1 /* Malloc implementation for multiple threads without lock contention.
2 Copyright (C) 1996-2009, 2010 Free Software Foundation, Inc.
3 This file is part of the GNU C Library.
4 Contributed by Wolfram Gloger <wg@malloc.de>
5 and Doug Lea <dl@cs.oswego.edu>, 2001.
7 The GNU C Library is free software; you can redistribute it and/or
8 modify it under the terms of the GNU Lesser General Public License as
9 published by the Free Software Foundation; either version 2.1 of the
10 License, or (at your option) any later version.
12 The GNU C Library is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 Lesser General Public License for more details.
17 You should have received a copy of the GNU Lesser General Public
18 License along with the GNU C Library; see the file COPYING.LIB. If not,
19 write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
23 This is a version (aka ptmalloc2) of malloc/free/realloc written by
24 Doug Lea and adapted to multiple threads/arenas by Wolfram Gloger.
26 There have been substantial changesmade after the integration into
27 glibc in all parts of the code. Do not look for much commonality
28 with the ptmalloc2 version.
30 * Version ptmalloc2-20011215
32 VERSION 2.7.0 Sun Mar 11 14:14:06 2001 Doug Lea (dl at gee)
36 In order to compile this implementation, a Makefile is provided with
37 the ptmalloc2 distribution, which has pre-defined targets for some
38 popular systems (e.g. "make posix" for Posix threads). All that is
39 typically required with regard to compiler flags is the selection of
40 the thread package via defining one out of USE_PTHREADS, USE_THR or
41 USE_SPROC. Check the thread-m.h file for what effects this has.
42 Many/most systems will additionally require USE_TSD_DATA_HACK to be
43 defined, so this is the default for "make posix".
45 * Why use this malloc?
47 This is not the fastest, most space-conserving, most portable, or
48 most tunable malloc ever written. However it is among the fastest
49 while also being among the most space-conserving, portable and tunable.
50 Consistent balance across these factors results in a good general-purpose
51 allocator for malloc-intensive programs.
53 The main properties of the algorithms are:
54 * For large (>= 512 bytes) requests, it is a pure best-fit allocator,
55 with ties normally decided via FIFO (i.e. least recently used).
56 * For small (<= 64 bytes by default) requests, it is a caching
57 allocator, that maintains pools of quickly recycled chunks.
58 * In between, and for combinations of large and small requests, it does
59 the best it can trying to meet both goals at once.
60 * For very large requests (>= 128KB by default), it relies on system
61 memory mapping facilities, if supported.
63 For a longer but slightly out of date high-level description, see
64 http://gee.cs.oswego.edu/dl/html/malloc.html
66 You may already by default be using a C library containing a malloc
67 that is based on some version of this malloc (for example in
68 linux). You might still want to use the one in this file in order to
69 customize settings or to avoid overheads associated with library
72 * Contents, described in more detail in "description of public routines" below.
74 Standard (ANSI/SVID/...) functions:
76 calloc(size_t n_elements, size_t element_size);
78 realloc(Void_t* p, size_t n);
79 memalign(size_t alignment, size_t n);
82 mallopt(int parameter_number, int parameter_value)
85 independent_calloc(size_t n_elements, size_t size, Void_t* chunks[]);
86 independent_comalloc(size_t n_elements, size_t sizes[], Void_t* chunks[]);
89 malloc_trim(size_t pad);
90 malloc_usable_size(Void_t* p);
95 Supported pointer representation: 4 or 8 bytes
96 Supported size_t representation: 4 or 8 bytes
97 Note that size_t is allowed to be 4 bytes even if pointers are 8.
98 You can adjust this by defining INTERNAL_SIZE_T
100 Alignment: 2 * sizeof(size_t) (default)
101 (i.e., 8 byte alignment with 4byte size_t). This suffices for
102 nearly all current machines and C compilers. However, you can
103 define MALLOC_ALIGNMENT to be wider than this if necessary.
105 Minimum overhead per allocated chunk: 4 or 8 bytes
106 Each malloced chunk has a hidden word of overhead holding size
107 and status information.
109 Minimum allocated size: 4-byte ptrs: 16 bytes (including 4 overhead)
110 8-byte ptrs: 24/32 bytes (including, 4/8 overhead)
112 When a chunk is freed, 12 (for 4byte ptrs) or 20 (for 8 byte
113 ptrs but 4 byte size) or 24 (for 8/8) additional bytes are
114 needed; 4 (8) for a trailing size field and 8 (16) bytes for
115 free list pointers. Thus, the minimum allocatable size is
118 Even a request for zero bytes (i.e., malloc(0)) returns a
119 pointer to something of the minimum allocatable size.
121 The maximum overhead wastage (i.e., number of extra bytes
122 allocated than were requested in malloc) is less than or equal
123 to the minimum size, except for requests >= mmap_threshold that
124 are serviced via mmap(), where the worst case wastage is 2 *
125 sizeof(size_t) bytes plus the remainder from a system page (the
126 minimal mmap unit); typically 4096 or 8192 bytes.
128 Maximum allocated size: 4-byte size_t: 2^32 minus about two pages
129 8-byte size_t: 2^64 minus about two pages
131 It is assumed that (possibly signed) size_t values suffice to
132 represent chunk sizes. `Possibly signed' is due to the fact
133 that `size_t' may be defined on a system as either a signed or
134 an unsigned type. The ISO C standard says that it must be
135 unsigned, but a few systems are known not to adhere to this.
136 Additionally, even when size_t is unsigned, sbrk (which is by
137 default used to obtain memory from system) accepts signed
138 arguments, and may not be able to handle size_t-wide arguments
139 with negative sign bit. Generally, values that would
140 appear as negative after accounting for overhead and alignment
141 are supported only via mmap(), which does not have this
144 Requests for sizes outside the allowed range will perform an optional
145 failure action and then return null. (Requests may also
146 also fail because a system is out of memory.)
148 Thread-safety: thread-safe unless NO_THREADS is defined
150 Compliance: I believe it is compliant with the 1997 Single Unix Specification
151 Also SVID/XPG, ANSI C, and probably others as well.
153 * Synopsis of compile-time options:
155 People have reported using previous versions of this malloc on all
156 versions of Unix, sometimes by tweaking some of the defines
157 below. It has been tested most extensively on Solaris and
158 Linux. It is also reported to work on WIN32 platforms.
159 People also report using it in stand-alone embedded systems.
161 The implementation is in straight, hand-tuned ANSI C. It is not
162 at all modular. (Sorry!) It uses a lot of macros. To be at all
163 usable, this code should be compiled using an optimizing compiler
164 (for example gcc -O3) that can simplify expressions and control
165 paths. (FAQ: some macros import variables as arguments rather than
166 declare locals because people reported that some debuggers
167 otherwise get confused.)
171 Compilation Environment options:
173 __STD_C derived from C compiler defines
176 USE_MEMCPY 1 if HAVE_MEMCPY is defined
177 HAVE_MMAP defined as 1
179 HAVE_MREMAP 0 unless linux defined
180 USE_ARENAS the same as HAVE_MMAP
181 malloc_getpagesize derived from system #includes, or 4096 if not
182 HAVE_USR_INCLUDE_MALLOC_H NOT defined
183 LACKS_UNISTD_H NOT defined unless WIN32
184 LACKS_SYS_PARAM_H NOT defined unless WIN32
185 LACKS_SYS_MMAN_H NOT defined unless WIN32
187 Changing default word sizes:
189 INTERNAL_SIZE_T size_t
190 MALLOC_ALIGNMENT MAX (2 * sizeof(INTERNAL_SIZE_T),
191 __alignof__ (long double))
193 Configuration and functionality options:
195 USE_DL_PREFIX NOT defined
196 USE_PUBLIC_MALLOC_WRAPPERS NOT defined
197 USE_MALLOC_LOCK NOT defined
198 MALLOC_DEBUG NOT defined
199 REALLOC_ZERO_BYTES_FREES 1
200 MALLOC_FAILURE_ACTION errno = ENOMEM, if __STD_C defined, else no-op
203 Options for customizing MORECORE:
207 MORECORE_CONTIGUOUS 1
208 MORECORE_CANNOT_TRIM NOT defined
210 MMAP_AS_MORECORE_SIZE (1024 * 1024)
212 Tuning options that are also dynamically changeable via mallopt:
214 DEFAULT_MXFAST 64 (for 32bit), 128 (for 64bit)
215 DEFAULT_TRIM_THRESHOLD 128 * 1024
217 DEFAULT_MMAP_THRESHOLD 128 * 1024
218 DEFAULT_MMAP_MAX 65536
220 There are several other #defined constants and macros that you
221 probably don't want to touch unless you are extending or adapting malloc. */
224 __STD_C should be nonzero if using ANSI-standard C compiler, a C++
225 compiler, or a C compiler sufficiently close to ANSI to get away
230 #if defined(__STDC__) || defined(__cplusplus)
239 Void_t* is the pointer type that malloc should say it returns
243 #if (__STD_C || defined(WIN32))
251 #include <stddef.h> /* for size_t */
252 #include <stdlib.h> /* for getenv(), abort() */
254 #include <sys/types.h>
257 #include <malloc-machine.h>
260 #ifdef ATOMIC_FASTBINS
263 #include <stdio-common/_itoa.h>
264 #include <bits/wordsize.h>
265 #include <sys/sysinfo.h>
272 /* define LACKS_UNISTD_H if your system does not have a <unistd.h>. */
274 /* #define LACKS_UNISTD_H */
276 #ifndef LACKS_UNISTD_H
280 /* define LACKS_SYS_PARAM_H if your system does not have a <sys/param.h>. */
282 /* #define LACKS_SYS_PARAM_H */
285 #include <stdio.h> /* needed for malloc_stats */
286 #include <errno.h> /* needed for optional MALLOC_FAILURE_ACTION */
291 /* For va_arg, va_start, va_end. */
294 /* For writev and struct iovec. */
297 #include <sys/syslog.h>
299 /* For various dynamic linking things. */
306 Because freed chunks may be overwritten with bookkeeping fields, this
307 malloc will often die when freed memory is overwritten by user
308 programs. This can be very effective (albeit in an annoying way)
309 in helping track down dangling pointers.
311 If you compile with -DMALLOC_DEBUG, a number of assertion checks are
312 enabled that will catch more memory errors. You probably won't be
313 able to make much sense of the actual assertion errors, but they
314 should help you locate incorrectly overwritten memory. The checking
315 is fairly extensive, and will slow down execution
316 noticeably. Calling malloc_stats or mallinfo with MALLOC_DEBUG set
317 will attempt to check every non-mmapped allocated and free chunk in
318 the course of computing the summmaries. (By nature, mmapped regions
319 cannot be checked very much automatically.)
321 Setting MALLOC_DEBUG may also be helpful if you are trying to modify
322 this code. The assertions in the check routines spell out in more
323 detail the assumptions and invariants underlying the algorithms.
325 Setting MALLOC_DEBUG does NOT provide an automated mechanism for
326 checking that all accesses to malloced memory stay within their
327 bounds. However, there are several add-ons and adaptations of this
328 or other mallocs available that do this.
332 # define assert(expr) ((void) 0)
334 # define assert(expr) \
337 : __malloc_assert (__STRING (expr), __FILE__, __LINE__, __func__))
339 extern const char *__progname;
342 __malloc_assert (const char *assertion, const char *file, unsigned int line,
343 const char *function)
345 (void) __fxprintf (NULL, "%s%s%s:%u: %s%sAssertion `%s' failed.\n",
346 __progname, __progname[0] ? ": " : "",
348 function ? function : "", function ? ": " : "",
357 INTERNAL_SIZE_T is the word-size used for internal bookkeeping
360 The default version is the same as size_t.
362 While not strictly necessary, it is best to define this as an
363 unsigned type, even if size_t is a signed type. This may avoid some
364 artificial size limitations on some systems.
366 On a 64-bit machine, you may be able to reduce malloc overhead by
367 defining INTERNAL_SIZE_T to be a 32 bit `unsigned int' at the
368 expense of not being able to handle more than 2^32 of malloced
369 space. If this limitation is acceptable, you are encouraged to set
370 this unless you are on a platform requiring 16byte alignments. In
371 this case the alignment requirements turn out to negate any
372 potential advantages of decreasing size_t word size.
374 Implementors: Beware of the possible combinations of:
375 - INTERNAL_SIZE_T might be signed or unsigned, might be 32 or 64 bits,
376 and might be the same width as int or as long
377 - size_t might have different width and signedness as INTERNAL_SIZE_T
378 - int and long might be 32 or 64 bits, and might be the same width
379 To deal with this, most comparisons and difference computations
380 among INTERNAL_SIZE_Ts should cast them to unsigned long, being
381 aware of the fact that casting an unsigned int to a wider long does
382 not sign-extend. (This also makes checking for negative numbers
383 awkward.) Some of these casts result in harmless compiler warnings
387 #ifndef INTERNAL_SIZE_T
388 #define INTERNAL_SIZE_T size_t
391 /* The corresponding word size */
392 #define SIZE_SZ (sizeof(INTERNAL_SIZE_T))
396 MALLOC_ALIGNMENT is the minimum alignment for malloc'ed chunks.
397 It must be a power of two at least 2 * SIZE_SZ, even on machines
398 for which smaller alignments would suffice. It may be defined as
399 larger than this though. Note however that code and data structures
400 are optimized for the case of 8-byte alignment.
404 #ifndef MALLOC_ALIGNMENT
405 /* XXX This is the correct definition. It differs from 2*SIZE_SZ only on
406 powerpc32. For the time being, changing this is causing more
407 compatibility problems due to malloc_get_state/malloc_set_state than
408 will returning blocks not adequately aligned for long double objects
409 under -mlong-double-128.
411 #define MALLOC_ALIGNMENT (2 * SIZE_SZ < __alignof__ (long double) \
412 ? __alignof__ (long double) : 2 * SIZE_SZ)
414 #define MALLOC_ALIGNMENT (2 * SIZE_SZ)
417 /* The corresponding bit mask value */
418 #define MALLOC_ALIGN_MASK (MALLOC_ALIGNMENT - 1)
423 REALLOC_ZERO_BYTES_FREES should be set if a call to
424 realloc with zero bytes should be the same as a call to free.
425 This is required by the C standard. Otherwise, since this malloc
426 returns a unique pointer for malloc(0), so does realloc(p, 0).
429 #ifndef REALLOC_ZERO_BYTES_FREES
430 #define REALLOC_ZERO_BYTES_FREES 1
434 TRIM_FASTBINS controls whether free() of a very small chunk can
435 immediately lead to trimming. Setting to true (1) can reduce memory
436 footprint, but will almost always slow down programs that use a lot
439 Define this only if you are willing to give up some speed to more
440 aggressively reduce system-level memory footprint when releasing
441 memory in programs that use many small chunks. You can get
442 essentially the same effect by setting MXFAST to 0, but this can
443 lead to even greater slowdowns in programs using many small chunks.
444 TRIM_FASTBINS is an in-between compile-time option, that disables
445 only those chunks bordering topmost memory from being placed in
449 #ifndef TRIM_FASTBINS
450 #define TRIM_FASTBINS 0
455 USE_DL_PREFIX will prefix all public routines with the string 'dl'.
456 This is necessary when you only want to use this malloc in one part
457 of a program, using your regular system malloc elsewhere.
460 /* #define USE_DL_PREFIX */
464 Two-phase name translation.
465 All of the actual routines are given mangled names.
466 When wrappers are used, they become the public callable versions.
467 When DL_PREFIX is used, the callable names are prefixed.
471 #define public_cALLOc dlcalloc
472 #define public_fREe dlfree
473 #define public_cFREe dlcfree
474 #define public_mALLOc dlmalloc
475 #define public_mEMALIGn dlmemalign
476 #define public_rEALLOc dlrealloc
477 #define public_vALLOc dlvalloc
478 #define public_pVALLOc dlpvalloc
479 #define public_mALLINFo dlmallinfo
480 #define public_mALLOPt dlmallopt
481 #define public_mTRIm dlmalloc_trim
482 #define public_mSTATs dlmalloc_stats
483 #define public_mUSABLe dlmalloc_usable_size
484 #define public_iCALLOc dlindependent_calloc
485 #define public_iCOMALLOc dlindependent_comalloc
486 #define public_gET_STATe dlget_state
487 #define public_sET_STATe dlset_state
488 #else /* USE_DL_PREFIX */
491 /* Special defines for the GNU C library. */
492 #define public_cALLOc __libc_calloc
493 #define public_fREe __libc_free
494 #define public_cFREe __libc_cfree
495 #define public_mALLOc __libc_malloc
496 #define public_mEMALIGn __libc_memalign
497 #define public_rEALLOc __libc_realloc
498 #define public_vALLOc __libc_valloc
499 #define public_pVALLOc __libc_pvalloc
500 #define public_mALLINFo __libc_mallinfo
501 #define public_mALLOPt __libc_mallopt
502 #define public_mTRIm __malloc_trim
503 #define public_mSTATs __malloc_stats
504 #define public_mUSABLe __malloc_usable_size
505 #define public_iCALLOc __libc_independent_calloc
506 #define public_iCOMALLOc __libc_independent_comalloc
507 #define public_gET_STATe __malloc_get_state
508 #define public_sET_STATe __malloc_set_state
509 #define malloc_getpagesize __getpagesize()
512 #define munmap __munmap
513 #define mremap __mremap
514 #define mprotect __mprotect
515 #define MORECORE (*__morecore)
516 #define MORECORE_FAILURE 0
518 Void_t * __default_morecore (ptrdiff_t);
519 Void_t *(*__morecore)(ptrdiff_t) = __default_morecore;
522 #define public_cALLOc calloc
523 #define public_fREe free
524 #define public_cFREe cfree
525 #define public_mALLOc malloc
526 #define public_mEMALIGn memalign
527 #define public_rEALLOc realloc
528 #define public_vALLOc valloc
529 #define public_pVALLOc pvalloc
530 #define public_mALLINFo mallinfo
531 #define public_mALLOPt mallopt
532 #define public_mTRIm malloc_trim
533 #define public_mSTATs malloc_stats
534 #define public_mUSABLe malloc_usable_size
535 #define public_iCALLOc independent_calloc
536 #define public_iCOMALLOc independent_comalloc
537 #define public_gET_STATe malloc_get_state
538 #define public_sET_STATe malloc_set_state
540 #endif /* USE_DL_PREFIX */
543 #define __builtin_expect(expr, val) (expr)
545 #define fwrite(buf, size, count, fp) _IO_fwrite (buf, size, count, fp)
549 HAVE_MEMCPY should be defined if you are not otherwise using
550 ANSI STD C, but still have memcpy and memset in your C library
551 and want to use them in calloc and realloc. Otherwise simple
552 macro versions are defined below.
554 USE_MEMCPY should be defined as 1 if you actually want to
555 have memset and memcpy called. People report that the macro
556 versions are faster than libc versions on some systems.
558 Even if USE_MEMCPY is set to 1, loops to copy/clear small chunks
559 (of <= 36 bytes) are manually unrolled in realloc and calloc.
573 #if (__STD_C || defined(HAVE_MEMCPY))
579 /* On Win32 memset and memcpy are already declared in windows.h */
582 void* memset(void*, int, size_t);
583 void* memcpy(void*, const void*, size_t);
593 /* Force a value to be in a register and stop the compiler referring
594 to the source (mostly memory location) again. */
595 #define force_reg(val) \
596 ({ __typeof (val) _v; asm ("" : "=r" (_v) : "0" (val)); _v; })
600 MALLOC_FAILURE_ACTION is the action to take before "return 0" when
601 malloc fails to be able to return memory, either because memory is
602 exhausted or because of illegal arguments.
604 By default, sets errno if running on STD_C platform, else does nothing.
607 #ifndef MALLOC_FAILURE_ACTION
609 #define MALLOC_FAILURE_ACTION \
613 #define MALLOC_FAILURE_ACTION
618 MORECORE-related declarations. By default, rely on sbrk
622 #ifdef LACKS_UNISTD_H
623 #if !defined(__FreeBSD__) && !defined(__OpenBSD__) && !defined(__NetBSD__)
625 extern Void_t* sbrk(ptrdiff_t);
627 extern Void_t* sbrk();
633 MORECORE is the name of the routine to call to obtain more memory
634 from the system. See below for general guidance on writing
635 alternative MORECORE functions, as well as a version for WIN32 and a
636 sample version for pre-OSX macos.
640 #define MORECORE sbrk
644 MORECORE_FAILURE is the value returned upon failure of MORECORE
645 as well as mmap. Since it cannot be an otherwise valid memory address,
646 and must reflect values of standard sys calls, you probably ought not
650 #ifndef MORECORE_FAILURE
651 #define MORECORE_FAILURE (-1)
655 If MORECORE_CONTIGUOUS is true, take advantage of fact that
656 consecutive calls to MORECORE with positive arguments always return
657 contiguous increasing addresses. This is true of unix sbrk. Even
658 if not defined, when regions happen to be contiguous, malloc will
659 permit allocations spanning regions obtained from different
660 calls. But defining this when applicable enables some stronger
661 consistency checks and space efficiencies.
664 #ifndef MORECORE_CONTIGUOUS
665 #define MORECORE_CONTIGUOUS 1
669 Define MORECORE_CANNOT_TRIM if your version of MORECORE
670 cannot release space back to the system when given negative
671 arguments. This is generally necessary only if you are using
672 a hand-crafted MORECORE function that cannot handle negative arguments.
675 /* #define MORECORE_CANNOT_TRIM */
677 /* MORECORE_CLEARS (default 1)
678 The degree to which the routine mapped to MORECORE zeroes out
679 memory: never (0), only for newly allocated space (1) or always
680 (2). The distinction between (1) and (2) is necessary because on
681 some systems, if the application first decrements and then
682 increments the break value, the contents of the reallocated space
686 #ifndef MORECORE_CLEARS
687 #define MORECORE_CLEARS 1
692 Define HAVE_MMAP as true to optionally make malloc() use mmap() to
693 allocate very large blocks. These will be returned to the
694 operating system immediately after a free(). Also, if mmap
695 is available, it is used as a backup strategy in cases where
696 MORECORE fails to provide space from system.
698 This malloc is best tuned to work with mmap for large requests.
699 If you do not have mmap, operations involving very large chunks (1MB
700 or so) may be slower than you'd like.
707 Standard unix mmap using /dev/zero clears memory so calloc doesn't
712 #define MMAP_CLEARS 1
717 #define MMAP_CLEARS 0
723 MMAP_AS_MORECORE_SIZE is the minimum mmap size argument to use if
724 sbrk fails, and mmap is used as a backup (which is done only if
725 HAVE_MMAP). The value must be a multiple of page size. This
726 backup strategy generally applies only when systems have "holes" in
727 address space, so sbrk cannot perform contiguous expansion, but
728 there is still space available on system. On systems for which
729 this is known to be useful (i.e. most linux kernels), this occurs
730 only when programs allocate huge amounts of memory. Between this,
731 and the fact that mmap regions tend to be limited, the size should
732 be large, to avoid too many mmap calls and thus avoid running out
736 #ifndef MMAP_AS_MORECORE_SIZE
737 #define MMAP_AS_MORECORE_SIZE (1024 * 1024)
741 Define HAVE_MREMAP to make realloc() use mremap() to re-allocate
742 large blocks. This is currently only possible on Linux with
743 kernel versions newer than 1.3.77.
748 #define HAVE_MREMAP 1
750 #define HAVE_MREMAP 0
753 #endif /* HAVE_MMAP */
755 /* Define USE_ARENAS to enable support for multiple `arenas'. These
756 are allocated using mmap(), are necessary for threads and
757 occasionally useful to overcome address space limitations affecting
761 #define USE_ARENAS HAVE_MMAP
766 The system page size. To the extent possible, this malloc manages
767 memory from the system in page-size units. Note that this value is
768 cached during initialization into a field of malloc_state. So even
769 if malloc_getpagesize is a function, it is only called once.
771 The following mechanics for getpagesize were adapted from bsd/gnu
772 getpagesize.h. If none of the system-probes here apply, a value of
773 4096 is used, which should be OK: If they don't apply, then using
774 the actual value probably doesn't impact performance.
778 #ifndef malloc_getpagesize
780 #ifndef LACKS_UNISTD_H
784 # ifdef _SC_PAGESIZE /* some SVR4 systems omit an underscore */
785 # ifndef _SC_PAGE_SIZE
786 # define _SC_PAGE_SIZE _SC_PAGESIZE
790 # ifdef _SC_PAGE_SIZE
791 # define malloc_getpagesize sysconf(_SC_PAGE_SIZE)
793 # if defined(BSD) || defined(DGUX) || defined(HAVE_GETPAGESIZE)
794 extern size_t getpagesize();
795 # define malloc_getpagesize getpagesize()
797 # ifdef WIN32 /* use supplied emulation of getpagesize */
798 # define malloc_getpagesize getpagesize()
800 # ifndef LACKS_SYS_PARAM_H
801 # include <sys/param.h>
803 # ifdef EXEC_PAGESIZE
804 # define malloc_getpagesize EXEC_PAGESIZE
808 # define malloc_getpagesize NBPG
810 # define malloc_getpagesize (NBPG * CLSIZE)
814 # define malloc_getpagesize NBPC
817 # define malloc_getpagesize PAGESIZE
818 # else /* just guess */
819 # define malloc_getpagesize (4096)
830 This version of malloc supports the standard SVID/XPG mallinfo
831 routine that returns a struct containing usage properties and
832 statistics. It should work on any SVID/XPG compliant system that has
833 a /usr/include/malloc.h defining struct mallinfo. (If you'd like to
834 install such a thing yourself, cut out the preliminary declarations
835 as described above and below and save them in a malloc.h file. But
836 there's no compelling reason to bother to do this.)
838 The main declaration needed is the mallinfo struct that is returned
839 (by-copy) by mallinfo(). The SVID/XPG malloinfo struct contains a
840 bunch of fields that are not even meaningful in this version of
841 malloc. These fields are are instead filled by mallinfo() with
842 other numbers that might be of interest.
844 HAVE_USR_INCLUDE_MALLOC_H should be set if you have a
845 /usr/include/malloc.h file that includes a declaration of struct
846 mallinfo. If so, it is included; else an SVID2/XPG2 compliant
847 version is declared below. These must be precisely the same for
848 mallinfo() to work. The original SVID version of this struct,
849 defined on most systems with mallinfo, declares all fields as
850 ints. But some others define as unsigned long. If your system
851 defines the fields using a type of different width than listed here,
852 you must #include your system version and #define
853 HAVE_USR_INCLUDE_MALLOC_H.
856 /* #define HAVE_USR_INCLUDE_MALLOC_H */
858 #ifdef HAVE_USR_INCLUDE_MALLOC_H
859 #include "/usr/include/malloc.h"
863 /* ---------- description of public routines ------------ */
867 Returns a pointer to a newly allocated chunk of at least n bytes, or null
868 if no space is available. Additionally, on failure, errno is
869 set to ENOMEM on ANSI C systems.
871 If n is zero, malloc returns a minumum-sized chunk. (The minimum
872 size is 16 bytes on most 32bit systems, and 24 or 32 bytes on 64bit
873 systems.) On most systems, size_t is an unsigned type, so calls
874 with negative arguments are interpreted as requests for huge amounts
875 of space, which will often fail. The maximum supported value of n
876 differs across systems, but is in all cases less than the maximum
877 representable value of a size_t.
880 Void_t* public_mALLOc(size_t);
882 Void_t* public_mALLOc();
884 #ifdef libc_hidden_proto
885 libc_hidden_proto (public_mALLOc)
890 Releases the chunk of memory pointed to by p, that had been previously
891 allocated using malloc or a related routine such as realloc.
892 It has no effect if p is null. It can have arbitrary (i.e., bad!)
893 effects if p has already been freed.
895 Unless disabled (using mallopt), freeing very large spaces will
896 when possible, automatically trigger operations that give
897 back unused memory to the system, thus reducing program footprint.
900 void public_fREe(Void_t*);
904 #ifdef libc_hidden_proto
905 libc_hidden_proto (public_fREe)
909 calloc(size_t n_elements, size_t element_size);
910 Returns a pointer to n_elements * element_size bytes, with all locations
914 Void_t* public_cALLOc(size_t, size_t);
916 Void_t* public_cALLOc();
920 realloc(Void_t* p, size_t n)
921 Returns a pointer to a chunk of size n that contains the same data
922 as does chunk p up to the minimum of (n, p's size) bytes, or null
923 if no space is available.
925 The returned pointer may or may not be the same as p. The algorithm
926 prefers extending p when possible, otherwise it employs the
927 equivalent of a malloc-copy-free sequence.
929 If p is null, realloc is equivalent to malloc.
931 If space is not available, realloc returns null, errno is set (if on
932 ANSI) and p is NOT freed.
934 if n is for fewer bytes than already held by p, the newly unused
935 space is lopped off and freed if possible. Unless the #define
936 REALLOC_ZERO_BYTES_FREES is set, realloc with a size argument of
937 zero (re)allocates a minimum-sized chunk.
939 Large chunks that were internally obtained via mmap will always
940 be reallocated using malloc-copy-free sequences unless
941 the system supports MREMAP (currently only linux).
943 The old unix realloc convention of allowing the last-free'd chunk
944 to be used as an argument to realloc is not supported.
947 Void_t* public_rEALLOc(Void_t*, size_t);
949 Void_t* public_rEALLOc();
951 #ifdef libc_hidden_proto
952 libc_hidden_proto (public_rEALLOc)
956 memalign(size_t alignment, size_t n);
957 Returns a pointer to a newly allocated chunk of n bytes, aligned
958 in accord with the alignment argument.
960 The alignment argument should be a power of two. If the argument is
961 not a power of two, the nearest greater power is used.
962 8-byte alignment is guaranteed by normal malloc calls, so don't
963 bother calling memalign with an argument of 8 or less.
965 Overreliance on memalign is a sure way to fragment space.
968 Void_t* public_mEMALIGn(size_t, size_t);
970 Void_t* public_mEMALIGn();
972 #ifdef libc_hidden_proto
973 libc_hidden_proto (public_mEMALIGn)
978 Equivalent to memalign(pagesize, n), where pagesize is the page
979 size of the system. If the pagesize is unknown, 4096 is used.
982 Void_t* public_vALLOc(size_t);
984 Void_t* public_vALLOc();
990 mallopt(int parameter_number, int parameter_value)
991 Sets tunable parameters The format is to provide a
992 (parameter-number, parameter-value) pair. mallopt then sets the
993 corresponding parameter to the argument value if it can (i.e., so
994 long as the value is meaningful), and returns 1 if successful else
995 0. SVID/XPG/ANSI defines four standard param numbers for mallopt,
996 normally defined in malloc.h. Only one of these (M_MXFAST) is used
997 in this malloc. The others (M_NLBLKS, M_GRAIN, M_KEEP) don't apply,
998 so setting them has no effect. But this malloc also supports four
999 other options in mallopt. See below for details. Briefly, supported
1000 parameters are as follows (listed defaults are for "typical"
1003 Symbol param # default allowed param values
1004 M_MXFAST 1 64 0-80 (0 disables fastbins)
1005 M_TRIM_THRESHOLD -1 128*1024 any (-1U disables trimming)
1007 M_MMAP_THRESHOLD -3 128*1024 any (or 0 if no MMAP support)
1008 M_MMAP_MAX -4 65536 any (0 disables use of mmap)
1011 int public_mALLOPt(int, int);
1013 int public_mALLOPt();
1019 Returns (by copy) a struct containing various summary statistics:
1021 arena: current total non-mmapped bytes allocated from system
1022 ordblks: the number of free chunks
1023 smblks: the number of fastbin blocks (i.e., small chunks that
1024 have been freed but not use resused or consolidated)
1025 hblks: current number of mmapped regions
1026 hblkhd: total bytes held in mmapped regions
1027 usmblks: the maximum total allocated space. This will be greater
1028 than current total if trimming has occurred.
1029 fsmblks: total bytes held in fastbin blocks
1030 uordblks: current total allocated space (normal or mmapped)
1031 fordblks: total free space
1032 keepcost: the maximum number of bytes that could ideally be released
1033 back to system via malloc_trim. ("ideally" means that
1034 it ignores page restrictions etc.)
1036 Because these fields are ints, but internal bookkeeping may
1037 be kept as longs, the reported values may wrap around zero and
1041 struct mallinfo public_mALLINFo(void);
1043 struct mallinfo public_mALLINFo();
1048 independent_calloc(size_t n_elements, size_t element_size, Void_t* chunks[]);
1050 independent_calloc is similar to calloc, but instead of returning a
1051 single cleared space, it returns an array of pointers to n_elements
1052 independent elements that can hold contents of size elem_size, each
1053 of which starts out cleared, and can be independently freed,
1054 realloc'ed etc. The elements are guaranteed to be adjacently
1055 allocated (this is not guaranteed to occur with multiple callocs or
1056 mallocs), which may also improve cache locality in some
1059 The "chunks" argument is optional (i.e., may be null, which is
1060 probably the most typical usage). If it is null, the returned array
1061 is itself dynamically allocated and should also be freed when it is
1062 no longer needed. Otherwise, the chunks array must be of at least
1063 n_elements in length. It is filled in with the pointers to the
1066 In either case, independent_calloc returns this pointer array, or
1067 null if the allocation failed. If n_elements is zero and "chunks"
1068 is null, it returns a chunk representing an array with zero elements
1069 (which should be freed if not wanted).
1071 Each element must be individually freed when it is no longer
1072 needed. If you'd like to instead be able to free all at once, you
1073 should instead use regular calloc and assign pointers into this
1074 space to represent elements. (In this case though, you cannot
1075 independently free elements.)
1077 independent_calloc simplifies and speeds up implementations of many
1078 kinds of pools. It may also be useful when constructing large data
1079 structures that initially have a fixed number of fixed-sized nodes,
1080 but the number is not known at compile time, and some of the nodes
1081 may later need to be freed. For example:
1083 struct Node { int item; struct Node* next; };
1085 struct Node* build_list() {
1087 int n = read_number_of_nodes_needed();
1088 if (n <= 0) return 0;
1089 pool = (struct Node**)(independent_calloc(n, sizeof(struct Node), 0);
1090 if (pool == 0) die();
1091 // organize into a linked list...
1092 struct Node* first = pool[0];
1093 for (i = 0; i < n-1; ++i)
1094 pool[i]->next = pool[i+1];
1095 free(pool); // Can now free the array (or not, if it is needed later)
1100 Void_t** public_iCALLOc(size_t, size_t, Void_t**);
1102 Void_t** public_iCALLOc();
1106 independent_comalloc(size_t n_elements, size_t sizes[], Void_t* chunks[]);
1108 independent_comalloc allocates, all at once, a set of n_elements
1109 chunks with sizes indicated in the "sizes" array. It returns
1110 an array of pointers to these elements, each of which can be
1111 independently freed, realloc'ed etc. The elements are guaranteed to
1112 be adjacently allocated (this is not guaranteed to occur with
1113 multiple callocs or mallocs), which may also improve cache locality
1114 in some applications.
1116 The "chunks" argument is optional (i.e., may be null). If it is null
1117 the returned array is itself dynamically allocated and should also
1118 be freed when it is no longer needed. Otherwise, the chunks array
1119 must be of at least n_elements in length. It is filled in with the
1120 pointers to the chunks.
1122 In either case, independent_comalloc returns this pointer array, or
1123 null if the allocation failed. If n_elements is zero and chunks is
1124 null, it returns a chunk representing an array with zero elements
1125 (which should be freed if not wanted).
1127 Each element must be individually freed when it is no longer
1128 needed. If you'd like to instead be able to free all at once, you
1129 should instead use a single regular malloc, and assign pointers at
1130 particular offsets in the aggregate space. (In this case though, you
1131 cannot independently free elements.)
1133 independent_comallac differs from independent_calloc in that each
1134 element may have a different size, and also that it does not
1135 automatically clear elements.
1137 independent_comalloc can be used to speed up allocation in cases
1138 where several structs or objects must always be allocated at the
1139 same time. For example:
1144 void send_message(char* msg) {
1145 int msglen = strlen(msg);
1146 size_t sizes[3] = { sizeof(struct Head), msglen, sizeof(struct Foot) };
1148 if (independent_comalloc(3, sizes, chunks) == 0)
1150 struct Head* head = (struct Head*)(chunks[0]);
1151 char* body = (char*)(chunks[1]);
1152 struct Foot* foot = (struct Foot*)(chunks[2]);
1156 In general though, independent_comalloc is worth using only for
1157 larger values of n_elements. For small values, you probably won't
1158 detect enough difference from series of malloc calls to bother.
1160 Overuse of independent_comalloc can increase overall memory usage,
1161 since it cannot reuse existing noncontiguous small chunks that
1162 might be available for some of the elements.
1165 Void_t** public_iCOMALLOc(size_t, size_t*, Void_t**);
1167 Void_t** public_iCOMALLOc();
1175 Equivalent to valloc(minimum-page-that-holds(n)), that is,
1176 round up n to nearest pagesize.
1179 Void_t* public_pVALLOc(size_t);
1181 Void_t* public_pVALLOc();
1186 Equivalent to free(p).
1188 cfree is needed/defined on some systems that pair it with calloc,
1189 for odd historical reasons (such as: cfree is used in example
1190 code in the first edition of K&R).
1193 void public_cFREe(Void_t*);
1195 void public_cFREe();
1199 malloc_trim(size_t pad);
1201 If possible, gives memory back to the system (via negative
1202 arguments to sbrk) if there is unused memory at the `high' end of
1203 the malloc pool. You can call this after freeing large blocks of
1204 memory to potentially reduce the system-level memory requirements
1205 of a program. However, it cannot guarantee to reduce memory. Under
1206 some allocation patterns, some large free blocks of memory will be
1207 locked between two used chunks, so they cannot be given back to
1210 The `pad' argument to malloc_trim represents the amount of free
1211 trailing space to leave untrimmed. If this argument is zero,
1212 only the minimum amount of memory to maintain internal data
1213 structures will be left (one page or less). Non-zero arguments
1214 can be supplied to maintain enough trailing space to service
1215 future expected allocations without having to re-obtain memory
1218 Malloc_trim returns 1 if it actually released any memory, else 0.
1219 On systems that do not support "negative sbrks", it will always
1223 int public_mTRIm(size_t);
1229 malloc_usable_size(Void_t* p);
1231 Returns the number of bytes you can actually use in
1232 an allocated chunk, which may be more than you requested (although
1233 often not) due to alignment and minimum size constraints.
1234 You can use this many bytes without worrying about
1235 overwriting other allocated objects. This is not a particularly great
1236 programming practice. malloc_usable_size can be more useful in
1237 debugging and assertions, for example:
1240 assert(malloc_usable_size(p) >= 256);
1244 size_t public_mUSABLe(Void_t*);
1246 size_t public_mUSABLe();
1251 Prints on stderr the amount of space obtained from the system (both
1252 via sbrk and mmap), the maximum amount (which may be more than
1253 current if malloc_trim and/or munmap got called), and the current
1254 number of bytes allocated via malloc (or realloc, etc) but not yet
1255 freed. Note that this is the number of bytes allocated, not the
1256 number requested. It will be larger than the number requested
1257 because of alignment and bookkeeping overhead. Because it includes
1258 alignment wastage as being in use, this figure may be greater than
1259 zero even when no user-level chunks are allocated.
1261 The reported current and maximum system memory can be inaccurate if
1262 a program makes other calls to system memory allocation functions
1263 (normally sbrk) outside of malloc.
1265 malloc_stats prints only the most commonly interesting statistics.
1266 More information can be obtained by calling mallinfo.
1270 void public_mSTATs(void);
1272 void public_mSTATs();
1276 malloc_get_state(void);
1278 Returns the state of all malloc variables in an opaque data
1282 Void_t* public_gET_STATe(void);
1284 Void_t* public_gET_STATe();
1288 malloc_set_state(Void_t* state);
1290 Restore the state of all malloc variables from data obtained with
1294 int public_sET_STATe(Void_t*);
1296 int public_sET_STATe();
1301 posix_memalign(void **memptr, size_t alignment, size_t size);
1303 POSIX wrapper like memalign(), checking for validity of size.
1305 int __posix_memalign(void **, size_t, size_t);
1308 /* mallopt tuning options */
1311 M_MXFAST is the maximum request size used for "fastbins", special bins
1312 that hold returned chunks without consolidating their spaces. This
1313 enables future requests for chunks of the same size to be handled
1314 very quickly, but can increase fragmentation, and thus increase the
1315 overall memory footprint of a program.
1317 This malloc manages fastbins very conservatively yet still
1318 efficiently, so fragmentation is rarely a problem for values less
1319 than or equal to the default. The maximum supported value of MXFAST
1320 is 80. You wouldn't want it any higher than this anyway. Fastbins
1321 are designed especially for use with many small structs, objects or
1322 strings -- the default handles structs/objects/arrays with sizes up
1323 to 8 4byte fields, or small strings representing words, tokens,
1324 etc. Using fastbins for larger objects normally worsens
1325 fragmentation without improving speed.
1327 M_MXFAST is set in REQUEST size units. It is internally used in
1328 chunksize units, which adds padding and alignment. You can reduce
1329 M_MXFAST to 0 to disable all use of fastbins. This causes the malloc
1330 algorithm to be a closer approximation of fifo-best-fit in all cases,
1331 not just for larger requests, but will generally cause it to be
1336 /* M_MXFAST is a standard SVID/XPG tuning option, usually listed in malloc.h */
1341 #ifndef DEFAULT_MXFAST
1342 #define DEFAULT_MXFAST (64 * SIZE_SZ / 4)
1347 M_TRIM_THRESHOLD is the maximum amount of unused top-most memory
1348 to keep before releasing via malloc_trim in free().
1350 Automatic trimming is mainly useful in long-lived programs.
1351 Because trimming via sbrk can be slow on some systems, and can
1352 sometimes be wasteful (in cases where programs immediately
1353 afterward allocate more large chunks) the value should be high
1354 enough so that your overall system performance would improve by
1355 releasing this much memory.
1357 The trim threshold and the mmap control parameters (see below)
1358 can be traded off with one another. Trimming and mmapping are
1359 two different ways of releasing unused memory back to the
1360 system. Between these two, it is often possible to keep
1361 system-level demands of a long-lived program down to a bare
1362 minimum. For example, in one test suite of sessions measuring
1363 the XF86 X server on Linux, using a trim threshold of 128K and a
1364 mmap threshold of 192K led to near-minimal long term resource
1367 If you are using this malloc in a long-lived program, it should
1368 pay to experiment with these values. As a rough guide, you
1369 might set to a value close to the average size of a process
1370 (program) running on your system. Releasing this much memory
1371 would allow such a process to run in memory. Generally, it's
1372 worth it to tune for trimming rather tham memory mapping when a
1373 program undergoes phases where several large chunks are
1374 allocated and released in ways that can reuse each other's
1375 storage, perhaps mixed with phases where there are no such
1376 chunks at all. And in well-behaved long-lived programs,
1377 controlling release of large blocks via trimming versus mapping
1380 However, in most programs, these parameters serve mainly as
1381 protection against the system-level effects of carrying around
1382 massive amounts of unneeded memory. Since frequent calls to
1383 sbrk, mmap, and munmap otherwise degrade performance, the default
1384 parameters are set to relatively high values that serve only as
1387 The trim value It must be greater than page size to have any useful
1388 effect. To disable trimming completely, you can set to
1391 Trim settings interact with fastbin (MXFAST) settings: Unless
1392 TRIM_FASTBINS is defined, automatic trimming never takes place upon
1393 freeing a chunk with size less than or equal to MXFAST. Trimming is
1394 instead delayed until subsequent freeing of larger chunks. However,
1395 you can still force an attempted trim by calling malloc_trim.
1397 Also, trimming is not generally possible in cases where
1398 the main arena is obtained via mmap.
1400 Note that the trick some people use of mallocing a huge space and
1401 then freeing it at program startup, in an attempt to reserve system
1402 memory, doesn't have the intended effect under automatic trimming,
1403 since that memory will immediately be returned to the system.
1406 #define M_TRIM_THRESHOLD -1
1408 #ifndef DEFAULT_TRIM_THRESHOLD
1409 #define DEFAULT_TRIM_THRESHOLD (128 * 1024)
1413 M_TOP_PAD is the amount of extra `padding' space to allocate or
1414 retain whenever sbrk is called. It is used in two ways internally:
1416 * When sbrk is called to extend the top of the arena to satisfy
1417 a new malloc request, this much padding is added to the sbrk
1420 * When malloc_trim is called automatically from free(),
1421 it is used as the `pad' argument.
1423 In both cases, the actual amount of padding is rounded
1424 so that the end of the arena is always a system page boundary.
1426 The main reason for using padding is to avoid calling sbrk so
1427 often. Having even a small pad greatly reduces the likelihood
1428 that nearly every malloc request during program start-up (or
1429 after trimming) will invoke sbrk, which needlessly wastes
1432 Automatic rounding-up to page-size units is normally sufficient
1433 to avoid measurable overhead, so the default is 0. However, in
1434 systems where sbrk is relatively slow, it can pay to increase
1435 this value, at the expense of carrying around more memory than
1439 #define M_TOP_PAD -2
1441 #ifndef DEFAULT_TOP_PAD
1442 #define DEFAULT_TOP_PAD (0)
1446 MMAP_THRESHOLD_MAX and _MIN are the bounds on the dynamically
1447 adjusted MMAP_THRESHOLD.
1450 #ifndef DEFAULT_MMAP_THRESHOLD_MIN
1451 #define DEFAULT_MMAP_THRESHOLD_MIN (128 * 1024)
1454 #ifndef DEFAULT_MMAP_THRESHOLD_MAX
1455 /* For 32-bit platforms we cannot increase the maximum mmap
1456 threshold much because it is also the minimum value for the
1457 maximum heap size and its alignment. Going above 512k (i.e., 1M
1458 for new heaps) wastes too much address space. */
1459 # if __WORDSIZE == 32
1460 # define DEFAULT_MMAP_THRESHOLD_MAX (512 * 1024)
1462 # define DEFAULT_MMAP_THRESHOLD_MAX (4 * 1024 * 1024 * sizeof(long))
1467 M_MMAP_THRESHOLD is the request size threshold for using mmap()
1468 to service a request. Requests of at least this size that cannot
1469 be allocated using already-existing space will be serviced via mmap.
1470 (If enough normal freed space already exists it is used instead.)
1472 Using mmap segregates relatively large chunks of memory so that
1473 they can be individually obtained and released from the host
1474 system. A request serviced through mmap is never reused by any
1475 other request (at least not directly; the system may just so
1476 happen to remap successive requests to the same locations).
1478 Segregating space in this way has the benefits that:
1480 1. Mmapped space can ALWAYS be individually released back
1481 to the system, which helps keep the system level memory
1482 demands of a long-lived program low.
1483 2. Mapped memory can never become `locked' between
1484 other chunks, as can happen with normally allocated chunks, which
1485 means that even trimming via malloc_trim would not release them.
1486 3. On some systems with "holes" in address spaces, mmap can obtain
1487 memory that sbrk cannot.
1489 However, it has the disadvantages that:
1491 1. The space cannot be reclaimed, consolidated, and then
1492 used to service later requests, as happens with normal chunks.
1493 2. It can lead to more wastage because of mmap page alignment
1495 3. It causes malloc performance to be more dependent on host
1496 system memory management support routines which may vary in
1497 implementation quality and may impose arbitrary
1498 limitations. Generally, servicing a request via normal
1499 malloc steps is faster than going through a system's mmap.
1501 The advantages of mmap nearly always outweigh disadvantages for
1502 "large" chunks, but the value of "large" varies across systems. The
1503 default is an empirically derived value that works well in most
1508 The above was written in 2001. Since then the world has changed a lot.
1509 Memory got bigger. Applications got bigger. The virtual address space
1510 layout in 32 bit linux changed.
1512 In the new situation, brk() and mmap space is shared and there are no
1513 artificial limits on brk size imposed by the kernel. What is more,
1514 applications have started using transient allocations larger than the
1515 128Kb as was imagined in 2001.
1517 The price for mmap is also high now; each time glibc mmaps from the
1518 kernel, the kernel is forced to zero out the memory it gives to the
1519 application. Zeroing memory is expensive and eats a lot of cache and
1520 memory bandwidth. This has nothing to do with the efficiency of the
1521 virtual memory system, by doing mmap the kernel just has no choice but
1524 In 2001, the kernel had a maximum size for brk() which was about 800
1525 megabytes on 32 bit x86, at that point brk() would hit the first
1526 mmaped shared libaries and couldn't expand anymore. With current 2.6
1527 kernels, the VA space layout is different and brk() and mmap
1528 both can span the entire heap at will.
1530 Rather than using a static threshold for the brk/mmap tradeoff,
1531 we are now using a simple dynamic one. The goal is still to avoid
1532 fragmentation. The old goals we kept are
1533 1) try to get the long lived large allocations to use mmap()
1534 2) really large allocations should always use mmap()
1535 and we're adding now:
1536 3) transient allocations should use brk() to avoid forcing the kernel
1537 having to zero memory over and over again
1539 The implementation works with a sliding threshold, which is by default
1540 limited to go between 128Kb and 32Mb (64Mb for 64 bitmachines) and starts
1541 out at 128Kb as per the 2001 default.
1543 This allows us to satisfy requirement 1) under the assumption that long
1544 lived allocations are made early in the process' lifespan, before it has
1545 started doing dynamic allocations of the same size (which will
1546 increase the threshold).
1548 The upperbound on the threshold satisfies requirement 2)
1550 The threshold goes up in value when the application frees memory that was
1551 allocated with the mmap allocator. The idea is that once the application
1552 starts freeing memory of a certain size, it's highly probable that this is
1553 a size the application uses for transient allocations. This estimator
1554 is there to satisfy the new third requirement.
1558 #define M_MMAP_THRESHOLD -3
1560 #ifndef DEFAULT_MMAP_THRESHOLD
1561 #define DEFAULT_MMAP_THRESHOLD DEFAULT_MMAP_THRESHOLD_MIN
1565 M_MMAP_MAX is the maximum number of requests to simultaneously
1566 service using mmap. This parameter exists because
1567 some systems have a limited number of internal tables for
1568 use by mmap, and using more than a few of them may degrade
1571 The default is set to a value that serves only as a safeguard.
1572 Setting to 0 disables use of mmap for servicing large requests. If
1573 HAVE_MMAP is not set, the default value is 0, and attempts to set it
1574 to non-zero values in mallopt will fail.
1577 #define M_MMAP_MAX -4
1579 #ifndef DEFAULT_MMAP_MAX
1581 #define DEFAULT_MMAP_MAX (65536)
1583 #define DEFAULT_MMAP_MAX (0)
1588 } /* end of extern "C" */
1594 #define BOUNDED_N(ptr, sz) (ptr)
1596 #ifndef RETURN_ADDRESS
1597 #define RETURN_ADDRESS(X_) (NULL)
1600 /* On some platforms we can compile internal, not exported functions better.
1601 Let the environment provide a macro and define it to be empty if it
1602 is not available. */
1603 #ifndef internal_function
1604 # define internal_function
1607 /* Forward declarations. */
1608 struct malloc_chunk;
1609 typedef struct malloc_chunk* mchunkptr;
1611 /* Internal routines. */
1615 static Void_t* _int_malloc(mstate, size_t);
1616 #ifdef ATOMIC_FASTBINS
1617 static void _int_free(mstate, mchunkptr, int);
1619 static void _int_free(mstate, mchunkptr);
1621 static Void_t* _int_realloc(mstate, mchunkptr, INTERNAL_SIZE_T,
1623 static Void_t* _int_memalign(mstate, size_t, size_t);
1624 static Void_t* _int_valloc(mstate, size_t);
1625 static Void_t* _int_pvalloc(mstate, size_t);
1626 /*static Void_t* cALLOc(size_t, size_t);*/
1628 static Void_t** _int_icalloc(mstate, size_t, size_t, Void_t**);
1629 static Void_t** _int_icomalloc(mstate, size_t, size_t*, Void_t**);
1631 static int mTRIm(mstate, size_t);
1632 static size_t mUSABLe(Void_t*);
1633 static void mSTATs(void);
1634 static int mALLOPt(int, int);
1635 static struct mallinfo mALLINFo(mstate);
1636 static void malloc_printerr(int action, const char *str, void *ptr);
1638 static Void_t* internal_function mem2mem_check(Void_t *p, size_t sz);
1639 static int internal_function top_check(void);
1640 static void internal_function munmap_chunk(mchunkptr p);
1642 static mchunkptr internal_function mremap_chunk(mchunkptr p, size_t new_size);
1645 static Void_t* malloc_check(size_t sz, const Void_t *caller);
1646 static void free_check(Void_t* mem, const Void_t *caller);
1647 static Void_t* realloc_check(Void_t* oldmem, size_t bytes,
1648 const Void_t *caller);
1649 static Void_t* memalign_check(size_t alignment, size_t bytes,
1650 const Void_t *caller);
1653 # if USE___THREAD || !defined SHARED
1654 /* These routines are never needed in this configuration. */
1661 static Void_t* malloc_starter(size_t sz, const Void_t *caller);
1662 static Void_t* memalign_starter(size_t aln, size_t sz, const Void_t *caller);
1663 static void free_starter(Void_t* mem, const Void_t *caller);
1665 static Void_t* malloc_atfork(size_t sz, const Void_t *caller);
1666 static void free_atfork(Void_t* mem, const Void_t *caller);
1671 static Void_t* _int_malloc();
1672 static void _int_free();
1673 static Void_t* _int_realloc();
1674 static Void_t* _int_memalign();
1675 static Void_t* _int_valloc();
1676 static Void_t* _int_pvalloc();
1677 /*static Void_t* cALLOc();*/
1678 static Void_t** _int_icalloc();
1679 static Void_t** _int_icomalloc();
1681 static size_t mUSABLe();
1682 static void mSTATs();
1683 static int mALLOPt();
1684 static struct mallinfo mALLINFo();
1691 /* ------------- Optional versions of memcopy ---------------- */
1697 Note: memcpy is ONLY invoked with non-overlapping regions,
1698 so the (usually slower) memmove is not needed.
1701 #define MALLOC_COPY(dest, src, nbytes) memcpy(dest, src, nbytes)
1702 #define MALLOC_ZERO(dest, nbytes) memset(dest, 0, nbytes)
1704 #else /* !USE_MEMCPY */
1706 /* Use Duff's device for good zeroing/copying performance. */
1708 #define MALLOC_ZERO(charp, nbytes) \
1710 INTERNAL_SIZE_T* mzp = (INTERNAL_SIZE_T*)(charp); \
1711 unsigned long mctmp = (nbytes)/sizeof(INTERNAL_SIZE_T); \
1713 if (mctmp < 8) mcn = 0; else { mcn = (mctmp-1)/8; mctmp %= 8; } \
1715 case 0: for(;;) { *mzp++ = 0; \
1716 case 7: *mzp++ = 0; \
1717 case 6: *mzp++ = 0; \
1718 case 5: *mzp++ = 0; \
1719 case 4: *mzp++ = 0; \
1720 case 3: *mzp++ = 0; \
1721 case 2: *mzp++ = 0; \
1722 case 1: *mzp++ = 0; if(mcn <= 0) break; mcn--; } \
1726 #define MALLOC_COPY(dest,src,nbytes) \
1728 INTERNAL_SIZE_T* mcsrc = (INTERNAL_SIZE_T*) src; \
1729 INTERNAL_SIZE_T* mcdst = (INTERNAL_SIZE_T*) dest; \
1730 unsigned long mctmp = (nbytes)/sizeof(INTERNAL_SIZE_T); \
1732 if (mctmp < 8) mcn = 0; else { mcn = (mctmp-1)/8; mctmp %= 8; } \
1734 case 0: for(;;) { *mcdst++ = *mcsrc++; \
1735 case 7: *mcdst++ = *mcsrc++; \
1736 case 6: *mcdst++ = *mcsrc++; \
1737 case 5: *mcdst++ = *mcsrc++; \
1738 case 4: *mcdst++ = *mcsrc++; \
1739 case 3: *mcdst++ = *mcsrc++; \
1740 case 2: *mcdst++ = *mcsrc++; \
1741 case 1: *mcdst++ = *mcsrc++; if(mcn <= 0) break; mcn--; } \
1747 /* ------------------ MMAP support ------------------ */
1753 #ifndef LACKS_SYS_MMAN_H
1754 #include <sys/mman.h>
1757 #if !defined(MAP_ANONYMOUS) && defined(MAP_ANON)
1758 # define MAP_ANONYMOUS MAP_ANON
1760 #if !defined(MAP_FAILED)
1761 # define MAP_FAILED ((char*)-1)
1764 #ifndef MAP_NORESERVE
1765 # ifdef MAP_AUTORESRV
1766 # define MAP_NORESERVE MAP_AUTORESRV
1768 # define MAP_NORESERVE 0
1773 Nearly all versions of mmap support MAP_ANONYMOUS,
1774 so the following is unlikely to be needed, but is
1775 supplied just in case.
1778 #ifndef MAP_ANONYMOUS
1780 static int dev_zero_fd = -1; /* Cached file descriptor for /dev/zero. */
1782 #define MMAP(addr, size, prot, flags) ((dev_zero_fd < 0) ? \
1783 (dev_zero_fd = open("/dev/zero", O_RDWR), \
1784 mmap((addr), (size), (prot), (flags), dev_zero_fd, 0)) : \
1785 mmap((addr), (size), (prot), (flags), dev_zero_fd, 0))
1789 #define MMAP(addr, size, prot, flags) \
1790 (mmap((addr), (size), (prot), (flags)|MAP_ANONYMOUS, -1, 0))
1795 #endif /* HAVE_MMAP */
1799 ----------------------- Chunk representations -----------------------
1804 This struct declaration is misleading (but accurate and necessary).
1805 It declares a "view" into memory allowing access to necessary
1806 fields at known offsets from a given base. See explanation below.
1809 struct malloc_chunk {
1811 INTERNAL_SIZE_T prev_size; /* Size of previous chunk (if free). */
1812 INTERNAL_SIZE_T size; /* Size in bytes, including overhead. */
1814 struct malloc_chunk* fd; /* double links -- used only if free. */
1815 struct malloc_chunk* bk;
1817 /* Only used for large blocks: pointer to next larger size. */
1818 struct malloc_chunk* fd_nextsize; /* double links -- used only if free. */
1819 struct malloc_chunk* bk_nextsize;
1824 malloc_chunk details:
1826 (The following includes lightly edited explanations by Colin Plumb.)
1828 Chunks of memory are maintained using a `boundary tag' method as
1829 described in e.g., Knuth or Standish. (See the paper by Paul
1830 Wilson ftp://ftp.cs.utexas.edu/pub/garbage/allocsrv.ps for a
1831 survey of such techniques.) Sizes of free chunks are stored both
1832 in the front of each chunk and at the end. This makes
1833 consolidating fragmented chunks into bigger chunks very fast. The
1834 size fields also hold bits representing whether chunks are free or
1837 An allocated chunk looks like this:
1840 chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1841 | Size of previous chunk, if allocated | |
1842 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1843 | Size of chunk, in bytes |M|P|
1844 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1845 | User data starts here... .
1847 . (malloc_usable_size() bytes) .
1849 nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1851 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1854 Where "chunk" is the front of the chunk for the purpose of most of
1855 the malloc code, but "mem" is the pointer that is returned to the
1856 user. "Nextchunk" is the beginning of the next contiguous chunk.
1858 Chunks always begin on even word boundries, so the mem portion
1859 (which is returned to the user) is also on an even word boundary, and
1860 thus at least double-word aligned.
1862 Free chunks are stored in circular doubly-linked lists, and look like this:
1864 chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1865 | Size of previous chunk |
1866 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1867 `head:' | Size of chunk, in bytes |P|
1868 mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1869 | Forward pointer to next chunk in list |
1870 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1871 | Back pointer to previous chunk in list |
1872 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1873 | Unused space (may be 0 bytes long) .
1876 nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1877 `foot:' | Size of chunk, in bytes |
1878 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1880 The P (PREV_INUSE) bit, stored in the unused low-order bit of the
1881 chunk size (which is always a multiple of two words), is an in-use
1882 bit for the *previous* chunk. If that bit is *clear*, then the
1883 word before the current chunk size contains the previous chunk
1884 size, and can be used to find the front of the previous chunk.
1885 The very first chunk allocated always has this bit set,
1886 preventing access to non-existent (or non-owned) memory. If
1887 prev_inuse is set for any given chunk, then you CANNOT determine
1888 the size of the previous chunk, and might even get a memory
1889 addressing fault when trying to do so.
1891 Note that the `foot' of the current chunk is actually represented
1892 as the prev_size of the NEXT chunk. This makes it easier to
1893 deal with alignments etc but can be very confusing when trying
1894 to extend or adapt this code.
1896 The two exceptions to all this are
1898 1. The special chunk `top' doesn't bother using the
1899 trailing size field since there is no next contiguous chunk
1900 that would have to index off it. After initialization, `top'
1901 is forced to always exist. If it would become less than
1902 MINSIZE bytes long, it is replenished.
1904 2. Chunks allocated via mmap, which have the second-lowest-order
1905 bit M (IS_MMAPPED) set in their size fields. Because they are
1906 allocated one-by-one, each must contain its own trailing size field.
1911 ---------- Size and alignment checks and conversions ----------
1914 /* conversion from malloc headers to user pointers, and back */
1916 #define chunk2mem(p) ((Void_t*)((char*)(p) + 2*SIZE_SZ))
1917 #define mem2chunk(mem) ((mchunkptr)((char*)(mem) - 2*SIZE_SZ))
1919 /* The smallest possible chunk */
1920 #define MIN_CHUNK_SIZE (offsetof(struct malloc_chunk, fd_nextsize))
1922 /* The smallest size we can malloc is an aligned minimal chunk */
1925 (unsigned long)(((MIN_CHUNK_SIZE+MALLOC_ALIGN_MASK) & ~MALLOC_ALIGN_MASK))
1927 /* Check if m has acceptable alignment */
1929 #define aligned_OK(m) (((unsigned long)(m) & MALLOC_ALIGN_MASK) == 0)
1931 #define misaligned_chunk(p) \
1932 ((uintptr_t)(MALLOC_ALIGNMENT == 2 * SIZE_SZ ? (p) : chunk2mem (p)) \
1933 & MALLOC_ALIGN_MASK)
1937 Check if a request is so large that it would wrap around zero when
1938 padded and aligned. To simplify some other code, the bound is made
1939 low enough so that adding MINSIZE will also not wrap around zero.
1942 #define REQUEST_OUT_OF_RANGE(req) \
1943 ((unsigned long)(req) >= \
1944 (unsigned long)(INTERNAL_SIZE_T)(-2 * MINSIZE))
1946 /* pad request bytes into a usable size -- internal version */
1948 #define request2size(req) \
1949 (((req) + SIZE_SZ + MALLOC_ALIGN_MASK < MINSIZE) ? \
1951 ((req) + SIZE_SZ + MALLOC_ALIGN_MASK) & ~MALLOC_ALIGN_MASK)
1953 /* Same, except also perform argument check */
1955 #define checked_request2size(req, sz) \
1956 if (REQUEST_OUT_OF_RANGE(req)) { \
1957 MALLOC_FAILURE_ACTION; \
1960 (sz) = request2size(req);
1963 --------------- Physical chunk operations ---------------
1967 /* size field is or'ed with PREV_INUSE when previous adjacent chunk in use */
1968 #define PREV_INUSE 0x1
1970 /* extract inuse bit of previous chunk */
1971 #define prev_inuse(p) ((p)->size & PREV_INUSE)
1974 /* size field is or'ed with IS_MMAPPED if the chunk was obtained with mmap() */
1975 #define IS_MMAPPED 0x2
1977 /* check for mmap()'ed chunk */
1978 #define chunk_is_mmapped(p) ((p)->size & IS_MMAPPED)
1981 /* size field is or'ed with NON_MAIN_ARENA if the chunk was obtained
1982 from a non-main arena. This is only set immediately before handing
1983 the chunk to the user, if necessary. */
1984 #define NON_MAIN_ARENA 0x4
1986 /* check for chunk from non-main arena */
1987 #define chunk_non_main_arena(p) ((p)->size & NON_MAIN_ARENA)
1991 Bits to mask off when extracting size
1993 Note: IS_MMAPPED is intentionally not masked off from size field in
1994 macros for which mmapped chunks should never be seen. This should
1995 cause helpful core dumps to occur if it is tried by accident by
1996 people extending or adapting this malloc.
1998 #define SIZE_BITS (PREV_INUSE|IS_MMAPPED|NON_MAIN_ARENA)
2000 /* Get size, ignoring use bits */
2001 #define chunksize(p) ((p)->size & ~(SIZE_BITS))
2004 /* Ptr to next physical malloc_chunk. */
2005 #define next_chunk(p) ((mchunkptr)( ((char*)(p)) + ((p)->size & ~SIZE_BITS) ))
2007 /* Ptr to previous physical malloc_chunk */
2008 #define prev_chunk(p) ((mchunkptr)( ((char*)(p)) - ((p)->prev_size) ))
2010 /* Treat space at ptr + offset as a chunk */
2011 #define chunk_at_offset(p, s) ((mchunkptr)(((char*)(p)) + (s)))
2013 /* extract p's inuse bit */
2015 ((((mchunkptr)(((char*)(p))+((p)->size & ~SIZE_BITS)))->size) & PREV_INUSE)
2017 /* set/clear chunk as being inuse without otherwise disturbing */
2018 #define set_inuse(p)\
2019 ((mchunkptr)(((char*)(p)) + ((p)->size & ~SIZE_BITS)))->size |= PREV_INUSE
2021 #define clear_inuse(p)\
2022 ((mchunkptr)(((char*)(p)) + ((p)->size & ~SIZE_BITS)))->size &= ~(PREV_INUSE)
2025 /* check/set/clear inuse bits in known places */
2026 #define inuse_bit_at_offset(p, s)\
2027 (((mchunkptr)(((char*)(p)) + (s)))->size & PREV_INUSE)
2029 #define set_inuse_bit_at_offset(p, s)\
2030 (((mchunkptr)(((char*)(p)) + (s)))->size |= PREV_INUSE)
2032 #define clear_inuse_bit_at_offset(p, s)\
2033 (((mchunkptr)(((char*)(p)) + (s)))->size &= ~(PREV_INUSE))
2036 /* Set size at head, without disturbing its use bit */
2037 #define set_head_size(p, s) ((p)->size = (((p)->size & SIZE_BITS) | (s)))
2039 /* Set size/use field */
2040 #define set_head(p, s) ((p)->size = (s))
2042 /* Set size at footer (only when chunk is not in use) */
2043 #define set_foot(p, s) (((mchunkptr)((char*)(p) + (s)))->prev_size = (s))
2047 -------------------- Internal data structures --------------------
2049 All internal state is held in an instance of malloc_state defined
2050 below. There are no other static variables, except in two optional
2052 * If USE_MALLOC_LOCK is defined, the mALLOC_MUTEx declared above.
2053 * If HAVE_MMAP is true, but mmap doesn't support
2054 MAP_ANONYMOUS, a dummy file descriptor for mmap.
2056 Beware of lots of tricks that minimize the total bookkeeping space
2057 requirements. The result is a little over 1K bytes (for 4byte
2058 pointers and size_t.)
2064 An array of bin headers for free chunks. Each bin is doubly
2065 linked. The bins are approximately proportionally (log) spaced.
2066 There are a lot of these bins (128). This may look excessive, but
2067 works very well in practice. Most bins hold sizes that are
2068 unusual as malloc request sizes, but are more usual for fragments
2069 and consolidated sets of chunks, which is what these bins hold, so
2070 they can be found quickly. All procedures maintain the invariant
2071 that no consolidated chunk physically borders another one, so each
2072 chunk in a list is known to be preceeded and followed by either
2073 inuse chunks or the ends of memory.
2075 Chunks in bins are kept in size order, with ties going to the
2076 approximately least recently used chunk. Ordering isn't needed
2077 for the small bins, which all contain the same-sized chunks, but
2078 facilitates best-fit allocation for larger chunks. These lists
2079 are just sequential. Keeping them in order almost never requires
2080 enough traversal to warrant using fancier ordered data
2083 Chunks of the same size are linked with the most
2084 recently freed at the front, and allocations are taken from the
2085 back. This results in LRU (FIFO) allocation order, which tends
2086 to give each chunk an equal opportunity to be consolidated with
2087 adjacent freed chunks, resulting in larger free chunks and less
2090 To simplify use in double-linked lists, each bin header acts
2091 as a malloc_chunk. This avoids special-casing for headers.
2092 But to conserve space and improve locality, we allocate
2093 only the fd/bk pointers of bins, and then use repositioning tricks
2094 to treat these as the fields of a malloc_chunk*.
2097 typedef struct malloc_chunk* mbinptr;
2099 /* addressing -- note that bin_at(0) does not exist */
2100 #define bin_at(m, i) \
2101 (mbinptr) (((char *) &((m)->bins[((i) - 1) * 2])) \
2102 - offsetof (struct malloc_chunk, fd))
2104 /* analog of ++bin */
2105 #define next_bin(b) ((mbinptr)((char*)(b) + (sizeof(mchunkptr)<<1)))
2107 /* Reminders about list directionality within bins */
2108 #define first(b) ((b)->fd)
2109 #define last(b) ((b)->bk)
2111 /* Take a chunk off a bin list */
2112 #define unlink(P, BK, FD) { \
2115 if (__builtin_expect (FD->bk != P || BK->fd != P, 0)) \
2116 malloc_printerr (check_action, "corrupted double-linked list", P); \
2120 if (!in_smallbin_range (P->size) \
2121 && __builtin_expect (P->fd_nextsize != NULL, 0)) { \
2122 assert (P->fd_nextsize->bk_nextsize == P); \
2123 assert (P->bk_nextsize->fd_nextsize == P); \
2124 if (FD->fd_nextsize == NULL) { \
2125 if (P->fd_nextsize == P) \
2126 FD->fd_nextsize = FD->bk_nextsize = FD; \
2128 FD->fd_nextsize = P->fd_nextsize; \
2129 FD->bk_nextsize = P->bk_nextsize; \
2130 P->fd_nextsize->bk_nextsize = FD; \
2131 P->bk_nextsize->fd_nextsize = FD; \
2134 P->fd_nextsize->bk_nextsize = P->bk_nextsize; \
2135 P->bk_nextsize->fd_nextsize = P->fd_nextsize; \
2144 Bins for sizes < 512 bytes contain chunks of all the same size, spaced
2145 8 bytes apart. Larger bins are approximately logarithmically spaced:
2151 4 bins of size 32768
2152 2 bins of size 262144
2153 1 bin of size what's left
2155 There is actually a little bit of slop in the numbers in bin_index
2156 for the sake of speed. This makes no difference elsewhere.
2158 The bins top out around 1MB because we expect to service large
2163 #define NSMALLBINS 64
2164 #define SMALLBIN_WIDTH MALLOC_ALIGNMENT
2165 #define MIN_LARGE_SIZE (NSMALLBINS * SMALLBIN_WIDTH)
2167 #define in_smallbin_range(sz) \
2168 ((unsigned long)(sz) < (unsigned long)MIN_LARGE_SIZE)
2170 #define smallbin_index(sz) \
2171 (SMALLBIN_WIDTH == 16 ? (((unsigned)(sz)) >> 4) : (((unsigned)(sz)) >> 3))
2173 #define largebin_index_32(sz) \
2174 (((((unsigned long)(sz)) >> 6) <= 38)? 56 + (((unsigned long)(sz)) >> 6): \
2175 ((((unsigned long)(sz)) >> 9) <= 20)? 91 + (((unsigned long)(sz)) >> 9): \
2176 ((((unsigned long)(sz)) >> 12) <= 10)? 110 + (((unsigned long)(sz)) >> 12): \
2177 ((((unsigned long)(sz)) >> 15) <= 4)? 119 + (((unsigned long)(sz)) >> 15): \
2178 ((((unsigned long)(sz)) >> 18) <= 2)? 124 + (((unsigned long)(sz)) >> 18): \
2181 // XXX It remains to be seen whether it is good to keep the widths of
2182 // XXX the buckets the same or whether it should be scaled by a factor
2183 // XXX of two as well.
2184 #define largebin_index_64(sz) \
2185 (((((unsigned long)(sz)) >> 6) <= 48)? 48 + (((unsigned long)(sz)) >> 6): \
2186 ((((unsigned long)(sz)) >> 9) <= 20)? 91 + (((unsigned long)(sz)) >> 9): \
2187 ((((unsigned long)(sz)) >> 12) <= 10)? 110 + (((unsigned long)(sz)) >> 12): \
2188 ((((unsigned long)(sz)) >> 15) <= 4)? 119 + (((unsigned long)(sz)) >> 15): \
2189 ((((unsigned long)(sz)) >> 18) <= 2)? 124 + (((unsigned long)(sz)) >> 18): \
2192 #define largebin_index(sz) \
2193 (SIZE_SZ == 8 ? largebin_index_64 (sz) : largebin_index_32 (sz))
2195 #define bin_index(sz) \
2196 ((in_smallbin_range(sz)) ? smallbin_index(sz) : largebin_index(sz))
2202 All remainders from chunk splits, as well as all returned chunks,
2203 are first placed in the "unsorted" bin. They are then placed
2204 in regular bins after malloc gives them ONE chance to be used before
2205 binning. So, basically, the unsorted_chunks list acts as a queue,
2206 with chunks being placed on it in free (and malloc_consolidate),
2207 and taken off (to be either used or placed in bins) in malloc.
2209 The NON_MAIN_ARENA flag is never set for unsorted chunks, so it
2210 does not have to be taken into account in size comparisons.
2213 /* The otherwise unindexable 1-bin is used to hold unsorted chunks. */
2214 #define unsorted_chunks(M) (bin_at(M, 1))
2219 The top-most available chunk (i.e., the one bordering the end of
2220 available memory) is treated specially. It is never included in
2221 any bin, is used only if no other chunk is available, and is
2222 released back to the system if it is very large (see
2223 M_TRIM_THRESHOLD). Because top initially
2224 points to its own bin with initial zero size, thus forcing
2225 extension on the first malloc request, we avoid having any special
2226 code in malloc to check whether it even exists yet. But we still
2227 need to do so when getting memory from system, so we make
2228 initial_top treat the bin as a legal but unusable chunk during the
2229 interval between initialization and the first call to
2230 sYSMALLOc. (This is somewhat delicate, since it relies on
2231 the 2 preceding words to be zero during this interval as well.)
2234 /* Conveniently, the unsorted bin can be used as dummy top on first call */
2235 #define initial_top(M) (unsorted_chunks(M))
2240 To help compensate for the large number of bins, a one-level index
2241 structure is used for bin-by-bin searching. `binmap' is a
2242 bitvector recording whether bins are definitely empty so they can
2243 be skipped over during during traversals. The bits are NOT always
2244 cleared as soon as bins are empty, but instead only
2245 when they are noticed to be empty during traversal in malloc.
2248 /* Conservatively use 32 bits per map word, even if on 64bit system */
2249 #define BINMAPSHIFT 5
2250 #define BITSPERMAP (1U << BINMAPSHIFT)
2251 #define BINMAPSIZE (NBINS / BITSPERMAP)
2253 #define idx2block(i) ((i) >> BINMAPSHIFT)
2254 #define idx2bit(i) ((1U << ((i) & ((1U << BINMAPSHIFT)-1))))
2256 #define mark_bin(m,i) ((m)->binmap[idx2block(i)] |= idx2bit(i))
2257 #define unmark_bin(m,i) ((m)->binmap[idx2block(i)] &= ~(idx2bit(i)))
2258 #define get_binmap(m,i) ((m)->binmap[idx2block(i)] & idx2bit(i))
2263 An array of lists holding recently freed small chunks. Fastbins
2264 are not doubly linked. It is faster to single-link them, and
2265 since chunks are never removed from the middles of these lists,
2266 double linking is not necessary. Also, unlike regular bins, they
2267 are not even processed in FIFO order (they use faster LIFO) since
2268 ordering doesn't much matter in the transient contexts in which
2269 fastbins are normally used.
2271 Chunks in fastbins keep their inuse bit set, so they cannot
2272 be consolidated with other free chunks. malloc_consolidate
2273 releases all chunks in fastbins and consolidates them with
2277 typedef struct malloc_chunk* mfastbinptr;
2278 #define fastbin(ar_ptr, idx) ((ar_ptr)->fastbinsY[idx])
2280 /* offset 2 to use otherwise unindexable first 2 bins */
2281 #define fastbin_index(sz) \
2282 ((((unsigned int)(sz)) >> (SIZE_SZ == 8 ? 4 : 3)) - 2)
2285 /* The maximum fastbin request size we support */
2286 #define MAX_FAST_SIZE (80 * SIZE_SZ / 4)
2288 #define NFASTBINS (fastbin_index(request2size(MAX_FAST_SIZE))+1)
2291 FASTBIN_CONSOLIDATION_THRESHOLD is the size of a chunk in free()
2292 that triggers automatic consolidation of possibly-surrounding
2293 fastbin chunks. This is a heuristic, so the exact value should not
2294 matter too much. It is defined at half the default trim threshold as a
2295 compromise heuristic to only attempt consolidation if it is likely
2296 to lead to trimming. However, it is not dynamically tunable, since
2297 consolidation reduces fragmentation surrounding large chunks even
2298 if trimming is not used.
2301 #define FASTBIN_CONSOLIDATION_THRESHOLD (65536UL)
2304 Since the lowest 2 bits in max_fast don't matter in size comparisons,
2305 they are used as flags.
2309 FASTCHUNKS_BIT held in max_fast indicates that there are probably
2310 some fastbin chunks. It is set true on entering a chunk into any
2311 fastbin, and cleared only in malloc_consolidate.
2313 The truth value is inverted so that have_fastchunks will be true
2314 upon startup (since statics are zero-filled), simplifying
2315 initialization checks.
2318 #define FASTCHUNKS_BIT (1U)
2320 #define have_fastchunks(M) (((M)->flags & FASTCHUNKS_BIT) == 0)
2321 #ifdef ATOMIC_FASTBINS
2322 #define clear_fastchunks(M) catomic_or (&(M)->flags, FASTCHUNKS_BIT)
2323 #define set_fastchunks(M) catomic_and (&(M)->flags, ~FASTCHUNKS_BIT)
2325 #define clear_fastchunks(M) ((M)->flags |= FASTCHUNKS_BIT)
2326 #define set_fastchunks(M) ((M)->flags &= ~FASTCHUNKS_BIT)
2330 NONCONTIGUOUS_BIT indicates that MORECORE does not return contiguous
2331 regions. Otherwise, contiguity is exploited in merging together,
2332 when possible, results from consecutive MORECORE calls.
2334 The initial value comes from MORECORE_CONTIGUOUS, but is
2335 changed dynamically if mmap is ever used as an sbrk substitute.
2338 #define NONCONTIGUOUS_BIT (2U)
2340 #define contiguous(M) (((M)->flags & NONCONTIGUOUS_BIT) == 0)
2341 #define noncontiguous(M) (((M)->flags & NONCONTIGUOUS_BIT) != 0)
2342 #define set_noncontiguous(M) ((M)->flags |= NONCONTIGUOUS_BIT)
2343 #define set_contiguous(M) ((M)->flags &= ~NONCONTIGUOUS_BIT)
2346 Set value of max_fast.
2347 Use impossibly small value if 0.
2348 Precondition: there are no existing fastbin chunks.
2349 Setting the value clears fastchunk bit but preserves noncontiguous bit.
2352 #define set_max_fast(s) \
2353 global_max_fast = (((s) == 0) \
2354 ? SMALLBIN_WIDTH: ((s + SIZE_SZ) & ~MALLOC_ALIGN_MASK))
2355 #define get_max_fast() global_max_fast
2359 ----------- Internal state representation and initialization -----------
2362 struct malloc_state {
2363 /* Serialize access. */
2366 /* Flags (formerly in max_fast). */
2370 /* Statistics for locking. Only used if THREAD_STATS is defined. */
2371 long stat_lock_direct, stat_lock_loop, stat_lock_wait;
2375 mfastbinptr fastbinsY[NFASTBINS];
2377 /* Base of the topmost chunk -- not otherwise kept in a bin */
2380 /* The remainder from the most recent split of a small request */
2381 mchunkptr last_remainder;
2383 /* Normal bins packed as described above */
2384 mchunkptr bins[NBINS * 2 - 2];
2386 /* Bitmap of bins */
2387 unsigned int binmap[BINMAPSIZE];
2390 struct malloc_state *next;
2393 /* Linked list for free arenas. */
2394 struct malloc_state *next_free;
2397 /* Memory allocated from the system in this arena. */
2398 INTERNAL_SIZE_T system_mem;
2399 INTERNAL_SIZE_T max_system_mem;
2403 /* Tunable parameters */
2404 unsigned long trim_threshold;
2405 INTERNAL_SIZE_T top_pad;
2406 INTERNAL_SIZE_T mmap_threshold;
2408 INTERNAL_SIZE_T arena_test;
2409 INTERNAL_SIZE_T arena_max;
2412 /* Memory map support */
2416 /* the mmap_threshold is dynamic, until the user sets
2417 it manually, at which point we need to disable any
2418 dynamic behavior. */
2419 int no_dyn_threshold;
2421 /* Cache malloc_getpagesize */
2422 unsigned int pagesize;
2425 INTERNAL_SIZE_T mmapped_mem;
2426 /*INTERNAL_SIZE_T sbrked_mem;*/
2427 /*INTERNAL_SIZE_T max_sbrked_mem;*/
2428 INTERNAL_SIZE_T max_mmapped_mem;
2429 INTERNAL_SIZE_T max_total_mem; /* only kept for NO_THREADS */
2431 /* First address handed out by MORECORE/sbrk. */
2435 /* There are several instances of this struct ("arenas") in this
2436 malloc. If you are adapting this malloc in a way that does NOT use
2437 a static or mmapped malloc_state, you MUST explicitly zero-fill it
2438 before using. This malloc relies on the property that malloc_state
2439 is initialized to all zeroes (as is true of C statics). */
2441 static struct malloc_state main_arena;
2443 /* There is only one instance of the malloc parameters. */
2445 static struct malloc_par mp_;
2449 /* Non public mallopt parameters. */
2450 #define M_ARENA_TEST -7
2451 #define M_ARENA_MAX -8
2455 /* Maximum size of memory handled in fastbins. */
2456 static INTERNAL_SIZE_T global_max_fast;
2459 Initialize a malloc_state struct.
2461 This is called only from within malloc_consolidate, which needs
2462 be called in the same contexts anyway. It is never called directly
2463 outside of malloc_consolidate because some optimizing compilers try
2464 to inline it at all call points, which turns out not to be an
2465 optimization at all. (Inlining it in malloc_consolidate is fine though.)
2469 static void malloc_init_state(mstate av)
2471 static void malloc_init_state(av) mstate av;
2477 /* Establish circular links for normal bins */
2478 for (i = 1; i < NBINS; ++i) {
2480 bin->fd = bin->bk = bin;
2483 #if MORECORE_CONTIGUOUS
2484 if (av != &main_arena)
2486 set_noncontiguous(av);
2487 if (av == &main_arena)
2488 set_max_fast(DEFAULT_MXFAST);
2489 av->flags |= FASTCHUNKS_BIT;
2491 av->top = initial_top(av);
2495 Other internal utilities operating on mstates
2499 static Void_t* sYSMALLOc(INTERNAL_SIZE_T, mstate);
2500 static int sYSTRIm(size_t, mstate);
2501 static void malloc_consolidate(mstate);
2503 static Void_t** iALLOc(mstate, size_t, size_t*, int, Void_t**);
2506 static Void_t* sYSMALLOc();
2507 static int sYSTRIm();
2508 static void malloc_consolidate();
2509 static Void_t** iALLOc();
2513 /* -------------- Early definitions for debugging hooks ---------------- */
2515 /* Define and initialize the hook variables. These weak definitions must
2516 appear before any use of the variables in a function (arena.c uses one). */
2517 #ifndef weak_variable
2519 #define weak_variable /**/
2521 /* In GNU libc we want the hook variables to be weak definitions to
2522 avoid a problem with Emacs. */
2523 #define weak_variable weak_function
2527 /* Forward declarations. */
2528 static Void_t* malloc_hook_ini __MALLOC_P ((size_t sz,
2529 const __malloc_ptr_t caller));
2530 static Void_t* realloc_hook_ini __MALLOC_P ((Void_t* ptr, size_t sz,
2531 const __malloc_ptr_t caller));
2532 static Void_t* memalign_hook_ini __MALLOC_P ((size_t alignment, size_t sz,
2533 const __malloc_ptr_t caller));
2535 void weak_variable (*__malloc_initialize_hook) (void) = NULL;
2536 void weak_variable (*__free_hook) (__malloc_ptr_t __ptr,
2537 const __malloc_ptr_t) = NULL;
2538 __malloc_ptr_t weak_variable (*__malloc_hook)
2539 (size_t __size, const __malloc_ptr_t) = malloc_hook_ini;
2540 __malloc_ptr_t weak_variable (*__realloc_hook)
2541 (__malloc_ptr_t __ptr, size_t __size, const __malloc_ptr_t)
2543 __malloc_ptr_t weak_variable (*__memalign_hook)
2544 (size_t __alignment, size_t __size, const __malloc_ptr_t)
2545 = memalign_hook_ini;
2546 void weak_variable (*__after_morecore_hook) (void) = NULL;
2549 /* ---------------- Error behavior ------------------------------------ */
2551 #ifndef DEFAULT_CHECK_ACTION
2552 #define DEFAULT_CHECK_ACTION 3
2555 static int check_action = DEFAULT_CHECK_ACTION;
2558 /* ------------------ Testing support ----------------------------------*/
2560 static int perturb_byte;
2562 #define alloc_perturb(p, n) memset (p, (perturb_byte ^ 0xff) & 0xff, n)
2563 #define free_perturb(p, n) memset (p, perturb_byte & 0xff, n)
2566 /* ------------------- Support for multiple arenas -------------------- */
2572 These routines make a number of assertions about the states
2573 of data structures that should be true at all times. If any
2574 are not true, it's very likely that a user program has somehow
2575 trashed memory. (It's also possible that there is a coding error
2576 in malloc. In which case, please report it!)
2581 #define check_chunk(A,P)
2582 #define check_free_chunk(A,P)
2583 #define check_inuse_chunk(A,P)
2584 #define check_remalloced_chunk(A,P,N)
2585 #define check_malloced_chunk(A,P,N)
2586 #define check_malloc_state(A)
2590 #define check_chunk(A,P) do_check_chunk(A,P)
2591 #define check_free_chunk(A,P) do_check_free_chunk(A,P)
2592 #define check_inuse_chunk(A,P) do_check_inuse_chunk(A,P)
2593 #define check_remalloced_chunk(A,P,N) do_check_remalloced_chunk(A,P,N)
2594 #define check_malloced_chunk(A,P,N) do_check_malloced_chunk(A,P,N)
2595 #define check_malloc_state(A) do_check_malloc_state(A)
2598 Properties of all chunks
2602 static void do_check_chunk(mstate av, mchunkptr p)
2604 static void do_check_chunk(av, p) mstate av; mchunkptr p;
2607 unsigned long sz = chunksize(p);
2608 /* min and max possible addresses assuming contiguous allocation */
2609 char* max_address = (char*)(av->top) + chunksize(av->top);
2610 char* min_address = max_address - av->system_mem;
2612 if (!chunk_is_mmapped(p)) {
2614 /* Has legal address ... */
2616 if (contiguous(av)) {
2617 assert(((char*)p) >= min_address);
2618 assert(((char*)p + sz) <= ((char*)(av->top)));
2622 /* top size is always at least MINSIZE */
2623 assert((unsigned long)(sz) >= MINSIZE);
2624 /* top predecessor always marked inuse */
2625 assert(prev_inuse(p));
2631 /* address is outside main heap */
2632 if (contiguous(av) && av->top != initial_top(av)) {
2633 assert(((char*)p) < min_address || ((char*)p) >= max_address);
2635 /* chunk is page-aligned */
2636 assert(((p->prev_size + sz) & (mp_.pagesize-1)) == 0);
2637 /* mem is aligned */
2638 assert(aligned_OK(chunk2mem(p)));
2640 /* force an appropriate assert violation if debug set */
2641 assert(!chunk_is_mmapped(p));
2647 Properties of free chunks
2651 static void do_check_free_chunk(mstate av, mchunkptr p)
2653 static void do_check_free_chunk(av, p) mstate av; mchunkptr p;
2656 INTERNAL_SIZE_T sz = p->size & ~(PREV_INUSE|NON_MAIN_ARENA);
2657 mchunkptr next = chunk_at_offset(p, sz);
2659 do_check_chunk(av, p);
2661 /* Chunk must claim to be free ... */
2663 assert (!chunk_is_mmapped(p));
2665 /* Unless a special marker, must have OK fields */
2666 if ((unsigned long)(sz) >= MINSIZE)
2668 assert((sz & MALLOC_ALIGN_MASK) == 0);
2669 assert(aligned_OK(chunk2mem(p)));
2670 /* ... matching footer field */
2671 assert(next->prev_size == sz);
2672 /* ... and is fully consolidated */
2673 assert(prev_inuse(p));
2674 assert (next == av->top || inuse(next));
2676 /* ... and has minimally sane links */
2677 assert(p->fd->bk == p);
2678 assert(p->bk->fd == p);
2680 else /* markers are always of size SIZE_SZ */
2681 assert(sz == SIZE_SZ);
2685 Properties of inuse chunks
2689 static void do_check_inuse_chunk(mstate av, mchunkptr p)
2691 static void do_check_inuse_chunk(av, p) mstate av; mchunkptr p;
2696 do_check_chunk(av, p);
2698 if (chunk_is_mmapped(p))
2699 return; /* mmapped chunks have no next/prev */
2701 /* Check whether it claims to be in use ... */
2704 next = next_chunk(p);
2706 /* ... and is surrounded by OK chunks.
2707 Since more things can be checked with free chunks than inuse ones,
2708 if an inuse chunk borders them and debug is on, it's worth doing them.
2710 if (!prev_inuse(p)) {
2711 /* Note that we cannot even look at prev unless it is not inuse */
2712 mchunkptr prv = prev_chunk(p);
2713 assert(next_chunk(prv) == p);
2714 do_check_free_chunk(av, prv);
2717 if (next == av->top) {
2718 assert(prev_inuse(next));
2719 assert(chunksize(next) >= MINSIZE);
2721 else if (!inuse(next))
2722 do_check_free_chunk(av, next);
2726 Properties of chunks recycled from fastbins
2730 static void do_check_remalloced_chunk(mstate av, mchunkptr p, INTERNAL_SIZE_T s)
2732 static void do_check_remalloced_chunk(av, p, s)
2733 mstate av; mchunkptr p; INTERNAL_SIZE_T s;
2736 INTERNAL_SIZE_T sz = p->size & ~(PREV_INUSE|NON_MAIN_ARENA);
2738 if (!chunk_is_mmapped(p)) {
2739 assert(av == arena_for_chunk(p));
2740 if (chunk_non_main_arena(p))
2741 assert(av != &main_arena);
2743 assert(av == &main_arena);
2746 do_check_inuse_chunk(av, p);
2748 /* Legal size ... */
2749 assert((sz & MALLOC_ALIGN_MASK) == 0);
2750 assert((unsigned long)(sz) >= MINSIZE);
2751 /* ... and alignment */
2752 assert(aligned_OK(chunk2mem(p)));
2753 /* chunk is less than MINSIZE more than request */
2754 assert((long)(sz) - (long)(s) >= 0);
2755 assert((long)(sz) - (long)(s + MINSIZE) < 0);
2759 Properties of nonrecycled chunks at the point they are malloced
2763 static void do_check_malloced_chunk(mstate av, mchunkptr p, INTERNAL_SIZE_T s)
2765 static void do_check_malloced_chunk(av, p, s)
2766 mstate av; mchunkptr p; INTERNAL_SIZE_T s;
2769 /* same as recycled case ... */
2770 do_check_remalloced_chunk(av, p, s);
2773 ... plus, must obey implementation invariant that prev_inuse is
2774 always true of any allocated chunk; i.e., that each allocated
2775 chunk borders either a previously allocated and still in-use
2776 chunk, or the base of its memory arena. This is ensured
2777 by making all allocations from the the `lowest' part of any found
2778 chunk. This does not necessarily hold however for chunks
2779 recycled via fastbins.
2782 assert(prev_inuse(p));
2787 Properties of malloc_state.
2789 This may be useful for debugging malloc, as well as detecting user
2790 programmer errors that somehow write into malloc_state.
2792 If you are extending or experimenting with this malloc, you can
2793 probably figure out how to hack this routine to print out or
2794 display chunk addresses, sizes, bins, and other instrumentation.
2797 static void do_check_malloc_state(mstate av)
2804 INTERNAL_SIZE_T size;
2805 unsigned long total = 0;
2808 /* internal size_t must be no wider than pointer type */
2809 assert(sizeof(INTERNAL_SIZE_T) <= sizeof(char*));
2811 /* alignment is a power of 2 */
2812 assert((MALLOC_ALIGNMENT & (MALLOC_ALIGNMENT-1)) == 0);
2814 /* cannot run remaining checks until fully initialized */
2815 if (av->top == 0 || av->top == initial_top(av))
2818 /* pagesize is a power of 2 */
2819 assert((mp_.pagesize & (mp_.pagesize-1)) == 0);
2821 /* A contiguous main_arena is consistent with sbrk_base. */
2822 if (av == &main_arena && contiguous(av))
2823 assert((char*)mp_.sbrk_base + av->system_mem ==
2824 (char*)av->top + chunksize(av->top));
2826 /* properties of fastbins */
2828 /* max_fast is in allowed range */
2829 assert((get_max_fast () & ~1) <= request2size(MAX_FAST_SIZE));
2831 max_fast_bin = fastbin_index(get_max_fast ());
2833 for (i = 0; i < NFASTBINS; ++i) {
2834 p = av->fastbins[i];
2836 /* The following test can only be performed for the main arena.
2837 While mallopt calls malloc_consolidate to get rid of all fast
2838 bins (especially those larger than the new maximum) this does
2839 only happen for the main arena. Trying to do this for any
2840 other arena would mean those arenas have to be locked and
2841 malloc_consolidate be called for them. This is excessive. And
2842 even if this is acceptable to somebody it still cannot solve
2843 the problem completely since if the arena is locked a
2844 concurrent malloc call might create a new arena which then
2845 could use the newly invalid fast bins. */
2847 /* all bins past max_fast are empty */
2848 if (av == &main_arena && i > max_fast_bin)
2852 /* each chunk claims to be inuse */
2853 do_check_inuse_chunk(av, p);
2854 total += chunksize(p);
2855 /* chunk belongs in this bin */
2856 assert(fastbin_index(chunksize(p)) == i);
2862 assert(have_fastchunks(av));
2863 else if (!have_fastchunks(av))
2866 /* check normal bins */
2867 for (i = 1; i < NBINS; ++i) {
2870 /* binmap is accurate (except for bin 1 == unsorted_chunks) */
2872 unsigned int binbit = get_binmap(av,i);
2873 int empty = last(b) == b;
2880 for (p = last(b); p != b; p = p->bk) {
2881 /* each chunk claims to be free */
2882 do_check_free_chunk(av, p);
2883 size = chunksize(p);
2886 /* chunk belongs in bin */
2887 idx = bin_index(size);
2889 /* lists are sorted */
2890 assert(p->bk == b ||
2891 (unsigned long)chunksize(p->bk) >= (unsigned long)chunksize(p));
2893 if (!in_smallbin_range(size))
2895 if (p->fd_nextsize != NULL)
2897 if (p->fd_nextsize == p)
2898 assert (p->bk_nextsize == p);
2901 if (p->fd_nextsize == first (b))
2902 assert (chunksize (p) < chunksize (p->fd_nextsize));
2904 assert (chunksize (p) > chunksize (p->fd_nextsize));
2907 assert (chunksize (p) > chunksize (p->bk_nextsize));
2909 assert (chunksize (p) < chunksize (p->bk_nextsize));
2913 assert (p->bk_nextsize == NULL);
2915 } else if (!in_smallbin_range(size))
2916 assert (p->fd_nextsize == NULL && p->bk_nextsize == NULL);
2917 /* chunk is followed by a legal chain of inuse chunks */
2918 for (q = next_chunk(p);
2919 (q != av->top && inuse(q) &&
2920 (unsigned long)(chunksize(q)) >= MINSIZE);
2922 do_check_inuse_chunk(av, q);
2926 /* top chunk is OK */
2927 check_chunk(av, av->top);
2929 /* sanity checks for statistics */
2932 assert(total <= (unsigned long)(mp_.max_total_mem));
2933 assert(mp_.n_mmaps >= 0);
2935 assert(mp_.n_mmaps <= mp_.max_n_mmaps);
2937 assert((unsigned long)(av->system_mem) <=
2938 (unsigned long)(av->max_system_mem));
2940 assert((unsigned long)(mp_.mmapped_mem) <=
2941 (unsigned long)(mp_.max_mmapped_mem));
2944 assert((unsigned long)(mp_.max_total_mem) >=
2945 (unsigned long)(mp_.mmapped_mem) + (unsigned long)(av->system_mem));
2951 /* ----------------- Support for debugging hooks -------------------- */
2955 /* ----------- Routines dealing with system allocation -------------- */
2958 sysmalloc handles malloc cases requiring more memory from the system.
2959 On entry, it is assumed that av->top does not have enough
2960 space to service request for nb bytes, thus requiring that av->top
2961 be extended or replaced.
2965 static Void_t* sYSMALLOc(INTERNAL_SIZE_T nb, mstate av)
2967 static Void_t* sYSMALLOc(nb, av) INTERNAL_SIZE_T nb; mstate av;
2970 mchunkptr old_top; /* incoming value of av->top */
2971 INTERNAL_SIZE_T old_size; /* its size */
2972 char* old_end; /* its end address */
2974 long size; /* arg to first MORECORE or mmap call */
2975 char* brk; /* return value from MORECORE */
2977 long correction; /* arg to 2nd MORECORE call */
2978 char* snd_brk; /* 2nd return val */
2980 INTERNAL_SIZE_T front_misalign; /* unusable bytes at front of new space */
2981 INTERNAL_SIZE_T end_misalign; /* partial page left at end of new space */
2982 char* aligned_brk; /* aligned offset into brk */
2984 mchunkptr p; /* the allocated/returned chunk */
2985 mchunkptr remainder; /* remainder from allocation */
2986 unsigned long remainder_size; /* its size */
2988 unsigned long sum; /* for updating stats */
2990 size_t pagemask = mp_.pagesize - 1;
2991 bool tried_mmap = false;
2997 If have mmap, and the request size meets the mmap threshold, and
2998 the system supports mmap, and there are few enough currently
2999 allocated mmapped regions, try to directly map this request
3000 rather than expanding top.
3003 if ((unsigned long)(nb) >= (unsigned long)(mp_.mmap_threshold) &&
3004 (mp_.n_mmaps < mp_.n_mmaps_max)) {
3006 char* mm; /* return value from mmap call*/
3010 Round up size to nearest page. For mmapped chunks, the overhead
3011 is one SIZE_SZ unit larger than for normal chunks, because there
3012 is no following chunk whose prev_size field could be used.
3015 /* See the front_misalign handling below, for glibc there is no
3016 need for further alignments. */
3017 size = (nb + SIZE_SZ + pagemask) & ~pagemask;
3019 size = (nb + SIZE_SZ + MALLOC_ALIGN_MASK + pagemask) & ~pagemask;
3023 /* Don't try if size wraps around 0 */
3024 if ((unsigned long)(size) > (unsigned long)(nb)) {
3026 mm = (char*)(MMAP(0, size, PROT_READ|PROT_WRITE, MAP_PRIVATE));
3028 if (mm != MAP_FAILED) {
3031 The offset to the start of the mmapped region is stored
3032 in the prev_size field of the chunk. This allows us to adjust
3033 returned start address to meet alignment requirements here
3034 and in memalign(), and still be able to compute proper
3035 address argument for later munmap in free() and realloc().
3039 /* For glibc, chunk2mem increases the address by 2*SIZE_SZ and
3040 MALLOC_ALIGN_MASK is 2*SIZE_SZ-1. Each mmap'ed area is page
3041 aligned and therefore definitely MALLOC_ALIGN_MASK-aligned. */
3042 assert (((INTERNAL_SIZE_T)chunk2mem(mm) & MALLOC_ALIGN_MASK) == 0);
3044 front_misalign = (INTERNAL_SIZE_T)chunk2mem(mm) & MALLOC_ALIGN_MASK;
3045 if (front_misalign > 0) {
3046 correction = MALLOC_ALIGNMENT - front_misalign;
3047 p = (mchunkptr)(mm + correction);
3048 p->prev_size = correction;
3049 set_head(p, (size - correction) |IS_MMAPPED);
3055 set_head(p, size|IS_MMAPPED);
3058 /* update statistics */
3060 if (++mp_.n_mmaps > mp_.max_n_mmaps)
3061 mp_.max_n_mmaps = mp_.n_mmaps;
3063 sum = mp_.mmapped_mem += size;
3064 if (sum > (unsigned long)(mp_.max_mmapped_mem))
3065 mp_.max_mmapped_mem = sum;
3067 sum += av->system_mem;
3068 if (sum > (unsigned long)(mp_.max_total_mem))
3069 mp_.max_total_mem = sum;
3074 return chunk2mem(p);
3080 /* Record incoming configuration of top */
3083 old_size = chunksize(old_top);
3084 old_end = (char*)(chunk_at_offset(old_top, old_size));
3086 brk = snd_brk = (char*)(MORECORE_FAILURE);
3089 If not the first time through, we require old_size to be
3090 at least MINSIZE and to have prev_inuse set.
3093 assert((old_top == initial_top(av) && old_size == 0) ||
3094 ((unsigned long) (old_size) >= MINSIZE &&
3095 prev_inuse(old_top) &&
3096 ((unsigned long)old_end & pagemask) == 0));
3098 /* Precondition: not enough current space to satisfy nb request */
3099 assert((unsigned long)(old_size) < (unsigned long)(nb + MINSIZE));
3101 #ifndef ATOMIC_FASTBINS
3102 /* Precondition: all fastbins are consolidated */
3103 assert(!have_fastchunks(av));
3107 if (av != &main_arena) {
3109 heap_info *old_heap, *heap;
3110 size_t old_heap_size;
3112 /* First try to extend the current heap. */
3113 old_heap = heap_for_ptr(old_top);
3114 old_heap_size = old_heap->size;
3115 if ((long) (MINSIZE + nb - old_size) > 0
3116 && grow_heap(old_heap, MINSIZE + nb - old_size) == 0) {
3117 av->system_mem += old_heap->size - old_heap_size;
3118 arena_mem += old_heap->size - old_heap_size;
3120 if(mmapped_mem + arena_mem + sbrked_mem > max_total_mem)
3121 max_total_mem = mmapped_mem + arena_mem + sbrked_mem;
3123 set_head(old_top, (((char *)old_heap + old_heap->size) - (char *)old_top)
3126 else if ((heap = new_heap(nb + (MINSIZE + sizeof(*heap)), mp_.top_pad))) {
3127 /* Use a newly allocated heap. */
3129 heap->prev = old_heap;
3130 av->system_mem += heap->size;
3131 arena_mem += heap->size;
3133 if((unsigned long)(mmapped_mem + arena_mem + sbrked_mem) > max_total_mem)
3134 max_total_mem = mmapped_mem + arena_mem + sbrked_mem;
3136 /* Set up the new top. */
3137 top(av) = chunk_at_offset(heap, sizeof(*heap));
3138 set_head(top(av), (heap->size - sizeof(*heap)) | PREV_INUSE);
3140 /* Setup fencepost and free the old top chunk. */
3141 /* The fencepost takes at least MINSIZE bytes, because it might
3142 become the top chunk again later. Note that a footer is set
3143 up, too, although the chunk is marked in use. */
3144 old_size -= MINSIZE;
3145 set_head(chunk_at_offset(old_top, old_size + 2*SIZE_SZ), 0|PREV_INUSE);
3146 if (old_size >= MINSIZE) {
3147 set_head(chunk_at_offset(old_top, old_size), (2*SIZE_SZ)|PREV_INUSE);
3148 set_foot(chunk_at_offset(old_top, old_size), (2*SIZE_SZ));
3149 set_head(old_top, old_size|PREV_INUSE|NON_MAIN_ARENA);
3150 #ifdef ATOMIC_FASTBINS
3151 _int_free(av, old_top, 1);
3153 _int_free(av, old_top);
3156 set_head(old_top, (old_size + 2*SIZE_SZ)|PREV_INUSE);
3157 set_foot(old_top, (old_size + 2*SIZE_SZ));
3160 else if (!tried_mmap)
3161 /* We can at least try to use to mmap memory. */
3164 } else { /* av == main_arena */
3167 /* Request enough space for nb + pad + overhead */
3169 size = nb + mp_.top_pad + MINSIZE;
3171 #define TWOM (2*1024*1024)
3172 char *cur = (char*)MORECORE(0);
3173 size = (char*)((size_t)(cur + size + TWOM - 1)&~(TWOM-1))-cur;
3176 If contiguous, we can subtract out existing space that we hope to
3177 combine with new space. We add it back later only if
3178 we don't actually get contiguous space.
3185 Round to a multiple of page size.
3186 If MORECORE is not contiguous, this ensures that we only call it
3187 with whole-page arguments. And if MORECORE is contiguous and
3188 this is not first time through, this preserves page-alignment of
3189 previous calls. Otherwise, we correct to page-align below.
3192 size = (size + pagemask) & ~pagemask;
3195 Don't try to call MORECORE if argument is so big as to appear
3196 negative. Note that since mmap takes size_t arg, it may succeed
3197 below even if we cannot call MORECORE.
3201 brk = (char*)(MORECORE(size));
3203 if (brk != (char*)(MORECORE_FAILURE)) {
3204 /* Call the `morecore' hook if necessary. */
3205 void (*hook) (void) = force_reg (__after_morecore_hook);
3206 if (__builtin_expect (hook != NULL, 0))
3210 If have mmap, try using it as a backup when MORECORE fails or
3211 cannot be used. This is worth doing on systems that have "holes" in
3212 address space, so sbrk cannot extend to give contiguous space, but
3213 space is available elsewhere. Note that we ignore mmap max count
3214 and threshold limits, since the space will not be used as a
3215 segregated mmap region.
3219 /* Cannot merge with old top, so add its size back in */
3221 size = (size + old_size + pagemask) & ~pagemask;
3223 /* If we are relying on mmap as backup, then use larger units */
3224 if ((unsigned long)(size) < (unsigned long)(MMAP_AS_MORECORE_SIZE))
3225 size = MMAP_AS_MORECORE_SIZE;
3227 /* Don't try if size wraps around 0 */
3228 if ((unsigned long)(size) > (unsigned long)(nb)) {
3230 char *mbrk = (char*)(MMAP(0, size, PROT_READ|PROT_WRITE, MAP_PRIVATE));
3232 if (mbrk != MAP_FAILED) {
3234 /* We do not need, and cannot use, another sbrk call to find end */
3236 snd_brk = brk + size;
3239 Record that we no longer have a contiguous sbrk region.
3240 After the first time mmap is used as backup, we do not
3241 ever rely on contiguous space since this could incorrectly
3244 set_noncontiguous(av);
3250 if (brk != (char*)(MORECORE_FAILURE)) {
3251 if (mp_.sbrk_base == 0)
3252 mp_.sbrk_base = brk;
3253 av->system_mem += size;
3256 If MORECORE extends previous space, we can likewise extend top size.
3259 if (brk == old_end && snd_brk == (char*)(MORECORE_FAILURE))
3260 set_head(old_top, (size + old_size) | PREV_INUSE);
3262 else if (contiguous(av) && old_size && brk < old_end) {
3263 /* Oops! Someone else killed our space.. Can't touch anything. */
3264 malloc_printerr (3, "break adjusted to free malloc space", brk);
3268 Otherwise, make adjustments:
3270 * If the first time through or noncontiguous, we need to call sbrk
3271 just to find out where the end of memory lies.
3273 * We need to ensure that all returned chunks from malloc will meet
3276 * If there was an intervening foreign sbrk, we need to adjust sbrk
3277 request size to account for fact that we will not be able to
3278 combine new space with existing space in old_top.
3280 * Almost all systems internally allocate whole pages at a time, in
3281 which case we might as well use the whole last page of request.
3282 So we allocate enough more memory to hit a page boundary now,
3283 which in turn causes future contiguous calls to page-align.
3292 /* handle contiguous cases */
3293 if (contiguous(av)) {
3295 /* Count foreign sbrk as system_mem. */
3297 av->system_mem += brk - old_end;
3299 /* Guarantee alignment of first new chunk made from this space */
3301 front_misalign = (INTERNAL_SIZE_T)chunk2mem(brk) & MALLOC_ALIGN_MASK;
3302 if (front_misalign > 0) {
3305 Skip over some bytes to arrive at an aligned position.
3306 We don't need to specially mark these wasted front bytes.
3307 They will never be accessed anyway because
3308 prev_inuse of av->top (and any chunk created from its start)
3309 is always true after initialization.
3312 correction = MALLOC_ALIGNMENT - front_misalign;
3313 aligned_brk += correction;
3317 If this isn't adjacent to existing space, then we will not
3318 be able to merge with old_top space, so must add to 2nd request.
3321 correction += old_size;
3323 /* Extend the end address to hit a page boundary */
3324 end_misalign = (INTERNAL_SIZE_T)(brk + size + correction);
3325 correction += ((end_misalign + pagemask) & ~pagemask) - end_misalign;
3327 assert(correction >= 0);
3328 snd_brk = (char*)(MORECORE(correction));
3331 If can't allocate correction, try to at least find out current
3332 brk. It might be enough to proceed without failing.
3334 Note that if second sbrk did NOT fail, we assume that space
3335 is contiguous with first sbrk. This is a safe assumption unless
3336 program is multithreaded but doesn't use locks and a foreign sbrk
3337 occurred between our first and second calls.
3340 if (snd_brk == (char*)(MORECORE_FAILURE)) {
3342 snd_brk = (char*)(MORECORE(0));
3344 /* Call the `morecore' hook if necessary. */
3345 void (*hook) (void) = force_reg (__after_morecore_hook);
3346 if (__builtin_expect (hook != NULL, 0))
3351 /* handle non-contiguous cases */
3353 /* MORECORE/mmap must correctly align */
3354 assert(((unsigned long)chunk2mem(brk) & MALLOC_ALIGN_MASK) == 0);
3356 /* Find out current end of memory */
3357 if (snd_brk == (char*)(MORECORE_FAILURE)) {
3358 snd_brk = (char*)(MORECORE(0));
3362 /* Adjust top based on results of second sbrk */
3363 if (snd_brk != (char*)(MORECORE_FAILURE)) {
3364 av->top = (mchunkptr)aligned_brk;
3365 set_head(av->top, (snd_brk - aligned_brk + correction) | PREV_INUSE);
3366 av->system_mem += correction;
3369 If not the first time through, we either have a
3370 gap due to foreign sbrk or a non-contiguous region. Insert a
3371 double fencepost at old_top to prevent consolidation with space
3372 we don't own. These fenceposts are artificial chunks that are
3373 marked as inuse and are in any case too small to use. We need
3374 two to make sizes and alignments work out.
3377 if (old_size != 0) {
3379 Shrink old_top to insert fenceposts, keeping size a
3380 multiple of MALLOC_ALIGNMENT. We know there is at least
3381 enough space in old_top to do this.
3383 old_size = (old_size - 4*SIZE_SZ) & ~MALLOC_ALIGN_MASK;
3384 set_head(old_top, old_size | PREV_INUSE);
3387 Note that the following assignments completely overwrite
3388 old_top when old_size was previously MINSIZE. This is
3389 intentional. We need the fencepost, even if old_top otherwise gets
3392 chunk_at_offset(old_top, old_size )->size =
3393 (2*SIZE_SZ)|PREV_INUSE;
3395 chunk_at_offset(old_top, old_size + 2*SIZE_SZ)->size =
3396 (2*SIZE_SZ)|PREV_INUSE;
3398 /* If possible, release the rest. */
3399 if (old_size >= MINSIZE) {
3400 #ifdef ATOMIC_FASTBINS
3401 _int_free(av, old_top, 1);
3403 _int_free(av, old_top);
3411 /* Update statistics */
3413 sum = av->system_mem + mp_.mmapped_mem;
3414 if (sum > (unsigned long)(mp_.max_total_mem))
3415 mp_.max_total_mem = sum;
3420 } /* if (av != &main_arena) */
3422 if ((unsigned long)av->system_mem > (unsigned long)(av->max_system_mem))
3423 av->max_system_mem = av->system_mem;
3424 check_malloc_state(av);
3426 /* finally, do the allocation */
3428 size = chunksize(p);
3430 /* check that one of the above allocation paths succeeded */
3431 if ((unsigned long)(size) >= (unsigned long)(nb + MINSIZE)) {
3432 remainder_size = size - nb;
3433 remainder = chunk_at_offset(p, nb);
3434 av->top = remainder;
3435 set_head(p, nb | PREV_INUSE | (av != &main_arena ? NON_MAIN_ARENA : 0));
3436 set_head(remainder, remainder_size | PREV_INUSE);
3437 check_malloced_chunk(av, p, nb);
3438 return chunk2mem(p);
3441 /* catch all failure paths */
3442 MALLOC_FAILURE_ACTION;
3448 sYSTRIm is an inverse of sorts to sYSMALLOc. It gives memory back
3449 to the system (via negative arguments to sbrk) if there is unused
3450 memory at the `high' end of the malloc pool. It is called
3451 automatically by free() when top space exceeds the trim
3452 threshold. It is also called by the public malloc_trim routine. It
3453 returns 1 if it actually released any memory, else 0.
3457 static int sYSTRIm(size_t pad, mstate av)
3459 static int sYSTRIm(pad, av) size_t pad; mstate av;
3462 long top_size; /* Amount of top-most memory */
3463 long extra; /* Amount to release */
3464 long released; /* Amount actually released */
3465 char* current_brk; /* address returned by pre-check sbrk call */
3466 char* new_brk; /* address returned by post-check sbrk call */
3469 pagesz = mp_.pagesize;
3470 top_size = chunksize(av->top);
3472 /* Release in pagesize units, keeping at least one page */
3473 extra = ((top_size - pad - MINSIZE + (pagesz-1)) / pagesz - 1) * pagesz;
3478 Only proceed if end of memory is where we last set it.
3479 This avoids problems if there were foreign sbrk calls.
3481 current_brk = (char*)(MORECORE(0));
3482 if (current_brk == (char*)(av->top) + top_size) {
3485 Attempt to release memory. We ignore MORECORE return value,
3486 and instead call again to find out where new end of memory is.
3487 This avoids problems if first call releases less than we asked,
3488 of if failure somehow altered brk value. (We could still
3489 encounter problems if it altered brk in some very bad way,
3490 but the only thing we can do is adjust anyway, which will cause
3491 some downstream failure.)
3495 /* Call the `morecore' hook if necessary. */
3496 void (*hook) (void) = force_reg (__after_morecore_hook);
3497 if (__builtin_expect (hook != NULL, 0))
3499 new_brk = (char*)(MORECORE(0));
3501 if (new_brk != (char*)MORECORE_FAILURE) {
3502 released = (long)(current_brk - new_brk);
3504 if (released != 0) {
3505 /* Success. Adjust top. */
3506 av->system_mem -= released;
3507 set_head(av->top, (top_size - released) | PREV_INUSE);
3508 check_malloc_state(av);
3522 munmap_chunk(mchunkptr p)
3524 munmap_chunk(p) mchunkptr p;
3527 INTERNAL_SIZE_T size = chunksize(p);
3529 assert (chunk_is_mmapped(p));
3531 assert(! ((char*)p >= mp_.sbrk_base && (char*)p < mp_.sbrk_base + mp_.sbrked_mem));
3532 assert((mp_.n_mmaps > 0));
3535 uintptr_t block = (uintptr_t) p - p->prev_size;
3536 size_t total_size = p->prev_size + size;
3537 /* Unfortunately we have to do the compilers job by hand here. Normally
3538 we would test BLOCK and TOTAL-SIZE separately for compliance with the
3539 page size. But gcc does not recognize the optimization possibility
3540 (in the moment at least) so we combine the two values into one before
3542 if (__builtin_expect (((block | total_size) & (mp_.pagesize - 1)) != 0, 0))
3544 malloc_printerr (check_action, "munmap_chunk(): invalid pointer",
3550 mp_.mmapped_mem -= total_size;
3552 int ret __attribute__ ((unused)) = munmap((char *)block, total_size);
3554 /* munmap returns non-zero on failure */
3563 mremap_chunk(mchunkptr p, size_t new_size)
3565 mremap_chunk(p, new_size) mchunkptr p; size_t new_size;
3568 size_t page_mask = mp_.pagesize - 1;
3569 INTERNAL_SIZE_T offset = p->prev_size;
3570 INTERNAL_SIZE_T size = chunksize(p);
3573 assert (chunk_is_mmapped(p));
3575 assert(! ((char*)p >= mp_.sbrk_base && (char*)p < mp_.sbrk_base + mp_.sbrked_mem));
3576 assert((mp_.n_mmaps > 0));
3578 assert(((size + offset) & (mp_.pagesize-1)) == 0);
3580 /* Note the extra SIZE_SZ overhead as in mmap_chunk(). */
3581 new_size = (new_size + offset + SIZE_SZ + page_mask) & ~page_mask;
3583 /* No need to remap if the number of pages does not change. */
3584 if (size + offset == new_size)
3587 cp = (char *)mremap((char *)p - offset, size + offset, new_size,
3590 if (cp == MAP_FAILED) return 0;
3592 p = (mchunkptr)(cp + offset);
3594 assert(aligned_OK(chunk2mem(p)));
3596 assert((p->prev_size == offset));
3597 set_head(p, (new_size - offset)|IS_MMAPPED);
3599 mp_.mmapped_mem -= size + offset;
3600 mp_.mmapped_mem += new_size;
3601 if ((unsigned long)mp_.mmapped_mem > (unsigned long)mp_.max_mmapped_mem)
3602 mp_.max_mmapped_mem = mp_.mmapped_mem;
3604 if ((unsigned long)(mp_.mmapped_mem + arena_mem + main_arena.system_mem) >
3606 mp_.max_total_mem = mp_.mmapped_mem + arena_mem + main_arena.system_mem;
3611 #endif /* HAVE_MREMAP */
3613 #endif /* HAVE_MMAP */
3615 /*------------------------ Public wrappers. --------------------------------*/
3618 public_mALLOc(size_t bytes)
3623 __malloc_ptr_t (*hook) (size_t, __const __malloc_ptr_t)
3624 = force_reg (__malloc_hook);
3625 if (__builtin_expect (hook != NULL, 0))
3626 return (*hook)(bytes, RETURN_ADDRESS (0));
3628 arena_lookup(ar_ptr);
3630 // XXX We need double-word CAS and fastbins must be extended to also
3631 // XXX hold a generation counter for each entry.
3633 INTERNAL_SIZE_T nb; /* normalized request size */
3634 checked_request2size(bytes, nb);
3635 if (nb <= get_max_fast ()) {
3636 long int idx = fastbin_index(nb);
3637 mfastbinptr* fb = &fastbin (ar_ptr, idx);
3646 while ((pp = catomic_compare_and_exchange_val_acq (fb, v->fd, v)) != v);
3648 if (__builtin_expect (fastbin_index (chunksize (v)) != idx, 0))
3649 malloc_printerr (check_action, "malloc(): memory corruption (fast)",
3651 check_remalloced_chunk(ar_ptr, v, nb);
3652 void *p = chunk2mem(v);
3653 if (__builtin_expect (perturb_byte, 0))
3654 alloc_perturb (p, bytes);
3661 arena_lock(ar_ptr, bytes);
3664 victim = _int_malloc(ar_ptr, bytes);
3666 /* Maybe the failure is due to running out of mmapped areas. */
3667 if(ar_ptr != &main_arena) {
3668 (void)mutex_unlock(&ar_ptr->mutex);
3669 ar_ptr = &main_arena;
3670 (void)mutex_lock(&ar_ptr->mutex);
3671 victim = _int_malloc(ar_ptr, bytes);
3672 (void)mutex_unlock(&ar_ptr->mutex);
3675 /* ... or sbrk() has failed and there is still a chance to mmap() */
3676 ar_ptr = arena_get2(ar_ptr->next ? ar_ptr : 0, bytes);
3677 (void)mutex_unlock(&main_arena.mutex);
3679 victim = _int_malloc(ar_ptr, bytes);
3680 (void)mutex_unlock(&ar_ptr->mutex);
3685 (void)mutex_unlock(&ar_ptr->mutex);
3686 assert(!victim || chunk_is_mmapped(mem2chunk(victim)) ||
3687 ar_ptr == arena_for_chunk(mem2chunk(victim)));
3690 #ifdef libc_hidden_def
3691 libc_hidden_def(public_mALLOc)
3695 public_fREe(Void_t* mem)
3698 mchunkptr p; /* chunk corresponding to mem */
3700 void (*hook) (__malloc_ptr_t, __const __malloc_ptr_t)
3701 = force_reg (__free_hook);
3702 if (__builtin_expect (hook != NULL, 0)) {
3703 (*hook)(mem, RETURN_ADDRESS (0));
3707 if (mem == 0) /* free(0) has no effect */
3713 if (chunk_is_mmapped(p)) /* release mmapped memory. */
3715 /* see if the dynamic brk/mmap threshold needs adjusting */
3716 if (!mp_.no_dyn_threshold
3717 && p->size > mp_.mmap_threshold
3718 && p->size <= DEFAULT_MMAP_THRESHOLD_MAX)
3720 mp_.mmap_threshold = chunksize (p);
3721 mp_.trim_threshold = 2 * mp_.mmap_threshold;
3728 ar_ptr = arena_for_chunk(p);
3729 #ifdef ATOMIC_FASTBINS
3730 _int_free(ar_ptr, p, 0);
3733 if(!mutex_trylock(&ar_ptr->mutex))
3734 ++(ar_ptr->stat_lock_direct);
3736 (void)mutex_lock(&ar_ptr->mutex);
3737 ++(ar_ptr->stat_lock_wait);
3740 (void)mutex_lock(&ar_ptr->mutex);
3742 _int_free(ar_ptr, p);
3743 (void)mutex_unlock(&ar_ptr->mutex);
3746 #ifdef libc_hidden_def
3747 libc_hidden_def (public_fREe)
3751 public_rEALLOc(Void_t* oldmem, size_t bytes)
3754 INTERNAL_SIZE_T nb; /* padded request size */
3756 Void_t* newp; /* chunk to return */
3758 __malloc_ptr_t (*hook) (__malloc_ptr_t, size_t, __const __malloc_ptr_t) =
3759 force_reg (__realloc_hook);
3760 if (__builtin_expect (hook != NULL, 0))
3761 return (*hook)(oldmem, bytes, RETURN_ADDRESS (0));
3763 #if REALLOC_ZERO_BYTES_FREES
3764 if (bytes == 0 && oldmem != NULL) { public_fREe(oldmem); return 0; }
3767 /* realloc of null is supposed to be same as malloc */
3768 if (oldmem == 0) return public_mALLOc(bytes);
3770 /* chunk corresponding to oldmem */
3771 const mchunkptr oldp = mem2chunk(oldmem);
3773 const INTERNAL_SIZE_T oldsize = chunksize(oldp);
3775 /* Little security check which won't hurt performance: the
3776 allocator never wrapps around at the end of the address space.
3777 Therefore we can exclude some size values which might appear
3778 here by accident or by "design" from some intruder. */
3779 if (__builtin_expect ((uintptr_t) oldp > (uintptr_t) -oldsize, 0)
3780 || __builtin_expect (misaligned_chunk (oldp), 0))
3782 malloc_printerr (check_action, "realloc(): invalid pointer", oldmem);
3786 checked_request2size(bytes, nb);
3789 if (chunk_is_mmapped(oldp))
3794 newp = mremap_chunk(oldp, nb);
3795 if(newp) return chunk2mem(newp);
3797 /* Note the extra SIZE_SZ overhead. */
3798 if(oldsize - SIZE_SZ >= nb) return oldmem; /* do nothing */
3799 /* Must alloc, copy, free. */
3800 newmem = public_mALLOc(bytes);
3801 if (newmem == 0) return 0; /* propagate failure */
3802 MALLOC_COPY(newmem, oldmem, oldsize - 2*SIZE_SZ);
3808 ar_ptr = arena_for_chunk(oldp);
3810 if(!mutex_trylock(&ar_ptr->mutex))
3811 ++(ar_ptr->stat_lock_direct);
3813 (void)mutex_lock(&ar_ptr->mutex);
3814 ++(ar_ptr->stat_lock_wait);
3817 (void)mutex_lock(&ar_ptr->mutex);
3820 #if !defined NO_THREADS && !defined PER_THREAD
3821 /* As in malloc(), remember this arena for the next allocation. */
3822 tsd_setspecific(arena_key, (Void_t *)ar_ptr);
3825 newp = _int_realloc(ar_ptr, oldp, oldsize, nb);
3827 (void)mutex_unlock(&ar_ptr->mutex);
3828 assert(!newp || chunk_is_mmapped(mem2chunk(newp)) ||
3829 ar_ptr == arena_for_chunk(mem2chunk(newp)));
3833 /* Try harder to allocate memory in other arenas. */
3834 newp = public_mALLOc(bytes);
3837 MALLOC_COPY (newp, oldmem, oldsize - SIZE_SZ);
3838 #ifdef ATOMIC_FASTBINS
3839 _int_free(ar_ptr, oldp, 0);
3842 if(!mutex_trylock(&ar_ptr->mutex))
3843 ++(ar_ptr->stat_lock_direct);
3845 (void)mutex_lock(&ar_ptr->mutex);
3846 ++(ar_ptr->stat_lock_wait);
3849 (void)mutex_lock(&ar_ptr->mutex);
3851 _int_free(ar_ptr, oldp);
3852 (void)mutex_unlock(&ar_ptr->mutex);
3859 #ifdef libc_hidden_def
3860 libc_hidden_def (public_rEALLOc)
3864 public_mEMALIGn(size_t alignment, size_t bytes)
3869 __malloc_ptr_t (*hook) __MALLOC_PMT ((size_t, size_t,
3870 __const __malloc_ptr_t)) =
3871 force_reg (__memalign_hook);
3872 if (__builtin_expect (hook != NULL, 0))
3873 return (*hook)(alignment, bytes, RETURN_ADDRESS (0));
3875 /* If need less alignment than we give anyway, just relay to malloc */
3876 if (alignment <= MALLOC_ALIGNMENT) return public_mALLOc(bytes);
3878 /* Otherwise, ensure that it is at least a minimum chunk size */
3879 if (alignment < MINSIZE) alignment = MINSIZE;
3881 arena_get(ar_ptr, bytes + alignment + MINSIZE);
3884 p = _int_memalign(ar_ptr, alignment, bytes);
3886 /* Maybe the failure is due to running out of mmapped areas. */
3887 if(ar_ptr != &main_arena) {
3888 (void)mutex_unlock(&ar_ptr->mutex);
3889 ar_ptr = &main_arena;
3890 (void)mutex_lock(&ar_ptr->mutex);
3891 p = _int_memalign(ar_ptr, alignment, bytes);
3892 (void)mutex_unlock(&ar_ptr->mutex);
3895 /* ... or sbrk() has failed and there is still a chance to mmap() */
3896 mstate prev = ar_ptr->next ? ar_ptr : 0;
3897 (void)mutex_unlock(&ar_ptr->mutex);
3898 ar_ptr = arena_get2(prev, bytes);
3900 p = _int_memalign(ar_ptr, alignment, bytes);
3901 (void)mutex_unlock(&ar_ptr->mutex);
3906 (void)mutex_unlock(&ar_ptr->mutex);
3907 assert(!p || chunk_is_mmapped(mem2chunk(p)) ||
3908 ar_ptr == arena_for_chunk(mem2chunk(p)));
3911 #ifdef libc_hidden_def
3912 libc_hidden_def (public_mEMALIGn)
3916 public_vALLOc(size_t bytes)
3921 if(__malloc_initialized < 0)
3924 size_t pagesz = mp_.pagesize;
3926 __malloc_ptr_t (*hook) __MALLOC_PMT ((size_t, size_t,
3927 __const __malloc_ptr_t)) =
3928 force_reg (__memalign_hook);
3929 if (__builtin_expect (hook != NULL, 0))
3930 return (*hook)(pagesz, bytes, RETURN_ADDRESS (0));
3932 arena_get(ar_ptr, bytes + pagesz + MINSIZE);
3935 p = _int_valloc(ar_ptr, bytes);
3936 (void)mutex_unlock(&ar_ptr->mutex);
3938 /* Maybe the failure is due to running out of mmapped areas. */
3939 if(ar_ptr != &main_arena) {
3940 ar_ptr = &main_arena;
3941 (void)mutex_lock(&ar_ptr->mutex);
3942 p = _int_memalign(ar_ptr, pagesz, bytes);
3943 (void)mutex_unlock(&ar_ptr->mutex);
3946 /* ... or sbrk() has failed and there is still a chance to mmap() */
3947 ar_ptr = arena_get2(ar_ptr->next ? ar_ptr : 0, bytes);
3949 p = _int_memalign(ar_ptr, pagesz, bytes);
3950 (void)mutex_unlock(&ar_ptr->mutex);
3955 assert(!p || chunk_is_mmapped(mem2chunk(p)) ||
3956 ar_ptr == arena_for_chunk(mem2chunk(p)));
3962 public_pVALLOc(size_t bytes)
3967 if(__malloc_initialized < 0)
3970 size_t pagesz = mp_.pagesize;
3971 size_t page_mask = mp_.pagesize - 1;
3972 size_t rounded_bytes = (bytes + page_mask) & ~(page_mask);
3974 __malloc_ptr_t (*hook) __MALLOC_PMT ((size_t, size_t,
3975 __const __malloc_ptr_t)) =
3976 force_reg (__memalign_hook);
3977 if (__builtin_expect (hook != NULL, 0))
3978 return (*hook)(pagesz, rounded_bytes, RETURN_ADDRESS (0));
3980 arena_get(ar_ptr, bytes + 2*pagesz + MINSIZE);
3981 p = _int_pvalloc(ar_ptr, bytes);
3982 (void)mutex_unlock(&ar_ptr->mutex);
3984 /* Maybe the failure is due to running out of mmapped areas. */
3985 if(ar_ptr != &main_arena) {
3986 ar_ptr = &main_arena;
3987 (void)mutex_lock(&ar_ptr->mutex);
3988 p = _int_memalign(ar_ptr, pagesz, rounded_bytes);
3989 (void)mutex_unlock(&ar_ptr->mutex);
3992 /* ... or sbrk() has failed and there is still a chance to mmap() */
3993 ar_ptr = arena_get2(ar_ptr->next ? ar_ptr : 0,
3994 bytes + 2*pagesz + MINSIZE);
3996 p = _int_memalign(ar_ptr, pagesz, rounded_bytes);
3997 (void)mutex_unlock(&ar_ptr->mutex);
4002 assert(!p || chunk_is_mmapped(mem2chunk(p)) ||
4003 ar_ptr == arena_for_chunk(mem2chunk(p)));
4009 public_cALLOc(size_t n, size_t elem_size)
4012 mchunkptr oldtop, p;
4013 INTERNAL_SIZE_T bytes, sz, csz, oldtopsize;
4015 unsigned long clearsize;
4016 unsigned long nclears;
4019 /* size_t is unsigned so the behavior on overflow is defined. */
4020 bytes = n * elem_size;
4021 #define HALF_INTERNAL_SIZE_T \
4022 (((INTERNAL_SIZE_T) 1) << (8 * sizeof (INTERNAL_SIZE_T) / 2))
4023 if (__builtin_expect ((n | elem_size) >= HALF_INTERNAL_SIZE_T, 0)) {
4024 if (elem_size != 0 && bytes / elem_size != n) {
4025 MALLOC_FAILURE_ACTION;
4030 __malloc_ptr_t (*hook) __MALLOC_PMT ((size_t, __const __malloc_ptr_t)) =
4031 force_reg (__malloc_hook);
4032 if (__builtin_expect (hook != NULL, 0)) {
4034 mem = (*hook)(sz, RETURN_ADDRESS (0));
4038 return memset(mem, 0, sz);
4040 while(sz > 0) ((char*)mem)[--sz] = 0; /* rather inefficient */
4051 /* Check if we hand out the top chunk, in which case there may be no
4055 oldtopsize = chunksize(top(av));
4056 #if MORECORE_CLEARS < 2
4057 /* Only newly allocated memory is guaranteed to be cleared. */
4058 if (av == &main_arena &&
4059 oldtopsize < mp_.sbrk_base + av->max_system_mem - (char *)oldtop)
4060 oldtopsize = (mp_.sbrk_base + av->max_system_mem - (char *)oldtop);
4062 if (av != &main_arena)
4064 heap_info *heap = heap_for_ptr (oldtop);
4065 if (oldtopsize < (char *) heap + heap->mprotect_size - (char *) oldtop)
4066 oldtopsize = (char *) heap + heap->mprotect_size - (char *) oldtop;
4069 mem = _int_malloc(av, sz);
4071 /* Only clearing follows, so we can unlock early. */
4072 (void)mutex_unlock(&av->mutex);
4074 assert(!mem || chunk_is_mmapped(mem2chunk(mem)) ||
4075 av == arena_for_chunk(mem2chunk(mem)));
4078 /* Maybe the failure is due to running out of mmapped areas. */
4079 if(av != &main_arena) {
4080 (void)mutex_lock(&main_arena.mutex);
4081 mem = _int_malloc(&main_arena, sz);
4082 (void)mutex_unlock(&main_arena.mutex);
4085 /* ... or sbrk() has failed and there is still a chance to mmap() */
4086 (void)mutex_lock(&main_arena.mutex);
4087 av = arena_get2(av->next ? av : 0, sz);
4088 (void)mutex_unlock(&main_arena.mutex);
4090 mem = _int_malloc(av, sz);
4091 (void)mutex_unlock(&av->mutex);
4095 if (mem == 0) return 0;
4099 /* Two optional cases in which clearing not necessary */
4101 if (chunk_is_mmapped (p))
4103 if (__builtin_expect (perturb_byte, 0))
4104 MALLOC_ZERO (mem, sz);
4112 if (perturb_byte == 0 && (p == oldtop && csz > oldtopsize)) {
4113 /* clear only the bytes from non-freshly-sbrked memory */
4118 /* Unroll clear of <= 36 bytes (72 if 8byte sizes). We know that
4119 contents have an odd number of INTERNAL_SIZE_T-sized words;
4121 d = (INTERNAL_SIZE_T*)mem;
4122 clearsize = csz - SIZE_SZ;
4123 nclears = clearsize / sizeof(INTERNAL_SIZE_T);
4124 assert(nclears >= 3);
4127 MALLOC_ZERO(d, clearsize);
4153 public_iCALLOc(size_t n, size_t elem_size, Void_t** chunks)
4158 arena_get(ar_ptr, n*elem_size);
4162 m = _int_icalloc(ar_ptr, n, elem_size, chunks);
4163 (void)mutex_unlock(&ar_ptr->mutex);
4168 public_iCOMALLOc(size_t n, size_t sizes[], Void_t** chunks)
4173 arena_get(ar_ptr, 0);
4177 m = _int_icomalloc(ar_ptr, n, sizes, chunks);
4178 (void)mutex_unlock(&ar_ptr->mutex);
4183 public_cFREe(Void_t* m)
4191 public_mTRIm(size_t s)
4195 if(__malloc_initialized < 0)
4198 mstate ar_ptr = &main_arena;
4201 (void) mutex_lock (&ar_ptr->mutex);
4202 result |= mTRIm (ar_ptr, s);
4203 (void) mutex_unlock (&ar_ptr->mutex);
4205 ar_ptr = ar_ptr->next;
4207 while (ar_ptr != &main_arena);
4213 public_mUSABLe(Void_t* m)
4217 result = mUSABLe(m);
4227 struct mallinfo public_mALLINFo()
4231 if(__malloc_initialized < 0)
4233 (void)mutex_lock(&main_arena.mutex);
4234 m = mALLINFo(&main_arena);
4235 (void)mutex_unlock(&main_arena.mutex);
4240 public_mALLOPt(int p, int v)
4243 result = mALLOPt(p, v);
4248 ------------------------------ malloc ------------------------------
4252 _int_malloc(mstate av, size_t bytes)
4254 INTERNAL_SIZE_T nb; /* normalized request size */
4255 unsigned int idx; /* associated bin index */
4256 mbinptr bin; /* associated bin */
4258 mchunkptr victim; /* inspected/selected chunk */
4259 INTERNAL_SIZE_T size; /* its size */
4260 int victim_index; /* its bin index */
4262 mchunkptr remainder; /* remainder from a split */
4263 unsigned long remainder_size; /* its size */
4265 unsigned int block; /* bit map traverser */
4266 unsigned int bit; /* bit map traverser */
4267 unsigned int map; /* current word of binmap */
4269 mchunkptr fwd; /* misc temp for linking */
4270 mchunkptr bck; /* misc temp for linking */
4272 const char *errstr = NULL;
4275 Convert request size to internal form by adding SIZE_SZ bytes
4276 overhead plus possibly more to obtain necessary alignment and/or
4277 to obtain a size of at least MINSIZE, the smallest allocatable
4278 size. Also, checked_request2size traps (returning 0) request sizes
4279 that are so large that they wrap around zero when padded and
4283 checked_request2size(bytes, nb);
4286 If the size qualifies as a fastbin, first check corresponding bin.
4287 This code is safe to execute even if av is not yet initialized, so we
4288 can try it without checking, which saves some time on this fast path.
4291 if ((unsigned long)(nb) <= (unsigned long)(get_max_fast ())) {
4292 idx = fastbin_index(nb);
4293 mfastbinptr* fb = &fastbin (av, idx);
4294 #ifdef ATOMIC_FASTBINS
4302 while ((pp = catomic_compare_and_exchange_val_acq (fb, victim->fd, victim))
4308 if (__builtin_expect (fastbin_index (chunksize (victim)) != idx, 0))
4310 errstr = "malloc(): memory corruption (fast)";
4312 malloc_printerr (check_action, errstr, chunk2mem (victim));
4315 #ifndef ATOMIC_FASTBINS
4318 check_remalloced_chunk(av, victim, nb);
4319 void *p = chunk2mem(victim);
4320 if (__builtin_expect (perturb_byte, 0))
4321 alloc_perturb (p, bytes);
4327 If a small request, check regular bin. Since these "smallbins"
4328 hold one size each, no searching within bins is necessary.
4329 (For a large request, we need to wait until unsorted chunks are
4330 processed to find best fit. But for small ones, fits are exact
4331 anyway, so we can check now, which is faster.)
4334 if (in_smallbin_range(nb)) {
4335 idx = smallbin_index(nb);
4336 bin = bin_at(av,idx);
4338 if ( (victim = last(bin)) != bin) {
4339 if (victim == 0) /* initialization check */
4340 malloc_consolidate(av);
4343 if (__builtin_expect (bck->fd != victim, 0))
4345 errstr = "malloc(): smallbin double linked list corrupted";
4348 set_inuse_bit_at_offset(victim, nb);
4352 if (av != &main_arena)
4353 victim->size |= NON_MAIN_ARENA;
4354 check_malloced_chunk(av, victim, nb);
4355 void *p = chunk2mem(victim);
4356 if (__builtin_expect (perturb_byte, 0))
4357 alloc_perturb (p, bytes);
4364 If this is a large request, consolidate fastbins before continuing.
4365 While it might look excessive to kill all fastbins before
4366 even seeing if there is space available, this avoids
4367 fragmentation problems normally associated with fastbins.
4368 Also, in practice, programs tend to have runs of either small or
4369 large requests, but less often mixtures, so consolidation is not
4370 invoked all that often in most programs. And the programs that
4371 it is called frequently in otherwise tend to fragment.
4375 idx = largebin_index(nb);
4376 if (have_fastchunks(av))
4377 malloc_consolidate(av);
4381 Process recently freed or remaindered chunks, taking one only if
4382 it is exact fit, or, if this a small request, the chunk is remainder from
4383 the most recent non-exact fit. Place other traversed chunks in
4384 bins. Note that this step is the only place in any routine where
4385 chunks are placed in bins.
4387 The outer loop here is needed because we might not realize until
4388 near the end of malloc that we should have consolidated, so must
4389 do so and retry. This happens at most once, and only when we would
4390 otherwise need to expand memory to service a "small" request.
4396 while ( (victim = unsorted_chunks(av)->bk) != unsorted_chunks(av)) {
4398 if (__builtin_expect (victim->size <= 2 * SIZE_SZ, 0)
4399 || __builtin_expect (victim->size > av->system_mem, 0))
4400 malloc_printerr (check_action, "malloc(): memory corruption",
4401 chunk2mem (victim));
4402 size = chunksize(victim);
4405 If a small request, try to use last remainder if it is the
4406 only chunk in unsorted bin. This helps promote locality for
4407 runs of consecutive small requests. This is the only
4408 exception to best-fit, and applies only when there is
4409 no exact fit for a small chunk.
4412 if (in_smallbin_range(nb) &&
4413 bck == unsorted_chunks(av) &&
4414 victim == av->last_remainder &&
4415 (unsigned long)(size) > (unsigned long)(nb + MINSIZE)) {
4417 /* split and reattach remainder */
4418 remainder_size = size - nb;
4419 remainder = chunk_at_offset(victim, nb);
4420 unsorted_chunks(av)->bk = unsorted_chunks(av)->fd = remainder;
4421 av->last_remainder = remainder;
4422 remainder->bk = remainder->fd = unsorted_chunks(av);
4423 if (!in_smallbin_range(remainder_size))
4425 remainder->fd_nextsize = NULL;
4426 remainder->bk_nextsize = NULL;
4429 set_head(victim, nb | PREV_INUSE |
4430 (av != &main_arena ? NON_MAIN_ARENA : 0));
4431 set_head(remainder, remainder_size | PREV_INUSE);
4432 set_foot(remainder, remainder_size);
4434 check_malloced_chunk(av, victim, nb);
4435 void *p = chunk2mem(victim);
4436 if (__builtin_expect (perturb_byte, 0))
4437 alloc_perturb (p, bytes);
4441 /* remove from unsorted list */
4442 unsorted_chunks(av)->bk = bck;
4443 bck->fd = unsorted_chunks(av);
4445 /* Take now instead of binning if exact fit */
4448 set_inuse_bit_at_offset(victim, size);
4449 if (av != &main_arena)
4450 victim->size |= NON_MAIN_ARENA;
4451 check_malloced_chunk(av, victim, nb);
4452 void *p = chunk2mem(victim);
4453 if (__builtin_expect (perturb_byte, 0))
4454 alloc_perturb (p, bytes);
4458 /* place chunk in bin */
4460 if (in_smallbin_range(size)) {
4461 victim_index = smallbin_index(size);
4462 bck = bin_at(av, victim_index);
4466 victim_index = largebin_index(size);
4467 bck = bin_at(av, victim_index);
4470 /* maintain large bins in sorted order */
4472 /* Or with inuse bit to speed comparisons */
4474 /* if smaller than smallest, bypass loop below */
4475 assert((bck->bk->size & NON_MAIN_ARENA) == 0);
4476 if ((unsigned long)(size) < (unsigned long)(bck->bk->size)) {
4480 victim->fd_nextsize = fwd->fd;
4481 victim->bk_nextsize = fwd->fd->bk_nextsize;
4482 fwd->fd->bk_nextsize = victim->bk_nextsize->fd_nextsize = victim;
4485 assert((fwd->size & NON_MAIN_ARENA) == 0);
4486 while ((unsigned long) size < fwd->size)
4488 fwd = fwd->fd_nextsize;
4489 assert((fwd->size & NON_MAIN_ARENA) == 0);
4492 if ((unsigned long) size == (unsigned long) fwd->size)
4493 /* Always insert in the second position. */
4497 victim->fd_nextsize = fwd;
4498 victim->bk_nextsize = fwd->bk_nextsize;
4499 fwd->bk_nextsize = victim;
4500 victim->bk_nextsize->fd_nextsize = victim;
4505 victim->fd_nextsize = victim->bk_nextsize = victim;
4508 mark_bin(av, victim_index);
4514 #define MAX_ITERS 10000
4515 if (++iters >= MAX_ITERS)
4520 If a large request, scan through the chunks of current bin in
4521 sorted order to find smallest that fits. Use the skip list for this.
4524 if (!in_smallbin_range(nb)) {
4525 bin = bin_at(av, idx);
4527 /* skip scan if empty or largest chunk is too small */
4528 if ((victim = first(bin)) != bin &&
4529 (unsigned long)(victim->size) >= (unsigned long)(nb)) {
4531 victim = victim->bk_nextsize;
4532 while (((unsigned long)(size = chunksize(victim)) <
4533 (unsigned long)(nb)))
4534 victim = victim->bk_nextsize;
4536 /* Avoid removing the first entry for a size so that the skip
4537 list does not have to be rerouted. */
4538 if (victim != last(bin) && victim->size == victim->fd->size)
4539 victim = victim->fd;
4541 remainder_size = size - nb;
4542 unlink(victim, bck, fwd);
4545 if (remainder_size < MINSIZE) {
4546 set_inuse_bit_at_offset(victim, size);
4547 if (av != &main_arena)
4548 victim->size |= NON_MAIN_ARENA;
4552 remainder = chunk_at_offset(victim, nb);
4553 /* We cannot assume the unsorted list is empty and therefore
4554 have to perform a complete insert here. */
4555 bck = unsorted_chunks(av);
4557 if (__builtin_expect (fwd->bk != bck, 0))
4559 errstr = "malloc(): corrupted unsorted chunks";
4562 remainder->bk = bck;
4563 remainder->fd = fwd;
4564 bck->fd = remainder;
4565 fwd->bk = remainder;
4566 if (!in_smallbin_range(remainder_size))
4568 remainder->fd_nextsize = NULL;
4569 remainder->bk_nextsize = NULL;
4571 set_head(victim, nb | PREV_INUSE |
4572 (av != &main_arena ? NON_MAIN_ARENA : 0));
4573 set_head(remainder, remainder_size | PREV_INUSE);
4574 set_foot(remainder, remainder_size);
4576 check_malloced_chunk(av, victim, nb);
4577 void *p = chunk2mem(victim);
4578 if (__builtin_expect (perturb_byte, 0))
4579 alloc_perturb (p, bytes);
4585 Search for a chunk by scanning bins, starting with next largest
4586 bin. This search is strictly by best-fit; i.e., the smallest
4587 (with ties going to approximately the least recently used) chunk
4588 that fits is selected.
4590 The bitmap avoids needing to check that most blocks are nonempty.
4591 The particular case of skipping all bins during warm-up phases
4592 when no chunks have been returned yet is faster than it might look.
4596 bin = bin_at(av,idx);
4597 block = idx2block(idx);
4598 map = av->binmap[block];
4603 /* Skip rest of block if there are no more set bits in this block. */
4604 if (bit > map || bit == 0) {
4606 if (++block >= BINMAPSIZE) /* out of bins */
4608 } while ( (map = av->binmap[block]) == 0);
4610 bin = bin_at(av, (block << BINMAPSHIFT));
4614 /* Advance to bin with set bit. There must be one. */
4615 while ((bit & map) == 0) {
4616 bin = next_bin(bin);
4621 /* Inspect the bin. It is likely to be non-empty */
4624 /* If a false alarm (empty bin), clear the bit. */
4625 if (victim == bin) {
4626 av->binmap[block] = map &= ~bit; /* Write through */
4627 bin = next_bin(bin);
4632 size = chunksize(victim);
4634 /* We know the first chunk in this bin is big enough to use. */
4635 assert((unsigned long)(size) >= (unsigned long)(nb));
4637 remainder_size = size - nb;
4640 unlink(victim, bck, fwd);
4643 if (remainder_size < MINSIZE) {
4644 set_inuse_bit_at_offset(victim, size);
4645 if (av != &main_arena)
4646 victim->size |= NON_MAIN_ARENA;
4651 remainder = chunk_at_offset(victim, nb);
4653 /* We cannot assume the unsorted list is empty and therefore
4654 have to perform a complete insert here. */
4655 bck = unsorted_chunks(av);
4657 if (__builtin_expect (fwd->bk != bck, 0))
4659 errstr = "malloc(): corrupted unsorted chunks 2";
4662 remainder->bk = bck;
4663 remainder->fd = fwd;
4664 bck->fd = remainder;
4665 fwd->bk = remainder;
4667 /* advertise as last remainder */
4668 if (in_smallbin_range(nb))
4669 av->last_remainder = remainder;
4670 if (!in_smallbin_range(remainder_size))
4672 remainder->fd_nextsize = NULL;
4673 remainder->bk_nextsize = NULL;
4675 set_head(victim, nb | PREV_INUSE |
4676 (av != &main_arena ? NON_MAIN_ARENA : 0));
4677 set_head(remainder, remainder_size | PREV_INUSE);
4678 set_foot(remainder, remainder_size);
4680 check_malloced_chunk(av, victim, nb);
4681 void *p = chunk2mem(victim);
4682 if (__builtin_expect (perturb_byte, 0))
4683 alloc_perturb (p, bytes);
4690 If large enough, split off the chunk bordering the end of memory
4691 (held in av->top). Note that this is in accord with the best-fit
4692 search rule. In effect, av->top is treated as larger (and thus
4693 less well fitting) than any other available chunk since it can
4694 be extended to be as large as necessary (up to system
4697 We require that av->top always exists (i.e., has size >=
4698 MINSIZE) after initialization, so if it would otherwise be
4699 exhausted by current request, it is replenished. (The main
4700 reason for ensuring it exists is that we may need MINSIZE space
4701 to put in fenceposts in sysmalloc.)
4705 size = chunksize(victim);
4707 if ((unsigned long)(size) >= (unsigned long)(nb + MINSIZE)) {
4708 remainder_size = size - nb;
4709 remainder = chunk_at_offset(victim, nb);
4710 av->top = remainder;
4711 set_head(victim, nb | PREV_INUSE |
4712 (av != &main_arena ? NON_MAIN_ARENA : 0));
4713 set_head(remainder, remainder_size | PREV_INUSE);
4715 check_malloced_chunk(av, victim, nb);
4716 void *p = chunk2mem(victim);
4717 if (__builtin_expect (perturb_byte, 0))
4718 alloc_perturb (p, bytes);
4722 #ifdef ATOMIC_FASTBINS
4723 /* When we are using atomic ops to free fast chunks we can get
4724 here for all block sizes. */
4725 else if (have_fastchunks(av)) {
4726 malloc_consolidate(av);
4727 /* restore original bin index */
4728 if (in_smallbin_range(nb))
4729 idx = smallbin_index(nb);
4731 idx = largebin_index(nb);
4735 If there is space available in fastbins, consolidate and retry,
4736 to possibly avoid expanding memory. This can occur only if nb is
4737 in smallbin range so we didn't consolidate upon entry.
4740 else if (have_fastchunks(av)) {
4741 assert(in_smallbin_range(nb));
4742 malloc_consolidate(av);
4743 idx = smallbin_index(nb); /* restore original bin index */
4748 Otherwise, relay to handle system-dependent cases
4751 void *p = sYSMALLOc(nb, av);
4752 if (p != NULL && __builtin_expect (perturb_byte, 0))
4753 alloc_perturb (p, bytes);
4760 ------------------------------ free ------------------------------
4764 #ifdef ATOMIC_FASTBINS
4765 _int_free(mstate av, mchunkptr p, int have_lock)
4767 _int_free(mstate av, mchunkptr p)
4770 INTERNAL_SIZE_T size; /* its size */
4771 mfastbinptr* fb; /* associated fastbin */
4772 mchunkptr nextchunk; /* next contiguous chunk */
4773 INTERNAL_SIZE_T nextsize; /* its size */
4774 int nextinuse; /* true if nextchunk is used */
4775 INTERNAL_SIZE_T prevsize; /* size of previous contiguous chunk */
4776 mchunkptr bck; /* misc temp for linking */
4777 mchunkptr fwd; /* misc temp for linking */
4779 const char *errstr = NULL;
4780 #ifdef ATOMIC_FASTBINS
4784 size = chunksize(p);
4786 /* Little security check which won't hurt performance: the
4787 allocator never wrapps around at the end of the address space.
4788 Therefore we can exclude some size values which might appear
4789 here by accident or by "design" from some intruder. */
4790 if (__builtin_expect ((uintptr_t) p > (uintptr_t) -size, 0)
4791 || __builtin_expect (misaligned_chunk (p), 0))
4793 errstr = "free(): invalid pointer";
4795 #ifdef ATOMIC_FASTBINS
4796 if (! have_lock && locked)
4797 (void)mutex_unlock(&av->mutex);
4799 malloc_printerr (check_action, errstr, chunk2mem(p));
4802 /* We know that each chunk is at least MINSIZE bytes in size. */
4803 if (__builtin_expect (size < MINSIZE, 0))
4805 errstr = "free(): invalid size";
4809 check_inuse_chunk(av, p);
4812 If eligible, place chunk on a fastbin so it can be found
4813 and used quickly in malloc.
4816 if ((unsigned long)(size) <= (unsigned long)(get_max_fast ())
4820 If TRIM_FASTBINS set, don't place chunks
4821 bordering top into fastbins
4823 && (chunk_at_offset(p, size) != av->top)
4827 if (__builtin_expect (chunk_at_offset (p, size)->size <= 2 * SIZE_SZ, 0)
4828 || __builtin_expect (chunksize (chunk_at_offset (p, size))
4829 >= av->system_mem, 0))
4831 #ifdef ATOMIC_FASTBINS
4832 /* We might not have a lock at this point and concurrent modifications
4833 of system_mem might have let to a false positive. Redo the test
4834 after getting the lock. */
4836 || ({ assert (locked == 0);
4837 mutex_lock(&av->mutex);
4839 chunk_at_offset (p, size)->size <= 2 * SIZE_SZ
4840 || chunksize (chunk_at_offset (p, size)) >= av->system_mem;
4844 errstr = "free(): invalid next size (fast)";
4847 #ifdef ATOMIC_FASTBINS
4850 (void)mutex_unlock(&av->mutex);
4856 if (__builtin_expect (perturb_byte, 0))
4857 free_perturb (chunk2mem(p), size - SIZE_SZ);
4860 unsigned int idx = fastbin_index(size);
4861 fb = &fastbin (av, idx);
4863 #ifdef ATOMIC_FASTBINS
4865 mchunkptr old = *fb;
4868 /* Another simple check: make sure the top of the bin is not the
4869 record we are going to add (i.e., double free). */
4870 if (__builtin_expect (old == p, 0))
4872 errstr = "double free or corruption (fasttop)";
4876 && __builtin_expect (fastbin_index(chunksize(old)) != idx, 0))
4878 errstr = "invalid fastbin entry (free)";
4883 while ((old = catomic_compare_and_exchange_val_rel (fb, p, fd)) != fd);
4885 /* Another simple check: make sure the top of the bin is not the
4886 record we are going to add (i.e., double free). */
4887 if (__builtin_expect (*fb == p, 0))
4889 errstr = "double free or corruption (fasttop)";
4893 && __builtin_expect (fastbin_index(chunksize(*fb)) != idx, 0))
4895 errstr = "invalid fastbin entry (free)";
4905 Consolidate other non-mmapped chunks as they arrive.
4908 else if (!chunk_is_mmapped(p)) {
4909 #ifdef ATOMIC_FASTBINS
4912 if(!mutex_trylock(&av->mutex))
4913 ++(av->stat_lock_direct);
4915 (void)mutex_lock(&av->mutex);
4916 ++(av->stat_lock_wait);
4919 (void)mutex_lock(&av->mutex);
4925 nextchunk = chunk_at_offset(p, size);
4927 /* Lightweight tests: check whether the block is already the
4929 if (__builtin_expect (p == av->top, 0))
4931 errstr = "double free or corruption (top)";
4934 /* Or whether the next chunk is beyond the boundaries of the arena. */
4935 if (__builtin_expect (contiguous (av)
4936 && (char *) nextchunk
4937 >= ((char *) av->top + chunksize(av->top)), 0))
4939 errstr = "double free or corruption (out)";
4942 /* Or whether the block is actually not marked used. */
4943 if (__builtin_expect (!prev_inuse(nextchunk), 0))
4945 errstr = "double free or corruption (!prev)";
4949 nextsize = chunksize(nextchunk);
4950 if (__builtin_expect (nextchunk->size <= 2 * SIZE_SZ, 0)
4951 || __builtin_expect (nextsize >= av->system_mem, 0))
4953 errstr = "free(): invalid next size (normal)";
4957 if (__builtin_expect (perturb_byte, 0))
4958 free_perturb (chunk2mem(p), size - SIZE_SZ);
4960 /* consolidate backward */
4961 if (!prev_inuse(p)) {
4962 prevsize = p->prev_size;
4964 p = chunk_at_offset(p, -((long) prevsize));
4965 unlink(p, bck, fwd);
4968 if (nextchunk != av->top) {
4969 /* get and clear inuse bit */
4970 nextinuse = inuse_bit_at_offset(nextchunk, nextsize);
4972 /* consolidate forward */
4974 unlink(nextchunk, bck, fwd);
4977 clear_inuse_bit_at_offset(nextchunk, 0);
4980 Place the chunk in unsorted chunk list. Chunks are
4981 not placed into regular bins until after they have
4982 been given one chance to be used in malloc.
4985 bck = unsorted_chunks(av);
4987 if (__builtin_expect (fwd->bk != bck, 0))
4989 errstr = "free(): corrupted unsorted chunks";
4994 if (!in_smallbin_range(size))
4996 p->fd_nextsize = NULL;
4997 p->bk_nextsize = NULL;
5002 set_head(p, size | PREV_INUSE);
5005 check_free_chunk(av, p);
5009 If the chunk borders the current high end of memory,
5010 consolidate into top
5015 set_head(p, size | PREV_INUSE);
5021 If freeing a large space, consolidate possibly-surrounding
5022 chunks. Then, if the total unused topmost memory exceeds trim
5023 threshold, ask malloc_trim to reduce top.
5025 Unless max_fast is 0, we don't know if there are fastbins
5026 bordering top, so we cannot tell for sure whether threshold
5027 has been reached unless fastbins are consolidated. But we
5028 don't want to consolidate on each free. As a compromise,
5029 consolidation is performed if FASTBIN_CONSOLIDATION_THRESHOLD
5033 if ((unsigned long)(size) >= FASTBIN_CONSOLIDATION_THRESHOLD) {
5034 if (have_fastchunks(av))
5035 malloc_consolidate(av);
5037 if (av == &main_arena) {
5038 #ifndef MORECORE_CANNOT_TRIM
5039 if ((unsigned long)(chunksize(av->top)) >=
5040 (unsigned long)(mp_.trim_threshold))
5041 sYSTRIm(mp_.top_pad, av);
5044 /* Always try heap_trim(), even if the top chunk is not
5045 large, because the corresponding heap might go away. */
5046 heap_info *heap = heap_for_ptr(top(av));
5048 assert(heap->ar_ptr == av);
5049 heap_trim(heap, mp_.top_pad);
5053 #ifdef ATOMIC_FASTBINS
5056 (void)mutex_unlock(&av->mutex);
5061 If the chunk was allocated via mmap, release via munmap(). Note
5062 that if HAVE_MMAP is false but chunk_is_mmapped is true, then
5063 user must have overwritten memory. There's nothing we can do to
5064 catch this error unless MALLOC_DEBUG is set, in which case
5065 check_inuse_chunk (above) will have triggered error.
5076 ------------------------- malloc_consolidate -------------------------
5078 malloc_consolidate is a specialized version of free() that tears
5079 down chunks held in fastbins. Free itself cannot be used for this
5080 purpose since, among other things, it might place chunks back onto
5081 fastbins. So, instead, we need to use a minor variant of the same
5084 Also, because this routine needs to be called the first time through
5085 malloc anyway, it turns out to be the perfect place to trigger
5086 initialization code.
5090 static void malloc_consolidate(mstate av)
5092 static void malloc_consolidate(av) mstate av;
5095 mfastbinptr* fb; /* current fastbin being consolidated */
5096 mfastbinptr* maxfb; /* last fastbin (for loop control) */
5097 mchunkptr p; /* current chunk being consolidated */
5098 mchunkptr nextp; /* next chunk to consolidate */
5099 mchunkptr unsorted_bin; /* bin header */
5100 mchunkptr first_unsorted; /* chunk to link to */
5102 /* These have same use as in free() */
5103 mchunkptr nextchunk;
5104 INTERNAL_SIZE_T size;
5105 INTERNAL_SIZE_T nextsize;
5106 INTERNAL_SIZE_T prevsize;
5112 If max_fast is 0, we know that av hasn't
5113 yet been initialized, in which case do so below
5116 if (get_max_fast () != 0) {
5117 clear_fastchunks(av);
5119 unsorted_bin = unsorted_chunks(av);
5122 Remove each chunk from fast bin and consolidate it, placing it
5123 then in unsorted bin. Among other reasons for doing this,
5124 placing in unsorted bin avoids needing to calculate actual bins
5125 until malloc is sure that chunks aren't immediately going to be
5130 /* It is wrong to limit the fast bins to search using get_max_fast
5131 because, except for the main arena, all the others might have
5132 blocks in the high fast bins. It's not worth it anyway, just
5133 search all bins all the time. */
5134 maxfb = &fastbin (av, fastbin_index(get_max_fast ()));
5136 maxfb = &fastbin (av, NFASTBINS - 1);
5138 fb = &fastbin (av, 0);
5140 #ifdef ATOMIC_FASTBINS
5141 p = atomic_exchange_acq (fb, 0);
5146 #ifndef ATOMIC_FASTBINS
5150 check_inuse_chunk(av, p);
5153 /* Slightly streamlined version of consolidation code in free() */
5154 size = p->size & ~(PREV_INUSE|NON_MAIN_ARENA);
5155 nextchunk = chunk_at_offset(p, size);
5156 nextsize = chunksize(nextchunk);
5158 if (!prev_inuse(p)) {
5159 prevsize = p->prev_size;
5161 p = chunk_at_offset(p, -((long) prevsize));
5162 unlink(p, bck, fwd);
5165 if (nextchunk != av->top) {
5166 nextinuse = inuse_bit_at_offset(nextchunk, nextsize);
5170 unlink(nextchunk, bck, fwd);
5172 clear_inuse_bit_at_offset(nextchunk, 0);
5174 first_unsorted = unsorted_bin->fd;
5175 unsorted_bin->fd = p;
5176 first_unsorted->bk = p;
5178 if (!in_smallbin_range (size)) {
5179 p->fd_nextsize = NULL;
5180 p->bk_nextsize = NULL;
5183 set_head(p, size | PREV_INUSE);
5184 p->bk = unsorted_bin;
5185 p->fd = first_unsorted;
5191 set_head(p, size | PREV_INUSE);
5195 } while ( (p = nextp) != 0);
5198 } while (fb++ != maxfb);
5201 malloc_init_state(av);
5202 check_malloc_state(av);
5207 ------------------------------ realloc ------------------------------
5211 _int_realloc(mstate av, mchunkptr oldp, INTERNAL_SIZE_T oldsize,
5214 mchunkptr newp; /* chunk to return */
5215 INTERNAL_SIZE_T newsize; /* its size */
5216 Void_t* newmem; /* corresponding user mem */
5218 mchunkptr next; /* next contiguous chunk after oldp */
5220 mchunkptr remainder; /* extra space at end of newp */
5221 unsigned long remainder_size; /* its size */
5223 mchunkptr bck; /* misc temp for linking */
5224 mchunkptr fwd; /* misc temp for linking */
5226 unsigned long copysize; /* bytes to copy */
5227 unsigned int ncopies; /* INTERNAL_SIZE_T words to copy */
5228 INTERNAL_SIZE_T* s; /* copy source */
5229 INTERNAL_SIZE_T* d; /* copy destination */
5231 const char *errstr = NULL;
5234 if (__builtin_expect (oldp->size <= 2 * SIZE_SZ, 0)
5235 || __builtin_expect (oldsize >= av->system_mem, 0))
5237 errstr = "realloc(): invalid old size";
5239 malloc_printerr (check_action, errstr, chunk2mem(oldp));
5243 check_inuse_chunk(av, oldp);
5245 /* All callers already filter out mmap'ed chunks. */
5247 if (!chunk_is_mmapped(oldp))
5249 assert (!chunk_is_mmapped(oldp));
5253 next = chunk_at_offset(oldp, oldsize);
5254 INTERNAL_SIZE_T nextsize = chunksize(next);
5255 if (__builtin_expect (next->size <= 2 * SIZE_SZ, 0)
5256 || __builtin_expect (nextsize >= av->system_mem, 0))
5258 errstr = "realloc(): invalid next size";
5262 if ((unsigned long)(oldsize) >= (unsigned long)(nb)) {
5263 /* already big enough; split below */
5269 /* Try to expand forward into top */
5270 if (next == av->top &&
5271 (unsigned long)(newsize = oldsize + nextsize) >=
5272 (unsigned long)(nb + MINSIZE)) {
5273 set_head_size(oldp, nb | (av != &main_arena ? NON_MAIN_ARENA : 0));
5274 av->top = chunk_at_offset(oldp, nb);
5275 set_head(av->top, (newsize - nb) | PREV_INUSE);
5276 check_inuse_chunk(av, oldp);
5277 return chunk2mem(oldp);
5280 /* Try to expand forward into next chunk; split off remainder below */
5281 else if (next != av->top &&
5283 (unsigned long)(newsize = oldsize + nextsize) >=
5284 (unsigned long)(nb)) {
5286 unlink(next, bck, fwd);
5289 /* allocate, copy, free */
5291 newmem = _int_malloc(av, nb - MALLOC_ALIGN_MASK);
5293 return 0; /* propagate failure */
5295 newp = mem2chunk(newmem);
5296 newsize = chunksize(newp);
5299 Avoid copy if newp is next chunk after oldp.
5307 Unroll copy of <= 36 bytes (72 if 8byte sizes)
5308 We know that contents have an odd number of
5309 INTERNAL_SIZE_T-sized words; minimally 3.
5312 copysize = oldsize - SIZE_SZ;
5313 s = (INTERNAL_SIZE_T*)(chunk2mem(oldp));
5314 d = (INTERNAL_SIZE_T*)(newmem);
5315 ncopies = copysize / sizeof(INTERNAL_SIZE_T);
5316 assert(ncopies >= 3);
5319 MALLOC_COPY(d, s, copysize);
5339 #ifdef ATOMIC_FASTBINS
5340 _int_free(av, oldp, 1);
5342 _int_free(av, oldp);
5344 check_inuse_chunk(av, newp);
5345 return chunk2mem(newp);
5350 /* If possible, free extra space in old or extended chunk */
5352 assert((unsigned long)(newsize) >= (unsigned long)(nb));
5354 remainder_size = newsize - nb;
5356 if (remainder_size < MINSIZE) { /* not enough extra to split off */
5357 set_head_size(newp, newsize | (av != &main_arena ? NON_MAIN_ARENA : 0));
5358 set_inuse_bit_at_offset(newp, newsize);
5360 else { /* split remainder */
5361 remainder = chunk_at_offset(newp, nb);
5362 set_head_size(newp, nb | (av != &main_arena ? NON_MAIN_ARENA : 0));
5363 set_head(remainder, remainder_size | PREV_INUSE |
5364 (av != &main_arena ? NON_MAIN_ARENA : 0));
5365 /* Mark remainder as inuse so free() won't complain */
5366 set_inuse_bit_at_offset(remainder, remainder_size);
5367 #ifdef ATOMIC_FASTBINS
5368 _int_free(av, remainder, 1);
5370 _int_free(av, remainder);
5374 check_inuse_chunk(av, newp);
5375 return chunk2mem(newp);
5387 INTERNAL_SIZE_T offset = oldp->prev_size;
5388 size_t pagemask = mp_.pagesize - 1;
5392 /* Note the extra SIZE_SZ overhead */
5393 newsize = (nb + offset + SIZE_SZ + pagemask) & ~pagemask;
5395 /* don't need to remap if still within same page */
5396 if (oldsize == newsize - offset)
5397 return chunk2mem(oldp);
5399 cp = (char*)mremap((char*)oldp - offset, oldsize + offset, newsize, 1);
5401 if (cp != MAP_FAILED) {
5403 newp = (mchunkptr)(cp + offset);
5404 set_head(newp, (newsize - offset)|IS_MMAPPED);
5406 assert(aligned_OK(chunk2mem(newp)));
5407 assert((newp->prev_size == offset));
5409 /* update statistics */
5410 sum = mp_.mmapped_mem += newsize - oldsize;
5411 if (sum > (unsigned long)(mp_.max_mmapped_mem))
5412 mp_.max_mmapped_mem = sum;
5414 sum += main_arena.system_mem;
5415 if (sum > (unsigned long)(mp_.max_total_mem))
5416 mp_.max_total_mem = sum;
5419 return chunk2mem(newp);
5423 /* Note the extra SIZE_SZ overhead. */
5424 if ((unsigned long)(oldsize) >= (unsigned long)(nb + SIZE_SZ))
5425 newmem = chunk2mem(oldp); /* do nothing */
5427 /* Must alloc, copy, free. */
5428 newmem = _int_malloc(av, nb - MALLOC_ALIGN_MASK);
5430 MALLOC_COPY(newmem, chunk2mem(oldp), oldsize - 2*SIZE_SZ);
5431 #ifdef ATOMIC_FASTBINS
5432 _int_free(av, oldp, 1);
5434 _int_free(av, oldp);
5441 /* If !HAVE_MMAP, but chunk_is_mmapped, user must have overwritten mem */
5442 check_malloc_state(av);
5443 MALLOC_FAILURE_ACTION;
5451 ------------------------------ memalign ------------------------------
5455 _int_memalign(mstate av, size_t alignment, size_t bytes)
5457 INTERNAL_SIZE_T nb; /* padded request size */
5458 char* m; /* memory returned by malloc call */
5459 mchunkptr p; /* corresponding chunk */
5460 char* brk; /* alignment point within p */
5461 mchunkptr newp; /* chunk to return */
5462 INTERNAL_SIZE_T newsize; /* its size */
5463 INTERNAL_SIZE_T leadsize; /* leading space before alignment point */
5464 mchunkptr remainder; /* spare room at end to split off */
5465 unsigned long remainder_size; /* its size */
5466 INTERNAL_SIZE_T size;
5468 /* If need less alignment than we give anyway, just relay to malloc */
5470 if (alignment <= MALLOC_ALIGNMENT) return _int_malloc(av, bytes);
5472 /* Otherwise, ensure that it is at least a minimum chunk size */
5474 if (alignment < MINSIZE) alignment = MINSIZE;
5476 /* Make sure alignment is power of 2 (in case MINSIZE is not). */
5477 if ((alignment & (alignment - 1)) != 0) {
5478 size_t a = MALLOC_ALIGNMENT * 2;
5479 while ((unsigned long)a < (unsigned long)alignment) a <<= 1;
5483 checked_request2size(bytes, nb);
5486 Strategy: find a spot within that chunk that meets the alignment
5487 request, and then possibly free the leading and trailing space.
5491 /* Call malloc with worst case padding to hit alignment. */
5493 m = (char*)(_int_malloc(av, nb + alignment + MINSIZE));
5495 if (m == 0) return 0; /* propagate failure */
5499 if ((((unsigned long)(m)) % alignment) != 0) { /* misaligned */
5502 Find an aligned spot inside chunk. Since we need to give back
5503 leading space in a chunk of at least MINSIZE, if the first
5504 calculation places us at a spot with less than MINSIZE leader,
5505 we can move to the next aligned spot -- we've allocated enough
5506 total room so that this is always possible.
5509 brk = (char*)mem2chunk(((unsigned long)(m + alignment - 1)) &
5510 -((signed long) alignment));
5511 if ((unsigned long)(brk - (char*)(p)) < MINSIZE)
5514 newp = (mchunkptr)brk;
5515 leadsize = brk - (char*)(p);
5516 newsize = chunksize(p) - leadsize;
5518 /* For mmapped chunks, just adjust offset */
5519 if (chunk_is_mmapped(p)) {
5520 newp->prev_size = p->prev_size + leadsize;
5521 set_head(newp, newsize|IS_MMAPPED);
5522 return chunk2mem(newp);
5525 /* Otherwise, give back leader, use the rest */
5526 set_head(newp, newsize | PREV_INUSE |
5527 (av != &main_arena ? NON_MAIN_ARENA : 0));
5528 set_inuse_bit_at_offset(newp, newsize);
5529 set_head_size(p, leadsize | (av != &main_arena ? NON_MAIN_ARENA : 0));
5530 #ifdef ATOMIC_FASTBINS
5531 _int_free(av, p, 1);
5537 assert (newsize >= nb &&
5538 (((unsigned long)(chunk2mem(p))) % alignment) == 0);
5541 /* Also give back spare room at the end */
5542 if (!chunk_is_mmapped(p)) {
5543 size = chunksize(p);
5544 if ((unsigned long)(size) > (unsigned long)(nb + MINSIZE)) {
5545 remainder_size = size - nb;
5546 remainder = chunk_at_offset(p, nb);
5547 set_head(remainder, remainder_size | PREV_INUSE |
5548 (av != &main_arena ? NON_MAIN_ARENA : 0));
5549 set_head_size(p, nb);
5550 #ifdef ATOMIC_FASTBINS
5551 _int_free(av, remainder, 1);
5553 _int_free(av, remainder);
5558 check_inuse_chunk(av, p);
5559 return chunk2mem(p);
5564 ------------------------------ calloc ------------------------------
5568 Void_t* cALLOc(size_t n_elements, size_t elem_size)
5570 Void_t* cALLOc(n_elements, elem_size) size_t n_elements; size_t elem_size;
5574 unsigned long clearsize;
5575 unsigned long nclears;
5578 Void_t* mem = mALLOc(n_elements * elem_size);
5584 if (!chunk_is_mmapped(p)) /* don't need to clear mmapped space */
5588 Unroll clear of <= 36 bytes (72 if 8byte sizes)
5589 We know that contents have an odd number of
5590 INTERNAL_SIZE_T-sized words; minimally 3.
5593 d = (INTERNAL_SIZE_T*)mem;
5594 clearsize = chunksize(p) - SIZE_SZ;
5595 nclears = clearsize / sizeof(INTERNAL_SIZE_T);
5596 assert(nclears >= 3);
5599 MALLOC_ZERO(d, clearsize);
5626 ------------------------- independent_calloc -------------------------
5631 _int_icalloc(mstate av, size_t n_elements, size_t elem_size, Void_t* chunks[])
5633 _int_icalloc(av, n_elements, elem_size, chunks)
5634 mstate av; size_t n_elements; size_t elem_size; Void_t* chunks[];
5637 size_t sz = elem_size; /* serves as 1-element array */
5638 /* opts arg of 3 means all elements are same size, and should be cleared */
5639 return iALLOc(av, n_elements, &sz, 3, chunks);
5643 ------------------------- independent_comalloc -------------------------
5648 _int_icomalloc(mstate av, size_t n_elements, size_t sizes[], Void_t* chunks[])
5650 _int_icomalloc(av, n_elements, sizes, chunks)
5651 mstate av; size_t n_elements; size_t sizes[]; Void_t* chunks[];
5654 return iALLOc(av, n_elements, sizes, 0, chunks);
5659 ------------------------------ ialloc ------------------------------
5660 ialloc provides common support for independent_X routines, handling all of
5661 the combinations that can result.
5664 bit 0 set if all elements are same size (using sizes[0])
5665 bit 1 set if elements should be zeroed
5671 iALLOc(mstate av, size_t n_elements, size_t* sizes, int opts, Void_t* chunks[])
5673 iALLOc(av, n_elements, sizes, opts, chunks)
5674 mstate av; size_t n_elements; size_t* sizes; int opts; Void_t* chunks[];
5677 INTERNAL_SIZE_T element_size; /* chunksize of each element, if all same */
5678 INTERNAL_SIZE_T contents_size; /* total size of elements */
5679 INTERNAL_SIZE_T array_size; /* request size of pointer array */
5680 Void_t* mem; /* malloced aggregate space */
5681 mchunkptr p; /* corresponding chunk */
5682 INTERNAL_SIZE_T remainder_size; /* remaining bytes while splitting */
5683 Void_t** marray; /* either "chunks" or malloced ptr array */
5684 mchunkptr array_chunk; /* chunk for malloced ptr array */
5685 int mmx; /* to disable mmap */
5686 INTERNAL_SIZE_T size;
5687 INTERNAL_SIZE_T size_flags;
5690 /* Ensure initialization/consolidation */
5691 if (have_fastchunks(av)) malloc_consolidate(av);
5693 /* compute array length, if needed */
5695 if (n_elements == 0)
5696 return chunks; /* nothing to do */
5701 /* if empty req, must still return chunk representing empty array */
5702 if (n_elements == 0)
5703 return (Void_t**) _int_malloc(av, 0);
5705 array_size = request2size(n_elements * (sizeof(Void_t*)));
5708 /* compute total element size */
5709 if (opts & 0x1) { /* all-same-size */
5710 element_size = request2size(*sizes);
5711 contents_size = n_elements * element_size;
5713 else { /* add up all the sizes */
5716 for (i = 0; i != n_elements; ++i)
5717 contents_size += request2size(sizes[i]);
5720 /* subtract out alignment bytes from total to minimize overallocation */
5721 size = contents_size + array_size - MALLOC_ALIGN_MASK;
5724 Allocate the aggregate chunk.
5725 But first disable mmap so malloc won't use it, since
5726 we would not be able to later free/realloc space internal
5727 to a segregated mmap region.
5729 mmx = mp_.n_mmaps_max; /* disable mmap */
5730 mp_.n_mmaps_max = 0;
5731 mem = _int_malloc(av, size);
5732 mp_.n_mmaps_max = mmx; /* reset mmap */
5737 assert(!chunk_is_mmapped(p));
5738 remainder_size = chunksize(p);
5740 if (opts & 0x2) { /* optionally clear the elements */
5741 MALLOC_ZERO(mem, remainder_size - SIZE_SZ - array_size);
5744 size_flags = PREV_INUSE | (av != &main_arena ? NON_MAIN_ARENA : 0);
5746 /* If not provided, allocate the pointer array as final part of chunk */
5748 array_chunk = chunk_at_offset(p, contents_size);
5749 marray = (Void_t**) (chunk2mem(array_chunk));
5750 set_head(array_chunk, (remainder_size - contents_size) | size_flags);
5751 remainder_size = contents_size;
5754 /* split out elements */
5755 for (i = 0; ; ++i) {
5756 marray[i] = chunk2mem(p);
5757 if (i != n_elements-1) {
5758 if (element_size != 0)
5759 size = element_size;
5761 size = request2size(sizes[i]);
5762 remainder_size -= size;
5763 set_head(p, size | size_flags);
5764 p = chunk_at_offset(p, size);
5766 else { /* the final element absorbs any overallocation slop */
5767 set_head(p, remainder_size | size_flags);
5773 if (marray != chunks) {
5774 /* final element must have exactly exhausted chunk */
5775 if (element_size != 0)
5776 assert(remainder_size == element_size);
5778 assert(remainder_size == request2size(sizes[i]));
5779 check_inuse_chunk(av, mem2chunk(marray));
5782 for (i = 0; i != n_elements; ++i)
5783 check_inuse_chunk(av, mem2chunk(marray[i]));
5792 ------------------------------ valloc ------------------------------
5797 _int_valloc(mstate av, size_t bytes)
5799 _int_valloc(av, bytes) mstate av; size_t bytes;
5802 /* Ensure initialization/consolidation */
5803 if (have_fastchunks(av)) malloc_consolidate(av);
5804 return _int_memalign(av, mp_.pagesize, bytes);
5808 ------------------------------ pvalloc ------------------------------
5814 _int_pvalloc(mstate av, size_t bytes)
5816 _int_pvalloc(av, bytes) mstate av, size_t bytes;
5821 /* Ensure initialization/consolidation */
5822 if (have_fastchunks(av)) malloc_consolidate(av);
5823 pagesz = mp_.pagesize;
5824 return _int_memalign(av, pagesz, (bytes + pagesz - 1) & ~(pagesz - 1));
5829 ------------------------------ malloc_trim ------------------------------
5833 static int mTRIm(mstate av, size_t pad)
5835 static int mTRIm(av, pad) mstate av; size_t pad;
5838 /* Ensure initialization/consolidation */
5839 malloc_consolidate (av);
5841 const size_t ps = mp_.pagesize;
5842 int psindex = bin_index (ps);
5843 const size_t psm1 = ps - 1;
5846 for (int i = 1; i < NBINS; ++i)
5847 if (i == 1 || i >= psindex)
5849 mbinptr bin = bin_at (av, i);
5851 for (mchunkptr p = last (bin); p != bin; p = p->bk)
5853 INTERNAL_SIZE_T size = chunksize (p);
5855 if (size > psm1 + sizeof (struct malloc_chunk))
5857 /* See whether the chunk contains at least one unused page. */
5858 char *paligned_mem = (char *) (((uintptr_t) p
5859 + sizeof (struct malloc_chunk)
5862 assert ((char *) chunk2mem (p) + 4 * SIZE_SZ <= paligned_mem);
5863 assert ((char *) p + size > paligned_mem);
5865 /* This is the size we could potentially free. */
5866 size -= paligned_mem - (char *) p;
5871 /* When debugging we simulate destroying the memory
5873 memset (paligned_mem, 0x89, size & ~psm1);
5875 madvise (paligned_mem, size & ~psm1, MADV_DONTNEED);
5883 #ifndef MORECORE_CANNOT_TRIM
5884 return result | (av == &main_arena ? sYSTRIm (pad, av) : 0);
5892 ------------------------- malloc_usable_size -------------------------
5896 size_t mUSABLe(Void_t* mem)
5898 size_t mUSABLe(mem) Void_t* mem;
5904 if (chunk_is_mmapped(p))
5905 return chunksize(p) - 2*SIZE_SZ;
5907 return chunksize(p) - SIZE_SZ;
5913 ------------------------------ mallinfo ------------------------------
5916 struct mallinfo mALLINFo(mstate av)
5922 INTERNAL_SIZE_T avail;
5923 INTERNAL_SIZE_T fastavail;
5927 /* Ensure initialization */
5928 if (av->top == 0) malloc_consolidate(av);
5930 check_malloc_state(av);
5932 /* Account for top */
5933 avail = chunksize(av->top);
5934 nblocks = 1; /* top always exists */
5936 /* traverse fastbins */
5940 for (i = 0; i < NFASTBINS; ++i) {
5941 for (p = fastbin (av, i); p != 0; p = p->fd) {
5943 fastavail += chunksize(p);
5949 /* traverse regular bins */
5950 for (i = 1; i < NBINS; ++i) {
5952 for (p = last(b); p != b; p = p->bk) {
5954 avail += chunksize(p);
5958 mi.smblks = nfastblocks;
5959 mi.ordblks = nblocks;
5960 mi.fordblks = avail;
5961 mi.uordblks = av->system_mem - avail;
5962 mi.arena = av->system_mem;
5963 mi.hblks = mp_.n_mmaps;
5964 mi.hblkhd = mp_.mmapped_mem;
5965 mi.fsmblks = fastavail;
5966 mi.keepcost = chunksize(av->top);
5967 mi.usmblks = mp_.max_total_mem;
5972 ------------------------------ malloc_stats ------------------------------
5980 unsigned int in_use_b = mp_.mmapped_mem, system_b = in_use_b;
5982 long stat_lock_direct = 0, stat_lock_loop = 0, stat_lock_wait = 0;
5985 if(__malloc_initialized < 0)
5988 _IO_flockfile (stderr);
5989 int old_flags2 = ((_IO_FILE *) stderr)->_flags2;
5990 ((_IO_FILE *) stderr)->_flags2 |= _IO_FLAGS2_NOTCANCEL;
5992 for (i=0, ar_ptr = &main_arena;; i++) {
5993 (void)mutex_lock(&ar_ptr->mutex);
5994 mi = mALLINFo(ar_ptr);
5995 fprintf(stderr, "Arena %d:\n", i);
5996 fprintf(stderr, "system bytes = %10u\n", (unsigned int)mi.arena);
5997 fprintf(stderr, "in use bytes = %10u\n", (unsigned int)mi.uordblks);
5998 #if MALLOC_DEBUG > 1
6000 dump_heap(heap_for_ptr(top(ar_ptr)));
6002 system_b += mi.arena;
6003 in_use_b += mi.uordblks;
6005 stat_lock_direct += ar_ptr->stat_lock_direct;
6006 stat_lock_loop += ar_ptr->stat_lock_loop;
6007 stat_lock_wait += ar_ptr->stat_lock_wait;
6009 (void)mutex_unlock(&ar_ptr->mutex);
6010 ar_ptr = ar_ptr->next;
6011 if(ar_ptr == &main_arena) break;
6014 fprintf(stderr, "Total (incl. mmap):\n");
6016 fprintf(stderr, "Total:\n");
6018 fprintf(stderr, "system bytes = %10u\n", system_b);
6019 fprintf(stderr, "in use bytes = %10u\n", in_use_b);
6021 fprintf(stderr, "max system bytes = %10u\n", (unsigned int)mp_.max_total_mem);
6024 fprintf(stderr, "max mmap regions = %10u\n", (unsigned int)mp_.max_n_mmaps);
6025 fprintf(stderr, "max mmap bytes = %10lu\n",
6026 (unsigned long)mp_.max_mmapped_mem);
6029 fprintf(stderr, "heaps created = %10d\n", stat_n_heaps);
6030 fprintf(stderr, "locked directly = %10ld\n", stat_lock_direct);
6031 fprintf(stderr, "locked in loop = %10ld\n", stat_lock_loop);
6032 fprintf(stderr, "locked waiting = %10ld\n", stat_lock_wait);
6033 fprintf(stderr, "locked total = %10ld\n",
6034 stat_lock_direct + stat_lock_loop + stat_lock_wait);
6037 ((_IO_FILE *) stderr)->_flags2 |= old_flags2;
6038 _IO_funlockfile (stderr);
6044 ------------------------------ mallopt ------------------------------
6048 int mALLOPt(int param_number, int value)
6050 int mALLOPt(param_number, value) int param_number; int value;
6053 mstate av = &main_arena;
6056 if(__malloc_initialized < 0)
6058 (void)mutex_lock(&av->mutex);
6059 /* Ensure initialization/consolidation */
6060 malloc_consolidate(av);
6062 switch(param_number) {
6064 if (value >= 0 && value <= MAX_FAST_SIZE) {
6065 set_max_fast(value);
6071 case M_TRIM_THRESHOLD:
6072 mp_.trim_threshold = value;
6073 mp_.no_dyn_threshold = 1;
6077 mp_.top_pad = value;
6078 mp_.no_dyn_threshold = 1;
6081 case M_MMAP_THRESHOLD:
6083 /* Forbid setting the threshold too high. */
6084 if((unsigned long)value > HEAP_MAX_SIZE/2)
6088 mp_.mmap_threshold = value;
6089 mp_.no_dyn_threshold = 1;
6098 mp_.n_mmaps_max = value;
6099 mp_.no_dyn_threshold = 1;
6102 case M_CHECK_ACTION:
6103 check_action = value;
6107 perturb_byte = value;
6113 mp_.arena_test = value;
6118 mp_.arena_max = value;
6122 (void)mutex_unlock(&av->mutex);
6128 -------------------- Alternative MORECORE functions --------------------
6133 General Requirements for MORECORE.
6135 The MORECORE function must have the following properties:
6137 If MORECORE_CONTIGUOUS is false:
6139 * MORECORE must allocate in multiples of pagesize. It will
6140 only be called with arguments that are multiples of pagesize.
6142 * MORECORE(0) must return an address that is at least
6143 MALLOC_ALIGNMENT aligned. (Page-aligning always suffices.)
6145 else (i.e. If MORECORE_CONTIGUOUS is true):
6147 * Consecutive calls to MORECORE with positive arguments
6148 return increasing addresses, indicating that space has been
6149 contiguously extended.
6151 * MORECORE need not allocate in multiples of pagesize.
6152 Calls to MORECORE need not have args of multiples of pagesize.
6154 * MORECORE need not page-align.
6158 * MORECORE may allocate more memory than requested. (Or even less,
6159 but this will generally result in a malloc failure.)
6161 * MORECORE must not allocate memory when given argument zero, but
6162 instead return one past the end address of memory from previous
6163 nonzero call. This malloc does NOT call MORECORE(0)
6164 until at least one call with positive arguments is made, so
6165 the initial value returned is not important.
6167 * Even though consecutive calls to MORECORE need not return contiguous
6168 addresses, it must be OK for malloc'ed chunks to span multiple
6169 regions in those cases where they do happen to be contiguous.
6171 * MORECORE need not handle negative arguments -- it may instead
6172 just return MORECORE_FAILURE when given negative arguments.
6173 Negative arguments are always multiples of pagesize. MORECORE
6174 must not misinterpret negative args as large positive unsigned
6175 args. You can suppress all such calls from even occurring by defining
6176 MORECORE_CANNOT_TRIM,
6178 There is some variation across systems about the type of the
6179 argument to sbrk/MORECORE. If size_t is unsigned, then it cannot
6180 actually be size_t, because sbrk supports negative args, so it is
6181 normally the signed type of the same width as size_t (sometimes
6182 declared as "intptr_t", and sometimes "ptrdiff_t"). It doesn't much
6183 matter though. Internally, we use "long" as arguments, which should
6184 work across all reasonable possibilities.
6186 Additionally, if MORECORE ever returns failure for a positive
6187 request, and HAVE_MMAP is true, then mmap is used as a noncontiguous
6188 system allocator. This is a useful backup strategy for systems with
6189 holes in address spaces -- in this case sbrk cannot contiguously
6190 expand the heap, but mmap may be able to map noncontiguous space.
6192 If you'd like mmap to ALWAYS be used, you can define MORECORE to be
6193 a function that always returns MORECORE_FAILURE.
6195 If you are using this malloc with something other than sbrk (or its
6196 emulation) to supply memory regions, you probably want to set
6197 MORECORE_CONTIGUOUS as false. As an example, here is a custom
6198 allocator kindly contributed for pre-OSX macOS. It uses virtually
6199 but not necessarily physically contiguous non-paged memory (locked
6200 in, present and won't get swapped out). You can use it by
6201 uncommenting this section, adding some #includes, and setting up the
6202 appropriate defines above:
6204 #define MORECORE osMoreCore
6205 #define MORECORE_CONTIGUOUS 0
6207 There is also a shutdown routine that should somehow be called for
6208 cleanup upon program exit.
6210 #define MAX_POOL_ENTRIES 100
6211 #define MINIMUM_MORECORE_SIZE (64 * 1024)
6212 static int next_os_pool;
6213 void *our_os_pools[MAX_POOL_ENTRIES];
6215 void *osMoreCore(int size)
6218 static void *sbrk_top = 0;
6222 if (size < MINIMUM_MORECORE_SIZE)
6223 size = MINIMUM_MORECORE_SIZE;
6224 if (CurrentExecutionLevel() == kTaskLevel)
6225 ptr = PoolAllocateResident(size + RM_PAGE_SIZE, 0);
6228 return (void *) MORECORE_FAILURE;
6230 // save ptrs so they can be freed during cleanup
6231 our_os_pools[next_os_pool] = ptr;
6233 ptr = (void *) ((((unsigned long) ptr) + RM_PAGE_MASK) & ~RM_PAGE_MASK);
6234 sbrk_top = (char *) ptr + size;
6239 // we don't currently support shrink behavior
6240 return (void *) MORECORE_FAILURE;
6248 // cleanup any allocated memory pools
6249 // called as last thing before shutting down driver
6251 void osCleanupMem(void)
6255 for (ptr = our_os_pools; ptr < &our_os_pools[MAX_POOL_ENTRIES]; ptr++)
6258 PoolDeallocate(*ptr);
6268 extern char **__libc_argv attribute_hidden;
6271 malloc_printerr(int action, const char *str, void *ptr)
6273 if ((action & 5) == 5)
6274 __libc_message (action & 2, "%s\n", str);
6275 else if (action & 1)
6277 char buf[2 * sizeof (uintptr_t) + 1];
6279 buf[sizeof (buf) - 1] = '\0';
6280 char *cp = _itoa_word ((uintptr_t) ptr, &buf[sizeof (buf) - 1], 16, 0);
6284 __libc_message (action & 2,
6285 "*** glibc detected *** %s: %s: 0x%s ***\n",
6286 __libc_argv[0] ?: "<unknown>", str, cp);
6288 else if (action & 2)
6293 # include <sys/param.h>
6295 /* We need a wrapper function for one of the additions of POSIX. */
6297 __posix_memalign (void **memptr, size_t alignment, size_t size)
6301 /* Test whether the SIZE argument is valid. It must be a power of
6302 two multiple of sizeof (void *). */
6303 if (alignment % sizeof (void *) != 0
6304 || !powerof2 (alignment / sizeof (void *)) != 0
6308 /* Call the hook here, so that caller is posix_memalign's caller
6309 and not posix_memalign itself. */
6310 __malloc_ptr_t (*hook) __MALLOC_PMT ((size_t, size_t,
6311 __const __malloc_ptr_t)) =
6312 force_reg (__memalign_hook);
6313 if (__builtin_expect (hook != NULL, 0))
6314 mem = (*hook)(alignment, size, RETURN_ADDRESS (0));
6316 mem = public_mEMALIGn (alignment, size);
6325 weak_alias (__posix_memalign, posix_memalign)
6329 malloc_info (int options, FILE *fp)
6331 /* For now, at least. */
6336 size_t total_nblocks = 0;
6337 size_t total_nfastblocks = 0;
6338 size_t total_avail = 0;
6339 size_t total_fastavail = 0;
6340 size_t total_system = 0;
6341 size_t total_max_system = 0;
6342 size_t total_aspace = 0;
6343 size_t total_aspace_mprotect = 0;
6345 void mi_arena (mstate ar_ptr)
6347 fprintf (fp, "<heap nr=\"%d\">\n<sizes>\n", n++);
6350 size_t nfastblocks = 0;
6352 size_t fastavail = 0;
6359 } sizes[NFASTBINS + NBINS - 1];
6360 #define nsizes (sizeof (sizes) / sizeof (sizes[0]))
6362 mutex_lock (&ar_ptr->mutex);
6364 for (size_t i = 0; i < NFASTBINS; ++i)
6366 mchunkptr p = fastbin (ar_ptr, i);
6369 size_t nthissize = 0;
6370 size_t thissize = chunksize (p);
6378 fastavail += nthissize * thissize;
6379 nfastblocks += nthissize;
6380 sizes[i].from = thissize - (MALLOC_ALIGNMENT - 1);
6381 sizes[i].to = thissize;
6382 sizes[i].count = nthissize;
6385 sizes[i].from = sizes[i].to = sizes[i].count = 0;
6387 sizes[i].total = sizes[i].count * sizes[i].to;
6390 mbinptr bin = bin_at (ar_ptr, 1);
6391 struct malloc_chunk *r = bin->fd;
6396 ++sizes[NFASTBINS].count;
6397 sizes[NFASTBINS].total += r->size;
6398 sizes[NFASTBINS].from = MIN (sizes[NFASTBINS].from, r->size);
6399 sizes[NFASTBINS].to = MAX (sizes[NFASTBINS].to, r->size);
6402 nblocks += sizes[NFASTBINS].count;
6403 avail += sizes[NFASTBINS].total;
6406 for (size_t i = 2; i < NBINS; ++i)
6408 bin = bin_at (ar_ptr, i);
6410 sizes[NFASTBINS - 1 + i].from = ~((size_t) 0);
6411 sizes[NFASTBINS - 1 + i].to = sizes[NFASTBINS - 1 + i].total
6412 = sizes[NFASTBINS - 1 + i].count = 0;
6417 ++sizes[NFASTBINS - 1 + i].count;
6418 sizes[NFASTBINS - 1 + i].total += r->size;
6419 sizes[NFASTBINS - 1 + i].from
6420 = MIN (sizes[NFASTBINS - 1 + i].from, r->size);
6421 sizes[NFASTBINS - 1 + i].to = MAX (sizes[NFASTBINS - 1 + i].to,
6427 if (sizes[NFASTBINS - 1 + i].count == 0)
6428 sizes[NFASTBINS - 1 + i].from = 0;
6429 nblocks += sizes[NFASTBINS - 1 + i].count;
6430 avail += sizes[NFASTBINS - 1 + i].total;
6433 mutex_unlock (&ar_ptr->mutex);
6435 total_nfastblocks += nfastblocks;
6436 total_fastavail += fastavail;
6438 total_nblocks += nblocks;
6439 total_avail += avail;
6441 for (size_t i = 0; i < nsizes; ++i)
6442 if (sizes[i].count != 0 && i != NFASTBINS)
6444 <size from=\"%zu\" to=\"%zu\" total=\"%zu\" count=\"%zu\"/>\n",
6445 sizes[i].from, sizes[i].to, sizes[i].total, sizes[i].count);
6447 if (sizes[NFASTBINS].count != 0)
6449 <unsorted from=\"%zu\" to=\"%zu\" total=\"%zu\" count=\"%zu\"/>\n",
6450 sizes[NFASTBINS].from, sizes[NFASTBINS].to,
6451 sizes[NFASTBINS].total, sizes[NFASTBINS].count);
6453 total_system += ar_ptr->system_mem;
6454 total_max_system += ar_ptr->max_system_mem;
6457 "</sizes>\n<total type=\"fast\" count=\"%zu\" size=\"%zu\"/>\n"
6458 "<total type=\"rest\" count=\"%zu\" size=\"%zu\"/>\n"
6459 "<system type=\"current\" size=\"%zu\"/>\n"
6460 "<system type=\"max\" size=\"%zu\"/>\n",
6461 nfastblocks, fastavail, nblocks, avail,
6462 ar_ptr->system_mem, ar_ptr->max_system_mem);
6464 if (ar_ptr != &main_arena)
6466 heap_info *heap = heap_for_ptr(top(ar_ptr));
6468 "<aspace type=\"total\" size=\"%zu\"/>\n"
6469 "<aspace type=\"mprotect\" size=\"%zu\"/>\n",
6470 heap->size, heap->mprotect_size);
6471 total_aspace += heap->size;
6472 total_aspace_mprotect += heap->mprotect_size;
6477 "<aspace type=\"total\" size=\"%zu\"/>\n"
6478 "<aspace type=\"mprotect\" size=\"%zu\"/>\n",
6479 ar_ptr->system_mem, ar_ptr->system_mem);
6480 total_aspace += ar_ptr->system_mem;
6481 total_aspace_mprotect += ar_ptr->system_mem;
6484 fputs ("</heap>\n", fp);
6487 if(__malloc_initialized < 0)
6490 fputs ("<malloc version=\"1\">\n", fp);
6492 /* Iterate over all arenas currently in use. */
6493 mstate ar_ptr = &main_arena;
6497 ar_ptr = ar_ptr->next;
6499 while (ar_ptr != &main_arena);
6502 "<total type=\"fast\" count=\"%zu\" size=\"%zu\"/>\n"
6503 "<total type=\"rest\" count=\"%zu\" size=\"%zu\"/>\n"
6504 "<system type=\"current\" size=\"%zu\"/>\n"
6505 "<system type=\"max\" size=\"%zu\"/>\n"
6506 "<aspace type=\"total\" size=\"%zu\"/>\n"
6507 "<aspace type=\"mprotect\" size=\"%zu\"/>\n"
6509 total_nfastblocks, total_fastavail, total_nblocks, total_avail,
6510 total_system, total_max_system,
6511 total_aspace, total_aspace_mprotect);
6517 strong_alias (__libc_calloc, __calloc) weak_alias (__libc_calloc, calloc)
6518 strong_alias (__libc_free, __cfree) weak_alias (__libc_free, cfree)
6519 strong_alias (__libc_free, __free) strong_alias (__libc_free, free)
6520 strong_alias (__libc_malloc, __malloc) strong_alias (__libc_malloc, malloc)
6521 strong_alias (__libc_memalign, __memalign)
6522 weak_alias (__libc_memalign, memalign)
6523 strong_alias (__libc_realloc, __realloc) strong_alias (__libc_realloc, realloc)
6524 strong_alias (__libc_valloc, __valloc) weak_alias (__libc_valloc, valloc)
6525 strong_alias (__libc_pvalloc, __pvalloc) weak_alias (__libc_pvalloc, pvalloc)
6526 strong_alias (__libc_mallinfo, __mallinfo)
6527 weak_alias (__libc_mallinfo, mallinfo)
6528 strong_alias (__libc_mallopt, __mallopt) weak_alias (__libc_mallopt, mallopt)
6530 weak_alias (__malloc_stats, malloc_stats)
6531 weak_alias (__malloc_usable_size, malloc_usable_size)
6532 weak_alias (__malloc_trim, malloc_trim)
6533 weak_alias (__malloc_get_state, malloc_get_state)
6534 weak_alias (__malloc_set_state, malloc_set_state)
6538 /* ------------------------------------------------------------
6541 [see ftp://g.oswego.edu/pub/misc/malloc.c for the history of dlmalloc]