 #else
359     return mr->ops->endianness == DEVICE_BIG_ENDIAN;
360 #endif
361 }
362
363 static void adjust_endianness(MemoryRegion *mr, uint64_t *data, unsigned size)
364 {
365     if (memory_region_wrong_endianness(mr)) {
366         switch (size) {
367         case 1:
368             break;
369         case 2:
370             *data = bswap16(*data);
371             break;
372         case 4:
373             *data = bswap32(*data);
374             break;
375         case 8:
376             *data = bswap64(*data);
377             break;
378         default:
379             abort();
380         }
381     }
382 }
383
384 static void memory_region_oldmmio_read_accessor(MemoryRegion *mr,
385                                                 hwaddr addr,
386                                                 uint64_t *value,
387                                                 unsigned size,
388                                                 unsigned shift,
389                                                 uint64_t mask)
390 {
391     uint64_t tmp;
392
393     tmp = mr->ops->old_mmio.read[ctz32(size)](mr->opaque, addr);
394     trace_memory_region_ops_read(mr, addr, tmp, size);
395     *value |= (tmp & mask) << shift;
396 }
397
398 static void memory_region_read_accessor(MemoryRegion *mr,
399                                         hwaddr addr,
400                                         uint64_t *value,
401                                         unsigned size,
402                                         unsigned shift,
403                                         uint64_t mask)
404 {
405     uint64_t tmp;
406
407     if (mr->flush_coalesced_mmio) {
408         qemu_flush_coalesced_mmio_buffer();
409     }
410     tmp = mr->ops->read(mr->opaque, addr, size);
411     trace_memory_region_ops_read(mr, addr, tmp, size);
412     *value |= (tmp & mask) << shift;
413 }
414
415 static void memory_region_oldmmio_write_accessor(MemoryRegion *mr,
416                                                  hwaddr addr,
417                                                  uint64_t *value,
418                                                  unsigned size,
419                                                  unsigned shift,
420                                                  uint64_t mask)
421 {
422     uint64_t tmp;
423
424     tmp = (*value >> shift) & mask;
425     trace_memory_region_ops_write(mr, addr, tmp, size);
426     mr->ops->old_mmio.write[ctz32(size)](mr->opaque, addr, tmp);
427 }
428
429 static void memory_region_write_accessor(MemoryRegion *mr,
430                                          hwaddr addr,
431                                          uint64_t *value,
432                                          unsigned size,
433                                          unsigned shift,
434                                          uint64_t mask)
435 {
436     uint64_t tmp;
437
438     if (mr->flush_coalesced_mmio) {
439         qemu_flush_coalesced_mmio_buffer();
440     }
441     tmp = (*value >> shift) & mask;
442     trace_memory_region_ops_write(mr, addr, tmp, size);
443     mr->ops->write(mr->opaque, addr, tmp, size);
444 }
445
446 static void access_with_adjusted_size(hwaddr addr,
447                                       uint64_t *value,
448                                       unsigned size,
449                                       unsigned access_size_min,
450                                       unsigned access_size_max,
451                                       void (*access)(MemoryRegion *mr,
452                                                      hwaddr addr,
453                                                      uint64_t *value,
454                                                      unsigned size,
455                                                      unsigned shift,
456                                                      uint64_t mask),
457                                       MemoryRegion *mr)
458 {
459     uint64_t access_mask;
460     unsigned access_size;
461     unsigned i;
462
463     if (!access_size_min) {
464         access_size_min = 1;
465     }
466     if (!access_size_max) {
467         access_size_max = 4;
468     }
469
470     /* FIXME: support unaligned access? */
471     access_size = MAX(MIN(size, access_size_max), access_size_min);
472     access_mask = -1ULL >> (64 - access_size * 8);
473     if (memory_region_big_endian(mr)) {
474         for (i = 0; i < size; i += access_size) {
475             access(mr, addr + i, value, access_size,
476                    (size - access_size - i) * 8, access_mask);
477         }
478     } else {
479         for (i = 0; i < size; i += access_size) {
480             access(mr, addr + i, value, access_size, i * 8, access_mask);
481         }
482     }
483 }
484
485 static AddressSpace *memory_region_to_address_space(MemoryRegion *mr)
486 {
487     AddressSpace *as;
488
489     while (mr->container) {
490         mr = mr->container;
491     }
492     QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
493         if (mr == as->root) {
494             return as;
495         }
496     }
497     return NULL;
498 }
499
500 /* Render a memory region into the global view.  Ranges in @view obscure
501  * ranges in @mr.
502  */
503 static void render_memory_region(FlatView *view,
504                                  MemoryRegion *mr,
505                                  Int128 base,
506                                  AddrRange clip,
507                                  bool readonly)
508 {
509     MemoryRegion *subregion;
510     unsigned i;
511     hwaddr offset_in_region;
512     Int128 remain;
513     Int128 now;
514     FlatRange fr;
515     AddrRange tmp;
516
517     if (!mr->enabled) {
518         return;
519     }
520
521     int128_addto(&base, int128_make64(mr->addr));
522     readonly |= mr->readonly;
523
524     tmp = addrrange_make(base, mr->size);
525
526     if (!addrrange_intersects(tmp, clip)) {
527         return;
528     }
529
530     clip = addrrange_intersection(tmp, clip);
531
532     if (mr->alias) {
533         int128_subfrom(&base, int128_make64(mr->alias->addr));
534         int128_subfrom(&base, int128_make64(mr->alias_offset));
535         render_memory_region(view, mr->alias, base, clip, readonly);
536         return;
537     }
538
539     /* Render subregions in priority order. */
540     QTAILQ_FOREACH(subregion, &mr->subregions, subregions_link) {
541         render_memory_region(view, subregion, base, clip, readonly);
542     }
543
544     if (!mr->terminates) {
545         return;
546     }
547
548     offset_in_region = int128_get64(int128_sub(clip.start, base));
549     base = clip.start;
550     remain = clip.size;
551
552     fr.mr = mr;
553     fr.dirty_log_mask = mr->dirty_log_mask;
554     fr.romd_mode = mr->romd_mode;
555     fr.readonly = readonly;
556
557     /* Render the region itself into any gaps left by the current view. */
558     for (i = 0; i < view->nr && int128_nz(remain); ++i) {
559         if (int128_ge(base, addrrange_end(view->ranges[i].addr))) {
560             continue;
561         }
562         if (int128_lt(base, view->ranges[i].addr.start)) {
563             now = int128_min(remain,
564                              int128_sub(view->ranges[i].addr.start, base));
565             fr.offset_in_region = offset_in_region;
566             fr.addr = addrrange_make(base, now);
567             flatview_insert(view, i, &fr);
568             ++i;
569             int128_addto(&base, now);
570             offset_in_region += int128_get64(now);
571             int128_subfrom(&remain, now);
572         }
573         now = int128_sub(int128_min(int128_add(base, remain),
574                                     addrrange_end(view->ranges[i].addr)),
575                          base);
576         int128_addto(&base, now);
577         offset_in_region += int128_get64(now);
578         int128_subfrom(&remain, now);
579     }
580     if (int128_nz(remain)) {
581         fr.offset_in_region = offset_in_region;
582         fr.addr = addrrange_make(base, remain);
583         flatview_insert(view, i, &fr);
584     }
585 }
586
587 /* Render a memory topology into a list of disjoint absolute ranges. */
588 static FlatView *generate_memory_topology(MemoryRegion *mr)
589 {
590     FlatView *view;
591
592     view = g_new(FlatView, 1);
593     flatview_init(view);
594
595     if (mr) {
596         render_memory_region(view, mr, int128_zero(),
597                              addrrange_make(int128_zero(), int128_2_64()), false);
598     }
599     flatview_simplify(view);
600
601     return view;
602 }
603
604 static void address_space_add_del_ioeventfds(AddressSpace *as,
605                                              MemoryRegionIoeventfd *fds_new,
606                                              unsigned fds_new_nb,
607                                              MemoryRegionIoeventfd *fds_old,
608                                              unsigned fds_old_nb)
609 {
610     unsigned iold, inew;
611     MemoryRegionIoeventfd *fd;
612     MemoryRegionSection section;
613
614     /* Generate a symmetric difference of the old and new fd sets, adding
615      * and deleting as necessary.
616      */
617
618     iold = inew = 0;
619     while (iold < fds_old_nb || inew < fds_new_nb) {
620         if (iold < fds_old_nb
621             && (inew == fds_new_nb
622                 || memory_region_ioeventfd_before(fds_old[iold],
623                                                   fds_new[inew]))) {
624             fd = &fds_old[iold];
625             section = (MemoryRegionSection) {
626                 .address_space = as,
627                 .offset_within_address_space = int128_get64(fd->addr.start),
628                 .size = fd->addr.size,
629             };
630             MEMORY_LISTENER_CALL(eventfd_del, Forward, &section,
631                                  fd->match_data, fd->data, fd->e);
632             ++iold;
633         } else if (inew < fds_new_nb
634                    && (iold == fds_old_nb
635                        || memory_region_ioeventfd_before(fds_new[inew],
636                                                          fds_old[iold]))) {
637             fd = &fds_new[inew];
638             section = (MemoryRegionSection) {
639                 .address_space = as,
640                 .offset_within_address_space = int128_get64(fd->addr.start),
641                 .size = fd->addr.size,
642             };
643             MEMORY_LISTENER_CALL(eventfd_add, Reverse, &section,
644                                  fd->match_data, fd->data, fd->e);
645             ++inew;
646         } else {
647             ++iold;
648             ++inew;
649         }
650     }
651 }
652
653 static FlatView *address_space_get_flatview(AddressSpace *as)
654 {
655     FlatView *view;
656
657     qemu_mutex_lock(&flat_view_mutex);
658     view = as->current_map;
659     flatview_ref(view);
660     qemu_mutex_unlock(&flat_view_mutex);
661     return view;
662 }
663
664 static void address_space_update_ioeventfds(AddressSpace *as)
665 {
666     FlatView *view;
667     FlatRange *fr;
668     unsigned ioeventfd_nb = 0;
669     MemoryRegionIoeventfd *ioeventfds = NULL;
670     AddrRange tmp;
671     unsigned i;
672
673     view = address_space_get_flatview(as);
674     FOR_EACH_FLAT_RANGE(fr, view) {
675         for (i = 0; i < fr->mr->ioeventfd_nb; ++i) {
676             tmp = addrrange_shift(fr->mr->ioeventfds[i].addr,
677                                   int128_sub(fr->addr.start,
678                                              int128_make64(fr->offset_in_region)));
679             if (addrrange_intersects(fr->addr, tmp)) {
680                 ++ioeventfd_nb;
681                 ioeventfds = g_realloc(ioeventfds,
682                                           ioeventfd_nb * sizeof(*ioeventfds));
683                 ioeventfds[ioeventfd_nb-1] = fr->mr->ioeventfds[i];
684                 ioeventfds[ioeventfd_nb-1].addr = tmp;
685             }
686         }
687     }
688
689     address_space_add_del_ioeventfds(as, ioeventfds, ioeventfd_nb,
690                                      as->ioeventfds, as->ioeventfd_nb);
691
692     g_free(as->ioeventfds);
693     as->ioeventfds = ioeventfds;
694     as->ioeventfd_nb = ioeventfd_nb;
695     flatview_unref(view);
696 }
697
698 static void address_space_update_topology_pass(AddressSpace *as,
699                                                const FlatView *old_view,
700                                                const FlatView *new_view,
701                                                bool adding)
702 {
703     unsigned iold, inew;
704     FlatRange *frold, *frnew;
705
706     /* Generate a symmetric difference of the old and new memory maps.
707      * Kill ranges in the old map, and instantiate ranges in the new map.
708      */
709     iold = inew = 0;
710     while (iold < old_view->nr || inew < new_view->nr) {
711         if (iold < old_view->nr) {
712             frold = &old_view->ranges[iold];
713         } else {
714             frold = NULL;
715         }
716         if (inew < new_view->nr) {
717             frnew = &new_view->ranges[inew];
718         } else {
719             frnew = NULL;
720         }
721
722         if (frold
723             && (!frnew
724                 || int128_lt(frold->addr.start, frnew->addr.start)
725                 || (int128_eq(frold->addr.start, frnew->addr.start)
726                     && !flatrange_equal(frold, frnew)))) {
727             /* In old but not in new, or in both but attributes changed. */
728
729             if (!adding) {
730                 MEMORY_LISTENER_UPDATE_REGION(frold, as, Reverse, region_del);
731             }
732
733             ++iold;
734         } else if (frold && frnew && flatrange_equal(frold, frnew)) {
735             /* In both and unchanged (except logging may have changed) */
736
737             if (adding) {
738                 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_nop);
739                 if (frold->dirty_log_mask && !frnew->dirty_log_mask) {
740                     MEMORY_LISTENER_UPDATE_REGION(frnew, as, Reverse, log_stop);
741                 } else if (frnew->dirty_log_mask && !frold->dirty_log_mask) {
742                     MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, log_start);
743                 }
744             }
745
746             ++iold;
747             ++inew;
748         } else {
749             /* In new */
750
751             if (adding) {
752                 MEMORY_LISTENER_UPDATE_REGION(frnew, as, Forward, region_add);
753             }
754
755             ++inew;
756         }
757     }
758 }
759
760
761 static void address_space_update_topology(AddressSpace *as)
762 {
763     FlatView *old_view = address_space_get_flatview(as);
764     FlatView *new_view = generate_memory_topology(as->root);
765
766     address_space_update_topology_pass(as, old_view, new_view, false);
767     address_space_update_topology_pass(as, old_view, new_view, true);
768
769     qemu_mutex_lock(&flat_view_mutex);
770     flatview_unref(as->current_map);
771     as->current_map = new_view;
772     qemu_mutex_unlock(&flat_view_mutex);
773
774     /* Note that all the old MemoryRegions are still alive up to this
775      * point.  This relieves most MemoryListeners from the need to
776      * ref/unref the MemoryRegions they get---unless they use them
777      * outside the iothread mutex, in which case precise reference
778      * counting is necessary.
779      */
780     flatview_unref(old_view);
781
782     address_space_update_ioeventfds(as);
783 }
784
785 void memory_region_transaction_begin(void)
786 {
787     qemu_flush_coalesced_mmio_buffer();
788     ++memory_region_transaction_depth;
789 }
790
791 static void memory_region_clear_pending(void)
792 {
793     memory_region_update_pending = false;
794     ioeventfd_update_pending = false;
795 }
796
797 void memory_region_transaction_commit(void)
798 {
799     AddressSpace *as;
800
801     assert(memory_region_transaction_depth);
802     --memory_region_transaction_depth;
803     if (!memory_region_transaction_depth) {
804         if (memory_region_update_pending) {
805             MEMORY_LISTENER_CALL_GLOBAL(begin, Forward);
806
807             QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
808                 address_space_update_topology(as);
809             }
810
811             MEMORY_LISTENER_CALL_GLOBAL(commit, Forward);
812         } else if (ioeventfd_update_pending) {
813             QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
814                 address_space_update_ioeventfds(as);
815             }
816         }
817         memory_region_clear_pending();
818    }
819 }
820
821 static void memory_region_destructor_none(MemoryRegion *mr)
822 {
823 }
824
825 static void memory_region_destructor_ram(MemoryRegion *mr)
826 {
827     qemu_ram_free(mr->ram_addr);
828 }
829
830 static void memory_region_destructor_alias(MemoryRegion *mr)
831 {
832     memory_region_unref(mr->alias);
833 }
834
835 static void memory_region_destructor_ram_from_ptr(MemoryRegion *mr)
836 {
837     qemu_ram_free_from_ptr(mr->ram_addr);
838 }
839
840 static void memory_region_destructor_rom_device(MemoryRegion *mr)
841 {
842     qemu_ram_free(mr->ram_addr & TARGET_PAGE_MASK);
843 }
844
845 static bool memory_region_need_escape(char c)
846 {
847     return c == '/' || c == '[' || c == '\\' || c == ']';
848 }
849
850 static char *memory_region_escape_name(const char *name)
851 {
852     const char *p;
853     char *escaped, *q;
854     uint8_t c;
855     size_t bytes = 0;
856
857     for (p = name; *p; p++) {
858         bytes += memory_region_need_escape(*p) ? 4 : 1;
859     }
860     if (bytes == p - name) {
861        return g_memdup(name, bytes + 1);
862     }
863
864     escaped = g_malloc(bytes + 1);
865     for (p = name, q = escaped; *p; p++) {
866         c = *p;
867         if (unlikely(memory_region_need_escape(c))) {
868             *q++ = '\\';
869             *q++ = 'x';
870             *q++ = "0123456789abcdef"[c >> 4];
871             c = "0123456789abcdef"[c & 15];
872         }
873         *q++ = c;
874     }
875     *q = 0;
876     return escaped;
877 }
878
879 void memory_region_init(MemoryRegion *mr,
880                         Object *owner,
881                         const char *name,
882                         uint64_t size)
883 {
884     if (!owner) {
885         owner = qdev_get_machine();
886     }
887
888     object_initialize(mr, sizeof(*mr), TYPE_MEMORY_REGION);
889     mr->size = int128_make64(size);
890     if (size == UINT64_MAX) {
891         mr->size = int128_2_64();
892     }
893     mr->name = g_strdup(name);
894
895     if (name) {
896         char *escaped_name = memory_region_escape_name(name);
897         char *name_array = g_strdup_printf("%s[*]", escaped_name);
898         object_property_add_child(owner, name_array, OBJECT(mr), &error_abort);
899         object_unref(OBJECT(mr));
900         g_free(name_array);
901         g_free(escaped_name);
902     }
903 }
904
905 static void memory_region_get_addr(Object *obj, Visitor *v, void *opaque,
906                                    const char *name, Error **errp)
907 {
908     MemoryRegion *mr = MEMORY_REGION(obj);
909     uint64_t value = mr->addr;
910
911     visit_type_uint64(v, &value, name, errp);
912 }
913
914 static void memory_region_get_container(Object *obj, Visitor *v, void *opaque,
915                                         const char *name, Error **errp)
916 {
917     MemoryRegion *mr = MEMORY_REGION(obj);
918     gchar *path = (gchar *)"";
919
920     if (mr->container) {
921         path = object_get_canonical_path(OBJECT(mr->container));
922     }
923     visit_type_str(v, &path, name, errp);
924     if (mr->container) {
925         g_free(path);
926     }
927 }
928
929 static Object *memory_region_resolve_container(Object *obj, void *opaque,
930                                                const char *part)
931 {
932     MemoryRegion *mr = MEMORY_REGION(obj);
933
934     return OBJECT(mr->container);
935 }
936
937 static void memory_region_get_priority(Object *obj, Visitor *v, void *opaque,
938                                        const char *name, Error **errp)
939 {
940     MemoryRegion *mr = MEMORY_REGION(obj);
941     int32_t value = mr->priority;
942
943     visit_type_int32(v, &value, name, errp);
944 }
945
946 static bool memory_region_get_may_overlap(Object *obj, Error **errp)
947 {
948     MemoryRegion *mr = MEMORY_REGION(obj);
949
950     return mr->may_overlap;
951 }
952
953 static void memory_region_get_size(Object *obj, Visitor *v, void *opaque,
954                                    const char *name, Error **errp)
955 {
956     MemoryRegion *mr = MEMORY_REGION(obj);
957     uint64_t value = memory_region_size(mr);
958
959     visit_type_uint64(v, &value, name, errp);
960 }
961
962 static void memory_region_initfn(Object *obj)
963 {
964     MemoryRegion *mr = MEMORY_REGION(obj);
965     ObjectProperty *op;
966
967     mr->ops = &unassigned_mem_ops;
968     mr->enabled = true;
969     mr->romd_mode = true;
970     mr->destructor = memory_region_destructor_none;
971     QTAILQ_INIT(&mr->subregions);
972     QTAILQ_INIT(&mr->coalesced);
973
974     op = object_property_add(OBJECT(mr), "container",
975                              "link<" TYPE_MEMORY_REGION ">",
976                              memory_region_get_container,
977                              NULL, /* memory_region_set_container */
978                              NULL, NULL, &error_abort);
979     op->resolve = memory_region_resolve_container;
980
981     object_property_add(OBJECT(mr), "addr", "uint64",
982                         memory_region_get_addr,
983                         NULL, /* memory_region_set_addr */
984                         NULL, NULL, &error_abort);
985     object_property_add(OBJECT(mr), "priority", "uint32",
986                         memory_region_get_priority,
987                         NULL, /* memory_region_set_priority */
988                         NULL, NULL, &error_abort);
989     object_property_add_bool(OBJECT(mr), "may-overlap",
990                              memory_region_get_may_overlap,
991                              NULL, /* memory_region_set_may_overlap */
992                              &error_abort);
993     object_property_add(OBJECT(mr), "size", "uint64",
994                         memory_region_get_size,
995                         NULL, /* memory_region_set_size, */
996                         NULL, NULL, &error_abort);
997 }
998
999 static uint64_t unassigned_mem_read(void *opaque, hwaddr addr,
1000                                     unsigned size)
1001 {
1002 #ifdef DEBUG_UNASSIGNED
1003     printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
1004 #endif
1005     if (current_cpu != NULL) {
1006         cpu_unassigned_access(current_cpu, addr, false, false, 0, size);
1007     }
1008     return 0;
1009 }
1010
1011 static void unassigned_mem_write(void *opaque, hwaddr addr,
1012                                  uint64_t val, unsigned size)
1013 {
1014 #ifdef DEBUG_UNASSIGNED
1015     printf("Unassigned mem write " TARGET_FMT_plx " = 0x%"PRIx64"\n", addr, val);
1016 #endif
1017     if (current_cpu != NULL) {
1018         cpu_unassigned_access(current_cpu, addr, true, false, 0, size);
1019     }
1020 }
1021
1022 static bool unassigned_mem_accepts(void *opaque, hwaddr addr,
1023                                    unsigned size, bool is_write)
1024 {
1025     return false;
1026 }
1027
1028 const MemoryRegionOps unassigned_mem_ops = {
1029     .valid.accepts = unassigned_mem_accepts,
1030     .endianness = DEVICE_NATIVE_ENDIAN,
1031 };
1032
1033 bool memory_region_access_valid(MemoryRegion *mr,
1034                                 hwaddr addr,
1035                                 unsigned size,
1036                                 bool is_write)
1037 {
1038     int access_size_min, access_size_max;
1039     int access_size, i;
1040
1041     if (!mr->ops->valid.unaligned && (addr & (size - 1))) {
1042         return false;
1043     }
1044
1045     if (!mr->ops->valid.accepts) {
1046         return true;
1047     }
1048
1049     access_size_min = mr->ops->valid.min_access_size;
1050     if (!mr->ops->valid.min_access_size) {
1051         access_size_min = 1;
1052     }
1053
1054     access_size_max = mr->ops->valid.max_access_size;
1055     if (!mr->ops->valid.max_access_size) {
1056         access_size_max = 4;
1057     }
1058
1059     access_size = MAX(MIN(size, access_size_max), access_size_min);
1060     for (i = 0; i < size; i += access_size) {
1061         if (!mr->ops->valid.accepts(mr->opaque, addr + i, access_size,
1062                                     is_write)) {
1063             return false;
1064         }
1065     }
1066
1067     return true;
1068 }
1069
1070 static uint64_t memory_region_dispatch_read1(MemoryRegion *mr,
1071                                              hwaddr addr,
1072                                              unsigned size)
1073 {
1074     uint64_t data = 0;
1075
1076     if (mr->ops->read) {
1077         access_with_adjusted_size(addr, &data, size,
1078                                   mr->ops->impl.min_access_size,
1079                                   mr->ops->impl.max_access_size,
1080                                   memory_region_read_accessor, mr);
1081     } else {
1082         access_with_adjusted_size(addr, &data, size, 1, 4,
1083                                   memory_region_oldmmio_read_accessor, mr);
1084     }
1085
1086     return data;
1087 }
1088
1089 static bool memory_region_dispatch_read(MemoryRegion *mr,
1090                                         hwaddr addr,
1091                                         uint64_t *pval,
1092                                         unsigned size)
1093 {
1094     if (!memory_region_access_valid(mr, addr, size, false)) {
1095         *pval = unassigned_mem_read(mr, addr, size);
1096         return true;
1097     }
1098
1099     *pval = memory_region_dispatch_read1(mr, addr, size);
1100     adjust_endianness(mr, pval, size);
1101     return false;
1102 }
1103
1104 static bool memory_region_dispatch_write(MemoryRegion *mr,
1105                                          hwaddr addr,
1106                                          uint64_t data,
1107                                          unsigned size)
1108 {
1109     if (!memory_region_access_valid(mr, addr, size, true)) {
1110         unassigned_mem_write(mr, addr, data, size);
1111         return true;
1112     }
1113
1114     adjust_endianness(mr, &data, size);
1115
1116     if (mr->ops->write) {
1117         access_with_adjusted_size(addr, &data, size,
1118                                   mr->ops->impl.min_access_size,
1119                                   mr->ops->impl.max_access_size,
1120                                   memory_region_write_accessor, mr);
1121     } else {
1122         access_with_adjusted_size(addr, &data, size, 1, 4,
1123                                   memory_region_oldmmio_write_accessor, mr);
1124     }
1125     return false;
1126 }
1127
1128 void memory_region_init_io(MemoryRegion *mr,
1129                            Object *owner,
1130                            const MemoryRegionOps *ops,
1131                            void *opaque,
1132                            const char *name,
1133                            uint64_t size)
1134 {
1135     memory_region_init(mr, owner, name, size);
1136     mr->ops = ops;
1137     mr->opaque = opaque;
1138     mr->terminates = true;
1139     mr->ram_addr = ~(ram_addr_t)0;
1140 }
1141
1142 void memory_region_init_ram(MemoryRegion *mr,
1143                             Object *owner,
1144                             const char *name,
1145                             uint64_t size,
1146                             Error **errp)
1147 {
1148     memory_region_init(mr, owner, name, size);
1149     mr->ram = true;
1150     mr->terminates = true;
1151     mr->destructor = memory_region_destructor_ram;
1152     mr->ram_addr = qemu_ram_alloc(size, mr, errp);
1153 }
1154
1155 #ifdef __linux__
1156 void memory_region_init_ram_from_file(MemoryRegion *mr,
1157                                       struct Object *owner,
1158                                       const char *name,
1159                                       uint64_t size,
1160                                       bool share,
1161                                       const char *path,
1162                                       Error **errp)
1163 {
1164     memory_region_init(mr, owner, name, size);
1165     mr->ram = true;
1166     mr->terminates = true;
1167     mr->destructor = memory_region_destructor_ram;
1168     mr->ram_addr = qemu_ram_alloc_from_file(size, mr, share, path, errp);
1169 }
1170 #endif
1171
1172 void memory_region_init_ram_ptr(MemoryRegion *mr,
1173                                 Object *owner,
1174                                 const char *name,
1175                                 uint64_t size,
1176                                 void *ptr)
1177 {
1178     memory_region_init(mr, owner, name, size);
1179     mr->ram = true;
1180     mr->terminates = true;
1181     mr->destructor = memory_region_destructor_ram_from_ptr;
1182
1183     /* qemu_ram_alloc_from_ptr cannot fail with ptr != NULL.  */
1184     assert(ptr != NULL);
1185     mr->ram_addr = qemu_ram_alloc_from_ptr(size, ptr, mr, &error_abort);
1186 }
1187
1188 void memory_region_set_skip_dump(MemoryRegion *mr)
1189 {
1190     mr->skip_dump = true;
1191 }
1192
1193 void memory_region_init_alias(MemoryRegion *mr,
1194                               Object *owner,
1195                               const char *name,
1196                               MemoryRegion *orig,
1197                               hwaddr offset,
1198                               uint64_t size)
1199 {
1200     memory_region_init(mr, owner, name, size);
1201     memory_region_ref(orig);
1202     mr->destructor = memory_region_destructor_alias;
1203     mr->alias = orig;
1204     mr->alias_offset = offset;
1205 }
1206
1207 void memory_region_init_rom_device(MemoryRegion *mr,
1208                                    Object *owner,
1209                                    const MemoryRegionOps *ops,
1210                                    void *opaque,
1211                                    const char *name,
1212                                    uint64_t size,
1213                                    Error **errp)
1214 {
1215     memory_region_init(mr, owner, name, size);
1216     mr->ops = ops;
1217     mr->opaque = opaque;
1218     mr->terminates = true;
1219     mr->rom_device = true;
1220     mr->destructor = memory_region_destructor_rom_device;
1221     mr->ram_addr = qemu_ram_alloc(size, mr, errp);
1222 }
1223
1224 void memory_region_init_iommu(MemoryRegion *mr,
1225                               Object *owner,
1226                               const MemoryRegionIOMMUOps *ops,
1227                               const char *name,
1228                               uint64_t size)
1229 {
1230     memory_region_init(mr, owner, name, size);
1231     mr->iommu_ops = ops,
1232     mr->terminates = true;  /* then re-forwards */
1233     notifier_list_init(&mr->iommu_notify);
1234 }
1235
1236 void memory_region_init_reservation(MemoryRegion *mr,
1237                                     Object *owner,
1238                                     const char *name,
1239                                     uint64_t size)
1240 {
1241     memory_region_init_io(mr, owner, &unassigned_mem_ops, mr, name, size);
1242 }
1243
1244 static void memory_region_finalize(Object *obj)
1245 {
1246     MemoryRegion *mr = MEMORY_REGION(obj);
1247
1248     assert(QTAILQ_EMPTY(&mr->subregions));
1249     assert(memory_region_transaction_depth == 0);
1250     mr->destructor(mr);
1251     memory_region_clear_coalescing(mr);
1252     g_free((char *)mr->name);
1253     g_free(mr->ioeventfds);
1254 }
1255
1256 Object *memory_region_owner(MemoryRegion *mr)
1257 {
1258     Object *obj = OBJECT(mr);
1259     return obj->parent;
1260 }
1261
1262 void memory_region_ref(MemoryRegion *mr)
1263 {
1264     /* MMIO callbacks most likely will access data that belongs
1265      * to the owner, hence the need to ref/unref the owner whenever
1266      * the memory region is in use.
1267      *
1268      * The memory region is a child of its owner.  As long as the
1269      * owner doesn't call unparent itself on the memory region,
1270      * ref-ing the owner will also keep the memory region alive.
1271      * Memory regions without an owner are supposed to never go away,
1272      * but we still ref/unref them for debugging purposes.
1273      */
1274     Object *obj = OBJECT(mr);
1275     if (obj && obj->parent) {
1276         object_ref(obj->parent);
1277     } else {
1278         object_ref(obj);
1279     }
1280 }
1281
1282 void memory_region_unref(MemoryRegion *mr)
1283 {
1284     Object *obj = OBJECT(mr);
1285     if (obj && obj->parent) {
1286         object_unref(obj->parent);
1287     } else {
1288         object_unref(obj);
1289     }
1290 }
1291
1292 uint64_t memory_region_size(MemoryRegion *mr)
1293 {
1294     if (int128_eq(mr->size, int128_2_64())) {
1295         return UINT64_MAX;
1296     }
1297     return int128_get64(mr->size);
1298 }
1299
1300 const char *memory_region_name(const MemoryRegion *mr)
1301 {
1302     if (!mr->name) {
1303         ((MemoryRegion *)mr)->name =
1304             object_get_canonical_path_component(OBJECT(mr));
1305     }
1306     return mr->name;
1307 }
1308
1309 bool memory_region_is_ram(MemoryRegion *mr)
1310 {
1311     return mr->ram;
1312 }
1313
1314 bool memory_region_is_skip_dump(MemoryRegion *mr)
1315 {
1316     return mr->skip_dump;
1317 }
1318
1319 bool memory_region_is_logging(MemoryRegion *mr)
1320 {
1321     return mr->dirty_log_mask;
1322 }
1323
1324 bool memory_region_is_rom(MemoryRegion *mr)
1325 {
1326     return mr->ram && mr->readonly;
1327 }
1328
1329 bool memory_region_is_iommu(MemoryRegion *mr)
1330 {
1331     return mr->iommu_ops;
1332 }
1333
1334 void memory_region_register_iommu_notifier(MemoryRegion *mr, Notifier *n)
1335 {
1336     notifier_list_add(&mr->iommu_notify, n);
1337 }
1338
1339 void memory_region_unregister_iommu_notifier(Notifier *n)
1340 {
1341     notifier_remove(n);
1342 }
1343
1344 void memory_region_notify_iommu(MemoryRegion *mr,
1345                                 IOMMUTLBEntry entry)
1346 {
1347     assert(memory_region_is_iommu(mr));
1348     notifier_list_notify(&mr->iommu_notify, &entry);
1349 }
1350
1351 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client)
1352 {
1353     uint8_t mask = 1 << client;
1354
1355     memory_region_transaction_begin();
1356     mr->dirty_log_mask = (mr->dirty_log_mask & ~mask) | (log * mask);
1357     memory_region_update_pending |= mr->enabled;
1358     memory_region_transaction_commit();
1359 }
1360
1361 bool memory_region_get_dirty(MemoryRegion *mr, hwaddr addr,
1362                              hwaddr size, unsigned client)
1363 {
1364     assert(mr->terminates);
1365     return cpu_physical_memory_get_dirty(mr->ram_addr + addr, size, client);
1366 }
1367
1368 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
1369                              hwaddr size)
1370 {
1371     assert(mr->terminates);
1372     cpu_physical_memory_set_dirty_range(mr->ram_addr + addr, size);
1373 }
1374
1375 bool memory_region_test_and_clear_dirty(MemoryRegion *mr, hwaddr addr,
1376                                         hwaddr size, unsigned client)
1377 {
1378     bool ret;
1379     assert(mr->terminates);
1380     ret = cpu_physical_memory_get_dirty(mr->ram_addr + addr, size, client);
1381     if (ret) {
1382         cpu_physical_memory_reset_dirty(mr->ram_addr + addr, size, client);
1383     }
1384     return ret;
1385 }
1386
1387
1388 void memory_region_sync_dirty_bitmap(MemoryRegion *mr)
1389 {
1390     AddressSpace *as;
1391     FlatRange *fr;
1392
1393     QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1394         FlatView *view = address_space_get_flatview(as);
1395         FOR_EACH_FLAT_RANGE(fr, view) {
1396             if (fr->mr == mr) {
1397                 MEMORY_LISTENER_UPDATE_REGION(fr, as, Forward, log_sync);
1398             }
1399         }
1400         flatview_unref(view);
1401     }
1402 }
1403
1404 void memory_region_set_readonly(MemoryRegion *mr, bool readonly)
1405 {
1406     if (mr->readonly != readonly) {
1407         memory_region_transaction_begin();
1408         mr->readonly = readonly;
1409         memory_region_update_pending |= mr->enabled;
1410         memory_region_transaction_commit();
1411     }
1412 }
1413
1414 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode)
1415 {
1416     if (mr->romd_mode != romd_mode) {
1417         memory_region_transaction_begin();
1418         mr->romd_mode = romd_mode;
1419         memory_region_update_pending |= mr->enabled;
1420         memory_region_transaction_commit();
1421     }
1422 }
1423
1424 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
1425                                hwaddr size, unsigned client)
1426 {
1427     assert(mr->terminates);
1428     cpu_physical_memory_reset_dirty(mr->ram_addr + addr, size, client);
1429 }
1430
1431 int memory_region_get_fd(MemoryRegion *mr)
1432 {
1433     if (mr->alias) {
1434         return memory_region_get_fd(mr->alias);
1435     }
1436
1437     assert(mr->terminates);
1438
1439     return qemu_get_ram_fd(mr->ram_addr & TARGET_PAGE_MASK);
1440 }
1441
1442 void *memory_region_get_ram_ptr(MemoryRegion *mr)
1443 {
1444     if (mr->alias) {
1445         return memory_region_get_ram_ptr(mr->alias) + mr->alias_offset;
1446     }
1447
1448     assert(mr->terminates);
1449
1450     return qemu_get_ram_ptr(mr->ram_addr & TARGET_PAGE_MASK);
1451 }
1452
1453 static void memory_region_update_coalesced_range_as(MemoryRegion *mr, AddressSpace *as)
1454 {
1455     FlatView *view;
1456     FlatRange *fr;
1457     CoalescedMemoryRange *cmr;
1458     AddrRange tmp;
1459     MemoryRegionSection section;
1460
1461     view = address_space_get_flatview(as);
1462     FOR_EACH_FLAT_RANGE(fr, view) {
1463         if (fr->mr == mr) {
1464             section = (MemoryRegionSection) {
1465                 .address_space = as,
1466                 .offset_within_address_space = int128_get64(fr->addr.start),
1467                 .size = fr->addr.size,
1468             };
1469
1470             MEMORY_LISTENER_CALL(coalesced_mmio_del, Reverse, &section,
1471                                  int128_get64(fr->addr.start),
1472                                  int128_get64(fr->addr.size));
1473             QTAILQ_FOREACH(cmr, &mr->coalesced, link) {
1474                 tmp = addrrange_shift(cmr->addr,
1475                                       int128_sub(fr->addr.start,
1476                                                  int128_make64(fr->offset_in_region)));
1477                 if (!addrrange_intersects(tmp, fr->addr)) {
1478                     continue;
1479                 }
1480                 tmp = addrrange_intersection(tmp, fr->addr);
1481                 MEMORY_LISTENER_CALL(coalesced_mmio_add, Forward, &section,
1482                                      int128_get64(tmp.start),
1483                                      int128_get64(tmp.size));
1484             }
1485         }
1486     }
1487     flatview_unref(view);
1488 }
1489
1490 static void memory_region_update_coalesced_range(MemoryRegion *mr)
1491 {
1492     AddressSpace *as;
1493
1494     QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1495         memory_region_update_coalesced_range_as(mr, as);
1496     }
1497 }
1498
1499 void memory_region_set_coalescing(MemoryRegion *mr)
1500 {
1501     memory_region_clear_coalescing(mr);
1502     memory_region_add_coalescing(mr, 0, int128_get64(mr->size));
1503 }
1504
1505 void memory_region_add_coalescing(MemoryRegion *mr,
1506                                   hwaddr offset,
1507                                   uint64_t size)
1508 {
1509     CoalescedMemoryRange *cmr = g_malloc(sizeof(*cmr));
1510
1511     cmr->addr = addrrange_make(int128_make64(offset), int128_make64(size));
1512     QTAILQ_INSERT_TAIL(&mr->coalesced, cmr, link);
1513     memory_region_update_coalesced_range(mr);
1514     memory_region_set_flush_coalesced(mr);
1515 }
1516
1517 void memory_region_clear_coalescing(MemoryRegion *mr)
1518 {
1519     CoalescedMemoryRange *cmr;
1520     bool updated = false;
1521
1522     qemu_flush_coalesced_mmio_buffer();
1523     mr->flush_coalesced_mmio = false;
1524
1525     while (!QTAILQ_EMPTY(&mr->coalesced)) {
1526         cmr = QTAILQ_FIRST(&mr->coalesced);
1527         QTAILQ_REMOVE(&mr->coalesced, cmr, link);
1528         g_free(cmr);
1529         updated = true;
1530     }
1531
1532     if (updated) {
1533         memory_region_update_coalesced_range(mr);
1534     }
1535 }
1536
1537 void memory_region_set_flush_coalesced(MemoryRegion *mr)
1538 {
1539     mr->flush_coalesced_mmio = true;
1540 }
1541
1542 void memory_region_clear_flush_coalesced(MemoryRegion *mr)
1543 {
1544     qemu_flush_coalesced_mmio_buffer();
1545     if (QTAILQ_EMPTY(&mr->coalesced)) {
1546         mr->flush_coalesced_mmio = false;
1547     }
1548 }
1549
1550 void memory_region_add_eventfd(MemoryRegion *mr,
1551                                hwaddr addr,
1552                                unsigned size,
1553                                bool match_data,
1554                                uint64_t data,
1555                                EventNotifier *e)
1556 {
1557     MemoryRegionIoeventfd mrfd = {
1558         .addr.start = int128_make64(addr),
1559         .addr.size = int128_make64(size),
1560         .match_data = match_data,
1561         .data = data,
1562         .e = e,
1563     };
1564     unsigned i;
1565
1566     adjust_endianness(mr, &mrfd.data, size);
1567     memory_region_transaction_begin();
1568     for (i = 0; i < mr->ioeventfd_nb; ++i) {
1569         if (memory_region_ioeventfd_before(mrfd, mr->ioeventfds[i])) {
1570             break;
1571         }
1572     }
1573     ++mr->ioeventfd_nb;
1574     mr->ioeventfds = g_realloc(mr->ioeventfds,
1575                                   sizeof(*mr->ioeventfds) * mr->ioeventfd_nb);
1576     memmove(&mr->ioeventfds[i+1], &mr->ioeventfds[i],
1577             sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb-1 - i));
1578     mr->ioeventfds[i] = mrfd;
1579     ioeventfd_update_pending |= mr->enabled;
1580     memory_region_transaction_commit();
1581 }
1582
1583 void memory_region_del_eventfd(MemoryRegion *mr,
1584                                hwaddr addr,
1585                                unsigned size,
1586                                bool match_data,
1587                                uint64_t data,
1588                                EventNotifier *e)
1589 {
1590     MemoryRegionIoeventfd mrfd = {
1591         .addr.start = int128_make64(addr),
1592         .addr.size = int128_make64(size),
1593         .match_data = match_data,
1594         .data = data,
1595         .e = e,
1596     };
1597     unsigned i;
1598
1599     adjust_endianness(mr, &mrfd.data, size);
1600     memory_region_transaction_begin();
1601     for (i = 0; i < mr->ioeventfd_nb; ++i) {
1602         if (memory_region_ioeventfd_equal(mrfd, mr->ioeventfds[i])) {
1603             break;
1604         }
1605     }
1606     assert(i != mr->ioeventfd_nb);
1607     memmove(&mr->ioeventfds[i], &mr->ioeventfds[i+1],
1608             sizeof(*mr->ioeventfds) * (mr->ioeventfd_nb - (i+1)));
1609     --mr->ioeventfd_nb;
1610     mr->ioeventfds = g_realloc(mr->ioeventfds,
1611                                   sizeof(*mr->ioeventfds)*mr->ioeventfd_nb + 1);
1612     ioeventfd_update_pending |= mr->enabled;
1613     memory_region_transaction_commit();
1614 }
1615
1616 static void memory_region_update_container_subregions(MemoryRegion *subregion)
1617 {
1618     hwaddr offset = subregion->addr;
1619     MemoryRegion *mr = subregion->container;
1620     MemoryRegion *other;
1621
1622     memory_region_transaction_begin();
1623
1624     memory_region_ref(subregion);
1625     QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
1626         if (subregion->may_overlap || other->may_overlap) {
1627             continue;
1628         }
1629         if (int128_ge(int128_make64(offset),
1630                       int128_add(int128_make64(other->addr), other->size))
1631             || int128_le(int128_add(int128_make64(offset), subregion->size),
1632                          int128_make64(other->addr))) {
1633             continue;
1634         }
1635 #if 0
1636         printf("warning: subregion collision %llx/%llx (%s) "
1637                "vs %llx/%llx (%s)\n",
1638                (unsigned long long)offset,
1639                (unsigned long long)int128_get64(subregion->size),
1640                subregion->name,
1641                (unsigned long long)other->addr,
1642                (unsigned long long)int128_get64(other->size),
1643                other->name);
1644 #endif
1645     }
1646     QTAILQ_FOREACH(other, &mr->subregions, subregions_link) {
1647         if (subregion->priority >= other->priority) {
1648             QTAILQ_INSERT_BEFORE(other, subregion, subregions_link);
1649             goto done;
1650         }
1651     }
1652     QTAILQ_INSERT_TAIL(&mr->subregions, subregion, subregions_link);
1653 done:
1654     memory_region_update_pending |= mr->enabled && subregion->enabled;
1655     memory_region_transaction_commit();
1656 }
1657
1658 static void memory_region_add_subregion_common(MemoryRegion *mr,
1659                                                hwaddr offset,
1660                                                MemoryRegion *subregion)
1661 {
1662     assert(!subregion->container);
1663     subregion->container = mr;
1664     subregion->addr = offset;
1665     memory_region_update_container_subregions(subregion);
1666 }
1667
1668 void memory_region_add_subregion(MemoryRegion *mr,
1669                                  hwaddr offset,
1670                                  MemoryRegion *subregion)
1671 {
1672     subregion->may_overlap = false;
1673     subregion->priority = 0;
1674     memory_region_add_subregion_common(mr, offset, subregion);
1675 }
1676
1677 void memory_region_add_subregion_overlap(MemoryRegion *mr,
1678                                          hwaddr offset,
1679                                          MemoryRegion *subregion,
1680                                          int priority)
1681 {
1682     subregion->may_overlap = true;
1683     subregion->priority = priority;
1684     memory_region_add_subregion_common(mr, offset, subregion);
1685 }
1686
1687 void memory_region_del_subregion(MemoryRegion *mr,
1688                                  MemoryRegion *subregion)
1689 {
1690     memory_region_transaction_begin();
1691     assert(subregion->container == mr);
1692     subregion->container = NULL;
1693     QTAILQ_REMOVE(&mr->subregions, subregion, subregions_link);
1694     memory_region_unref(subregion);
1695     memory_region_update_pending |= mr->enabled && subregion->enabled;
1696     memory_region_transaction_commit();
1697 }
1698
1699 void memory_region_set_enabled(MemoryRegion *mr, bool enabled)
1700 {
1701     if (enabled == mr->enabled) {
1702         return;
1703     }
1704     memory_region_transaction_begin();
1705     mr->enabled = enabled;
1706     memory_region_update_pending = true;
1707     memory_region_transaction_commit();
1708 }
1709
1710 static void memory_region_readd_subregion(MemoryRegion *mr)
1711 {
1712     MemoryRegion *container = mr->container;
1713
1714     if (container) {
1715         memory_region_transaction_begin();
1716         memory_region_ref(mr);
1717         memory_region_del_subregion(container, mr);
1718         mr->container = container;
1719         memory_region_update_container_subregions(mr);
1720         memory_region_unref(mr);
1721         memory_region_transaction_commit();
1722     }
1723 }
1724
1725 void memory_region_set_address(MemoryRegion *mr, hwaddr addr)
1726 {
1727     if (addr != mr->addr) {
1728         mr->addr = addr;
1729         memory_region_readd_subregion(mr);
1730     }
1731 }
1732
1733 void memory_region_set_alias_offset(MemoryRegion *mr, hwaddr offset)
1734 {
1735     assert(mr->alias);
1736
1737     if (offset == mr->alias_offset) {
1738         return;
1739     }
1740
1741     memory_region_transaction_begin();
1742     mr->alias_offset = offset;
1743     memory_region_update_pending |= mr->enabled;
1744     memory_region_transaction_commit();
1745 }
1746
1747 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr)
1748 {
1749     return mr->ram_addr;
1750 }
1751
1752 uint64_t memory_region_get_alignment(const MemoryRegion *mr)
1753 {
1754     return mr->align;
1755 }
1756
1757 static int cmp_flatrange_addr(const void *addr_, const void *fr_)
1758 {
1759     const AddrRange *addr = addr_;
1760     const FlatRange *fr = fr_;
1761
1762     if (int128_le(addrrange_end(*addr), fr->addr.start)) {
1763         return -1;
1764     } else if (int128_ge(addr->start, addrrange_end(fr->addr))) {
1765         return 1;
1766     }
1767     return 0;
1768 }
1769
1770 static FlatRange *flatview_lookup(FlatView *view, AddrRange addr)
1771 {
1772     return bsearch(&addr, view->ranges, view->nr,
1773                    sizeof(FlatRange), cmp_flatrange_addr);
1774 }
1775
1776 bool memory_region_present(MemoryRegion *container, hwaddr addr)
1777 {
1778     MemoryRegion *mr = memory_region_find(container, addr, 1).mr;
1779     if (!mr || (mr == container)) {
1780         return false;
1781     }
1782     memory_region_unref(mr);
1783     return true;
1784 }
1785
1786 bool memory_region_is_mapped(MemoryRegion *mr)
1787 {
1788     return mr->container ? true : false;
1789 }
1790
1791 MemoryRegionSection memory_region_find(MemoryRegion *mr,
1792                                        hwaddr addr, uint64_t size)
1793 {
1794     MemoryRegionSection ret = { .mr = NULL };
1795     MemoryRegion *root;
1796     AddressSpace *as;
1797     AddrRange range;
1798     FlatView *view;
1799     FlatRange *fr;
1800
1801     addr += mr->addr;
1802     for (root = mr; root->container; ) {
1803         root = root->container;
1804         addr += root->addr;
1805     }
1806
1807     as = memory_region_to_address_space(root);
1808     if (!as) {
1809         return ret;
1810     }
1811     range = addrrange_make(int128_make64(addr), int128_make64(size));
1812
1813     view = address_space_get_flatview(as);
1814     fr = flatview_lookup(view, range);
1815     if (!fr) {
1816         flatview_unref(view);
1817         return ret;
1818     }
1819
1820     while (fr > view->ranges && addrrange_intersects(fr[-1].addr, range)) {
1821         --fr;
1822     }
1823
1824     ret.mr = fr->mr;
1825     ret.address_space = as;
1826     range = addrrange_intersection(range, fr->addr);
1827     ret.offset_within_region = fr->offset_in_region;
1828     ret.offset_within_region += int128_get64(int128_sub(range.start,
1829                                                         fr->addr.start));
1830     ret.size = range.size;
1831     ret.offset_within_address_space = int128_get64(range.start);
1832     ret.readonly = fr->readonly;
1833     memory_region_ref(ret.mr);
1834
1835     flatview_unref(view);
1836     return ret;
1837 }
1838
1839 void address_space_sync_dirty_bitmap(AddressSpace *as)
1840 {
1841     FlatView *view;
1842     FlatRange *fr;
1843
1844     view = address_space_get_flatview(as);
1845     FOR_EACH_FLAT_RANGE(fr, view) {
1846         MEMORY_LISTENER_UPDATE_REGION(fr, as, Forward, log_sync);
1847     }
1848     flatview_unref(view);
1849 }
1850
1851 void memory_global_dirty_log_start(void)
1852 {
1853     global_dirty_log = true;
1854     MEMORY_LISTENER_CALL_GLOBAL(log_global_start, Forward);
1855 }
1856
1857 void memory_global_dirty_log_stop(void)
1858 {
1859     global_dirty_log = false;
1860     MEMORY_LISTENER_CALL_GLOBAL(log_global_stop, Reverse);
1861 }
1862
1863 static void listener_add_address_space(MemoryListener *listener,
1864                                        AddressSpace *as)
1865 {
1866     FlatView *view;
1867     FlatRange *fr;
1868
1869     if (listener->address_space_filter
1870         && listener->address_space_filter != as) {
1871         return;
1872     }
1873
1874     if (global_dirty_log) {
1875         if (listener->log_global_start) {
1876             listener->log_global_start(listener);
1877         }
1878     }
1879
1880     view = address_space_get_flatview(as);
1881     FOR_EACH_FLAT_RANGE(fr, view) {
1882         MemoryRegionSection section = {
1883             .mr = fr->mr,
1884             .address_space = as,
1885             .offset_within_region = fr->offset_in_region,
1886             .size = fr->addr.size,
1887             .offset_within_address_space = int128_get64(fr->addr.start),
1888             .readonly = fr->readonly,
1889         };
1890         if (listener->region_add) {
1891             listener->region_add(listener, &section);
1892         }
1893     }
1894     flatview_unref(view);
1895 }
1896
1897 void memory_listener_register(MemoryListener *listener, AddressSpace *filter)
1898 {
1899     MemoryListener *other = NULL;
1900     AddressSpace *as;
1901
1902     listener->address_space_filter = filter;
1903     if (QTAILQ_EMPTY(&memory_listeners)
1904         || listener->priority >= QTAILQ_LAST(&memory_listeners,
1905                                              memory_listeners)->priority) {
1906         QTAILQ_INSERT_TAIL(&memory_listeners, listener, link);
1907     } else {
1908         QTAILQ_FOREACH(other, &memory_listeners, link) {
1909             if (listener->priority < other->priority) {
1910                 break;
1911             }
1912         }
1913         QTAILQ_INSERT_BEFORE(other, listener, link);
1914     }
1915
1916     QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
1917         listener_add_address_space(listener, as);
1918     }
1919 }
1920
1921 void memory_listener_unregister(MemoryListener *listener)
1922 {
1923     QTAILQ_REMOVE(&memory_listeners, listener, link);
1924 }
1925
1926 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name)
1927 {
1928     if (QTAILQ_EMPTY(&address_spaces)) {
1929         memory_init();
1930     }
1931
1932     memory_region_transaction_begin();
1933     as->root = root;
1934     as->current_map = g_new(FlatView, 1);
1935     flatview_init(as->current_map);
1936     as->ioeventfd_nb = 0;
1937     as->ioeventfds = NULL;
1938     QTAILQ_INSERT_TAIL(&address_spaces, as, address_spaces_link);
1939     as->name = g_strdup(name ? name : "anonymous");
1940     address_space_init_dispatch(as);
1941     memory_region_update_pending |= root->enabled;
1942     memory_region_transaction_commit();
1943 }
1944
1945 void address_space_destroy(AddressSpace *as)
1946 {
1947     MemoryListener *listener;
1948
1949     /* Flush out anything from MemoryListeners listening in on this */
1950     memory_region_transaction_begin();
1951     as->root = NULL;
1952     memory_region_transaction_commit();
1953     QTAILQ_REMOVE(&address_spaces, as, address_spaces_link);
1954     address_space_destroy_dispatch(as);
1955
1956     QTAILQ_FOREACH(listener, &memory_listeners, link) {
1957         assert(listener->address_space_filter != as);
1958     }
1959
1960     flatview_unref(as->current_map);
1961     g_free(as->name);
1962     g_free(as->ioeventfds);
1963 }
1964
1965 bool io_mem_read(MemoryRegion *mr, hwaddr addr, uint64_t *pval, unsigned size)
1966 {
1967     return memory_region_dispatch_read(mr, addr, pval, size);
1968 }
1969
1970 bool io_mem_write(MemoryRegion *mr, hwaddr addr,
1971                   uint64_t val, unsigned size)
1972 {
1973     return memory_region_dispatch_write(mr, addr, val, size);
1974 }
1975
1976 typedef struct MemoryRegionList MemoryRegionList;
1977
1978 struct MemoryRegionList {
1979     const MemoryRegion *mr;
1980     QTAILQ_ENTRY(MemoryRegionList) queue;
1981 };
1982
1983 typedef QTAILQ_HEAD(queue, MemoryRegionList) MemoryRegionListHead;
1984
1985 static void mtree_print_mr(fprintf_function mon_printf, void *f,
1986                            const MemoryRegion *mr, unsigned int level,
1987                            hwaddr base,
1988                            MemoryRegionListHead *alias_print_queue)
1989 {
1990     MemoryRegionList *new_ml, *ml, *next_ml;
1991     MemoryRegionListHead submr_print_queue;
1992     const MemoryRegion *submr;
1993     unsigned int i;
1994
1995     if (!mr || !mr->enabled) {
1996         return;
1997     }
1998
1999     for (i = 0; i < level; i++) {
2000         mon_printf(f, "  ");
2001     }
2002
2003     if (mr->alias) {
2004         MemoryRegionList *ml;
2005         bool found = false;
2006
2007         /* check if the alias is already in the queue */
2008         QTAILQ_FOREACH(ml, alias_print_queue, queue) {
2009             if (ml->mr == mr->alias) {
2010                 found = true;
2011             }
2012         }
2013
2014         if (!found) {
2015             ml = g_new(MemoryRegionList, 1);
2016             ml->mr = mr->alias;
2017             QTAILQ_INSERT_TAIL(alias_print_queue, ml, queue);
2018         }
2019         mon_printf(f, TARGET_FMT_plx "-" TARGET_FMT_plx
2020                    " (prio %d, %c%c): alias %s @%s " TARGET_FMT_plx
2021                    "-" TARGET_FMT_plx "\n",
2022                    base + mr->addr,
2023                    base + mr->addr
2024                    + (int128_nz(mr->size) ?
2025                       (hwaddr)int128_get64(int128_sub(mr->size,
2026                                                       int128_one())) : 0),
2027                    mr->priority,
2028                    mr->romd_mode ? 'R' : '-',
2029                    !mr->readonly && !(mr->rom_device && mr->romd_mode) ? 'W'
2030                                                                        : '-',
2031                    memory_region_name(mr),
2032                    memory_region_name(mr->alias),
2033                    mr->alias_offset,
2034                    mr->alias_offset
2035                    + (int128_nz(mr->size) ?
2036                       (hwaddr)int128_get64(int128_sub(mr->size,
2037                                                       int128_one())) : 0));
2038     } else {
2039         mon_printf(f,
2040                    TARGET_FMT_plx "-" TARGET_FMT_plx " (prio %d, %c%c): %s\n",
2041                    base + mr->addr,
2042                    base + mr->addr
2043                    + (int128_nz(mr->size) ?
2044                       (hwaddr)int128_get64(int128_sub(mr->size,
2045                                                       int128_one())) : 0),
2046                    mr->priority,
2047                    mr->romd_mode ? 'R' : '-',
2048                    !mr->readonly && !(mr->rom_device && mr->romd_mode) ? 'W'
2049                                                                        : '-',
2050                    memory_region_name(mr));
2051     }
2052
2053     QTAILQ_INIT(&submr_print_queue);
2054
2055     QTAILQ_FOREACH(submr, &mr->subregions, subregions_link) {
2056         new_ml = g_new(MemoryRegionList, 1);
2057         new_ml->mr = submr;
2058         QTAILQ_FOREACH(ml, &submr_print_queue, queue) {
2059             if (new_ml->mr->addr < ml->mr->addr ||
2060                 (new_ml->mr->addr == ml->mr->addr &&
2061                  new_ml->mr->priority > ml->mr->priority)) {
2062                 QTAILQ_INSERT_BEFORE(ml, new_ml, queue);
2063                 new_ml = NULL;
2064                 break;
2065             }
2066         }
2067         if (new_ml) {
2068             QTAILQ_INSERT_TAIL(&submr_print_queue, new_ml, queue);
2069         }
2070     }
2071
2072     QTAILQ_FOREACH(ml, &submr_print_queue, queue) {
2073         mtree_print_mr(mon_printf, f, ml->mr, level + 1, base + mr->addr,
2074                        alias_print_queue);
2075     }
2076
2077     QTAILQ_FOREACH_SAFE(ml, &submr_print_queue, queue, next_ml) {
2078         g_free(ml);
2079     }
2080 }
2081
2082 void mtree_info(fprintf_function mon_printf, void *f)
2083 {
2084     MemoryRegionListHead ml_head;
2085     MemoryRegionList *ml, *ml2;
2086     AddressSpace *as;
2087
2088     QTAILQ_INIT(&ml_head);
2089
2090     QTAILQ_FOREACH(as, &address_spaces, address_spaces_link) {
2091         mon_printf(f, "%s\n", as->name);
2092         mtree_print_mr(mon_printf, f, as->root, 0, 0, &ml_head);
2093     }
2094
2095     mon_printf(f, "aliases\n");
2096     /* print aliased regions */
2097     QTAILQ_FOREACH(ml, &ml_head, queue) {
2098         mon_printf(f, "%s\n", memory_region_name(ml->mr));
2099         mtree_print_mr(mon_printf, f, ml->mr, 0, 0, &ml_head);
2100     }
2101
2102     QTAILQ_FOREACH_SAFE(ml, &ml_head, queue, ml2) {
2103         g_free(ml);
2104     }
2105 }
2106
2107 static const TypeInfo memory_region_info = {
2108     .parent             = TYPE_OBJECT,
2109     .name               = TYPE_MEMORY_REGION,
2110     .instance_size      = sizeof(MemoryRegion),
2111     .instance_init      = memory_region_initfn,
2112     .instance_finalize  = memory_region_finalize,
2113 };
2114
2115 static void memory_register_types(void)
2116 {
2117     type_register_static(&memory_region_info);
2118 }
2119
2120 type_init(memory_register_types)