Imported Upstream version 1.72.0
[platform/upstream/boost.git] / libs / math / doc / quadrature / gauss.qbk
1 [/
2 Copyright (c) 2017 John Maddock
3 Use, modification and distribution are subject to the
4 Boost Software License, Version 1.0. (See accompanying file
5 LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
6 ]
7
8 [section:gauss Gauss-Legendre quadrature]
9
10 [heading Synopsis]
11
12 `#include <boost/math/quadrature/gauss.hpp>`
13
14    namespace boost{ namespace math{ namespace quadrature{
15
16    template <class Real, unsigned Points, class ``__Policy`` = boost::math::policies::policy<> >
17    struct gauss
18    {
19       static const RandomAccessContainer& abscissa();
20       static const RandomAccessContainer& weights();
21
22       template <class F>
23       static auto integrate(F f, Real* pL1 = nullptr)->decltype(std::declval<F>()(std::declval<Real>()))
24
25       template <class F>
26       static auto integrate(F f, Real a, Real b, Real* pL1 = nullptr)->decltype(std::declval<F>()(std::declval<Real>()))
27    };
28
29    }}} // namespaces
30
31 [heading description]
32
33 The `gauss` class template performs "one shot" non-adaptive Gauss-Legendre integration on some arbitrary function /f/ using the
34 number of evaluation points as specified by /Points/.
35
36 This is intentionally a very simple quadrature routine, it obtains no estimate of the error, and is not adaptive, but is very efficient
37 in simple cases that involve integrating smooth "bell like" functions and functions with rapidly convergent power series.
38
39    static const RandomAccessContainer& abscissa();
40    static const RandomAccessContainer& weights();
41
42 These functions provide direct access to the abscissa and weights used to perform the quadrature: the return type depends on the
43 /Points/ template parameter, but is always a RandomAccessContainer type.  Note that only positive (or zero) abscissa and weights
44 are stored.
45
46     template <class F>
47     static auto integrate(F f, Real* pL1 = nullptr)->decltype(std::declval<F>()(std::declval<Real>()))
48
49 Integrates /f/ over (-1,1), and optionally sets `*pL1` to the L1 norm of the returned value: if this is substantially larger
50 than the return value, then the sum was ill-conditioned.  Note however, that no error estimate is available.
51
52     template <class F>
53     static auto integrate(F f, Real a, Real b, Real* pL1 = nullptr)->decltype(std::declval<F>()(std::declval<Real>()))
54
55 Integrates /f/ over (a,b), and optionally sets `*pL1` to the L1 norm of the returned value: if this is substantially larger
56 than the return value, then the sum was ill-conditioned.  Note however, that no error estimate is available.  This function
57 supports both finite and infinite /a/ and /b/, as long as `a < b`.
58
59 The Gaussian quadrature routine support both real and complex-valued quadrature.
60 For example, the Lambert-W function admits the integral representation
61
62 [expression ['W(z) = 1/2\u03A0 \u222B[sub -\u03A0][super \u03A0]  ((1- v cot(v) )^2 + v^2)/(z + v csc(v) exp(-v cot(v))) dv]]
63
64 so it can be effectively computed via Gaussian quadrature using the following code:
65
66     Complex z{2, 3};
67     auto lw = [&z](Real v)->Complex {
68       using std::cos;
69       using std::sin;
70       using std::exp;
71       Real sinv = sin(v);
72       Real cosv = cos(v);
73
74       Real cotv = cosv/sinv;
75       Real cscv = 1/sinv;
76       Real t = (1-v*cotv)*(1-v*cotv) + v*v;
77       Real x = v*cscv*exp(-v*cotv);
78       Complex den = z + x;
79       Complex num = t*(z/pi<Real>());
80       Complex res = num/den;
81       return res;
82     };
83
84     boost::math::quadrature::gauss<Real, 30> integrator;
85     Complex W = integrator.integrate(lw, (Real) 0, pi<Real>());
86
87
88 [heading Choosing the number of points]
89
90 Internally class `gauss` has pre-computed tables of abscissa and weights for 7, 15, 20, 25 and 30 points at up to 100-decimal
91 digit precision.  That means that using for example, `gauss<double, 30>::integrate` incurs absolutely zero set-up overhead from
92 computing the abscissa/weight pairs.  When using multiprecision types with less than 100 digits of precision, then there is a small
93 initial one time cost, while the abscissa/weight pairs are constructed from strings.
94
95 However, for types with higher precision, or numbers of points other than those given above, the abscissa/weight pairs are computed
96 when first needed and then cached for future use, which does incur a noticeable overhead.  If this is likely to be an issue, then
97
98 * Defining BOOST_MATH_GAUSS_NO_COMPUTE_ON_DEMAND will result in a compile-time error, whenever a combination of number type
99 and number of points is used which does not have pre-computed values.
100 * There is a program [@../../tools/gauss_kronrod_constants.cpp gauss_kronrod_constants.cpp] which was used to provide the
101 pre-computed values already in gauss.hpp.  The program can be trivially modified to generate code and constants for other precisions
102 and numbers of points.
103
104 [heading Examples]
105
106 [import ../../example/gauss_example.cpp]
107
108 [gauss_example]
109
110 [endsect] [/section:gauss Gauss-Legendre quadrature]
111