
Meta State Machine (MSM)
Christophe Henry

Meta State Machine (MSM)
Christophe Henry
Copyright © 2008-2010 Distributed under the Boost Software License, Version 1.0. (See accompanying file
LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

http://www.boost.org/LICENSE_1_0.txt

iii

Table of Contents
Preface ... vi
I. User' guide ... 1

1. Founding idea ... 4
2. UML Short Guide ... 5

What are state machines? ... 5
Concepts ... 5

State machine, state, transition, event .. 5
Submachines, orthogonal regions, pseudostates ... 6
History ... 9
Completion transitions / anonymous transitions ... 10
Internal transitions .. 12
Conflicting transitions ... 12

State machine glossary ... 13
3. Tutorial .. 15

Design ... 15
Basic front-end ... 15

A simple example ... 15
Transition table ... 15
Defining states with entry/exit actions ... 17
What do you actually do inside actions / guards? 17
Defining a simple state machine ... 19
Defining a submachine ... 19
Orthogonal regions, terminate state, event deferring 21
History .. 23
Completion (anonymous) transitions ... 25
Internal transitions ... 25
more row types ... 27
Explicit entry / entry and exit pseudo-state / fork 27
Flags ... 31
Event Hierarchy .. 32
Customizing a state machine / Getting more speed 33
Choosing the initial event ... 34
Containing state machine (deprecated) ... 34

Functor front-end .. 34
Transition table .. 34
Defining states with entry/exit actions ... 36
What do you actually do inside actions / guards (Part 2)? 36
Defining a simple state machine ... 37
Anonymous transitions ... 37
Internal transitions ... 38

eUML (experimental) ... 38
Transition table ... 38
A simple example: rewriting only our transition table 39
Defining events, actions and states with entry/exit actions 40
Wrapping up a simple state machine and first complete examples 42
Defining a submachine ... 43
Attributes / Function call ... 43
Orthogonal regions, flags, event deferring .. 45
Customizing a state machine / Getting more speed 46
Completion / Anonymous transitions ... 47
Internal transitions ... 47
Other state types ... 47
Helper functions .. 48
Phoenix-like STL support ... 50
Writing actions with Boost.Phoenix (in development) 50

Meta State Machine (MSM)

iv

Back-end ... 51
Creation ... 51
Starting and stopping a state machine .. 51
Event dispatching .. 52
Active state(s) ... 52
Serialization ... 52
Base state type .. 53
Visitor ... 54
Flags ... 55
Getting a state .. 55
State machine constructor with arguments ... 55
Trading run-time speed for better compile-time / multi-TU compilation 56
Compile-time state machine analysis ... 57
Enqueueing events for later processing ... 58
Customizing the message queues ... 58
Policy definition with Boost.Parameter .. 58
Choosing when to switch active states ... 58

4. Performance / Compilers ... 60
Speed .. 60
Executable size ... 60
Supported compilers .. 60
Limitations .. 61
Compilers corner .. 61

5. Questions & Answers, tips .. 63
6. Internals ... 65

Backend: Run To Completion .. 65
Frontend / Backend interface ... 66
Generated state ids ... 67
Metaprogramming tools .. 68

7. Acknowledgements .. 70
MSM v2 .. 70
MSM v1 ... 70

8. Version history .. 71
From V2.21 to V2.22 (Boost 1.48) ... 71
From V2.20 to V2.21 (Boost 1.47) ... 71
From V2.12 to V2.20 (Boost 1.46) ... 71
From V2.10 to V2.12 (Boost 1.45) ... 72
From V2.0 to V2.12 (Boost 1.44) ... 72

II. Reference .. 73
9. eUML operators and basic helpers .. 75
10. Functional programming .. 78
Common headers .. 86
Back-end ... 87
Front-end ... 93

v

List of Tables
9.1. Operators and state machine helpers ... 75
10.1. STL algorithms ... 78
10.2. STL algorithms ... 78
10.3. STL algorithms ... 78
10.4. STL container methods ... 80
10.5. STL list methods ... 80
10.6. STL associative container methods ... 81
10.7. STL pair .. 81
10.8. STL string .. 81

vi

Preface
MSM is a library allowing you to easily and quickly define state machines of very high performance.
From this point, two main questions usually quickly arise, so please allow me to try answering them
upfront.

• When do I need a state machine?

More often that you think. Very often, one defined a state machine informally without even noticing
it. For example, one declares inside a class some boolean attribute, say to remember that a task has
been completed. Later the boolean actually needs a third value, so it becomes an int. A few weeks,
a second attribute is needed. Then a third. Soon, you find yourself writing:

void incoming_data(data)

{

if (data == packet_3 && flag1 == work_done && flag2 > step3)...

}

This starts to look like event processing (contained inside data) if some stage of the object life has
been achieved (but is ugly).

This could be a protocol definition and it is a common use case for state machines. Another
common one is a user interface. The stage of the user's interaction defines if some button is active,
a functionality is available, etc.

But there are many more use cases if you start looking. Actually, a whole model-driven development
method, Executable UML (http://en.wikipedia.org/wiki/Executable_UML) specifies its complete
dynamic behavior using state machines. Class diagram, state machine diagrams, and an action
language are all you absolutely need in the Executable UML world.

• Another state machine library? What for?

True, there are many state machine libraries. This should already be an indication that if you're not
using any of them, you might be missing something. Why should you use this one? Unfortunately,
when looking for a good state machine library, you usually pretty fast hit one or several of the
following snags:

• speed: "state machines are slow" is usually the first criticism you might hear. While it is often
an excuse not to use any and instead resort to dirty, hand-written implementations (I mean, no,
yours are not dirty of course, I'm talking about other developers). MSM removes this often feeble
excuse because it is blazingly fast. Most hand-written implementations will be beaten by MSM.

• ease of use: good argument. If you used another library, you are probably right. Many state
machine definitions will look similar to:

state s1 = new State; // a state

state s2 = new State; // another state

event e = new Event; // event

s1->addTransition(e,s2); // transition s1 -> s2

The more transitions you have, the less readable it is. A long time ago, there was not so much Java
yet, and many electronic systems were built with a state machine defined by a simple transition
table. You could easily see the whole structure and immediately see if you forgot some transitions.

Preface

vii

Thanks to our new OO techniques, this ease of use was gone. MSM gives you back the transition
table and reduces the noise to the minimum.

• expressiveness: MSM offers several front-ends and constantly tries to improve state machine
definition techniques. For example, you can define a transition with eUML (one of MSM's front-
ends) as:

state1 == state2 + event [condition] / action

This is not simply syntactic sugar. Such a formalized, readable structure allows easy
communication with domain experts of a software to be constructed. Having domain experts
understand your code will greatly reduce the number of bugs.

• model-driven-development: a common difficulty of a model-driven development is the
complexity of making a round-trip (generating code from model and then model from code). This
is due to the fact that if a state machine structure is hard for you to read, chances are that your
parsing tool will also have a hard time. MSM's syntax will hopefully help tool writers.

• features: most developers use only 20% of the richly defined UML standard. Unfortunately, these
are never the same 20% for all. And so, very likely, one will need something from the standard
which is not implemented. MSM offers a very large part of the standard, with more on the way.

Let us not wait any longer, I hope you will enjoy MSM and have fun with it!

Part I. User' guide

2

Table of Contents
1. Founding idea ... 4
2. UML Short Guide ... 5

What are state machines? ... 5
Concepts ... 5

State machine, state, transition, event ... 5
Submachines, orthogonal regions, pseudostates ... 6
History ... 9
Completion transitions / anonymous transitions ... 10
Internal transitions .. 12
Conflicting transitions ... 12

State machine glossary ... 13
3. Tutorial .. 15

Design ... 15
Basic front-end ... 15

A simple example ... 15
Transition table ... 15
Defining states with entry/exit actions ... 17
What do you actually do inside actions / guards? ... 17
Defining a simple state machine .. 19
Defining a submachine ... 19
Orthogonal regions, terminate state, event deferring ... 21
History .. 23
Completion (anonymous) transitions ... 25
Internal transitions ... 25
more row types ... 27
Explicit entry / entry and exit pseudo-state / fork ... 27
Flags ... 31
Event Hierarchy .. 32
Customizing a state machine / Getting more speed ... 33
Choosing the initial event ... 34
Containing state machine (deprecated) ... 34

Functor front-end .. 34
Transition table .. 34
Defining states with entry/exit actions ... 36
What do you actually do inside actions / guards (Part 2)? 36
Defining a simple state machine .. 37
Anonymous transitions ... 37
Internal transitions ... 38

eUML (experimental) ... 38
Transition table ... 38
A simple example: rewriting only our transition table ... 39
Defining events, actions and states with entry/exit actions 40
Wrapping up a simple state machine and first complete examples 42
Defining a submachine ... 43
Attributes / Function call ... 43
Orthogonal regions, flags, event deferring .. 45
Customizing a state machine / Getting more speed .. 46
Completion / Anonymous transitions ... 47
Internal transitions ... 47
Other state types ... 47
Helper functions .. 48
Phoenix-like STL support ... 50
Writing actions with Boost.Phoenix (in development) .. 50

Back-end ... 51
Creation ... 51

User' guide

3

Starting and stopping a state machine ... 51
Event dispatching .. 52
Active state(s) ... 52
Serialization ... 52
Base state type .. 53
Visitor ... 54
Flags ... 55
Getting a state .. 55
State machine constructor with arguments ... 55
Trading run-time speed for better compile-time / multi-TU compilation 56
Compile-time state machine analysis ... 57
Enqueueing events for later processing ... 58
Customizing the message queues .. 58
Policy definition with Boost.Parameter .. 58
Choosing when to switch active states ... 58

4. Performance / Compilers ... 60
Speed .. 60
Executable size ... 60
Supported compilers .. 60
Limitations .. 61
Compilers corner .. 61

5. Questions & Answers, tips .. 63
6. Internals ... 65

Backend: Run To Completion ... 65
Frontend / Backend interface ... 66
Generated state ids ... 67
Metaprogramming tools .. 68

7. Acknowledgements .. 70
MSM v2 .. 70
MSM v1 ... 70

8. Version history .. 71
From V2.21 to V2.22 (Boost 1.48) ... 71
From V2.20 to V2.21 (Boost 1.47) ... 71
From V2.12 to V2.20 (Boost 1.46) ... 71
From V2.10 to V2.12 (Boost 1.45) ... 72
From V2.0 to V2.12 (Boost 1.44) .. 72

4

Chapter 1. Founding idea
Let's start with an example taken from the C++ Template Metaprogramming book:

class player : public state_machine<player>
{
 // The list of FSM states enum states { Empty, Open, Stopped, Playing, Paused , initial_state = Empty };

 // transition actions
 void start_playback(play const&) { std::cout << "player::start_playback\n"; }
 void open_drawer(open_close const&) { std::cout << "player::open_drawer\n"; }
 // more transition actions
 ...
 typedef player p; // makes transition table cleaner
 struct transition_table : mpl::vector11<
 // Start Event Target Action
 // +---------+------------+-----------+---------------------------+
 row< Stopped , play , Playing , &p::start_playback >,
 row< Stopped , open_close , Open , &::open_drawer >,
 // +---------+------------+-----------+---------------------------+
 row< Open , open_close , Empty , &p::close_drawer >,
 // +---------+------------+-----------+---------------------------+
 row< Empty , open_close , Open , &p::open_drawer >,
 row< Empty , cd_detected, Stopped , &p::store_cd_info >,
 // +---------+------------+-----------+---------------------------+
 row< Playing , stop , Stopped , &p::stop_playback >,
 row< Playing , pause , Paused , &p::pause_playback >,
 row< Playing , open_close , Open , &p::stop_and_open >,
 // +---------+------------+-----------+---------------------------+
 row< Paused , play , Playing , &p::resume_playback >,
 row< Paused , stop , Stopped , &p::stop_playback >,
 row< Paused , open_close , Open , &p::stop_and_open >
 // +---------+------------+-----------+---------------------------+
 > {};
 // Replaces the default no-transition response.
 template <class Event>
 int no_transition(int state, Event const& e)
 {
 std::cout << "no transition from state " << state << " on event " << typeid(e).name() << std::endl;
 return state;
 }
};

This example is the foundation for the idea driving MSM: a descriptive and expressive language based
on a transition table with as little syntactic noise as possible, all this while offering as many features
from the UML 2.0 standard as possible. MSM also offers several expressive state machine definition
syntaxes with different trade-offs.

5

Chapter 2. UML Short Guide

What are state machines?
State machines are the description of a thing's lifeline. They describe the different stages of the lifeline,
the events influencing it, and what it does when a particular event is detected at a particular stage.
They offer the complete specification of the dynamic behavior of the thing.

Concepts
Thinking in terms of state machines is a bit surprising at first, so let us have a quick glance at the
concepts.

State machine, state, transition, event

A state machine is a concrete model describing the behavior of a system. It is composed of a finite
number of states and transitions.

A simple state has no sub states. It can have data, entry and exit behaviors and deferred events. One can
provide entry and exit behaviors (also called actions) to states (or state machines), which are executed
whenever a state is entered or left, no matter how. A state can also have internal transitions which
cause no entry or exit behavior to be called. A state can mark events as deferred. This means the event
cannot be processed if this state is active, but it must be retained. Next time a state not deferring this
event is active, the event will be processed, as if it had just been fired.

A transition is the switching between active states, triggered by an event. Actions and guard conditions
can be attached to the transition. The action executes when the transition fires, the guard is a Boolean
operation executed first and which can prevent the transition from firing by returning false.

UML Short Guide

6

An initial state marks the first active state of a state machine. It has no real existence and neither has
the transition originating from it.

Submachines, orthogonal regions, pseudostates
A composite state is a state containing a region or decomposed in two or more regions. A composite
state contains its own set of states and regions.

A submachine is a state machine inserted as a state in another state machine. The same submachine
can be inserted more than once.

Orthogonal regions are parts of a composite state or submachine, each having its own set of mutually
exclusive set of states and transitions.

UML also defines a number of pseudo states, which are considered important concepts to model, but
not enough to make them first-class citizens. The terminate pseudo state terminates the execution of
a state machine (MSM handles this slightly differently. The state machine is not destroyed but no
further event processing occurs.).

UML Short Guide

7

An exit point pseudo state exits a composite state or a submachine and forces termination of execution
in all contained regions.

An entry point pseudo state allows a kind of controlled entry inside a composite. Precisely, it connects
a transition outside the composite to a transition inside the composite. An important point is that this
mechanism only allows a single region to be entered. In the above diagram, in region1, the initial state
would become active.

UML Short Guide

8

There are also two more ways to enter a submachine (apart the obvious and more common case of a
transition terminating on the submachine as shown in the region case). An explicit entry means that
an inside state is the target of a transition. Unlike with direct entry, no tentative encapsulation is made,
and only one transition is executed. An explicit exit is a transition from an inner state to a state outside
the submachine (not supported by MSM). I would not recommend using explicit entry or exit.

UML Short Guide

9

The last entry possibility is using fork. A fork is an explicit entry into one or more regions. Other
regions are again activated using their initial state.

History
UML defines two kinds of history, shallow history and deep history. Shallow history is a pseudo state
representing the most recent substate of a submachine. A submachine can have at most one shallow

UML Short Guide

10

history. A transition with a history pseudo state as target is equivalent to a transition with the most
recent substate as target. And very importantly, only one transition may originate from the history.
Deep history is a shallow history recursively reactivating the substates of the most recent substate. It
is represented like the shallow history with a star (H* inside a circle).

History is not a completely satisfying concept. First of all, there can be just one history pseudo state
and only one transition may originate from it. So they do not mix well with orthogonal regions as only
one region can be “remembered”. Deep history is even worse and looks like a last-minute addition.
History has to be activated by a transition and only one transition originates from it, so how to model
the transition originating from the deep history pseudo state and pointing to the most recent substate
of the substate? As a bonus, it is also inflexible and does not accept new types of histories. Let's face
it, history sounds great and is useful in theory, but the UML version is not quite making the cut. And
therefore, MSM provides a different version of this useful concept.

Completion transitions / anonymous transitions

Completion events (or transitions), also called anonymous transitions, are defined as transitions having
no defined event triggering them. This means that such transitions will immediately fire when a state
being the source of an anonymous transition becomes active, provided that a guard allows it. They are
useful in modeling algorithms as an activity diagram would normally do. In the real-time world, they
have the advantage of making it easier to estimate how long a periodically executed action will last.
For example, consider the following diagram.

UML Short Guide

11

UML Short Guide

12

The designer now knows at any time that he will need a maximum of 4 transitions. Being able to
estimate how long a transition takes, he can estimate how much of a time frame he will need to require
(real-time tasks are often executed at regular intervals). If he can also estimate the duration of actions,
he can even use graph algorithms to better estimate his timing requirements.

Internal transitions

Internal transitions are transitions executing in the scope of the active state, being a simple state or a
submachine. One can see them as a self-transition of this state, without an entry or exit action called.

Conflicting transitions

If, for a given event, several transitions are enabled, they are said to be in conflict. There are two
kinds of conflicts:

• For a given source state, several transitions are defined, triggered by the same event. Normally, the
guard condition in each transition defines which one is fired.

• The source state is a submachine or simple state and the conflict is between a transition internal to
this state and a transition triggered by the same event and having as target another state.

The first one is simple; one only needs to define two or more rows in the transition table, with the
same source and trigger, with a different guard condition. Beware, however, that the UML standard
wants these conditions to be not overlapping. If they do, the standard says nothing except that this
is incorrect, so the implementer is free to implement it the way he sees fit. In the case of MSM, the
transition appearing last in the transition table gets selected first, if it returns false (meaning disabled),
the library tries with the previous one, and so on.

In the second case, UML defines that the most inner transition gets selected first, which makes sense,
otherwise no exit point pseudo state would be possible (the inner transition brings us to the exit point,
from where the containing state machine can take over).

UML Short Guide

13

MSM handles both cases itself, so the designer needs only concentrate on its state machine and the
UML subtleties (not overlapping conditions), not on implementing this behavior himself.

State machine glossary
• state machine: the life cycle of a thing. It is made of states, regions, transitions and processes

incoming events.

• state: a stage in the life cycle of a state machine. A state (like a submachine) can have an entry
and exit behaviors.

• event: an incident provoking (or not) a reaction of the state machine

• transition: a specification of how a state machine reacts to an event. It specifies a source state,
the event triggering the transition, the target state (which will become the newly active state if the
transition is triggered), guard and actions.

• action: an operation executed during the triggering of the transition.

• guard: a boolean operation being able to prevent the triggering of a transition which would otherwise
fire.

• transition table: representation of a state machine. A state machine diagram is a graphical, but
incomplete representation of the same model. A transition table, on the other hand, is a complete
representation.

• initial state: The state in which the state machine starts. Having several orthogonal regions means
having as many initial states.

• submachine: A submachine is a state machine inserted as a state in another state machine and can
be found several times in a same state machine.

• orthogonal regions: (logical) parallel flow of execution of a state machine. Every region of a state
machine gets a chance to process an incoming event.

• terminate pseudo-state: when this state becomes active, it terminates the execution of the whole
state machine. MSM does not destroy the state machine as required by the UML standard, however,
which lets you keep all the state machine's data.

• entry/exit pseudo state: defined for submachines and are defined as a connection between a transition
outside of the submachine and a transition inside the submachine. It is a way to enter or leave a
submachine through a predefined point.

• fork: a fork allows explicit entry into several orthogonal regions of a submachine.

• history: a history is a way to remember the active state of a submachine so that the submachine can
proceed in its last active state next time it becomes active.

UML Short Guide

14

• completion events (also called completion/anonymous transitions): when a transition has no named
event triggering it, it automatically fires when the source state is active, unless a guard forbids it.

• transition conflict: a conflict is present if for a given source state and incoming event, several
transitions are possible. UML specifies that guard conditions have to solve the conflict.

• internal transitions: transition from a state to itself without having exit and entry actions being called.

15

Chapter 3. Tutorial

Design
MSM is divided between front–ends and back-ends. At the moment, there is just one back-end. On
the front-end side, you will find three of them which are as many state machine description languages,
with many more possible. For potential language writers, this document contains a description of the
interface between front-end and back-end.

The first front-end is an adaptation of the example provided in the MPL book [http://boostpro.com/
mplbook] with actions defined as pointers to state or state machine methods. The second one is based
on functors. The third, eUML (embedded UML) is an experimental language based on Boost.Proto and
Boost.Typeof and hiding most of the metaprogramming to increase readability. Both eUML and the
functor front-end also offer a functional library (a bit like Boost.Phoenix) for use as action language
(UML defining none).

Basic front-end
This is the historical front-end, inherited from the MPL book. It provides a transition table made of
rows of different names and functionality. Actions and guards are defined as methods and referenced
through a pointer in the transition. This front-end provides a simple interface making easy state
machines easy to define, but more complex state machines a bit harder.

A simple example
Let us have a look at a state machine diagram of the founding example:

We are now going to build it with MSM's basic front-end. An implementation [examples/
SimpleTutorial.cpp] is also provided.

Transition table
As previously stated, MSM is based on the transition table, so let us define one:

http://boostpro.com/mplbook
http://boostpro.com/mplbook
http://boostpro.com/mplbook
examples/SimpleTutorial.cpp
examples/SimpleTutorial.cpp
examples/SimpleTutorial.cpp

Tutorial

16

struct transition_table : mpl::vector<
// Start Event Target Action Guard
// +---------+------------+-----------+---------------------------+----------------------------+
a_row< Stopped , play , Playing , &player_::start_playback >,
a_row< Stopped , open_close , Open , &player_::open_drawer >,
 _row< Stopped , stop , Stopped >,
// +---------+------------+-----------+---------------------------+----------------------------+
a_row< Open , open_close , Empty , &player_::close_drawer >,
// +---------+------------+-----------+---------------------------+----------------------------+
a_row< Empty , open_close , Open , &player_::open_drawer >,
 row< Empty , cd_detected, Stopped , &player_::store_cd_info , &player_::good_disk_format >,
 row< Empty , cd_detected, Playing , &player_::store_cd_info , &player_::auto_start >,
// +---------+------------+-----------+---------------------------+----------------------------+
a_row< Playing , stop , Stopped , &player_::stop_playback >,
a_row< Playing , pause , Paused , &player_::pause_playback >,
a_row< Playing , open_close , Open , &player_::stop_and_open >,
// +---------+------------+-----------+---------------------------+----------------------------+
a_row< Paused , end_pause , Playing , &player_::resume_playback >,
a_row< Paused , stop , Stopped , &player_::stop_playback >,
a_row< Paused , open_close , Open , &player_::stop_and_open >
// +---------+------------+-----------+---------------------------+----------------------------+
> {};

You will notice that this is almost exactly our founding example. The only change in the transition
table is the different types of transitions (rows). The founding example forces one to define an action
method and offers no guards. You have 4 basic row types:

• row takes 5 arguments: start state, event, target state, action and guard.

• a_row (“a” for action) allows defining only the action and omit the guard condition.

• g_row (“g” for guard) allows omitting the action behavior and defining only the guard.

• _row allows omitting action and guard.

The signature for an action methods is void method_name (event const&), for example:

void stop_playback(stop const&)

Action methods return nothing and take the argument as const reference. Of course nothing forbids
you from using the same action for several events:

template <class Event> void stop_playback(Eventconst&)

Guards have as only difference the return value, which is a boolean:

bool good_disk_format(cd_detected const& evt)

The transition table is actually a MPL vector (or list), which brings the limitation that the default
maximum size of the table is 20. If you need more transitions, overriding this default behavior is
necessary, so you need to add before any header:

#define BOOST_MPL_CFG_NO_PREPROCESSED_HEADERS
#define BOOST_MPL_LIMIT_VECTOR_SIZE 30 //or whatever you need
#define BOOST_MPL_LIMIT_MAP_SIZE 30 //or whatever you need

The other limitation is that the MPL types are defined only up to 50 entries. For the moment, the only
solution to achieve more is to add headers to the MPL (luckily, this is not very complicated).

Tutorial

17

Defining states with entry/exit actions

While states were enums in the MPL book, they now are classes, which allows them to hold data,
provide entry, exit behaviors and be reusable (as they do not know anything about the containing state
machine). To define a state, inherit from the desired state type. You will mainly use simple states:

struct Empty : public msm::front::state<> {};

They can optionally provide entry and exit behaviors:

struct Empty : public msm::front::state<>
{
 template <class Event, class Fsm>
 void on_entry(Event const&, Fsm&)
 {std::cout <<"entering: Empty" << std::endl;}
 template <class Event, class Fsm>
 void on_exit(Event const&, Fsm&)
 {std::cout <<"leaving: Empty" << std::endl;}
};

Notice how the entry and exit behaviors are templatized on the event and state machine. Being generic
facilitates reuse. There are more state types (terminate, interrupt, pseudo states, etc.) corresponding to
the UML standard state types. These will be described in details in the next sections.

What do you actually do inside actions / guards?

State machines define a structure and important parts of the complete behavior, but not all. For
example if you need to send a rocket to Alpha Centauri, you can have a transition to a state
"SendRocketToAlphaCentauri" but no code actually sending the rocket. This is where you need
actions. So a simple action could be:

template <class Fire> void send_rocket(Fire const&)
{
 fire_rocket();
}

Ok, this was simple. Now, we might want to give a direction. Let us suppose this information is
externally given when needed, it makes sense do use the event for this:

// Event
struct Fire {Direction direction;};
template <class Fire> void send_rocket(Fire const& evt)
{
 fire_rocket(evt.direction);
}

We might want to calculate the direction based not only on external data but also on data accumulated
during previous work. In this case, you might want to have this data in the state machine itself. As
transition actions are members of the front-end, you can directly access the data:

// Event
struct Fire {Direction direction;};
//front-end definition, see down
struct launcher_ : public msm::front::state_machine_def<launcher_>{
Data current_calculation;

Tutorial

18

template <class Fire> void send_rocket(Fire const& evt)
{
 fire_rocket(evt.direction, current_calculation);
}
...
};

Entry and exit actions represent a behavior common to a state, no matter through which transition it
is entered or left. States being reusable, it might make sense to locate your data there instead of in the
state machine, to maximize reuse and make code more readable. Entry and exit actions have access
to the state data (being state members) but also to the event and state machine, like transition actions.
This happens through the Event and Fsm template parameters:

struct Launching : public msm::front::state<>
{
 template <class Event, class Fsm>
 void on_entry(Event const& evt, Fsm& fsm)
 {
 fire_rocket(evt.direction, fsm.current_calculation);
 }
};

Exit actions are also ideal for clanup when the state becomes inactive.

Another possible use of the entry action is to pass data to substates / submachines. Launching is a
substate containing a data attribute:

struct launcher_ : public msm::front::state_machine_def<launcher_>{
Data current_calculation;
// state machines also have entry/exit actions
template <class Event, class Fsm>
void on_entry(Event const& evt, Fsm& fsm)
{
 launcher_::Launching& s = fsm.get_state<launcher_::Launching&>();
 s.data = fsm.current_calculation;
}
...
};

The set_states back-end method allows you to replace a complete state.

The functor front-end and eUML offer more capabilities.

However, this basic front-end also has special capabilities using the row2 / irow2 transitions._row2,
a_row2, row2, g_row2, a_irow2, irow2, g_irow2 let you call an action located in any state of the
current fsm or in the front-end itself, thus letting you place useful data anywhere you see fit.

It is sometimes desirable to generate new events for the state machine inside actions. Since the
process_event method belongs to the back end, you first need to gain a reference to it. The back end
derives from the front end, so one way of doing this is to use a cast:

struct launcher_ : public msm::front::state_machine_def<launcher_>{
template <class Fire> void send_rocket(Fire const& evt)
{
 fire_rocket();
 msm::back::state_machine<launcher_> &fsm = static_cast<msm::back::state_machine<launcher_> &>(*this);
 fsm.process_event(rocket_launched());
}
...

Tutorial

19

};

The same can be implemented inside entry/exit actions. Admittedly, this is a bit awkward. A more
natural mechanism is available using the functor front-end.

Defining a simple state machine

Declaring a state machine is straightforward and is done with a high signal / noise ratio. In our player
example, we declare the state machine as:

struct player_ : public msm::front::state_machine_def<player_>{
 /* see below */}

This declares a state machine using the basic front-end. We now declare inside the state machine
structure the initial state:

typedef Empty initial_state;

And that is about all of what is absolutely needed. In the example, the states are declared inside the
state machine for readability but this is not a requirements, states can be declared wherever you like.

All what is left to do is to pick a back-end (which is quite simple as there is only one at the moment):

typedef msm::back::state_machine<player_> player;

You now have a ready-to-use state machine with entry/exit actions, guards, transition actions, a
message queue so that processing an event can generate another event. The state machine also adapted
itself to your need and removed almost all features we didn't use in this simple example. Note that
this is not per default the fastest possible state machine. See the section "getting more speed" to know
how to get the maximum speed. In a nutshell, MSM cannot know about your usage of some features
so you will have to explicitly tell it.

State objects are built automatically with the state machine. They will exist until state machine
destruction. MSM is using Boost.Fusion behind the hood. This unfortunately means that if you define
more than 10 states, you will need to extend the default:

#define FUSION_MAX_VECTOR_SIZE 20 // or whatever you need

When an unexpected event is fired, the no_transition(event, state machine, state
id) method of the state machine is called . By default, this method simply asserts when called. It is
possible to overwrite the no_transition method to define a different handling:

template <class Fsm,class Event>
void no_transition(Event const& e, Fsm& ,int state){...}

Note: you might have noticed that the tutorial calls start() on the state machine just after creation.
The start method will initiate the state machine, meaning it will activate the initial state, which means in
turn that the initial state's entry behavior will be called. The reason why we need this will be explained
in the back-end part. After a call to start, the state machine is ready to process events. The same way,
calling stop() will cause the last exit actions to be called.

Defining a submachine

We now want to extend our last state machine by making the Playing state a state machine itself (a
submachine).

Tutorial

20

Again, an example [examples/CompositeTutorial.cpp] is also provided.

A submachine really is a state machine itself, so we declare Playing as such, choosing a front-end
and a back-end:

struct Playing_ : public msm::front::state_machine_def<Playing_>{...}
typedef msm::back::state_machine<Playing_> Playing;

Like for any state machine, one also needs a transition table and an initial state:

struct transition_table : mpl::vector<
// Start Event Target Action Guard
// +--------+---------+--------+---------------------------+------+
a_row< Song1 , NextSong, Song2 , &Playing_::start_next_song >,
a_row< Song2 , NextSong, Song1 , &Playing_::start_prev_song >,
a_row< Song2 , NextSong, Song3 , &Playing_::start_next_song >,
a_row< Song3 , NextSong, Song2 , &Playing_::start_prev_song >
// +--------+---------+--------+---------------------------+------+
> {};

typedef Song1 initial_state;

This is about all you need to do. MSM will now automatically recognize Playing as a submachine and
all events handled by Playing (NextSong and PreviousSong) will now be automatically forwarded to
Playing whenever this state is active. All other state machine features described later are also available.
You can even decide to use a state machine sometimes as submachine or sometimes as an independent
state machine.

examples/CompositeTutorial.cpp
examples/CompositeTutorial.cpp

Tutorial

21

Orthogonal regions, terminate state, event deferring

It is a very common problem in many state machines to have to handle errors. It usually involves
defining a transition from all the states to a special error state. Translation: not fun. It is also not
practical to find from which state the error originated. The following diagram shows an example of
what clearly becomes not very readable:

This is neither very readable nor beautiful. And we do not even have any action on the transitions yet
to make it even less readable.

Luckily, UML provides a helpful concept, orthogonal regions. See them as lightweight state machines
running at the same time inside a common state machine and having the capability to influence one
another. The effect is that you have several active states at any time. We can therefore keep our state
machine from the previous example and just define a new region made of two states, AllOk and
ErrorMode. AllOk is most of the time active. But the error_found error event makes the second region
move to the new active state ErrorMode. This event does not interest the main region so it will simply
be ignored. "no_transition" will be called only if no region at all handles the event. Also, as
UML mandates, every region gets a chance of handling the event, in the order as declared by the
initial_state type.

Adding an orthogonal region is easy, one only needs to declare more states in the initial_state
typedef. So, adding a new region with AllOk as the region's initial state is:

typedef mpl::vector<Empty,AllOk> initial_state;

Tutorial

22

Furthermore, when you detect an error, you usually do not want events to be further processed. To
achieve this, we use another UML feature, terminate states. When any region moves to a terminate
state, the state machine “terminates” (the state machine and all its states stay alive) and all events are
ignored. This is of course not mandatory, one can use orthogonal regions without terminate states.
MSM also provides a small extension to UML, interrupt states. If you declare ErrorMode as interrupt
state instead of terminate state, the state machine will not handle any event other than the one which
ends the interrupt. So it's like a terminate state, with the difference that you are allowed to resume the
state machine when a condition (like handling of the original error) is met.

Last but not least, this example also shows here the handling of event deferring. Let's say someone
puts a disc and immediately presses play. The event cannot be handled, yet you'd want it to be handled
at a later point and not force the user to press play again. The solution is to define it as deferred in
the Empty and Open states and get it handled in the first state where the event is not to be deferred.
It can then be handled or rejected. In this example, when Stopped becomes active, the event will be
handled because only Empty and Open defer the event.

UML defines event deferring as a state property. To accommodate this, MSM lets you specify this in
states by providing a deferred_events type:

struct Empty : public msm::front::state<>
{
 // if the play event is fired while in this state, defer it until a state
 // handles or rejects it
 typedef mpl::vector<play> deferred_events;
...
};

Please have a look at the complete example [examples/Orthogonal-deferred.cpp].

While this is wanted by UML and is simple, it is not always practical because one could wish to
defer only in certain conditions. One could also want to make this be part of a transition action with
the added bonus of a guard for more sophisticated behaviors. It would also be conform to the MSM
philosophy to get as much as possible in the transition table, where you have the whole state machine
structure. This is also possible but not practical with this front-end so we will need to pick a different
row from the functor front-end. For a complete description of the Row type, please have a look at the
functor front-end.

examples/Orthogonal-deferred.cpp
examples/Orthogonal-deferred.cpp

Tutorial

23

First, as there is no state where MSM can automatically find out the usage of this feature, we need to
require deferred events capability explicitly, by adding a type in the state machine definition:

struct player_ : public msm::front::state_machine_def<player_>
{
 typedef int activate_deferred_events;
...
};

We can now defer an event in any transition of the transition table by using as action the predefined
msm::front::Defer functor, for example:

Row < Empty , play , none , Defer , none >

This is an internal transition row(see internal transitions) but you can ignore this for the moment. It
just means that we are not leaving the Empty state. What matters is that we use Defer as action. This
is roughly equivalent to the previous syntax but has the advantage of giving you all the information
in the transition table with the added power of transition behavior.

The second difference is that as we now have a transition defined, this transition can play in the
resolution of transition conflicts. For example, we could model an "if (condition2) move to Playing
else if (condition1) defer play event":

Row < Empty , play , none , Defer , condition1 >,
g_row < Empty , play , Playing , &player_::condition2 >

Please have a look at this possible implementation [examples/Orthogonal-deferred2.cpp].

History

UML defines two types of history, Shallow History and Deep History. In the previous examples, if
the player was playing the second song and the user pressed pause, leaving Playing, at the next press
on the play button, the Playing state would become active and the first song would play again. Soon
would the first client complaints follow. They'd of course demand, that if the player was paused, then
it should remember which song was playing. But it the player was stopped, then it should restart from
the first song. How can it be done? Of course, you could add a bit of programming logic and generate
extra events to make the second song start if coming from Pause. Something like:

if (Event == end_pause)
{
 for (int i=0;i< song number;++i) {player.process_event(NextSong()); }
}

Not much to like in this example, isn't it? To solve this problem, you define what is called a shallow
or a deep history. A shallow history reactivates the last active substate of a submachine when this
submachine becomes active again. The deep history does the same recursively, so if this last active
substate of the submachine was itself a submachine, its last active substate would become active and
this will continue recursively until an active state is a normal state. For example, let us have a look
at the following UML diagram:

examples/Orthogonal-deferred2.cpp
examples/Orthogonal-deferred2.cpp

Tutorial

24

Notice that the main difference compared to previous diagrams is that the initial state is gone and
replaced by a History symbol (the H inside a circle).

As explained in the small UML tutorial, History is a good concept with a not completely satisfying
specification. MSM kept the concept but not the specification and goes another way by making this
a policy and you can add your own history types (the reference explains what needs to be done).
Furthermore, History is a backend policy. This allows you to reuse the same state machine definition
with different history policies in different contexts.

Concretely, your frontend stays unchanged:

struct Playing_ : public msm::front::state_machine_def<Playing_>

You then add the policy to the backend as second parameter:

typedef msm::back::state_machine<Playing_,
 msm::back::ShallowHistory<mpl::vector<end_pause> > > Playing;

This states that a shallow history must be activated if the Playing state machine gets activated by the
end_pause event and only this one (or any other event added to the mpl::vector). If the state machine
was in the Stopped state and the event play was generated, the history would not be activated and the
normal initial state would become active. By default, history is disabled. For your convenience the
library provides in addition to ShallowHistory a non-UML standard AlwaysHistory policy (likely to be
your main choice) which always activates history, whatever event triggers the submachine activation.
Deep history is not available as a policy (but could be added). The reason is that it would conflict
with policies which submachines could define. Of course, if for example, Song1 were a state machine
itself, it could use the ShallowHistory policy itself thus creating Deep History for itself. An example
[examples/History.cpp] is also provided.

examples/History.cpp
examples/History.cpp

Tutorial

25

Completion (anonymous) transitions
The following diagram shows an example making use of this feature:

Anonymous transitions are transitions without a named event. This means that the transition
automatically fires when the predecessor state is entered (to be exact, after the entry action). Otherwise
it is a normal transition with actions and guards. Why would you need something like that? A possible
case would be if a part of your state machine implements some algorithm, where states are steps of the
algorithm implementation. Then, using several anonymous transitions with different guard conditions,
you are actually implementing some if/else statement. Another possible use would be a real-time
system called at regular intervals and always doing the same thing, meaning implementing the same
algorithm. The advantage is that once you know how long a transition takes to execute on the system,
by calculating the longest path (the number of transitions from start to end), you can pretty much know
how long your algorithm will take in the worst case, which in turns tells you how much of a time
frame you are to request from a scheduler.

If you are using Executable UML (a good book describing it is "Executable UML, a foundation for
Model-Driven Architecture"), you will notice that it is common for a state machine to generate an
event to itself only to force leaving a state. Anonymous transitions free you from this constraint.

If you do not use this feature in a concrete state machine, MSM will deactivate it and you will not pay
for it. If you use it, there is however a small performance penalty as MSM will try to fire a compound
event (the other UML name for anonymous transitions) after every taken transition. This will therefore
double the event processing cost, which is not as bad as it sounds as MSM’s execution speed is very
high anyway.

To define such a transition, use “none” as event in the transition table, for example:

row < State3 , none , State4 , &p::State3ToState4 , &p::always_true >

An implementation [examples/AnonymousTutorial.cpp] of the state machine diagram is also
provided.

Internal transitions
Internal transitions are transitions executing in the scope of the active state, a simple state or a
submachine. One can see them as a self-transition of this state, without an entry or exit action called.
This is useful when all you want is to execute some code for a given event in a given state.

examples/AnonymousTutorial.cpp
examples/AnonymousTutorial.cpp

Tutorial

26

Internal transitions are specified as having a higher priority than normal transitions. While it makes
sense for a submachine with exit points, it is surprising for a simple state. MSM lets you define the
transition priority by setting the transition’s position inside the transition table (see internals). The
difference between "normal" and internal transitions is that internal transitions have no target state,
therefore we need new row types. We had a_row, g_row, _row and row, we now add a_irow, g_irow,
_irow and irow which are like normal transitions but define no target state. For, example an internal
transition with a guard condition could be:

g_irow < Empty /*state*/,cd_detected/*event*/,&p::internal_guard/* guard */>

These new row types can be placed anywhere in the transition table so that you can still have your state
machine structure grouped together. The only difference of behavior with the UML standard is the
missing notion of higher priority for internal transitions. Please have a look at the example [examples/
SimpleTutorialInternal.cpp].

It is also possible to do it the UML-conform way by declaring a transition table called internal
transition_table inside the state itself and using internal row types. For example:

struct Empty : public msm::front::state<>
{
 struct internal_transition_table : mpl::vector<
 a_internal < cd_detected , Empty, &Empty::internal_action >
 > {};
};

This declares an internal transition table called internal_transition_table and reacting on the event
cd_detected by calling internal_action on Empty. Let us note a few points:

• internal tables are NOT called transition_table but internal_transition_table

• they use different but similar row types: a_internal, g_internal, _internal and internal.

• These types take as first template argument the triggering event and then the action and guard
method. Note that the only real difference to classical rows is the extra argument before the function
pointer. This is the type on which the function will be called.

• This also allows you, if you wish, to use actions and guards from another state of the state machine
or in the state machine itself.

• submachines can have an internal transition table and a classical transition table.

The following example [examples/TestInternal.cpp] makes use of an a_internal. It also uses functor-
based internal transitions which will be explained in the functor front-end, please ignore them for the
moment. Also note that the state-defined internal transitions, having the highest priority (as mandated
by the UML standard), are tried before those defined inside the state machine transition table.

Which method should you use? It depends on what you need:

• the first version (using irow) is simpler and likely to compile faster. It also lets you choose the
priority of your internal transition.

• the second version is more logical from a UML perspective and lets you make states more useful
and reusable. It also allows you to call actions and guards on any state of the state machine.

Note: There is an added possibility coming from this feature. The
internal_transition_table transitions being added directly inside the main state machine's
transition table, it is possible, if it is more to your state, to distribute your state machine definition a bit
like Boost.Statechart, leaving to the state machine itself the only task of declaring the states it wants
to use using the explicit_creation type definition. While this is not the author's favorite way,
it is still possible. A simplified example using only two states will show this possibility:

examples/SimpleTutorialInternal.cpp
examples/SimpleTutorialInternal.cpp
examples/SimpleTutorialInternal.cpp
examples/TestInternal.cpp
examples/TestInternal.cpp

Tutorial

27

• state machine definition [examples/distributed_table/DistributedTable.cpp]

• Empty header [examples/distributed_table/Empty.hpp] and cpp [examples/distributed_table/
Empty.cpp]

• Open header [examples/distributed_table/Open.hpp] and cpp [examples/distributed_table/
Open.cpp]

• events definition [examples/distributed_table/Events.hpp]

There is an added bonus offered for submachines, which can have both the standard transition_table
and an internal_transition_table (which has a higher priority). This makes it easier if you decide to
make a full submachine from a state. It is also slightly faster than the standard alternative, adding
orthogonal regions, because event dispatching will, if accepted by the internal table, not continue to
the subregions. This gives you a O(1) dispatch instead of O(number of regions). While the example
is with eUML, the same is also possible with any front-end.

more row types

It is also possible to write transitions using actions and guards not just from the state machine but also
from its contained states. In this case, one must specify not just a method pointer but also the object
on which to call it. This transition row is called, not very originally, row2. They come, like normal
transitions in four flavors: a_row2, g_row2, _row2 and row2. For example, a transition
calling an action from the state Empty could be:

a_row2<Stopped,open_close,Open,Empty
 /*action source*/,&Empty::open_drawer/*action*/>

The same capabilities are also available for internal transitions so that we have:
a_irow2, g_irow2, _irow2 and row2. For transitions defined as part of the
internal_transition_table, you can use the a_internal, g_internal, _internal, internal
row types from the previous sections.

These row types allow us to distribute the state machine code among states, making them reusable
and more useful. Using transition tables inside states also contributes to this possibility. An example
[examples/SimpleTutorial2.cpp] of these new rows is also provided.

Explicit entry / entry and exit pseudo-state / fork

MSM (almost) fully supports these features, described in the small UML tutorial. Almost because
there are currently two limitations:

• it is only possible to explicitly enter a sub- state of the target but not a sub-sub state.

• it is not possible to explicitly exit. Exit points must be used.

Let us see a concrete example:

examples/distributed_table/DistributedTable.cpp
examples/distributed_table/DistributedTable.cpp
examples/distributed_table/Empty.hpp
examples/distributed_table/Empty.hpp
examples/distributed_table/Empty.cpp
examples/distributed_table/Empty.cpp
examples/distributed_table/Empty.cpp
examples/distributed_table/Open.hpp
examples/distributed_table/Open.hpp
examples/distributed_table/Open.cpp
examples/distributed_table/Open.cpp
examples/distributed_table/Open.cpp
examples/distributed_table/Events.hpp
examples/distributed_table/Events.hpp
examples/SimpleTutorial2.cpp
examples/SimpleTutorial2.cpp

Tutorial

28

We find in this diagram:

• A “normal” activation of SubFsm2, triggered by event1. In each region, the initial state is activated,
i.e. SubState1 and SubState1b.

• An explicit entry into SubFsm2::SubState2 for region “1” with event2 as trigger, meaning that in
region “2” the initial state, SubState1b, activated.

• A fork into regions “1” and “2” to the explicit entries SubState2 and SubState2b, triggered by event3.
Both states become active so no region is default activated (if we had a third one, it would be).

• A connection of two transitions through an entry pseudo state, SubFsm2::PseudoEntry1, triggered
by event4 and triggering also the second transition on the same event (both transitions must be
triggered by the same event). Region “2” is default-activated and SubState1b becomes active.

• An exit from SubFsm2 using an exit pseudo-state, PseudoExit1, triggered by event5 and connecting
two transitions using the same event. Again, the event is forwarded to the second transition and
both regions are exited, as SubFsm2 becomes inactive. Note that if no transition is defined from
PseudoExit1, an error (as defined in the UML standard) will be detected and no_transition called.

The example is also fully implemented [examples/DirectEntryTutorial.cpp].

This sounds complicated but the syntax is simple.

Explicit entry

First, to define that a state is an explicit entry, you have to make it a state and mark it as explicit,
giving as template parameters the region id (the region id starts with 0 and corresponds to the first
initial state of the initial_state type sequence).

struct SubFsm2_ : public msm::front::state_machine_def<SubFsm2_>
{
 struct SubState2 : public msm::front::state<> ,

examples/DirectEntryTutorial.cpp
examples/DirectEntryTutorial.cpp

Tutorial

29

 public msm::front::explicit_entry<0>
 {...};
...
};

And define the submachine as:

typedef msm::back::state_machine<SubFsm2_> SubFsm2;

You can then use it as target in a transition with State1 as source:

row < State1, Event2, SubFsm2::direct< SubFsm2::SubState2> > //SubFsm2_::SubState2: complete name of SubState2 (defined within SubFsm2_)

The syntax deserves some explanation. SubFsm2_ is a front end. SubState2 is a nested state, therefore
the SubFsm2_::SubState2 syntax. The containing machine (containing State1 and SubFsm2) refers to
the backend instance (SubFsm2). SubFsm2::direct states that an explicit entry is desired.

Thanks to the mpl_graph library you can also omit to provide the region index and let MSM find out
for you. The are however two points to note:

• MSM can only find out the region index if the explicit entry state is somehow connected to an initial
state through a transition, no matter the direction.

• There is a compile-time cost for this feature.

Note (also valid for forks): in order to make compile time more bearable for the more standard cases,
and unlike initial states, explicit entry states which are also not found in the transition table of the
entered submachine (a rare case) do NOT get automatically created. To explicitly create such states,
you need to add in the state machine containing the explicit states a simple typedef giving a sequence
of states to be explicitly created like:

typedef mpl::vector<SubState2,SubState2b> explicit_creation;

Note (also valid for forks): At the moment, it is not possible to use a submachine as the target of an
explicit entry. Please use entry pseudo states for an almost identical effect.

Fork

Need a fork instead of an explicit entry? As a fork is an explicit entry into states of different regions,
we do not change the state definition compared to the explicit entry and specify as target a list of
explicit entry states:

_row < State1, Event3,
 mpl::vector<SubFsm2::direct<SubFsm2_::SubState2>,
 SubFsm2::direct <SubFsm2_::SubState2b>
 >

With SubState2 defined as before and SubState2b defined as being in the second region (Caution:
MSM does not check that the region is correct):

struct SubState2b : public msm::front::state<> ,
 public msm::front::explicit_entry<1>

Entry pseudo states

To define an entry pseudo state, you need derive from the corresponding class and give the region id:

struct PseudoEntry1 : public msm::front::entry_pseudo_state<0>

Tutorial

30

And add the corresponding transition in the top-level state machine's transition table:

_row < State1, Event4, SubFsm2::entry_pt<SubFsm2_::PseudoEntry1> >

And another in the SubFsm2_ submachine definition (remember that UML defines an entry point as
a connection between two transitions), for example this time with an action method:

row < PseudoEntry1, Event4, SubState3,&SubFsm2::entry_action >

Exit pseudo states

And finally, exit pseudo states are to be used almost the same way, but defined differently: it takes as
template argument the event to be forwarded (no region id is necessary):

struct PseudoExit1 : public exit_pseudo_state<event6>

And you need, like for entry pseudo states, two transitions, one in the submachine:

_row < SubState3, Event5, PseudoExit1 >

And one in the containing state machine:

_row < SubFsm2::exit_pt<SubFsm2_::PseudoExit1>, Event6,State2 >

Important note 1: UML defines transiting to an entry pseudo state and having either no second
transition or one with a guard as an error but defines no error handling. MSM will tolerate this behavior;
the entry pseudo state will simply be the newly active state.

Important note 2: UML defines transiting to an exit pseudo state and having no second transition as
an error, and also defines no error handling. Therefore, it was decided to implement exit pseudo state
as terminate states and the containing composite not properly exited will stay terminated as it was
technically “exited”.

Important note 3: UML states that for the exit point, the same event must be used in both transitions.
MSM relaxes this rule and only wants the event on the inside transition to be convertible to the one of
the outside transition. In our case, event6 is convertible from event5. Notice that the forwarded event
must be named in the exit point definition. For example, we could define event6 as simply as:

struct event
{
 event(){}
 template <class Event>
 event(Event const&){}
}; //convertible from any event

Note: There is a current limitation if you need not only convert but also get some data from the original
event. Consider:

struct event1
{
 event1(int val_):val(val_) {}
 int val;
}; // forwarded from exit point
struct event2
{
 template <class Event>
 event2(Event const& e):val(e.val){} // compiler will complain about another event not having any val
 int val;
}; // what the higher-level fsm wants to get

Tutorial

31

The solution is to provide two constructors:

struct event2
{
 template <class Event>
 event2(Event const&):val(0){} // will not be used
 event2(event1 const& e)):val(e.val){} // the conversion constructor
 int val;
}; // what the higher-level fsm wants to get

Flags

This tutorial [examples/Flags.cpp] is devoted to a concept not defined in UML: flags. It has been added
into MSM after proving itself useful on many occasions. Please, do not be frightened as we are not
talking about ugly shortcuts made of an improbable collusion of Booleans.

If you look into the Boost.Statechart documentation you'll find this code:

if ((state_downcast< const NumLockOff * >() != 0) &&
 (state_downcast< const CapsLockOff * >() != 0) &&
 (state_downcast< const ScrollLockOff * >() != 0))

While correct and found in many UML books, this can be error-prone and a potential time-bomb when
your state machine grows and you add new states or orthogonal regions.

And most of all, it hides the real question, which would be “does my state machine's current state define
a special property”? In this special case “are my keys in a lock state”? So let's apply the Fundamental
Theorem of Software Engineering and move one level of abstraction higher.

In our player example, let's say we need to know if the player has a loaded CD. We could do the same:

if ((state_downcast< const Stopped * >() != 0) &&
 (state_downcast< const Open * >() != 0) &&
 (state_downcast< const Paused * >() != 0) &&
 (state_downcast< const Playing * >() != 0))

Or flag these 4 states as CDLoaded-able. You add a flag_list type into each flagged state:

typedef mpl::vector1<CDLoaded> flag_list;

You can even define a list of flags, for example in Playing:

typedef mpl::vector2<PlayingPaused,CDLoaded> flag_list;

This means that Playing supports both properties. To check if your player has a loaded CD, check if
your flag is active in the current state:

player p; if (p.is_flag_active<CDLoaded>()) ...

And what if you have orthogonal regions? How to decide if a state machine is in a flagged state? By
default, you keep the same code and the current states will be OR'ed, meaning if one of the active
states has the flag, then is_flag_active returns true. Of course, in some cases, you might want that all
of the active states are flagged for the state to be active. You can also AND the active states:

if (p.is_flag_active<CDLoaded,player::Flag_AND>()) ...

The following diagram displays the flag situation in the tutorial.

examples/Flags.cpp
examples/Flags.cpp

Tutorial

32

Event Hierarchy
There are cases where one needs transitions based on categories of events. An example is text parsing.
Let's say you want to parse a string and use a state machine to manage your parsing state. You want
to parse 4 digits and decide to use a state for every matched digit. Your state machine could look like:

But how to detect the digit event? We would like to avoid defining 10 transitions on char_0, char_1...
between two states as it would force us to write 4 x 10 transitions and the compile-time would suffer.

Tutorial

33

To solve this problem, MSM supports the triggering of a transition on a subclass event. For example,
if we define digits as:

struct digit {};
struct char_0 : public digit {};

And to the same for other digits, we can now fire char_0, char_1 events and this will cause a transition
with "digit" as trigger to be taken.

An example [examples/ParsingDigits.cpp] with performance measurement, taken from the
documentation of Boost.Xpressive illustrates this example. You might notice that the performance is
actually very good (in this case even better).

Customizing a state machine / Getting more speed

MSM is offering many UML features at a high-speed, but sometimes, you just need more speed and
are ready to give up some features in exchange. A process_event is handling several tasks:

• checking for terminate/interrupt states

• handling the message queue (for entry/exit/transition actions generating themselves events)

• handling deferred events

• catching exceptions (or not)

• handling the state switching and action calls

Of these tasks, only the last one is absolutely necessary to a state machine (its core job), the other ones
are nice-to-haves which cost CPU time. In many cases, it is not so important, but in embedded systems,
this can lead to ad-hoc state machine implementations. MSM detects by itself if a concrete state
machine makes use of terminate/interrupt states and deferred events and deactivates them if not used.
For the other two, if you do not need them, you need to help by indicating it in your implementation.
This is done with two simple typedefs:

• no_exception_thrown indicates that behaviors will never throw and MSM does not need to
catch anything

• no_message_queue indicates that no action will itself generate a new event and MSM can save
us the message queue.

The third configuration possibility, explained here, is to manually activate deferred events,
using activate_deferred_events. For example, the following state machine sets all three
configuration types:

struct player_ : public msm::front::state_machine_def<player_>
{
 // no need for exception handling or message queue
 typedef int no_exception_thrown;
 typedef int no_message_queue;
 // also manually enable deferred events
 typedef int activate_deferred_events
 ...// rest of implementation
 };

Important note: As exit pseudo states are using the message queue to forward events out of a
submachine, the no_message_queue option cannot be used with state machines containing an exit
pseudo state.

examples/ParsingDigits.cpp
examples/ParsingDigits.cpp

Tutorial

34

Choosing the initial event
A state machine is started using the start method. This causes the initial state's entry behavior
to be executed. Like every entry behavior, it becomes as parameter the event causing the state to
be entered. But when the machine starts, there was no event triggered. In this case, MSM sends
msm::back::state_machine<...>::InitEvent, which might not be the default you'd
want. For this special case, MSM provides a configuration mechanism in the form of a typedef. If the
state machine's front-end definition provides an initial_event typedef set to another event, this event
will be used. For example:

struct my_initial_event{};
struct player_ : public msm::front::state_machine_def<player_>{
...
typedef my_initial_event initial_event;
};

Containing state machine (deprecated)
This feature is still supported in MSM for backward compatibility but made obsolete by the fact that
every guard/action/entry action/exit action get the state machine passed as argument and might be
removed at a later time.

All of the states defined in the state machine are created upon state machine construction. This has
the huge advantage of a reduced syntactic noise. The cost is a small loss of control for the user on the
state creation and access. But sometimes you needed a way for a state to get access to its containing
state machine. Basically, a state needs to change its declaration to:

struct Stopped : public msm::front::state<sm_ptr>

And to provide a set_sm_ptr function: void set_sm_ptr(player* pl)

to get a pointer to the containing state machine. The same applies to terminate_state / interrupt_state
and entry_pseudo_state / exit_pseudo_state.

Functor front-end
The functor front-end is the preferred front-end at the moment. It is more powerful than the standard
front-end and has a more readable transition table. It also makes it easier to reuse parts of state
machines. Like eUML, it also comes with a good deal of predefined actions. Actually, eUML generates
a functor front-end through Boost.Typeof and Boost.Proto so both offer the same functionality.

The rows which MSM offered in the previous front-end come in different flavors. We saw the a_row,
g_row, _row, row, not counting internal rows. This is already much to know, so why define new rows?
These types have some disadvantages:

• They are more typing and information than we would wish. This means syntactic noise and more
to learn.

• Function pointers are weird in C++.

• The action/guard signature is limited and does not allow for more variations of parameters (source
state, target state, current state machine, etc.)

• It is not easy to reuse action code from a state machine to another.

Transition table
We can change the definition of the simple tutorial's transition table to:

Tutorial

35

struct transition_table : mpl::vector<
// Start Event Target Action Guard
// +---------+------------+-----------+---------------------------+----------------------------+
Row < Stopped , play , Playing , start_playback , none >,
Row < Stopped , open_close , Open , open_drawer , none >,
Row < Stopped , stop , Stopped , none , none >,
// +---------+------------+-----------+---------------------------+----------------------------+
Row < Open , open_close , Empty , close_drawer , none >,
// +---------+------------+-----------+---------------------------+----------------------------+
Row < Empty , open_close , Open , open_drawer , none >,
Row < Empty , cd_detected, Stopped , store_cd_info , good_disk_format >,
g_row< Empty , cd_detected, Playing , &player_::store_cd_info , &player_::auto_start >,
// +---------+------------+-----------+---------------------------+----------------------------+
Row < Playing , stop , Stopped , stop_playback , none >,
Row < Playing , pause , Paused , pause_playback , none >,
Row < Playing , open_close , Open , stop_and_open , none >,
// +---------+------------+-----------+---------------------------+----------------------------+
Row < Paused , end_pause , Playing , resume_playback , none >,
Row < Paused , stop , Stopped , stop_playback , none >,
Row < Paused , open_close , Open , stop_and_open , none >
// +---------+------------+-----------+---------------------------+----------------------------+
> {};

Transitions are now of type "Row" with exactly 5 template arguments: source state, event, target
state, action and guard. Wherever there is nothing (for example actions and guards), write "none".
Actions and guards are no more methods but functors getting as arguments the detected event, the
state machine, source and target state:

struct store_cd_info
{
 template <class Fsm,class Evt,class SourceState,class TargetState>
 void operator()(Evt const&, Fsm& fsm, SourceState&,TargetState&)
 {
 cout << "player::store_cd_info" << endl;
 fsm.process_event(play());
 }
};

The advantage of functors compared to functions are that functors are generic and reusable. They
also allow passing more parameters than just events. The guard functors are the same but have an
operator() returning a bool.

It is also possible to mix rows from different front-ends. To show this, a g_row has been left in the
transition table. Note: in case the action functor is used in the transition table of a state machine
contained inside a top-level state machine, the “fsm” parameter refers to the lowest-level state machine
(referencing this action), not the top-level one.

To illustrate the reusable point, MSM comes with a whole set of predefined functors. Please refer to
eUML for the full list. For example, we are now going to replace the first action by an action sequence
and the guard by a more complex functor.

We decide we now want to execute two actions in the first transition (Stopped -> Playing). We only
need to change the action start_playback to

ActionSequence_< mpl::vector<some_action, start_playback> >

and now will execute some_action and start_playback every time the transition is taken.
ActionSequence_ is a functor calling each action of the mpl::vector in sequence.

Tutorial

36

We also want to replace good_disk_format by a condition of the type: “good_disk_format &&
(some_condition || some_other_condition)”. We can achieve this using And_ and Or_ functors:

And_<good_disk_format,Or_< some_condition , some_other_condition> >

It even starts looking like functional programming. MSM ships with functors for operators, state
machine usage, STL algorithms or container methods.

Defining states with entry/exit actions

You probably noticed that we just showed a different transition table and that we even mixed
rows from different front-ends. This means that you can do this and leave the definitions for states
unchanged. Most examples are doing this as it is the simplest solution. You still enjoy the simplicity
of the first front-end with the extended power of the new transition types. This tutorial [examples/
SimpleWithFunctors.cpp], adapted from the earlier example does just this.

Of course, it is also possible to define states where entry and exit actions are also provided as functors
as these are generated by eUML and both front-ends are equivalent. For example, we can define a
state as:

struct Empty_Entry
{
 template <class Event,class Fsm,class State>
 void operator()(Event const&,Fsm&,State&)
 {
 ...
 }
}; // same for Empty_Exit
struct Empty : public msm::front::euml::func_state<Empty_Entry,Empty_Exit>{};

This also means that you can, like in the transition table, write entry / exit actions made of
more complicated action combinations. The previous example can therefore be rewritten [examples/
SimpleWithFunctors2.cpp].

Usually, however, one will probably use the standard state definition as it provides the same
capabilities as this front-end state definition, unless one needs some of the shipped predefined functors
or is a fan of functional programming.

What do you actually do inside actions / guards (Part
2)?

Using the basic front-end, we saw how to pass data to actions through the event, that data common
to all states could be stored in the state machine, state relevant data could be stored in the state and
access as template parameter in the entry / exit actions. What was however missing was the capability
to access relevant state data in the transition action. This is possible with this front-end. A transition's
source and target state are also given as arguments. If the current calculation's state was to be found
in the transition's source state (whatever it is), we could access it:

struct send_rocket
{
 template <class Fsm,class Evt,class SourceState,class TargetState>
 void operator()(Evt const&, Fsm& fsm, SourceState& src,TargetState&)
 {
 fire_rocket(evt.direction, src.current_calculation);
 }
};

examples/SimpleWithFunctors.cpp
examples/SimpleWithFunctors.cpp
examples/SimpleWithFunctors.cpp
examples/SimpleWithFunctors2.cpp
examples/SimpleWithFunctors2.cpp
examples/SimpleWithFunctors2.cpp

Tutorial

37

It was a little awkward to generate new events inside actions with the basic front-end. With the functor
front-end it is much cleaner:

struct send_rocket
{
 template <class Fsm,class Evt,class SourceState,class TargetState>
 void operator()(Evt const& evt, Fsm& fsm, SourceState& src,TargetState&)
 {
 fire_rocket(evt.direction, src.current_calculation);
 fsm.process_event(rocket_launched());
 }
};

Defining a simple state machine
Like states, state machines can be defined using the previous front-end, as the previous example
showed, or with the functor front-end, which allows you to define a state machine entry and exit
functions as functors, as in this example [examples/SimpleWithFunctors2.cpp].

Anonymous transitions
Anonymous (completion) transitions are transitions without a named event. We saw how this front-
end uses none when no action or guard is required. We can also use none instead of an event to
mark an anonymous transition. For example, the following transition makes an immediate transition
from State1 to State2:

Row < State1 , none , State2 >

The following transition does the same but calling an action in the process:

Row < State1 , none , State2 , State1ToState2, none >

The following diagram shows an example and its implementation [examples/
AnonymousTutorialWithFunctors.cpp]:

examples/SimpleWithFunctors2.cpp
examples/SimpleWithFunctors2.cpp
examples/AnonymousTutorialWithFunctors.cpp
examples/AnonymousTutorialWithFunctors.cpp
examples/AnonymousTutorialWithFunctors.cpp

Tutorial

38

Internal transitions
The following example [examples/SimpleTutorialInternalFunctors.cpp] uses internal transitions with
the functor front-end. As for the simple standard front-end, both methods of defining internal
transitions are supported:

• providing a Row in the state machine's transition table with none as target state defines an internal
transition.

• providing an internal_transition_table made of Internal rows inside a state or
submachine defines UML-conform internal transitions with higher priority.

• transitions defined inside internal_transition_table require no source or target state as
the source state is known (Internal really are Row without a source or target state) .

Like for the standard front-end internal transitions, internal transition tables are added into the main
state machine's table, thus allowing you to distribute the transition table definition and reuse states.

There is an added bonus offered for submachines, which can have both the standard transition_table
and an internal_transition_table (which has higher priority). This makes it easier if you decide to make
a full submachine from a state later. It is also slightly faster than the standard alternative, adding
orthogonal regions, because event dispatching will, if accepted by the internal table, not continue to
the subregions. This gives you a O(1) dispatch instead of O(number of regions). While the example
is with eUML, the same is also possible with this front-end.

eUML (experimental)
Important note: eUML requires a compiler supporting Boost.Typeof. More generally, eUML has
experimental status because some compilers will start crashing when a state machine becomes too big
(usually when you write huge actions).

The previous front-ends are simple to write but still force an amount of noise, mostly MPL types,
so it would be nice to write code looking like C++ (with a C++ action language) directly inside the
transition table, like UML designers like to do on their state machine diagrams. If it were functional
programming, it would be even better. This is what eUML is for.

eUML is a Boost.Proto and Boost.Typeof-based compile-time domain specific embedded language.
It provides grammars which allow the definition of actions/guards directly inside the transition table
or entry/exit in the state definition. There are grammars for actions, guards, flags, attributes, deferred
events, initial states.

It also relies on Boost.Typeof as a wrapper around the new decltype C++0x feature to provide a
compile-time evaluation of all the grammars. Unfortunately, all the underlying Boost libraries are
not Typeof-enabled, so for the moment, you will need a compiler where Typeof is supported (like
VC9-10, g++ >= 4.3).

Examples will be provided in the next paragraphs. You need to include eUML basic features:

#include <msm/front/euml/euml.hpp>

To add STL support (at possible cost of longer compilation times), include:

#include <msm/front/euml/stl.hpp>

eUML is defined in the namespace msm::front::euml.

Transition table
A transition can be defined using eUML as:

examples/SimpleTutorialInternalFunctors.cpp
examples/SimpleTutorialInternalFunctors.cpp

Tutorial

39

source + event [guard] / action == target

or as

target == source + event [guard] / action

The first version looks like a drawn transition in a diagram, the second one seems natural to a C++
developer.

The simple transition table written with the functor front-end can now be written as:

BOOST_MSM_EUML_TRANSITION_TABLE((
Stopped + play [some_guard] / (some_action , start_playback) == Playing ,
Stopped + open_close/ open_drawer == Open ,
Stopped + stop == Stopped ,
Open + open_close / close_drawer == Empty ,
Empty + open_close / open_drawer == Open ,
Empty + cd_detected [good_disk_format] / store_cd_info == Stopped
),transition_table)

Or, using the alternative notation, it can be:

BOOST_MSM_EUML_TRANSITION_TABLE((
Playing == Stopped + play [some_guard] / (some_action , start_playback) ,
Open == Stopped + open_close/ open_drawer ,
Stopped == Stopped + stop ,
Empty == Open + open_close / close_drawer ,
Open == Empty + open_close / open_drawer ,
Stopped == Empty + cd_detected [good_disk_format] / store_cd_info
),transition_table)

The transition table now looks like a list of (readable) rules with little noise.

UML defines guards between “[]” and actions after a “/”, so the chosen syntax is already more readable
for UML designers. UML also allows designers to define several actions sequentially (our previous
ActionSequence_) separated by a comma. The first transition does just this: two actions separated by
a comma and enclosed inside parenthesis to respect C++ operator precedence.

If this seems to you like it will cost you run-time performance, don't worry, eUML is based on typeof
(or decltype) which only evaluates the parameters to BOOST_MSM_EUML_TRANSITION_TABLE
and no run-time cost occurs. Actually, eUML is only a metaprogramming layer on top of "standard"
MSM metaprogramming and this first layer generates the previously-introduced functor front-end.

UML also allows designers to define more complicated guards, like [good_disk_format &&
(some_condition || some_other_condition)]. This was possible with our previously defined functors,
but using a complicated template syntax. This syntax is now possible exactly as written, which means
without any syntactic noise at all.

A simple example: rewriting only our transition table
As an introduction to eUML, we will rewrite our tutorial's transition table using eUML. This will
require two or three changes, depending on the compiler:

• events must inherit from msm::front::euml::euml_event< event_name >

• states must inherit from msm::front::euml::euml_state< state_name >

• with VC, states must be declared before the front-end

We now can write the transition table like just shown, using
BOOST_MSM_EUML_DECLARE_TRANSITION_TABLE instead of

Tutorial

40

BOOST_MSM_EUML_TRANSITION_TABLE. The implementation [examples/
SimpleTutorialWithEumlTable.cpp] is pretty straightforward.

The composite [examples/CompositeTutorialWithEumlTable.cpp] implementation is slightly trickier
because the submachine has to be a msm::back::state_machine and a msm::front::euml::state. For
example:

// front-end like always
struct front_end : public boost::msm::front::state_machine_def<front_end>
{
...
};
// back-end like always
typedef boost::msm::back::state_machine<front_end> back_end;
// this is new: make the submachine a eUML type
struct submachine : public back_end,
 public boost::msm::front::euml::euml_state<back_end>
{
};

Unfortunately, there is a bug with VC, which appears from time to time and causes in a stack overflow.
If you get a warning that the program is recursive on all paths, revert to either standard eUML or
another front-end as Microsoft doesn't seem to intend to fix it.

We now have a new, more readable transition table with few changes to our example. eUML can do
much more so please follow the guide.

Defining events, actions and states with entry/exit
actions

Events

Events must be proto-enabled. To achieve this, they must inherit from a proto terminal
(euml_event<event-name>). eUML also provides a macro to make this easier:

BOOST_MSM_EUML_EVENT(play)

This declares an event type and an instance of this type called play, which is now ready to use in
state or transition behaviors.

There is a second macro, BOOST_MSM_EUML_EVENT_WITH_ATTRIBUTES, which takes as
second parameter the attributes an event will contain, using the attribute syntax.

Note: as we now have events defined as instances instead of just types, can we still process an
event by creating one on the fly, like: fsm.process_event(play()); or do we have to write:
fsm.process_event(play);

The answer is you can do both. The second one is easier but unlike other front-ends, the second uses
a defined operator(), which creates an event on the fly.

Actions

Actions (returning void) and guards (returning a bool) are defined like previous functors, with the
difference that they also must be proto-enabled. This can be done by inheriting from euml_action<
functor-name >. eUML also provides a macro:

BOOST_MSM_EUML_ACTION(some_condition)
{

examples/SimpleTutorialWithEumlTable.cpp
examples/SimpleTutorialWithEumlTable.cpp
examples/SimpleTutorialWithEumlTable.cpp
examples/CompositeTutorialWithEumlTable.cpp
examples/CompositeTutorialWithEumlTable.cpp

Tutorial

41

 template <class Fsm,class Evt,class SourceState,class TargetState>
 bool operator()(Evt const& ,Fsm& ,SourceState&,TargetState&)
 { return true; }
};

Like for events, this macro declares a functor type and an instance for use in transition or state
behaviors.

It is possible to use the same action grammar from the transition table to define state entry and exit
behaviors. So (action1,action2) is a valid entry or exit behavior executing both actions in turn.

The state functors have a slightly different signature as there is no source and target state but only a
current state (entry/exit actions are transition-independent), for example:

BOOST_MSM_EUML_ACTION(Empty_Entry)
{
 template <class Evt,class Fsm,class State>
 void operator()(Evt const& ,Fsm& ,State&) { ... }
 };

It is also possible to reuse the functors from the functor front-end. The syntax is however slightly less
comfortable as we need to pretend creating one on the fly for typeof. For example:

struct start_playback
{
 template <class Fsm,class Evt,class SourceState,class TargetState>
 void operator()(Evt const& ,Fsm&,SourceState& ,TargetState&)
 {
 ...
 }
};
BOOST_MSM_EUML_TRANSITION_TABLE((
Playing == Stopped + play / start_playback() ,
...
),transition_table)

States

There is also a macro for states. This macro has 2 arguments, first the expression defining the state,
then the state (instance) name:

BOOST_MSM_EUML_STATE((),Paused)

This defines a simple state without entry or exit action. You can provide in the expression parameter
the state behaviors (entry and exit) using the action grammar, like in the transition table:

BOOST_MSM_EUML_STATE(((Empty_Entry,Dummy_Entry)/*2 entryactions*/,
 Empty_Exit/*1 exit action*/),
 Empty)

This means that Empty is defined as a state with an entry action made of two sub-actions, Empty_Entry
and Dummy_Entry (enclosed inside parenthesis), and an exit action, Empty_Exit.

There are several possibilitites for the expression syntax:

• (): state without entry or exit action.

• (Expr1): state with entry but no exit action.

• (Expr1,Expr2): state with entry and exit action.

Tutorial

42

• (Expr1,Expr2,Attributes): state with entry and exit action, defining some attributes (read further on).

• (Expr1,Expr2,Attributes,Configure): state with entry and exit action, defining some attributes (read
further on) and flags (standard MSM flags) or deferred events (standard MSM deferred events).

• (Expr1,Expr2,Attributes,Configure,Base): state with entry and exit action, defining some attributes
(read further on), flags and deferred events (plain msm deferred events) and a non-default base state
(as defined in standard MSM).

no_action is also defined, which does, well, nothing except being a placeholder (needed for example
as entry action if we have no entry but an exit). Expr1 and Expr2 are a sequence of actions, obeying
the same action grammar as in the transition table (following the “/” symbol).

The BOOST_MSM_EUML_STATE macro will allow you to define most common states, but
sometimes you will need more, for example provide in your states some special behavior. In this case,
you will have to do the macro's job by hand, which is not very complicated. The state will need to
inherit from msm::front::state<>, like any state, and from euml_state<state-name> to
be proto-enabled. You will then need to declare an instance for use in the transition table. For example:

struct Empty_impl : public msm::front::state<> , public euml_state<Empty_impl>
{
 void activate_empty() {std::cout << "switching to Empty " << std::endl;}
 template <class Event,class Fsm>
 void on_entry(Event const& evt,Fsm&fsm){...}
 template <class Event,class Fsm>
 void on_exit(Event const& evt,Fsm&fsm){...}
};
//instance for use in the transition table
Empty_impl const Empty;

Notice also that we defined a method named activate_empty. We would like to call it inside a behavior.
This can be done using the BOOST_MSM_EUML_METHOD macro.

BOOST_MSM_EUML_METHOD(ActivateEmpty_,activate_empty,activate_empty_,void,void)

The first parameter is the name of the underlying functor, which you could use with the functor front-
end, the second is the state method name, the third is the eUML-generated function, the fourth and
fifth the return value when used inside a transition or a state behavior. You can now use this inside
a transition:

Empty == Open + open_close / (close_drawer,activate_empty_(target_))

Wrapping up a simple state machine and first
complete examples

You can reuse the state machine definition method from the standard front-end and simply replace the
transition table by this new one. You can also use eUML to define a state machine "on the fly" (if, for
example, you need to provide an on_entry/on_exit for this state machine as a functor). For this, there
is also a macro, BOOST_MSM_EUML_DECLARE_STATE_MACHINE, which has 2 arguments,
an expression describing the state machine and the state machine name. The expression has up to 8
arguments:

• (Stt, Init): simplest state machine where only the transition table and initial state(s) are defined.

• (Stt, Init, Expr1): state machine where the transition table, initial state and entry action are defined.

• (Stt, Init, Expr1, Expr2): state machine where the transition table, initial state, entry and exit actions
are defined.

Tutorial

43

• (Stt, Init, Expr1, Expr2, Attributes): state machine where the transition table, initial state, entry and
exit actions are defined. Furthermore, some attributes are added (read further on).

• (Stt, Init, Expr1, Expr2, Attributes, Configure): state machine where the transition table, initial state,
entry and exit actions are defined. Furthermore, some attributes (read further on), flags, deferred
events and configuration capabilities (no message queue / no exception catching) are added.

• (Stt, Init, Expr1, Expr2, Attributes, Flags, Deferred , Base): state machine where the transition table,
initial state, entry and exit actions are defined. Furthermore, attributes (read further on), flags ,
deferred events and configuration capabilities (no message queue / no exception catching) are added
and a non-default base state (see the back-end description) is defined.

For example, a minimum state machine could be defined as:

BOOST_MSM_EUML_TRANSITION_TABLE((
),transition_table)

BOOST_MSM_EUML_DECLARE_STATE_MACHINE((transition_table,init_ << Empty),
 player_)

Please have a look at the player tutorial written using eUML's first syntax
[examples/SimpleTutorialEuml2.cpp] and second syntax [examples/SimpleTutorialEuml.cpp]. The
BOOST_MSM_EUML_DECLARE_ATTRIBUTE macro, to which we will get back shortly, declares
attributes given to an eUML type (state or event) using the attribute syntax.

Defining a submachine
Defining a submachine (see tutorial [examples/CompositeTutorialEuml.cpp]) with other front-ends
simply means using a state which is a state machine in the transition table of another state machine.
This is the same with eUML. One only needs define a second state machine and reference it in the
transition table of the containing state machine.

Unlike the state or event definition macros, BOOST_MSM_EUML_DECLARE_STATE_MACHINE
defines a type, not an instance because a type is what the back-end requires. This means that you
will need to declare yourself an instance to reference your submachine into another state machine,
for example:

BOOST_MSM_EUML_DECLARE_STATE_MACHINE(...,Playing_)
typedef msm::back::state_machine<Playing_> Playing_type;
Playing_type const Playing;

We can now use this instance inside the transition table of the containing state machine:

Paused == Playing + pause / pause_playback

Attributes / Function call
We now want to make our grammar more useful. Very often, one needs only very simple action
methods, for example ++Counter or Counter > 5 where Counter is usually defined as some attribute
of the class containing the state machine. It seems like a waste to write a functor for such a simple
action. Furthermore, states within MSM are also classes so they can have attributes, and we would
also like to provide them with attributes.

If you look back at our examples using the first [examples/SimpleTutorialEuml2.cpp]
and second [examples/SimpleTutorialEuml.cpp] syntaxes, you will find a
BOOST_MSM_EUML_DECLARE_ATTRIBUTE and a BOOST_MSM_EUML_ATTRIBUTES
macro. The first one declares possible attributes:

BOOST_MSM_EUML_DECLARE_ATTRIBUTE(std::string,cd_name)
BOOST_MSM_EUML_DECLARE_ATTRIBUTE(DiskTypeEnum,cd_type)

examples/SimpleTutorialEuml2.cpp
examples/SimpleTutorialEuml2.cpp
examples/SimpleTutorialEuml.cpp
examples/SimpleTutorialEuml.cpp
examples/CompositeTutorialEuml.cpp
examples/CompositeTutorialEuml.cpp
examples/SimpleTutorialEuml2.cpp
examples/SimpleTutorialEuml2.cpp
examples/SimpleTutorialEuml.cpp
examples/SimpleTutorialEuml.cpp

Tutorial

44

This declares two attributes: cd_name of type std::string and cd_type of type DiskTypeEnum. These
attributes are not part of any event or state in particular, we just declared a name and a type. Now, we
can add attributes to our cd_detected event using the second one:

BOOST_MSM_EUML_ATTRIBUTES((attributes_ << cd_name << cd_type),
 cd_detected_attributes)

This declares an attribute list which is not linked to anything in particular yet. It can be attached to
a state or an event. For example, if we want the event cd_detected to have these defined attributes
we write:

BOOST_MSM_EUML_EVENT_WITH_ATTRIBUTES(cd_detected,cd_detected_attributes)

For states, we use the BOOST_MSM_EUML_STATE macro, which has an expression form where
one can provide attributes. For example:

BOOST_MSM_EUML_STATE((no_action /*entry*/,no_action/*exit*/,
 attributes_ << cd_detected_attributes),
 some_state)

OK, great, we now have a way to add attributes to a class, which we could have done more easily, so
what is the point? The point is that we can now reference these attributes directly, at compile-time, in
the transition table. For example, in the example, you will find this transition:

Stopped==Empty+cd_detected[good_disk_format&&(event_(cd_type)==Int_<DISK_CD>())]

Read event_(cd_type) as event_->cd_type with event_ a type generic for events, whatever the concrete
event is (in this particular case, it happens to be a cd_detected as the transition shows).

The main advantage of this feature is that you do not need to define a new functor and you do not need
to look inside the functor to know what it does, you have all at hand.

MSM provides more generic objects for state machine types:

• event_ : used inside any action, the event triggering the transition

• state_: used inside entry and exit actions, the entered / exited state

• source_: used inside a transition action, the source state

• target_: used inside a transition action, the target state

• fsm_: used inside any action, the (lowest-level) state machine processing the transition

• Int_<int value>: a functor representing an int

• Char_<value>: a functor representing a char

• Size_t_<value>: a functor representing a size_t

• String_<mpl::string> (boost >= 1.40): a functor representing a string.

These helpers can be used in two different ways:

• helper(attribute_name) returns the attribute with name attribute_name

• helper returns the state / event type itself.

The second form is helpful if you want to provide your states with their own methods, which you
also want to use inside the transition table. In the above tutorial [examples/SimpleTutorialEuml.cpp],
we provide Empty with an activate_empty method. We would like to create a eUML functor
and call it from inside the transition table. This is done using the MSM_EUML_METHOD /
MSM_EUML_FUNCTION macros. The first creates a functor to a method, the second to a free
function. In the tutorial, we write:

examples/SimpleTutorialEuml.cpp
examples/SimpleTutorialEuml.cpp

Tutorial

45

MSM_EUML_METHOD(ActivateEmpty_,activate_empty,activate_empty_,void,void)

The first parameter is the functor name, for use with the functor front-end. The second is the name
of the method to call. The third is the function name for use with eUML, the fourth is the return type
of the function if used in the context of a transition action, the fifth is the result type if used in the
context of a state entry / exit action (usually fourth and fifth are the same). We now have a new eUML
function calling a method of "something", and this "something" is one of the five previously shown
generic helpers. We can now use this in a transition, for example:

Empty == Open + open_close / (close_drawer,activate_empty_(target_))

The action is now defined as a sequence of two actions: close_drawer and activate_empty, which
is called on the target itself. The target being Empty (the state defined left), this really will call
Empty::activate_empty(). This method could also have an (or several) argument(s), for example the
event, we could then call activate_empty_(target_ , event_).

More examples can be found in the terrible compiler stress test [examples/
CompilerStressTestEuml.cpp], the timer example [examples/SimpleTimer.cpp] or in the iPodSearch
with eUML [examples/iPodSearchEuml.cpp] (for String_ and more).

Orthogonal regions, flags, event deferring
Defining orthogonal regions really means providing more initial states. To add more initial states,
“shift left” some, for example, if we had another initial state named AllOk :

BOOST_MSM_EUML_DECLARE_STATE_MACHINE((transition_table,
 init_ << Empty << AllOk),
 player_)

You remember from the BOOST_MSM_EUML_STATE and
BOOST_MSM_EUML_DECLARE_STATE_MACHINE signatures that just after attributes, we
can define flags, like in the basic MSM front-end. To do this, we have another "shift-left" grammar,
for example:

BOOST_MSM_EUML_STATE((no_action,no_action, attributes_ <<no_attributes_,
 /* flags */ configure_<< PlayingPaused << CDLoaded),
 Paused)

We now defined that Paused will get two flags, PlayingPaused and CDLoaded, defined, with another
macro:

BOOST_MSM_EUML_FLAG(CDLoaded)

This corresponds to the following basic front-end definition of Paused:

struct Paused : public msm::front::state<>
{
 typedef mpl::vector2<PlayingPaused,CDLoaded> flag_list;
};

Under the hood, what you get really is a mpl::vector2.

Note: As we use the version of BOOST_MSM_EUML_STATE's expression with 4 arguments,
we need to tell eUML that we need no attributes. Similarly to a cout << endl, we need a
attributes_ << no_attributes_ syntax.

You can use the flag with the is_flag_active method of a state machine. You can also use the provided
helper function is_flag_ (returning a bool) for state and transition behaviors. For example, in the iPod
implementation with eUML [examples/iPodEuml.cpp], you find the following transition:

examples/CompilerStressTestEuml.cpp
examples/CompilerStressTestEuml.cpp
examples/CompilerStressTestEuml.cpp
examples/SimpleTimer.cpp
examples/SimpleTimer.cpp
examples/iPodSearchEuml.cpp
examples/iPodSearchEuml.cpp
examples/iPodSearchEuml.cpp
examples/iPodEuml.cpp
examples/iPodEuml.cpp
examples/iPodEuml.cpp

Tutorial

46

ForwardPressed == NoForward + EastPressed[!is_flag_(NoFastFwd)]

The function also has an optional second parameter which is the state machine on which the function
is called. By default, fsm_ is used (the current state machine) but you could provide a functor returning
a reference to another state machine.

eUML also supports defining deferred events in the state (state machine) definition. To this aim, we
can reuse the flag grammar. For example:

BOOST_MSM_EUML_STATE((Empty_Entry,Empty_Exit, attributes_ << no_attributes_,
 /* deferred */ configure_<< play),Empty)

The configure_ left shift is also responsible for deferring events. Shift inside configure_ a flag and
the state will get a flag, shift an event and it will get a deferred event. This replaces the basic front-
end definition:

typedef mpl::vector<play> deferred_events;

In this tutorial [examples/OrthogonalDeferredEuml.cpp], player is defining a second orthogonal
region with AllOk as initial state. The Empty and Open states also defer the event play. Open,
Stopped and Pause also support the flag CDLoaded using the same left shift into configure_.

In the functor front-end, we also had the possibility to defer an event inside a transition, which
makes possible conditional deferring. This is also possible with eUML through the use of the defer_
order, as shown in this tutorial [examples/OrthogonalDeferredEuml.cpp]. You will find the following
transition:

Open + play / defer_

This is an internal transition. Ignore it for the moment. Interesting is, that when the event play is
fired and Open is active, the event will be deferred. Now add a guard and you can conditionally defer
the event, for example:

Open + play [some_condition] / defer_

This is similar to what we did with the functor front-end. This means that we have the same constraints.
Using defer_ instead of a state declaration, we need to tell MSM that we have deferred events in this
state machine. We do this (again) using a configure_ declaration in the state machine definition in
which we shift the deferred_events configuration flag:

BOOST_MSM_EUML_DECLARE_STATE_MACHINE((transition_table,
 init_ << Empty << AllOk,
 Entry_Action,
 Exit_Action,
 attributes_ << no_attributes_,
 configure_<< deferred_events),
 player_)

A tutorial [examples/OrthogonalDeferredEuml2.cpp] illustrates this possibility.

Customizing a state machine / Getting more speed
We just saw how to use configure_ to define deferred events or flags. We can also use it to configure
our state machine like we did with the other front-ends:

• configure_ << no_exception: disables exception handling

• configure_ << no_msg_queue deactivates the message queue

• configure_ << deferred_events manually enables event deferring

examples/OrthogonalDeferredEuml.cpp
examples/OrthogonalDeferredEuml.cpp
examples/OrthogonalDeferredEuml.cpp
examples/OrthogonalDeferredEuml.cpp
examples/OrthogonalDeferredEuml2.cpp
examples/OrthogonalDeferredEuml2.cpp

Tutorial

47

Deactivating the first two features and not activating the third if not needed greatly improves the event
dispatching speed of your state machine. Our speed testing [examples/EumlSimple.cpp] example with
eUML does this for the best performance.

Important note: As exit pseudo states are using the message queue to forward events out of a
submachine, the no_message_queue option cannot be used with state machines containing an exit
pseudo state.

Completion / Anonymous transitions
Anonymous transitions (See UML tutorial) are transitions without a named event, which are therefore
triggered immediately when the source state becomes active, provided a guard allows it. As there is no
event, to define such a transition, simply omit the “+” part of the transition (the event), for example:

State3 == State4 [always_true] / State3ToState4
State4 [always_true] / State3ToState4 == State3

Please have a look at this example [examples/AnonymousTutorialEuml.cpp], which implements the
previously defined state machine with eUML.

Internal transitions
Like both other front-ends, eUML supports two ways of defining internal transitions:

• in the state machine's transition table. In this case, you need to specify a source state, event, actions
and guards but no target state, which eUML will interpret as an internal transition, for example this
defines a transition internal to Open, on the event open_close:

Open + open_close [internal_guard1] / internal_action1

A full example [examples/EumlInternal.cpp] is also provided.

• in a state's internal_transition_table. For example:

BOOST_MSM_EUML_DECLARE_STATE((Open_Entry,Open_Exit),Open_def)
struct Open_impl : public Open_def
{
 BOOST_MSM_EUML_DECLARE_INTERNAL_TRANSITION_TABLE((
 open_close [internal_guard1] / internal_action1
))
};

Notice how we do not need to repeat that the transition originates from Open as we already are in
Open's context.

The implementation [examples/EumlInternalDistributed.cpp] also shows the added bonus offered
for submachines, which can have both the standard transition_table and an internal_transition_table
(which has higher priority). This makes it easier if you decide to make a full submachine from a
state. It is also slightly faster than the standard alternative, adding orthogonal regions, because event
dispatching will, if accepted by the internal table, not continue to the subregions. This gives you a
O(1) dispatch instead of O(number of regions).

Other state types
We saw the build_state function, which creates a simple state. Likewise, eUML provides other state-
building macros for other types of states:

• BOOST_MSM_EUML_TERMINATE_STATE takes the same arguments as
BOOST_MSM_EUML_STATE and defines, well, a terminate state.

examples/EumlSimple.cpp
examples/EumlSimple.cpp
examples/AnonymousTutorialEuml.cpp
examples/AnonymousTutorialEuml.cpp
examples/EumlInternal.cpp
examples/EumlInternal.cpp
examples/EumlInternalDistributed.cpp
examples/EumlInternalDistributed.cpp

Tutorial

48

• BOOST_MSM_EUML_INTERRUPT_STATE takes the same arguments as
BOOST_MSM_EUML_STATE and defines an interrupt state. However, the expression
argument must contain as first element the event ending the interruption, for example:
BOOST_MSM_EUML_INTERRUPT_STATE((end_error /*end interrupt
event*/,ErrorMode_Entry,ErrorMode_Exit),ErrorMode)

• BOOST_MSM_EUML_EXIT_STATE takes the same arguments as
BOOST_MSM_EUML_STATE and defines an exit pseudo state. However, the
expression argument must contain as first element the event propagated from
the exit point: BOOST_MSM_EUML_EXIT_STATE((event6 /*propagated
event*/,PseudoExit1_Entry,PseudoExit1_Exit),PseudoExit1)

• BOOST_MSM_EUML_EXPLICIT_ENTRY_STATE defines an entry pseudo state. It takes
3 parameters: the region index to be entered is defined as an int argument, followed
by the configuration expression like BOOST_MSM_EUML_STATE and the state name,
so that BOOST_MSM_EUML_EXPLICIT_ENTRY_STATE(0 /*region index*/,
(SubState2_Entry,SubState2_Exit),SubState2) defines an entry state into the
first region of a submachine.

• BOOST_MSM_EUML_ENTRY_STATE defines an entry pseudo state. It takes
3 parameters: the region index to be entered is defined as an int
argument, followed by the configuration expression like BOOST_MSM_EUML_STATE
and the state name, so that BOOST_MSM_EUML_ENTRY_STATE(0,
(PseudoEntry1_Entry,PseudoEntry1_Exit),PseudoEntry1) defines a pseudo
entry state into the first region of a submachine.

To use these states in the transition table, eUML offers the functions explicit_, exit_pt_ and
entry_pt_. For example, a direct entry into the substate SubState2 from SubFsm2 could be:

explicit_(SubFsm2,SubState2) == State1 + event2

Forks being a list on direct entries, eUML supports a logical syntax (state1, state2, ...), for example:

(explicit_(SubFsm2,SubState2),
 explicit_(SubFsm2,SubState2b),
 explicit_(SubFsm2,SubState2c)) == State1 + event3

An entry point is entered using the same syntax as explicit entries:

entry_pt_(SubFsm2,PseudoEntry1) == State1 + event4

For exit points, it is again the same syntax except that exit points are used as source of the transition:

State2 == exit_pt_(SubFsm2,PseudoExit1) + event6

The entry tutorial [examples/DirectEntryEuml.cpp] is also available with eUML.

Helper functions
We saw a few helpers but there are more, so let us have a more complete description:

• event_ : used inside any action, the event triggering the transition

• state_: used inside entry and exit actions, the entered / exited state

• source_: used inside a transition action, the source state

• target_: used inside a transition action, the target state

• fsm_: used inside any action, the (deepest-level) state machine processing the transition

• These objects can also be used as a function and return an attribute, for example event_(cd_name)

examples/DirectEntryEuml.cpp
examples/DirectEntryEuml.cpp

Tutorial

49

• Int_<int value>: a functor representing an int

• Char_<value>: a functor representing a char

• Size_t_<value>: a functor representing a size_t

• True_ and False_ functors returning true and false respectively

• String_<mpl::string> (boost >= 1.40): a functor representing a string.

• if_then_else_(guard, action, action) where action can be an action sequence

• if_then_(guard, action) where action can be an action sequence

• while_(guard, action) where action can be an action sequence

• do_while_(guard, action) where action can be an action sequence

• for_(action, guard, action, action) where action can be an action sequence

• process_(some_event [, some state machine] [, some state machine] [, some state machine] [, some
state machine]) will call process_event (some_event) on the current state machine or on the one(s)
passed as 2nd , 3rd, 4th, 5th argument. This allow sending events to several external machines

• process_(event_): reprocesses the event which triggered the transition

• reprocess_(): same as above but shorter to write

• process2_(some_event,Value [, some state machine] [, some state machine] [, some state machine])
will call process_event (some_event(Value)) on the current state machine or on the one(s) passed
as 3rd, 4th, 5th argument

• is_ flag_(some_flag[, some state machine]) will call is_flag_active on the current state machine or
on the one passed as 2nd argument

• Predicate_<some predicate>: Used in STL algorithms. Wraps unary/binary functions to make them
eUML-compatible so that they can be used in STL algorithms

This can be quite fun. For example,

/(if_then_else_(--fsm_(m_SongIndex) > Int_<0>(),/*if clause*/
 show_playing_song, /*then clause*/
 (fsm_(m_SongIndex)=Int_<1>(),process_(EndPlay))/*else clause*/
)
)

means: if (fsm.SongIndex > 0, call show_playing_song else {fsm.SongIndex=1; process EndPlay on
fsm;}

A few examples are using these features:

• the iPod example introduced at the BoostCon09 has been rewritten [examples/iPodEuml.cpp] with
eUML (weak compilers please move on...)

• the iPodSearch example also introduced at the BoostCon09 has been rewritten [examples/
iPodSearchEuml.cpp] with eUML. In this example, you will also find some examples of STL
functor usage.

• A simpler timer [examples/SimpleTimer.cpp] example is a good starting point.

There is unfortunately a small catch. Defining a functor using MSM_EUML_METHOD or
MSM_EUML_FUNCTION will create a correct functor. Your own eUML functors written as

examples/iPodEuml.cpp
examples/iPodEuml.cpp
examples/iPodSearchEuml.cpp
examples/iPodSearchEuml.cpp
examples/iPodSearchEuml.cpp
examples/SimpleTimer.cpp
examples/SimpleTimer.cpp

Tutorial

50

described at the beginning of this section will also work well, except, for the moment, with the while_,
if_then_, if_then_else_ functions.

Phoenix-like STL support
eUML supports most C++ operators (except address-of). For example it is possible to write
event_(some_attribute)++ or [source_(some_bool) && fsm_(some_other_bool)]. But a programmer
needs more than operators in his daily programming. The STL is clearly a must have. Therefore, eUML
comes in with a lot of functors to further reduce the need for your own functors for the transition
table. For almost every algorithm or container method of the STL, a corresponding eUML function is
defined. Like Boost.Phoenix, “.” And “->” of call on objects are replaced by a functional programming
paradigm, for example:

• begin_(container), end_(container): return iterators of a container.

• empty_(container): returns container.empty()

• clear_(container): container.clear()

• transform_ : std::transform

In a nutshell, almost every STL method or algorithm is matched by a corresponding functor, which
can then be used in the transition table or state actions. The reference lists all eUML functions and the
underlying functor (so that this possibility is not reserved to eUML but also to the functor-based front-
end). The file structure of this Phoenix-like library matches the one of Boost.Phoenix. All functors for
STL algorithms are to be found in:

#include <msm/front/euml/algorithm.hpp>

The algorithms are also divided into sub-headers, matching the phoenix structure for simplicity:

#include < msm/front/euml/iteration.hpp>
#include < msm/front/euml/transformation.hpp>
#include < msm/front/euml/querying.hpp>

Container methods can be found in:

#include < msm/front/euml/container.hpp>

Or one can simply include the whole STL support (you will also need to include euml.hpp):

#include < msm/front/euml/stl.hpp>

A few examples (to be found in this tutorial [examples/iPodSearchEuml.cpp]):

• push_back_(fsm_(m_tgt_container),event_(m_song)): the state machine has an
attribute m_tgt_container of type std::vector<OneSong> and the event has an attribute m_song of
type OneSong. The line therefore pushes m_song at the end of m_tgt_container

• if_then_(state_(m_src_it) != end_(fsm_(m_src_container)),
process2_(OneSong(),*(state_(m_src_it)++))): the current state has an attribute
m_src_it (an iterator). If this iterator != fsm.m_src_container.end(), process OneSong on fsm, copy-
constructed from state.m_src_it which we post-increment

Writing actions with Boost.Phoenix (in development)
It is also possible to write actions, guards, state entry and exit actions using a reduced set of
Boost.Phoenix capabilities. This feature is still in development stage, so you might get here and there
some surprise. Simple cases, however, should work well. What will not work will be mixing of eUML
and Phoenix functors. Writing guards in one language and actions in another is ok though.

examples/iPodSearchEuml.cpp
examples/iPodSearchEuml.cpp

Tutorial

51

Phoenix also supports a larger syntax than what will ever be possible with eUML, so you can only use
a reduced set of phoenix's grammar. This is due to the nature of eUML. The run-time transition table
definition is translated to a type using Boost.Typeof. The result is a "normal" MSM transition table
made of functor types. As C++ does not allow mixing run-time and compile-time constructs, there
will be some limit (trying to instantiate a template class MyTemplateClass<i> where i is an int will
give you an idea). This means following valid Phoenix constructs will not work:

• literals

• function pointers

• bind

• ->*

MSM also provides placeholders which make more sense in its context than arg1.. argn:

• _event: the event triggering the transition

• _fsm: the state machine processing the event

• _source: the source state of the transition

• _target: the target state of the transition

• _state: for state entry/exit actions, the entry/exit state

Future versions of MSM will support Phoenix better. You can contribute by finding out cases which
do not work but should, so that they can be added.

Phoenix support is not activated by default. To activate it, add before any MSM header: #define
BOOST_MSM_EUML_PHOENIX_SUPPORT.

A simple example [examples/SimplePhoenix.cpp] shows some basic capabilities.

Back-end
There is, at the moment, one back-end. This back-end contains the library engine and defines the
performance and functionality trade-offs. The currently available back-end implements most of
the functionality defined by the UML 2.0 standard at very high runtime speed, in exchange for
longer compile-time. The runtime speed is due to a constant-time double-dispatch and self-adapting
capabilities allowing the framework to adapt itself to the features used by a given concrete state
machine. All unneeded features either disable themselves or can be manually disabled. See section
5.1 for a complete description of the run-to-completion algorithm.

Creation
MSM being divided between front and back-end, one needs to first define a front-end. Then, to create
a real state machine, the back-end must be declared:

typedef msm::back::state_machine<my_front_end> my_fsm;

We now have a fully functional state machine type. The next sections will describe what can be done
with it.

Starting and stopping a state machine
The start() method starts the state machine, meaning it will activate the initial state, which means
in turn that the initial state's entry behavior will be called. We need the start method because you do not

examples/SimplePhoenix.cpp
examples/SimplePhoenix.cpp

Tutorial

52

always want the entry behavior of the initial state to be called immediately but only when your state
machine is ready to process events. A good example of this is when you use a state machine to write
an algorithm and each loop back to the initial state is an algorithm call. Each call to start will make
the algorithm run once. The iPodSearch [examples/iPodSearch.cpp] example uses this possibility.

The stop() method works the same way. It will cause the exit actions of the currently active states(s)
to be called.

Both methods are actually not an absolute need. Not calling them will simply cause your first entry
or your last exit action not to be called.

Event dispatching
The main reason to exist for a state machine is to dispatch events. For MSM, events are objects of a
given event type. The object itself can contain data, but the event type is what decides of the transition
to be taken. For MSM, if some_event is a given type (a simple struct for example) and e1 and e2
concrete instances of some_event, e1 and e2 are equivalent, from a transition perspective. Of course,
e1 and e2 can have different values and you can use them inside actions. Events are dispatched as
const reference, so actions cannot modify events for obvious side-effect reasons. To dispatch an event
of type some_event, you can simply create one on the fly or instantiate if before processing:

my_fsm fsm; fsm.process_event(some_event());
some_event e1; fsm.process_event(e1)

Creating an event on the fly will be optimized by the compiler so the performance will not degrade.

Active state(s)
The backend also offers a way to know which state is active, though you will normally only need this
for debugging purposes. If what you need simply is doing something with the active state, internal
transitions or visitors are a better alternative. If you need to know what state is active, const int*
current_state() will return an array of state ids. Please refer to the internals section to know how state
ids are generated.

Serialization
A common need is the ability to save a state machine and restore it at a different time. MSM supports
this feature for the basic and functor front-ends, and in a more limited manner for eUML. MSM
supports boost::serialization out of the box (by offering a serialize function). Actually, for basic
serialization, you need not do much, a MSM state machine is serializable almost like any other type.
Without any special work, you can make a state machine remember its state, for example:

MyFsm fsm;
// write to archive
std::ofstream ofs("fsm.txt");
// save fsm to archive
{
 boost::archive::text_oarchive oa(ofs);
 // write class instance to archive
 oa << fsm;
}

Loading back is very similar:

MyFsm fsm;
{
 // create and open an archive for input
 std::ifstream ifs("fsm.txt");

examples/iPodSearch.cpp
examples/iPodSearch.cpp

Tutorial

53

 boost::archive::text_iarchive ia(ifs);
 // read class state from archive
 ia >> fsm;
}

This will (de)serialize the state machine itself but not the concrete states' data. This can be done on
a per-state basis to reduce the amount of typing necessary. To allow serialization of a concrete state,
provide a do_serialize typedef and implement the serialize function:

struct Empty : public msm::front::state<>
{
 // we want Empty to be serialized. First provide the typedef
 typedef int do_serialize;
 // then implement serialize
 template<class Archive>
 void serialize(Archive & ar, const unsigned int /* version */)
 {
 ar & some_dummy_data;
 }
 Empty():some_dummy_data(0){}
 int some_dummy_data;
};

You can also serialize data contained in the front-end class. Again, you need to provide the typedef
and implement serialize:

struct player_ : public msm::front::state_machine_def<player_>
{
 //we might want to serialize some data contained by the front-end
 int front_end_data;
 player_():front_end_data(0){}
 // to achieve this, provide the typedef
 typedef int do_serialize;
 // and implement serialize
 template<class Archive>
 void serialize(Archive & ar, const unsigned int)
 {
 ar & front_end_data;
 }
...
};

The saving of the back-end data (the current state(s)) is valid for all front-ends, so a front-end
written using eUML can be serialized. However, to serialize a concrete state, the macros like
BOOST_MSM_EUML_STATE cannot be used, so the state will have to be implemented by directly
inheriting from front::euml::euml_state.

The only limitiation is that the event queues cannot be serialized so serializing must be done in a stable
state, when no event is being processed. You can serialize during event processing only if using no
queue (deferred or event queue).

This example [examples/Serialize.cpp] shows a state machine which we serialize after processing an
event. The Empty state also has some data to serialize.

Base state type
Sometimes, one needs to customize states to avoid repetition and provide a common functionality, for
example in the form of a virtual method. You might also want to make your states polymorphic so
that you can call typeid on them for logging or debugging. It is also useful if you need a visitor, like

examples/Serialize.cpp
examples/Serialize.cpp

Tutorial

54

the next section will show. You will notice that all front-ends offer the possibility of adding a base
type. Note that all states and state machines must have the same base state, so this could reduce reuse.
For example, using the basic front end, you need to:

• Add the non-default base state in your msm::front::state<> definition, as first template argument
(except for interrupt_states for which it is the second argument, the first one being the event ending
the interrupt), for example, my_base_state being your new base state for all states in a given state
machine:

struct Empty : public msm::front::state<my_base_state>

Now, my_base_state is your new base state. If it has a virtual function, your
states become polymorphic. MSM also provides a default polymorphic base type,
msm::front::polymorphic_state

• Add the user-defined base state in the state machine frontend definition, as a second template
argument, for example:

struct player_ : public msm::front::state_machine<player_,my_base_state>

You can also ask for a state with a given id (which you might have gotten from current_state()) using
const base_state* get_state_by_id(int id) const where base_state is the one
you just defined. You can now do something polymorphically.

Visitor
In some cases, having a pointer-to-base of the currently active states is not enough. You might want
to call non-virtually a method of the currently active states. It will not be said that MSM forces the
virtual keyword down your throat!

To achieve this goal, MSM provides its own variation of a visitor pattern using the previously described
user-defined state technique. If you add to your user-defined base state an accept_sig typedef
giving the return value (unused for the moment) and parameters and provide an accept method with
this signature, calling visit_current_states will cause accept to be called on the currently active states.
Typically, you will also want to provide an empty default accept in your base state in order in order
not to force all your states to implement accept. For example your base state could be:

struct my_visitable_state
{
 // signature of the accept function
 typedef args<void> accept_sig;
 // we also want polymorphic states
 virtual ~my_visitable_state() {}
 // default implementation for states who do not need to be visited
 void accept() const {}
};

This makes your states polymorphic and visitable. In this case, accept is made const and takes no
argument. It could also be:

struct SomeVisitor {…};
struct my_visitable_state
{
 // signature of the accept function
 typedef args<void,SomeVisitor&> accept_sig;
 // we also want polymorphic states
 virtual ~my_visitable_state() {}
 // default implementation for states who do not need to be visited
 void accept(SomeVisitor&) const {}

Tutorial

55

};

And now, accept will take one argument (it could also be non-const). By default, accept takes
up to 2 arguments. To get more, set #define BOOST_MSM_VISITOR_ARG_SIZE to another value
before including state_machine.hpp. For example:

#define BOOST_MSM_VISITOR_ARG_SIZE 3
#include <boost/msm/back/state_machine.hpp>

Note that accept will be called on ALL active states and also automatically on sub-states of a
submachine.

Important warning: The method visit_current_states takes its parameter by value, so if the signature of
the accept function is to contain a parameter passed by reference, pass this parameter with a boost:ref/
cref to avoid undesired copies or slicing. So, for example, in the above case, call:

SomeVisitor vis; sm.visit_current_states(boost::ref(vis));

This example [examples/SM-2Arg.cpp] uses a visiting function with 2 arguments.

Flags
Flags is a MSM-only concept, supported by all front-ends, which base themselves on the functions:

template <class Flag> bool is_flag_active()
template <class Flag,class BinaryOp> bool is_flag_active()

These functions return true if the currently active state(s) support the Flag property. The first variant
ORs the result if there are several orthogonal regions, the second one expects OR or AND, for example:

my_fsm.is_flag_active<MyFlag>()
my_fsm.is_flag_active<MyFlag,my_fsm_type::Flag_OR>()

Please refer to the front-ends sections for usage examples.

Getting a state
It is sometimes necessary to have the client code get access to the states' data. After all, the states
are created once for good and hang around as long as the state machine does so why not use it? You
simply just need sometimes to get information about any state, even inactive ones. An example is if
you want to write a coverage tool and know how many times a state was visited. To get a state, use
the get_state method giving the state name, for example:

player::Stopped* tempstate = p.get_state<player::Stopped*>();

or

player::Stopped& tempstate2 = p.get_state<player::Stopped&>();

depending on your personal taste.

State machine constructor with arguments
You might want to define a state machine with a non-default constructor. For example, you might
want to write:

struct player_ : public msm::front::state_machine_def<player_>
{
 player_(int some_value){…}

examples/SM-2Arg.cpp
examples/SM-2Arg.cpp

Tutorial

56

};

This is possible, using the back-end as forwarding object:

typedef msm::back::state_machine<player_ > player; player p(3);

The back-end will call the corresponding front-end constructor upon creation.

You can pass arguments up to the value of the BOOST_MSM_CONSTRUCTOR_ARG_SIZE macro
(currently 5) arguments. Change this value before including any header if you need to overwrite the
default.

You can also pass arguments by reference (or const-reference) using boost::ref (or boost::cref):

struct player_ : public msm::front::state_machine_def<player_>
{
 player_(SomeType& t, int some_value){…}
};

typedef msm::back::state_machine<player_ > player;
SomeType data;
player p(boost::ref(data),3);

Normally, MSM default-constructs all its states or submachines. There are however cases where you
might not want this. An example is when you use a state machine as submachine, and this submachine
used the above defined constructors. You can add as first argument of the state machine constructor
an expression where existing states are passed and copied:

player p(back::states_ << state_1 << ... << state_n , boost::ref(data),3);

Where state_1..n are instances of some or all of the states of the state machine. Submachines being
state machines, this can recurse, for example, if Playing is a submachine containing a state Song1
having itself a constructor where some data is passed:

player p(back::states_ << Playing(back::states_ << Song1(some_Song1_data)) ,
 boost::ref(data),3);

It is also possible to replace a given state by a new instance at any time using set_states() and
the same syntax, for example:

p.set_states(back::states_ << state_1 << ... << state_n);

An example [examples/Constructor.cpp] making intensive use of this capability is provided.

Trading run-time speed for better compile-time / multi-
TU compilation

MSM is optimized for run-time speed at the cost of longer compile-time. This can become a problem
with older compilers and big state machines, especially if you don't really care about run-time speed
that much and would be satisfied by a performance roughly the same as most state machine libraries.
MSM offers a back-end policy to help there. But before you try it, if you are using a VC compiler,
deactivate the /Gm compiler option (default for debug builds). This option can cause builds to be 3
times longer... If the compile-time still is a problem, read further. MSM offers a policy which will
speed up compiling in two main cases:

• many transition conflicts

• submachines

examples/Constructor.cpp
examples/Constructor.cpp

Tutorial

57

The back-end msm::back::state_machine has a policy argument (first is the front-
end, then the history policy) defaulting to favor_runtime_speed. To switch to
favor_compile_time, which is declared in <msm/back/favor_compile_time.hpp>,
you need to:

• switch the policy to favor_compile_time for the main state machine (and possibly
submachines)

• move the submachine declarations into their own header which includes <msm/back/
favor_compile_time.hpp>

• add for each submachine a cpp file including your header and calling a macro, which generates
helper code, for example:

#include "mysubmachine.hpp"
BOOST_MSM_BACK_GENERATE_PROCESS_EVENT(mysubmachine)

• configure your compiler for multi-core compilation

You will now compile your state machine on as many cores as you have submachines, which will
greatly speed up the compilation if you factor your state machine into smaller submachines.

Independently, transition conflicts resolution will also be much faster.

This policy uses boost.any behind the hood, which means that we will lose one feature which MSM
offers with the default policy, event hierarchy. The following example takes our iPod example and
speeds up compile-time by using this technique. We have:

• our main state machine and main function [examples/iPod_distributed/iPod.cpp]

• PlayingMode moved to a separate header [examples/iPod_distributed/PlayingMode.hpp]

• a cpp for PlayingMode [examples/iPod_distributed/PlayingMode.cpp]

• MenuMode moved to a separate header [examples/iPod_distributed/MenuMode.hpp]

• a cpp for MenuMode [examples/iPod_distributed/MenuMode.cpp]

• events move to a separate header as all machines use it [examples/iPod_distributed/Events.hpp]

Compile-time state machine analysis
A MSM state machine being a metaprogram, it is only logical that cheking for the validity of a
concrete state machine happens compile-time. To this aim, using the compile-time graph library
mpl_graph [http://www.dynagraph.org/mpl_graph/] (delivered at the moment with MSM) from
Gordon Woodhull, MSM provides several compile-time checks:

• Check that orthogonal regions ar truly orthogonal.

• Check that all states are either reachable from the initial states or are explicit entries / pseudo-entry
states.

To make use of this feature, the back-end provides a policy (default is no analysis),
msm::back::mpl_graph_fsm_check. For example:

 typedef msm::back::state_machine< player_,msm::back::mpl_graph_fsm_check> player;

As MSM is now using Boost.Parameter to declare policies, the policy choice can be made at any
position after the front-end type (in this case player_).

In case an error is detected, a compile-time assertion is provoked.

examples/iPod_distributed/iPod.cpp
examples/iPod_distributed/iPod.cpp
examples/iPod_distributed/PlayingMode.hpp
examples/iPod_distributed/PlayingMode.hpp
examples/iPod_distributed/PlayingMode.cpp
examples/iPod_distributed/PlayingMode.cpp
examples/iPod_distributed/MenuMode.hpp
examples/iPod_distributed/MenuMode.hpp
examples/iPod_distributed/MenuMode.cpp
examples/iPod_distributed/MenuMode.cpp
examples/iPod_distributed/Events.hpp
examples/iPod_distributed/Events.hpp
http://www.dynagraph.org/mpl_graph/
http://www.dynagraph.org/mpl_graph/

Tutorial

58

This feature is not enabled by default because it has a non-neglectable compile-time cost. The
algorithm is linear if no explicit or pseudo entry states are found in the state machine, unfortunately
still O(number of states * number of entry states) otherwise. This will be improved in future versions
of MSM.

The same algorithm is also used in case you want to omit providing the region index in the explicit
entry / pseudo entry state declaration.

The author's advice is to enable the checks after any state machine structure change and disable it
again after sucessful analysis.

The following example [examples/TestErrorOrthogonality.cpp] provokes an assertion if one of the
first two lines of the transition table is used.

Enqueueing events for later processing
Calling process_event(Event const&) will immediately process the event with run-to-
completion semantics. You can also enqueue the events and delay their processing by calling
enqueue_event(Event const&) instead. Calling execute_queued_events() will then
process all enqueued events (in FIFO order).

You can query the queue size by calling get_message_queue_size().

Customizing the message queues
MSM uses by default a std::deque for its queues (one message queue for events generated
during run-to-completion or with enqueue_event, one for deferred events). Unfortunately, on
some STL implementations, it is a very expensive container in size and copying time. Should
this be a problem, MSM offers an alternative based on boost::circular_buffer. The policy is
msm::back::queue_container_circular. To use it, you need to provide it to the back-end definition:

 typedef msm::back::state_machine< player_,msm::back::queue_container_circular> player;

You can access the queues with get_message_queue and get_deferred_queue, both returning a
reference or a const reference to the queues themselves. Boost::circular_buffer is outside of the scope
of this documentation. What you will however need to define is the queue capacity (initially is 0) to
what you think your queue will at most grow, for example (size 1 is common):

 fsm.get_message_queue().set_capacity(1);

Policy definition with Boost.Parameter
MSM uses Boost.Parameter to allow easier definition of back::state_machine<> policy arguments (all
except the front-end). This allows you to define policy arguments (history, compile-time / run-time,
state machine analysis, container for the queues) at any position, in any number. For example:

 typedef msm::back::state_machine< player_,msm::back::mpl_graph_fsm_check> player;
 typedef msm::back::state_machine< player_,msm::back::AlwaysHistory> player;
 typedef msm::back::state_machine< player_,msm::back::mpl_graph_fsm_check,msm::back::AlwaysHistory> player;
 typedef msm::back::state_machine< player_,msm::back::AlwaysHistory,msm::back::mpl_graph_fsm_check> player;

Choosing when to switch active states
The UML Standard is silent about a very important question: when a transition fires, at which exact
point is the target state the new active state of a state machine? At the end of the transition? After
the source state has been left? What if an exception is thrown? The Standard considers that run-to-
completion means a transition completes in almost no time. But even this can be in some conditions a
very very long time. Consider the following example. We have a state machine representing a network

examples/TestErrorOrthogonality.cpp
examples/TestErrorOrthogonality.cpp

Tutorial

59

connection. We can be Connected and Disconnected. When we move from one state to another,
we send a (Boost) Signal to another entity. By default, MSM makes the target state as the new state
after the transition is completed. We want to send a signal based on a flag is_connected which is true
when in state Connected.

We are in state Disconnected and receive an event connect. The transition action will ask the
state machine is_flag_active<is_connected> and will get... false because we are still in
Disconnected. Hmm, what to do? We could queue the action and execute it later, but it means an
extra queue, more work and higher run-time.

MSM provides the possibility (in form of a policy) for a front-end to decide when the target state
becomes active. It can be:

• before the transition fires, if the guard will allow the transition to fire:
active_state_switch_before_transition

• after calling the exit action of the source state: active_state_switch_after_exit

• after the transition action is executed:
active_state_switch_after_transition_action

• after the entry action of the target state is executed (default):
active_state_switch_after_entry

The problem and the solution is shown for the functor-
front-end [examples/ActiveStateSetBeforeTransition.cpp] and eUML [examples/
ActivateStateBeforeTransitionEuml.cpp]. Removing
active_state_switch_before_transition will show the default state.

examples/ActiveStateSetBeforeTransition.cpp
examples/ActiveStateSetBeforeTransition.cpp
examples/ActiveStateSetBeforeTransition.cpp
examples/ActivateStateBeforeTransitionEuml.cpp
examples/ActivateStateBeforeTransitionEuml.cpp
examples/ActivateStateBeforeTransitionEuml.cpp

60

Chapter 4. Performance / Compilers
Tests were made on different PCs running Windows XP and Vista and compiled with VC9 SP1
or Ubuntu and compiled with g++ 4.2 and 4.3. For these tests, the same player state machine was
written using Boost.Statechart, as a state machine with only simple states [examples/SCSimple.cpp]
and as a state machine with a composite state [examples/SCComposite.cpp]. The same simple and
composite state machines are implemented with MSM with a standard frontend (simple) [examples/
MsmSimple.cpp](composite) [examples/MsmComposite.cpp], the simple one also with functors
[examples/MsmSimpleFunctors.cpp] and with eUML [examples/EumlSimple.cpp]. As these simple
machines need no terminate/interrupt states, no message queue and have no-throw guarantee on their
actions, the MSM state machines are defined with minimum functionality. Test machine is a Q6600
2.4GHz, Vista 64.

Speed
VC9:

• The simple test completes 90 times faster with MSM than with Boost.Statechart

• The composite test completes 25 times faster with MSM

gcc 4.2.3 (Ubuntu 8.04 in VMWare, same PC):

• The simple test completes 46 times faster with MSM

• The composite test completes 19 times faster with Msm

Executable size
There are some worries that MSM generates huge code. Is it true? The 2 compilers I tested disagree
with this claim. On VC9, the test state machines used in the performance section produce executables
of 14kB (for simple and eUML) and 21kB (for the composite). This includes the test code and
iostreams. By comparison, an empty executable with iostreams generated by VC9 has a size of 7kB.
Boost.Statechart generates executables of 43kB and 54kB. As a bonus, eUML comes for “free” in
terms of executable size. You even get a speed gain. With g++ 4.3, it strongly depends on the compiler
options (much more than VC). A good size state machine with –O3 can generate an executable of
600kB, and with eUML you can get to 1.5MB. Trying with –Os –s I come down to 18kB and 30kB for
the test state machines, while eUML will go down to 1MB (which is still big), so in this case eUML
does not come for free.

Supported compilers
For a current status, have a look at the regression tests [http://www.boost.org/development/tests/trunk/
developer/msm.html].

MSM was successfully tested with:

• VC8 (partly), VC9, VC10

• g++ 4.0.1 and higher

• Intel 10.1 and higher

• Clang 2.9

• Green Hills Software MULTI for ARM v5.0.5 patch 4416 (Simple and Composite tutorials)

examples/SCSimple.cpp
examples/SCSimple.cpp
examples/SCComposite.cpp
examples/SCComposite.cpp
examples/MsmSimple.cpp
examples/MsmSimple.cpp
examples/MsmSimple.cpp
examples/MsmComposite.cpp
examples/MsmComposite.cpp
examples/MsmSimpleFunctors.cpp
examples/MsmSimpleFunctors.cpp
examples/EumlSimple.cpp
examples/EumlSimple.cpp
http://www.boost.org/development/tests/trunk/developer/msm.html
http://www.boost.org/development/tests/trunk/developer/msm.html
http://www.boost.org/development/tests/trunk/developer/msm.html

Performance / Compilers

61

• Partial support for IBM compiler

VC8 and to some lesser extent VC9 suffer from a bug. Enabling the option "Enable Minimal
Rebuild" (/Gm) will cause much higher compile-time (up to three times with VC8!). This option being
activated per default in Debug mode, this can be a big problem.

Limitations
• Compilation times of state machines with > 80 transitions that are going to make you storm the

CFO's office and make sure you get a shiny octocore with 12GB RAM by next week, unless he's
interested in paying you watch the compiler agonize for hours... (Make sure you ask for dual 24"
as well, it doesn't hurt).

• eUML allows very long constructs but will also quickly increase your compile time on some
compilers (VC9, VC10) with buggy decltype support (I suspect some at least quadratic algorithms
there). Even g++ 4.4 shows some regression compared to 4.3 and will crash if the constructs become
too big.

• Need to overwrite the mpl::vector/list default-size-limit of 20 and fusion default vector size of 10
if more than 10 states found in a state machine

Compilers corner
Compilers are sometimes full of surprises and such strange errors happened in the course of the
development that I wanted to list the most fun for readers’ entertainment.

VC8:

template <class StateType>
typename ::boost::enable_if<
 typename ::boost::mpl::and_<
 typename ::boost::mpl::not_<
 typename has_exit_pseudo_states<StateType>::type
 >::type,
 typename ::boost::mpl::not_<
 typename is_pseudo_exit<StateType>::type
 >::type
 >::type,
 BaseState*>::type

I get the following error:

error C2770: invalid explicit template argument(s) for '`global namespace'::boost::enable_if<...>::...'

If I now remove the first “::” in ::boost::mpl , the compiler shuts up. So in this case, it is not possible
to follow Boost’s guidelines.

VC9:

• This one is my all times’ favorite. Do you know why the exit pseudo states are referenced in the
transition table with a “submachine::exit_pt” ? Because “exit” will crash the compiler. “Exit” is not
possible either because it will crash the compiler on one machine, but not on another (the compiler
was installed from the same disk).

• Sometimes, removing a policy crashes the compiler, so some versions are defining a dummy policy
called WorkaroundVC9.

• Typeof: While g++ and VC9 compile “standard” state machines in comparable times, Typeof (while
in both ways natively supported) seems to behave in a quadratic complexity with VC9 and VC10.

Performance / Compilers

62

• eUML: in case of a compiler crash, changing the order of state definitions (first states without entry
or exit) sometimes solves the problem.

g++ 4.x: Boring compiler, almost all is working almost as expected. Being not a language lawyer I
am unsure about the following “Typeof problem”. VC9 and g++ disagree on the question if you can
derive from the BOOST_TYPEOF generated type without first defining a typedef. I will be thankful
for an answer on this. I only found two ways to break the compiler:

• Add more eUML constructs until something explodes (especially with g++-4.4)

• The build_terminate function uses 2 mpl::push_back instead of mpl::insert_range because g++
would not accept insert_range.

You can test your compiler’s decltype implementation with the following stress test [examples/
CompilerStressTestEuml.cpp] and reactivate the commented-out code until the compiler crashes.

examples/CompilerStressTestEuml.cpp
examples/CompilerStressTestEuml.cpp
examples/CompilerStressTestEuml.cpp

63

Chapter 5. Questions & Answers, tips
Where should I define a state machine?: The tutorials are implemented in a simple cpp source file
for simplicity. I want to model dynamic behavior of a class as a state machine, how should I define
the state machine?

Answer: Usually you'll want to implement the state machine as an attribute of the class. Unfortunately,
a concrete state machine is a typedef, which cannot be forward-declared. This leaves you with two
possibilities:

• Provide the state machine definition inside the header class and contain an instance as attribute.
Simple, but with several drawbacks: using namespace directives are not advised, and compile-time
cost for all modules including the header.

• Keep the state machine as (shared) pointer to void inside the class definition [examples/
FsmAsPtr.hpp], and implement the state machine in the cpp file [examples/FsmAsPtr.cpp].
Minimum compile-time, using directives are okay, but the state machine is now located inside the
heap.

Question: on_entry gets as argument, the sent event. What event do I get when the state becomes
default-activated (because it is an initial state)?

Answer: To allow you to know that the state was default-activated, MSM generates a
boost::msm::InitEvent default event.

Question: Why do I see no call to no_transition in my submachine?

Answer: Because of the priority rule defined by UML. It says that in case of transition conflict, the
most inner state has a higher priority. So after asking the inner state, the containing composite has to
be also asked to handle the transition and could find a possible transition.

Question: Why do I get a compile error saying the compiler cannot convert to a
function ...Fsm::*(some_event)?

Answer: You probably defined a transition triggered by the event some_event, but used a guard/action
method taking another event.

Question: Why do I get a compile error saying something like “too few” or “too many” template
arguments?

Answer: You probably defined a transition in form of a a_row or g_row where you wanted just a _row
or the other way around. With Row, it could mean that you forgot a "none".

Question: Why do I get a very long compile error when I define more than 20 rows in the transition
table?

Answer: MSM uses Boost.MPL under the hood and this is the default maximum size. Please define
the following 3 macros before including any MSM headers:

#define BOOST_MPL_CFG_NO_PREPROCESSED_HEADERS
#define BOOST_MPL_LIMIT_VECTOR_SIZE 30 // or whatever you need
#define BOOST_MPL_LIMIT_MAP_SIZE 30 // or whatever you need

Question: Why do I get this error: ”error C2977: 'boost::mpl::vector' : too many template arguments”?

Answer: The first possibility is that you defined a transition table as, say, vector17 and have 18 entries.
The second is that you have 17 entries and have a composite state. Under the hood, MSM adds a row
for every event in the composite transition table. The third one is that you used a mpl::vector without
the number of entries but are close to the MPL default of 50 and have a composite, thus pushing you
above 50. Then you need mpl/vector60/70….hpp and a mpl/map60/70….hpp

examples/FsmAsPtr.hpp
examples/FsmAsPtr.hpp
examples/FsmAsPtr.hpp
examples/FsmAsPtr.cpp
examples/FsmAsPtr.cpp

Questions & Answers, tips

64

Question: Why do I get a very long compile error when I define more than 10 states in a state machine?

Answer: MSM uses Boost.Fusion under the hood and this is the default maximum size. Please define
the following macro before including any MSM headers:

#define FUSION_MAX_VECTOR_SIZE 20 // or whatever you need

65

Chapter 6. Internals
This chapter describes the internal machinery of the back-end, which can be useful for UML experts
but can be safely ignored for most users. For implementers, the interface between front- and back-
end is also described in detail.

Backend: Run To Completion
The back-end implements the following run-to completion algorithm:

• Check if one region of the concrete state machine is in a terminate or interrupt state. If yes, event
processing is disabled while the condition lasts (forever for a terminate pseudo-state, while active
for an interrupt pseudo-state).

• If the message queue feature is enabled and if the state machine is already processing an event, push
the currently processed event into the queue and end processing. Otherwise, remember that the state
machine is now processing an event and continue.

• If the state machine detected that no deferred event is used, skip this step. Otherwise, mark the first
deferred event from the deferred queue as active.

• Now start the core of event dispatching. If exception handling is activated, this will happen inside
a try/catch block and the front-end exception_caught is called if an exception occurs.

• The event is now dispatched in turn to every region, in the order defined by the initial state front-
end definition. This will, for every region, call the corresponding front-end transition definition (the
"row" or "Row" of the transition table).

• Without transition conflict, if for a given region a transition is possible, the guard condition is
checked. If it returns true, the transition processing continues and the current state's exit action is
called, followed by the transition action behavior and the new active state's entry behavior.

• With transition conflicts (several possible transitions, disambiguated by mutually exclusive guard
conditions), the guard conditions are tried in reverse order of their transition definition in the
transition table. The first one returning true selects its transition. Note that this is not defined by the
UML standard, which simply specifies that if the guard conditions are not mutually exclusive, the
state machine is ill-formed and the behaviour undefined. Relying on this implementation-specific
behaviour will make it harder for the developer to support another state machine framework.

• If at least one region processes the event, this event is seen as having been accepted. If not, the
library calls no_transition on the state machine for every contained region.

• If the currently active state is a submachine, the behaviour is slightly different. The UML standard
specifies that internal transitions have to be tried first, so the event is first dispatched to the
submachine. Only if the submachine does not accept the event are other (non internal) transitions
tried.

• This back-end supports simple states' and submachines' internal transitions. These are provided in
the state's internal_transition_table type. Transitions defined in this table are added at
the end of the main state machine's transition table, but with a lesser priority than the submachine's
transitions (defined in transition_table). This means, for simple states, that these transitions
have higher priority than non-internal transitions, conform to the UML standard which gives higher
priority to deeper-level transitions. For submachines, this is a non-standard addition which can help
make event processing faster by giving a chance to bypass subregion processing. With standard
UML, one would need to add a subregion only to process these internal transitions, which would
be slower.

• After the dispatching itself, the deferred event marked in step 3 (if any) now gets a chance of
processing.

Internals

66

• Then, events queued in the message queue also get a dispatching chance

• Finally, completion / anonymous transitions, if to be found in the transition table, also get their
dispatching chance.

This algorithm illustrates how the back-end configures itself at compile-time as much as possible.
Every feature not found in a given state machine definition is deactivated and has therefore no runtime
cost. Completion events, deferred events, terminate states, dispatching to several regions, internal
transitions are all deactivated if not used. User configuration is only for exception handling and
message queue necessary.

Frontend / Backend interface
The design of MSM tries to make front-ends and back-ends (later) to be as interchangeable as possible.
Of course, no back-end will ever implement every feature defined by any possible front-end and
inversely, but the goal is to make it as easy as possible to extend the current state of the library.

To achieve this, MSM divides the functionality between both sides: the front-end is a sort of user
interface and is descriptive, the back-end implements the state machine engine.

MSM being based on a transition table, a concrete state machine (or a given front-end) must provide
a transition_table. This transition table must be made of rows. And each row must tell what kind of
transition it is and implement the calls to the actions and guards. A state machine must also define its
regions (marked by initial states) And that is about the only constraints for front-ends. How the rows
are described is implementer's choice.

Every row must provide:

• A Source typedef indicating, well, the type of the source state.

• A Target typedef indicating, well, the type of the target state.

• A Evt typedef indicating the type of the event triggering the transition.

• A row_type_tag typedef indicating the type of the transition.

• Rows having a type requiring transition actions must provide a static function action_call
with the following signature: template <class Fsm,class SourceState,class
TargetState,class AllStates>

static void action_call (Fsm& fsm, Event const& evt, SourceState&,
TargetState&, AllStates&)

The function gets as parameters the (back-end) state machine, the event, source and target states
and a container (in the current back-end, a fusion::set) of all the states defined in the state machine.
For example, as the back-end has the front-end as basic class, action_call is simply defined
as (fsm.*action)(evt).

• Rows having a type requiring a guard must provide a static function guard_call with the
following signature:

template <class Fsm,class SourceState,class TargetState,class
AllStates>

static bool guard_call (Fsm&, Event const&, SourceState&,
TargetState&, AllStates&)

• The possible transition (row) types are:

• a_row_tag: a transition with actions and no guard

Internals

67

• g_row_type: a transition with a guard and no actions

• _row_tag: a transition without actions or guard

• row_tag: a transition with guard and actions

• a_irow_tag: an internal transition (defined inside the transition_table) with actions

• g_irow_tag: an internal transition (defined inside the transition_table) with guard

• irow_tag: an internal transition (defined inside the transition_table) with actions and
guards

• _irow_tag: an internal transition (defined inside the transition_table) without action or
guard. Due to higher priority for internal transitions, this is equivalent to a "ignore event"

• sm_a_i_row_tag: an internal transition (defined inside the internal_transition_table)
with actions

• sm_g_i_row_tag: an internal transition (defined inside the internal_transition_table)
with guard

• sm_i_row_tag: an internal transition (defined inside the internal_transition_table)
with actions and guards

• sm__i_row_tag: an internal transition (defined inside the internal_transition_table)
without action or guard. Due to higher priority for internal transitions, this is quivalent to a "ignore
event"

Furthermore, a front-end must provide the definition of states and state machines. State machine
definitions must provide (the implementer is free to provide it or let it be done by every concrete state
machine. Different MSM front-ends took one or the other approach):

• initial_state: This typedef can be a single state or a mpl container and provides the initial
states defining one or several orthogonal regions.

• transition_table: This typedef is a MPL sequence of transition rows.

• configuration: this typedef is a MPL sequence of known types triggering special behavior in
the back-end, for example if a concrete fsm requires a message queue or exception catching.

States and state machines must both provide a (possibly empty) definition of:

• flag_list: the flags being active when this state or state machine become the current state of
the fsm.

• deferred_events: events being automatically deferred when the state is the current state of
the fsm.

• internal_transition_table: the internal transitions of this state.

• on_entry and on_exit methods.

Generated state ids
Normally, one does not need to know the ids are generated for all the states of a state machine, unless
for debugging purposes, like the pstate function does in the tutorials in order to display the name of
the current state. This section will show how to automatically display typeid-generated names, but
these are not very readable on all platforms, so it can help to know how the ids are generated. The ids

Internals

68

are generated using the transition table, from the “Start” column up to down, then from the “Next”
column, up to down, as shown in the next image:

Stopped will get id 0, Open id 1, ErrorMode id 6 and SleepMode (seen only in the “Next” column) id
7. If you have some implicitly created states, like transition-less initial states or states created using
the explicit_creation typedef, these will be added as a source at the end of the transition table. If you
have submachine states, a row will be added for them at the end of the table, after the automatically or
explicitly created states, which can change their id. The next help you will need for debugging would
be to call the current_state method of the state_machine class, then the display_type helper to generate
a readable name from the id. If you do not want to go through the transition table to fill an array of
names, the library provides another helper, fill_state_names, which, given an array of sufficient size
(please see next section to know how many states are defined in the state machine), will fill it with
typeid-generated names.

Metaprogramming tools
We can find for the transition table more uses than what we have seen so far. Let's suppose you need
to write a coverage tool. A state machine would be perfect for such a job, if only it could provide some
information about its structure. Thanks to the transition table and Boost.MPL, it does.

What is needed for a coverage tool? You need to know how many states are defined in the state
machine, and how many events can be fired. This way you can log the fired events and the states
visited in the life of a concrete machine and be able to perform some coverage analysis, like “fired
65% of all possible events and visited 80% of the states defined in the state machine”. To achieve this,
MSM provides a few useful tools:

• generate_state_set<transition table>: returns a mpl::set of all the states defined in the table.

• generate_event_set<transition table>: returns a mpl::set of all the events defined in the table.

• using mpl::size<>::value you can get the number of elements in the set.

• display_type defines an operator() sending typeid(Type).name() to cout.

• fill_state_names fills an array of char const* with names of all states (found by typeid)

• using mpl::for_each on the result of generate_state_set and generate_event_set passing display_type
as argument will display all the states of the state machine.

Internals

69

• let's suppose you need to recursively find the states and events defined in the composite states and
thus also having a transition table. Calling recursive_get_transition_table<Composite> will return
you the transition table of the composite state, recursively adding the transition tables of all sub-state
machines and sub-sub...-sub-state machines. Then call generate_state_set or generate_event_set on
the result to get the full list of states and events.

An example [examples/BoostCon09Full.cpp] shows the tools in action.

examples/BoostCon09Full.cpp
examples/BoostCon09Full.cpp

70

Chapter 7. Acknowledgements
I am in debt to the following people who helped MSM along the way.

MSM v2
• Thanks to Dave Abrahams for managing the review

• Thanks to Eric Niebler for his patience correcting my grammar errors

• Special thanks to Joel de Guzman who gave me very good ideas at the BoostCon09. These ideas
were the starting point of the redesign. Any time again, Joel #

• Thanks to Richard O’Hara for making Green Hills bring a patch in less than 1 week, thus adding
one more compiler to the supported list.

• Big thanks to those who took the time to write a review: Franz Alt, David Bergman, Michael Caisse,
Barend Gehrels, Darryl Greene, Juraj Ivancic, Erik Nelson, Kenny Riddile.

• Thanks to Matt Calabrese, Juraj Ivancic, Adam Merz and Joseph Wu for reporting bugs.

• Thanks to Thomas Mistretta for providing an addition to the section "What do you actually do inside
actions / guards".

MSM v1
• The original version of this framework is based on the brilliant work of David Abrahams and

Aleksey Gurtovoy who laid down the base and the principles of the framework in their excellent
book, “C++ template Metaprogramming”. The implementation also makes heavy use of the
boost::mpl.

• Thanks to Jeff Flinn for his idea of the user-defined base state and his review which allowed MSM
to be presented at the BoostCon09.

• Thanks to my MSM v1 beta testers, Christoph Woskowski and Franz Alt for using the framework
with little documentation and to my private reviewer, Edouard Alligand

71

Chapter 8. Version history
From V2.21 to V2.22 (Boost 1.48)

• eUML: added easier event reprocessing: process(event_) and reprocess()

• Rewrite of internal transition tables. There were a few bugs (failing recursivity in internal transition
tables of sub-sub machines) and a missing feature (unused internal transition table of the main state
machine).

• Bugfixes

• Reverted favor_compile_time policy to Boost 1.46 state

• none event now is convertible from any other event

• eUML and pseudo exit states

• Fixed not working Flag_AND

• Fixed rare bugs causing multiple processing of the same event in a submachine whose transition
table contains this event and a base event of it.

• gcc warnings about unused variables

• Breaking change: the new internal transition table feature causes a minor breaking change. In a
submachine, the "Fsm" template parameter for guards / actions of an internal table declared using
internal_transition_table now is the submachine, not the higher-level state machine.
Internal transitions declared using internal rows in the higher-level state machine keep their behavior
(the "Fsm" parameter is the higher-level state machine). To sum up, the internal transition "Fsm"
parameter is the closest state machine containing this transition.

From V2.20 to V2.21 (Boost 1.47)
• Added a stop() method in the back-end.

• Added partial support for Boost.Phoenix functors in eUML

• Added the possibility to choose when state switching occurs.

• Bugfixes

• Trac 5117, 5253, 5533, 5573

• gcc warnings about unused variables

• better implemenation of favor_compile_time back-end policy

• bug with eUML and state construction

• incorrect eUML event and state macros

• incorrect event type passed to a direct entry state's on_entry action

• more examples

From V2.12 to V2.20 (Boost 1.46)
• Compile-time state machine analysis using mpl_graph:

Version history

72

• checking of region orthogonality.

• search for unreachable states.

• automatic region index search for pseudo entry or explicit entry states.

• Boost.Parameter interface definition for msm::back::state_machine<> template arguments.

• Possibility to provide a container for the event and deferred event queues. A policy
implementation based on a more efficient Boost.CircularBuffer is provided.

• msm::back::state_machine<>::is_flag_active method made const.

• added possibility to enqueue events for delayed processing.

• Bugfixes

• Trac 4926

• stack overflow using the Defer functor

• anonymous transition of a submachine not called for the initial state

From V2.10 to V2.12 (Boost 1.45)
• Support for serialization

• Possibility to use normal functors (from functor front-end) in eUML.

• New constructors where substates / submachines can be taken as arguments. This allows passing
arguments to the constructor of a submachine.

• Bugfixes

From V2.0 to V2.12 (Boost 1.44)
• New documentation

• Internal transitions. Either as part of the transition table or using a state's internal transition table

• increased dispatch and copy speed

• new row types for the basic front-end

• new eUML syntax, better attribute support, macros to ease developer's life. Even VC8 seems to
like it better.

• New policy for reduced compile-time at the cost of dispatch speed

• Support for base events

• possibility to choose the initial event

Part II. Reference

74

Table of Contents
9. eUML operators and basic helpers .. 75
10. Functional programming .. 78

75

Chapter 9. eUML operators and basic
helpers

The following table lists the supported operators:

Table 9.1. Operators and state machine helpers

eUML function / operator Description Functor

&& Calls lazily Action1&& Action2 And_

|| Calls lazily Action1|| Action2 Or_

! Calls lazily !Action1 Not_

!= Calls lazily Action1 != Action2 NotEqualTo_

== Calls lazily Action1 == Action2 EqualTo_

> Calls lazily Action1 > Action2 Greater_

>= Calls lazily Action1 >= Action2 Greater_Equal_

< Calls lazily Action1 < Action2 Less_

<= Calls lazily Action1 <= Action2 Less_Equal_

& Calls lazily Action1 & Action2 Bitwise_And_

| Calls lazily Action1 | Action2 Bitwise_Or_

^ Calls lazily Action1 ^ Action2 Bitwise_Xor_

-- Calls lazily --Action1 /
Action1--

Pre_Dec_ / Post_Dec_

++ Calls lazily ++Action1 /
Action1++

Pre_Inc_ / Post_Inc_

/ Calls lazily Action1 / Action2 Divides_

/= Calls lazily Action1 /= Action2 Divides_Assign_

* Calls lazily Action1 * Action2 Multiplies_

*= Calls lazily Action1 *= Action2 Multiplies_Assign_

+ (binary) Calls lazily Action1 + Action2 Plus_

+ (unary) Calls lazily +Action1 Unary_Plus_

+= Calls lazily Action1 += Action2 Plus_Assign_

- (binary) Calls lazily Action1 - Action2 Minus_

- (unary) Calls lazily -Action1 Unary_Minus_

-= Calls lazily Action1 -= Action2 Minus_Assign_

% Calls lazily Action1 % Action2 Modulus_

%= Calls lazily Action1 %= Action2 Modulus_Assign_

>> Calls lazily Action1 >> Action2 ShiftRight_

>>= Calls lazily Action1 >>=
Action2

ShiftRight_Assign_

<< Calls lazily Action1 << Action2 ShiftLeft_

<<= Calls lazily Action1 <<=
Action2

ShiftLeft_Assign_

[] (works on vector, map, arrays) Calls lazily Action1 [Action2] Subscript_

eUML operators and basic helpers

76

eUML function / operator Description Functor

if_then_else_(Condition,Action1,Action2)Returns either the result of
calling Action1 or the result of
calling Action2

If_Else_

if_then_(Condition,Action) Returns the result of calling
Action if Condition

If_Then_

while_(Condition, Body) While Condition(), calls Body().
Returns nothing

While_Do_

do_while_(Condition, Body) Calls Body() while Condition().
Returns nothing

Do_While_

for_(Begin,Stop,EndLoop,Body) Calls for(Begin;Stop;EndLoop)
{Body;}

For_Loop_

process_(Event [,fsm1] [,fsm2]
[,fsm3] [,fsm4])

Processes Event on the current
state machine (if no fsm
specified) or on up to 4
state machines returned by an
appropriate functor.

Process_

process2_(Event, Data [,fsm1]
[,fsm2] [,fsm3])

Processes Event on the current
state machine (if no fsm
specified) or on up to 2
state machines returned by an
appropriate functor. The event
is copy-constructed from what
Data() returns.

Process2_

is_flag_(Flag [,fsm]) Calls is_flag_active() on the
current state machine or the one
returned by calling fsm.

Get_Flag_

event_ [(attribute name)] Returns the current event (as
const reference)

GetEvent_

source_ [(attribute name)] Returns the source state of the
currently triggered transition (as
reference). If an attribute name is
provided, returns the attribute by
reference.

GetSource_

target_ [(attribute name)] Returns the target state of the
currently triggered transition (as
reference). If an attribute name is
provided, returns the attribute by
reference.

GetTarget_

state_ [(attribute name)] Returns the source state of
the currently active state (as
reference). Valid inside a state
entry/exit action. If an attribute
name is provided, returns the
attribute by reference.

GetState_

fsm_ [(attribute name)] Returns the current state
machine (as reference). Valid
inside a state entry/exit action or
a transition. If an attribute name
is provided, returns the attribute
by reference.

GetFsm_

eUML operators and basic helpers

77

eUML function / operator Description Functor

substate_(state_name [,fsm]) Returns (as reference) the state
state_name referenced in the
current state machine or the one
given as argument.

SubState_

To use these functions, you need to include:

#include <msm/front/euml/euml.hpp>

78

Chapter 10. Functional programming
To use these functions, you need to include:

#include <msm/front/euml/stl.hpp>

or the specified header in the following tables.

The following tables list the supported STL algorithms:

Table 10.1. STL algorithms

STL algorithms in querying.hpp Functor

find_(first, last, value) Find_

find_if_(first, last, value) FindIf_

lower_bound_(first, last, value [,op#]) LowerBound_

upper_bound_(first, last, value [,op#]) UpperBound_

equal_range_(first, last, value [,op#]) EqualRange_

binary_search_(first, last, value [,op#]) BinarySearch_

min_element_(first, last[,op#]) MinElement_

max_element_(first, last[,op#]) MaxElement_

adjacent_find_(first, last[,op#]) AdjacentFind_

find_end_(first1, last1, first2, last2 [,op #]) FindEnd_

find_first_of_(first1, last1, first2, last2 [,op #]) FindFirstOf_

equal_(first1, last1, first2 [,op #]) Equal_

search_(first1, last1, first2, last2 [,op #]) Search_

includes_(first1, last1, first2, last2 [,op #]) Includes_

lexicographical_compare_ (first1, last1, first2,
last2 [,op #])

LexicographicalCompare_

count_(first, last, value [,size]) Count_

count_if_(first, last, op # [,size]) CountIf_

distance_(first, last) Distance_

mismatch _(first1, last1, first2 [,op #]) Mismatch_

Table 10.2. STL algorithms

STL algorithms in iteration.hpp Functor

for_each_(first,last, unary op#) ForEach_

accumulate_first, last, init [,op#]) Accumulate_

Table 10.3. STL algorithms

STL algorithms in transformation.hpp Functor

copy_(first, last, result) Copy_

copy_backward_(first, last, result) CopyBackward_

reverse_(first, last) Reverse_

reverse_copy_(first, last , result) ReverseCopy_

remove_(first, last, value) Remove_

Functional programming

79

STL algorithms in transformation.hpp Functor

remove_if_(first, last , op#) RemoveIf_

remove_copy_(first, last , output, value) RemoveCopy_

remove_copy_if_(first, last, output, op#) RemoveCopyIf_

fill_(first, last, value) Fill_

fill_n_(first, size, value)# FillN_

generate_(first, last, generator#) Generate_

generate_(first, size, generator#)# GenerateN_

unique_(first, last [,op#]) Unique_

unique_copy_(first, last, output [,op#]) UniqueCopy_

random_shuffle_(first, last [,op#]) RandomShuffle_

rotate_copy_(first, middle, last, output) RotateCopy_

partition_ (first, last [,op#]) Partition_

stable_partition_ (first, last [,op#]) StablePartition_

stable_sort_(first, last [,op#]) StableSort_

sort_(first, last [,op#]) Sort_

partial_sort_(first, middle, last [,op#]) PartialSort_

partial_sort_copy_ (first, last, res_first, res_last
[,op#])

PartialSortCopy_

nth_element_(first, nth, last [,op#]) NthElement_

merge_(first1, last1, first2, last2, output [,op #]) Merge_

inplace_merge_(first, middle, last [,op#]) InplaceMerge_

set_union_(first1, last1, first2, last2, output [,op
#])

SetUnion_

push_heap_(first, last [,op #]) PushHeap_

pop_heap_(first, last [,op #]) PopHeap_

make_heap_(first, last [,op #]) MakeHeap_

sort_heap_(first, last [,op #]) SortHeap_

next_permutation_(first, last [,op #]) NextPermutation_

prev_permutation_(first, last [,op #]) PrevPermutation_

inner_product_(first1, last1, first2, init [,op1#]
[,op2#])

InnerProduct_

partial_sum_(first, last, output [,op#]) PartialSum_

adjacent_difference_(first, last, output [,op#]) AdjacentDifference_

replace_(first, last, old_value, new_value) Replace_

replace_if_(first, last, op#, new_value) ReplaceIf_

replace_copy_(first, last, result, old_value,
new_value)

ReplaceCopy_

replace_copy_if_(first, last, result, op#,
new_value)

ReplaceCopyIf_

rotate_(first, middle, last)# Rotate_

Functional programming

80

Table 10.4. STL container methods

STL container methods(common) in
container.hpp

Functor

container::reference front_(container) Front_

container::reference back_(container) Back_

container::iterator begin_(container) Begin_

container::iterator end_(container) End_

container::reverse_iterator rbegin_(container) RBegin_

container::reverse_iterator rend_(container) REnd_

void push_back_(container, value) Push_Back_

void pop_back_(container, value) Pop_Back_

void push_front_(container, value) Push_Front_

void pop_front_(container, value) Pop_Front_

void clear_(container) Clear_

size_type capacity_(container) Capacity_

size_type size_(container) Size_

size_type max_size_(container) Max_Size_

void reserve_(container, value) Reserve _

void resize_(container, value) Resize _

iterator insert_(container, pos, value) Insert_

void insert_(container , pos, first, last) Insert_

void insert_(container , pos, number, value) Insert_

void swap_(container , other_container) Swap_

void erase_(container , pos) Erase_

void erase_(container , first, last) Erase_

bool empty_(container) Empty_

Table 10.5. STL list methods

std::list methods in container.hpp Functor

void list_remove_(container, value) ListRemove_

void list_remove_if_(container, op#) ListRemove_If_

void list_merge_(container, other_list) ListMerge_

void list_merge_(container, other_list, op#) ListMerge_

void splice_(container, iterator, other_list) Splice_

void splice_(container, iterator, other_list,
iterator)

Splice_

void splice_(container, iterator, other_list, first,
last)

Splice_

void list_reverse_(container) ListReverse_

void list_unique_(container) ListUnique_

void list_unique_(container, op#) ListUnique_

void list_sort_(container) ListSort_

void list_sort_(container, op#) ListSort_

Functional programming

81

Table 10.6. STL associative container methods

Associative container methods in
container.hpp

Functor

iterator insert_(container, pos, value) Insert_

void insert_(container , first, last) Insert_

pair<iterator, bool> insert_(container , value) Insert_

void associative_erase_(container , pos) Associative_Erase_

void associative_erase_(container , first, last) Associative_Erase_

size_type associative_erase_(container , key) Associative_Erase_

iterator associative_find_(container , key) Associative_Find_

size_type associative_count_(container , key) AssociativeCount_

iterator associative_lower_bound_(container ,
key)

Associative_Lower_Bound_

iterator associative_upper_bound_(container ,
key)

Associative_Upper_Bound_

pair<iterator, iterator>
associative_equal_range_(container , key)

Associative_Equal_Range_

Table 10.7. STL pair

std::pair in container.hpp Functor

first_type first_(pair<T1, T2>) First_

second_type second_(pair<T1, T2>) Second_

Table 10.8. STL string

STL string method std::string method in
container.hpp

Functor

substr (size_type pos, size_type
size)

string substr_(container, pos,
length)

Substr_

int compare(string) int string_compare_(container,
another_string)

StringCompare_

int compare(char*) int string_compare_(container,
another_string)

StringCompare_

int compare(size_type pos,
size_type size, string)

int string_compare_(container,
pos, size, another_string)

StringCompare_

int compare (size_type pos,
size_type size, string, size_type
length)

int string_compare_(container,
pos, size, another_string, length)

StringCompare_

string& append(const string&) string& append_(container,
another_string)

Append_

string& append (charT*) string& append_(container,
another_string)

Append_

string& append (string ,
size_type pos, size_type size)

string& append_(container,
other_string, pos, size)

Append_

string& append (charT*,
size_type size)

string& append_(container,
another_string, length)

Append_

string& append (size_type size,
charT)

string& append_(container, size,
char)

Append_

Functional programming

82

STL string method std::string method in
container.hpp

Functor

string& append (iterator begin,
iterator end)

string& append_(container,
begin, end)

Append_

string& insert (size_type pos,
charT*)

string&
string_insert_(container, pos,
other_string)

StringInsert_

string& insert(size_type pos,
charT*,size_type n)

string&
string_insert_(container, pos,
other_string, n)

StringInsert_

string& insert(size_type
pos,size_type n, charT c)

string&
string_insert_(container, pos, n,
c)

StringInsert_

string& insert (size_type pos,
const string&)

string&
string_insert_(container, pos,
other_string)

StringInsert_

string& insert (size_type pos,
const string&, size_type pos1,
size_type n)

string&
string_insert_(container, pos,
other_string, pos1, n)

StringInsert_

string& erase(size_type pos=0,
size_type n=npos)

string& string_erase_(container,
pos, n)

StringErase_

string& assign(const string&) string&
string_assign_(container,
another_string)

StringAssign_

string& assign(const charT*) string&
string_assign_(container,
another_string)

StringAssign_

string& assign(const string&,
size_type pos, size_type n)

string&
string_assign_(container,
another_string, pos, n)

StringAssign_

string& assign(const charT*,
size_type n)

string&
string_assign_(container,
another_string, n)

StringAssign_

string& assign(size_type n,
charT c)

string&
string_assign_(container, n, c)

StringAssign_

string& assign(iterator first,
iterator last)

string&
string_assign_(container, first,
last)

StringAssign_

string& replace(size_type pos,
size_type n, const string&)

string&
string_replace_(container, pos,
n, another_string)

StringReplace_

string& replace(size_type pos,
size_type n, const charT*,
size_type n1)

string&
string_replace_(container, pos,
n, another_string, n1)

StringReplace_

string& replace(size_type pos,
size_type n, const charT*)

string&
string_replace_(container, pos,
n, another_string)

StringReplace_

string& replace(size_type pos,
size_type n, size_type n1, charT
c)

string&
string_replace_(container, pos,
n, n1, c)

StringReplace_

Functional programming

83

STL string method std::string method in
container.hpp

Functor

string& replace(iterator first,
iterator last, const string&)

string&
string_replace_(container, first,
last, another_string)

StringReplace_

string& replace(iterator first,
iterator last, const charT*,
size_type n)

string&
string_replace_(container, first,
last, another_string, n)

StringReplace_

string& replace(iterator first,
iterator last, const charT*)

string&
string_replace_(container, first,
last, another_string)

StringReplace_

string& replace(iterator first,
iterator last, size_type n, charT
c)

string&
string_replace_(container, first,
last, n, c)

StringReplace_

string& replace(iterator first,
iterator last, iterator f, iterator l)

string&
string_replace_(container, first,
last, f, l)

StringReplace_

const charT* c_str() const charT* c_str_(container) CStr_

const charT* data() const charT*
string_data_(container)

StringData_

size_type copy(charT* buf,
size_type n, size_type pos = 0)

size_type
string_copy_(container, buf, n,
pos); size_type
string_copy_(container, buf, n)

StringCopy_

size_type find(charT* s,
size_type pos, size_type n)

size_type
string_find_(container, s, pos, n)

StringFind_

size_type find(charT* s,
size_type pos=0)

size_type
string_find_(container, s, pos);
size_type
string_find_(container, s)

StringFind_

size_type find(const string& s,
size_type pos=0)

size_type
string_find_(container, s, pos)
size_type
string_find_(container, s)

StringFind_

size_type find(charT c,
size_type pos=0)

size_type
string_find_(container, c, pos)
size_type
string_find_(container, c)

StringFind_

size_type rfind(charT* s,
size_type pos, size_type n)

size_type
string_rfind_(container, s, pos,
n)

StringRFind_

size_type rfind(charT* s,
size_type pos=npos)

size_type
string_rfind_(container, s, pos);
size_type
string_rfind_(container, s)

StringRFind_

size_type rfind(const string& s,
size_type pos=npos)

size_type
string_rfind_(container, s, pos);
size_type
string_rfind_(container, s)

StringRFind_

size_type rfind(charT c,
size_type pos=npos)

size_type
string_rfind_(container, c, pos)

StringRFind_

Functional programming

84

STL string method std::string method in
container.hpp

Functor

size_type
string_rfind_(container, c)

size_type find_first_of(charT* s,
size_type pos, size_type n)

size_type
find_first_of_(container, s, pos,
n)

StringFindFirstOf_

size_type find_first_of (charT*
s, size_type pos=0)

size_type
find_first_of_(container, s,
pos); size_type
find_first_of_(container, s)

StringFindFirstOf_

size_type find_first_of (const
string& s, size_type pos=0)

size_type
find_first_of_(container, s,
pos); size_type
find_first_of_(container, s)

StringFindFirstOf_

size_type find_first_of (charT c,
size_type pos=0)

size_type
find_first_of_(container, c, pos)
size_type
find_first_of_(container, c)

StringFindFirstOf_

size_type
find_first_not_of(charT* s,
size_type pos, size_type n)

size_type
find_first_not_of_(container, s,
pos, n)

StringFindFirstNotOf_

size_type find_first_not_of
(charT* s, size_type pos=0)

size_type
find_first_not_of_(container, s,
pos); size_type
find_first_not_of_(container, s)

StringFindFirstNotOf_

size_type find_first_not_of
(const string& s, size_type
pos=0)

size_type
find_first_not_of_(container, s,
pos); size_type
find_first_not_of_(container, s)

StringFindFirstNotOf_

size_type find_first_not_of
(charT c, size_type pos=0)

size_type
find_first_not_of_(container, c,
pos); size_type
find_first_not_of_(container, c)

StringFindFirstNotOf_

size_type find_last_of(charT* s,
size_type pos, size_type n)

size_type
find_last_of_(container, s, pos,
n)

StringFindLastOf_

size_type find_last_of (charT* s,
size_type pos=npos)

size_type
find_last_of_(container, s, pos);
size_type
find_last_of_(container, s)

StringFindLastOf_

size_type find_last_of (const
string& s, size_type pos=npos)

size_type
find_last_of_(container, s, pos);
size_type
find_last_of_(container, s)

StringFindLastOf_

size_type find_last_of (charT c,
size_type pos=npos)

size_type
find_last_of_(container, c, pos);
size_type
find_last_of_(container, c)

StringFindLastOf_

size_type
find_last_not_of(charT* s,
size_type pos, size_type n)

size_type
find_last_not_of_(container, s,
pos, n)

StringFindLastNotOf_

Functional programming

85

STL string method std::string method in
container.hpp

Functor

size_type find_last_not_of
(charT* s, size_type pos=npos)

size_type
find_last_not_of_(container, s,
pos); size_type
find_last_of_(container, s)

StringFindLastNotOf_

size_type find_last_not_of
(const string& s, size_type
pos=npos)

size_type
find_last_not_of_(container, s,
pos); size_type
find_last_not_of_(container, s)

StringFindLastNotOf_

size_type find_last_not_of
(charT c, size_type pos=npos)

size_type
find_last_not_of_(container, c,
pos); size_type
find_last_not_of_(container, c)

StringFindLastNotOf_

Notes:

• #: algorithms requiring a predicate need to make them eUML compatible by wrapping them inside
a Predicate_ functor. For example, std::less<int> => Predicate_<std::less<int> >()

• #: If using the SGI STL implementation, these functors use the SGI return value

86

Name
Common headers — The common types used by front- and back-ends

msm/common.hpp
This header provides one type, wrap, which is an empty type whose only reason to exist is to be
cheap to construct, so that it can be used with mpl::for_each, as shown in the Metaprogramming book,
chapter 9.

 template <class Dummy> wrap{}; {
}

msm/row_tags.hpp
This header contains the row type tags which front-ends can support partially or totally. Please see the
Internals section for a description of the different types.

87

Name
Back-end — The back-end headers

msm/back/state_machine.hpp
This header provides one type, state_machine, MSM's state machine engine implementation.

 template <class Derived,class HistoryPolicy=NoHistory,class
 CompilePolicy=favor_runtime_speed> state_machine {
}

Template arguments

Derived

The name of the front-end state machine definition. All three front-ends are possible.

HistoryPolicy

The desired history. This can be: AlwaysHistory, NoHistory, ShallowHistory. Default is NoHistory.

CompilePolicy

The trade-off performance / compile-time. There are two predefined policies, favor_runtime_speed
and favor_compile_time. Default is favor_runtime_speed, best performance, longer compile-time. See
the backend.

methods

start

The start methods must be called before any call to process_event. It activates the entry action of the
initial state(s). This allows you to choose when a state machine can start. See backend.

 void start();

process_event

The event processing method implements the double-dispatch. Each call to this function with a new
event type instantiates a new dispatch algorithm and increases compile-time.

 template <class Event> HandledEnum
 process_event(Event const&);

current_state

Returns the ids of currently active states. You will typically need it only for debugging or logging
purposes.

 const int* current_state const();

get_state_by_id

Returns the state whose id is given. As all states of a concrete state machine share a common base
state, the return value is a base state. If the id corresponds to no state, a null pointer is returned.

 const BaseState* get_state_by_id const(int id);

is_contained

Helper returning true if the state machine is contained as a submachine of another state machine.

Back-end

88

 bool is_contained const();

get_state

Returns the required state of the state machine as a pointer. A compile error will occur if the state is
not to be found in the state machine.

 template <class State> State* get_state();

get_state

Returns the required state of the state machine as a reference. A compile error will occur if the state
is not to be found in the state machine.

 template <class State> State& get_state();

is_flag_active

Returns true if the given flag is currently active. A flag is active if the active state of one region is
tagged with this flag (using OR as BinaryOp) or active states of all regions (using AND as BinaryOp)

 template <class Flag,class BinaryOp> bool
 is_flag_active();

is_flag_active

Returns true if the given flag is currently active. A flag is active if the active state of one region is
tagged with this flag.

 template <class Flag> bool is_flag_active();

visit_current_states

Visits all active states and their substates. A state is visited using the accept method without
argument. The base class of all states must provide an accept_sig type.

 void visit_current_states();

visit_current_states

Visits all active states and their substates. A state is visited using the accept method with arguments.
The base class of all states must provide an accept_sig type defining the signature and thus the
number and type of the parameters.

 void visit_current_states(any-type param1, any-type param2,...);

defer_event

Defers the provided event. This method can be called only if at least one state defers an event
or if the state machine provides the activate_deferred_events(see example [examples/
Orthogonal-deferred2.cpp]) type either directly or using the deferred_events configuration of eUML
(configure_ << deferred_events)

 template <class Event> void defer_event(Event const&);

Types

nr_regions

The number of orthogonal regions contained in the state machine

examples/Orthogonal-deferred2.cpp
examples/Orthogonal-deferred2.cpp
examples/Orthogonal-deferred2.cpp

Back-end

89

entry_pt

This nested type provides the necessary typedef for entry point pseudostates.
state_machine<...>::entry_pt<state_name> is a transition's valid target inside the
containing state machine's transition table.

 entry_pt {
}

exit_pt

This nested type provides the necessary typedef for exit point pseudostates.
state_machine<...>::exit_pt<state_name> is a transition's valid source inside the
containing state machine's transition table.

 exit_pt {
}

direct

This nested type provides the necessary typedef for an explicit entry inside a submachine.
state_machine<...>::direct<state_name> is a transition's valid target inside the
containing state machine's transition table.

 direct {
}

stt

Calling state_machine<frontend>::stt returns a mpl::vector containing the transition table of the state
machine. This type can then be used with generate_state_set or generate_event_set.

args.hpp
This header provides one type, args. which provides the necessary types for a visitor implementation.

msm/back/history_policies.hpp
This header provides the out-of-the-box history policies supported by MSM. There are 3 such policies.

Every history policy must implement the following methods:

set_initial_states

This method is called by msm::back::state_machine when constructed. It gives the policy a chance to
save the ids of all initial states (passed as array).

void set_initial_states();

(int* const) ;

history_exit

This method is called by msm::back::state_machine when the submachine is exited. It gives the policy
a chance to remember the ids of the last active substates of this submachine (passed as array).

void history_exit();

(int* const) ;

Back-end

90

history_entry

This method is called by msm::back::state_machine when the submachine is entered. It gives the policy
a chance to set the active states according to the policy's aim. The policy gets as parameter the event
which activated the submachine and returns an array of active states ids.

template <class Event> int* const history_exit();

(Event const&) ;

Out-of-the-box policies:

NoHistory

This policy is the default used by state_machine. No active state of a submachine is remembered and
at every new activation of the submachine, the initial state(s) are activated.

AlwaysHistory

This policy is a non-UML-standard extension. The active state(s) of a submachine is (are) always
remembered at every new activation of the submachine.

ShallowHistory

This policy activates the active state(s) of a submachine if the event is found in the policy's event list.

msm/back/default_compile_policy.hpp
This header contains the definition of favor_runtime_speed. This policy has two settings:

• Submachines dispatch faster because their transitions are added into their containing machine's
transition table instead of simply forwarding events.

• It solves transition conflicts at compile-time

msm/back/favor_compile_time.hpp
This header contains the definition of favor_compile_time. This policy has two settings:

• Submachines dispatch is slower because all events, even those with no dispatch chance, are
forwarded to submachines. In exchange, no row is added into the containing machine's transition
table, which reduces compile-time.

• It solves transition conflicts at run-time.

msm/back/metafunctions.hpp
This header contains metafunctions for use by the library. Three metafunctions can be useful for the
user:

• generate_state_set< stt >: generates the list of all states referenced by the transition
table stt. If stt is a recursive table (generated by recursive_get_transition_table), the
metafunction finds recursively all states of the submachines. A non-recursive table can be obtained
with some_backend_fsm::stt.

• generate_event_set< stt>: generates the list of all events referenced by the transition
table stt. If stt is a recursive table (generated by recursive_get_transition_table), the

Back-end

91

metafunction finds recursively all events of the submachines. A non-recursive table can be obtained
with some_backend_fsm::stt.

• recursive_get_transition_table<fsm>: recursively extends the transition table of the
state machine fsm with tables from the submachines.

msm/back/tools.hpp
This header contains a few metaprogramming tools to get some information out of a state machine.

fill_state_names

attributes

fill_state_names has for attribute:

• char const** m_names: an already allocated array of const char* where the typeid-generated
names of a state machine states will be witten.

constructor

 char const** names_to_fill(char const** names_to_fill);

usage

fill_state_names is made for use in a mpl::for_each iterating on a state list and writing inside a pre-
allocated array the state names. Example:

typedef some_fsm::stt Stt;
typedef msm::back::generate_state_set<Stt>::type all_states; //states
static char const* state_names[mpl::size<all_states>::value];
// array to fill with names
// fill the names of the states defined in the state machine
mpl::for_each<all_states,boost::msm::wrap<mpl::placeholders::_1> >
 (msm::back::fill_state_names<Stt>(state_names));
// display all active states
for (unsigned int i=0;i<some_fsm::nr_regions::value;++i)
{
 std::cout << " -> "
 << state_names[my_fsm_instance.current_state()[i]]
 << std::endl;
}

get_state_name

attributes

get_state_name has for attributes:

• std::string& m_name: the return value of the iteration

• int m_state_id: the searched state's id

constructor

The constructor takes as argument a reference to the string to fill with the state name and the id which
must be searched.

 string& name_to_fill,int state_id(string& name_to_fill,int state_id);

Back-end

92

usage

This type is made for the same search as in the previous example, using a mpl::for_each to iterate on
states. After the iteration, the state name reference has been set.

display_type

attributes

none

usage

Reusing the state list from the previous example, we can output all state names:

mpl::for_each<all_states,boost::msm::wrap<mpl::placeholders::_1>
>(msm::back::display_type ());

93

Name
Front-end — The front-end headers

msm/front/common_states.hpp
This header contains the predefined types to serve as base for states or state machines:

• default_base_state: non-polymorphic empty type.

• polymorphic_state: type with a virtual destructor, which makes all states polymorphic.

msm/front/completion_event.hpp
This header contains one type, none. This type has several meanings inside a transition table:

• as action or guard: that there is no action or guard

• as target state: that the transition is an internal transition

• as event: the transition is an anonymous (completion) transition

msm/front/functor_row.hpp
This header implements the functor front-end's transitions and helpers.

Row

definition

 template <class Source,class Event,class Target,class
 Action,class Guard> Row {
}

tags

row_type_tag is defined differently for every specialization:

• all 5 template parameters means a normal transition with action and guard: typedef row_tag
row_type_tag;

• Row<Source,Event,Target,none,none> a normal transition without action or guard: typedef
_row_tag row_type_tag;

• Row<Source,Event,Target,Action,none> a normal transition without guard: typedef
a_row_tag row_type_tag;

• Row<Source,Event,Target,none,Guard> a normal transition without action: typedef
g_row_tag row_type_tag;

• Row<Source,Event,none,Action,none> an internal transition without guard: typedef
a_irow_tag row_type_tag;

• Row<Source,Event,none,none,Guard> an internal transition without action: typedef
g_irow_tag row_type_tag;

• Row<Source,Event,none,none,Guard> an internal transition with action and guard: typedef
irow_tag row_type_tag;

• Row<Source,Event,none,none,none> an internal transition without action or guard: typedef
_irow_tag row_type_tag;

Front-end

94

methods

Like any other front-end, Row implements the two necessary static functions for action and guard call.
Each function receives as parameter the (deepest-level) state machine processsing the event, the event
itself, the source and target states and all the states contained in a state machine.

template <class Fsm,class SourceState,class TargetState, class
AllStates> static void action_call();

(Fsm& fsm,Event const& evt,SourceState&,TargetState,AllStates&) ;

template <class Fsm,class SourceState,class TargetState, class
AllStates> static bool guard_call();

(Fsm& fsm,Event const& evt,SourceState&,TargetState,AllStates&) ;

Internal

definition

 template <class Event,class Action,class Guard>
 Internal {
}

tags

row_type_tag is defined differently for every specialization:

• all 3 template parameters means an internal transition with action and guard: typedef
sm_i_row_tag row_type_tag;

• Internal<Event,none,none> an internal transition without action or guard: typedef
sm__i_row_tag row_type_tag;

• Internal<Event,Action,none> an internal transition without guard: typedef sm_a_i_row_tag
row_type_tag;

• Internal<Event,none,Guard> an internal transition without action: typedef sm_g_i_row_tag
row_type_tag;

methods

Like any other front-end, Internal implements the two necessary static functions for action and guard
call. Each function receives as parameter the (deepest-level) state machine processsing the event, the
event itself, the source and target states and all the states contained in a state machine.

template <class Fsm,class SourceState,class TargetState, class
AllStates> static void action_call();

(Fsm& fsm,Event const& evt,SourceState&,TargetState,AllStates&) ;

template <class Fsm,class SourceState,class TargetState, class
AllStates> static bool guard_call();

(Fsm& fsm,Event const& evt,SourceState&,TargetState,AllStates&) ;

ActionSequence_

This functor calls every element of the template Sequence (which are also callable functors) in turn.
It is also the underlying implementation of the eUML sequence grammar (action1,action2,...).

Front-end

95

definition

 template <class Sequence> ActionSequence_ {
}

methods

This helper functor is made for use in a transition table and in a state behavior and therefore implements
an operator() with 3 and with 4 arguments:

template <class Evt,class Fsm,class SourceState,class TargetState>
operator()();

Evt const& ,Fsm& ,SourceState& ,TargetState& ;

template <class Evt,class Fsm,class State> operator()();

Evt const&, Fsm&, State&;

Defer

definition

 Defer {
}

methods

This helper functor is made for use in a transition table and therefore implements an operator() with
4 arguments:

template <class Evt,class Fsm,class SourceState,class TargetState>
operator()();

Evt const&, Fsm& , SourceState&, TargetState&;

msm/front/internal_row.hpp
This header implements the internal transition rows for use inside an internal_transition_table. All
these row types have no source or target state, as the backend will recognize internal transitions from
this internal_transition_table.

methods

Like any other front-end, the following transition row types implements the two necessary static
functions for action and guard call. Each function receives as parameter the (deepest-level) state
machine processsing the event, the event itself, the source and target states and all the states contained
in a state machine.

template <class Fsm,class SourceState,class TargetState, class
AllStates> static void action_call();

(Fsm& fsm,Event const& evt,SourceState&,TargetState,AllStates&) ;

template <class Fsm,class SourceState,class TargetState, class
AllStates> static bool guard_call();

(Fsm& fsm,Event const& evt,SourceState&,TargetState,AllStates&) ;

Front-end

96

a_internal

definition

This is an internal transition with an action called during the transition.

 template< class Event, class CalledForAction, void
 (CalledForAction::*action)(Event const&)>
 a_internal {
}

template parameters

• Event: the event triggering the internal transition.

• CalledForAction: the type on which the action method will be called. It can be either a state of the
containing state machine or the state machine itself.

• action: a pointer to the method which CalledForAction provides.

g_internal

This is an internal transition with a guard called before the transition and allowing the transition if
returning true.

definition

 template< class Event, class CalledForGuard, bool
 (CalledForGuard::*guard)(Event const&)>
 g_internal {
}

template parameters

• Event: the event triggering the internal transition.

• CalledForGuard: the type on which the guard method will be called. It can be either a state of the
containing state machine or the state machine itself.

• guard: a pointer to the method which CalledForGuard provides.

internal

This is an internal transition with a guard called before the transition and allowing the transition if
returning true. It also calls an action called during the transition.

definition

 template< class Event, class CalledForAction, void
 (CalledForAction::*action)(Event const&), class
 CalledForGuard, bool (CalledForGuard::*guard)(Event const&)>
 internal {
}

template parameters

• Event: the event triggering the internal transition

• CalledForAction: the type on which the action method will be called. It can be either a state of the
containing state machine or the state machine itself.

Front-end

97

• action: a pointer to the method which CalledForAction provides.

• CalledForGuard: the type on which the guard method will be called. It can be either a state of the
containing state machine or the state machine itself.

• guard: a pointer to the method which CalledForGuard provides.

_internal

This is an internal transition without action or guard. This is equivalent to an explicit "ignore event".

definition

 template< class Event > _internal {
}

template parameters

• Event: the event triggering the internal transition.

msm/front/row2.hpp
This header contains the variants of row2, which are an extension of the standard row transitions for
use in the transition table. They offer the possibility to define action and guard not only in the state
machine, but in any state of the state machine. They can also be used in internal transition tables
through their irow2 variants.

methods

Like any other front-end, the following transition row types implements the two necessary static
functions for action and guard call. Each function receives as parameter the (deepest-level) state
machine processsing the event, the event itself, the source and target states and all the states contained
in a state machine.

template <class Fsm,class SourceState,class TargetState, class
AllStates> static void action_call();

(Fsm& fsm,Event const& evt,SourceState&,TargetState,AllStates&) ;

template <class Fsm,class SourceState,class TargetState, class
AllStates> static bool guard_call();

(Fsm& fsm,Event const& evt,SourceState&,TargetState,AllStates&) ;

_row2

This is a transition without action or guard. The state machine only changes active state.

definition

 template< class Source, class Event, class Target >
 _row2 {
}

template parameters

• Event: the event triggering the transition.

• Source: the source state of the transition.

• Target: the target state of the transition.

Front-end

98

a_row2

This is a transition with action and without guard.

definition

 template< class Source, class Event, class Target,
 {
}

 class CalledForAction, void
 (CalledForAction::*action)(Event const&) > _row2 {
}

template parameters

• Event: the event triggering the transition.

• Source: the source state of the transition.

• Target: the target state of the transition.

• CalledForAction: the type on which the action method will be called. It can be either a state of the
containing state machine or the state machine itself.

• action: a pointer to the method which CalledForAction provides.

g_row2

This is a transition with guard and without action.

definition

 template< class Source, class Event, class Target,
 {
}

 class CalledForGuard, bool (CalledForGuard::*guard)(Event
 const&) > _row2 {
}

template parameters

• Event: the event triggering the transition.

• Source: the source state of the transition.

• Target: the target state of the transition.

• CalledForGuard: the type on which the guard method will be called. It can be either a state of the
containing state machine or the state machine itself.

• guard: a pointer to the method which CalledForGuard provides.

row2

This is a transition with guard and action.

definition

 template< class Source, class Event, class Target,

Front-end

99

 {
}

 class CalledForAction, void
 (CalledForAction::*action)(Event const&), {
}

 class CalledForGuard, bool (CalledForGuard::*guard)(Event
 const&) > _row2 {
}

template parameters

• Event: the event triggering the transition.

• Source: the source state of the transition.

• Target: the target state of the transition.

• CalledForAction: the type on which the action method will be called. It can be either a state of the
containing state machine or the state machine itself.

• action: a pointer to the method which CalledForAction provides.

• CalledForGuard: the type on which the guard method will be called. It can be either a state of the
containing state machine or the state machine itself.

• guard: a pointer to the method which CalledForGuard provides.

a_irow2

This is an internal transition for use inside a transition table, with action and without guard.

definition

 template< class Source, class Event, {
}

 class CalledForAction, void
 (CalledForAction::*action)(Event const&) > _row2 {
}

template parameters

• Event: the event triggering the transition.

• Source: the source state of the transition.

• CalledForAction: the type on which the action method will be called. It can be either a state of the
containing state machine or the state machine itself.

• action: a pointer to the method which CalledForAction provides.

g_irow2

This is an internal transition for use inside a transition table, with guard and without action.

definition

 template< class Source, class Event, {

Front-end

100

}

 class CalledForGuard, bool (CalledForGuard::*guard)(Event
 const&) > _row2 {
}

template parameters

• Event: the event triggering the transition.

• Source: the source state of the transition.

• CalledForGuard: the type on which the guard method will be called. It can be either a state of the
containing state machine or the state machine itself.

• guard: a pointer to the method which CalledForGuard provides.

irow2

This is an internal transition for use inside a transition table, with guard and action.

definition

 template< class Source, class Event, {
}

 class CalledForAction, void
 (CalledForAction::*action)(Event const&), {
}

 class CalledForGuard, bool (CalledForGuard::*guard)(Event
 const&) > _row2 {
}

template parameters

• Event: the event triggering the transition.

• Source: the source state of the transition.

• CalledForAction: the type on which the action method will be called. It can be either a state of the
containing state machine or the state machine itself.

• action: a pointer to the method which CalledForAction provides.

• CalledForGuard: the type on which the guard method will be called. It can be either a state of the
containing state machine or the state machine itself.

• guard: a pointer to the method which CalledForGuard provides.

msm/front/state_machine_def.hpp
This header provides the implementation of the basic front-end. It contains one type,
state_machine_def

state_machine_def definition

This type is the basic class for a basic (or possibly any other) front-end. It provides the standard row
types (which includes internal transitions) and a default implementation of the required methods and
typedefs.

Front-end

101

 template <class Derived,class BaseState =
 default_base_state> state_machine_def {
}

typedefs

• flag_list: by default, no flag is set in the state machine

• deferred_events: by default, no event is deferred.

• configuration: by default, no configuration customization is done.

row methods

Like any other front-end, the following transition row types implements the two necessary static
functions for action and guard call. Each function receives as parameter the (deepest-level) state
machine processsing the event, the event itself, the source and target states and all the states contained
in a state machine (ignored).

template <class Fsm,class SourceState,class TargetState, class
AllStates> static void action_call();

(Fsm& fsm,Event const& evt,SourceState&,TargetState,AllStates&) ;

template <class Fsm,class SourceState,class TargetState, class
AllStates> static bool guard_call();

(Fsm& fsm,Event const& evt,SourceState&,TargetState,AllStates&) ;

a_row

This is a transition with action and without guard.

template< class Source, class Event, class Target, void
(Derived::*action)(Event const&) > a_row

• Event: the event triggering the transition.

• Source: the source state of the transition.

• Target: the target state of the transition.

• action: a pointer to the method provided by the concrete front-end (represented by Derived).

g_row

This is a transition with guard and without action.

template< class Source, class Event, class Target, bool
(Derived::*guard)(Event const&) > g_row

• Event: the event triggering the transition.

• Source: the source state of the transition.

• Target: the target state of the transition.

• guard: a pointer to the method provided by the concrete front-end (represented by Derived).

row

This is a transition with guard and action.

Front-end

102

template< class Source, class Event, class Target, void
(Derived::*action)(Event const&), bool (Derived::*guard)(Event
const&) > row

• Event: the event triggering the transition.

• Source: the source state of the transition.

• Target: the target state of the transition.

• action: a pointer to the method provided by the concrete front-end (represented by Derived).

• guard: a pointer to the method provided by the concrete front-end (represented by Derived).

_row

This is a transition without action or guard. The state machine only changes active state.

template< class Source, class Event, class Target > _row

• Event: the event triggering the transition.

• Source: the source state of the transition.

• Target: the target state of the transition.

a_irow

This is an internal transition for use inside a transition table, with action and without guard.

template< class Source, class Event, void (Derived::*action)(Event
const&) > a_irow

• Event: the event triggering the transition.

• Source: the source state of the transition.

• action: a pointer to the method provided by the concrete front-end (represented by Derived).

g_irow

This is an internal transition for use inside a transition table, with guard and without action.

template< class Source, class Event, bool (Derived::*guard)(Event
const&) > g_irow

• Event: the event triggering the transition.

• Source: the source state of the transition.

• guard: a pointer to the method provided by the concrete front-end (represented by Derived).

irow

This is an internal transition for use inside a transition table, with guard and action.

template< class Source, class Event, void (Derived::*action)(Event
const&), bool (Derived::*guard)(Event const&) > irow

• Event: the event triggering the transition.

• Source: the source state of the transition.

Front-end

103

• action: a pointer to the method provided by the concrete front-end (represented by Derived).

• guard: a pointer to the method provided by the concrete front-end (represented by Derived).

_irow

This is an internal transition without action or guard. As it does nothing, it means "ignore event".

template< class Source, class Event > _irow

• Event: the event triggering the transition.

• Source: the source state of the transition.

methods

state_machine_def provides a default implementation in case of an event which cannot be
processed by a state machine (no transition found). The implementation is using a BOOST_ASSERT
so that the error will only be noticed in debug mode. Overwrite this method in your implementation
to change the behavior.

template <class Fsm,class Event> static void no_transition();

(Event const& ,Fsm&, int state) ;

state_machine_def provides a default implementation in case an exception is thrown by a state
(entry/exit) or transition (action/guard) behavior. The implementation is using a BOOST_ASSERT so
that the error will only be noticed in debug mode. Overwrite this method in your implementation to
change the behavior. This method will be called only if exception handling is not deactivated (default)
by defining has_no_message_queue.

template <class Fsm,class Event> static void exception_caught();

(Event const& ,Fsm&, std::exception&) ;

msm/front/states.hpp
This header provides the different states (except state machines) for the basic front-end (or mixed with
other front-ends).

types

This header provides the following types:

no_sm_ptr

deprecated: default policy for states. It means that states do not need to save a pointer to their containing
state machine.

sm_ptr

deprecated: state policy. It means that states need to save a pointer to their containing state machine.
When seeing this flag, the back-end will call set_sm_ptr(fsm*) and give itself as argument.

state

Basic type for simple states. Inherit from this type to define a simple state. The first argument is needed
if you want your state (and all others used in a concrete state machine) to inherit a basic type for
logging or providing a common behavior.

Front-end

104

 template<class Base = default_base_state,class
 SMPtrPolicy = no_sm_ptr> state {
}

terminate_state

Basic type for terminate states. Inherit from this type to define a terminate state. The first argument is
needed if you want your state (and all others used in a concrete state machine) to inherit a basic type
for logging or providing a common behavior.

 template<class Base = default_base_state,class
 SMPtrPolicy = no_sm_ptr> terminate_state {
}

interrupt_state

Basic type for interrupt states. Interrupt states prevent any further event handling until
EndInterruptEvent is sent. Inherit from this type to define a terminate state. The first argument is the
name of the event ending the interrupt. The second argument is needed if you want your state (and
all others used in a concrete state machine) to inherit a basic type for logging or providing a common
behavior.

 template<class EndInterruptEvent,class Base =
 default_base_state, {
}

 class SMPtrPolicy = no_sm_ptr>
 interrupt_state {
}

explicit_entry

Inherit from this type in addition to the desired state type to enable this state for direct entering.
The template parameter gives the region id of the state (regions are numbered in the order of the
initial_state typedef).

 template <int ZoneIndex=-1> explicit_entry {
}

entry_pseudo_state

Basic type for entry pseudo states. Entry pseudo states are an predefined entry into a submachine
and connect two transitions. The first argument is the id of the region entered by this state (regions
are numbered in the order of the initial_state typedef). The second argument is needed if you
want your state (and all others used in a concrete state machine) to inherit a basic type for logging
or providing a common behavior.

 template<int RegionIndex=-1,class Base =
 default_base_state, {
}

 class SMPtrPolicy = no_sm_ptr>
 entry_pseudo_state {
}

exit_pseudo_state

Basic type for exit pseudo states. Exit pseudo states are an predefined exit from a submachine and
connect two transitions. The first argument is the name of the event which will be "thrown" out of the

Front-end

105

exit point. This event does not need to be the same as the one sent by the inner region but must be
convertible from it. The second argument is needed if you want your state (and all others used in a
concrete state machine) to inherit a basic type for logging or providing a common behavior.

 template<class Event,class Base =
 default_base_state, {
}

 class SMPtrPolicy = no_sm_ptr>
 exit_pseudo_state {
}

msm/front/euml/euml.hpp
This header includes all of eUML except the STL functors.

msm/front/euml/stl.hpp
This header includes all the functors for STL support in eUML. These tables show a full description.

msm/front/euml/algorithm.hpp
This header includes all the functors for STL algorithms support in eUML. These tables show a full
description.

msm/front/euml/iteration.hpp
This header includes iteration functors for STL support in eUML. This tables shows a full description.

msm/front/euml/querying.hpp
This header includes querying functors for STL support in eUML. This tables shows a full description.

msm/front/euml/transformation.hpp
This header includes transformation functors for STL support in eUML. This tables shows a full
description.

msm/front/euml/container.hpp
This header includes container functors for STL support in eUML (functors calling container
methods). This tables shows a full description. It also provides npos for strings.

Npos_<container type>

Functor returning npos for transition or state behaviors. Like all constants, only the functor form exists,
so parenthesis are necessary. Example:

string_find_(event_(m_song),Char_<'S'>(),Size_t_<0>()) !=
Npos_<string>() // compare result of string::find with npos

msm/front/euml/stt_grammar.hpp
This header provides the transition table grammars. This includes internal transition tables.

Front-end

106

functions

build_stt

The function build_stt evaluates the grammar-conform expression as parameter. It returns a transition
table, which is a mpl::vector of transitions (rows) or, if the expression is ill-formed (does not match
the grammar), the type invalid_type, which will lead to a compile-time static assertion when this
transition table is passed to a state machine.

template<class Expr> [mpl::vector<...> /
msm::front::euml::invalid_type] build_stt();

Expr const& expr;

build_internal_stt

The function build_internal_stt evaluates the grammar-conform expression as parameter. It returns a
transition table, which is a mpl::vector of transitions (rows) or, if the expression is ill-formed (does
not match the grammar), the type invalid_type, which will lead to a compile-time static assertion
when this transition table is passed to a state machine.

template<class Expr> [mpl::vector<...> /
msm::front::euml::invalid_type] build_internal_stt();

Expr const& expr;

grammars

transition table

The transition table accepts the following grammar:

Stt := Row | (Stt ',' Stt)
Row := (Target '==' (SourcePlusEvent)) /* first syntax*/
 | ((SourcePlusEvent) '==' Target) /* second syntax*/
 | (SourcePlusEvent) /* internal transitions */
SourcePlusEvent := (BuildSource '+' BuildEvent)/* standard transition*/
 | (BuildSource) /* anonymous transition */
BuildSource := state_tag | (state_tag '/' Action) | (state_tag '[' Guard ']')
 | (state_tag '[' Guard ']' '/' Action)
BuildEvent := event_tag | (event_tag '/' Action) | (event_tag '[' Guard ']')
 | (event_tag '[' Guard ']' '/' Action)

The grammars Action and Guard are defined in state_grammar.hpp and guard_grammar.hpp
respectively. state_tag and event_tag are inherited from euml_state (or other state variants) and
euml_event respectively. For example, following declarations are possible:

target == source + event [guard] / action,
source + event [guard] / action == target,
source + event [guard] / (action1,action2) == target,
target == source + event [guard] / (action1,action2),
target == source + event,
source + event == target,
target == source + event [guard],
source + event [guard] == target,
target == source + event / action,
source + event /action == target,
source / action == target, /*anonymous transition*/
target == source / action, /*anonymous transition*/
source + event /action, /* internal transition*/

Front-end

107

internal transition table

The internal transition table accepts the following grammar:

IStt := BuildEvent | (IStt ',' IStt)

BuildEvent being defined for both internal and standard transition tables.

msm/front/euml/guard_grammar.hpp
This header contains the Guard grammar used in the previous section. This grammar is long but
pretty simple:

Guard := action_tag | (Guard '&&' Guard)
 | (Guard '||' Guard) | ... /* operators*/
 | (if_then_else_(Guard,Guard,Guard)) | (function (Action,...Action))

Most C++ operators are supported (address-of is not). With function is meant any eUML
predefined function or any self-made (using MSM_EUML_METHOD or MSM_EUML_FUNCTION).
Action is a grammar defined in state_grammar.hpp.

msm/front/euml/state_grammar.hpp
This header provides the grammar for actions and the different grammars and functions to build states
using eUML.

action grammar

Like the guard grammar, this grammar supports relevant C++ operators and eUML functions:

Action := action_tag | (Action '+' Action)
 | ('--' Action) | ... /* operators*/
 | if_then_else_(Guard,Action,Action) | if_then_(Action)
 | while_(Guard,Action)
 | do_while_(Guard,Action) | for_(Action,Guard,Action,Action)
 | (function(Action,...Action))
ActionSequence := Action | (Action ',' Action)

Relevant operators are: ++ (post/pre), -- (post/pre), dereferencing, + (unary/binary), - (unary/binary),
*, /, %, &(bitwise), | (bitwise), ^(bitwise), +=, -=, *=, /=, %=, <<=, >>=, <<, >>, =, [].

attributes

This grammar is used to add attributes to states (or state machines) or events: It evaluates to a
fusion::map. You can use two forms:

• attributes_ << no_attributes_

• attributes_ << attribute_1 << ... << attribute_n

Attributes can be of any default-constructible type (fusion requirement).

configure

This grammar also has two forms:

• configure_ << no_configure_

• configure_ << type_1 << ... << type_n

Front-end

108

This grammar is used to create inside one syntax:

• flags: configure_ << some_flag where some_flag inherits from
euml_flag<some_flag> or is defined using BOOST_MSM_EUML_FLAG.

• deferred events: configure_ << some_event where some_event inherits from
euml_event<some_event> or is defined using BOOST_MSM_EUML_EVENT or
BOOST_MSM_EUML_EVENT_WITH_ATTRIBUTES.

• configuration (message queue, manual deferring, exception handling): configure_ <<
some_config where some_config inherits from euml_config<some_config>. At the
moment, three predefined objects exist (in msm//front/euml/common.hpp):

• no_exception: disable catching exceptions

• no_msg_queue: disable message queue

• deferred_events: manually enable handling of deferred events

initial states

The grammar to define initial states for a state machine is: init_
<< state_1 << ... << state_n where state_1...state_n
inherit from euml_state or is defined using BOOST_MSM_EUML_STATE,
BOOST_MSM_EUML_INTERRUPT_STATE, BOOST_MSM_EUML_TERMINATE_STATE,
BOOST_MSM_EUML_EXPLICIT_ENTRY_STATE, BOOST_MSM_EUML_ENTRY_STATE or
BOOST_MSM_EUML_EXIT_STATE.

functions

build_sm

This function has several overloads. The return type is not relevant to you as only decltype (return
type) is what one needs.

Defines a state machine without entry or exit:

template <class StateNameTag,class Stt,class Init>
func_state_machine<...> build_sm();

Stt ,Init;

Defines a state machine with entry behavior:

template <class StateNameTag,class Stt,class Init,class Expr1>
func_state_machine<...> build_sm();

Stt ,Init,Expr1 const&;

Defines a state machine with entry and exit behaviors:

template <class StateNameTag,class Stt,class Init,class Expr1, class
Expr2> func_state_machine<...> build_sm();

Stt ,Init,Expr1 const&,Expr2 const&;

Defines a state machine with entry, exit behaviors and attributes:

template <class StateNameTag,class Stt,class Init,class Expr1, class
Expr2, class Attributes> func_state_machine<...> build_sm();

Stt ,Init,Expr1 const&, Expr2 const&, Attributes const&;

Front-end

109

Defines a state machine with entry, exit behaviors, attributes and configuration (deferred events, flags):

template <class StateNameTag,class Stt,class Init,class Expr1, class
Expr2, class Attributes, class Configure> func_state_machine<...>
build_sm();

Stt ,Init,Expr1 const&, Expr2 const&, Attributes const&, Configure
const&;

Defines a state machine with entry, exit behaviors, attributes, configuration (deferred events, flags)
and a base state:

template <class StateNameTag,class Stt,class Init,class Expr1,
class Expr2, class Attributes, class Configure, class Base>
func_state_machine<...> build_sm();

Stt ,Init,Expr1 const&, Expr2 const&, Attributes const&, Configure
const&, Base;

Notice that this function requires the extra parameter class StateNameTag to disambiguate state
machines having the same parameters but still being different.

build_state

This function has several overloads. The return type is not relevant to you as only decltype (return
type) is what one needs.

Defines a simple state without entry or exit:

func_state<class StateNameTag,...> build_state();

;

Defines a simple state with entry behavior:

template <class StateNameTag,class Expr1> func_state<...>
build_state();

Expr1 const&;

Defines a simple state with entry and exit behaviors:

template <class StateNameTag,class Expr1, class Expr2>
func_state<...> build_state();

Expr1 const&,Expr2 const&;

Defines a simple state with entry, exit behaviors and attributes:

template <class StateNameTag,class Expr1, class Expr2, class
Attributes> func_state<...> build_state();

Expr1 const&, Expr2 const&, Attributes const&;

Defines a simple state with entry, exit behaviors, attributes and configuration (deferred events, flags):

template <class StateNameTag,class Expr1, class Expr2, class
Attributes, class Configure> func_state<...> build_state();

Expr1 const&, Expr2 const&, Attributes const&, Configure const&;

Defines a simple state with entry, exit behaviors, attributes, configuration (deferred events, flags) and
a base state:

Front-end

110

template <class StateNameTag,class Expr1, class Expr2, class
Attributes, class Configure, class Base> func_state<...>
build_state();

Expr1 const&, Expr2 const&, Attributes const&, Configure const&,
Base;

Notice that this function requires the extra parameter class StateNameTag to disambiguate states
having the same parameters but still being different.

build_terminate_state

This function has the same overloads as build_state.

build_interrupt_state

This function has several overloads. The return type is not relevant to you as only decltype (return
type) is what one needs.

Defines an interrupt state without entry or exit:

template <class StateNameTag,class EndInterruptEvent>
func_state<...> build_interrupt_state();

EndInterruptEvent const&;

Defines an interrupt state with entry behavior:

template <class StateNameTag,class EndInterruptEvent,class Expr1>
func_state<...> build_interrupt_state();

EndInterruptEvent const&,Expr1 const&;

Defines an interrupt state with entry and exit behaviors:

template <class StateNameTag,class EndInterruptEvent,class Expr1,
class Expr2> func_state<...> build_interrupt_state();

EndInterruptEvent const&,Expr1 const&,Expr2 const&;

Defines an interrupt state with entry, exit behaviors and attributes:

template <class StateNameTag,class EndInterruptEvent,class
Expr1, class Expr2, class Attributes> func_state<...>
build_interrupt_state();

EndInterruptEvent const&,Expr1 const&, Expr2 const&, Attributes
const&;

Defines an interrupt state with entry, exit behaviors, attributes and configuration (deferred events,
flags):

template <class StateNameTag,class EndInterruptEvent,class Expr1,
class Expr2, class Attributes, class Configure> func_state<...>
build_interrupt_state();

EndInterruptEvent const&,Expr1 const&, Expr2 const&, Attributes
const&, Configure const&;

Defines an interrupt state with entry, exit behaviors, attributes, configuration (deferred events, flags)
and a base state:

Front-end

111

template <class StateNameTag,class EndInterruptEvent,class Expr1,
class Expr2, class Attributes, class Configure, class Base>
func_state<...> build_interrupt_state();

EndInterruptEvent const&,Expr1 const&, Expr2 const&, Attributes
const&, Configure const&, Base;

Notice that this function requires the extra parameter class StateNameTag to disambiguate states
having the same parameters but still being different.

build_entry_state

This function has several overloads. The return type is not relevant to you as only decltype (return
type) is what one needs.

Defines an entry pseudo state without entry or exit:

template <class StateNameTag,int RegionIndex> entry_func_state<...>
build_entry_state();

;

Defines an entry pseudo state with entry behavior:

template <class StateNameTag,int RegionIndex,class Expr1>
entry_func_state<...> build_entry_state();

Expr1 const&;

Defines an entry pseudo state with entry and exit behaviors:

template <class StateNameTag,int RegionIndex,class Expr1, class
Expr2> entry_func_state<...> build_entry_state();

Expr1 const&,Expr2 const&;

Defines an entry pseudo state with entry, exit behaviors and attributes:

template <class StateNameTag,int RegionIndex,class Expr1, class
Expr2, class Attributes> entry_func_state<...> build_entry_state();

Expr1 const&, Expr2 const&, Attributes const&;

Defines an entry pseudo state with entry, exit behaviors, attributes and configuration (deferred events,
flags):

template <class StateNameTag,int RegionIndex,class Expr1, class
Expr2, class Attributes, class Configure> entry_func_state<...>
build_entry_state();

Expr1 const&, Expr2 const&, Attributes const&, Configure const&;

Defines an entry pseudo state with entry, exit behaviors, attributes, configuration (deferred events,
flags) and a base state:

template <class StateNameTag,int RegionIndex,class Expr1, class
Expr2, class Attributes, class Configure, class Base>
entry_func_state<...> build_entry_state();

Expr1 const&, Expr2 const&, Attributes const&, Configure const&,
Base;

Front-end

112

Notice that this function requires the extra parameter class StateNameTag to disambiguate states
having the same parameters but still being different.

build_exit_state

This function has several overloads. The return type is not relevant to you as only decltype (return
type) is what one needs.

Defines an exit pseudo state without entry or exit:

template <class StateNameTag,class Event> exit_func_state<...>
build_exit_state();

Event const&;

Defines an exit pseudo state with entry behavior:

template <class StateNameTag,class Event,class Expr1>
exit_func_state<...> build_exit_state();

Event const&,Expr1 const&;

Defines an exit pseudo state with entry and exit behaviors:

template <class StateNameTag,class Event,class Expr1, class Expr2>
exit_func_state<...> build_exit_state();

Event const&,Expr1 const&,Expr2 const&;

Defines an exit pseudo state with entry, exit behaviors and attributes:

template <class StateNameTag,class Event,class Expr1, class Expr2,
class Attributes> exit_func_state<...> build_exit_state();

Event const&,Expr1 const&, Expr2 const&, Attributes const&;

Defines an exit pseudo state with entry, exit behaviors, attributes and configuration (deferred events,
flags):

template <class StateNameTag,class Event,class Expr1, class
Expr2, class Attributes, class Configure> exit_func_state<...>
build_exit_state();

Event const&,Expr1 const&, Expr2 const&, Attributes const&, Configure
const&;

Defines an exit pseudo state with entry, exit behaviors, attributes, configuration (deferred events, flags)
and a base state:

template <class StateNameTag,class Event,class Expr1, class Expr2,
class Attributes, class Configure, class Base> exit_func_state<...>
build_exit_state();

Event const&,Expr1 const&, Expr2 const&, Attributes const&, Configure
const&, Base;

Notice that this function requires the extra parameter class StateNameTag to disambiguate states
having the same parameters but still being different.

build_explicit_entry_state

This function has the same overloads as build_entry_state and explicit_entry_func_state as return type.

Front-end

113

msm/front/euml/common.hpp

types

euml_event

The basic type for events with eUML.

 template <class EventName> euml_event; {
}

struct play : euml_event<play>{};

euml_state

The basic type for states with eUML. You will usually not use
this type directly as it is easier to use BOOST_MSM_EUML_STATE,
BOOST_MSM_EUML_INTERRUPT_STATE, BOOST_MSM_EUML_TERMINATE_STATE,
BOOST_MSM_EUML_EXPLICIT_ENTRY_STATE, BOOST_MSM_EUML_ENTRY_STATE or
BOOST_MSM_EUML_EXIT_STATE.

 template <class StateName> euml_state; {
}

You can however use this type directly if you want to provide your state with extra functions or provide
entry or exit behaviors without functors, for example:

struct Empty : public msm::front::state<> , public euml_state<Empty>
{
 void foo() {...}
 template <class Event,class Fsm>
 void on_entry(Event const& evt,Fsm& fsm){...}
};

euml_flag

The basic type for flags with eUML.

 template <class FlagName> euml_flag; {
}

struct PlayingPaused: euml_flag<PlayingPaused>{};

euml_action

The basic type for state or transition behaviors and guards with eUML.

 template <class AcionName> euml_action; {
}

struct close_drawer : euml_action<close_drawer>
{
 template <class Fsm,class Evt,class SourceState,class TargetState>
 void operator()(Evt const& , Fsm&, SourceState& ,TargetState&) {...}
};

Or, as state entry or exit behavior:

struct Playing_Entry : euml_action<Playing_Entry>

Front-end

114

{
 template <class Event,class Fsm,class State>
 void operator()(Event const&,Fsm& fsm,State&){...}
};

euml_config

The basic type for configuration possibilities with eUML.

 template <class ConfigName> euml_config; {
}

You normally do not use this type directly but instead the instances of predefined configuration:

• no_exception: disable catching exceptions

• no_msg_queue: disable message queue. The message queue allows you to send an event for
procesing while in an event processing.

• deferred_events: manually enable handling of deferred events

invalid_type

Type returned by grammar parsers if the grammar is invalid. Seeing this type will result in a static
assertion.

no_action

Placeholder type for use in entry/exit or transition behaviors, which does absolutely nothing.

source_

Generic object or function for the source state of a given transition:

• as object: returns by reference the source state of a transition, usually to be used by another function
(usually one created by MSM_EUML_METHOD or MSM_EUML_FUNCTION).

Example:

some_user_function_(source_)

• as function: returns by reference the attribute passed as parameter.

Example:

source_(m_counter)++

target_

Generic object or function for the target state of a given transition:

• as object: returns by reference the target state of a transition, usually to be used by another function
(usually one created by MSM_EUML_METHOD or MSM_EUML_FUNCTION).

Example:

some_user_function_(target_)

• as function: returns by reference the attribute passed as parameter.

Example:

Front-end

115

target_(m_counter)++

state_

Generic object or function for the state of a given entry / exit behavior. state_ means source_ while in
the context of an exit behavior and target_ in the context of an entry behavior:

• as object: returns by reference the current state, usually to be used by another function (usually one
created by MSM_EUML_METHOD or MSM_EUML_FUNCTION).

Example:

some_user_function_(state_) // calls some_user_function on the current state

• as function: returns by reference the attribute passed as parameter.

Example:

state_(m_counter)++

event_

Generic object or function for the event triggering a given transition (valid in a transition behavior,
as well as in state entry/exit behaviors):

• as object: returns by reference the event of a transition, usually to be used by another function
(usually one created by MSM_EUML_METHOD or MSM_EUML_FUNCTION).

Example:

some_user_function_(event_)

• as function: returns by reference the attribute passed as parameter.

Example:

event_(m_counter)++

fsm_

Generic object or function for the state machine containing a given transition:

• as object: returns by reference the event of a transition, usually to be used by another function
(usually one created by MSM_EUML_METHOD or MSM_EUML_FUNCTION).

Example:

some_user_function_(fsm_)

• as function: returns by reference the attribute passed as parameter.

Example:

fsm_(m_counter)++

substate_

Generic object or function returning a state of a given state machine:

• with 1 parameter: returns by reference the state passed as parameter, usually to be used by another
function (usually one created by MSM_EUML_METHOD or MSM_EUML_FUNCTION).

Front-end

116

Example:

some_user_function_(substate_(my_state))

• with 2 parameters: returns by reference the state passed as first parameter from the state
machine passed as second parameter, usually to be used by another function (usually one created
by MSM_EUML_METHOD or MSM_EUML_FUNCTION). This makes sense when used in
combination with attribute_.

Example (equivalent to the previous example):

some_user_function_(substate_(my_state,fsm_))

attribute_

Generic object or function returning the attribute passed (by name) as second parameter of the thing
passed as first (a state, event or state machine). Example:

attribute_(substate_(my_state),cd_name_attribute)++

True_

Functor returning true for transition or state behaviors. Like all constants, only the functor form exists,
so parenthesis are necessary. Example:

if_then_(True_(),/* some action always called*/)

False_

Functor returning false for transition or state behaviors. Like all constants, only the functor form exists,
so parenthesis are necessary. Example:

if_then_(False_(),/* some action never called */)

Int_<int value>

Functor returning an integer value for transition or state behaviors. Like all constants, only the functor
form exists, so parenthesis are necessary. Example:

target_(m_ringing_cpt) = Int_<RINGING_TIME>() // RINGING_TIME is a constant

Char_<char value>

Functor returning a char value for transition or state behaviors. Like all constants, only the functor
form exists, so parenthesis are necessary. Example:

// look for 'S' in event.m_song
[string_find_(event_(m_song),Char_<'S'>(),Size_t_<0>()) != Npos_<string>()]

Size_t_<size_t value>

Functor returning a size_t value for transition or state behaviors. Like all constants, only the functor
form exists, so parenthesis are necessary. Example:

substr_(event_(m_song),Size_t_<1>()) // returns a substring of event.m_song

String_ < mpl::string >

Functor returning a string for transition or state behaviors. Like all constants, only the functor form
exists, so parenthesis are necessary. Requires boost >= 1.40 for mpl::string.

Front-end

117

Example:

// adds "Let it be" to fsm.m_src_container
push_back_(fsm_(m_src_container), String_<mpl::string<'Let','it ','be'> >())

Predicate_ < some_stl_compatible_functor >

This functor eUML-enables a STL functor (for use in an algorithm). This is necessary because all
what is in the transition table must be a eUML terminal.

Example:

//equivalent to:
//std::accumulate(fsm.m_vec.begin(),fsm.m_vec.end(),1,std::plus<int>())== 1
accumulate_(begin_(fsm_(m_vec)),end_(fsm_(m_vec)),Int_<1>(),
 Predicate_<std::plus<int> >()) == Int_<1>())

process_

This function sends an event to up to 4 state machines by calling process_event on them:

• process_(some_event) : processes an event in the current (containing) state machine.

• process_(some_event [,fsm1...fsm4]) : processes the same event in the 1-4 state
machines passed as argument.

process2_

This function sends an event to up to 3 state machines by calling process_event on them and
copy-constructing the event from the data passed as second parameter:

• process2_(some_event, some_data) : processes an event in the current (containing)
state machine.

• process2_(some_event, some_data [,fsm1...fsm3]) : processes the same event
in the 1-3 state machines passed as argument.

Example:

// processes NotFound on current state machine,
// copy-constructed with event.m_song
process2_(NotFound,event_(m_song))

With the following definitions:

BOOST_MSM_EUML_DECLARE_ATTRIBUTE(std::string,m_song)//declaration of m_song
NotFound (const string& data) // copy-constructor of NotFound

is_flag_

This function tells if a flag is active by calling is_flag_active on the current state machine or
one passed as parameter:

• is_flag_(some_flag) : calls is_flag_active on the current (containing) state machine.

• is_flag_(some_flag, some_fsm) :calls is_flag_active on the state machine.passed
as argument.

defer_

This object defers the current event by calling defer_event on the current state machine. Example:

Front-end

118

Empty() + play() / defer_

explicit_(submachine-name,state-name)

Used as transition's target, causes an explicit entry into the given state from the given submachine.
Several explicit_ as targets, separated by commas, means a fork. The state must have been declared
as such using BOOST_MSM_EUML_EXPLICIT_ENTRY_STATE.

entry_pt_(submachine-name,state-name)

Used as transition's target from a containing state machine, causes submachine-name to be entered
using the given entry pseudo-state. This state must have been declared as pseudo entry using
BOOST_MSM_EUML_ENTRY_STATE.

exit_pt_(submachine-name,state-name)

Used as transition's source from a containing state machine, causes submachine-name to be left
using the given exit pseudo-state. This state must have been declared as pseudo exit using
BOOST_MSM_EUML_EXIT_STATE.

MSM_EUML_FUNCTION

This macro creates a eUML function and a functor for use with the functor front-end, based on a free
function:

• first parameter: the name of the functor

• second parameter: the underlying function

• third parameter: the eUML function name

• fourth parameter: the return type if used in a transition behavior

• fifth parameter: the return type if used in a state behavior (entry/exit)

Note that the function itself can take up to 5 arguments.

Example:

MSM_EUML_FUNCTION(BinarySearch_,std::binary_search,binary_search_,bool,bool)

Can be used like:

binary_search_(begin_(fsm_(m_var)),end_(fsm_(m_var)),Int_<9>())

MSM_EUML_METHOD

This macro creates a eUML function and a functor for use with the functor front-end, based on a
method:

• first parameter: the name of the functor

• second parameter: the underlying function

• third parameter: the eUML function name

• fourth parameter: the return type if used in a transition behavior

• fifth parameter: the return type if used in a state behavior (entry/exit)

Note that the method itself can take up to 4 arguments (5 like for a free function - 1 for the object
on which the method is called).

Front-end

119

Example:

struct Empty : public msm::front::state<> , public euml_state<Empty>
{
 void activate_empty() {std::cout << "switching to Empty " << std::endl;}
...
};
MSM_EUML_METHOD(ActivateEmpty_,activate_empty,activate_empty_,void,void)

Can be used like:

Empty == Open + open_close / (close_drawer , activate_empty_(target_))

BOOST_MSM_EUML_ACTION(action-instance-name)

This macro declares a behavior type and a const instance for use in state or transition behaviors. The
action implementation itself follows the macro declaration, for example:

BOOST_MSM_EUML_ACTION(good_disk_format)
{
 template <class Fsm,class Evt,class SourceState,class TargetState>
 void/bool operator()(Evt const& evt,Fsm&,SourceState& ,TargetState&){...}
};

BOOST_MSM_EUML_FLAG(flag-instance-name)

This macro declares a flag type and a const instance for use in behaviors.

BOOST_MSM_EUML_FLAG_NAME(flag-instance-name)

This macro returns the name of the flag type generated by BOOST_MSM_EUML_FLAG. You need
this where the type is required (usually with the back-end method is_flag_active). For example:

fsm.is_flag_active<BOOST_MSM_EUML_FLAG_NAME(CDLoaded)>()

BOOST_MSM_EUML_DECLARE_ATTRIBUTE(event-type,event-name)

This macro declares an attribute called event-name of type event-type. This attribute can then be made
part of an attribute list using BOOST_MSM_EUML_ATTRIBUTES.

BOOST_MSM_EUML_ATTRIBUTES(attributes-expression,attributes-name)

This macro declares an attribute list called attributes-name based on the expression
as first argument. These attributes can then be made part of an event
using BOOST_MSM_EUML_EVENT_WITH_ATTRIBUTES, of a state as 3rd parameter
of BOOST_MSM_EUML_STATE or of a state machine as 5th parameter of
BOOST_MSM_EUML_DECLARE_STATE_MACHINE.

Attributes are added using left-shift, for example:

// m_song is of type std::string
BOOST_MSM_EUML_DECLARE_ATTRIBUTE(std::string,m_song)
// contains one attribute, m_song
BOOST_MSM_EUML_ATTRIBUTES((attributes_ << m_song), FoundDef)

BOOST_MSM_EUML_EVENT(event-instance name)

This macro defines an event type (event-instance-name_helper) and declares a const instance of this
event type called event-instance-name for use in a transition table or state behaviors.

Front-end

120

BOOST_MSM_EUML_EVENT_WITH_ATTRIBUTES(event-instance-
name,attributes)

This macro defines an event type (event-instance-name_helper) and declares a const instance of this
event type called event-instance-name for use in a transition table or state behaviors. The event will
have as attributes the ones passed by the second argument:

BOOST_MSM_EUML_EVENT_WITH_ATTRIBUTES(Found,FoundDef)

The created event instance supports operator()(attributes) so that

my_back_end.process_event(Found(some_string))

is possible.

BOOST_MSM_EUML_EVENT_NAME(event-instance-name)

This macro returns the name of the event type generated by BOOST_MSM_EUML_EVENT or
BOOST_MSM_EUML_EVENT_WITH_ATTRIBUTES. You need this where the type is required
(usually inside a back-end definition). For example:

typedef msm::back::state_machine<Playing_,
msm::back::ShallowHistory<mpl::vector<BOOST_MSM_EUML_EVENT_NAME(end_pause)
> > > Playing_type;

BOOST_MSM_EUML_STATE(build-expression,state-instance-name)

This macro defines a state type (state-instance-name_helper) and declares a const instance of this state
type called state-instance-name for use in a transition table or state behaviors.

There are several possibilitites for the expression syntax:

• (): state without entry or exit action.

• (Expr1): state with entry but no exit action.

• (Expr1,Expr2): state with entry and exit action.

• (Expr1,Expr2,Attributes): state with entry and exit action, defining some attributes.

• (Expr1,Expr2,Attributes,Configure): state with entry and exit action, defining some attributes and
flags (standard MSM flags) or deferred events (standard MSM deferred events).

• (Expr1,Expr2,Attributes,Configure,Base): state with entry and exit action, defining some attributes,
flags and deferred events (plain msm deferred events) and a non-default base state (as defined in
standard MSM).

BOOST_MSM_EUML_INTERRUPT_STATE(build-expression,state-instance-
name)

This macro defines an interrupt state type (state-instance-name_helper) and declares a const instance
of this state type called state-instance-name for use in a transition table or state behaviors.

There are several possibilitites for the expression syntax. In all of them, the first argument is the name
of the event (generated by one of the previous macros) ending the interrupt:

• (end_interrupt_event): interrupt state without entry or exit action.

• (end_interrupt_event,Expr1): interrupt state with entry but no exit action.

Front-end

121

• (end_interrupt_event,Expr1,Expr2): interrupt state with entry and exit action.

• (end_interrupt_event,Expr1,Expr2,Attributes): interrupt state with entry and exit action, defining
some attributes.

• (end_interrupt_event,Expr1,Expr2,Attributes,Configure): interrupt state with entry and exit action,
defining some attributes and flags (standard MSM flags) or deferred events (standard MSM deferred
events).

• (end_interrupt_event,Expr1,Expr2,Attributes,Configure,Base): interrupt state with entry and exit
action, defining some attributes, flags and deferred events (plain msm deferred events) and a non-
default base state (as defined in standard MSM).

BOOST_MSM_EUML_TERMINATE_STATE(build-expression,state-instance-
name)

This macro defines a terminate pseudo-state type (state-instance-name_helper) and declares a const
instance of this state type called state-instance-name for use in a transition table or state behaviors.

There are several possibilitites for the expression syntax:

• (): terminate pseudo-state without entry or exit action.

• (Expr1): terminate pseudo-state with entry but no exit action.

• (Expr1,Expr2): terminate pseudo-state with entry and exit action.

• (Expr1,Expr2,Attributes): terminate pseudo-state with entry and exit action, defining some
attributes.

• (Expr1,Expr2,Attributes,Configure): terminate pseudo-state with entry and exit action, defining
some attributes and flags (standard MSM flags) or deferred events (standard MSM deferred events).

• (Expr1,Expr2,Attributes,Configure,Base): terminate pseudo-state with entry and exit action,
defining some attributes, flags and deferred events (plain msm deferred events) and a non-default
base state (as defined in standard MSM).

BOOST_MSM_EUML_EXIT_STATE(build-expression,state-instance-name)

This macro defines an exit pseudo-state type (state-instance-name_helper) and declares a const
instance of this state type called state-instance-name for use in a transition table or state behaviors.

There are several possibilitites for the expression syntax:

• (forwarded_event):exit pseudo-state without entry or exit action.

• (forwarded_event,Expr1): exit pseudo-state with entry but no exit action.

• (forwarded_event,Expr1,Expr2): exit pseudo-state with entry and exit action.

• (forwarded_event,Expr1,Expr2,Attributes): exit pseudo-state with entry and exit action, defining
some attributes.

• (forwarded_event,Expr1,Expr2,Attributes,Configure): exit pseudo-state with entry and exit action,
defining some attributes and flags (standard MSM flags) or deferred events (standard MSM deferred
events).

• (forwarded_event,Expr1,Expr2,Attributes,Configure,Base): exit pseudo-state with entry and exit
action, defining some attributes, flags and deferred events (plain msm deferred events) and a non-
default base state (as defined in standard MSM).

Front-end

122

Note that the forwarded_event must be constructible from the event sent by the submachine containing
the exit point.

BOOST_MSM_EUML_ENTRY_STATE(int region-index,build-expression,state-
instance-name)

This macro defines an entry pseudo-state type (state-instance-name_helper) and declares a const
instance of this state type called state-instance-name for use in a transition table or state behaviors.

There are several possibilitites for the expression syntax:

• (): entry pseudo-state without entry or exit action.

• (Expr1): entry pseudo-state with entry but no exit action.

• (Expr1,Expr2): entry pseudo-state with entry and exit action.

• (Expr1,Expr2,Attributes): entry pseudo-state with entry and exit action, defining some attributes.

• (Expr1,Expr2,Attributes,Configure): entry pseudo-state with entry and exit action, defining some
attributes and flags (standard MSM flags) or deferred events (standard MSM deferred events).

• (Expr1,Expr2,Attributes,Configure,Base): entry pseudo-state with entry and exit action, defining
some attributes, flags and deferred events (plain msm deferred events) and a non-default base state
(as defined in standard MSM).

BOOST_MSM_EUML_EXPLICIT_ENTRY_STATE(int region-index,build-
expression,state-instance-name)

This macro defines a submachine's substate type (state-instance-name_helper), which can be explicitly
entered and also declares a const instance of this state type called state-instance-name for use in a
transition table or state behaviors.

There are several possibilitites for the expression syntax:

• (): state without entry or exit action.

• (Expr1): state with entry but no exit action.

• (Expr1,Expr2): state with entry and exit action.

• (Expr1,Expr2,Attributes): state with entry and exit action, defining some attributes.

• (Expr1,Expr2,Attributes,Configure): state with entry and exit action, defining some attributes and
flags (standard MSM flags) or deferred events (standard MSM deferred events).

• (Expr1,Expr2,Attributes,Configure,Base): state with entry and exit action, defining some attributes,
flags and deferred events (plain msm deferred events) and a non-default base state (as defined in
standard MSM).

BOOST_MSM_EUML_STATE_NAME(state-instance-name)

This macro returns the name of the state type generated by BOOST_MSM_EUML_STATE or other
state macros. You need this where the type is required (usually using a backend function). For example:

fsm.get_state<BOOST_MSM_EUML_STATE_NAME(StringFind)&>().some_state_function();

BOOST_MSM_EUML_DECLARE_STATE(build-expression,state-instance-
name)

Like BOOST_MSM_EUML_STATE but does not provide an instance, simply a type declaration.

Front-end

123

BOOST_MSM_EUML_DECLARE_INTERRUPT_STATE(build-expression,state-
instance-name)

Like BOOST_MSM_EUML_INTERRUPT_STATE but does not provide an instance, simply a type
declaration.

BOOST_MSM_EUML_DECLARE_TERMINATE_STATE(build-expression,state-
instance-name)

Like BOOST_MSM_EUML_TERMINATE_STATE but does not provide an instance, simply a type
declaration.

BOOST_MSM_EUML_DECLARE_EXIT_STATE(build-expression,state-instance-
name)

Like BOOST_MSM_EUML_EXIT_STATE but does not provide an instance, simply a type
declaration.

BOOST_MSM_EUML_DECLARE_ENTRY_STATE(int region-index,build-
expression,state-instance-name)

Like BOOST_MSM_EUML_ENTRY_STATE but does not provide an instance, simply a type
declaration.

BOOST_MSM_EUML_DECLARE_EXPLICIT_ENTRY_STATE(int region-
index,build-expression,state-instance-name)

Like BOOST_MSM_EUML_EXPLICIT_ENTRY_STATE but does not provide an instance, simply
a type declaration.

BOOST_MSM_EUML_TRANSITION_TABLE(expression, table-instance-name)

This macro declares a transition table type and also declares a const instance
of the table which can then be used in a state machine declaration (see
BOOST_MSM_EUML_DECLARE_STATE_MACHINE).The expression must follow the
transition table grammar.

BOOST_MSM_EUML_DECLARE_TRANSITION_TABLE(iexpression,table-
instance-name)

Like BOOST_MSM_EUML_TRANSITION_TABLE but does not provide an instance, simply a type
declaration.

BOOST_MSM_EUML_INTERNAL_TRANSITION_TABLE(expression, table-
instance-name)

This macro declares a transition table type and also declares a const instance of the table.The
expression must follow the transition table grammar. For the moment, this macro is not used.

BOOST_MSM_EUML_DECLARE_INTERNAL_TRANSITION_TABLE(iexpression,table-
instance-name)

Like BOOST_MSM_EUML_TRANSITION_TABLE but does not provide an instance, simply a type
declaration. This is currently the only way to declare an internal transition table with eUML. For
example:

BOOST_MSM_EUML_DECLARE_STATE((Open_Entry,Open_Exit),Open_def)
struct Open_impl : public Open_def

Front-end

124

{
 BOOST_MSM_EUML_DECLARE_INTERNAL_TRANSITION_TABLE((
 open_close [internal_guard1] / internal_action1 ,
 open_close [internal_guard2] / internal_action2
))
};

	Meta State Machine (MSM)
	Table of Contents
	Preface
	Part I. User' guide
	Chapter 1. Founding idea
	Chapter 2. UML Short Guide
	What are state machines?
	Concepts
	State machine, state, transition, event
	Submachines, orthogonal regions, pseudostates
	History
	Completion transitions / anonymous transitions
	Internal transitions
	Conflicting transitions

	State machine glossary

	Chapter 3. Tutorial
	Design
	Basic front-end
	A simple example
	Transition table
	Defining states with entry/exit actions
	What do you actually do inside actions / guards?
	Defining a simple state machine
	Defining a submachine
	Orthogonal regions, terminate state, event deferring
	History
	Completion (anonymous) transitions
	Internal transitions
	more row types
	Explicit entry / entry and exit pseudo-state / fork
	Explicit entry
	Fork
	Entry pseudo states
	Exit pseudo states

	Flags
	Event Hierarchy
	Customizing a state machine / Getting more speed
	Choosing the initial event
	Containing state machine (deprecated)

	Functor front-end
	Transition table
	Defining states with entry/exit actions
	What do you actually do inside actions / guards (Part 2)?
	Defining a simple state machine
	Anonymous transitions
	Internal transitions

	eUML (experimental)
	Transition table
	A simple example: rewriting only our transition table
	Defining events, actions and states with entry/exit actions
	Events
	Actions
	States

	Wrapping up a simple state machine and first complete examples
	Defining a submachine
	Attributes / Function call
	Orthogonal regions, flags, event deferring
	Customizing a state machine / Getting more speed
	Completion / Anonymous transitions
	Internal transitions
	Other state types
	Helper functions
	Phoenix-like STL support
	Writing actions with Boost.Phoenix (in development)

	Back-end
	Creation
	Starting and stopping a state machine
	Event dispatching
	Active state(s)
	Serialization
	Base state type
	Visitor
	Flags
	Getting a state
	State machine constructor with arguments
	Trading run-time speed for better compile-time / multi-TU compilation
	Compile-time state machine analysis
	Enqueueing events for later processing
	Customizing the message queues
	Policy definition with Boost.Parameter
	Choosing when to switch active states

	Chapter 4. Performance / Compilers
	Speed
	Executable size
	Supported compilers
	Limitations
	Compilers corner

	Chapter 5. Questions & Answers, tips
	Chapter 6. Internals
	Backend: Run To Completion
	Frontend / Backend interface
	Generated state ids
	Metaprogramming tools

	Chapter 7. Acknowledgements
	MSM v2
	MSM v1

	Chapter 8. Version history
	From V2.21 to V2.22 (Boost 1.48)
	From V2.20 to V2.21 (Boost 1.47)
	From V2.12 to V2.20 (Boost 1.46)
	From V2.10 to V2.12 (Boost 1.45)
	From V2.0 to V2.12 (Boost 1.44)

	Part II. Reference
	Chapter 9. eUML operators and basic helpers
	Chapter 10. Functional programming
	Common headers
	Back-end
	Front-end

