Imported Upstream version 1.72.0
[platform/upstream/boost.git] / libs / math / doc / overview / common_overviews.qbk
1 [/These are templates used in many other Quickbook files.]
2
3 [template policy_overview[]
4
5 Policies are a powerful fine-grain mechanism that allow you to customise the
6 behaviour of this library according to your needs.  There is more information
7 available in the [link math_toolkit.pol_tutorial policy tutorial]
8 and the [link math_toolkit.pol_ref policy reference].
9
10 Generally speaking, unless you find that the
11 [link math_toolkit.pol_tutorial.policy_tut_defaults
12  default policy behaviour]
13 when encountering 'bad' argument values does not meet your needs,
14 you should not need to worry about policies.
15
16 Policies are a compile-time mechanism that allow you to change
17 error-handling or calculation precision either
18 program wide, or at the call site.
19
20 Although the policy mechanism itself is rather complicated,
21 in practice it is easy to use, and very flexible.
22
23 Using policies you can control:
24
25 * [link math_toolkit.pol_ref.error_handling_policies How results from 'bad' arguments are handled],
26    including those that cannot be fully evaluated.
27 * How [link math_toolkit.pol_ref.internal_promotion accuracy is controlled by internal promotion] to use more precise types.
28 * What working [link math_toolkit.pol_ref.precision_pol precision] should be used to calculate results.
29 * What to do when a [link math_toolkit.pol_ref.assert_undefined mathematically undefined function]
30   is used:  Should this raise a run-time or compile-time error?
31 * Whether [link math_toolkit.pol_ref.discrete_quant_ref discrete functions],
32   like the binomial, should return real or only integral values, and how they are rounded.
33 * How many iterations a special function is permitted to perform in
34   a series evaluation or root finding algorithm before it gives up and raises an
35   __evaluation_error.
36
37 You can control policies:
38
39 * Using [link math_toolkit.pol_ref.policy_defaults macros] to
40 change any default policy: the is the preferred method for installation
41 wide policies.
42 * At your chosen [link math_toolkit.pol_ref.namespace_pol
43 namespace scope] for distributions and/or functions: this is the
44 preferred method for project, namespace, or translation unit scope
45 policies.
46 * In an ad-hoc manner [link math_toolkit.pol_tutorial.ad_hoc_sf_policies
47 by passing a specific policy to a special function], or to a
48 [link math_toolkit.pol_tutorial.ad_hoc_dist_policies
49 statistical distribution].
50
51 ] [/template policy_overview]
52
53
54 [template performance_overview[]
55
56 By and large the performance of this library should be acceptable
57 for most needs.  However, often the library has to make a choice whether to
58 be accurate or fast and by default it chooses accuracy over speed.  If
59 you would rather have fast rather than fully accurate routines, then
60 refer to the [link perf performance section] for information and examples on how to
61 achieve this.
62
63 In terms of the algorithms used, this library aims to use the same "best
64 of breed" algorithms as many other libraries: the principle difference
65 is that this library is implemented in C++ - taking advantage of all
66 the abstraction mechanisms that C++ offers - where as most traditional
67 numeric libraries are implemented in C or FORTRAN.  Traditionally
68 languages such as C or FORTRAN are perceived as easier to optimise
69 than more complex languages like C++, so in a sense this library
70 provides a good test of current compiler technology, and the
71 "abstraction penalty" - if any - of C++ compared to other languages.
72
73 The three most important things you can do to ensure the best performance
74 from this library are:
75
76 # Turn on your compilers optimisations: the difference between "release"
77 and "debug" builds can easily be a [link math_toolkit.getting_best factor of 20].
78 # Pick your compiler carefully: [link math_toolkit.comp_compilers
79 performance differences of up to
80 8 fold] have been found between some Windows compilers for example.
81 # Disable internal use of `long double`, this will reduce accuracy but
82 typically yield a 2x speedup on modern x64 hardware/compilers.
83
84 The [link perf performance section] contains more
85 information on the performance
86 of this library, what you can do to fine tune it, and how this library
87 compares to some other open source alternatives.
88
89 ] [/template performance_overview]
90
91 [template compilers_overview[]
92
93 This section contains some information about how various compilers
94 work with this library.
95 It is not comprehensive and updated experiences are always welcome.
96 Some effort has been made to suppress unhelpful warnings but it is
97 difficult to achieve this on all systems.
98
99 [table Supported/Tested Compilers
100 [[Platform][Compiler][Has long double support][Notes]]
101 [[Windows][MSVC 7.1 and later][Yes]
102    [All tests OK.
103
104    We aim to keep our headers warning free at level 4 with
105    this compiler.]]
106 [[Windows][Intel 8.1 and later][Yes]
107    [All tests OK.
108
109    We aim to keep our headers warning free at level 4 with
110    this compiler.  However, The tests cases tend to generate a lot of
111       warnings relating to numeric underflow of the test data: these are
112       harmless.]]
113 [[Windows][GNU Mingw32 C++][Yes]
114    [All tests OK.
115
116    We aim to keep our headers warning free with -Wall with this compiler.]]
117 [[Windows][GNU Cygwin C++][No]
118    [All tests OK.
119
120    We aim to keep our headers warning free with -Wall with this compiler.
121
122    Long double support has been disabled because there are no native
123    long double C std library functions available.]]
124 [[Windows][Borland C++ 5.8.2 (Developer studio 2006)][No]
125    [We have only partial compatibility with this compiler:
126
127    Long double support has been disabled because the native
128    long double C standard library functions really only forward to the
129    double versions.  This can result in unpredictable behaviour when
130    using the long double overloads: for example `sqrtl` applied to a
131    finite value, can result in an infinite result.
132
133    Some functions still fail to compile, there are no known workarounds at present.]]
134 [[Windows 7/Netbeans 7.2][Clang 3.1][Yes][Spot examples OK. Expect all tests to compile and run OK.]]
135
136 [[Linux][GNU C++ 3.4 and later][Yes]
137    [All tests OK.
138
139    We aim to keep our headers warning free with -Wall with this compiler.]]
140 [[Linux][Clang 3.2][Yes][All tests OK.]]
141 [[Linux][Intel C++ 10.0 and later][Yes]
142    [All tests OK.
143
144    We aim to keep our headers warning free with -Wall with this compiler.
145    However, The tests cases tend to generate a lot of
146    warnings relating to numeric underflow of the test data: these are
147    harmless.]]
148 [[Linux][Intel C++ 8.1 and 9.1][No]
149    [All tests OK.
150
151    Long double support has been disabled with these compiler releases
152    because calling the standard library long double math functions
153    can result in a segfault.  The issue is Linux distribution and
154    glibc version specific and is Intel bug report #409291.  Fully up to date
155    releases of Intel 9.1 (post version l_cc_c_9.1.046)
156    shouldn't have this problem.  If you need long
157    double support with this compiler, then comment out the define of
158    BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS at line 55 of
159    [@../../../../boost/math/tools/config.hpp boost/math/tools/config.hpp].
160
161    We aim to keep our headers warning free with -Wall with this compiler.
162    However, The tests cases tend to generate a lot of
163    warnings relating to numeric underflow of the test data: these are
164    harmless.]]
165 [[Linux][QLogic PathScale 3.0][Yes]
166    [Some tests involving conceptual checks fail to build, otherwise
167    there appear to be no issues.]]
168 [[Linux][Sun Studio 12][Yes]
169    [Some tests involving function overload resolution fail to build,
170    these issues should be rarely encountered in practice.]]
171 [[Solaris][Sun Studio 12][Yes]
172    [Some tests involving function overload resolution fail to build,
173    these issues should be rarely encountered in practice.]]
174 [[Solaris][GNU C++ 4.x][Yes]
175    [All tests OK.
176
177    We aim to keep our headers warning free with -Wall with this compiler.]]
178 [[HP Tru64][Compaq C++ 7.1][Yes]
179    [All tests OK.]]
180 [[HP-UX Itanium][HP aCC 6.x][Yes]
181    [All tests OK.
182
183    Unfortunately this compiler emits quite a few warnings from libraries
184    upon which we depend (TR1, Array etc).]]
185 [[HP-UX PA-RISC][GNU C++ 3.4][No]
186    [All tests OK.]]
187 [[Apple Mac OS X, Intel][Darwin/GNU C++ 4.x][Yes][All tests OK.]]
188 [[Apple Mac OS X, PowerPC][Darwin/GNU C++ 4.x][No]
189    [All tests OK.
190
191    Long double support has been disabled on this platform due to the
192    rather strange nature of Darwin's 106-bit long double
193    implementation.  It should be possible to make this work if someone
194    is prepared to offer assistance.]]
195 [[Apple Mac OS X,][Clang 3.2][Yes][All tests expected to be OK.]]
196 [[IBM AIX][IBM xlc 5.3][Yes]
197    [All tests pass except for our fpclassify tests which fail due to a
198    bug in `std::numeric_limits`, the bug effects the test code, not
199    fpclassify itself.  The IBM compiler group are aware of the problem.]]
200 ]
201
202 [table Unsupported Compilers
203 [[Platform][Compiler]]
204 [[Windows][Borland C++ 5.9.2 (Borland Developer Studio 2007)]]
205 [[Windows][MSVC 6 and 7]]
206 ]
207
208 If your compiler or platform is not listed above, please try running the
209 regression tests: cd into boost-root/libs/math/test and do a:
210
211    bjam mytoolset
212
213 where "mytoolset" is the name of the
214 [@http://www.boost.org/doc/html/bbv2.html Boost.Build]
215 toolset used for your
216 compiler.  The chances are that [*many of the accuracy tests will fail
217 at this stage] - don't panic - the default acceptable error tolerances
218 are quite tight, especially for long double types with an extended
219 exponent range (these cause more extreme test cases to be executed
220 for some functions).
221 You will need to cast an eye over the output from
222 the failing tests and make a judgement as to whether
223 the error rates are acceptable or not.
224 ] [/template compilers_overview]
225
226 [/ common_overviews.qbk
227   Copyright 2007, 2012, 2014 John Maddock and Paul A. Bristow.
228   Distributed under the Boost Software License, Version 1.0.
229   (See accompanying file LICENSE_1_0.txt or copy at
230   http://www.boost.org/LICENSE_1_0.txt).
231 ]
232