Math Toolkit 2.10.0

Nikhar Agrawal
Anton Bikineev
Paul A. Bristow
Hubert Holin
Marco Guazzone
Christopher Kormanyos
Bruno Lalande
John Maddock
Jeremy W. Murphy
Matthew Pulver
Johan Rade
Benjamin Sobotta
Gautam Sewani
Nicholas Thompson

Thijs van den Berg
Daryle Walker

Xiaogang Zhang

http://www.renderx.com/

3
H
£
i,

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Math Toolkit 2.10.0

by Nikhar Agrawal, Anton Bikineev, Paul A. Bristow, Hubert Holin, Marco Guazzone, Christopher Kormanyos, Bruno Lalande,
John Maddock, Jeremy W. Murphy, Matthew Pulver, Johan Rade, Benjamin Sobotta, Gautam Sewani, Nicholas Thompson, Thijs
van den Berg, Daryle Walker, and Xiaogang Zhang

This manual is also available in printer friendly PDF format, and as a CD ISBN 0-9504833-2-X 978-0-9504833-2-0, Classification
519.2-dc22.

Copyright © 2006-2019 Nikhar Agrawal, Anton Bikineev, Paul A. Bristow, Marco Guazzone, Christopher Kormanyos, Hubert
Holin, Bruno Lalande, John Maddock, Jeremy Murphy, Matthew Pulver, Johan Rade, Gautam Sewani, Benjamin Sobotta, Nicholas
Thompson, Thijs van den Berg, Daryle Walker and Xiaogang Zhang

Distributed under the Boost Software License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

htto://www.renderx.com/

http://sourceforge.net/projects/boost/files/boost-docs/
http://www.boost.org/LICENSE_1_0.txt
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Overview
Rationale
Exact-Width Floating-Point typedefs
Minimum-width floating-point typedefs
Fastest floating-point typedefs

Table of Contents
(O VT PP TPP PP PPPPPTRUPPPPTN 1
ADOUL the IMath TOOIKITet e e et e et e ettt e et e e et e eeen 2
N E AV To =L o TP PP UPPPTTRUSPPPTTN 4
DOCUMENT CONVENTIONS ...ttt ettt ettt ettt ettt ettt oo e et e e et b e e e ettt e e et et oo e et e et n e e et et e e e et et e e eerbe e eeees 5
(0] 1 1= ol o T =g To N] L PP UUPPPTTUPPPPN 6
DireCtory and File SIIUCTUIE ittt ettt e et e e e s 7
NBIMIESPACES ...ttt ettt ettt ettt et ettt ettt et e et et e et e 8
Calculation of the Type OF the RESUILu i e 9
EITOr HANGIING ..ot ettt ettt et 11
(000] 111]| 1=T £ S TP SOPPTTRUSPPPTN 18
CONFIGUIALTION IMTACTOS ...ttt et e ettt e e et e e et b e e et e e e e ab s 23
o] 1o S PP PP PP PPPPTTR 26
TRIEAU SATELY ...oeet it e 27
PRITOMMANCE ... ettt et ettt et et ettt et et et e e e e eene 28
If and How to Build a Boost.Math Library, and its Examples and TESESccevuuiiiriiiiiiieiii e 29
HISOrY AN WHAE'S INBW ...ttt e ettt e e ettt e ettt e ettt e e et et eeeeataeeees 31
C99 and C++ TRIL C-StYIE FUNCLIONSttieeiitie ettt ettt ettt ettt e et e et e e e ene e 42
Boost.Math Frequently Asked QUESTIONS (FAQS) ... eiittieeiiit ettt et ettt e e e e et e eeenes 50
CoNtaCt INFO AN SUPPOTT ...ttt et e et e et e e et e e e 53
FIOAtING POINE ULHIITIESoeee e ettt e et e ettt e e et e e e 54
Rounding Truncation and INtEGEr CONVEISIONiiuuue ittt ettt et e e e 55
ROUNGING FUNCEIONS ...ttt e ettt et ettt e e e eaenees 55
TrUNCALION FUNCLIONS ..ottt ettt ettt ettt ettt ettt e e et eeenaans 55
Integer and Fractional Part SpIitting (MOAF)coouuiiiii e 56
Floating-Point Classification: Infinities and NANSoooiiiiiii e 58
SigN Manipulation FUNCLIONSuuiiiii et et et e e e et e e 61
Facets for Floating-Point INfinities and NaNS ... 64
[goe [V o1 (o] o PSPPSR 64
] (=] =] 1oL PP EPPPPTRUUPPPPTN 68
EAMIPIES e e e e et et et a et ean 71
POTTADTIILY ..ot e 73
DESION RALIONAIE ..ot e et e et ettt et et e e 73
Floating-Point Representation Distance (ULP), and Finding Adjacent Floating-Point Valuesccoooiiiiiiinnnnn. 74
Finding the Next Representable Value in a Specific Direction (nextafter)cccoovieiiiiiiiiiii e, 74
Finding the Next Greater Representable Value (float_Next) ..o, 75
Finding the Next Smaller Representable Value (float_prior) ..o 76
Calculating the Representation Distance Between Two floating-point Values (ULP) float_distance 76
Advancing a floating-point Value by a Specific Representation Distance (ULP) float_advance 77
Obtaining the Size of a Unit Inthe Last PIaCe - ULPoiiiiiiiiii e 77
FI0ating-POiNt COMPAITISONceutteiiii ettt ettt ettt ettt r et e e et et e et e et e e enanns 79
CONAITION NUIMDETS ...t e et et et ettt e et et e e ettt e e et et e e et et e e e e eat e e eeentnaeeees 84
Specified-width floating-point tYPEAETS i e 86
... 87
... 88
.. 90
.. 92
... 93
.. 94
... 95
... 96
... 98
.. 99
... 100
101
101

Greatest-width floating-point typedef
Floating-Point Constant Macros
Examples
Hints on using float128 (and _ float128)
Implementation of Float128 type
iii
http://www.renderx.com/

Overloading template functions with float128_t
Exponential function

typeinfo

render

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Math Toolkit 2.10.0
MAtNEMALICAL CONSIANTStteeiitt ettt ettt et e et e e et e e et e e e et e e e e et bt e e e ettt e e e et bt e e e et bt e e e e ebtaeeeeben e eeas 102
L goTo 1 o] o SRR 103
D1 o] - L PR 104
O I o R (T] o] L oo P 104
O LI T (=T 0] o] (= olo Lo [PP 104
USE WIith USEr-DEfINEA TYPES .uuiiieiiiie it e e e e e e e e e et e e et e e e e e e e et e et e e e eeaes 106
The MathematiCal CONSLANTSutiieiiit et e e e e e e b e e et e e e et b e e e e tb i a e e et bt e e e e eben s 109
DEfINING NEW CONSIANTS ...ituuiiitiieii et et e e et e e et e e et e e et e e et e e et e e et e ert e eeaneeeens 114
Y (IO 0T 1Sy =) S 7N L 118
Statistical DiStributions and FUNCHIONSiiiiiiiii et e e e et e et e e e enanns 123
Statistical DIStrIDULIONS TULOMIALcciiei e e et e et e e b 124
OVErVIEW OF DISIIIDULIONSoiiiit i e e e e e e e et e e et e e e aae e eeees 124
HEAEIS AN0 INAMESPACES .. vvuuiit ettt ettt ee ettt e et e et e e e e e et r e et e e et e e et e e s aa e e at e est e e et e eatt e aaneeanaees 124
DiStriDULIONS Are OBJECLS .. ittt i e e e e e e e e e e e e e aaa 124
Generic operations common to all distributions are non-member functionsccoooiiiiiinenns 125
Complements are supported too - and When to use themcoooiiiiiiii i 127
Parameters can D CAICUIALEAiiiiiie i e 129
IS0 001 1T LY TP 130
LAY =0 T 0] o] LR 130
Distribution Construction EXAMPIESiiuiiiiiiiii e e e e e e e 130
Student's t DIStrIBULION EXAMPIESvu.iiie e e e e e e e e eees 134
Chi Squared Distribution EXAmMPIESccuuiiiiiiiiiei e e e 146
F DiStribULION EXAMPIES .. .vuiiiiiii e e e e e et e e e e e e e e e e e e e e 154
Binomial Distribution EXAMPIES ... ccuuiiiiiiii e e e 158
Geometric Distribution EXAMPIESc.viiiiiiii e 174
Negative Binomial Distribution EXAMPIESc..uiiiiiiiiiiieii e e a e 180
Normal Distribution EXAMPIESccouiiiiiii e e e e r e e 194
Inverse Chi-Squared Distribution Bayes EXamPplec.oiiiiiiiiii e 201
Non Central Chi Squared EXAMPIEoiiiiiii e a s 205
Error Handling EXAmPIEcoouiii e e e 207
Find Location and Scale EXaMPIESu.iiiiiiiii et 210
Comparison with C, R, FORTRAN-style Free FUNCLIONSccuuiiiiiieiiiiici e e e 220
Using the Distributions from Within CH# ..o e 221
Random Variates and DistribUtion Parametersoooiiiiioiiii et 221
Discrete Probability DIStrIDULIONSc..uiiiiii e e e e e e e e aaaas 221
Statistical DiStriDULIONS RETEIENCEoivvi i e e e e e e e s 223
N0 g V=T oLt g o (] o 1=Y {1 PP 223
DTS] o101 o] PP 232
ATCSINE DISTIDULION ...eut i et e e et e e e b e e e e 232
BernoUITi DIStHIDULIONutiiiii e e e e e e et e et e e e et e e e eaa e eaee 238
Beta DISIIIDULION ... e 241
Binomial DIStrIDULIONcoivit e e e e e e 246
CauChy-LOrentz DiStrIDULIONcouuiii e e e e e e e e e e e e et e e e e e aaeees 254
Chi SQUAred DiIStrIDULIONivei it e e e e e e e e et e e et e e st e e e e eaaaees 257
Exponential DiStriBULIONoiiiiiii e e e 261
Extreme Value DIStrIDULIONuiiiii i e e et et e e e e e aee 263
I T3 1 o1 T o PP 265
Gamma (and Erlang) DistriBULIONcoiuuiiiii e e 270
GEOMELIIC DISLIIDULION ..ovutt i e e e e e ettt e e e e b eeaeataeeees 272
Hyperexponential DiStribULIONo.iiiiii e e e e e 280
Hypergeometric DiStriBULIONiiii e e e e e e 297
Inverse Chi Squared DiStriBULIONcouuiiiiiii e e e e e e 301
Inverse Gamma DiIStrIDULIONoouuiii i e et 305
Inverse Gaussian (or Inverse Normal) Distributioncoooiiiiiiiii e 309
Laplace DISrIDULIONuuiii i et e e e e e e e e e et ea e r e 312
.. 315
... 317
.. 320
iv
http://www.renderx.com/

Logistic Distribution
Log Normal Distribution
Negative Binomial Distribution

render

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

rende

r

Math Toolkit 2.10.0

Noncentral Beta DiStriDULIONiiiuiiii e e 328

Noncentral Chi-Squared DiStriBULIONcooiiiiiii e 332

Noncentral F DiStribULIONo e 337

Noncentral T DiStrIBULIONo e e e e e ea e aaens 341

Normal (Gaussian) DIStrIDULIONiiiiiii e e e e e e e e e aaes 346

e (T (o D 1] o 10T PP 349

POISSON DISIIIDULION L..ittii e e e e e e e e e e r e e e et e et e e eaeeeaes 351

Rayleigh DIStriBULIONiuei e e e e e e e a e 354

SKeW NOIMal DISTIIBULIONiutiii e e e e e e e r e e e e e e e e e aan s 357

SUAENTS T DISIIIDULION ... iitt i e e e e e e e e e e et e e et eeanas 362

Triangular DIStrIBULIONoeii e e e e 365

UNIfOrm DISHIDULIONeue e e e e e e e e e e et e e e e eanaeees 369

WEIBUIL DISTIIBULION <.oeiiii e e e e e e e e e e e e e e e e aaeees 373

DIStriBULION ALGOIITNMS L. oe e e e e 376

L = YU U1 (T D T =T [T 378

RV CTox (o] gl W0 o | PP 380

0T T Eo L Cc R v LA) ot 381

LAY L T =TS v L] ot 385

YT | T2 LIS L) o PP 387

N[0 30 LT PPEPTPEPPRPIR 391

Yo Lo = LI 0 Tox 1 o] P 396

N0 Lo =T T TP 397

2= g ToT U] T NN 0T o= 397

LI L= 010 A 0431 =T PPN 402

T LT AU T o= PP 403

L= VoL o1 T 3T PPN 404

LT 111 10 - S PP PRSPPI 404

oo T 10 3= PP 409

D] T =001 0 T PP 415

LI U] 2 2 PN 420

L0 /0= 2 1 - PP 423

Ratios 0f GamMmMa FUNCLIONSiiie et e e e e e e e s e e et e e e et e e st e eaanaeees 427

Incomplete Gamma FUNCLIONS ciuu i e e e e e e e e e e e e a e e e aaenas 430

Incomplete Gamma FUNCHION INVEISESvvuuiiiiieii e e e e e e e e e e e e e e e e et e e et e e e eeaes 439

Derivative of the Incomplete Gamma FUNCHIONcoouiiiiiii e e e e 443

Factorials and Binomial COBTIICIENTSiiii i e e e e e e e e e et eaan s 444

(o1 () 4 - P 444

Do TN o] [= = Tod (o] - | PP 446

TS [T (e (04 - | P 447

L g0 = Tox (o] -1 PP 448

T Talo] T Fo I @0 =] T =T PP 449

2 1=] v B W1 [PP S 451

T PP 451

INCOMPIETE BEA FUNCHIONS .. .vviiii e e e e e e e e e e e et e e e e e eeaens 454

The Incomplete Beta FUNCLION INVEISEScvuuiiiii it e e e e e e e e e e e e st e e aa e e aan s 460

Derivative of the Incomplete Beta FUNCHIONc.uuiiiiiii e e e e 467

ol 1T [PPN 468

ol W [PP 468

o Vg Tod 1o T 1Y =T - 474

[200] Y7 01044 T PP 479

Legendre (and Associated) POIYNOMIAISc..iiiiiiii e e 479

Legendre-Stieltjes POIYNOMIALSiiiiniiii e e e e e e e e e 485

Laguerre (and Associated) POIYNOMIALSc..uiiiiiii e e e e e aaes 486

L L= 0L Y o])Y/ o] o - 1P 489

ChebyShev POIYNOMIAIScouiiii e e e e e e e e e e e et e e r e e aa e eaes 492

Yo 1= g Tor= I P U 1) o o P 495

(O Lo 10 I = T o] 1] 1T PP 497

3T TTSYCY 0] Tox o] PP 503
%

htto://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

rende

r

Math Toolkit 2.10.0

BESSEI FUNCHION OVEIVIEW ... ittt et e e e e et e e e et e e e ettt e e e et b e e e e ean e 503
Bessel Functions of the First and Second KindSuuiiiiiiiiiiii e e 505
Finding Zeros of Bessel Functions of the First and Second Kindscccoooiiiiiiiiiiiiiii e, 515
Modified Bessel Functions of the First and Second KINAScooviiuiiiiiiiiiiiic e 525
Spherical Bessel Functions of the First and Second Kindsccccooiiiiiiiiiii e 539
Derivatives 0f the BeSSEl FUNCLIONSiiiiii e e e et e e et eeeaa e eeees 542
HANKEL FUNCLIONS ...t e e ettt e e ettt e e e et s e e e e et e e e e et s e e e e et e e e e eaatnaeeeees 549
(O3 (ol [To o =T 1] I T3 Tod 1 o P 549
Spherical HanKel FUNCHIONS e e e e e e e e e e e et e e e e aan e eees 550
A T VA 0 o 1o PP 552
N T VA AV IV 3 w1 1 o o P 552
F N T VA = T U 2 w1 1 o o P 554
N TV AN A U 311 T) o P 556
T VA = T V314 T) o 558
Finding Zeros of Ay FUNCLIONSiiiiii et e e e e e e e e e et e e e e et e et e e aaaees 560
oL o 1) o | 566
EHPtic INtEOral OVEIVIEWivviiiii et e e e e e e e e e e e e e st e et e e aaeerens 566
Elliptic Integrals - CarlSOn FOMM e e e e e e e e e e eees 572
Elliptic Integrals of the First Kind - Legendre FOIMo.iiiiiiii e e e e 579
Elliptic Integrals of the Second Kind - Legendre FOMMcouuiiiiiiiiii e 583
Elliptic Integrals of the Third Kind - Legendre FOIM e 587
Elliptic Integral D - LEgENAIe FOIM ... i e e e e e e e e e e et e e e e eees 591
N Toto] o TRA=] - N T [T o] PP 595
Heuman Lambada FUNCLIONii ittt e et e e et e e e et e e e e et e e eeeanns 597
- Uoto) oL I = | 170 (o 0T o o] PR 599
Overview of the Jacobi EHIPtic FUNCLIONScoiuiii e e e e 599
Jacobi EHptic SN, CN ANd DN ...ouiiiiii e e e e e e e e e e e et e e r e e eeaens 600
Jacobi EHPLIC FUNCHION CO .. ooeeii e e et e e e e ea e e e e eaes 606
Jacobi EHIPLIC FUNCHION CN ..o e e e e e e e a e aan e eaes 607
N - Uoto) oL I = T oL ol 0ot € It PP 608
M- Uoto) o] I = 1o ol 10T o o o [609
Jacobi EHPtIC FUNCHION AN ...oue e e e e e e e a e e e eaens 610
N - Uoto) o] I = | T (o 10T o o I PPN 611
Jacobi EHIPLIC FUNCHION NC ..ot e e e e e et e e e e e e et e ean e eaes 612
Jacobi EHPtIC FUNCLION Noei e e e e e e e e r e e e eaens 613
N - Uoto) o] I = | T (o 10T o o 4 PPN 614
N - Uoto) oI = T oL ol 0ot € I P 615
N - Uoto) o] I = | T ol 10T o T Yo PPN 616
N - Uoto) o] I = | T (o 10T o T I o PPN 617
[Vg o< ALV 10T o PSP 618
A=) N U101 o] 4 S PRSPPI 638
RIEMANN ZELA FUNCLION ...t e et e ettt e e e ettt e e e e ab e e e e abt e e eeeatnaeeeees 638
(Lo LA T=T R L 1 (=T [£ 643
Exponential INtegral BNcooiiiiiiii e e e 643
EXponential INtEOral Eic..uiiiiiiiiiiii e e e e e e e e e e e e e 645
27 Tofl U o] PSPPI 650
] 1 T o PP 650
oL 1T] 651
o 1 PPN 651
o 011 1 PP 653
0 o] o PSPPI 655
R0 | 8] 0 1 PP 656
810311101 PP PPPT 657
)77 01 | P 658
Compile Time POWer 0f @ RUNIIME BASEuiiiiieiii e e e e e e e e e aaes 659
Sinus Cardinal and Hyperbolic Sinus Cardinal FUNCLIONSoiiiiiiiii e 662
Sinus Cardinal and Hyperbolic Sinus Cardinal FUNCtions OVEIVIEWcc.uiiiiiiiiiiiieiiieceeeee e e e 662
] 1 T] P 663
vi

htto://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Catmull-Rom Splines
Quadrature and Differentiation
Trapezoidal Quadrature

Double-exponential quadrature

Math Toolkit 2.10.0
] 1 o o PP 664
INVerse HyperbOLIC FUNCLIONSiii i e e e e e e e e e e et e et e et e e et eeees 665
Inverse Hyperbolic FUNCLIONS OVEIVIEWuuiiiiiiii et e e e e e e e e e e ea e e e aaeaas 665
T 0L o SRR 669
1Y 11 PP 670
73 o PPN 671
(@ 11T I 013 To1 T PRSP 673
TR1 and C99 eXterNal "C" FUNCLIONSieiiiit ettt e ettt e e et e et e e et e e et e e et bt e e et bt e e e et et e e e e st naeeeaenaaeas 678
C99 and TRL C FUNCHIONS OVEIVIEW .. .vevuiieiiiii ettt e ettt s e et e e ettt e e et e e e et e e e e e e e e e e et n e e e et s e e eeaen s 679
(O3 1o N O T o PSP 687
TR1 C FUNCtions QUICK RETEIEINCE iiieiii i e e e e e e e e e e eaees 692
Root Finding & Minimization AlGOritRMS e e e e e e e e e 700
ROOt FINAING WIthOUL DEIIVALIVES ...\ iiii it e e e e e e e e e e e e e e et e e et e e et e e et eeaeas 701
2T T=T o] OO SPPPIN 703
Bracket and SOIVE ROOLciiuui it et et e e et e et e e e et e e et e e e aaens 704
Algorithm TOMS 748: Alefeld, Potra and Shi: Enclosing zeros of continuous functionsco.ccceveennnee, 706
Brent-Decker ALGOTItNMo e e 707
Termination CONAILION FUNCLOTSu.iiiiii e e e et e et e e et r e e e et e e e eeennas 708
L] o] [=T g T=T a1 e LA o o PPN 708
Root Finding With Derivatives: Newton-Raphson, Halley & Schrodercoooviiiiiiiiii e, 709
Examples of Root-Finding (with and Without deriVatiVES)cc.uieiiiiiiiiii e 713
Finding the Cubed Root With and Without DErIVALIVESocvuiiiiiieiiii e r e 713
0L Lo O I I T4 oo - PP 720
Computing the FITth ROOT ... e e e e e e e e e e e e e eaeas 720
Root-finding using BOOSt.MUIIPIECISIONivu.iiiiiei e e e e e aeas 721
Generalizing to Compute the N TO0t ... e e 725
A More complex example - Inverting the EHiptic INtegralscooiiiiiiiii e 728
The Effect 0f @ POOK INIIAI GUESS .. .ccivviiee e e et e e et e e e e 733
Examples Where ROOt FINAING GOES WIONQvvuuiiiiieii e et e e e e e e e e e e e e e e e st e e e et e e et eaanaeares 734
Locating Function Minima using Brent's algorithm 736
Comparison of ROOt FINAING AIGOTNMS ... e e e e e e e e e e 746
Comparison of Cube Root Finding AlGOrithmsooiiiiiii e 746
Comparison of Nth-root Finding AIGOrIthmS ..o e 748
Comparison of Elliptic Integral Root Finding Algoritghmsccooiiiiiiiiii e 753
Polynomials and Rational FUNCLIONSiiiuiiii e e e e e e e e e e et e e et e e et e e et eeaaeerens 756
[200] Y7 01044 T PP 757
Polynomial and Rational FUNCtion EVAIUALIONuiiiiiiii e e e e e e aanas 762
L1110 - €[]0 PP 765
Cubic B-SPliNe INTEIPOIALIONiiii i e e e e e e e e e e e et e et e et e e et eeanas 766
Cardinal Quadratic B-spline INterpOlationccouuiiiiiiiiii e e 770
Whittaker-Shannon iNtEIPOIALIONiiiiiii e e e e e e e e e e e e et e et e e et e et eeaens 771
Barycentric Rational INterPOIationiiiiiiiii e e 773
Vector-valued Barycentric Rational INterpolationcccouiiiiiiiiiii e e e e 777
... 779
... 784
... 785
... 788
.. 791
... 794
... 794
... 796
....................................... 800
... 801
802
... 803
.. 803
804
804

tanh_sinh
Setting the Termination Condition for Integration

Gauss-Legendre quadrature
Gauss-Kronrod Quadrature
Handling functions with large features near an endpoint with tanh-sinh quadrature

vii
http://www.renderx.com/

sinh_sinh

Overview
exp_sinh
Setting the Maximum Interval Halvings and Memory Requirements

Thread Safety
Caveats

render

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

rende

r

Math Toolkit 2.10.0

R B BIICES ...t e ettt ean s 806
oL 1= 1) =T [| 807
N E TNV Y o]) (S =T [o TN 1 =T =L o] 812
NUMEFICAl DITFEIENTIATION .. iiiit e e e e e et e e e et r e e e ettt e e e e bt aeeaaataeeeenes 815
AULOMALIC DIFFEIENTIALION ...ttt et e et e et e e ettt e e e et e e e e ean e 817
Lanczos SMOOhING DEIIVALIVESciuuiiiiiieiii et e e e e e e e e e e e e e e et e e e e e et e e et e e et e e et e e eat e eaaeeeens 824

ComPIEX NUMDEE FUNCHIONS ...iutiiiii et e e e e e e e e e e e et e e et e e et e e et e e tt e e st e e et e eeat e eat e estnaeetnaeees 828
IMPIEMENLALION AN ACCUIACY ...ivvtiiiiieei et e et e e e e e e e e e e e e et e e et e e et e e et e e et e e et e e st e e st e eestneeanaees 829
T 1 PP 830
o101 PP UPTPPI 831
L1 PP PTTPT 832
TS 11 PSPPI 833
Yo 0L PP 834
73] o OO PRPPTSPPPIN 835
L 1 (0] Y/ P 836
(@ 0T 01 o] PPN 837
L@ Y T PSPPI 838
[T To (=] L PSPPSR 839
)Y 110 01 PP 840
Tl o] Fo L O Fo Tt o (U =T g Lo PP 842
QUALENION SPECIANIZALIONS ... i\v'iiii et e e e e e e e e e e e e et e et e e et e e et e e et e e e eaaes 843
(O TV (T gaT o gAY [=T g o g Y/ o 1=To [£ PP 846
QuAternion IMEMDET FUNCHIONSiii it e e e e e e e e e et e e et e e et e e et e et e e et e e et e eanaes 847
Quaternion NON-IMEMDET OPEIALOISiiuieiiieti et e e e e e e e e e e e et e et e et e e et e e et e e et e e et eeataeaanaeeanns 850
QUALENION ValUE OPEIALIONS ... ivuuiiii it e i e e e e et e e e e e e e e e e e e e e e e et e e st e e et e e et e e e e e e et e eaaeeaanaeeees 853
Quaternion Creation FUNCLIONSc.uuiii et e e e e e e e e e e e e e et e e et e e et e e et e e et e e et e eanans 854
QuUALErNioN TraNSCENUENTAISt it e e e e e e e e e e e e et e e e e et e et e et e e et e e st e eeanes 855
L= 0T o PP 857
The QUAternionNiC EXPONENTIALciutiii et e e e e e e e e et e e et e et e et e e et e e aanaeaees 858
Aot 10T =T o T=T g T-T o1 PPN 859
L 1 (0] Y/ P 860
eI L TSP PRN 861
1@ o3 (0] 1 o] 1 ST 862
L@ Y T PSPPI 863
[T To (=] L PSPPSR 864
)Y 110 01 PP 865
L] o P I @ F TR o (o] T o PP 867
L@ T (o g0 A BT 0T -1 [L1 o] PPN 869
L@ T (o] g o) o\, =T o] o L= Y] 1= (=] £ PPN 873
(@ Tex (o] T To gl \Y, (<] 0] o< gl T 0 o PP PPT 874
L@ T (o] a0 o N[0T B Y T oL R @ o =T = (o] PPN 878
(@0 (o g o IV [@] 1= -1 o] 4T PSP 881
OCtONION Creation FUNCLIONS .. .iiuutie it e e e e e e e ettt e e et e e e e et e e e ettt e e e e ea e e e esben s 882
OCtoNIONS TraNSCENABNTAIS ... vut ettt e et e e et e e ettt s e e e et r e e e e bt neeeeatneeaentnaaeeees 883
L= 0T - PP 885
Aot G107 =T o T=T g T-T o1 PPN 886
L 1 (0] Y/ P 887
eI L TSP PRN 888
Integer Utilities (Greatest Common Divisor and Least Common MUILIPIE)coovviiiiiiiiiiii e, 889
Internal Details: Series, Rationals and Continued Fractions, Testing, and Development TOOISccooveviiieiiiiiiiineennnns, 890
L@ Y T PO 891
1] g U (oo [OOSR 892

SEIIES EVAIUGLION ...\ttt e e 892

Continued Fraction EVAIUGLIONiiiiiiii e et 895

LT 0] PP 899

Minimax Approximations and the Remez AlgOrithm ..o, 900

R P)Y g o] i Ta o B =Ty] o PP 902

Graphing, Profiling, and Generating Test Data for Special FUNCLIONSc.oviiiiiiiii e 904

viii

htto://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

914
915

Math Toolkit 2.10.0

935
935

937

Use with User-Defined Floating-Point Types - Boost.Multiprecision and others
Why use a high-precision library rather than built-in floating-point types?ccoovviiiiiiiiiii e, 914

Using Boost.Math with High-Precision Floating-Point Libraries

Using Boost.Multiprecision
Using with GCC's __ float128 datatype

Using With MPFR or GMP - High-Precision Floating-Point Library

Using e_float Library

Using NTL Library
Using without expression templates for Boost. Test and others

Conceptual Requirements for Real Number Types
Conceptual Requirements for Distribution Types
Conceptual Archetypes for Reals and Distributions

Policies: Controlling Precision, Error Handling etc
Policy Overview
Policy Tutorial
S0 JUSt What IS @ POIICY ANYWAY? .. .ouiiiiieiici e et e e e e e e e et e e et e et e e e eaanas 935
Policies Have Sensible Defaults
S0 HOW are POIICIES USEBA ANYWAY?iiiiiiiiieii e et e e e e e e e e e e e e et e e et e e e et eer it e eaanaeaaes 936
Changing the Policy Defaults
Setting Policies for Distributions on an Ad Hoc Basis
Changing the Policy on an Ad Hoc Basis for the Special Functions
Setting Policies at Namespace or Translation Unit Scope

Calling User Defined Error Handlers

Understanding Quantiles of Discrete Distributions

Policy Reference
Error Handling Policies

Mathematically Undefined Function Policies

Discrete Quantile Policies

Internal Floating-point Promotion Policies

Iteration Limits Policies
Setting Polices at Namespace Scope

Precision Policies
Using Macros to Change the Policy Defaults

Policy Class Reference

Getting the Best Performance from this Library: Compiler and Compiler Options

Performance
Performance Overview
Interpreting these Results

Cost of High-Precision Non-built-in Floating-point

Trading Accuracy for Performance

Performance Tuning Macros

Comparing Different Compilers

Comparisons to Other Open Source Libraries
The Performance Test Applications

Backgrounders

Additional Implementation Notes
Tutorial: How to Write a New Special Function

Implementation

Testing

Relative Error

The Remez Method
Tables of Error Rates for all Functions

Error Logs For Error Rate Tables
iX

The Lanczos Approximation
http://www.renderx.com/

References
Error logs and tables

Library Status
History and What's New

render

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

3
i

Math Toolkit 2.10.0

Known Issues, and TODO List
Credits and Acknowledgements

10 1S T

htto://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

rende

List of Tables

1. PosSible ACtioNS TOr DOMAIN EFTOFSiiiiiie ittt ettt ettt e et e e e e e e e s 12
2. POSSIDIE ACHIONS TOr POIE EITOIS ... it ettt 12
3. Possible ACtions TOr OVEITIOW EITOISu.iiiii e e et ettt e e ettt e et e e e e e eeenes 12
4. Possible ACtions fOr UNGErTIOW EFTOFScoiuuii ittt ettt e e e eneens 13
5. P0sSible ACHIONS TOr DENOIM EFTOIS ittt et et e ettt e e e e 13
6. Possible ACtions FOr ROUNGING EITOIScouutiiiiiit ettt ettt e et e ettt e ettt e e e et e e e et aeeees 13
7. Possible Actions for Internal EVAIUALION EITOFScoiiuiiiiiiii et 14
8. Possible Actions for Indeterminate RESUIT EITOIScooiuii e 14
9. SUPPOITEd/TESIE COMPIIETS ...t et ettt e ettt e ettt e ettt e e e et e e e eataeeees 19
10. UNSUPPOITEA COMPIIELS ...ttt et ettt ettt ettt ettt e et et e e eeaen s 21
11, BOOSEIMAEN IMIBCIOS ...ttt et ettt ettt r ettt e et e ettt n e ettt e e et e e et e eeen 24
12, BOOSEMAIN TUNMING vttt ettt ettt et e e e et et eenan s 25
13. C99 Representation of INfinity and NANcoouiiiiii e 66
14, MathematiCal CONSTANTS ciiiet ittt ettt et ettt et et et ettt e e et e bt e e e et e eeeaees 110
15. Meaning of the NON-MEMDEN GCCESSOTS ittt ettt e et eeae s 252
16. Meaning Of the NON-IMEMDET ACCESSOIS.uuuu ittt ettt ettt ettt ettt ettt et eeane s 279
17. Meaning Of the NON-IMEMDET ACCESSOIS.uuuu ittt ettt ettt ettt ettt ettt ettt et e e eane s 326
18. Error rates for non Central DELA CDFu i et 330
19. Error rates for non central beta CDF COMPIEMENToouuniiiii e 330
20. Error rates for non central Chi SQUArEd CDFiiiiiiiiiiii ettt e 335
21. Error rates for non central chi squared CDF COMPIEMENTcviuiiiiiiii e 335
22. Error rates for NON CENTIAl T CDF ittt et e e et e e 343
23. Error rates for non central t CDF COMPIEIMENTciiiitiiiii et 344
24, EITOF FALES TOF TAMIMIA ...\ ettt ettt ettt ettt e et e e e et a e et b e e et bt e e e eaen e 406
25. Error rates for tgamMALPML ittt ettt 407
26. Error rates TOr IQAMMA ... cieii ettt ettt e et e e et e et e e 411
27. Error rateS fOr QIGAMIMAcoouui ittt ettt ettt e et e et e et e e e e s 416
28. EITOr rates TOr trIGAMIMA ... ciiei ettt et e et e et h e et b e e et e e e b e 421
29. Error rates for POIYGAMIMA ittt et e et e et e e e ae e 425
30. Error rates for tgamma_delta, FALIOuiiiii e 428
31. Error rates fOr TgaMMEA_TALIO iieee ettt ettt ettt 429
32, EXTOF TAES TOF GAMIMA_D 1.ttt etiitt ettt ettt ettt ettt ettt et ettt et e e et e ettt ettt e e e et e e e e e nb e e enae s 433
33. EXTOF TAES TOF GAMIMA_{ +.tteeeett ettt ettt ettt ettt et et ettt et e ettt et e e ettt e e e et e e e e e nb e e e ennes 434
34. Error rates fOr tgAMMEA_TOWETo ittt et ettt e e 434
35. Error rates for tgamma (INCOMPIETE)oeuueiii ettt e e 435
36. Error rates fOr QamMIMEA_P_INV ... oottt ettt ettt et ettt 441
37. Error rates fOr QMM 0_INVttt et ettt ettt e et e ettt e ettt 441
38. Error rates fOr QAMMEA_D_INVAooeieiieeiiii ettt ettt et ettt ettt e et e et e b et e s 441
39. Error rates fOr GAMMEA_O_INVA oeeeeiieeiiit ettt ettt ettt ettt ettt e e et e e et et e et e e e s 442
40. EXTOr rateSs O DETA ...t e e e 452
A1, EITOr rates TOr TDBTA ..ot 456
A2, ErTOr FALES TOF TDBTAC ...\t e e e et ettt e et 457
43. Error rates for beta (INCOMPIBLE) ... ettt 457
A4 EITOF FALES TOF DBTAC ... e ettt e ettt e et e 458
A5, Error rates fOr IDBLA TNV ... e et 463
46. Error rates fOr IDBLAC 1NVo.e i e et 463
A7, Error rates fOr IDBLA INVAo.ee e e et e 464
48. Error rates fOr IDBTAC INVAiii e e e ettt e e 464
49, Error rates fOr DT INVD e e 464
50. Error rates fOr IDETAC INVD e e e 464
N S o g 1 e (o] - o PP TPPTTR 470
Y 1 (o] g -1 (=Sl (0] G- o { PP RTPPP 471
I = (o1l LTSy o] T o 11 1Y A TP 476
Y o g (o R =V (=T (o] T o 10V A TP 476
55, EITOr FALES TOF IEJRNAIE I ...ttt ettt et et e et e e et e e e b e 484
Xi

http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

rende

r

Math Toolkit 2.10.0

S oI = (o1l = (=T 0 g [=To T=T o Vo o 484
57. Error rates for legendre P (ASSOCIAtEA)ciiueiiii it e e e e 484
o Y (o g ==l (o g Fo Vo U T (=T (T P PP 488
59. Error rates fOr LagUEITE(N, I, X) coiuuiiiieiiii et et e e e e e e e e e et e e e e e et e e et e e et e e et e e et e e et e e et e e et e eet e e et eeenaes 489
B0. Error rates fOr NBITNITE .. oeut it e e et et et e et e e e et e e ettt n e e e e e e e ennn s 491
61. Error rates for Spherical _NarmMONIC I ... oo e e e e 497
62. Error rates for SPherical _NarmMOniC ioioiuiiiii e e 497
63. Error rates for Cyl_bessel_j (INTEYET OFUEBIS)u.iuue i e e e e e e e e e e e e e aaeaes 507
B4, Error rates fOr CYl DESSEl J . oiviiiii i e e 508
65. Error rates for cyl_neumann (INtEYET OFUEIS) ... cvuu.iiie i eii et e e e e e e e e e e et eer e e e aaeas 510
B6. Error rates fOr CYl MEBUMANN it e e e e e e e e e e e e e et e et e et e e et e e et eaaa e eeenas 511
67. Error rates for Cyl_bessel i (INTEYET OFAEBIS)u.iiu it e e e e e e a e e e raeaes 528
B8. EXror rates fOr CYl DESSEI i .. .uuiiie et 529
69. Error rates for cyl_bessel K (INtEYET OFUEIS)cvvuiiii it e e e e e e e e e e aan s 530
70, Error rates fOr CYl DESSEL K ...ivuiiiii it 531
T1. Error rates fOr SPN_DESSEl ... i 541
T2, Error rates fOr SPR_NEUMANN iue e e e e e e e e e e e e e e e e e et e e et e e et e et e e et e e et e e aan e eanaas 541
73. Error rates for cyl_bessel_i_prime (INTEQEI OFUBIS)uuiiiiiiii et e e e r e e aaa s 544
T4, Error rates for CYl DeSSEl I PriMe ...ciue i e e e e 544
75. Error rates for cyl_bessel_j prime (INTEQEI OFUEIS)uuiiii i e e e e e e e e e e aaeas 545
76. Error rates for CYl DESSEl | PriMe ...cuue i e e e e 546
77. Error rates for cyl_bessel_K_prime (iNtEGEI OFAEIS)iiiuriiii e e e e e e 546
78. Error rates for Cyl DESSEl K PriME ...ouuiii i e e e e 547
79. Error rates for SPh_DeSSel Prime ... e 547
80. Error rates for SPh_NEUMANN_PIIMIE ... e e e e e e e e e et e et e e et e e et e et e e et e e et e e ean e areaas 547
SN Y 0T =1 (= 0 = |) o PP 575
82, Error rates fOr @llINE IO ...ooveii i e 576
83, ErTOr rates FOr @IlINE 1Q ..ioe i e e 577
B4, Error rates Tor @l I .. o 577
Lo = (o1l VIS (o] =1L) A [P 578
86. Error rates TOr @IlINT L ... e e e 580
B7. Error rates TOr @IlINE 2 ... e e e 585
e Y o g =1 (=T (o) =Y T A PP 589
89. Error rates for ellint_d (COMPIELE)ovuiii e e e e e e e 592
90. Error rates fOr @llINT do.iii e 592
91, Error rates FOr JACODI ZETA ... c.vviiiii it 596
92. Error rates for heuman _[ambdacooiiiii 597
LI S g (o TR =L (=T (o] g T oto oL o] o TP 603
94, Error rates fOr JACODI ANiii i e e 604
Lo = (o1l - (=T {0 G - (ot] o] 1Y 2 605
96. Fukushima Lambert Wy and typical improvement from a single Halley Step.covviiiiiiiiiiiiiii e, 631
97. Rational polynomial Lambert W, and typical improvement from a single Halley Step.ccooviiiiiiiiiiiiii, 632
98. Lambert W_; using FUKUShIMa algOrithm.uiiii et 632
L = (o g o LTSl (o] g - N TP P TP UPTIN 640
100. Error rates fOr @XPINT (EN) ...ovuuiii e e e e e e e e e e e e e e e e a e a e a e 644
101, Error rates fOr @XPINT (EQ) ...ivuuiiii i ieeii e e e e e e e e e e e e e e e e et e e et r e e e et e e e e r e aaas 647
02 = 4 (0T - (=TS 0] = [o) PR 650
Oy (0T (oISl {0 oo L o | PP 651
07y 0T =1 C=E () [T o S PTPIN 653
0L T = (0T 1Tl (0] = 0 0 1 654
0L 3y (o =1 (=R o] ol o] o AP 656
07 = o = (=T o ST 1 o] P 657
0 TR (0 U= {0 010 o 658
B0 T (0Tl 1 =TTl (0] 111 = P 677
110. Cube root(28) for float, double, long double and cpp_bin_float 50ccoiiiiiiiiiiii e, 748
111. Cube root(28) for float, double, long double and cpp_bin_float 50ccooiiiiiiiiiii e, 748
112. 5th root(28) for float, double, long double and cpp_bin_float_50 types, using _X86 SSE2cccoeeviieiiiiieninnennnn. 749
113. 7th root(28) for float, double, long double and cpp_bin_float_50 types, using _X86 SSE2ccooevviiiiiiieiinnennnn. 750

Xii

htto://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Math Toolkit 2.10.0
114. 11th root(28) for float, double, long double and cpp_bin_float 50 types, using X86 SSE2ccccocvciviviieiinnnnnn. 750
115. 5th root(28) for float, double, long double and cpp_bin_float 50 types, using _X64 AVXcccooeviieiiiiiiiiineninnennn, 751
116. 7th root(28) for float, double, long double and cpp_bin_float 50 types, using _X64 AVXcccooeviieiiiiiiiiineninnennn, 751
117. 11th root(28) for float, double, long double and cpp_bin_float 50 types, using X64 AVXccociiiiiiiieiiiiieninnennnn. 751
118. 5th root(28) for float, double, long double and cpp_bin_float_50 types, using _X64 SSE2cccooevviieiiiiieninnennnn. 752
119. 7th root(28) for float, double, long double and cpp_bin_float_50 types, using _X64 SSE2cccooeeviieiiiiieiinnennnn. 752
120. 11th root(28) for float, double, long double and cpp_bin_float 50 types, using X64 SSE2c.ccocceiviiiiieiinnnnnn. 753
121. root with radius 28 and arc length 300) for float, double, long double and cpp_bin_float_50 types, using
BB _SSE2 ..iiiieitiit ittt e e e e e e e e e et et e e et a et 754
122. root with radius 28 and arc length 300) for float, double, long double and cpp_bin_float_50 types, using
D T A\ GRS PTR 755
123. root with radius 28 and arc length 300) for float, double, long double and cpp_bin_float_50 types, using
KB SSE 2 ..ttt e e e e e e e e e e e e e e et a et 755
124. Cost of Finite-Difference Numerical DIifferentiationoiiiiuiiiiiiii e 816
125. Compiler Option Comparison 0N WINAOWS X684iiiuniiii et et e e e e e e e e e e e e e et e e e e eeateeaanaeees 985
0 I g o - Yo Q= T=T o] a1 14T P 988
127. Polynomial Method Comparison with Microsoft Visual C++ version 14.0 on Windows X64c.cccoeeiiiieiinnennnnn. 991
128. Rational Method Comparison with Microsoft Visual C++ version 14.0 on Windows X64cccoeeeviieiiiineninnennnnn 993
129. Compiler Comparison 0N WINAOWS X684uiiuiieiiii ettt e e e e e e e e e e e e e e e e e et e et e e et e e st e e aanaeareaas 996
130. Compiler CompPariSON ON TINUXiiiiiii e e e e e e et e e e e e e e e et e e et e e et e e et e e et e eaaeeannaas 1000
131. Library Comparison with Microsoft Visual C++ version 14.0 on WINdOWSs X684cc.oveiiiiiiiiiieiiin e 1003
132. Optimal choices for N and g when computing with guard digits (source: Pugh)cocooeiiiiiiiiiiiii e 1031
133. Optimum value for N and g when computing at fiXed PreCiSiONoeiiuiiiiiieiiii e 1032
I Y (0T =1 (=l o] gl 1] LR 1042
135. Error rates for beta (INCOMPIELE)ceueii i e e e e e e e e e e e e e e aaaees 1042
I T o L LR 0] oL Lo PSPPSRI 1043
137. Error rates for binomial_COBTTICIENToiiii i e e e e e a e 1043
138. Error rates for DooSt: i Math: i POWML ... e e e 1043
IS ¢ o gl V(T (0] ot o] AR RTSOPPN 1044
IO o (o T =L C=T (o] ot T] PR 1044
142, Error rates fOr CYl DS I ..iuuiiiii i e e
142. Error rates for Cyl_bessel i (INTEEI OFUBIS)uuiiiue it e e e e e e e e e e e e e et e et e e aaaees
143, Error rates for CYl DESSEL I PriME ... e e e
144. Error rates for cyl_bessel i prime (INtEYEN OFUBIS)uuiiuriiiii et e e e e e e e e e e e e e e e e eees
145, Error rates fOr CYl DSl J oviviiiii i e e
146. Error rates for Cyl_bessel j (INTEEI OFUBIS)uuiiiu i e e e e e e e et e e e e et e et e e aaaees
147, Error rates fOr CYl DESSEL J PIiME ..o e e e e e
148. Error rates for cyl_bessel_j_prime (INtEUEN OFUBIS)uuiiuriiiii i ee et e e e e e e e e e e e e e eees
149, Error rates fOr CYl DESSEl K ... e e
150. Error rates for Cyl_bessel_K (INTEQEI OFAEIS)cvuuiiii i e e e e e e e e e aaeees
151, Error rates for CYl DeSSEl K PrimMe ..o e e
152. Error rates for cyl_bessel_K_prime (INEJEN OFUBIS)uuiiuiiiiiieeii et e e et e e e e e e e e e e e e e eaaaeees
153, Error rates fOr CYl NBUMANN ... i e e e e e e e e e e et e et e e et e e et e e e et e eaaan s
154. Error rates for cyl_neumann (INtEGEI OFAEIS) ... cuuu it e e e e e e e e e e e e e e aanaees
155. Error rates for CYl NEUMANN_ PIIMIE ..uu.iii et e e e e e e e e e e et e e et e e et e e et e et e e et e esanaeees
156. Error rates for cyl_neumann_prime (INTEEI OFUBIS)u.iiuriiiiieri et et e e e e e e e e e e e e e e e et e e e e aanaees
Y A = 1 (o1 TS 0 g TTo T Ty - TP
BT 4 (0T 1 =13 (o] =11 1T PPN
159. Error rates for €llint 1 (COMPIETE)ovuiiii i e e e e e e e e e e e e et e e e e
160. Error rates fOr 1HINT 2 ...oouu i e e e e e e e e et a e
161. Error rates for €llint 2 (COMPIETE)ovuiiii e e e e et e e e e e e e e e e et e e e e
A 4 (o Ta -1 (=T (o] =11 T PPN
163. Error rates for €llint 3 (COMPIETE)ovuiii e e et e e e et e e e et e e e e
164, Error rates fOr €1HINT 0iiiiii e e e e e e e e a e
165. Error rates for ellint d (COMPIETE)ouuiii e e et e e e e e e e e e et e e e e
S O S (o A -\ ISR (] =11 T | (PN
167, Error rates fOr @IINT 10o i e e e e e e e e e e e
168. Error rates TOr @Mt 1T ... oo e e
Xiii
> http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Math Toolkit 2.10.0

CTe I g (0Tl | IS (o] =11 LT A PR 1065
O S (0T 1 (=T (0 =1 T | A PPN 1066
I = g (0T =1 (=T (o] T o TP ETPTOUPPPRRPPN 1067
7 4 (0T - (=T (0] =Y)Y PPN 1067
T = 1 (0Tl - LTS (o] =T (PP EUTPTTUPPRRPPN 1068
L (o T a1 C=l {0 =1 (ol)Y PPN 1068
175, Error rates fOr @XPINT (B1) ...ovvuiiiii it e e e e e e e e e e e e a e aa 1069
176. Error rates fOr @XPINT (EN) ...ciuuniiiiieiiie e et e e e e e e e e e e e e e e e et e e et e e et e e et e et e et e e e e e e e aaaaae 1069
A 0 = (=3 o] = 1 4 1070
A T = (o L= 0 o = 4 U 1070
179, Error rates fOr QAMIMA P iNV couuiii it e e e e e e e e e e e e e e e e e et e e e e e e et a e e e 1071
180. Error rates fOr GAMMA P INVA ...c.uuiiiiieiiiiesi e e e e e s e e e e e et e e s e e et e et e e et e e et e e et e e e at e eaa e e at e eran e eanaares 1071
O = (o gl =L C=T 3 0 o = 4 U 1072
182. Error rates fOr GAMMA 0 NV ..uuuiiiiiiii e e e e e e e e e e e e e e e et e e et e e et e e et e e et e e et e e et e e et e e e era s 1073
183. Error rates fOr GAMMAL 0 INVA ...ccuuiiiteiiiieii e e e e e e e e e et e e e et e e st e e et e et e e et e e et e e et e e eat e e st eeat e esanaeeenaees 1073
184, ErrOr rateS FOr NEIMMITE ...ouu i it et et e et e e ettt e e ettt e ettt e e e e et e e e e et aaeeaataeeaees 1073
185. Error rates for heuman_[ambaaooouiiiiii e 1074
(o S (0T =V (=Rl (o] g o] L TP 1074
R = 1 (0Tl | IS (o] 1o =1 7= LY/ TP 1075
R I S (0T = V(=T (o] 1o =) v 101V NPT 1075
189. Error rates for 1DBIa INVD ... i e 1075
190. Error rates fOr IDBIAC ...ovivvt e e e e e e e 1076
191, Error rates fOr IDBLAC TNViiii i e e e 1076
192, Error rates fOr IDEIAC INVAuu.iiii it e e e e e e e e e e e e e et e et e e et e e et a e e e e aaaees 1076
193, Error rates for IDBIAC INVD ... e e e 1077
R ey (o a1 C=il (o) = (o] o N o PR 1077
195, Error rates fOr JaCODI N ... i e e 1078
196. Error rates fOr JACODI SNiiii it 1079
197. Error rates fOr JACODI ZETAiiii i e e 1079
R L S (0T) T {0 gl P o U T =T (T T P PTN 1080
KL I ¢ (0Tl | = (oL g T [0 T=T o =T (A RN 1080
0O = (o g - (T3 (o gl (=T =T g o T o PPN 1080
201. Error rates for legendre P (8SSOCIALEA)cvvuiiiii et e e e e e e e e e e e 1080
b = (o -\ T3 (o gl (=T =T g o o [T 1081
203. Error rates fOr IGAMMA oot et e e e e e e e e e e et e e et e et e e e et e e e e aaee 1082
b0y (0T (TSR 0] g (o PP 1083
205. Error rates for Non CENtral DELA CDF iiiiii e e e e e e e e 1083
206. Error rates for non central beta CDF COMPIEMENT oiiuiiiii e e e e a e e 1084
207. Error rates for non central Chi SQUArEd CDFciiiiiii e e e e eaes 1084
208. Error rates for non central chi squared CDF COMPIEMENTooviiiiiii e 1084
209. Error rates for NON CENEFAl £ CDF it e e e et ettt e e e et e e et e e e eae e e aeaen s 1085
210. Error rates for non central t CDF COMPIEMENTiiuiiiii e e e e e e e e eaes 1085
I O o] = Y (= TS3l {0)11 o P 1086
212. Error rates fOr POIYGAMMAiiii it e e et e e e e e e e e e et e e et e et e e et e e st e e st e e aan e eaneees 1087
B T Y 0] g - (=TS (0] 010, o 1088
b g oY g =1 C=tl {0 [oL SPPN 1088
215, Error rates fOr SPN_DESSEIu i e 1088
216. Error rates for SPh_DESSEl PriME ... iiue e e 1088
217. Error rates for SPR_NBUMAINNu . e e e e e e e e e et e e et e e st e e et e e et e et e e et e e et e e eanaeeaes 1089
218. Error rates for SPh_NEUMANN_PIIMIE ...ttt e e e e e e e e e e e e e e e e e et e et e e et e e et e e eat e eataeeanaees 1089
219. Error rates for Spherical _harmMONIC ioiiuiiiiii e e e e e 1089
220. Error rates for SPherical _NarmONIC Iiiiiii i e e e e e e e e e 1089
7 T = (0 11l {0 T | o 6o 1 1089
A o] g L= {0 0=V 102 1090
223. Error rates for t0ammal DML ... e e 1091
224, Error rates for tgamma_delta Tati0oiiuuiiii e e 1091
225. Error rates for tgamma (INCOMPIETE) ... o.vuiii it e e e e e e et e e et e et e et e e et e eeaes 1091
226. Error rates for tgamMa 0BToiii e e e e e e a e e 1092
Xiv

render

htto://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

3
i

Math Toolkit 2.10.0

227. Error rates for tAMMA FATI0iiii it e e e e e e e e e e e e e e et e e e e e e aaa
T (o -\ (T3 (o] g 10T 1113 U TN

229. Error rates for zeta

XV

htto://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

3
g

Overview

htto://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

rende

r

Overview

About the Math Toolkit

This library is divided into several interconnected parts:

Floating Point Utilities

Utility functions for dealing with floating-point arithmetic, includes functions for floating point classification (fpclassify, isnan,
isinf etc), sign manipulation, rounding, comparison, and computing the distance between floating point numbers.

Specific Width Floating-Point Types

A set of typedefs similar to those provided by <cstdint> but for floating-point types.

Mathematical Constants
A wide range of constants ranging from various multiples of m, fractions, through to euler's constant etc.

These are of course usable from template code, or as non-templates with a simplified interface if that is more appropriate.

Statistical Distributions
Provides a reasonably comprehensive set of statistical distributions, upon which higher level statistical tests can be built.

The initial focus is on the central univariate distributions. Both continuous (like normal & Fisher) and discrete (like binomial &
Poisson) distributions are provided.

A comprehensive tutorial is provided, along with a series of worked examples illustrating how the library is used to conduct stat-
istical tests.

Mathematical Special Functions

Provides a small number of high quality special functions, initially these were concentrated on functions used in statistical applic-
ations along with those in the Technical Report on C++ Library Extensions.

The function families currently implemented are the gamma, beta & erf functions along with the incomplete gamma and beta
functions (four variants of each) and all the possible inverses of these, plus digamma, various factorial functions, Bessel functions,
elliptic integrals, sinus cardinals (along with their hyperbolic variants), inverse hyperbolic functions, Legrendre/Laguerre/Hermite
polynomials and various special power and logarithmic functions.

All the implementations are fully generic and support the use of arbitrary "real-number" types, including Boost.Multiprecision,
although they are optimised for use with types with known-about significand (or mantissa) sizes: typically float, double or
long double.

These functions also provide the basis of support for the TR1 special functions.
Root Finding and Function Minimisation
A comprehensive set of root finding algorithms over the real-line, both with and without derivative support.
Also function minimisation via Brent's Method.
Polynomials and Rational Functions
Tools for manipulating polynomials and for efficient evaluation of rationals or polynomials.
Interpolation

Function interpolation via Barycentric or cubic B_spline approximations.

htto://www.renderx.com/

http://en.wikipedia.org/wiki/Univariate
http://mathworld.wolfram.com/StatisticalDistribution.html
http://mathworld.wolfram.com/ContinuousDistribution.html
http://mathworld.wolfram.com/DiscreteDistribution.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/n1836.pdf
http://www.boost.org/doc/libs/release/libs/math/doc/html/../../../../libs/multiprecision/doc/html/index.html
http://en.wikipedia.org/wiki/Significand
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Overview

Numerical Integration and Differentiation

A reasonably comprehensive set of routines for integration (trapezoidal, Gauss-Legendre, Gauss-Kronrod and double-exponential)
and differentiation.

The integration routines are all usable for functions returning complex results - and as a result for contour integrals as well.

Quaternions and Octonions

Quaternion and Octonians as class templates similar to std: :complex.

render

htto://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Overview

Navigation

Boost.Math documentation is provided in both HTML and PDF formats.
Source code of the many Examples will often be your quickest starting point.

Tutorials are listed in the Table of Contents and include many examples that should help you get started quickly.

Index (general) includes all entries.

« Specific Indexes list only functions, class signatures, macros and typedefs.
Using the Indexes

The main index will usually help, especially if you know a word describing what it does, without needing to know the exact name
chosen for the function.

@ Tip

When using the index, keep in mind that clicking on an index term only takes you to the section containing the
index entry. This section may be several pages long, so you may need to use the find facility of your browser or

PDF reader to get to the index term itself.
A PDF reader usually allows a global find; this can be really useful if the term you expect to be indexed is not

Tip

the one chosen by the authors. You might find searching the PDF version and viewing the HTML version will
locate an elusive item.

http://www.renderx.com/

render

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Overview

Document Conventions
This documentation aims to use of the following naming and formatting conventions.
C++ Code is in fixed width font and is syntax-highlighted in color, for example double.

Replaceable text that you will need to supply is in italics.
If a name refers to a free function, it is specified like this: free_function(); thatis, itisin code fontand its name is followed

Other code is in block teletype fixed-width font.
If a name refers to a class template, it is specified like this: class_template<>; that s, it is in code font and its name is followed

by <> to indicate that it is a class template.
If a name refers to a function-like macro, it is specified like this: MACRO(); that is, it is uppercase in code font and its name is

by O to indicate that it is a free function.
followed by () to indicate that it is a function-like macro. Object-like macros appear without the trailing .
Names that refer to concepts in the generic programming sense (like template parameter names) are specified in CamelCase.

http://www.renderx.com/

render

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Overview

Other Hints and tips

« If you have a feature request, or if it appears that the implementation is in error, please search first in the Boost Trac.
« If you do not find your idea/feature/complaint, please reach the author preferably through the Boost development list, or email

« Trac entries may indicate that updates or corrections that solve your problem are in Boost-trunk where changes are being assembled
and tested ready for the next release. You may, at your own risk, download new versions from there.

« If you do not understand why things work the way they do, see the rationale section.

the author(s) direct.

Admonishments
Note

K

In addition, notes such as this one specify non-essential information that provides additional background or rationale.

Tip

These blocks contain information that you may find helpful while coding.

Important
These contain information that is imperative to understanding a concept. Failure to follow suggestions in these

blocks will probably result in undesired behavior. Read all of these you find.

A

Warning

Failure to heed this will lead to incorrect, and very likely undesired, results.

X

http://www.renderx.com/

render

https://svn.boost.org/trac/boost/
https://svn.boost.org/trac/boost/
http://svn.boost.org/svn/boost/trunk
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Overview

Prototype defining the essential features of a RealType class (see real_concept.hpp). Most applic-

Directory and File Structure

ations will use double as the RealType (and short typedef names of distributions are reserved
for this type where possible), a few will use float or long double, but it is also possible to use
higher precision types like NTL::RR, GNU Multiple Precision Arithmetic Library, GNU MPFR
library that conform to the requirements specified by real_concept.
Templated definition of some highly accurate math constants (in constants.hpp).
Distributions used in mathematics and, especially, statistics: Gaussian, Students-t, Fisher, Binomial

boost/math

[/concepts/

Policy framework, for handling user requested behaviour modifications.
Math functions generally regarded as 'special’, like beta, cbrt, erf, gamma, lgamma, tgamma ...

(Some of these are specified in C++, and C99/TR1, and perhaps TR2).
Tools used by functions, like evaluating polynomials, continued fractions, root finding, precision

[constants/
[distributions/
etc
Ipolicies/
Ispecial_functions/
ftools/
and limits, and by tests. Some will find application outside this package.
boost/libs
/doc/ Documentation source files in Quickbook format processed into html and pdf formats.
/examples/ Examples and demos of using math functions and distributions.
/performance/ Performance testing and tuning program.
Itest/ Test files, in many .cpp files, most using Boost. Test (some with test data as .ipp files, usually generated using
NTL RR type with ample precision for the type, often for precisions suitable for up to 256-bit significand
real types).
[tools/ Programs used to generate test data. Also changes to the NTL released package to provide a few additional
(and vital) extra features.

http://www.renderx.com/

render

http://shoup.net/ntl/doc/RR.txt
http://gmplib.org/
http://www.mpfr.org/
http://www.mpfr.org/
http://shoup.net/ntl/
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Overview

Namespaces

All math functions and distributions are in namespace boost: :math
So, for example, the Students-t distribution template in namespace boost: :math is
and can be instantiated with the help of the reserved name students_t(for Real Type double)

template <class RealType> class students_t_distribution

typedef students_t_distribution<double> students_t;

student_t mydist(10);

O Warning
Functions not intended for use by applications are in boost: :math: :detail.

Some distribution names are also used in std random library, so to avoid the risk of ambiguity it is better to make
explicit using declarations, for example: using boost::math: :students_t_distribution

Functions that may have more general use, like digits (significand), max_value, min_value and epsilon are in

boost: :math: :tools.
Policy and configuration information is in namespace boost: :math: :policies.

Many code snippets assume implicit namespace(s), for example, std: : or boost: :math.

Tip

http://www.renderx.com/

render

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Overview

Calculation of the Type of the Result

The functions in this library are all overloaded to accept mixed floating point (or mixed integer and floating point type) arguments.

So for example:

foo(1.0F, 2);
If all the arguments are of the same (floating point) type then the result is the same type as the arguments.

foo(1.0, 2L);
etc, are all valid calls, as long as "foo" is a function taking two floating-point arguments. But that leaves the question:

f0o(1.0, 2.0);
"Given a special function with N arguments of types T1, T2, T3 ... TN, then what type is the result?"

Otherwise, the type of the result is computed using the following logic:
Any arguments that are not template arguments are disregarded from further analysis.
If any of the arguments is a user-defined class type, then the result type is the first such class type that is constructible from all

1.
For each type in the argument list, if that type is an integer type then it is treated as if it were of type double for the purposes

2.
of further analysis.
If any of the arguments is of type long double, then the result is of type long double.

of the other argument types.
If any of the arguments is of type double, then the result is of type double.

5.

6. Otherwise the result is of type float.

For example:

cyl_bessel (2, 3.0);

Returns a double result, as does:
as in this case the integer first argument is treated as a double and takes precedence over the float second argument. To get a

cyl_bessel (2, 3.07);
float result we would need all the arguments to be of type float:

cyl _bessel j(2.0Ff, 3.0F);
When one or more of the arguments is not a template argument then it doesn't effect the return type at all, for example:

returns a Float, since the first argument is not a template argument and so doesn't effect the result: without this rule functions
http://www.renderx.com/

sph_bessel (2, 3.07);
that take explicitly integer arguments could never return float.
And for user-defined types, all of the following return an NTL : -RR result:

render

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

3

i

Overview

cyl _bessel _j(0, NTL::RR(2));

cyl _bessel J(NTL::RR(2), 3);

cyl_bessel jJ(NTL::quad_float(2), NTL::RR(3)):;
In the last case, quad_Ffloat is convertible to RR, but not vice-versa, so the result will be an NTL: :RR. Note that this assumes
that you are using a patched NTL library.

These rules are chosen to be compatible with the behaviour of ISO/IEC 9899:1999 Programming languages - C and with the Draft
Technical Report on C++ Library Extensions, 2005-06-24, section 5.2.1, paragraph 5.

10

htto://www.renderx.com/

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/n1836.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/n1836.pdf
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Overview

Error Handling

Quick Reference
Handling of errors by this library is split into two orthogonal parts:

* What kind of error has been raised?
* What should be done when the error is raised?

X

The kinds of errors that can be raised are:

Warning

The default error actions are to throw an exception with an informative error message. If you do not try to catch

Occurs when one or more arguments to a function are out of range.
well defined residual value. For example if tgamma is evaluated at exactly -2, the function

the exception, you will not see the message!
Occurs when the particular arguments cause the function to be evaluated at a pole with no

approaches different limiting values depending upon whether you approach from just above
or just below -2. Hence the function has no well defined value at this point and a Pole Error

will be raised.

Domain Error
returned by the function.
the type being returned by the function.

Occurs when the returned result would be a denormalised value.

Occurs when the argument to one of the rounding functions trunc, round and modf can not

Pole Error
Occurs when the result is either infinite, or too large to represent in the numeric type being

Occurs when the result is not zero, but is too small to be represented by any other value in

Overflow Error
be represented as an integer type, is outside the range of the result type.

Underflow Error
Occurs if no method of evaluation is known, or when an internal error occurred that prevented
the result from being evaluated: this should never occur, but if it does, then it's likely to be

due to an iterative method not converging fast enough.
Occurs when the result of a function is not defined for the values that were passed to it.

Rounding Error

Evaluation Error

Denormalisation Error
Indeterminate Result Error
The action undertaken by each error condition is determined by the current Policy in effect. This can be changed program-wide
by setting some configuration macros, or at namespace scope, or at the call site (by specifying a specific policy in the function

Throws the exception most appropriate to the error condition.
Sets ::errno to an appropriate value, and then returns the most appropriate result

call).
The available actions are:
throw_on_error
Ignores the error and simply the returns the most appropriate result.
The following tables show all the permutations of errors and actions, with the default action for each error shown in bold

errno_on_error
http://www.renderx.com/

11

Calls a user-supplied error handler.

ignore_error

user_error

render

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Overview

Behaviour
Throws st d: : domai n_error
Sets ::errno to EDOM and returns std::numeric_lim-
Returns std: :numeric_limits<T>::quiet_NaNQ
the result of
this

its<T>::quiet_NaNQ)
boost: :math::policies::user_domain_error:

Returns

Table 1. Possible Actions for Domain Errors
function must be defined by the user.

Action
throw_on_error
errno_on_error
ignore_error
user_error
Behaviour
Throws st d: : domai n_error
Sets ::errno to EDOM and returns std: :numeric_lim-
its<T>::quiet_NaNQ
Returns std: :numeric_limits<T>::quiet_NaN(Q)
the result of

Returns

boost: :math: :policies::user_pole_error: this func-
tion must be defined by the user.

Table 2. Possible Actions for Pole Errors

Action
throw_on_error
errno_on_error
Behaviour
Throws st d: : overfl ow error

ignore_error
its<T>::infinity()

the

Returns

user_error
Table 3. Possible Actions for Overflow Errors
function must be defined by the us

boost::math::policies::user

Action
throw_on_error
errno_on_error

ignore_error

user_error

12

Sets : zerrno to ERANGE and returns std: :numeric_lim-

Returns std: :numeric_limits<T>::i

infinityQ
of

result
_overflow_error: this

er.

http://www.renderx.com/

render

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Overview

Behaviour
of

Throws std: :underflow_error
Sets : -errno to ERANGE and returns 0.
result

Table 4. Possible Actions for Underflow Errors
the
boost::math: :policies::user_underflow_error:this

Returns
function must be defined by the user.

Action
throw_on_error
errno_on_error
ignore_error Returns 0
user_error Returns

function must be defined by the user.

Behaviour

Throws std: :underflow_error
Sets : -errno to ERANGE and returns the denormalised value.
Returns the denormalised value.
the result of

boost::math::policies::user_denorm_error. this

Table 5. Possible Actions for Denorm Errors

Action
throw_on_error

errno_on_error
Behaviour

Sets : zerrno to ERANGE and returns the largest representable
value of the target integer type (or the most negative value if

the argument to the function was less than zero).
Returns the largest representable value of the target integer

type (or the most negative value if the argument to the
result

Throws boost: :math: :rounding_error
of

ignore_error

user_error
Table 6. Possible Actions for Rounding Errors

Action
throw_on_error
errno_on_error

Returns

function was less than zero).
the

boost::math: :policies::user_rounding_error: this
function must be defined by the user.

ignore_error

user_error

http://www.renderx.com/

13

render

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Overview
Behaviour
Throws boost : : mat h: : eval uati on_error
of

Sets ::errno to EDOM and returns the closest approximation
result

found.
Returns the closest approximation found.
the

boost::math::policies::user_evaluation_error:

Returns

Table 7. Possible Actions for Internal Evaluation Errors
this function must be defined by the user.

Action
throw_on_error
errno_on_error
ignore_error
user_error
Table 8. Possible Actions for Indeterminate Result Errors
Action Behaviour
throw_on_error Throws std: :domain_error
Sets - :errno to EDOM and returns the same value as ig-
nore_error.
Returns a default result that depends on the function where
the error occurred.
Returns the result of
boost: :math::policies: user_indeterminate_res-
ult_error: this function must be defined by the user.

ignore_error

errno_on_error
user_error
All these error conditions are in namespace boost::math::policies, made available, for example, a by namespace declaration using

namespace boost::math::policies; orindividual using declarationsusing boost::math::policies::overflow_er-

Rationale

ror;.
The flexibility of the current implementation should be reasonably obvious: the default behaviours were chosen based on feedback
during the formal review of this library. It was felt that:
» Genuine errors should be flagged with exceptions rather than following C-compatible behaviour and setting : zerrno.

* Numeric underflow and denormalised results were not considered to be fatal errors in most cases, so it was felt that these should

be ignored.
« If there is more than one error, only the first detected will be reported in the throw message.
Finding More Information

An example is at the Policy tutorial in Changing the Policy Defaults.

http://www.renderx.com/

There are some pre-processor macro defines that can be used to change the policy defaults. See also the policy section.
14

Full source code of this typical example of passing a 'bad' argument (negative degrees of freedom) to Student's t distribution is in

the error handling example.
The various kind of errors are described in more detail below.

render

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Overview

Domain Errors

When a special function is passed an argument that is outside the range of values for which that function is defined, then the
The default policy behaviour of this function is to throw a std::domain_error C++ exception. But if the Policy is to ignore the error,

function returns the result of:
boost: :math::policies::raise_domain_error<T>(FunctionName, Message, Val, Policy);
Where T is the floating-point type passed to the function, FunctionName is the name of the function, Message is an error message

describing the problem, Val is the value that was out of range, and Policy is the current policy in use for the function that was

called.
This behaviour is chosen to assist compatibility with the behaviour of ISO/IEC 9899:1999 Programming languages - C and with

or set global : -errno, then a NaN will be returned.

the Draft Technical Report on C++ Library Extensions, 2005-06-24, section 5.2.1, paragraph 6:

"Each of the functions declared above shall return a NaN (Not a Number) if any argument value is a NaN, but

it shall not report a domain error. Otherwise, each of the functions declared above shall report a domain error

for just those argument values for which:

"the function description's Returns clause explicitly specifies a domain, and those arguments fall outside the

specified domain; or

"the corresponding mathematical function value has a non-zero imaginary component; or
"the corresponding mathematical function is not mathematically defined.

"Note 2: A mathematical function is mathematically defined for a given set of argument values if it is explicitly

defined for that set of argument values or if its limiting value exists and does not depend on the direction of ap-

Note that in order to support information-rich error messages when throwing exceptions, Message must contain a Boost.Format

proach."

recognised format specifier: the argument Val is inserted into the error message according to the specifier used.
For example if Message contains a "%1%" then it is replaced by the value of vVal to the full precision of T, where as "%.3g"
When a special function is passed an argument that is at a pole without a well defined residual value, then the function returns the

would contain the value of Val to 3 digits. See the Boost.Format documentation for more details.

Evaluation at a pole

result of:
boost: :math: :policies::raise_pole_error<T>(FunctionName, Message, Val, Policy);
Where T is the floating point type passed to the function, FunctionName is the name of the function, Message is an error message

describing the problem, val is the value of the argument that is at a pole, and Policy is the current policy in use for the function

The default behaviour of this function is to throw a std::domain_error exception. But error handling policies can be used to change
Note that in order to support information-rich error messages when throwing exceptions, Message must contain a Boost.Format

http://www.renderx.com/

that was called.
this, for example to ignore_error and return NaN.
15

recognised format specifier: the argument val is inserted into the error message according to the specifier used.
For example if Message contains a "%1%" then it is replaced by the value of val to the full precision of T, where as "%.3g"
would contain the value of val to 3 digits. See the Boost.Format documentation for more details.

render

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/n1836.pdf
http://www.boost.org/doc/libs/release/libs/math/doc/html/../../../format/index.html
http://www.boost.org/doc/libs/release/libs/math/doc/html/../../../format/index.html
http://www.boost.org/doc/libs/release/libs/math/doc/html/../../../format/index.html
http://www.boost.org/doc/libs/release/libs/math/doc/html/../../../format/index.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Overview

Numeric Overflow
describing the problem, and Policy is the current policy in use for the function that was called.
The default policy for this function is that std: :overflow_error C++ exception is thrown. But if, for example, an ignore_error

When the result of a special function is too large to fit in the argument floating-point type, then the function returns the result of:
policy is used, then returns std: :numeric_limits<T>::infinity(). In this situation if the type T doesn't support infinities,

boost: :math::policies::raise_overflow_error<T>(FunctionName, Message, Policy);
Where T is the floating-point type passed to the function, FunctionName is the name of the function, Message is an error message

the maximum value for the type is returned.

Numeric Underflow

boost: :math: :policies: :raise_underflow_error<T>(FunctionName, Message, Policy);
Where T is the floating point type passed to the function, FunctionName is the name of the function, Message is an error message

If the result of a special function is known to be non-zero, but the calculated result underflows to zero, then the function returns
The default version of this function returns zero. But with another policy, like throw_on_error, throws an std: :underflow_er-

the result of:
describing the problem, and Policy is the current policy in use for the called function.

ror C++ exception.

Denormalisation Errors
If the result of a special function is a denormalised value z then the function returns the result of:
The default version of this function returns z. But with another policy, like throw_on_error throws an std: :underflow_error

boost: :math: :policies::raise_denorm_error<T>(z, FunctionName, Message, Policy);
Where T is the floating point type passed to the function, FunctionName is the name of the function, Message is an error message

describing the problem, and Policy is the current policy in use for the called function.

Evaluation Errors

When a special function calculates a result that is known to be erroneous, or where the result is incalculable then it calls:
The default behaviour of this function is to throw a boost: :math: :evaluation_error.

boost: :math: :policies: :raise_evaluation_error<T>(FunctionName, Message, Val, Policy);
Where T is the floating point type passed to the function, FunctionName is the name of the function, Message is an error message

http://www.renderx.com/

16

C++ exception.
describing the problem, Val is the erroneous value, and Policy is the current policy in use for the called function.
Note that in order to support information rich error messages when throwing exceptions, Message must contain a Boost.Format
recognised format specifier: the argument val is inserted into the error message according to the specifier used.
For example if Message contains a "%1%" then it is replaced by the value of val to the full precision of T, where as "%.3g

would contain the value of val to 3 digits. See the Boost.Format documentation for more details.

render

http://www.boost.org/doc/libs/release/libs/math/doc/html/../../../format/index.html
http://www.boost.org/doc/libs/release/libs/math/doc/html/../../../format/index.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Overview

Indeterminate Result Errors

When the result of a special function is indeterminate for the value that was passed to it, then the function returns the result of:
returned for ignore_error and errno_on_erro policies, and Policy is the current policy in use for the function that was called.

boost: :math::policies::raise_overflow_error<T>(FunctionName, Message, Val, Default, Policy);
Where T is the floating-point type passed to the function, FunctionName is the name of the function, Message is an error message
describing the problem, Val is the value for which the result is indeterminate, Default is an alternative default result that must be

The default policy for this function is ignore_error: note that this error type is reserved for situations where the result is math-
ematically undefined or indeterminate, but there is none the less a convention for what the result should be: for example the C99
standard specifies that the result of 0%is 1, even though the result is actually mathematically indeterminate.

Rounding Errors

When one of the rounding functions round, trunc or modf is called with an argument that has no integer representation, or is too
Note that in order to support information rich error messages when throwing exceptions, Message must contain a Boost.Format

large to be represented in the result type then the value returned is the result of a call to:

boost: :math: :policies: :raise_rounding_error<T>(FunctionName, Message, Val, Policy);

Where T is the floating point type passed to the function, FunctionName is the name of the function, Message is an error message
describing the problem, Val is the erroneous argument, and Policy is the current policy in use for the called function.

The default behaviour of this function is to throw a boost: :math: :rounding_error.
recognised format specifier: the argument val is inserted into the error message according to the specifier used.
For example if Message contains a "%1%" then it is replaced by the value of val to the full precision of T, where as "%.3g"

would contain the value of val to 3 digits. See the Boost.Format documentation for more details.

Errors from typecasts

Many special functions evaluate their results at a higher precision than their arguments in order to ensure full machine precision
Is used to perform these conversions, and will call the error handlers listed above on overflow, underflow or denormalisation.

in the result: for example, a function passed a float argument may evaluate its result using double precision internally. Many of
the errors listed above may therefore occur not during evaluation, but when converting the result to the narrower result type. The

function:
template <class T, class Policy, class U>

T checked_narrowing_cast(U const& val, const char* function);

17
http://www.renderx.com/

render

http://www.boost.org/doc/libs/release/libs/math/doc/html/../../../format/index.html
http://www.boost.org/doc/libs/release/libs/math/doc/html/../../../format/index.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Overview

Compilers

This section contains some information about how various compilers work with this library. It is not comprehensive and updated
experiences are always welcome. Some effort has been made to suppress unhelpful warnings but it is difficult to achieve this on

all systems.

18

render

htto://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Overview

Notes

Has long double support
this compiler.

All tests OK.
We aim to keep our headers
warning free at level 4 with

We aim to keep our headers

Yes
All tests OK.
warning free at level 4 with

Table 9. Supported/Tested Compilers
Compiler

Platform

Windows

Windows

Windows

Windows

MSVC 7.1 and later

Intel 8.1 and later

GNU Mingw32 C++

Windows

this compiler. However, The
tests cases tend to generate a

lot of warnings relating to nu-
meric underflow of the test

Yes
data: these are harmless.

All tests OK.
We aim to keep our headers

this compiler.

Yes

No

GNU Cygwin C++

Borland C++5.8.2 (Developer No

studio 2006)

Clang 3.1

Windows 7/Netbeans 7.2

warning free with -Wall with

We aim to keep our headers

All tests OK.
warning free with -Wall with

this compiler.
Long double support has been
disabled because there are no
native long double C std lib-
rary functions available.

We have only partial compat-
ibility with this compiler:
Long double support has been
disabled because the native
long double C standard library
functions really only forward
to the double versions. This
can result in unpredictable

behaviour when using the
long double overloads: for

example sqrtl applied to a
finite value, can result in an

infinite result.
Some functions still fail to

compile, there are no known
workarounds at present.

Spot examples OK. Expect all
tests to compile and run OK.

Yes

19

http://www.renderx.com/

render

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Overview
Has long double support Notes
Yes All tests OK.
We aim to keep our headers
warning free with -Wall with
this compiler.
All tests OK.

Compiler

GNU C++ 3.4 and later
All tests OK.
warning free with -Wall with

We aim to keep our headers
this compiler. However, The
tests cases tend to generate a

lot of warnings relating to nu-

Platform
Linux
Clang 3.2 Yes
Intel C++ 10.0 and later Yes
meric underflow of the test
data: these are harmless.
All tests OK.

Long double support has been
disabled with these compiler
releases because calling the
standard library long double

math functions can result in a
segfault. The issue is Linux

Linux
Linux
No
distribution and glibc version
specific and is Intel bug report
#409291. Fully up to date re-

Intel C++ 8.1 and 9.1
leases of Intel 9.1 (post ver-
sionl_cc_c 9.1.046) shouldn't
have this problem. If you need
of

Linux
long double support with this
compiler, then comment out
the define
BISVAHNOLIONGCO BEVAFRING

TIONS at line 55 of

boost/math/tools/config.hpp.
We aim to keep our headers

warning free with -Wall with

this compiler. However, The
tests cases tend to generate a

lot of warnings relating to nu-
meric underflow of the test
data: these are harmless.

Some tests involving concep-
tual checks fail to build, other-

wise there appear to be no is-

sues.
Some tests involving function
overload resolution fail to

build, these issues should be

Yes
rarely encountered in practice.

QLogic PathScale 3.0
Yes

Sun Studio 12

Linux

20
http://www.renderx.com/

Linux

render

http://www.boost.org/doc/libs/release/libs/math/doc/html/../../../../boost/math/tools/config.hpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Notes
Some tests involving function
overload resolution fail to

build, these issues should be

Overview
Platform Compiler Has long double support
Solaris Sun Studio 12 Yes
rarely encountered in practice.
Solaris GNU C++4.x Yes All tests OK.
We aim to keep our headers
warning free with -Wall with
this compiler.
HP Tru64 Compaq C++ 7.1 Yes All tests OK.
HP-UX Itanium HP aCC 6.x Yes All tests OK.
Unfortunately this compiler
emits quite a few warnings
from libraries upon which we
depend (TR1, Array etc).
HP-UX PA-RISC GNU C++ 34 No All tests OK.
Apple Mac OS X, Intel Darwin/GNU C++ 4.x Yes All tests OK.
Apple Mac OS X, PowerPC ~ Darwin/GNU C++ 4.x No All tests OK.
Long double support has been
disabled on this platform due
to the rather strange nature of
Darwin's 106-bit long double
implementation. It should be
possible to make this work if
someone is prepared to offer
assistance.
Apple Mac OS X, Clang 3.2 Yes All tests expected to be OK.
IBM AIX IBM xlc 5.3 Yes All tests pass except for our
fpclassify tests which fail due
to a bug in std::numer-
ic_limits, the bug effects
the test code, not fpclassify it-
self. The IBM compiler group
are aware of the problem.
Table 10. Unsupported Compilers
Platform Compiler
Windows Borland C++ 5.9.2 (Borland Developer Studio 2007)
Windows MSVC 6 and 7
If your compiler or platform is not listed above, please try running the regression tests: cd into boost-root/libs/math/test and do a:
21
http://www.renderx.com/

render

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Overview

bjam mytoolset

where "mytoolset” is the name of the Boost.Build toolset used for your compiler. The chances are that many of the accuracy
tests will fail at this stage - don't panic - the default acceptable error tolerances are quite tight, especially for long double types
with an extended exponent range (these cause more extreme test cases to be executed for some functions). You will need to cast
an eye over the output from the failing tests and make a judgement as to whether the error rates are acceptable or not.

22

render

htto://www.renderx.com/

http://www.boost.org/doc/html/bbv2.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Overview

Configuration Macros

Almost all configuration details are set up automatically by <boost\math\tools\config.hpp>.
In normal use, only policy configuration macros are likely to be used. See policy reference.

For reference, information on Boost.Math macros used internally are described briefly below.

23

render

htto://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Overview

Notes
Do not produce or use long double functions: this macro gets

set when the platform's long double or standard library long

double support is absent or buggy.
When set the numeric constants supportthe __ float128 data

type with constants having the Q suffix.
data type even if the compiler appears to support it.
Do not try to use real concept tests (hardware or software does

When set the numeric constants do not use the __ float128

Table 11. Boost.Math Macros

MACRO
BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS

not support real_concept type).
Controls FP hardware exceptions - our tests don't support
hardware exceptions on MSVC. May get set to something like:

_control87(MCW_EM,MCW_EM)
ment of a function template to a function pointer requires ex-

BOOST_MATH_USE_FLOAT128
This macro is used by our test cases, it is set when an assign-
plicit template arguments to be provided on the function name.

BOOST_MATH_DISABLE_FLOAT128

Use C99 math functions.

BOOST_MATH_NO_REAL_CONCEPT_TESTS
define if no native (or buggy) fpclassify(long double)
even though the other C99 functions are present.

Helper macro used in our test cases to set underflowing con-

BOOST_MATH_CONTROL_FP
BOOST_MATH_NO_DEDUCED_FUNCTION_POINTERS
stants set to zero if this would cause compiler issues.
Set if constants too large for a float, will cause "bad" values to
be stored in the data, rather than infinity or a suitably large

Provides using statements for many std:: (abs to sqrt) and
boost::math (rounds, modf) functions. This allows these func-

BOOST_MATH_USE_C99
BOOST_NO_NATIVE_LONG_DOUBLE_FP_CLASSIFY
value.
tions to be called unqualified so that if argument-dependent
Argument Dependent Lookup fails to find a suitable overload,

BOOST_MATH_SMALL_CONSTANT (X))

BOOST_MATH_BUGGY_LARGE_FLOAT_CONSTANTS
then the std:: versions will also be considered.
Used at the entrypoint to each special function to reset all FPU

exception flags prior to internal calculations, and then merge
the old and new exception flags on function exit. Used as a

workaround on platforms or hardware that behave strangely if
any FPU exception flags are set when calling standard library

functions.

BOOST_MATH_STD_USING
Define to output diagnostics for math functions. This is rather

'global’ to Boost.Math and so coarse-grained that it will prob-
ably produce copious output! (Especially because full precision
values are output). Designed primarily for internal use and

BOOST_FPU_EXCEPTION_GUARD
development.

http://www.renderx.com/

BOOST_MATH_INSTRUMENT
24

render

http://en.wikipedia.org/wiki/Argument-dependent_name_lookup
http://en.wikipedia.org/wiki/Argument-dependent_name_lookup
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

rende

r

Overview

MACRO

BOOST_MATH_INSTRUMENT _CODE(X)

BOOST_MATH_ INSTRUMENT_VARIABLE(name)

BOOST_MATH_ INSTRUMENT_FPU

Table 12. Boost.Math Tuning

Macros for Tuning performance options for specific com-
pilers

BOOST_MATH_POLY_ METHOD
BOOST_MATH_RATIONAL_METHOD
BOOST_MATH_MAX_POLY_ORDER
BOOST_MATH_INT_TABLE_TYPE

BOOST MATH_INT_VALUE_SUFFIX

Notes
Output selected named variable, for example
BOOST_MATH_INSTRUMENT CODE(*‘guess = " << guess);

Used by BOOST_MATH_INSTRUMENT

Output selected variable, for example BOOST_MATH_INSTRU-
MENT_VARIABLE(result); Used by BOOST_MATH_INSTRU-
MENT

Output the state of the FPU's control flags.

Notes

See the performance tuning section.
See the performance tuning section.
See the performance tuning section.
See the performance tuning section.
Helper macro for appending the correct suffix to integer con-

stants which may actually be stored as reals depending on the
value of BOOST_MATH_INT_TABLE_TYPE.

25

htto://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Overview

Policies

Policies are a powerful fine-grain mechanism that allow you to customise the behaviour of this library according to your needs.
There is more information available in the policy tutorial and the policy reference.

Generally speaking, unless you find that the default policy behaviour when encountering 'bad' argument values does not meet your
needs, you should not need to worry about policies.

Policies are a compile-time mechanism that allow you to change error-handling or calculation precision either program wide, or
at the call site.

Although the policy mechanism itself is rather complicated, in practice it is easy to use, and very flexible.

Using policies you can control:

« How results from 'bad' arguments are handled, including those that cannot be fully evaluated.

» How accuracy is controlled by internal promotion to use more precise types.

» What working precision should be used to calculate results.

« What to do when a mathematically undefined function is used: Should this raise a run-time or compile-time error?
* Whether discrete functions, like the binomial, should return real or only integral values, and how they are rounded.

« How many iterations a special function is permitted to perform in a series evaluation or root finding algorithm before it gives
up and raises an evaluation_error.

You can control policies:
* Using macros to change any default policy: the is the preferred method for installation wide policies.

« At your chosen namespace scope for distributions and/or functions: this is the preferred method for project, namespace, or
translation unit scope policies.

« In an ad-hoc manner by passing a specific policy to a special function, or to a statistical distribution.

26

render

htto://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

3
i

Overview

Thread Safety

The library is fully thread safe and re-entrant for all functions regards of the data type they are instantiated on. Thread safety lim-
itations relating to user defined types present in previous releases (prior to 1.50.0) have been removed.

27

htto://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Overview

Performance

By and large the performance of this library should be acceptable for most needs. However, often the library has to make a choice
perceived as easier to optimise than more complex languages like C++, so in a sense this library provides a good test of current

whether to be accurate or fast and by default it chooses accuracy over speed. If you would rather have fast rather than fully accurate
routines, then refer to the performance section for information and examples on how to achieve this.
In terms of the algorithms used, this library aims to use the same "best of breed" algorithms as many other libraries: the principle
difference is that this library is implemented in C++ - taking advantage of all the abstraction mechanisms that C++ offers - where
as most traditional numeric libraries are implemented in C or FORTRAN. Traditionally languages such as C or FORTRAN are

compiler technology, and the "abstraction penalty" - if any - of C++ compared to other languages.

The three most important things you can do to ensure the best performance from this library are:

1. Turn on your compilers optimisations: the difference between "release™ and "debug" builds can easily be a factor of 20.
2. Pick your compiler carefully: performance differences of up to 8 fold have been found between some Windows compilers for

example.
3. Disable internal use of long double, this will reduce accuracy but typically yield a 2x speedup on modern x64 hardware/com-

pilers.
The performance section contains more information on the performance of this library, what you can do to fine tune it, and how

this library compares to some other open source alternatives.

28

http://www.renderx.com/

render

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Overview

If and How to Build a Boost.Math Library, and its Ex-

amples and Tests
For most simple uses, including a header (or few) is best for compile time and program size.
Refer to C99 and C++ TR1 C-style Functions for pros and cons of using the TR1 components as opposed to the header only ones

Building a Library (shared, dynamic .dll or static .lib)
The only time you need to build the library is if you want to use the extern *C" functions declared in <boost/math/trl.hpp>

The first thing you need to ask yourself is "Do | need to build anything at all?" as the bulk of this library is header only: meaning

you can use it just by #including the necessary header(s).

To build this using Boost.Build, from a commandline boost-root directory issue a command like:

bjam toolset=gcc --with-math install

that will do the job on Linux, while:
bjam toolset=msvc --with-math --build-type=complete stage
You can also build the libraries from your favourite IDE or command line tool: each extern *C™ function declared in
<boost/math/trl.hpp> has its own source file with the same name in Iibs/math/src/tril. Just select the sources corres-
ponding to the functions you are using and build them into a library, or else add them directly to your project. Note that the directory

will work better on Windows (leaving libraries built in sub-folder /stage below your Boost root directory). Either way you should
libs/math/src/trl will need to be in your compiler's #include path as well as the boost-root directory (MSVC Tools, Options,

consult the getting started guide for more information.

Projects and Solutions, VC++ Directories, Include files).

K

If you are using a Windows compiler that supports auto-linking and you have built the sources yourself (or added
them directly to your project) then you will need to prevent <boost/math/trl.hpp> from trying to auto-link
to the binaries that Boost.Build generates. You can do this by defining either BOOST_MATH_NO_LIB or

Note
BOOST_ALL_NO_LIB at project level (so the defines get passed to each compiler invocation).
Optionally the sources in libs/math/src/trl have support for using libs/math/src/tr1/pch._hpp as a precompiled
header if your compiler supports precompiled headers. Note that normally this header is a do-nothing include: to activate the
header so that it #includes everything required by all the sources you will need to define BOOST_BUILD_PCH_ENABLED on
the command line, both when building the pre-compiled header and when building the sources. Boost.Build will do this automat-

ically when appropriate.
Building the Examples

The examples are all located in 1ibs/math/example, they can all be built without reference to any external libraries, either with
separately from your favourite IDE then you will need to add Iibs/math/test to the list of your compiler's search paths.

Boost.Build using the supplied Jamfile, or from your compiler's command line. The only requirement is that the Boost headers

29
http://www.renderx.com/

are in your compilers #include search path.

Building the Tests
The tests are located in libs/math/test and are best built using Boost.Build and the supplied Jamfile. If you plan to build them

render

http://www.boost.org/doc/libs/release/more/getting_started/index.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Overview

You will also need to build and link to the Boost.Regex library for many of the tests: this can built from the command line by
following the getting started guide, using a command such as:

bjam toolset=gcc --with-regex install

or

bjam toolset=msvc --with-regex --build-type=complete stage

depending on whether you are on Linux or Windows.

Many of the tests have optional precompiled header support using the header 1ibs/math/test/pch.hpp. Note that normally
this header is a do-nothing include: to activate the header so that it #includes everything required by all the sources you will need
to define BOOST_BUILD_PCH_ENABLED on the command line, both when building the pre-compiled header and when
building the sources. Boost.Build will do this automatically when appropriate.

30

render

htto://www.renderx.com/

http://www.boost.org/doc/libs/release/more/getting_started/index.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Overview

History and What's New

Currently open bug reports can be viewed here.
All bug reports including closed ones can be viewed here and here.

Math-2.10.0 (Boost-1.71)
Catmull-Rom interpolator now works in C++11

Cardinal quadratic B-spline interpolation

Domain of elliptic integrals extended
sin_pi and cos_pi performance improvements

Forward-mode automatic differentiation
Vector valued barycentric rational interpolation

Ooura's method for evaluation of Fourier integrals
Multiple compatibility issues with Multiprecision fixed

Lambert-W fixed on a rare architecture

Math-2.9.0 (Boost-1.70)
Add Lanczos smoothing derivatives
Add absolute Gini coefficient, Hoyer sparsity, oracle SNR, and the M,M, SNR estimator to tools/signal_statistics.hpp.

Move numerical_differentiation.hpp from boost/math/tools/ to boost/math/differentiation/finite_dif-

ference.hpp.

Add mean, variance, skewness, kurtosis, median, Gini coefficient, and median absolute deviation to tools/univariate_stat-
Add total variation, 10, I1, 12, and sup norms, as well as corresponding distance functions to tools/norms.hpp.

istics.hpp.
Add correlation coefficients and covariance to tools/bivariate_statistics.hpp

Add move constructors for polynomials, support complex coefficients, add .prime() and . integrate() methods.

Add quadratic_roots to tools/roots. hpp.

Fix bug in newton_raphson_iterate where we could terminate incorrectly under certain exceptional cases.

Add support for complex-valued functions to Newton's method in roots.hpp.
Suppressed warnings from use of Q suffix on constants when compiling with g++ -Wall -pedantic.

Add Catmull-Rom interpolator.

Math-2.8.0 (Boost-1.69)
31

* Add LambertW functions.
 Update integration routines to support complex valued integrands and contour integrals.
« Added the derivative of the Barycentric rational approximation.

render

http://www.renderx.com/

https://github.com/boostorg/math/issues
https://svn.boost.org/trac/boost/query?status=assigned&status=closed&status=new&status=reopened&component=math&col=id&col=summary&col=status&col=type&col=milestone&col=component&order=priority
https://github.com/boostorg/math/issues?utf8=%E2%9C%93&q=is%3Aissue
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Overview

» Updated continued fraction and series evaluation code to support complex types.
< Minor fixes to better support variable precision floating point types.

* Removed use of deprecated Boost.Endian in favour of Predef.

 Prevent logic error leading to infinite loop in toms748_solve. See #138.

« Fix mean and standard_deviation for extreme_value_distribution. See #139.

* Improve heuristics used in newton_raphson_iterate. See #145.

 Fix result of erf(NaN). See #141.

* Big push to reduce GCC warnings. See #136.

» Refactor polynomial addition. See PR132.

« Fix for vxWorks having a real function in the global namespace. See PR131.
» Improve sinc approximations and add better tests.

 Fix typo in Student's T hypothesis testing documentation, see #143.

Math-2.7.1 (Boost-1.68)
» Continue to improve numerical integration routines, and in particular add support for contour integrals.
« Improve accuracy of erfc function's rational approximations.
Math-2.7.0 (Boost-1.66)
« Add Gauss and Gauss-Kronrod quadrature routines.
» Add double-exponential (tanh-sinh, exp-sinh and sinh-sinh) quadrature routines.

« Add Chebyshev polynomial evaluation, roots, integration, differentiation, and interpolation routines.

Math-2.6.0 (Boost-1.65)
New Features:
« Add cubic B-Spline interpolation functions, with thanks to Nick Thompson.
< Add barycentric rational interpolation functions, with thanks to Nick Thompson.
« Add adaptive trapezoidal quadrature, with thanks to Nick Thompson.
« Add support for the zeros and derivatives of Legendre polynomials, with thanks to Nick Thompson.
Patches:
« Improve polynomial GCD algorithms, with thanks to Jeremy Murphy.
» Removed gcd/lcm routines from Boost.Math - these are now in Boost.Integer.
Math-2.5.2 (Boost-1.64)
Patches:

 Big push to ensure all functions in also in C99 are compatible with Annex F.

32

render

htto://www.renderx.com/

https://github.com/boostorg/math/issues/138
https://github.com/boostorg/math/issues/139
https://github.com/boostorg/math/issues/145
https://github.com/boostorg/math/issues/141
https://github.com/boostorg/math/issues/136
https://github.com/boostorg/math/pull/132
https://github.com/boostorg/math/pull/131
https://github.com/boostorg/math/issues/143
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

rende

Overview

r

« Improved accuracy of the Bessel functions 10, 11, KO and K1, see 12066.

Math-2.5.1 (Boost-1.63)

Patches:

Fixed evaluation of zero polynomial in polynomial.hpp, see 12532.

Fixed missing header include in boost/math/tools/tuple.hpp, see 12537.

Math-2.5.0 (Boost-1.62)

New Features:

Enabled all the special function code to work correctly with types whose precision can change at runtime: for example type
mpfr_float from Boost.Multiprecision.

Patches:

Fix tgamma_delta_ratio for cases where the delta is small compared to the base.

Fix misc GCC-4.4 test failures.

Math-2.4.0 (Boost-1.61)

N

ew Features:

Polynomial arithmetic added to tools.

Math-2.3.0 (Boost-1.60)

New Features:

Promote the root finding and function minimization code to first class citizens - these are now officially supported as part of
the library.

Allow the library to be used and tested with compiler exception handling support turned off. To better facilitate this the default
error handling policies have been changed to errno_on_error but only when the compiler has no exception handling support.

Patches:

Fix behaviour of the non-central chi-squared distribution when the non-centrality parameter is zero to match the chi-squared,
see 11557.
Fix comments in code for the hypergeometric to match what it actually does, also fixes the parameter access functions to return

the correct values. See 11556.

Stopped using hidden visiblity library build with the Oracle compiler as it leads to unresolved externals from the C++ standard
library. See 11547.

* Fix unintended use of __declspec when building with Oracle C++. See 11546.

 Fix corner case bug in root bracketing code, see 11532.

« Add some missing typecasts in arguments to std::max in Bernoulli code. See 11453.

* Fix mistaken assumptions about the possible values for FLT_EVAL_METHOD. See 11429.

Completely revamped performance testing and error-rate measuring code so we can more easily document how well (or not!)
we're doing. This information will hopefully get more frequently updated in future as it's more or less automatically generated

- see the reporting sub-directory for more information.

33

http://www.renderx.com/

https://svn.boost.org/trac/boost/ticket/12066
https://svn.boost.org/trac/boost/ticket/12532
https://svn.boost.org/trac/boost/ticket/12537
https://svn.boost.org/trac/boost/ticket/11557
https://svn.boost.org/trac/boost/ticket/11556
https://svn.boost.org/trac/boost/ticket/11547
https://svn.boost.org/trac/boost/ticket/11546
https://svn.boost.org/trac/boost/ticket/11532
https://svn.boost.org/trac/boost/ticket/11453
https://svn.boost.org/trac/boost/ticket/11429
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Overview

Fix some corner cases in the beta, incomplete beta, and incomplete beta derivative. With thanks to Rocco Romeo.

Reorganized the Bessel functions internally to improve the performance of Jn and Yn.

Fixed skewness formula for triangular distribution, see #11768.

Fixed some examples so they compile on Unix platforms which have an ::exception struct declared, see #11827.
Correct mistake in triangular distribution skewness formula 11768, reported by Juan Leni.

Math-2.2.1
Patch release for Boost-1.58:
< Minor patch for Haiku support.
« Fix the decimal digit count for 128-bit floating point types.
* Fix a few documentation typos.
Fixed namespace scope constants so they are constexpr on conforming compilers, see https://svn.boost.org/trac/boost/ticket/10901.

Math-2.2.0 (boost-1.58.0)
Added two new special functions - trigamma and polygamma.

Fixed various cases of spurious under/overflow in the incomplete beta and gamma functions, plus the elliptic integrals, with

Fix 3-arg legendre_p and legendre_q functions to not call the policy based overload if the final argument is not actually a policy.

thanks to Rocco Romeo.
Cleaned up some dead code in the incomplete beta function, see #10985.

Fixed extreme-value pdf for large valued inputs, see #10938.

Large update to the Elliptic integral code to use Carlson's latest algorithms - these should be more stable, more accurate and
slightly faster than before. Also added support for Carlson's RG integral.
Switched documentation to use SVG rather than PNG graphs and equations - browsers seem to have finally caught up!

Added ellint_d, jacobi_zeta and heuman_lambda elliptic integrals.

Fix bug in derivative of incomplete beta when a = b = 0.5 - this also effects several non-central distributions, see 10480.
boost/math/tools/test_data.hpp,
boost/math/tools/solve _hpp,

Math-2.1.0 (boost-1.57.0)
« Added Hyperexponential Distribution.
Fix some spurious overflows in the incomplete gamma functions (with thanks to Rocco Romeo).

Fixed some corner cases in round.
headers
boost/math/constants/generate.hpp,

The
boost/math/tools/test.hpp. You can continue to use these headers by adding libs/math/include_private to your

Don't support 80-bit floats in cstdfloat.hpp if standard library support is broken.
effected

34
http://www.renderx.com/

Math-2.0.0 (Boost-1.56.0)
« Breaking change: moved a number of non-core headers that are predominantly used for internal maintenance into
libs/math/include_private. are
boost/math/tools/remez._hpp,

compiler's include path.

render

https://svn.boost.org/trac/boost/ticket/11768
https://svn.boost.org/trac/boost/ticket/11827
https://svn.boost.org/trac/boost/ticket/11768
https://github.com/boostorg/math/pull/13#issuecomment-98905579
https://svn.boost.org/trac/boost/ticket/10985
https://svn.boost.org/trac/boost/ticket/10938
https://svn.boost.org/trac/boost/ticket/10480
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

rende

r

Overview

Breaking change: A number of distributions and special functions were returning the maximum finite value rather than raising
an overflow_error, this has now been fixed, which means these functions now behave as documented. However, since the default
behavior on raising an overflow_error is to throw a std: :overflow_error exception, applications which have come to reply
rely on these functions not throwing may experience exceptions where they did not before. The special functions involved are
gamma_p_inva, gamma_q_inva, ibeta_inva, ibetac_inva, ibeta_invb, ibetac_invb, gamma_p_inv, gamma_q_inv. The distributions
involved are Pareto Distribution, Beta Distribution, Geometric Distribution, Negative Binomial Distribution, Binomial Distri-
bution, Chi Squared Distribution, Gamma Distribution, Inverse chi squared Distribution, Inverse Gamma Distribution. See
#10111.

Fix round and trunc functions so they can be used with integer arguments, see #10066.

Fix Halley iteration to handle zero derivative (with non-zero second derivative), see #10046.

Math-1.9.1

Fix Geometric distribution use of Policies, see #9833.
Fix corner cases in the negative binomial distribution, see #9834.

Fix compilation failures on Mac OS.

Math-1.9.0

Changed version number to new Boost.Math specific version now that we're in the modular Boost world.
Added Bernoulli numbers, changed arbitrary precision tgamma/lgamma to use Sterling's approximation (from Nikhar Agrawal).

Added first derivatives of the Bessel functions: cyl_bessel_j_prime, cyl_neumann_prime, cyl_bessel_i_prime, cyl_bessel_k_prime,
sph_bessel_prime and sph_neumann_prime (from Anton Bikineev).

Fixed buggy Student's t example code, along with docs for testing sample means for equivalence.
Documented max_iter parameter in root finding code better, see #9225.

Add option to explicitly enable/disable use of __ float128 in constants code, see #9240.

Cleaned up handling of negative values in Bessel 10 and 11 code (removed dead code), see #9512.

Fixed handling of very small values passed to tgamma and lgamma so they don't generate spurious overflows (thanks to Rocco
Romeo).

#9672 PDF and CDF of a Laplace distribution throwing domain_error Random variate can now be infinite.
Fixed several corner cases in rising_factorial, falling_factorial and tgamma_delta_ratio with thanks to Rocco Romeo.
Fixed several corner cases in rising_factorial, falling_factorial and tgamma_delta_ratio (thanks to Rocco Romeo).

Removed constant pow23_four_minus_pi whose value did not match the name (and was unused by Boost.Math), see #9712.

Boost-1.55

Suppress numerous warnings (mostly from GCC-4.8 and MSVC) #8384, #8855, #9107, #9109..
Fixed PGI compilation issue #8333.

Fixed PGI constant value initialization issue that caused erf to generate incorrect results #8621.
Prevent macro expansion of some C99 macros that are also C++ functions #8732 and #8733..

Fixed Student's T distribution to behave correctly with huge degrees of freedom (larger than the largest representable integer)
#8837.

35

htto://www.renderx.com/

https://svn.boost.org/trac/boost/ticket/10111
https://svn.boost.org/trac/boost/ticket/10066
https://svn.boost.org/trac/boost/ticket/10046
https://svn.boost.org/trac/boost/ticket/9833
https://svn.boost.org/trac/boost/ticket/9834
https://svn.boost.org/trac/boost/ticket/9225
https://svn.boost.org/trac/boost/ticket/9240
https://svn.boost.org/trac/boost/ticket/9512
https://svn.boost.org/trac/boost/ticket/9672
https://svn.boost.org/trac/boost/ticket/9712
https://svn.boost.org/trac/boost/ticket/8384
https://svn.boost.org/trac/boost/ticket/8855
https://svn.boost.org/trac/boost/ticket/9107
https://svn.boost.org/trac/boost/ticket/9109
https://svn.boost.org/trac/boost/ticket/8333
https://svn.boost.org/trac/boost/ticket/8621
https://svn.boost.org/trac/boost/ticket/8732
https://svn.boost.org/trac/boost/ticket/8733
https://svn.boost.org/trac/boost/ticket/8837
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

rende

r

Overview

Make some core functions usable with long double even when the platform has no standard library long double support
#8940.

Fix error handling of distributions to catch invalid scale and location parameters when the random variable is infinite #9042
and #9126.

Add workaround for broken <tuple> in Intel C++ 14 #9087.
Improve consistency of argument reduction in the elliptic integrals #9104.

Fix bug in inverse incomplete beta that results in cancellation errors when the beta function is really an arcsine or Student's T
distribution.

Fix issue in Bessel | and K function continued fractions that causes spurious over/underflow.

Add improvement to non-central chi squared distribution quantile due to Thomas Luu, Fast and accurate parallel computation
of quantile functions for random number generation, Doctorial Thesis 2016. Efficient and Accurate Parallel Inversion of the

Gamma Distribution, Thomas Luu

Boost-1.54

Major reorganization to incorporate other Boost.Math like Integer Utilities Integer Utilities (Greatest Common Divisor and
Least Common Multiple), quaternions and octonions. Making new chapter headings.

Added many references to Boost.Multiprecision and cpp_dec_float_50 as an example of a User-defined Type (UDT).
Added Clang to list of supported compilers.
Fixed constants to use a thread-safe cache of computed values when used at arbitrary precision.

Added finding zeros of Bessel functions cyl_bessel_j zero,cyl_neumann_zero,airy_ai_zeroandairy_bi_zero(by
Christopher Kormanyos).

More accuracy improvements to the Bessel J and Y functions from Rocco Romeo.

Fixed nasty cyclic dependency bug that caused some headers to not compile #7999.

Fixed bug in tgamma that caused spurious overflow for arguments between 142.5 and 143.

Fixed bug in raise_rounding_error that caused it to return an incorrect result when throwing an exception is turned off #7905.
Added minimal __float128 support.

Fixed bug in edge-cases of poisson quantile #8308.

Adjusted heuristics used in Halley iteration to cope with inverting the incomplete beta in tricky regions where the derivative is
flatlining. Example is computing the quantile of the Fisher F distribution for probabilities smaller than machine epsilon. See
ticket #8314.

Boost-1.53

Fixed issues #7325, #7415 and #7416, #7183, #7649, #7694, #4445, #7492, #7891, #7429.
Fixed mistake in calculating pooled standard deviation in two-sample students t example #7402.

Improve complex acos/asin/atan, see #7290, #7291.
Improve accuracy in some corner cases of cyl_bessel j and gamma_p/gamma_q thanks to suggestions from Rocco Romeo.

Improve accuracy of Bessel J and Y for integer orders thanks to suggestions from Rocco Romeo.

36

http://www.renderx.com/

https://svn.boost.org/trac/boost/ticket/8940
https://svn.boost.org/trac/boost/ticket/9042
https://svn.boost.org/trac/boost/ticket/9126
https://svn.boost.org/trac/boost/ticket/9087
https://svn.boost.org/trac/boost/ticket/9104
http://discovery.ucl.ac.uk/1482128/
http://discovery.ucl.ac.uk/1482128/
http://discovery.ucl.ac.uk/1463470/
http://discovery.ucl.ac.uk/1463470/
https://svn.boost.org/trac/boost/ticket/7999
https://svn.boost.org/trac/boost/ticket/7905
https://svn.boost.org/trac/boost/ticket/8308
https://svn.boost.org/trac/boost/ticket/8314
https://svn.boost.org/trac/boost/ticket/7325
https://svn.boost.org/trac/boost/ticket/7415
https://svn.boost.org/trac/boost/ticket/7416
https://svn.boost.org/trac/boost/ticket/7183
https://svn.boost.org/trac/boost/ticket/7649
https://svn.boost.org/trac/boost/ticket/7694
https://svn.boost.org/trac/boost/ticket/4445
https://svn.boost.org/trac/boost/ticket/7492
https://svn.boost.org/trac/boost/ticket/7891
https://svn.boost.org/trac/boost/ticket/7429
https://svn.boost.org/trac/boost/ticket/7402
https://svn.boost.org/trac/boost/ticket/7290
https://svn.boost.org/trac/boost/ticket/7291
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Overview

Boost-1.52

Corrected moments for small degrees of freedom #7177 (reported by Thomas Mang).
Added Airy functions and Jacobi Elliptic functions.
Corrected failure to detect bad parameters in many distributions #6934 (reported by Florian Schoppmann) by adding a function

check_out_of range to test many possible bad parameters. This test revealed several distributions where the checks for bad
parameters were ineffective, and these have been rectified.
Fixed issue in Hankel functions that causes incorrect values to be returned for x < 0 and v odd, see #7135.
Permitted infinite degrees of freedom #7259 implemented using the normal distribution (requested by Thomas Mang).
Much enhanced accuracy for large degrees of freedom v and/or large non-centrality & by switching to use the Students t distri-
bution (or Normal distribution for infinite degrees of freedom) centered at delta, when & / (4 * v) < epsilon for the floating-point

Fixed issues #6517, #6362, #7053, #2693, #6937, #7099.
type in use. #7259. It was found that the incomplete beta was suffering from serious cancellation errors when degrees of freedom
was very large. (That has now been fixed in our code, but any code based on Didonato and Morris's original papers (probably

every implementation out there actually) will have the same issue).

Boost-1.51
See Boost-1.52 - some items were added but not listed in time for the release.

Promoted math constants to be 1st class citizens, including convenient access to the most widely used built-in float, double,

Boost-1.50
long double via three namespaces.

Added the Owen's T function and Skew Normal distribution written by Benjamin Sobotta; see Owens T and skew_normal_distrib.
Changed constant initialization mechanism so that it is thread safe even for user-defined types, also so that user defined types

Added Hankel functions cyl_hankel_1, cyl_hankel_2, sph_hankel_1 and sph_hankel_2.

Corrected issue #6627 nonfinite_num_put formatting of 0.0 is incorrect based on a patch submitted by K R Walker.

get the full precision of the constant, even when long double does not. So for example 128-bit rational approximations will
work with UDT's and do the right thing, even though long double may be only 64 or 80 bits.

Fixed issue in bessel_jy which causes Yg5(4m) to yield a NaN.

Boost-1.49
» Deprecated wrongly named twothirds math constant in favour of two_thirds (with underscore separator). (issue #6199).

 Refactored test data and some special function code to improve support for arbitary precision and/or expression-template-enabled

« Added new faster zeta function evaluation method.

37
http://www.renderx.com/

Fixed issues:
 Corrected branch cuts on the complex inverse trig functions, to handle signed zeros (issue #6171).

types.
 Corrected CDF complement for Laplace distribution (issue #6151).
 Fixed bug in bessel_yn which caused incorrect overflow errors to be raised for negative n (issue #6367)

* Also fixed minor/cosmetic/configuration issues #6120, #6191, #5982, #6130, #6234, #6307, #6192.

render

https://svn.boost.org/trac/boost/ticket/7177
https://svn.boost.org/trac/boost/ticket/6934
https://svn.boost.org/trac/boost/ticket/7135
https://svn.boost.org/trac/boost/ticket/6517
https://svn.boost.org/trac/boost/ticket/6362
https://svn.boost.org/trac/boost/ticket/7053
https://svn.boost.org/trac/boost/ticket/2693
https://svn.boost.org/trac/boost/ticket/6937
https://svn.boost.org/trac/boost/ticket/7099
https://svn.boost.org/trac/boost/ticket/7259
https://svn.boost.org/trac/boost/ticket/7259
https://svn.boost.org/trac/boost/ticket/6627
https://svn.boost.org/trac/boost/ticket/6199
https://svn.boost.org/trac/boost/ticket/6151
https://svn.boost.org/trac/boost/ticket/6171
https://svn.boost.org/trac/boost/ticket/6367
https://svn.boost.org/trac/boost/ticket/6120
https://svn.boost.org/trac/boost/ticket/6191
https://svn.boost.org/trac/boost/ticket/5982
https://svn.boost.org/trac/boost/ticket/6130
https://svn.boost.org/trac/boost/ticket/6234
https://svn.boost.org/trac/boost/ticket/6307
https://svn.boost.org/trac/boost/ticket/6192
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Overview

Boost-1.48
Added new series evaluation methods to the cyclic Bessel I, J, K and Y functions. Also taken great care to avoid spurious over

and underflow of these functions. Fixes issue #5560
Added an example of using Inverse Chi-Squared distribution for Bayesian statistics, provided by Thomas Mang.
Corrected wrong out-of-bound uniform distribution CDF complement values #5733.

Changed nextafter and related functions to behave in the same way as other implementations - so that nextafter(+INF, 0) is a

Added tests to use improved version of lexical_cast which handles C99 nonfinites without using globale facets.

Enabled long double support on OpenBSD (issue #6014).
Changed tuple include configuration to fix issue when using in conjunction with Boost. Tr1 (issue #5934).

finite value (issue #5832).
Changed class eps_tolerance to behave correctly when both ends of the range are zero (issue #6001).

Fixed missing include guards on prime.hpp (issue #5927).
Removed unused/undocumented constants from constants.hpp (issue #5982).

Fixed missing std:: prefix in nonfinite_num_facets.hpp (issue #5914).

Boost-1.47

» Added changesign function to sign.hpp to facilitate addition of nonfinite facets.
» Added tests and documentation of changesign from Johan Rade.

Minor patches for Cray compiler compatibility.
 Addition of nonfinite facets from Johan Rade, with tests, examples of use for C99 format infinity and NaN, and documentation

Boost-1.46.1
* Fixed issues #5095, #5113.
» Added Wald, Inverse Gaussian and geometric distributions.

Boost-1.46.0

< Added support for mpreal as a real-numbered type.

« Added information about configuration macros.
« Added warnings about potential ambiguity with std random library in distribution and function names.

Boost-1.45.0
« Editorial revision of documentation, and added FAQ.

< Added inverse gamma distribution and inverse chi_square and scaled inverse chi_square.
38

Boost-1.44.0
« Fixed incorrect range and support for Rayleigh distribution.

render

http://www.renderx.com/

https://svn.boost.org/trac/boost/ticket/5560
https://svn.boost.org/trac/boost/ticket/5733
https://svn.boost.org/trac/boost/ticket/6014
https://svn.boost.org/trac/boost/ticket/5823
https://svn.boost.org/trac/boost/ticket/5934
https://svn.boost.org/trac/boost/ticket/6001
https://svn.boost.org/trac/boost/ticket/5927
https://svn.boost.org/trac/boost/ticket/5982
https://svn.boost.org/trac/boost/ticket/5914
https://svn.boost.org/trac/boost/ticket/5095
https://svn.boost.org/trac/boost/ticket/5095
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Overview

 Fixed numerical error in the quantile of the Student's T distribution: the function was returning garbage values for non-integer

degrees of freedom between 2 and 3.
« Significantly improved performance for the incomplete gamma function and its inverse.

Boost-1.41.0
Added some full specializations of the policy classes to reduce compile times.

Boost-1.40.0
Added support for MPFR as a bignum type.
Updated performance test code to include new distributions, and improved the performance of the non-central distributions.
Added SSE2 optimised Lanczos approximation code, from Gautam Sewani's Google Summer of Code project.

Added logistic and hypergeometric distributions, from Gautam Sewani's Google Summer of Code project.
Fixed bug in cyl_bessel_i that used an incorrect approximation for v = 0.5, also effects the non-central Chi Square Distribution

Added Laplace distribution submitted by Thijs van den Berg.

when v = 3, see bug report #2877.
Fixed minor bugs #2873.
» Added Johan Réde's optimised floating point classification routines.
 Fixed code so that it compiles in GCC's -pedantic mode (bug report #1451).

Boost-1.38.0
« Improved accuracy and testing of the inverse hypergeometric functions.

Boost-1.37.0
Boost-1.36.0
« Added Noncentral Chi Squared Distribution.
Added Noncentral Beta Distribution.
Added Noncentral F Distribution.
Added Noncentral T Distribution.
Added Exponential Integral Functions.

Added Zeta Function.
Added Rounding and Truncation functions.
Added Compile time powers of runtime bases.

Added SSE2 optimizations for Lanczos evaluation.

39

Boost-1.35.0: Post Review First Official Release
< Added Policy based framework that allows fine grained control over function behaviour.

http://www.renderx.com/

render

https://svn.boost.org/trac/boost/ticket/2877
https://svn.boost.org/trac/boost/ticket/2873
https://svn.boost.org/trac/boost/ticket/1451
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Overview
Breaking change: Changed default behaviour for domain, pole and overflow errors to throw an exception (based on review

feedback), this behaviour can be customised using Policy's.
Breaking change: Changed exception thrown when an internal evaluation error occurs to boost::math::evaluation_error.

Breaking change: Changed discrete quantiles to return an integer result: this is anything up to 20 times faster than finding the

true root, this behaviour can be customised using Policy's.
Polynomial/rational function evaluation is now customisable and hopefully faster than before.

Added performance test program.

Milestone 4: Second Review Candidate (1st March 2007)
« Moved Xiaogang Zhang's Bessel Functions code into the library, and brought them into line with the rest of the code.

» Added C# "Distribution Explorer" demo application.
Milestone 3: First Review Candidate (31st Dec 2006)

« Implemented the main probability distribution and density functions.
Implemented the Hermite, Legendre and Laguerre polynomials plus the spherical harmonic functions from TR1.

Implemented digamma.
Added more factorial functions.

Moved Xiaogang Zhang's elliptic integral code into the library, and brought them into line with the rest of the code.
Moved Hubert Holin's existing Boost.Math special functions into this library and brought them into line with the rest of the

code.
Milestone 2: Released September 10th 2006
Implement preview release of the statistical distributions.

Added statistical distributions tutorial.
Implemented root finding algorithms.
Implemented the inverses of the incomplete gamma and beta functions.
Rewrite erf/erfc as rational approximations (valid to 128-bit precision).
Integrated the statistical results generated from the test data with Boost. Test: uses a database of expected results, indexed by

test, floating point type, platform, and compiler.
Improved Ilgamma near 1 and 2 (rational approximations).

Improved erf/erfc inverses (rational approximations).

Implemented Rational function generation (the Remez method).

Milestone 1: Released March 31st 2006
» Implement gamma/beta/erf functions along with their incomplete counterparts.
« Generate high quality test data, against which future improvements can be judged.
40
http://www.renderx.com/

* Provide tools for the evaluation of infinite series, continued fractions, and rational functions.

render

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

3
i

Overview

« Provide tools for testing against tabulated test data, and collecting statistics on error rates.
« Provide sufficient docs for people to be able to find their way around the library.
SVN Revisions:

Sandbox and trunk last synchonised at revision: .

41

htto://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Overview

C99 and C++ TR1 C-style Functions
Many of the special functions included in this library are also a part of the either the C99 Standard ISO/IEC 9899:1999 or the
Technical Report on C++ Library Extensions. Therefore this library includes a thin wrapper header boost/math/tr1.hpp that
provides compatibility with these two standards.
There are various pros and cons to using the library in this way:

Pros:
* The header to include is lightweight (i.e. fast to compile).

« The functions have extern "C" linkage, and so are usable from other languages (not just C and C++).

e C99 and C++ TR1 Standard compatibility.

Cons:
* You will need to compile and link to the external Boost.Math libraries.

 Limited to support for the types, float, double and long double.

Functions

« Error handling is handled via setting ::errno and returning NaN's and infinities: this may be less flexible than an C++ exception
from the Boost root directory using the usual Boost-wide install procedure. Alternatively the source files are located in libs/math/src
C99 Functions

The separate libraries are required only if you choose to use boost/math/tr1.hpp rather than some other Boost.Math

based approach.
Note
header, the rest of Boost.Math remains header-only.
and each have the same name as the function they implement. The various libraries are named as follows:
C99 Functions

Type
C99 Functions
TR1 Functions

The separate libraries required in order to use trl.hpp can be compiled using bjam from within the libs/math/build directory, or
float
TR1 Functions

double
TR1 Functions

long double

float

double

Name
boost_math_c99f-<suffix>

boost_math_c99-<suffix>
Where <suffix> encodes the compiler and build options used to build the libraries: for example "libboost_math_tr1-vc80-mt-

boost_math_c99l-<suffix>
long double
gd.lib" would be the statically linked TR1 library to use with Visual C++ 8.0, in multithreading debug mode, with the DLL VC++

boost_math_tr1f-<suffix>

boost_math_tr1-<suffix>
boost_math_trll-<suffix>

42

runtime, where as "boost_math_tr1-vc80-mt.lib" would be import library for the TR1 DLL to be used with Visual C++ 8.0 with
http://www.renderx.com/

the release multithreaded DLL VVC++ runtime. Refer to the getting started guide for a full explanation of the <suffix> meanings.

render

http://www.open-std.org/JTC1/SC22/WG14/www/docs/n1256.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/n1836.pdf
http://www.boost.org/doc/libs/1_35_0/more/getting_started/windows.html#library-naming
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Overview

Note
Visual C++ users will typically have the correct library variant to link against selected for them by

boost/math/trl.hpp based on your compiler settings.
Users will need to define BOOST_MATH_TR1_DYN_LINK when building their code if they want to link against
Users can disable auto-linking by defining BOOST_MATH_TR1_NO_LIB when building: this is typically only

the DLL versions of these libraries rather than the static versions.

used when linking against a customised build of the libraries.

Note

Linux and Unix users will generally only have one variant of these libraries installed, and can generally just link
against -Iboost_math_trl etc.
 To include the header only versions of the functions and have an easier time linking, but a longer compile time.

Usage Recomendations

This library now presents the user with a choice:
 To include the TR1 headers and link against an external library.
Which option you choose depends largely on how you prefer to work and how your system is set up.

For example a casual user who just needs the acosh function, would probably be better off including <boost/math/special_func-
tions/acosh. hpp> and using boost: :math: :acosh(x) in their code.
However, for large scale software development where compile times are significant, and where the Boost libraries are already
built and installed on the system, then including <boost/math/trl.hpp> and using boost: :math: :trl::acosh(x) will
speed up compile times, reduce object files sizes (since there are no templates being instantiated any more), and also speed up
debugging runtimes - since the externally compiled libraries can be compiler optimised, rather than built using full settings - the
difference in performance between release and debug builds can be as much as 20 times, so for complex applications this can be

a big win.
Supported C99 Functions
See also the quick reference guide for these functions.

43
http://www.renderx.com/

render

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

3
i

Overview

namespace boost{ namespace math{ namespace trl{ extern "C"{

typedef unspecified float_t;
typedef unspecified double_t;

double acosh(double x);
float acoshf(float x);
long double acoshl(long double Xx);

double asinh(double x);
float asinhf(float x);
long double asinhl(long double Xx);

double atanh(double x);
float atanhf(float x);
long double atanhl(long double Xx);

double cbrt(double x);
float cbrtf(float x);
long double cbrtl(long double Xx);

double copysign(double x, double y);
float copysignf(float x, float y);
long double copysignl(long double x, long double y);

double erf(double x);
float erff(float x);
long double erfl(long double x);

double erfc(double x);
float erfcf(float x);
long double erfcl(long double Xx);

double expmli(double x);
float expmlif(float x);
long double expmll(long double Xx);

double fmax(double x, double y);
float fmaxf(float x, float y);
long double fmaxl(long double x, long double y);

double fmin(double x, double y);
float fminf(float x, float y);
long double fminl(long double x, long double y);

double hypot(double x, double y);
float hypotf(float x, float y);
long double hypotl(long double x, long double y);

double Igamma(double x);
float Igammaf(float x);
long double Igammal(long double x);

long long llround(double x);
long long llroundf(float x);
long long llroundl(long double Xx);

double loglp(double x);
float loglpf(float x);
long double loglpl(long double Xx);

long Iround(double x);
long Iroundf(float x);

44

htto://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

3
i

Overview

long Iroundl(long double x);

double nextafter(double x, double y);
float nextafterf(float x, float y);
long double nextafterl(long double x, long double y);

double nexttoward(double x, long double y);
float nexttowardf(float x, long double y);

long double nexttowardl(long double x, long double y);

double round(double x);
float roundf(float x);
long double roundl(long double Xx);

double tgamma(double x);
float tgammaf(float x);
long double tgammal (long double x);

double trunc(double x);
float truncf(float x);
long double truncl(long double Xx);

}}}}y // namespaces

Supported TR1 Functions

See also the quick reference guide for these functions.

45

htto://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

3
i

Overview

namespace boost{ namespace math{ namespace trl{ extern "C"{

// [5.2.1.1] associated Laguerre polynomials:

double assoc_laguerre(unsigned n, unsigned m, double Xx);

float assoc_laguerref(unsigned n, unsigned m, float x);

long double assoc_laguerrel(unsigned n, unsigned m, long double Xx);

// [5.2.1.2] associated Legendre functions:

double assoc_legendre(unsigned 1, unsigned m, double x);

float assoc_legendref(unsigned I, unsigned m, float x);

long double assoc_legendrel (unsigned I, unsigned m, long double Xx);

// [5.2.1.3] beta function:

double beta(double x, double y);

float betaf(float x, float y);

long double betal (long double x, long double y);

// [5.2.1.4] (complete) elliptic integral of the first kind:
double comp_ellint_1(double k);

float comp_ellint_1f(float k);

long double comp_ellint_11(long double k);

// [5.2.1.5] (complete) elliptic integral of the second kind:
double comp_ellint_2(double k);

float comp_ellint_2f(float k);

long double comp_ellint_21(long double k);

// [5.2.1.6] (complete) elliptic integral of the third kind:
double comp_ellint_3(double k, double nu);

float comp_ellint_3f(float k, float nu);

long double comp_ellint_31(long double k, long double nu);

// [5.2.1.8] regular modified cylindrical Bessel functions:
double cyl _bessel_i(double nu, double x);

float cyl_bessel_if(float nu, float x);

long double cyl_bessel_il(long double nu, long double x);

// [5.2.1.9] cylindrical Bessel functions (of the first Kind):
double cyl _bessel_j(double nu, double x);

float cyl_bessel_jf(float nu, float x);

long double cyl_bessel_jl(long double nu, long double x);

// [5.2.1.10] irregular modified cylindrical Bessel functions:
double cyl _bessel_k(double nu, double x);

float cyl_bessel_kf(float nu, float x);

long double cyl_bessel_kl(long double nu, long double x);

// [5.2.1.11] cylindrical Neumann functions;

// cylindrical Bessel functions (of the second kind):
double cyl_neumann(double nu, double Xx);

float cyl_neumannf(float nu, float x);

long double cyl_neumannl(long double nu, long double X);

// [5.2.1.12] (incomplete) elliptic integral of the first kind:
double ellint_1(double k, double phi);

float ellint_1f(float k, float phi);

long double ellint_11(long double k, long double phi);

// [5.2.1.13] (incomplete) elliptic integral of the second Kkind:
double ellint_2(double k, double phi);

float ellint_2f(float k, float phi);

long double ellint_2I1(long double k, long double phi);

46

htto://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

3
i

Overview

// [5.2.1.14] (incomplete) elliptic integral of the third kind:

double ellint_3(double k, double nu, double phi);

float ellint_3f(float k, float nu, float phi);

long double ellint_31(long double k, long double nu, long double phi);

// [5.2.1.15] exponential integral:
double expint(double x);
float expintf(float x);
long double expintl(long double x);

// [5.2.1.16] Hermite polynomials:

double hermite(unsigned n, double x);

float hermitef(unsigned n, float x);

long double hermitel(unsigned n, long double Xx);

// [5.2.1.18] Laguerre polynomials:

double laguerre(unsigned n, double Xx);

float laguerref(unsigned n, float x);

long double laguerrel(unsigned n, long double Xx);

// [5.2.1.19] Legendre polynomials:

double legendre(unsigned I, double x);

float legendref(unsigned I, float x);

long double legendrel(unsigned I, long double Xx);

// [5.2.1.20] Riemann zeta function:
double riemann_zeta(double);

float riemann_zetaf(float);

long double riemann_zetal(long double);

// [5.2.1.21] spherical Bessel functions (of the first kind):
double sph_bessel (unsigned n, double Xx);

float sph_besself(unsigned n, float x);

long double sph_bessell(unsigned n, long double Xx);

// [5.2.1.22] spherical associated Legendre functions:

double sph_legendre(unsigned I, unsigned m, double theta);

float sph_legendref(unsigned I, unsigned m, float theta);

long double sph_legendrel(unsigned 1, unsigned m, long double theta);

// [5.2.1.23] spherical Neumann functions;

// spherical Bessel functions (of the second kind):
double sph_neumann(unsigned n, double x);

float sph_neumannf(unsigned n, float x);

long double sph_neumannl(unsigned n, long double Xx);

}}}} // namespaces

In addition sufficient additional overloads of the double versions of the above functions are provided, so that calling the function
with any mixture of float, double, long double, or integer arguments is supported, with the return type determined by the
result type calculation rules.

47

htto://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Overview

Currently Unsupported C99 Functions

double exp2(double x);
float exp2f(float x);
long double exp2l(long double x);

double fdim(double x, double y);
float fdimf(Ffloat x, float y);

long double fdiml(long double x, long double y);

double fma(double x, double y, double z);
float fmaf(float x, float y, float z);

long double fmal(long double x, long double y, long double z);

int ilogb(double x);
int iloghf(float x);
int ilogbl(long double Xx);

long long llrint(double Xx);
long long llrintf(float Xx);
long long llrintl(long double x);

double log2(double x);
float log2f(float Xx);
long double log2l(long double x);

double logb(double x);
float logbf(float x);
long double logbl(long double x);

long Irint(double x);
long Irintf(float x);
long Irintl(long double Xx);

double nan(const char *str);
float nanf(const char *str);
long double nanl(const char *str);

double nearbyint(double x);
float nearbyintf(float x);
long double nearbyintl(long double Xx);

double remainder(double x, double y);
float remainderf(float x, float y);

long double remainderl(long double x, long double y);

double remquo(double x, double y, int *pquo);
float remquof(float x, float y, Int *pquo):
long double remquol(long double x, long double y, int *pquo);

double rint(double x);
float rintf(float x);
long double rintl(long double x);

double scalbIn(double x, long ex);

3
i

48

htto://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

3
i

Overview

float scalbInf(float x, long ex);
long double scalblnl(long double x, long ex);

double scalbn(double x, int ex);
float scalbnf(float x, int ex);
long double scalbnl(long double x, int ex);

Currently Unsupported TR1 Functions

// [5.2.1.7] confluent hypergeometric functions:
double conf_hyperg(double a, double c, double x);
float conf_hypergf(float a, float c, float x);

long double conf_hypergl(long double a, long double c,

// [5.2.1.17] hypergeometric functions:
double hyperg(double a, double b, double c, double x);
float hypergf(float a, float b, float c, float x);

long double x);

long double hypergl(long double a, long double b, long double c,

long double x);

49

htto://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Overview

Boost.Math Frequently Asked Questions (FAQS)

I'm a FORTRAN/NAG/SPSS/SAS/Cephes/MathCad/R user and | don't see where the functions like dnorm(mean, sd) are in
Nearly all are provided, and many more like mean, skewness, quantiles, complements ... but Boost.Math makes full use of C++,
and it looks a bit different. But do not panic! See section on construction and the many examples. Briefly, the distribution is

constructed with the parameters (like location and scale) (things after the | in representation like P(X=Kk|n, p) or ; in a common
represention of pdf f(x; uoz). Functions like pdf, cdf are called with the name of that distribution and the random variate often

1.
Boost.Math?
called x or k. For example, normal my_norm(0, 1); pdf(my_norm, 2.0);
You will find the interface more familar, but to be able to select a distribution (perhaps using a string) see the Extras/Future
Directions section, and /boost/libs/math/dot_net_example/boost_math.cpp for an example that is used to create a C# (C sharp)

I'm a user of New SAS Functions for Computing Probabilities.
utility (that you might also find useful): see Statistical Distribution Explorer.
I'm allegic to reading manuals and prefer to learn from examples.
Fear not - you are not alone! Many examples are available for functions and distributions. Some are referenced directly from
the text. Others can be found at \boost_latest_release\libs\math\example, for example If you are a Visual Studio
user, you should be able to create projects from each of these, making sure that the Boost library is in the include directories

3.
list (there are usually NO libraries that must be built).
You can add an include path, for example, your Boost place /boost-latest_release, for example X:/boost_1_70 0/ if you

How do | make sure that the Boost library is in the Visual Studio include directories list?
have a separate partition X for Boost releases. Or you can use an environment variable BOOST_ROOT set to your Boost place,
and include that. Visual Studio before 2010 provided Tools, Options, VC++ Directories to control directories: Visual Studio
2010 instead provides property sheets to assist. You may find it convenient to create a new one adding \boost-latest_release;

to the existing include items in $(IncludePath).
I'm a FORTRAN/NAG/SPSS/SAS/Cephes/MathCad/R user and | don't see where the properties like mean, median, mode,

They are all available (if defined for the parameters with which you constructed the distribution) via Cumulative Distribution

variance, skewness of distributions are in Boost.Math?
Function, Probability Density Function, Quantile, Hazard Function, Cumulative Hazard Function, mean, median, mode, variance,

standard deviation, skewness, kurtosis, kurtosis_excess, range and support.
Yes you can, including all the special functions, and TR1 functions like isnan. They appear as C functions, by being declared

I am a C programmer. Can | user Boost.Math with C?
as "extern C".
I am a C# (Basic? F# FORTRAN? Other CLI?) programmer. Can | use Boost.Math with C#? (or ...)?
Yes you can, including all the special functions, and TR1 functions like isnan. But you must build the Boost.Math as a dy-
namic library (.dll) and compile with the /CLI option. See the boost/math/dot_net_example folder which contains an example

that builds a simple statistical distribution app with a GUI. See Statistical Distribution Explorer

What these "policies" things for?
I am a C user and expect to see global C-style: -errno set for overflow/errors etc?

Policies are a powerful (if necessarily complex) fine-grain mechanism that allow you to customise the behaviour of the Boost.Math
You can achieve what you want - see error handling policies and user error handling and many examples.

library according to your precise needs. See Policies. But if, very probably, the default behaviour suits you, you don't need to

http://www.renderx.com/

know more.

render

http://support.sas.com/rnd/app/da/new/probabilityfunctions.html
http://sourceforge.net/projects/distexplorer/
http://sourceforge.net/projects/distexplorer/
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Overview

10. 1 am a C user and expect to silently return a max value for overflow?
You (and C++ users too) can return whatever you want on overflow - see overflow_error and error handling policies and sev-

eral examples.

11 1 don't want any error message for overflow etc?

You can control exactly what happens for all the abnormal conditions, including the values returned. See domain_error, over-

flow_error error handling policies user error handling etc and examples.

12. My environment doesn't allow and/or | don't want exceptions. Can | still user Boost.Math?

Yes but you must customise the error handling: see user error handling and changing policies defaults .
Yes - you can download the Boost current release of most documentation as a zip of pdfs (including Boost.Math) from

13 The docs are several hundreds of pages long! Can | read the docs off-line or on paper?
Sourceforge, for example https://sourceforge.net/projects/boost/files/boost-docs/1.45.0/boost_pdf 1 45 0.tar.gz/download.
And you can print any pages you need (or even print all pages - but be warned that there are several hundred!). Both html and
pdf versions are highly hyperlinked. The entire Boost.Math pdf can be searched with Adobe Reader, Edit, Find ... This can often

find what you seek, a partial substitute for a full index.
14. 1 want a compact version for an embedded application. Can | use float precision?
Yes - by selecting Real Type template parameter as float: for example normal_distribution<float> your_normal(mean, sd); (But

double may still be used internally, so space saving may be less that you hope for). You can also change the promotion policy,

but accuracy might be much reduced.

15. | seem to get somewhat different results compared to other programs. Why?
We hope Boost.Math to be more accurate: our priority is accuracy (over speed). See the section on accuracy. But for evaluations

that require iterations there are parameters which can change the required accuracy (see Policies). You might be able to squeeze

Probably, thought not always, and not by too much: our priority is accuracy. For most functions, making sure you have the

a little more (or less) accuracy at the cost of runtime.

16. Will my program run more slowly compared to other math functions and statistical libraries?
latest compiler version with all optimisations switched on is the key to speed. For evaluations that require iteration, you may

be able to gain a little more speed at the expense of accuracy. See detailed suggestions and results on performance.

17. How do | handle infinity and NaNs portably?
See nonfinite fp_facets for Facets for Floating-Point Infinities and NaNs.

18 Where are the pre-built libraries?

Good news - you probably don't need any! - just #include <boost/math/distribution_you_want>. But in the unlikely event
that you do, see building libraries.
You can use Boost.Math with Boost.Multiprecision: typically cpp_dec_float is a useful user-defined type to provide a fixed

19. I don't see the function or distribution that | want.

You could try an email to ask the authors - but no promises!

http://www.renderx.com/

20. 1 need more decimal digits for values/computations.
number of decimal digits, usually 50 or 100.
21 Why can't | write something really simple like cpp_int one(1); cpp_dec_float 50 two(2); one * two;
51

render

https://sourceforge.net/projects/boost/files/boost-docs/1.45.0/boost_pdf_1_45_0.tar.gz/download
http://www.boost.org/doc/libs/release/libs/math/doc/html/../../../../libs/multiprecision/doc/html/index.html
http://www.boost.org/doc/libs/release/libs/math/doc/html/../../../../libs/multiprecision/doc/html/boost_multiprecision/tut/floats/cpp_dec_float.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Overview

Because cpp_int might be bigger than cpp_dec_float can hold, so you must make an explicit conversion. See mixed

multiprecision arithmetic and conversion.
22 How do | choose between Boost.Multiprecision cpp_bin_50 and cpp_dec_50?
Unless you have a specific reason to choose cpp_dec_, then the default choice should be cpp_bin_, for example using the
convenience typedeTs like boost: :multiprecision::cpp_bin_50 or boost: :multiprecision::cpp_bin_100.
In general, both work well and give the same results and at roughly the same speed with cpp_dec_50 sometimes faster.
cpp_dec_ was developed first paving the way for cpp_bin_. cpp_dec_ has several guard digits and is not rounded at all, using
‘brute force' to get the promised number of decimal digits correct, but making it difficult to reason about precision and compu-
tational uncertainty, for example see https://svn.boost.org/trac10/ticket/12133. It also has a fast but imprecise division oper-

ator giving surprising results sometimes, see https://svn.boost.org/trac10/ticket/11178.
cpp_hin_is correctly/exactly rounded making it possible to reason about both the precision and rounding of the results.

52
http://www.renderx.com/

render

http://svn.boost.org/svn/boost/trunk/libs/multiprecision/doc/html/boost_multiprecision/intro.html
http://svn.boost.org/svn/boost/trunk/libs/multiprecision/doc/html/boost_multiprecision/intro.html
http://svn.boost.org/svn/boost/trunk/libs/multiprecision/doc/html/boost_multiprecision/tut/conversions.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

3
i

Overview

Contact Info and Support

The main support for this library is via the Boost mailing lists:
 Use the boost-user list for general support questions.
 Use the boost-developer list for discussion about implementation and or submission of extensions.

You can also find JM at john - at - johnmaddock.co.uk and PAB at pbristow - at - hetp.u-net.com.

53

htto://www.renderx.com/

http://www.boost.org/more/mailing_lists.htm#users
http://www.boost.org/more/mailing_lists.htm#main
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Floating Point Utilities

54

render =

> http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

3
i

Floating Point Utilities

Rounding Truncation and Integer Conversion

Rounding Functions

#include <boost/math/special_functions/round.hpp>
template <class T>
T round(const T& Vv);

template <class T, class Policy>
T round(const T& v, const Policy&);

template <class T>
int iround(const T& Vv);

template <class T, class Policy>
int iround(const T& v, const Policy&);

template <class T>
long Iround(const T& v);

template <class T, class Policy>
long Iround(const T& v, const Policyé&);

template <class T>
long long llround(const T& Vv);

template <class T, class Policy>
long long llround(const T& v, const Policy&);

These functions return the closest integer to the argument v.
Halfway cases are rounded away from zero, regardless of the current rounding direction.

If the argument v is either non-finite or else outside the range of the result type, then returns the result of rounding_error: by default
this throws an instance of boost: :math: :rounding_error

Truncation Functions

#include <boost/math/special_functions/trunc.hpp>

55

htto://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Floating Point Utilities

template <class T>
T trunc(const T& v);

template <class T, class Policy>
T trunc(const T& v, const Policy&);

template <class T>
int itrunc(const T& Vv);

template <class T, class Policy>
int itrunc(const T& v, const Policy&);

template <class T>
long Itrunc(const T& v);

template <class T, class Policy>
long Itrunc(const T& v, const Policyé&);

template <class T>
long long lltrunc(const T& Vv);

template <class T, class Policy>
long long lltrunc(const T& v, const Policy&);

The trunc functions round their argument to the integer value, nearest to but no larger in magnitude than the argument.
For example i trunc(3.7) would return 3 and 1'trunc(-4.6) would return -4.

If the argument v is either non-finite or else outside the range of the result type, then returns the result of rounding_error: by default
this throws an instance of boost: :math: :rounding_error

Integer and Fractional Part Splitting (modf)

#include <boost/math/special_functions/modf.hpp>

3
i

56

htto://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Floating Point Utilities

template <class T>
T modf(const T& v, T* ipart);
template <class T, class Policy>

T modf(const T& v, T* ipart, const Policy&);
template <class T>

T modf(const T& v, int* ipart);

template <class T, class Policy>

T modf(const T& v, int* ipart, const Policy&);
template <class T>

T modf(const T& v, long* ipart);

template <class T, class Policy>

T modf(const T& v, long* ipart, const Policyé&);
template <class T>

T modf(const T& v, long long* ipart);

template <class T, class Policy>

T modf(const T& v, long long* ipart, const Policy&);

The modTf functions store the integer part of v in *ipart and return the fractional part of v. The sign of the integer and fractional
parts are the same as the sign of v.

If the argument v is either non-finite or else outside the range of the result type, then returns the result of rounding_error: by default
this throws an instance of boost: :math: :rounding_error

3
i

57

htto://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

3
i

Floating Point Utilities

Floating-Point Classification: Infinities and NaNs

Synopsis
#define FP_ZERO /* implementation specific value */
#define FP_NORMAL /* implementation specific value */
#define FP_INFINITE /* implementation specific value */
#define FP_NAN /* implementation specific value */

#define FP_SUBNORMAL /* implementation specific value */

template <class T>
int fpclassify(T t);

template <class T>
bool isfinite(T z); // Neither infinity nor NaN.

template <class T>
bool isinf(T t); // Infinity (+ or -).

template <class T>
bool isnan(T t); // NaN.

template <class T>
bool isnormal(T t); // isfinite and not denormalised.

#include <boost\math\special_functions\fpclassify_hpp>

to use these functions.
Description

These functions provide the same functionality as the macros with the same name in C99, indeed if the C99 macros are available,
then these functions are implemented in terms of them, otherwise they rely on std: :numeric_limits<> to function.

Note that the definition of these functions does not suppress the definition of these names as macros by math.h on those platforms
that already provide these as macros. That mean that the following have differing meanings:

58

htto://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Floating P

oint Utilities

using namespace boost::math;

// This might call a global macro if defined,

// but might not work if the type of z is unsupported

// by the std lib macro:
isnan(z);

//

// This calls the Boost version

// (found via the "using namespace boost::math" declaration)
// it works for any type that has numeric_limits support for type z:

(isnan)(z2);

//

// As above but with explicit namespace quali
(boost::math::isnan)(z);

//

// This will cause a compiler error if isnan
boost: :math::isnan(z);

// So always use instead:
(boost::math::isnan)(z);

//

// You can also add a using statement,

fication.

is a native macro:

// globally to a .cpp file, or to a local function in a .hpp file.

using boost::math::isnan;

// so you can write the shorter and less cluttered

(isnan)(2)

// But, as above, if isnan is a native macro,

this causes a compiler error,

// because the macro always "gets®" the name first, unless enclosed in () brackets.

Detailed descriptions for each of these functions follows:

template <class T>
int fpclassify(T t);

Returns an integer value that classifies the value t:

fpclassify value
FP_ZERO
FP_NORMAL
FP_INFINITE
FP_NAN

FP_SUBNORMAL

template <class T>
bool isfinite(T 2);

Returns true only if z is not an infinity or a NaN.

template <class T>
bool isinf(T t);

Returns true only if z is plus or minus infinity.

class of t.

If tis zero.

If t is a non-zero, non-denormalised finite value.
If tis plus or minus infinity.

If tisa NaN.

If t is a denormalised number.

3
i

59

htto://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Floating Point Utilities

template <class T>
bool isnan(T t);

Returns true only if z is a NaN.

template <class T>
bool isnormal(T t);

Returns true only if z is a normal number (not zero, infinite, NaN, or denormalised).
Floating-point format

If you wish to find details of the floating-point format for any particular processor, there is a program

inspect_fp.cpp

by Johan Rade which can be used to print out the processor type, endianness, and detailed bit layout of a selection of floating-point
values, including infinity and NaNs.

60

render

htto://www.renderx.com/

http://en.wikipedia.org/wiki/NaN
http://www.boost.org/doc/libs/release/libs/math/doc/html/../../example/inspect_fp.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Floating Point Utilities

Sign Manipulation Functions
Synopsis

#include <boost/math/special_functions/sign.hpp>

namespace boost{ namespace math{

template<class T>
int signbit(T x);

template <class T>
int sign (const T& z);

template <class T, class U>
T copysign (const T& x, const U& y);

template <class T>
calculated-result-type changesign (const T& z);

}} // namespaces

Description

template<class T>
int signbit(T x);

Returns a non-zero value if the sign bit is set in variable x, otherwise 0.

2 Important
The return value from this function is zero or not-zero and not zero or one.

template <class T>
int sign (const T& z);

Returns 1 if x> 0, -1 if x < 0, and 0 if x is zero.

template <class T, class U>
calculated-result-type copysign (const T& X, const U& y);

Sets the sign of x to be the same as the sign of y.

See C99 7.12.11.1 The copysign functions for more detail.

template <class T>
T changesign (const T& z);

Returns a floating-point number with a binary representation where the signbit is the opposite of the sign bit in x, and where the
other bits are the same as in x.

This function is widely available, but not specified in any standards.

Rationale: Not specified by TR1, but changesign(x) is both easier to read and more efficient than

61

render

htto://www.renderx.com/

http://www.open-std.org/JTC1/SC22/WG14/www/docs/n1256.pdf
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Floating Point Utilities

-1.0);

copysign(x, signbit(x) ? 1.0
For finite values, this function has the same effect as simple negation, the assignment z = -z, but for nonfinite values, infinities

and NaNs, the changesign(x) function may be the only portable way to ensure that the sign bit is changed.

Sign bits
One of the bits in the binary representation of a floating-point number gives the sign, and the remaining bits give the absolute

value. That bit is known as the sign bit. The sign bit is set = 1 for negative numbers, and is not set = 0 for positive numbers. (This

C++ TR1 specifies copysign functions and function templates for accessing the sign bit.
these functions with a UDT, it may be necessary to explicitly specialize them for UDT type T.

is true for all binary representations of floating-point numbers that are used by modern microprocessors.)
For user-defined types (UDT), the sigh may be stored in some other way. They may also not provide infinity or NaNs. To use
Examples
signbit(3.5) is zero (or false)
signbit(-7.1) is 1 (or true)
copysign(4.2, 7.9) is 4.2
copysign(3.5 -1.4) is -3.5
copysign(-4.2, 1.0) is 4.2

copysign(-8.6, -3.3) is -8.6

changesign(6.9) is -6.9
changesign(-1.8) is 1.8
The library supports the following binary floating-point formats

Portability

IEEE 754 double precision
The library does not support the VAX floating-point formats. (These are available on VMS, but the default on VMS is the IEEE

« |EEE 754 single precision
IEEE 754 extended double precision with 15 exponent bits

Intel extended double precision

PowerPC extended double precision
Motorola 68K extended double precision

754 floating-point format.)
The main portability issues are:
» Unsupported floating-point formats.
 The library depends on the header boost/detai l/endian.hpp to detemine endianness.
e Codesuchas#if defined(__ia64) || defined(__ia64__) || defined(_M_1A64) isused to determine the processor

http://www.renderx.com/

type.
The library has passed all tests on the following platforms:

* Win32/MSVC 7.1/10.0/ x86 32 and 64-bit, and later Win32
62

* Win32/Intel C++ 7.1, 8.1, 9.1/ x86

render

http://en.wikipedia.org/wiki/Infinity#Computing
http://en.wikipedia.org/wiki/NaN
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/n1836.pdf
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Floating Point Utilities

e Mac OS X/GCC 3.3,4.0/ ppc

e Linux/ Intel C++ 9.1/ x86, iab4

» Linux/GCC 3.3/ x86, x64, iab4, ppc, hppa, mips, m68k
e Linux/GCC 3.4/ x64

e HP-UX/aCC,GCC4.1/iab4

* HP-UX/aCC / hppa

e Trué4 / Compag C++ 7.1/ alpha

e VMS/HP C++ 7.1/ alpha (in IEEE floating-point mode)

e VMS/HP C++ 7.2/ ia64 (in IEEE floating-point mode)

63

htto://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Floating Point Utilities

Facets for Floating-Point Infinities and NaNs
Synopsis

namespace boost{ namespace math
{
// Values for flags.
const int legacy;
const int signed_zero;
const int trap_infinity;
const int trap_nan;

template<
class CharType,
class Outputlterator = std::ostreambuf_iterator<CharType>
>
class nonfinite_num_put : public std::num_put<CharType, Outputlterator>
{
public:
explicit nonfinite_num_put(int flags = 0);
}:

template<
class CharType,
class Inputlterator = std::istreambuf_iterator<CharType>
>
class nonfinite_num_get : public std::num_get<CharType, Inputlterator>

{
public:

explicit nonfinite_num _get(int flags = 0); // legacy, sign_zero ...
}:

}} // namespace boost namespace math

To use these facets

#include <boost\math\special_functions\nonfinite_num_facets.hpp>

Introduction

The Problem

The C++98 standard does not specify how infinity and NaN are represented in text streams. As a result, different platforms use
different string representations. This can cause undefined behavior when text files are moved between different platforms. Some
platforms cannot even input parse their own output! So 'route-tripping' or loopback of output to input is not possible. For instance,
the following test fails with MSVC:

64

render

htto://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Floating Point Utilities

stringstream ss;

double inf = numeric_limits<double>::infinity();
double r;

ss << inf; // Write out.

ss >> r; // Read back in.

cout << "infinity output was " << inf << endl; // 1.#INF
cout << "infinity input was " << r << endl; // 1

assert(inf == y); // Fails!

The Solution

The facets nonfinite_num_put and nonfinite_num_get format and parse all floating-point numbers, including infinity
and NaN, in a consistent and portable manner.

The following test succeeds with MSVC.

locale old_locale;
locale tmp_locale(old_locale, new nonfinite_num_put<char>);
locale new_locale(tmp_locale, new nonfinite_num_get<char>);

To add two facets, nonfinite_num_put and nonfinite_num_get, you may have to add one at a time, using
a temporary locale.

Or you can create a new locale in one step

std::locale new_locale(std: :locale(std::locale(std::locale(), new boost::math::non-
finite_num_put<char>), new boost::math::nonfinite_num_get<char>));

and, for example, use it to imbue an input and output stringstream.

To just change an input or output stream, you can concisely write cout. imbue (std::locale(std::locale(),

new boost::math::nonfinite_num_put<char>)); or cin.imbue (std::locale(std::locale(),
new boost::math::nonfinite_num_get<char>));

65

render

htto://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Floating Point Utilities

stringstream ss;

ss. imbue(new_locale);

double inf = numeric_limits<double>::infinity();
ss << inf; // Write out.

assert(ss.str() == "inf");

double r;

ss >> r; // Read back in.

assert(inf == r); // Confirms that the double values really are identical.

cout << "infinity output was " << ss.str() << endl;

cout << "infinity input was " << r << endl;

// But the string representation of r displayed will be the native type
// because, when it was constructed, cout had NOT been imbued

// with the new locale containing the nonfinite_numput facet.

// So the cout output will be "1.#INF on MS platforms

// and may be "inf" or other string representation on other platforms.

C++0X standard for output of infinity and NaN

C++0X (final) draft standard does not explicitly specify the representation (and input) of nonfinite values, leaving it implementation-
defined. So without some specific action, input and output of nonfinite values is not portable.

C99 standard for output of infinity and NaN

The C99 standard does specify how infinity and NaN are formatted by printf and similar output functions, and parsed by scanf
and similar input functions.

The following string representations are used:

Table 13. C99 Representation of Infinity and NaN

number string

Positive infinity "inf" or "infinity"
Positive NaN "nan" or "nan(...)"
Negative infinity "-inf" or "-infinity"
Negative NaN "-nan" or "-nan(...)"

So following C99 provides a sensible 'standard’ way of handling input and output of nonfinites in C++, and this implementation
follows most of these formats.

Signaling NaNs

A particular type of NaN is the signaling NaN. The usual mechanism of signaling is by raising a floating-point exception. Signaling
NaNs are defined by IEEE 754-2008.

Floating-point values with layout s111 1111 1axX XXXX XXXX XXXX XXXX XXXX Where s is the sign, x is the payload, and bit a de-
termines the type of NaN.

If bita =1, itisaquiet NaN.
If bit a is zero and the payload x is nonzero, then it is a signaling NaN.

Although there has been theoretical interest in the ability of a signaling NaN to raise an exception, for example to prevent use of
an uninitialised variable, in practice there appears to be no useful application of sighaling NaNs for most current processors. C++0X

66

render

htto://www.renderx.com/

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3242.pdf
http://www.open-std.org/JTC1/SC22/WG14/www/docs/n1256.pdf
http://en.wikipedia.org/wiki/IEEE_floating-point_standard
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3242.pdf
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

rende

Floating Point Utilities

18.3.2.2 still specifies a (implementation-defined) representation for signaling NaN, and static constexpr bool has_sig-
nal ing_NaN a method of checking if a floating-point type has a representation for signaling NaN.

But in practice, most platforms treat signaling NaNs in the same as quiet NaNs. So, for example, they are represented by "nan"
on output in C99 format, and output as 1 . #QNAN by Microsoft compilers.

@ Note
The C99 standard does not distinguish between the quiet NaN and signaling NaN values. A quiet NaN propagates
through almost every arithmetic operation without raising a floating-point exception; a signaling NaN generally
raises a floating-point exception when occurring as an arithmetic operand.

C99 specification does not define the behavior of signaling NaNs. NaNs created by IEC 60559 operations are always
quiet. Therefore this implementation follows C99, and treats the signaling NaN bit as just a part of the NaN payload
field. So this implementation does not distinguish between the two classes of NaN.

@ Note
An implementation may give zero and non-numeric values (such as infinities and NaNs) a sign or may leave them
unsigned. Wherever such values are unsigned, any requirement in the C99 Standard to retrieve the sign shall
produce an unspecified sign, and any requirement to set the sign shall be ignored.

This might apply to user-defined types, but in practice built-in floating-point types float, double and long
double have well-behaved signs.

The numbers can be of type Float, double and long double. An optional + sign can be used with positive numbers (controlled
by ios manipulator showpos). The function printf and similar C++ functions use standard formatting flags to put all lower or

all upper case (controlled by std: : ios manipulator uppercase and lowercase).
The function scanf and similar input functions are case-insensitive.

The dots in nan(- - .) stand for an arbitrary string. The meaning of that string is implementation dependent. It can be used to
convey extra information about the NaN, from the ‘payload'. A particular value of the payload might be used to indicate a missing

value, for example.
This library uses the string representations specified by the C99 standard.

An example of an implementation that optionally includes the NaN payload information is at AIX NaN fprintf. That implementation
specifies for Binary Floating Point NANSs:

* A NaN ordinal sequence is a left-parenthesis character '(’, followed by a digit sequence representing an integer n, where 1 <=
n <= INT_MAX-1, followed by a right-parenthesis character ')'.

e The integer value, n, is determined by the fraction bits of the NaN argument value as follows:

« For asignalling NaN value, NaN fraction bits are reversed (left to right) to produce bits (right to left) of an even integer value,
2*n. Then formatted output functions produce a (signalling) NaN ordinal sequence corresponding to the integer value n.

» For a quiet NaN value, NaN fraction bits are reversed (left to right) to produce bits (right to left) of an odd integer value, 2*n-
1. Then formatted output functions produce a (quiet) NaN ordinal sequence corresponding to the integer value n.

O Warning
This implementation does not (yet) provide output of, or access to, the NaN payload.

67

http://www.renderx.com/

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3242.pdf
http://www.open-std.org/JTC1/SC22/WG14/www/docs/n1256.pdf
http://publib.boulder.ibm.com/infocenter/zos/v1r10/index.jsp?topic=/com.ibm.zos.r10.bpxbd00/fprints.htm
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Floating Point Utilities

Reference

The Facet nonfinite_num put
class CharType, class Outputlterator = std::ostreambuf_iterator<CharType>
ator>. Thus it is a facet that formats numbers. The first template argument is the character type of the formatted strings, usually

>
class nonfinite_num_put;
The class nonfinite_num_put<CharType, Outputlterator> isderived fromstd: :num_put<CharType, Outputlter-

template<
char or wchar_t. The second template argument is the type of iterator used to write the strings. It is required to be an output
iterator. Usually the default std: :ostreambuf_iterator is used. The public interface of the class consists of a single constructor

String

only:
nonfinite_num_put(int flags = 0);

The flags argument (effectively optional because a default of no_flags is provided) is discussed below. The class template
inf

nonfinite_num_put is defined in the header boost/math/nonfinite_num_facets.hpp and lives in the namespace

boost: :math.
-inf

Unlike the C++ Standard facet std: :num_put, the facet nonfinite_num_put formats infinity and NaN in a consistent and
-nan

portable manner. It uses the following string representations:
nan

Positive infinity

Positive NaN
Negative infinity

Negative NaN
The numbers can be of type float, double and long double. The strings can be in all lower case or all upper case. An optional

Number
+ sign can be used with positive numbers. This can be controlled with the uppercase, lowercase, showpos and noshowpos
manipulators. Formatting of integers, boolean values and finite floating-point numbers is simply delegated to the normal

std: :num_put.

Facet nonfi ni te_num get
template<class CharType, class Inputlterator = std::istreambuf_iterator<CharType> > class non[1

The class nonfinite_num_get<CharType, Inputlterator> isderived from std: :num_get<CharType, Intputlter-
ator>. Thus it is a facet that parses strings that represent numbers. The first template argument is the character type of the strings,

usually char or wchar_t. The second template argument is the type of iterator used to read the strings. It is required to be an input
iterator. Usually the default is used. The public interface of the class consists of a single constructor only:

http://www.renderx.com/

68

finite_num_get;
nonfinite_num_get(int flags = 0);
The flags argument is discussed below. The class template nonfinite_num_get is defined in the header

boost/math/nonfinite_num_facets.hpp and lives in the namespace boost: :math.

render

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Floating Point Utilities

String

and portable manner. It recognizes precisely the string representations specified by the C99 standard:
inf, infinity
nan, nan(...)

-inf, -infinity

Unlike the facet std: :num_get, the facet nonfinite_num_get parses strings that represent infinity and NaN in a consistent
-nan, -nan(...)

Positive infinity

Positive NaN

Negative infinity

represent integers, boolean values and finite floating-point numbers is delegated to std: :num_get.
When the facet parses a string that represents NaN on a platform that lacks NaN, then the fail bit of the stream is set.

Negative NaN
The numbers can be of type float, double and long double. The facet is case-insensitive. An optional + sign can be used

Number
with positive numbers. The dots in nan(...) stand for an arbitrary string usually containing the NaN payload. Parsing of strings that

When the facet parses a string that represents infinity on a platform that lacks infinity, then the fail bit of the stream is set.

Flags
The constructors for nonfinite_num_put and nonfinite_num_get take an optional bit flags argument. There are four different

bit flags:

legacy
signed_zero

trap_infinity
* trap_nan
The flags can be combined with the OR operator]|.

If the legacy flag is used with the nonfinite_num_get input facet, then the facet will recognize all the following string repres-

The flags are defined in the header boost/math/nonfinite_num_facets.hpp and live in the namespace boost: :math.
inf, infinity, one#inf

nan, nan(...), nang, nans, gnan, snan, one#ind, one#gnan,

one#snan

-inf, -infinity, -one#inf

legacy
The legacy flag has no effect with the output facet nonfinite_num_put.
String

-nan, -nan(...), -nang, -nans, -gnan, -snan, -one#ind, - one#qnan,

entations of infinity and NaN:

-one#snan

Number
Positive infinity

Positive NaN
http://www.renderx.com/

Negative infinity
69

Negative NaN
e The numbers can be of type float, double and long double.

render

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Floating Point Utilities

The facet is case-insensitive.
The dots in nan(- - .) stand for an arbitrary string.

one stands for any string that std: :num_get parses as the number 1, typically "1.#INF", "1.QNAN" but also "000001.#INF"...

An optional + sign can be used with the positive values.
The list includes a number of non-standard string representations of infinity and NaN that are used by various existing implement-
ations of the C++ standard library, and also string representations used by other programming languages.
If the signed_zero flag is used with nonfinite_num_put, then the facet will always distinguish between positive and negative
zero. It will format positive zero as "0" or "+0" and negative zero as "-0". The string representation of positive zero can be controlled
The signed_zero flag has no effect with the input facet nonfinite_num_get. The input facet nonfinite_num_get always

parses "0" and "+0" as positive zero and "-0" as negative zero, as do most implementations of std: :num_get.

signhed_zero
with the showpos and noshowpos manipulators.
way the platform normally handles it. For most platforms, this it will format positive zero as "0" or "+0" and

Note

If the signed_zero flag is not set (the default), then a negative zero value will be displayed on output in whatever

negative zero as "-0". But setting the signed_zero flag may be more portable.

K

A negative zero value can be portably produced using the changesign function (changesign) (static_cast<val-

Type>(0)) where ValType is float, double or long double, or a User-Defined floating-point type (UDT)

provided that this UDT has a sign and that the changesign function is implemented.

Tip
trap_infinity
If the trap_infinity flag is used with nonfinite_num_put, then the facet will throw an exception of type

std: - ios_base: :failure when an attempt is made to format positive or negative infinity. If the facet is called from a stream
insertion operator, then the stream will catch that exception and set either its fail bitoritsbad bit. Which bit is set is platform

dependent.

If the trap_infinity flag is used with nonfinite_num_get, then the facet will set the fail bit of the stream when an attempt
(See Design Rationale below for a discussion of this inconsistency.)

is made to parse a string that represents positive or negative infinity.

trap_nan
Same as trap_infinity, but positive and negative NaN are trapped instead.

70
http://www.renderx.com/

render

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

3
i

Floating Point Utilities

Examples

Simple example with std::stringstreams

locale old_locale;
locale tmp_locale(old_locale, new nonfinite_num_put<char>);
locale new_locale(tmp_locale, new nonfinite_num_get<char>);

stringstream ss;

ss. imbue(new_locale);

double inf = numeric_limits<double>::infinity();
ss << inf; // Write out.

assert(ss.str() == "inf");

double r;

ss >> r; // Read back in.

assert(inf == r); // Confirms that the double values really are identical.

cout << "infinity output was " << ss.str() << endl;

cout << "infinity Input was " << r << endl;

// But the string representation of r displayed will be the native type
// because, when it was constructed, cout had NOT been imbued

// with the new locale containing the nonfinite_numput facet.

// So the cout output will be "1.#INF on MS platforms

// and may be "inf" or other string representation on other platforms.

Use with lexical_cast

g Note
From Boost 1.48, lexical_cast no longer uses stringstreams internally, and is now able to handle infinities and
NaNs natively on most platforms.

Without using a new locale that contains the nonfinite facets, previous versions of Iexical_cast using stringstream were not
portable (and often failed) if nonfinite values are found.

locale old_locale;
locale tmp_locale(old_locale, new nonfinite_num_put<char>);
locale new_locale(tmp_locale, new nonfinite_num_get<char>);

Although other examples imbue individual streams with the new locale, for the streams constructed inside lexical_cast, it was
necesary to assign to a global locale.

locale: :global (new_locale);

lexical_cast then works as expected, even with infinity and NaNs.

71

htto://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

rende

Floating Point Utilities

r

double x = boost::lexical_cast<double>("inf");

assert(x == std::numeric:limits<double>::infinity());

string s = boost::lexical_cast<string>(nhumeric_limits<double>::infinity());
assert(s == "inf");

O Warning
If you use stringstream inside your functions, you may still need to use a global locale to handle nonfinites correctly.
Or you need to imbue your stringstream with suitable get and put facets.

O Warning
You should be aware that the C++ specification does not explicitly require that input from decimal digits strings
converts with rounding to the nearest representable floating-point binary value. (In contrast, decimal digits read
by the compiler, for example by an assignment like double d = 1.234567890123456789, are guaranteed to
assign the nearest representable value to double d). This implies that, no matter how many decimal digits you
provide, there is a potential uncertainty of 1 least significant bit in the resulting binary value.

See conversion and rounding for more information on nearest representable and rounding and Exploring Binary for much detail

on input and round-tripping difficulties.

Most iostream libraries do in fact achieve the desirable nearest representable floating-point binary value for all values of input.
However one popular STL library does not quite achieve this for 64-bit doubles. See Decimal digit string input to double may be
1 bit wrong for the bizarre full details.

If you are expecting to 'round-trip' lexical_cast or serialization, for example archiving and loading, and want to be abso-
lutely certain that you will always get an exactly identical double value binary pattern, you should use the suggested 'work-
around' below that is believed to work on all platforms.

You should output using all potentially significant decimal digits, by setting stream precision to std::numeric_lim-
its<double>::max_digits10, (or for the appropriate floating-point type, if not double) and crucially, require sci entific
format, not fixed or automatic (default), for example:

double output_value = any value;

std: :stringstream s;
s << setprecison(std::numeric_limits<double>::max_digitsl0) << scientific << output_value;

s >> input_value;

Use with serialization archives

It is vital that the same locale is used when an archive is saved and when it is loaded. Otherwise, loading the archive may fail. By
default, archives are saved and loaded with a classic C locale with a boost: :archive: :codecvt_null facet added. Normally

you do not have to worry about that.
The constructors for the archive classes, as a side-effect, imbue the stream with such a locale. However, if you want to use the

facets nonfinite_num_put and nonfinite_num_get with archives, then you have to manage the locale manually. That is
done by calling the archive constructor with the flag boost: :archive: :no_codecvt, thereby ensuring that the archive con-

structor will not imbue the stream with a new locale.

The following code shows how to use nonfinite_num_put with a text_oarchive.

72

http://www.renderx.com/

http://en.wikipedia.org/wiki/Floating_point#Representable_numbers.2C_conversion_and_rounding
http://www.exploringbinary.com/
http://connect.microsoft.com/VisualStudio/feedback/details/98770/decimal-digit-string-input-to-double-may-be-1-bit-wrong
http://connect.microsoft.com/VisualStudio/feedback/details/98770/decimal-digit-string-input-to-double-may-be-1-bit-wrong
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Floating Point Utilities

locale default_locale(locale::classic(), new boost::archive::codecvt_null<char>)

locale my_locale(default_locale, new nonfinite_num_put<char>);

ofstream ofs('"test.txt");

ofs.imbue(my_locale);

boost: :archive: :text_oarchive oa(ofs, no_codecvt);
If you use the nonfinite_num_put with trap_infinity and/or trap_nan flag with a serialization archive, then you must set

double x = numeric_limits<double>::infinity();

oa & X;
The same method works with nonfinite_num_get and text_iarchive.

the exception mask of the stream. Serialization archives do not check the stream state.
nonfinite_facet_simple.cpp give some more simple demonstrations of the difference between using classic C locale and constructing

Other examples

a C99 infinty and NaN compliant locale for input and output.
See nonfinite_facet_sstream.cpp for this example of use with std: :stringstreams.
For an example of how to enforce the MSVC 'legacy’ "1.#INF" and "1.#QNAN" representations of infinity and NaNs, for input

Treatment of signaling NaN is demonstrated at ../../example/nonfinite_signaling_NaN.cpp

and output, see nonfinite_legacy.cpp.
Example ../../example/nonfinite_loopback_ok.cpp shows loopback works OK.
Example ../../example/nonfinite_num_facet.cpp shows output and re-input of various finite and nonfinite values.

A simple example of trapping nonfinite output is at nonfinite_num_facet_trap.cpp.
A very basic example of using Boost.Archive is at ../../example/nonfinite_serialization_archives.cpp.
A full demonstration of serialization by Francois Mauger is at ../../example/nonfinite_num_facet_serialization.cpp

This library uses the floating-point number classification and sign-bit from Boost.Math library, and should work on all platforms

Design Rationale
The facet nonfinite_num_put throws an exception when the trap_infinity or trap_nan flag is set and an attempt is

Portability
» The flags are implemented as a const data member of the facet. Facets are reference counted, and locales can share facets.
made to format infinity or NaN. It would be better if the facet set the fail bit of the stream. However, facets derived from

where that library works. See the portability information for that library.

Therefore changing the flags of a facet would have effects that are hard to predict. An alternative design would be to implement
the flags using std: :ios_base: :xalloc and std: :ios_base: : iword. Then one could safely modify the flags, and one
could define manipulators that do so. However, for that to work with dynamically linked libraries, a . cpp file would have to

be added to the library. It was judged be more desirable to have a header-only library, than to have mutable flags and manipu-

lators.
http://www.renderx.com/

std: :num_put do not have access to the stream state.
73

render

http://www.boost.org/doc/libs/release/libs/math/doc/html/../../example/nonfinite_facet_simple.cpp
http://www.boost.org/doc/libs/release/libs/math/doc/html/../../example/nonfinite_facet_sstream.cpp
http://www.boost.org/doc/libs/release/libs/math/doc/html/../../example/nonfinite_legacy.cpp
http://www.boost.org/doc/libs/release/libs/math/doc/html/../../example/nonfinite_signaling_NaN.cpp
http://www.boost.org/doc/libs/release/libs/math/doc/html/../../example/nonfinite_loopback_ok.cpp
http://www.boost.org/doc/libs/release/libs/math/doc/html/../../example/nonfinite_num_facet.cpp
http://www.boost.org/doc/libs/release/libs/math/doc/html/../../example/nonfinite_num_facet_trap.cpp
http://www.boost.org/doc/libs/release/libs/math/doc/html/../../example/nonfinite_serialization_archives.cpp
http://www.boost.org/doc/libs/release/libs/math/doc/html/../../example/nonfinite_num_facet_serialization.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Floating Point Utilities

Floating-Point Representation Distance (ULP), and
Finding Adjacent Floating-Point Values

Unit of Least Precision or Unit in the Last Place is the gap between two different, but as close as possible, floating-point numbers.

Most decimal values, for example 0.1, cannot be exactly represented as floating-point values, but will be stored as the closest
representable floating-point.

Functions are provided for finding adjacent greater and lesser floating-point values, and estimating the number of gaps between
any two floating-point values.

The floating-point type (FPT) must have has a fixed number of bits in the representation. The number of bits may set at runtime,
but must be the same for all numbers. For example, NTL::quad_float type (fixed 128-bit representation), NTL::RR type (arbitrary
but fixed decimal digits, default 150) or Boost.Multiprecision cpp_dec_float andcpp_bin_float are fixed at runtime, but not a type
that extends the representation to provide an exact representation for any number, for example XRC eXact Real in C.

The accuracy of mathematical functions can be assessed and displayed in terms of Unit in the Last Place, often as a ulps plot or
by binning the differences as a histogram. Samples are evaluated using the implementation under test and compared with 'known
good' representation obtained using a more accurate method. Other implementations, often using arbitrary precision arithmetic,
for example Wolfram Alpha are one source of references values. The other method, used widely in Boost.Math special functions,
it to carry out the same algorithm, but using a higher precision type, typically using Boost.Multiprecision types like
cpp_bin_float_quad for 128-bit (about 35 decimal digit precision), or cpp_bin_float_50 (for 50 decimal digit precision).

When converted to a particular machine representation, say double, say using a static_cast, the value is the nearest represent-
ation possible for the doubl e type. This value cannot be 'wrong' by more than half a Unit in the last place (ULP), and can be obtained
using the Boost.Math function ullp. (Unless the algorithm is fundamentally flawed, something that should be revealed by 'sanity’
checks using some independent sources).

See some discussion and example plots by Cleve Moler of Mathworks ulps plots reveal math-function accuracy.

Finding the Next Representable Value in a Specific Direction
(nextafter)

Synopsis

#include <boost/math/special_functions/next.hpp>

namespace boost{ namespace math{

template <class FPT>
FPT nextafter(FPT val, FPT direction);

}} // namespaces

Description - nextafter

This is an implementation of the nextafter function included in the C99 standard. (It is also effectively an implementation of
the C99 nexttoward legacy function which differs only having a long double direction, and can generally serve in its place
if required).

74

render

htto://www.renderx.com/

http://en.wikipedia.org/wiki/Unit_in_the_last_place
http://en.wikipedia.org/wiki/Floating_point#Representable_numbers.2C_conversion_and_rounding
http://en.wikipedia.org/wiki/Floating_point#Representable_numbers.2C_conversion_and_rounding
http://shoup.net/ntl/doc/quad_float.txt
http://shoup.net/ntl/doc/RR.txt
http://www.boost.org/doc/libs/release/libs/math/doc/html/../../../../libs/multiprecision/doc/html/index.html
http://www.boost.org/doc/libs/release/libs/math/doc/html/../../../../libs/multiprecision/doc/html/boost_multiprecision/tut/floats/cpp_dec_float.html
http://www.boost.org/doc/libs/release/libs/math/doc/html/../../../../libs/multiprecision/doc/html/boost_multiprecision/tut/floats/cpp_bin_float.html
http://keithbriggs.info/xrc.html
https://en.wikipedia.org/wiki/Unit_in_the_last_place
http://www.wolframalpha.com/
http://en.wikipedia.org/wiki/Unit_in_the_last_place
https://blogs.mathworks.com/cleve/2017/01/23/ulps-plots-reveal-math-function-accurary/
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Floating Point Utilities

@ Note
The C99 functions must use suffixes f and | to distinguish float and long double versions. C++ uses the
template mechanism instead.

Returns the next representable value after x in the direction of y. If x == y then returns x. If x is non-finite then returns the result
of a domain_error. If there is no such value in the direction of y then returns an overflow_error.

o Warning
The template parameter FTP must be a floating-point type. An integer type, for example, will produce an unhelpful
error message.

i} 11p
Nearly always, you just want the next or prior representable value, so instead use float_next or float_prior
below.

Examples - nextafter

The two representations using a 32-bit float either side of unity are:

The nearest (exact) representation of 1.F is 1.00000000
nextafter(l1.F, 999) is 1.00000012
nextafter(1/f, -999) is 0.99999994

The nearest (not exact) representation of 0.1F is 0.100000001
nextafter(0.1F, 10) is -100000009
nextafter(0.1F, 10) is .099999994

oNe)

Finding the Next Greater Representable Value (float_next)
Synopsis

#include <boost/math/special_functions/next.hpp>

namespace boost{ namespace math{

template <class FPT>
FPT float_next(FPT val);

}} // namespaces

Description - float_next

Returns the next representable value which is greater than x. If x is non-finite then returns the result of a domain_error. If there is
no such value greater than x then returns an overflow_error.

Has the same effect as

75

render

htto://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Floating Point Utilities

nextafter(val, (std::numeric_limits<FPT>::max)()):;

Finding the Next Smaller Representable Value (float_prior)
Synopsis

#include <boost/math/special_functions/next.hpp>

namespace boost{ namespace math{

template <class FPT>
FPT float_prior(FPT val);

}} // namespaces

Description - float_prior

Returns the next representable value which is less than x. If x is non-finite then returns the result of a domain_error. If there is no
such value less than x then returns an overflow_error.

Has the same effect as

nextafter(val, -(std::numeric_limits<FPT>::max)()):; // Note most negative value -max.

Calculating the Representation Distance Between Two floating-
point Values (ULP) float_distance

Function float_distance finds the number of gaps/bits/ULP between any two floating-point values. If the significands of floating-
point numbers are viewed as integers, then their difference is the number of ULP/gaps/bits different.

Synopsis

#include <boost/math/special_functions/next._hpp>

namespace boost{ namespace math{

template <class FPT>
FPT float_distance(FPT a, FPT b);

}} // namespaces

Description - float_distance

Returns the distance between a and b: the result is always a signed integer value (stored in floating-point type FPT) representing
the number of distinct representations between a and b.

Note that
* float_distance(a, a) always returns 0.
e float_distance(float_next(a), a) always returns -1.

e float_distance(float_prior(a), a) always returns 1.

76

render

htto://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

rende

r

Floating Point Utilities

The function float_distance is equivalent to calculating the number of ULP (Units in the Last Place) between a and b except
that it returns a signed value indicating whether a > b or not.

If the distance is too great then it may not be able to be represented as an exact integer by type FPT, but in practice this is unlikely
to be a issue.

Advancing a floating-point Value by a Specific Representation
Distance (ULP) float_advance

Function float_advance advances a floating-point number by a specified number of ULP.
Synopsis

#include <boost/math/special_functions/next.hpp>

namespace boost{ namespace math{

template <class FPT>
FPT float_advance(FPT val, int distance);

}} // namespaces

Description - float_advance

Returns a floating-point number r such that float_distance(val, r) == distance.

Obtaining the Size of a Unit In the Last Place - ULP

Function ullp gives the size of a unit-in-the-last-place for a specified floating-point value.
Synopsis

#include <boost/math/special_functions/ulp.hpp>

namespace boost{ namespace math{

template <class FPT>
FPT ulp(const FPT& Xx);

template <class FPT, class Policy>
FPT ulp(const FPT& x, const Policy&);

}} // namespaces

Description - ulp
Returns one unit in the last place of x.
Corner cases are handled as follows:
« If the argument is a NaN, then raises a domain_error.

« If the argument is an infinity, then raises an overflow_error.

77

htto://www.renderx.com/

http://en.wikipedia.org/wiki/Unit_in_the_last_place
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Floating Point Utilities

If the argument is zero then returns the smallest representable value: for example for type double this would be either

std: :numeric_limits<double>::min() or std::numeric_limits<double>::denorm_min() depending whether
denormals are supported (which have the values 2 .2250738585072014e-308 and 4 . 9406564584124654e-324 respectively).
ulp(x) if x > 0then x + uis the next floating-point value, but x -

If the result is too small to represent, then returns the smallest representable value.
Important: The behavior of this function is aligned to that of Java's ulp function, please note however that this function should
only ever be used for rough and ready calculations as there are enough corner cases to trap even careful programmers. In particular:

Always returns a positive value such that ulp(x) == ulp(-x).
u is not necessarily the previous value. Similarly, if x < 0then x - u is the previous floating-point value, but x + u is not

The function is asymetrical, which is to say, given u
necessarily the next value. The corner cases occur at power of 2 boundaries.
When the argument becomes very small, it may be that there is no floating-point value that represents one ULP. Whether this
is the case or not depends not only on whether the hardware may sometimes support denormals (as signalled by std: :numer-

ic_limits<FPT>::has_denorm), but also whether these are currently enabled at runtime (for example on SSE hardware,

the DAZ or FTZ flags will disable denormal support). In this situation, the ullp function may return a value that is many orders

of magnitude too large.
In light of the issues above, we recomend that:
< To move between adjacent floating-point values always use float_next, float_prior or nextafter (std: :nextafter is another

candidate, but our experience is that this also often breaks depending which optimizations and hardware flags are in effect).

» To move several floating-point values away use float_advance.
« To calculate the edit distance between two floats use Boost.Math float_distance.

There is none the less, one important use case for this function:
If it is known that the true result of some function is x; and the calculated result is X, then the error measured in ulp is simply

Fabs(X¢ - %) 7 ulp(Xp).

78
http://www.renderx.com/

render

http://docs.oracle.com/javase/7/docs/api/java/lang/Math.html#ulp%28double%29
http://www.boost.org/doc/libs/release/libs/math/doc/html/../../../../libs/math/doc/html/math_toolkit/next_float/float_distance.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Floating Point Utilities

Comparison of floating-point values has always been a source of endless difficulty and confusion.
Unlike integral values that are exact, all floating-point operations will potentially produce an inexact result that will be rounded
to the nearest available binary representation. Even apparently inocuous operations such as assigning 0.1 to a double produces an

inexact result (as this decimal number has no exact binary representation).

Floating-point computations also involve rounding so that some ‘computational noise' is added, and hence results are also not exact
(although repeatable, at least under identical platforms and compile options).

Sadly, this conflicts with the expectation of most users, as many articles and innumerable cries for help show all too well.

Some background reading is:
Knuth D.E. The art of computer programming, vol I, section 4.2, especially Floating-Point Comparison 4.2.2, pages 198-220.

David Goldberg, "What Every Computer Scientist Should Know About Floating-Point Arithmetic"

Alberto Squassabia, Comparing floats listing
Boost provides a number of ways to compare floating-point values to see if they are tolerably close enough to each other, but first

Google Floating-Point_Comparison guide
» Absolute difference/error: the absolute difference between two values a and b is simply fabs(a-b). This is the only meaningful

we must decide what kind of comparison we require:

comparison to make if we know that the result may have cancellation error (see below).
very small. This function is somewhat difficult to compute, and doesn't scale to values that are very far apart. In other words,

Boost. Test Floating-Point_Comparison
The edit distance between the two values: i.e. how many (binary) floating-point values are between two values a and b? This
is provided by the function Boost.Math float_distance, but is probably only useful when you know that the distance should be

use with care.
The relative distance/error between two values. This is quick and easy to compute, and is generally the method of choice when

checking that your results are "tolerably close" to one another. However, it is not as exact as the edit distance when dealing with

small differences, and due to the way floating-point values are encoded can "wobble" by a factor of 2 compared to the "true"
edit distance. This is the method documented below: if float_distance is a surgeon's scalpel, then relative_difference

is more like a Swiss army knife: both have important but different use cases.

Relative Comparison of Floating-point Values
#include <boost/math/special_functions/relative_difference.hpp>

template <class T, class U>

calculated-result-type relative_difference(T a, U b);

template <class T, class U>
calculated-result-type epsilon_difference(T a, U b);

http://www.renderx.com/

The function relative_difference returns the relative distance/error E between two values as defined by:
79

E = fabs((a - b) 7/ min(a,b))
The function epsilon_difference is a convenience function that returns relative_difference(a, b) / eps where eps

is the machine epsilon for the result type.

render

http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
http://adtmag.com/articles/2000/03/16/comparing-floatshow-to-determine-if-floating-quantities-are-close-enough-once-a-tolerance-has-been-r.aspx
https://code.google.com/p/googletest/wiki/AdvancedGuide#Floating-Point_Comparison
http://www.boost.org/doc/libs/release/libs/math/doc/html/../../../../libs/test/doc/html/boost_test/users_guide/testing_tools/testing_floating_points.html
http://www.boost.org/doc/libs/release/libs/math/doc/html/../../../../libs/math/doc/html/math_toolkit/next_float/float_distance.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Floating Point Utilities

The following special cases are handled as follows:

If either of a or b is a NaN, then returns the largest representable value for T: for example for type double, this is std: :nu-
If a and b differ in sign then returns the largest representable value for T.

meric_limits<double>: :max() which is the same as DBL_MAX or 1.7976931348623157e+308.

If both a and b are both infinities (of the same sign), then returns zero.

If just one of a and b is an infinity, then returns the largest representable value for T.
If just one of a or b is a zero or a denormalized value, then it is treated as if it were the smallest (non-denormalized) value rep-

If both a and b are zero then returns zero.

resentable in T for the purposes of the above calculation.
These rules were primarily designed to assist with our own test suite, they are designed to be robust enough that the function can
in most cases be used blindly, including in cases where the expected result is actually too small to represent in type T and underflows

to zero.

Examples

Some using statements will ensure that the functions we need are accessible.
using namespace boost::math;

relative_difference;

or
using boost::math:
using boost::math::
using boost::math::float_next;
using boost::math::float_prior;

epsilon_difference;
The following examples display values with all possibly significant digits. Newer compilers should provide std: - numeric_lim-
its<FPT>::max_digits10 for this purpose, and here we use Float precision where max_digits10 =9 to avoid displaying
a distracting number of decimal digits.
@ Note
Older compilers can use this formula to calculate max_digits10 from std: :numeric_limits<FPT>::di-
gitslo: int max_digitsl0 = 2 + std::numeric_limits<FPT>::digitsl0 * 3010/10000;

One can set the display including all trailing zeros (helpful for this example to show all potentially significant digits), and also to
display bool values as words rather than integers:
std: :cout_precision(std: :numeric_limits<float>::max_digitsl0);
When comparing values that are quite close or approximately equal, we could use either float_distance or relative_dif-

std: :cout << std::boolalpha << std::showpoint << std::endl;
ference/epsilon_difference, for example with type float, these two values are adjacent to each other:

80
http://www.renderx.com/

render

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Floating Point Utilities

float a = 1;

float b = 1 + std::numeric_limits<float>::epsilon();

std::cout << "a = " << a << std::endl;

std::cout << "b = " << b << std::endl;

std: :cout << "float_distance = " << float_distance(a, b) << std::endl;
std::cout << "relative difference = " << relative_difference(a, b) << std::endl;
std: :cout << "epsilon_difference = " << epsilon_difference(a, b) << std::endl;

Which produces the output:

a = 1.00000000
b = 1.00000012

float_distance = 1.00000000
relative_difference = 1.19209290e-007
epsilon_difference = 1.00000000

In the example above, it just so happens that the edit distance as measured by float_distance, and the difference measured in
units of epsilon were equal. However, due to the way floating point values are represented, that is not always the case:

a = 2.0f / 3.0fF; // 2/3 inexactly represented as a float
b = float_next(float_next(float_next(a))); // 3 floating point values above a

std::cout << "a = " << a << std::endl;

std::cout << "b = " << b << std::endl;

std::cout << "float_distance = " << float_distance(a, b) << std::endl;
std::cout << "relative difference = " << relative_difference(a, b) << std::endl;
std: :cout << "epsilon_difference = " << epsilon_difference(a, b) << std::endl;

Which produces the output:

a = 0.666666687
b = 0.666666865

float_distance = 3.00000000
relative_difference = 2.68220901e-007
epsilon_difference = 2.25000000

There is another important difference between float_distance and the relative_difference/epsilon_difference
functions in that float_distance returns a signed result that reflects which argument is larger in magnitude, where as relat-
ive_difference/epsilon_difference simply return an unsigned value that represents how far apart the values are. For example
if we swap the order of the arguments:

std: :cout << "float_distance = " << float_distance(b, a) << std::endl;
std: :cout << "relative difference = " << relative_difference(b, a) << std::endl;
std: :cout << "epsilon_difference = " << epsilon_difference(b, a) << std::endl;

The output is now:

float_distance = -3.00000000
relative_difference = 2.68220901e-007
epsilon_difference = 2.25000000

Zeros are always treated as equal, as are infinities as long as they have the same sign:

81

render

htto://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Floating Point Utilities

a=0;
b = -0; // signed zero
std::cout << "relative difference = " << relative_difference(a, b) << std::endl;

a = b = std: :numeric_limits<float>::infinity();
std: :cout << "relative_difference ' << relative_difference(a, b) << std::endl;
std: :cout << "relative_difference

Which produces the output:

0.000000000
0.000000000
3.40282347e+038

relative_difference
relative_difference
relative_difference

Note that finite values are always infinitely far away from infinities even if those finite values are very large:

a = (std::numeric_limits<float>::max)();

b = std::numeric_limits<float>::infinity();
std::cout << "a ' << a << std::endl;
std::cout << b ' << b << std::endl;
std::cout << "relative difference = " << relative_difference(a, b) << std::endl;
std: :cout << "epsilon_difference = " << epsilon_difference(a, b) << std::endl;

Which produces the output:

a = 3.40282347e+038

b = 1_.#INFO000

relative_difference = 3.40282347e+038
epsilon_difference = 3.40282347e+038

Finally, all denormalized values and zeros are treated as being effectively equal:

a = std::numeric_limits<float>::denorm_min();

b=a®*2;

std::cout << "a = " << a << std::endl;

std::cout << b = " << b << std::endl;

std::cout << "float distance = " << float_distance(a, b) << std::endl;

std::cout << "relative difference = " << relative_difference(a, b) << std::endl;
std: :cout << "epsilon_difference = " << epsilon_difference(a, b) << std::endl;

a = 0;

std::cout << "a = " << a << std::endl;

std::cout << b = " << b << std::endl;

std::cout << "float distance = " << float_distance(a, b) << std::endl;

std::cout << "relative difference = " << relative_difference(a, b) << std::endl;
std::cout << "epsilon_difference = " << epsilon_difference(a, b) << std::endl;

Which produces the output:

a = 1.40129846e-045

b = 2.80259693e-045
float_distance = 1.00000000
relative_difference = 0.000000000
epsilon_difference = 0.000000000
a = 0.000000000

b = 2.80259693e-045
float_distance = 2.00000000
relative_difference = 0.000000000
epsilon_difference = 0.000000000

3
i

82

htto://www.renderx.com/

' << relative_difference(a, -b) << std::endl;

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Floating Point Utilities

Notice how, in the above example, two denormalized values that are a factor of 2 apart are none the less only one representation

apart!
All the above examples are contained in float_comparison_example.cpp.

Handling Absolute Errors
In such a case, testing the function above by requiring that the values returned by relative_error or epsilon_error are below

{

s
This function has multiple roots, some of which are quite predicable in that both sin(x) and sin(4x) are zero together. Others

Imagine we're testing the following function:
double myspecial (double x)

occur because the values returned from those two functions precisely cancel out. At such points the relative difference between
the true value of the function and the actual value returned may be arbitrarily large due to cancellation error.

return sin(x) - sin(4 * x);
some threshold is pointless: the best we can do is to verify that the absolute difference between the true and calculated values is

below some threshold.

Of course, determining what that threshold should be is often tricky, but a good starting point would be machine epsilon multiplied
slightly higher value - some trial and error will be necessary).

by the largest of the values being summed. In the example above, the largest value returned by sin(whatever) is 1, so simply
using machine epsilon as the target for maximum absolute difference might be a good start (though in practice we may need a

83
http://www.renderx.com/

render

http://www.boost.org/doc/libs/release/libs/math/doc/html/../../example/float_comparison_example.cpp
http://en.wikipedia.org/wiki/Loss_of_significance
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

3
i

Floating Point Utilities

Condition Numbers
Synopsis

#include <boost/math/tools/condition_numbers.hpp>

namespace boost::math::tools {

template<class Real, bool kahan=true>

class summation_condition_number {

public:
summation_condition_number(Real const x = 0);
void operator+=(Real const & X);
inline void operator-=(Real const & Xx);
[[nodiscard]] Real operator()() const;

[[nodiscard]] Real sum() const;

[[nodiscard]] Real 11_norm() const;

}:

template<class F, class Real>
auto evaluation_condition_number(F const & f, Real const & X);

} // namespaces

Summation Condition Number

Here we compute the condition number of the alternating harmonic sum:

using boost: :math::tools::summation_condition_number;

auto cond = summation_condition_number<float, /* kahan = */ false>();
float max_n = 10000000;

for (float n = 1; n < max_n; n += 2)

{
cond += 1/n;
cond -= 1/(n+1);
¥
std: :cout << std::setprecision(std::numeric_limits<float>::digitsl0);
std::cout << "In(2) = " << boost::math::constants::In_two<float>() << "\n";
std::cout << "'Sum = " << cond.sum() << "\n"';
std::cout << "Condition number = " << cond() << "\n";
Output:
In(2) = 0.693147
Sum 0.693137

Condition number = 22.22282

We see that we have lost roughly two digits of accuracy, consistent with the heuristic that if the condition number is 10X, then we
lose k significant digits in the sum.

84

htto://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

rende

r

Floating Point Utilities

Our guess it that if you're worried about whether your sum is ill-conditioned, the last thing you want is for your condition number
estimate to be inaccurate as well. Since the condition number estimate relies on computing the (perhaps ill-conditioned) sum, we
have defaulted the accumulation to use Kahan summation:

auto cond = boost: :math: :tools: :summation_condition_number<float>(); // will use Kahan summation.
// ...

Output:

In(2) 0.693147
Kahan sum = 0.693147
Condition number = 22.2228

If you are interested, the L4 norm is also generated by this computation, so you may query it if you like:

float 11 = cond.lI1 _norm();
// 11 = 15.4

Condition Number of Function Evaluation

The condition number of function evaluation is defined as the absolute value of xf‘(x)f(x)'l. It is computed as follows:

using boost: :math::tools::evaluation_condition_number;
auto F = []J(double x)->double { return std::log(x); }:
double x = 1.125;

double cond = evaluation_condition_number(f, 1.125);
// cond = 1/1log(x)

Caveats

The condition number of function evaluation gives us a measure of how sensitive our function is to roundoff error. Unfortunately,
evaluating the condition number requires evaluating the function and its derivative, and this calculation is itself inaccurate
whenever the condition number of function evaluation is large. Sadly, this is also the regime when you are most interested in
evaluating a condition number!

This seems to be a fundamental problem. However, it should not be necessary to evaluate the condition number to high accuracy,
valuable insights can be obtained simply by looking at the change in condition number as the function evolves over its domain.

References
 Gautschi, Walter. Orthogonal polynomials: computation and approximation Oxford University Press on Demand, 2004.
» Higham, Nicholas J. The accuracy of floating point summation. SIAM Journal on Scientific Computing 14.4 (1993): 783-799.

» Higham, Nicholas J. Accuracy and stability of numerical algorithms. Vol. 80. Siam, 2002.

85

htto://www.renderx.com/

https://en.wikipedia.org/wiki/Condition_number
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Specified-width floating-point typedefs

86

render =

> htto://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Specified-width floating-point typedefs

The header <boost/cstdfloat. hpp> provides optional standardized floating-point typedefs having specified widths. These
are useful for writing portable code because they should behave identically on all platforms. These typedefs are the floating-

Overview
point analog of specified-width integers in <cstdint>and stdint.h.

The typedefs are based on N3626 proposed for a new C++14 standard header <cstdfloat> and N1703 proposed for a new C
The typedefs include float16_t, float32_t, float64_t, float80_t, floatl28_t, their corresponding least and

language standard header <stdfloat.h>.

fast types, and the corresponding maximum-width type. The typedefs are based on underlying built-in types such as float,
such as __ float128. The underlying types of these typedefs must conform with the corresponding specifications of binary16,
binary32, binary64, and binary128 in IEEE_floating_point floating-point format, and std: :numeric_limits<>::is_iec559

All typedefs are in namespace boost (would be in namespace std if eventually standardized).
double, or long double, or the proposed N2016 short float type, or based on other compiler-specific non-standardized types

The 128-hit floating-point type (of great interest in scientific and numeric programming) is not required in the Boost header, and

may not be supplied for all platforms/compilers, because compiler support for a 128-bit floating-point type is not mandated by

either the C standard or the C++ standard.
If 128-bit floating-point is supported, then including boost/cstdfloat.hpp provides a native 128-bit type, and includes other

headers in folder boost/math/cstdfloat that provide C++ quad support for C math functions in <cmath>, <limits>,

== true.
<iostream>, <complex>, and the available floating-point types.
One can also, more robustly, include boost/multiprecision/float128.hpp and this provides a thin wrapper selecting the

appropriate 128-bit native type from cstdfloat if available, or else a 128-bit multiprecision type.
See Jahnke-Emden-Lambda function example for an example using both a <cmath> function and a Boost.Math function to eval-
uate a moderately interesting function, the Jahnke-Emden-Lambda function and normal distribution as an example of a statistical

distribution from Boost.Math.

87
http://www.renderx.com/

render

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3626.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1703.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2016.pdf
http://en.wikipedia.org/wiki/IEEE_floating_point
http://www.cplusplus.com/reference/cmath/
http://mathworld.wolfram.com/LambdaFunction.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

rende

Specified-width floating-point typedefs

Rationale

The implementation of <boost/cstdfloat. hpp> is designed to utilize <float. h>, defined in the 1989 C standard. The prepro-
cessor is used to query certain preprocessor definitions in <float.h> such as FLT_MAX, DBL_MAX, etc. Based on the results
of these queries, an attempt is made to automatically detect the presence of built-in floating-point types having specified widths.
An unequivocal test requiring conformance with IEEE_floating_point (IEC599) based on std: :numeric_limits<>::is_iec559
is performed with BOOST_STATIC_ASSERT.

In addition, this Boost implementation <boost/cstdfloat. hpp> supports an 80-bit floating-point typedef if it can be detected,
and a 128-bit floating-point typedef if it can be detected, provided that the underlying types conform with IEEE-754 precision
extension (provided std: :numeric_limits<>::is_iec559 == true for this type).

The header <boost/cstdfloat. hpp> makes the standardized floating-point typedefs safely available in namespace boost
without placing any names in namespace std. The intention is to complement rather than compete with a potential future C/C++
Standard Library that may contain these typedefs. Should some future C/C++ standard include <stdfloat.h>and <cstdfloat>,
then <boost/cstdfloat.hpp> will continue to function, but will become redundant and may be safely deprecated.

Because <boost/cstdfloat.hpp> is a Boost header, its name conforms to the boost header naming conventions, not the C++
Standard Library header naming conventions.

@ Note
<boost/cstdfloat.hpp> cannot synthesize or create at ypedef if the underlying type is not provided by
the compiler. For example, if a compiler does not have an underlying floating-point type with 128 bits (highly
sought-after in scientific and numeric programming), then float128_t and its corresponding least and fast types
are not provided by <boost/cstdfloat.hpp>.

O Warning
If <boost/cstdfloat. hpp> uses a compiler-specific non-standardized type (not derived from float, double,
or long double) for one or more of its floating-point typedefs, then there is no guarantee that specializations
of numeric_limits<> will be available for these types. Typically, specializations of numeric_limits<> will
only be available for these types if the compiler itself supports corresponding specializations for the underlying
type(s), exceptions are GCC's __float128 type and Intel's _Quad type which are explicitly supported via our
own code.

o Warning
As an implementation artifact, certain C macro names from <float.h> may possibly be visible to users of
<boost/cstdfloat.hpp>. Don't rely on using these macros; they are not part of any Boost-specified interface.
Use std: :numeric_limits<> for floating-point ranges, etc. instead.

88

http://www.renderx.com/

http://en.wikipedia.org/wiki/IEEE_floating_point
http://en.cppreference.com/w/cpp/types/numeric_limits/is_iec559
http://en.wikipedia.org/wiki/Extended_precision
http://en.wikipedia.org/wiki/Extended_precision
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

rende

r

Specified-width floating-point typedefs

Tip

For best results, <boost/cstdfloat. hpp> should be #included before other headers that define generic code
making use of standard library functions defined in <cmath>.

This is because <boost/cstdfloat.hpp> may define overloads of standard library functions where a non-
standard type (i.e. other than float, double, or long double) is used for one of the specified width types. If
generic code (for example in another Boost.Math header) calls a standard library function, then the correct overload
will only be found if these overloads are defined prior to the point of use. See overloading template functions
with float128_t and the implementation of cstdfloat.hpp for more details.

For this reason, making #include <boost/cstdfloat.hpp> the first include is usually best.

89

htto://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Specified-width floating-point typedefs

Exact-Width Floating-Point :,pecer S

The typedef float#_t, with # replaced by the width, designates a floating-point type of exactly # bits. For example float32_t
denotes a single-precision floating-point type with approximately 7 decimal digits of precision (equivalent to binary32 in
IEEE_floating_point).

Floating-point types in C and C++ are specified to be allowed to have (optionally) implementation-specific widths and formats.
However, if a platform supports underlying floating-point types (conformant with IEEE_floating_point) with widths of 16, 32,
64, 80, 128 bits, or any combination thereof, then <boost/cstdfloat.hpp> does provide the corresponding typedefs
floatl6_t, float32_t, float64_t, float80_t, Floatl28_t, their corresponding least and fast types, and the corres-
ponding maximum-width type.

How to tell which widths are supported

The definition (or not) of a floating-point constant macro is a way to test if a specific width floating-point is available on a platform.

#if defined(BOOST_FLOAT16_C)

// Can use boost::floatl6_t, perhaps a proposed __ short_float.

// PO192R1, Adding Fundamental Type for Short Float,

// Boris Fomitchev, Sergei Nikolaev, Olivier Giroux, Lawrence Crowl, 2016 Febl4
// http://www.open-std.org/jtcl/sc22/wgld/www/docs/n2016.pdf

#endif

#if defined(BOOST_FLOAT32_C)
// Can use boost::float32_t, usually type ~“float™.
#endif

#if defined(BOOST_FLOAT64_C)
// Can use boost::float64_t, usually type “double™, and sometimes also type ~long double™.
#endif

#if defined(BOOST_FLOAT80_C)
// Can use boost::float80_t, sometimes type ~long double™.
#endif

#i1T defined(BOOST_FLOAT128_C)

// Can use boost::floatl28_t. Sometimes type ~_ floatl28" or ~_Quad-.
#endif

This can be used to write code which will compile and run (albeit differently) on several platforms. Without these tests, if a width,
say float128_t is not supported, then compilation would fail. (It is, of course, rare for float64_t or float32_t not to be
supported).

The number of bits in just the significand can be determined using:
std: :numeric_limits<boost: :floatmax_t>::digits

and from this one can safely infer the total number of bits because the type must be IEEE754 format, std: :numeric_lim-
its<boost::floatmax_t>::is_iec559 == true,so, forexample, if std: :numeric_limits<boost: :floatmax_t>::di-
gits == 113, then floatmax_t must be Floatl128_t.

The total number of bits using floatmax_t can be found thus:

90

render

htto://www.renderx.com/

http://en.wikipedia.org/wiki/IEEE_floating_point
http://en.wikipedia.org/wiki/IEEE_floating_point
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Specified-width floating-point typedefs

const int fpbits =
(std: :numeric_limits<boost::floatmax_t>::digits == 113) ? 128 :

(std: :numeric_limits<boost::floatmax_t>::digits == 64) ? 80 :
(std: :numeric_limits<boost::floatmax_t>::digits == 53) ? 64 :
(std: :numeric_limits<boost::floatmax_t>::digits == 24) ? 32 :
(std: :numeric_limits<boost::floatmax_t>::digits == 11) ? 16 :

0; // Unknown - not IEEE754 format.
std::cout << fpbits << " bits." << std::endl;

and the number of 'guaranteed' decimal digits using
std: :numeric_limits<boost: :floatmax_t>::digitsl0
and the maximum number of possibly significant decimal digits using
std: :numeric_limits<boost: :floatmax_t>::max_digitsl0
max_digits10 is not always supported, but can be calculated at compile-time using the Kahan formula, 2 +

binary_digits * 0.3010 which can be calculated at compile time using 2 + binary_digits *
3010/10000.

@ Note
One could test that

std::is_same<boost::floatmax _t, boost::float128 t>::value == true

but this would fail to compile on a platform where boost: : float128_t is not defined. So it is better to use the
MACROSs BOOST_FLOATnnn_C.

91

render

htto://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Specified-width floating-point typedefs

Minimum-width floating-point e S

The typedef float_least#_t, with # replaced by the width, designates a floating-point type with a width of at least # bits,

such that no floating-point type with lesser size has at least the specified width. Thus, float_least32_t denotes the smallest
floating-point type with a width of at least 32 bits.

Minimum-width floating-point types are provided for all existing exact-width floating-point types on a given platform.

For example, if a platform supports float32_t and float64_t, then float_least32_t and float_least64_t will also be
supported, etc.

92

htto://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Specified-width floating-point typedefs

Fastest floating-point ,pecer S

The typedef float_fast#_t, with # replaced by the width, designates the fastest floating-point type with a width of at least
bits.

There is no absolute guarantee that these types are the fastest for all purposes. In any case, however, they satisfy the precision and
width requirements.

Fastest minimum-width floating-point types are provided for all existing exact-width floating-point types on a given platform.

For example, if a platform supports float32_t and float64_t, then float_fast32_t and float_fast64_t will also be
supported, etc.

93

render

htto://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

3
i

Specified-width floating-point typedefs

Greatest-width floating-point typedef

The typedef floatmax_t designates a floating-point type capable of representing any value of any floating-point type in a
given platform most precisely.

The greatest-width typedef is provided for all platforms, but, of course, the size may vary.
To provide floating-point constants most precisely representable for a floatmax_t type, use the macro BOOST_FLOATMAX_C.

For example, replace a constant 123.4567890123456789012345678901234567890 with

BOOST_FLOATMAX_C(123.4567890123456789012345678901234567890)

If, for example, Floatmax_t is Float64_t then the result will be equivalentto a long double suffixed with L, but if floatmax_t
is Float128_t then the result will be equivalent to a quad type suffixed with Q (assuming, of course, that floatl128_t
(__Floatl128 or Quad) is supported).

If we display with max_digits10, the maximum possibly significant decimal digits:

#ifdef BOOST_FLOAT32 C

std: :cout.precision(boost: :max_digitsl0<boost::float32_t>()); // Show all significant decim[]
al digits,

std: :cout.setf(std::ios::showpoint); // including all significant trailing zeros.

std::cout << "BOOST_FLOAT32_C(123.4567890123456789012345678901234567890) = **

<< BOOST_FLOAT32_C(123.4567890123456789012345678901234567890) << std::endl;

// BOOST_FLOAT32_C(123.4567890123456789012345678901234567890) = 123.456787

#endif

then on a 128-bit platform (GCC 4.8.1 or higher with quadmath):

BOOST_FLOAT32_C(123.4567890123456789012345678901234567890) 123.456787
BOOST_FLOAT64_C(123.4567890123456789012345678901234567890) 123.45678901234568
BOOST_FLOAT80_C(123.4567890123456789012345678901234567890) 123.456789012345678903

BOOST_FLOAT128_C(123.4567890123456789012345678901234567890) = 123.456789012345678901234567890123453

94

htto://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

3
i

Specified-width floating-point typedefs

Floating-Point Constant Macros

All macros of the type BOOST_FLOAT16_C, BOOST_FLOAT32_C, BOOST_FLOAT64 _C, BOOST_FLOAT80_C,
BOOST_FLOAT128 C, and BOOST_FLOATMAX_C are always defined after inclusion of <boost/cstdfloat.hpp>.

These allow floating-point constants of at least the specified width to be declared:

// Declare Archimedes® constant using float32_t with approximately 7 decimal digits of precision.
static const boost::float32_t pi = BOOST_FLOAT32_C(3.1415926536);

// Declare the Euler-gamma constant with approximately 15 decimal digits of precision.
static const boost::float64 t euler =
BOOST_FLOAT64_C(0.57721566490153286060651209008240243104216) ;

// Declare the Golden Ratio constant with the maximum decimal digits of precision that the []

platform supports.

static const boost: :floatmax_t golden_ratio =
BOOST_FLOATMAX_C(1.61803398874989484820458683436563811772) ;

Tip

Boost.Math provides many constants 'built-in’, so always use Boost.Math constants if available, for example:

// Display the constant pi to the maximum available precision.
boost: :floatmax_t pi_max = boost::math::constants::pi<boost::floatmax_t>();
std: :cout.precision(std: :numeric_limits<boost::floatmax_t>::digitsl0);
std::cout << "Most precise pi = " << pi_max << std::endl;

// I floatmax_t is float_128 t, then

// Most precise pi = 3.141592653589793238462643383279503

from cstdfloat_example.cpp.

See the complete list of constants.

95

htto://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/math/doc/html/../../example/cstdfloat_example.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Specified-width floating-point typedefs

Examples

Jahnke-Emden-Lambda function

The following code uses <boost/cstdfloat. hpp> in combination with <boost/math/special_functions.hpp>to compute
a simplified version of the Jahnke-Emden-Lambda function. Here, we specify a floating-point type with exactly 64 bits (i.e.,
float64_t). If we were to use, for instance, built-in double, then there would be no guarantee that the code would behave
identically on all platforms. With float64_t from <boost/cstdfloat.hpp>, however, it is very likely to be identical.

Using float64_t, we know that this code is as portable as possible and uses a floating-point type with approximately 15
decimal digits of precision, regardless of the compiler or version or operating system.

#include <boost/cstdfloat.hpp> // For float 64 t, floatl28 t. Must be first include!
#include <cmath> // for pow function.
#include <boost/math/special_functions._hpp> // For gamma function.

boost: :float64_t jahnke_emden_lambda(boost::float64_t v, boost::float64_t x)
{
const boost: :float64_t gamma_v_plus_one
const boost::float64_t x_half_pow_v

boost: :math: :tgamma(v + 1);
std: :pow(x 72, Vv);

return gamma_v_plus_one * boost::math::cyl_bessel_j(x, v) / x_half_pow_v;

}
Ensure that all possibly significant digits (17) including trailing zeros are shown.

std: :cout.precision(std: :numeric_limits<boost::float64 t>::max_digitsl0);
std: :cout.setf(std: -i0s::showpoint); // Show trailing zeros.

try
{ // Always use try"n®catch blocks to ensure any error messages are displayed.

// Evaluate and display an evaluation of the Jahnke-Emden lambda function:
boost: :float64 t v = 1._;

boost: :float64 t x = 1.;
std: :cout << jahnke_emden_lambda(v, x) << std::endl; // 0.88010117148986700

For details, see cstdfloat_example.cpp - a extensive example program.

Normal distribution table

This example shows printing tables of a normal distribution's PDF and CDF, using boost: :math implementation of normal dis-
tribution.

A function templated on floating-point type prints a table for a range of standard variate z values.

The example shows use of the specified-width typedefs to either use a specific width, or to use the maximum available on the
platform, perhaps a high as 128-bit.

The number of digits displayed is controlled by the precision of the type, so there are no spurious insignificant decimal digits:

float_32_t 0 0.39894228
float_128 t O 0.398942280401432702863218082711682655

Some sample output for two different platforms is appended to the code at normal_tables.cpp.

96

render

htto://www.renderx.com/

http://mathworld.wolfram.com/LambdaFunction.html
http://www.boost.org/doc/libs/release/libs/math/doc/html/../../example/cstdfloat_example.cpp
http://www.boost.org/doc/libs/release/libs/math/doc/html/../../example/normal_tables.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

3
i

Specified-width floating-point typedefs

#ifdef BOOST_FLOAT32_C
normal_table<boost: :float32_t>(); // Usually type float
#endif
normal_table<boost: :float64_t>(); // Uusually type double. Assume that float64_t is always []
available.
#ifdef BOOST_FLOAT80_C
normal_table<boost: :float80_t>(); // Type long double on some X86 platforms.
#endif
#ifdef BOOST_FLOAT128_C
normal_table<boost: :floatl128_t>(); // Type _Quad on some Intel and _ floatl28 on some GCC [1
platforms.
#endif
normal_table<boost: : floatmax_t>();

97

htto://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Specified-width floating-point typedefs

Hints on using float128 (and _ float128)

» _ float128 is the (optionally) compiler supplied hardware type, it's an C-ish extension to C++ and there is only minimal support

for it in normal C++ (no 10 streams or numeric_limits support, function names in libquadmath all have different names to

the std: - ones etc.) So you can program type __ Float128 directly, but it's harder work.
* Type Float128 uses _ float128 and makes it C++ and generic code friendly, with all the usual standard iostream, numer-

__float128 versus float128
ic_limits, complex in namspace std: - available, so strongly recommended for C++ use.

Hints and tips

Make sure you declare variables with the correct type, here float128.
Make sure that if you pass a variable to a function then it is casted to float128.
Make sure you declare literals with the correct suffix - otherwise they'll be treated as type double with catastrophic loss of

precision. So make sure they have a Q suffix for 128-bit floating-point literals.

All the std library functions, cmath functions, plus all the constants, and special functions from Boost.Math should then just
Make sure std lib functions are called unqualified so that the correct overload is found via Argument Dependent Lookup (ADL).

work.

So write sgrt(variable) and not std::sqrt(variable).
In general, try not to reinvent stuff - using constants from Boost.Math is probably less error prone than declaring your own,

likewise the special functions etc.
Some examples of what can go horribly and silently wrong are at float128 example.cpp.

98
http://www.renderx.com/

render

http://en.cppreference.com/w/cpp/language/adl
http://www.boost.org/doc/libs/release/libs/math/doc/html/../../example/float128_example.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Specified-width floating-point typedefs

Since few compilers implement a true 128-bit floating-point, and language features like the suffix Q (which may need an option
-fext-numeric-literals to enable), and C++ Standard library functions are as-yet missing or incomplete in C++11, this

Implementation of Float128 type
Boost.Math implementation wraps __float128 provided by the GCC compiler GCC floating-point types or the _Quad type

This is provided to in order to demonstrate, and users to evaluate, the feasibility and benefits of higher-precision floating-point,

especially to allow use of the full <cmath> and Boost.Math library of functions and distributions at high precision.
(Itis also possible to use Boost.Math with Boost.Multiprecision decimal and binary, but since these are entirely software solutions,

to compile

provided by the Intel compiler.
We also provide (we believe full) support for <limits>, <cmath>, /O stream operations in <iostream>, and <complex>.
need
The __ float128 type is provided by the libquadmath library on GCC or by Intel's FORTRAN library with Intel C++. They also

allowing much higher precision or arbitrary precision, they are likely to be slower).
As a prototype for a future C++ standard, we place all these in namespace std. This contravenes the existing C++ standard of
course, so selecting any compiler that promises to check conformance will fail.
-Qoption,cpp,--extended_float_type

Tip

For GCC, compile with -std=gnu++11 or -std=gnu++03 and do not use -std=stdc++11 or any 'strict' options,
Windows with

as these turn off full support for __float128. These requirements also apply to the Intel compiler on Linux, for

Intel on you
-DBOOST_MATH_USE_FLOAT128 in order to activate 128-bit floating point support.

provide a full set of <cmath> functions in namespace std.
Using C __ float128 quadmath type

The source code is at quadmath_snprintf.c.

Using C++ f1 oat 128 quadmath type

For C++ programs, you will want to use the C++ type float128

See example at cstdfloat_example.cpp.
A typical invocation of the compiler is
g++ -03 -std=gnu++11 test.cpp -1/c/modular-boost -lIquadmath -0 test.exe

Tip
If you are trying to use the develop branch of Boost.Math, then make -1/c/modular-boost/libs/math/in-
clude the first include directory.

99
http://www.renderx.com/

render

https://gcc.gnu.org/onlinedocs/gcc/Floating-Types.html
http://gcc.gnu.org/onlinedocs/libquadmath/
https://gcc.gnu.org/onlinedocs/gcc-9.1.0/libquadmath/quadmath_005fsnprintf.html#quadmath_005fsnprintf
http://www.boost.org/doc/libs/release/libs/math/doc/html/../../example/cstdfloat_example.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

rende

r

Specified-width floating-point typedefs

g++ -03 -std=gnu++11 test.cpp -1/c/modular-boost/libs/math/include -1/c/modular-boost -lquad(1
math -o test.exe

K

Note

So far, the only missing detail that we had noted was in trying to use <typeinfo>, for example for std: :cout
<< typeid<__float_128>_.name();.

Link fails: undefined reference to typeinfo for _ floatl28.

See GCC Bug 43622 - no C++ typeinfo for __ float128. But this is reported (Marc Glisse 2015-04-04) fixed in
GCC 5 (and above).

For example, with GCC6.1.1 this works as expected to a mangled string name, and output (if possible - not always).

const std::type_info& tiful28 = typeid(__ floatl28); // OK.
//std::cout << tiful28.name() << std::endl; // On GCC, aborts (because not print[]

able string).
//std: zcout << typeid(__ floatl28).name() << std::endl; // Aborts - string name canl[]

not be output.

const std::type_info& tifl28 = typeid(floatl28); // OK.
std::cout << tifl28.name() << std::endl; // OK.
std: :cout << typeid(floatl28).name() << std::endl; // OK.

const std: :type_info& tpi = typeid(pil); // OK GCC 6.1.1 (from GCC 5 according to [1
http://gcc.gnu.org/bugzilla/show_bug.cgi?i1d=43622)
std::cout << tpi.name() << std::endl; // Output mangled name:

// N5boostldmultiprecision6numberINSO_8backends16floatl128 backendELNSO 26expres[]
sion_template optionEOEEE

Overloading template functions with float128 t

An artifact of providing C++ standard library support for quadmath may mandate the inclusion of <boost/cstdfloat.hpp>
before the inclusion of other headers.

Consider a function that calls fabs(x) and has previously injected std: : fabs() into local scope via a using directive:

template <class T>
bool unsigned_compare(T a, T b)

{

using std::fabs;
return fabs(a) == fabs(b);

}

In this function, the correct overload of fabs may be found via argument-dependent-lookup (ADL) or by calling one of the
std: - fabs overloads. There is a key difference between them however: an overload in the same namespace as T and found via
ADL need not be defined at thetimethe function is declared. However, all the types declared in <boost/cstdfloat.hpp> are
fundamental types, so for these types we are relying on finding an overload declared in namespace std. In that case however, all
such overloads must be declared prior to the definition of function unsi gned_conpar e otherwise they are not considered.

In the event that <boost/cstdfloat.hpp> has been included after the definition of the above function, the correct overload of
fabs, while present, is simply not considered as part of the overload set. So the compiler tries to downcast the float128_t argument
firstto long double, then to double, then to Float; the compilation fails because the result is ambiguous. However the compiler

100

htto://www.renderx.com/

http://gcc.gnu.org/bugzilla/show_bug.cgi?id=43622
http://en.wikipedia.org/wiki/Argument-dependent_name_lookup
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Specified-width floating-point typedefs

error message will appear cruelly inscrutable, at an apparently irelevant line number and making no mention of float128: the

word ambiguous is the clue to what is wrong.
Provided you #include <boost/cstdfloat.hpp> before the inclusion of the any header containing generic floating point
code (such as other Boost.Math headers, then the compiler will know about and use the std: : fabs(std: : float128_t) that

Exponential function

we provide in #include <boost/cstdfloat.hpp>.
There was a bug when using any quadmath expq function on GCC : GCC bug #60349 caused by mingw-64 bug #368.
To work round this defect, an alternative implementation of 128-bit exp was temporarily provided by boost/cstdfloat. hpp.

The mingw bug was fixed at 2014-03-12 and GCC 6.1.1 now works as expected.

Tip

It is essential to link to the quadmath library

typei nfo
For GCC 4.8.1 it was not yet possible to use typeinfo for float_128 on GCC: see GCC 43622.
So this code (to display the mangled name) failed to link undefined reference to typeinfo for _ floatl128

std: :cout << typeid(boost::floatl28 t).name() << std::endl;
This prevent using the existing tests for Boost.Math distributions, (unless a few lines are commented out) and if a MACRO

BOOST_MATH_INSTRUMENT controlling them is defined then some diagnostic displays in Boost.Math will not work.
However this was only used for display purposes and could be commented out until this was fixed in GCC 5.

Tip

Not all managed names can be displayed using std: :cout.

101
http://www.renderx.com/

render

http://gcc.gnu.org/bugzilla/show_bug.cgi?id=60349
http://sourceforge.net/p/mingw-w64/bugs/368/
http://gcc.gnu.org/bugzilla/show_bug.cgi?id=43622
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Mathematical Constants

102

render =

> http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Mathematical Constants

Introduction
Boost.Math provides a collection of mathematical constants.

Why use Boost.Math mathematical constants?
Readable. For the very many jobs just using built-in like double, you can just write expressions like

double area = pi * r * r;
(If that's all you want, jump direct to use in non-template code!)

Effortless - avoiding a search of reference sources.
Usable with both builtin floating point types, and user-defined, possibly extended precision, types such as NTL, MPFR/GMP,

mp_float: in the latter case the constants are computed to the necessary precision and then cached.
Accurate - ensuring that the values are as accurate as possible for the chosen floating-point type

No loss of accuracy from repeated rounding of intermediate computations.

Result is computed with higher precision and only rounded once.
Less risk of inaccurate result from functions pow, trig and log at corner cases.
Less risk of cancellation error.
Portable - as possible between different systems using different floating-point precisions: see use in template code.

Tested - by comparison with other published sources, or separately computed at long double precision.

« If the value returned is a builtin type then it's returned by value as a constexpr (C++11 feature, if available).

Faster - can avoid (re-)calculation at runtime.
« If the value is computed and cached (or constructed from a string representation and cached), then it's returned by constant

reference.
This can be significant if:

* Inside an inner loop.
 Using a high-precision UDT like Boost.Multiprecision.

* Functions pow, trig or log are used.
» Compiler optimizations possible with built-in types, especially double, are not available.

103
http://www.renderx.com/

render

http://en.wikipedia.org/wiki/Corner_case
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
http://www.boost.org/doc/libs/release/libs/math/doc/html/../../../../libs/multiprecision/doc/html/index.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Mathematical Constants

Tutorial

Use in non-template code

When using the math constants at your chosen fixed precision in non-template code, you can simply add a using namespace
declaration, for example, using namespace boost::math: :double_constants, to make the constants of the correct precision
for your code visible in the current scope, and then use each constant as a simple variable - sans brackets:

#include <boost/math/constants/constants.hpp>

double area(double r)

{

using namespace boost::math::double_constants;
return pi * r * r;

¥
Had our function been written as taking a float rather than a double, we could have written instead:

#include <boost/math/constants/constants.hpp>

float area(float r)
{

using namespace boost::math::float_constants;
return pi * r * r;

}

Likewise, constants that are suitable for use at long double precision are available in the namespace
boost: :math: : long_double_constants.

You can see the full list of available constants at math_toolkit.constants.

Some examples of using constants are at constants_eg1.

Use in template code

When using the constants inside a function template, we need to ensure that we use a constant of the correct precision for our
template parameters. We can do this by calling the function-template versions, pi<FPType>(), of the constants like this:

#include <boost/math/constants/constants.hpp>

template <class Real>
Real area(Real r)

{

using namespace boost::math::constants;
return pi<Real>() * r * r;

}

Although this syntax is a little less "cute" than the non-template version, the code is no less efficient (at least for the built-in types
float, double and long double) : the function template versions of the constants are simple inline functions that return a
constant of the correct precision for the type used. In addition, these functions are declared constexp for those compilers that
support this, allowing the result to be used in constant-expressions provided the template argument is a literal type.

104

render

htto://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/math/doc/html/../../example/constants_eg1.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

rende

r

Mathematical Constants

Tip
Keep in mind the difference between the variable version, just pi, and the template-function version: the template-

function requires both a <floating-point-type> and function call () brackets, for example: pi<double>().
You cannot write double p = pi<>(), nordouble p = pi(Q).

Note

You can always use both variable and template-function versions provided calls are fully qualified, for example:

double my_pil
double my_pi2

boost: :math: :constants: :pi<double>();
boost: :math: :double_constants: :pi;

Warning
It may be tempting to simply define

using namespace boost::math::double_constants;
using namespace boost::math::constants;

but if you do define two namespaces, this will, of course, create ambiguity!

double my pi = pi(); // error C2872: "pi" : ambiguous symbol
double my pi2 = pi; // Context does not allow for disambiguation of overloaded []
function

Although the mistake above is fairly obvious, it is also not too difficult to do this accidentally, or worse, create
it in someone elses code.

Therefore is it prudent to avoid this risk by localising the scope of such definitions, as shown above.

Tip

Be very careful with the type provided as parameter. For example, providing an integer instead of a floating-point
type can be disastrous (a C++ feature).

cout << "Area = " << area(2) << endl; // Area = 12111
You should get a compiler warning
warning : "return® : conversion from “"double® to "int", possible loss of data

Failure to heed this warning can lead to very wrong answers!

You can also avoid this by being explicit about the type of Area.

cout << "Area = " << area<double>(2) << endl; // Area = 12.566371

105

htto://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Mathematical Constants

Use With User-Defined Types

The most common example of a high-precision user-defined type will probably be Boost.Multiprecision.
The syntax for using the function-call constants with user-defined types is the same as it is in the template class, which is to say

we use:
#include <boost/math/constants/constants.hpp>

boost: :math: :constants: :pi<UserDefinedType>();
boost: :math: :constants: :pi<boost: :multiprecision: :cpp_dec_float_50>();

However, since the precision of the user-defined type may be much greater than that of the built-in floating point types, how the

For example:

giving T with a precision of 50 decimal digits.

value returned is created is as follows:

a double literal. If the user-defined type is a literal type then the function call that returns the constant will be a constexp.

If the precision is less than or equal to that of a long double and the type is constructable from a long double then our
code returns a long double literal. If the user-defined type is a literal type then the function call that returns the constant

If the precision is less than or equal to that of a float and the type is constructable from a float then our code returns a
float literal. If the user-defined type is a literal type then the function call that returns the constant will be a constexp.

If the precision of the type is known at compile time:
If the precision is less than or equal to that of a double and the type is constructable from a double then our code returns

If the precision is less than or equal to that of a__ float128 (and the compiler supports such a type) and the type is construct-
able froma__float128 then our code returnsa__float128 literal. If the user-defined type is a literal type then the function

If the precision is less than 100 decimal digits, then the constant will be constructed (just the once, then cached in a thread-
safe manner) from a string representation of the constant. In this case the value is returned as a const reference to the cached

will be a constexp.
call that returns the constant will be a constexp.
Otherwise the value is computed (just once, then cached in a thread-safe manner). In this case the value is returned as a const

reference to the cached value.
« If the precision is unknown at compile time then:
« If the runtime precision (obtained from a call to boost: :math: :tools: :digits<T>()) is less than 100 decimal digits,

value.
then the constant is constructed "on the fly" from the string representation of the constant.
 Otherwise the value is constructed "on the fly" by calculating then value of the constant using the current default precision
of the type. Note that this can make use of the constants rather expensive.

http://www.renderx.com/

In addition, it is possible to pass a Policy type as a second template argument, and use this to control the precision:
106

render

http://www.boost.org/doc/libs/release/libs/math/doc/html/../../../../libs/multiprecision/doc/html/index.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Mathematical Constants

#include <boost/math/constants/constants.hpp>

typedef boost::math::policies: :policy<boost::math::policies::digits2<80> > my_policy_type;
Boost.Math doesn't know how to control the internal precision of MyType, the policy just controls how the selection

boost: :math: :constants: :pi<MyType, my_policy_type>();

Note

process above is carried out, and the calculation precision if the result is computed.
Itis also possible to control which method is used to construct the constant by specialising the traits class construction_traits:

K

namespace boost{ namespace math{ namespace constant{

template <class T, class Policy>
The precision is unavailable at compile time; either construct
from a decimal digit string or calculate on the fly depending

struct construction_traits
typedef mpl::int_<N> type;
Meaning

{
¥

upon the runtime precision.

Return a float precision constant.

}}}y // namespaces
Return a double precision constant.

Where N takes one of the following values:
Return a long double precision constant.
Construct the result from the string representation, and cache

N
0
the result.
Sets the compile time precision to N bits.

Any other value N

Custom Specializing a constant
In addition, for user-defined types that need special handling, it's possible to partially-specialize the internal structure used by each

constant. For example, suppose we're using the C++ wrapper around MPFR mpfr_class: this has its own representation of Pi

which we may well wish to use in place of the above mechanism. We can achieve this by specialising the class template

boost: :math: :constants: :detail::constant_pi:

107
http://www.renderx.com/

render

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Mathematical Constants

namespace boost{ namespace math{ namespace constants{ namespace detail{

template<>
struct constant_pi<mpfr_class>
{
template<int N>
static mpfr_class get(const mpl::int_<N>&)

{
// The template param N is one of the values in the table above,
// we can either handle all cases in one as is the case here,
// or overload "get" for the different options.
mpfr_class result;
mpfr_const_pi(result.get_mpfr_t(), GMP_RNDN);
return result;

}

};
}}}} // namespaces

Diagnosing what meta-programmed code is doing

Finally, since it can be tricky to diagnose what meta-programmed code is doing, there is a diagnostic routine that prints information
about how this library will handle a specific type, it can be used like this:

#include <boost/math/constants/info.hpp>

int main()

{
}

boost: :math: :constants: :print_info_on_type<MyType>();

If you wish, you can also pass an optional std::ostream argument to the print_info_on_type function. Typical output for a
user-defined type looks like this:

Information on the Implementation and Handling of
Mathematical Constants for Type class boost::math::concepts::real_concept

Checking for std::numeric_limits<class boost::math::concepts::real_concept> specialisation: no
boost: :math: :policies::precision<class boost::math::concepts::real_concept, Policy>
reports that there is no compile type precision available.

boost: :math::tools::digits<class boost::math::concepts::real_concept>()

reports that the current runtime precision is

53 binary digits.

No compile time precision is available, the construction method

will be decided at runtime and results will not be cached

- this may lead to poor runtime performance.

Current runtime precision indicates that

the constant will be constructed from a string on each call.

108

render

htto://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Mathematical Constants

The Mathematical Constants

This section lists the mathematical constants, their use(s) (and sometimes rationale for their inclusion).

109

htto://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

rende

r

Mathematical Constants

Table 14. Mathematical Constants

name formula Value (6 decimals) Uses and Rationale

Rational fractions

half 1/2 0.5

third 1/3 0.333333

two_thirds 2/3 0.66667

three_quarters 3/4 0.75

two and related

root_two V2 1.41421

root_three V3 1.73205

half _root_two V2 /2 0.707106

In_two In(2) 0.693147

In_ten In(10) 2.30258

In_In_two In(In(2)) -0.366512 Gumbel distribution median

root_In_four Vin(4) 1.177410

one_div_root_two 12 0.707106

n and related

pi pi 3.14159 Ubiquitous. Archimedes con-
stant 1t

half_pi n/2 1.570796

third_pi /3 1.04719

sixth_pi /6 0.523598

two_pi 2n 6.28318 Many uses, most simply, cir-
cumference of a circle

two_thirds_pi 2131 2.09439 volume of a hemi-sphere =
4/3mrd

three_quarters_pi 34n 2.35619 =3/4n

four_thirds_pi 4/3n 4.18879 volume of a sphere = 4/3 mt 13

one_div_two_pi 1/(2m) 1.59155 Widely used

root_pi vn 1.77245 Widely used

root_half_pi V2 1.25331 Widely used

110

http://www.renderx.com/

http://en.wikipedia.org/wiki/Pi
http://en.wikipedia.org/wiki/Sphere#Volume_of_a_sphere
http://en.wikipedia.org/wiki/Sphere#Volume_of_a_sphere
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Mathematical Constants

name formula Value (6 decimals) Uses and Rationale
root_two_pi vV *2 2.50662 Widely used
one_div_root_pi 1NT 0.564189

one_div_root_two_pi 1V (2m) 0.398942

root_one_div_pi s 0.564189

pi_minus_three m-3 0.141593

four_minus_pi 4-m 0.858407

pi_pow_e ° 22.4591

pi_sqr ? 9.86960

pi_sqr_div_six /6 1.64493

pi_cubed m 31.00627

cbrt_pi Vin 1.46459

one_div_cbrt_pi 13 m 0.682784

Euler's e and related

e e 2.71828 Euler's constant e
exp_minus_half e 12 0.606530

e_pow_pi e’ 23.14069

root_e Ve 1.64872

logl0 e log10(e) 0.434294

one_div_log10 e 1/10g10(e) 2.30258

Trigonometric

degree radians = 1t/ 180 0.017453

radian degrees =180/ 1 57.2957

sin_one sin(1) 0.841470

C0S_one cos(1) 0.54030

sinh_one sinh(1) 1.17520

cosh_one cosh(1) 1.54308

Phi Phidias golden ratio Phidias golden ratio

phi (1++5) /2 1.61803 finance
111

htto://www.renderx.com/

http://en.wikipedia.org/wiki/E_(mathematical_constant)
http://en.wikipedia.org/wiki/Golden_ratio
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Mathematical Constants

name formula Value (6 decimals) Uses and Rationale
In_phi In(o) 0.48121
one_div_In_phi 1/In() 2.07808

Euler's Gamma

euler euler 0.577215 Euler-Mascheroni gamma
constant

one_div_euler 1/euler 1.73245

euler_sqr euler? 0.333177

Misc

zeta_two (2) 1.64493 Riemann zeta function

zeta_three (3) 1.20205 Riemann zeta function

catalan K 0.915965 Catalan (or Glaisher) combin-
atorial constant

glaisher A 1.28242 Decimal expansion of Glaish-
er-Kinkelin constant

khinchin k 2.685452 Decimal expansion of
Khinchin constant

extreme_value_skewness 12V6 Z(3)/ ™ 1.139547 Extreme value distribution

rayleigh_skewness 2Vn(n-3)/(4 - n)gl2 0.631110 Rayleigh distribution skew-
ness

rayleigh_kurtosis_excess -(6T%-24T+16)/(4-11)? 0.245089 Rayleigh distribution kurtosis
excess

rayleigh_kurtosis 3+(6m%-2411+16)/(4-T)? 3.245089 Rayleigh distribution kurtosis

@ o
Integer values are not included in this list of math constants, however interesting, because they can be so easily
and exactly constructed, even for UDT, for example: static_cast<cpp_float>(42).

If you know the approximate value of the constant, you can search for the value to find Boost.Math chosen name
in this table.

112

htto://www.renderx.com/

http://en.wikipedia.org/wiki/Euler%E2%80%93Mascheroni_constant
http://en.wikipedia.org/wiki/Euler%E2%80%93Mascheroni_constant
http://en.wikipedia.org/wiki/Riemann_zeta_function
http://en.wikipedia.org/wiki/Riemann_zeta_function
http://mathworld.wolfram.com/CatalansConstant.html
http://mathworld.wolfram.com/CatalansConstant.html
https://oeis.org/A074962/constant
https://oeis.org/A074962/constant
https://oeis.org/A002210/constant
https://oeis.org/A002210/constant
http://en.wikipedia.org/wiki/Rayleigh_distribution
http://en.wikipedia.org/wiki/Rayleigh_distribution
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

3
i

Mathematical Constants

Tip

Bernoulli numbers are available at Bernoulli numbers.

Tip

Factorials are available at factorial.

113

htto://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Mathematical Constants

Defining New Constants

The library provides some helper code to assist in defining new constants; the process for defining a constant called my_constant
goes like this:

1. Define a function that calculates the value of the constant. This should be a template function, and be placed in
boost/math/constants/calculate_constants.hpp if the constant is to be added to this library, or else defined at the top
of your source file if not.

The function should look like this:

namespace boost{ namespace math{ namespace constants{ namespace detail{

template <class Real>
template <int N>
Real constant_my_constant<Real>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))

{
int required_precision = N ? N : tools::digits<Real>();
Real result = /* value computed to required_precision bits */ ;
return result;

}

}}}} // namespaces

Then define a placeholder for the constant itself:

namespace boost{ namespace math{ namespace constants{

BOOST_DEFINE_MATH_CONSTANT(my_constant, 0.0, "0");

3
For example, to calculate 1/2, add to boost/math/constants/calculate_constants.hpp

template <class T>
template<int N>
inline T constant_half_pi<T>::compute(BOOST_MATH_EXPLICIT_TEMPLATE_TYPE_SPEC(mpl::int_<N>))

{
BOOST_MATH_STD_USING
return pi<T, policies::policy<policies::digits2<N> > >() / static_cast<T>(2);

ks
Then to boost/math/constants/constants. hpp add:

BOOST_DEFINE_MATH_CONSTANT (half_pi, 0.0, "0"); // Actual values are temporary, we"ll replace [1
them later.

@ Note
Previously defined constants like pi and e can be used, but by not simply calling pi<T>(); specifying the precision
via the policy pi<T, policies::policy<policies::digits2<N> > >() isessential to ensure full accuracy.

114

render

htto://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Mathematical Constants

.
“inline” not permitted on data declaral—]

" before

Newly defined constants can only be used once they are included in boost/math/constants/constants. hpp.

So if you add template <class T, class N> T constant_my_constant{. ..}, then you cannot define
constant_my_constant until you add the temporary BOOST DEFINE_MATH_CONSTANT(my_constant,
symbol cannot be defined with[]

Warning
0.0, "0™). Failing to do this will result in surprising compile errors:
missing
"constant_root_two_div_pi~®

error C2143: syntax error
error C2433:
tions
error C2888: "T constant root two div pi-
in namespace “detail”
error C2988: unrecognizable template declaration/definition
2. You will need an arbitrary precision type to use to calculate the value. This library currently supports either cpp_float,
NTL: :RR or mpfr_class used via the bindings in boost/math/bindings. The default is to use NTL : -RR unless you define an
alternate macro, for example, USE_MPFR or USE_CPP_FLOAT at the start of your program.
3. It is necessary to link to the Boost.Regex library, and probably to your chosen arbitrary precision type library.
4.You need to add libs\math\include_private to your compiler's include path as the needed header is not installed in the
usual places by default (this avoids a cyclic dependency between the Math and Multiprecision library's headers).

5. The complete program to generate the constant hal f_pi using function calculate_half pi is then:

{

#define USE_CPP_FLOAT // IT required.
#include <boost/math/constants/generate.hpp>
}
The output from the program is a snippet of C++ code (actually a macro call) that can be cut and pasted into boost/math/con-

int main()
BOOST_CONSTANTS_GENERATE(half _pi);
stants/constants._hpp or else into your own code, for example:
BOOST_DEFINE_MATH_CONSTANT(half_pi, 1.570796326794896619231321691639751442e+00, [1
*"1.57079632679489661923132169163975144209853469968755291048747229615390820314310449931401 74126 7106853399107404326e+00°) ;

This macro BOOST_DEFINE_MATH_CONSTANT inserts a C++ struct code snippet that declares the float, double and long
double versions of the constant, plus a decimal digit string representation correct to 100 decimal digits, and all the meta-program-

ming machinery needed to select between them.
The result of an expanded macro for Pi is shown below.

115
http://www.renderx.com/

render

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

3
i

Mathematical Constants

// Preprocessed pi constant, annotated.

namespace boost

{
namespace math
{
namespace constants
{
namespace detail
{
template <class T> struct constant_pi
private:
// Default implementations from string of decimal digits:
static inline T get_from_string()
{
static const T result
= detail::conl1
vert from string<T>(" 3.14 X

boost: :is_convertible<const char*, T>());
return result;

}
template <int N> static T compute();

public:
// Default implementations from string of decimal digits:

static inline T get(const mpl::int_<construct_from_string>&)

{
constant_initializer<T, & constant_pi<T>::get_from_string >::do_nothing();
return get_from_string();

}

// Float, double and long double versions:

static inline T get(const mpl::int_<construct_from_float>)

{
}

static inline T get(const mpl::int_<construct_from_double>&)

{
}
static inline T get(const mpl::int_<construct_from_long_double>&)

{
}

return 3.141592653589793238462643383279502884e+00F;

return 3.141592653589793238462643383279502884e+00;

return 3.141592653589793238462643383279502884e+00L ;

// For very high precision that is nonetheless can be calculated at compile time:

template <int N> static inline T get(const mpl::int_<N>& n)

{

constant_initializer2<T, N, & constant_pi<T>::template compute<N> >::do_nothing();
return compute<N>();

}

//For true arbitrary precision, which may well vary at runtime.

static inline T get(const mpl::int_<0>&)

{

return tools: :digits<T>() > max_string_digits ? compute<0>() : get(mpl::int_<conl[l

struct_from_string>());

}

}: // template <class T> struct constant_pi

} // namespace detail

// The actual forwarding function (including policy to control precision).
template <class T, class Policy> inline T pi()

{

return detail:: constant_pi<T>::get(typename construction_traits<T, Policy>::type()):;

116

htto://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

3
i

Mathematical Constants

}

// The actual forwarding function (using default policy to control precision).
template <class T> inline T pi()

{
return pi<T, boost::math::policies::policy<> >()
¥
Yy // namespace constants

// Namespace specific versions, for the three built-in floats:

namespace float_constants

¢ static const float pi = 3.141592653589793238462643383279502884e+00F;
iamespace double_constants

¢ static const double pi = 3.141592653589793238462643383279502884e+00;
iamespace long_double_constants

¢ static const long double pi = 3.141592653589793238462643383279502884¢e+00L ;
iamespace constants{;

} // namespace constants

} // namespace math
} // namespace boost

117

htto://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Mathematical Constants

Math Constants FAQs

Why are these Constants Chosen?
It is, of course, impossible to please everyone with a list like this.
Some of the criteria we have used are:
» Used in Boost.Math.
e Commonly used.
» Expensive to compute.
* Requested by users.
 Used in science and mathematics.
< No integer values (because so cheap to construct).

('You can easily define your own if found convenient, for example: FPT one =static_cast<FPT>(42);).

How are constants named?
« Not macros, so no upper case.
 All lower case (following C++ standard names).
* No CamelCase.
e Underscore as _ delimiter between words.
» Numbers spelt as words rather than decimal digits (except following pow).
* Abbreviation conventions:
* root for square root.
* chrt for cube root.
« pow for pow function using decimal digits like pow23 for n?/%.
« div for divided by or operator /.
* minus for operator -, plus for operator +.
« sqr for squared.
« cubed for cubed n®.
* words for greek, like t, Cand I".
 words like half, third, three_quarters, sixth for fractions. (Digit(s) can get muddled).
* log10 for logyq

* In for log,

118

render

htto://www.renderx.com/

http://en.wikipedia.org/wiki/Mathematical_constant
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Mathematical Constants

The constants have all been calculated using high-precision software working with up to 300-bit precision giving about 100

decimal digits. (The precision can be arbitrarily chosen and is limited only by compute time).

How Accurate are the constants?

How are the constants derived?
The minimum accuracy chosen (100 decimal digits) exceeds the accuracy of reasonably-foreseeable floating-point hardware (256-
bit) and should meet most high-precision computations.

Comparison using Boost.Test BOOST_CHECK_CLOSE_FRACTION using long double literals, with at least 35 decimal digits,
enough to be accurate for all long double implementations. The tolerance is usually twice long double epsilon.

1.
Comparison with calculation at long double precision. This often requires a slightly higher tolerance than two epsilon because

How are the constants tested?
of computational noise from round-off etc, especially when trig and other functions are called.
Comparison with independent published values, for example, using The On-Line Encyclopedia of Integer Sequences (OEIS)

again using at least 35 decimal digits strings.
Comparison with independely calculated values using arbitrary precision tools like Mathematica, again using at least 35

decimal digits literal strings.
We have not yet been able to check that all constants are accurate at the full arbitrary precision, at present 100

decimal digits. But certain key values like e and pi appear to be accurate and internal consistencies suggest that

4,
O Warning
others are this accurate too.
Why is Portability important?
Code written using math constants is easily portable even when using different floating-point types with differing precision.
It is a mistake to expect that results of computations will be identical, but you can achieve the best accuracy possible for the
floating-point type in use.
This has no extra cost to the user, but reduces irritating, and often confusing and very hard-to-trace effects, caused by the intrins-
ically limited precision of floating-point calculations.
A harmless symptom of this limit is a spurious least-significant digit; at worst, slightly inaccurate constants sometimes cause iter-
ating algorithms to diverge wildly because internal comparisons just fail.
What is the Internal Format of the constants, and why?
See tutorial above for normal use, but this FAQ explains the internal details used for the constants.

Constants are stored as 100 decimal digit values. However, some compilers do not accept decimal digits strings as long as this.
So the constant is split into two parts, with the first containing at least 128-bit long double precision (35 decimal digits), and for
consistency should be in scientific format with a signed exponent.
The second part is the value of the constant expressed as a string literal, accurate to at least 100 decimal digits (in practice that
means at least 102 digits). Again for consistency use scientific format with a signed exponent.

directly constructed from the string, otherwise we fall back on lexical_cast to convert to type T. (Using a string is necessary because

http://www.renderx.com/

For types with precision greater than a long double, then if T is constructible T is constructible from a const char™ then it's
119

you can't use a numeric constant since even a long double might not have enough digits).

So, for example, a constant like pi is internally defined as

render

http://oeis.org/
http://www.wolfram.com/mathematica/
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

rende

r

Mathematical Constants

BOOST_DEFINE_MATH_CON[]

PAED

In this case the significand is 109 decimal digits, ensuring 100 decimal digits are exact, and exponent is zero.
See defining new constants to calculate new constants.

A macro definition like this can be pasted into user code where convenient, or into boost/math/constants.hpp if it is to be
added to the Boost.Math library.

What Floating-point Types could | use?

Apart from the built-in floating-point types float, double, long double, there are several arbitrary precision floating-point
classes available, but most are not licensed for commercial use.

Boost.Multiprecision by Christopher Kormanyos

This work is based on an earlier work called e-float: Algorithm 910: A Portable C++ Multiple-Precision System for Special-
Function Calculations, in ACM TOMS, {VvOL 37, ISSUE 4, (February 2011)} (C) ACM, 2011.
http://doi.acm.org/10.1145/1916461.1916469 e_float but is now re-factored and available under the Boost license in the Boost-
sandbox at multiprecision where it is being refined and prepared for review.

Boost.cpp_float by John Maddock using Expression Templates
Big Number which is a reworking of e_float by Christopher Kormanyos to use expression templates for faster execution.
NTL class quad_float

NTL by Victor Shoup has fixed and arbitrary high precision fixed and floating-point types. However none of these are licenced
for commercial use.

#include <NTL/quad_float.h> // quad precision 106-bit, about 32 decimal digits.
using NTL::to_quad_float; // Less precise than arbitrary precision NTL::RR.

NTL class quad_float, which gives a form of quadruple precision, 106-bit significand (but without an extended exponent range.)
With an IEC559/IEEE 754 compatible processor, for example Intel X86 family, with 64-bit double, and 53-bit significand, using
the significands of two 64-bit doubles, if std: -numeric_limits<double>: :digits10 is 16, then we get about twice the
precision, so std: :numeric_limits<quad float>::digits10() should be 32. (the default std: :numeric_limits<RR>: :di-
gits10(Q) should be about 40). (which seems to agree with experiments). We output constants (including some noisy bits, an
approximation to std::numeric_limits<RR>::max_digits10()) by adding 2 or 3 extra decimal digits, so using
quad_Ffloat: :SetOutputPrecision(32 + 3);

Apple Mac/Darwin uses a similar doubledouble 106-bit for its built-in long double type.

@ Note
The precision of all doubledouble floating-point types is rather odd and values given are only approximate.

New projects should use Boost.Multiprecision.
NTL class RR

Avrbitrary precision floating point with NTL class RR, default is 150 bit (about 50 decimal digits) used here with 300 bit to output
100 decimal digits, enough for many practical non-'number-theoretic' C++ applications.

NTL A Library for doing Number Theory is not licenced for commercial use.

120

htto://www.renderx.com/

http://doi.acm.org/10.1145/1916461.1916469
https://svn.boost.org/svn/boost/sandbox/e_float/
https://svn.boost.org/svn/boost/sandbox/multiprecision/
https://svn.boost.org/svn/boost/sandbox/big_number/
https://svn.boost.org/svn/boost/sandbox/e_float/
http://shoup.net/ntl/
http://www.boost.org/doc/libs/release/libs/math/doc/html/../../../../libs/multiprecision/doc/html/index.html
http://www.shoup.net/ntl/
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

rende

r

Mathematical Constants

This class is used in Boost.Math and is an option when using big_number projects to calculate new math constants.
New projects should use Boost.Multiprecision.

GMP and MPFR

GMP and MPFR have also been used to compute constants, but are licensed under the Lesser GPL license and are not licensed
for commercial use.

What happened to a previous collection of constants proposed for Boost?

A review concluded that the way in which the constants were presented did not meet many peoples needs. None of the methods
proposed met many users' essential requirement to allow writing simply pi rather than pi (). Many science and engineering
equations look difficult to read when because function call brackets can be confused with the many other brackets often needed.
All the methods then proposed of avoiding the brackets failed to meet all needs, often on grounds of complexity and lack of ap-

plicability to various realistic scenarios.

So the simple namespace method, proposed on its own, but rejected at the first review, has been added to allow users to have
convenient access to float, double and long double values, but combined with template struct and functions to allow simultaneous

use with other non-built-in floating-point types.
Why do the constants (internally) have a struct rather than a simple function?

A function mechanism was provided by in previous versions of Boost.Math.

The new mechanism is to permit partial specialization. See Custom Specializing a constant above. It should also allow use with
other packages like ttmath Bignum C++ library.

Where can | find other high precision constants?

1. Constants with very high precision and good accuracy (>40 decimal digits) from Simon Plouffe's web based collection
http://pi.lacim.ugam.ca/eng/.

2. The On-Line Encyclopedia of Integer Sequences (OEIS)

3. Checks using printed text optically scanned values and converted from: D. E. Knuth, Art of Computer Programming, Appendix
A, Table 1, Vol 1, ISBN 0 201 89683 4 (1997)

4. M. Abrahamovitz & I. E. Stegun, National Bureau of Standards, Handbook of Mathematical Functions, a reference source for
formulae now superceded by

5. Frank W. Olver, Daniel W. Lozier, Ronald F. Boisvert, Charles W. Clark, NIST Handbook of Mathemetical Functions, Cambridge
University Press, ISBN 978-0-521-14063-8, 2010.

6. John F Hart, Computer Approximations, Kreiger (1978) ISBN 0 88275 642 7.

7. Some values from Cephes Mathematical Library, Stephen L. Moshier and CALC100 100 decimal digit Complex Variable
Calculator Program, a DOS utility.

8. Xavier Gourdon, Pascal Sebah, 50 decimal digits constants at Number, constants and computation.
Where are Physical Constants?

Not here in this Boost.Math collection, because physical constants:

» Are measurements, not truely constants.

« Are not truly constant and keeping changing as mensuration technology improves.

» Have a instrinsic uncertainty.

121

http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/math/doc/html/../../../../libs/multiprecision/doc/html/index.html
http://gmplib.org
http://www.mpfr.org/
http://www.gnu.org/copyleft/lesser.html
http://www.ttmath.org/
http://pi.lacim.uqam.ca/eng/
https://oeis.org/
http://numbers.computation.free.fr/Constants/constants.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

3
i

Mathematical Constants

» Mathematical constants are stored and represented at varying precision, but should never be inaccurate.

Some physical constants may be available in Boost.Units.

122

htto://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Statistical Distributions and Functions

123

render =

> htto://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Statistical Distributions and Functions

Statistical Distributions Tutorial

This library is centred around statistical distributions, this tutorial will give you an overview of what they are, how they can be
used, and provides a few worked examples of applying the library to statistical tests.

Overview of Distributions
Headers and Namespaces
All the code in this library is inside namespace boost::math.
In order to use a distribution my_distribution you will need to include either the header <boost/math/my_distribution.hpp> or the
For example, to use the Students-t distribution include either <boost/math/students_t.hpp> or <boost/math/distributions.hpp>
You also need to bring distribution names into scope, perhaps with a using namespace boost: :math; declaration,

"include all the distributions" header: <boost/math/distributions.hpp>.

or specific using declarations like using boost: :math: :normal; (recommended).
Some math function names are also used in namespace std so including <random> could cause ambiguity!

Distributions are Objects
Each kind of distribution in this library is a class type - an object.

Caution
Policies provide fine-grained control of the behaviour of these classes, allowing the user to customise behaviour such as how errors
If you are familiar with statistics libraries using functions, and 'Distributions as Objects' seem alien, see the

are handled, or how the quantiles of discrete distribtions behave.

Tip
comparison to other statistics libraries.

Making distributions class types does two things:
« It encapsulates the kind of distribution in the C++ type system; so, for example, Students-t distributions are always a different

C++ type from Chi-Squared distributions.
 The distribution objects store any parameters associated with the distribution: for example, the Students-t distribution has a
degrees of freedom parameter that controls the shape of the distribution. This degrees of freedom parameter has to be provided

to the Students-t object when it is constructed.
Although the distribution classes in this library are templates, there are typedefs on type double that mostly take the usual name
of the distribution (except where there is a clash with a function of the same name: beta and gamma, in which case using the default

http://www.renderx.com/

template arguments - Real Type = double - is nearly as convenient). Probably 95% of uses are covered by these typedefs:
124

render

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

3
i

Statistical Distributions and Functions

// using namespace boost::math; // Avoid potential ambiguity with names in std <random>
// Safer to declare specific functions with using statement(s):

using boost: :math::beta_distribution;
using boost::math::binomial_distribution;
using boost::math::students_t;

// Construct a students_t distribution with 4 degrees of freedom:
students_t d1(4);

// Construct a double-precision beta distribution

// with parameters a = 10, b = 20
beta_distribution<> d2(10, 20); // Note: _distribution<> suffix !

If you need to use the distributions with a type other than double, then you can instantiate the template directly: the names of the
templates are the same as the doubl e typedef but with _distribution appended, for example: Students t Distribution or Bino-
mial Distribution:

// Construct a students_t distribution, of float type,
// with 4 degrees of freedom:
students_t_distribution<float> d3(4);

// Construct a binomial distribution, of long double type,
// with probability of success 0.3

// and 20 trials in total:

binomial_distribution<long double> d4(20, 0.3);

The parameters passed to the distributions can be accessed via getter member functions:
dl.degrees_of_freedom(); // returns 4.0

This is all well and good, but not very useful so far. What we often want is to be able to calculate the cumulative distribution
functions and quantiles etc for these distributions.

Generic operations common to all distributions are non-member functions

Want to calculate the PDF (Probability Density Function) of a distribution? No problem, just use:
pdf(my_dist, x); // Returns PDF (density) at point x of distribution my dist.
Or how about the CDF (Cumulative Distribution Function):

cdf(my_dist, x); // Returns CDF (integral from -infinity to point x)
// of distribution my_dist.

And quantiles are just the same:

quantile(my_dist, p); // Returns the value of the random variable x
// such that cdf(my_dist, x) == p.

If you're wondering why these aren't member functions, it's to make the library more easily extensible: if you want to add additional
generic operations - let's say the n'th moment - then all you have to do is add the appropriate non-member functions, overloaded
for each implemented distribution type.

125

htto://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Statistical Distributions and Functions

Tip

Random numbers that approximate Quantiles of Distributions

If you want random numbers that are distributed in a specific way, for example in a uniform, normal or triangular,
Whilst in principal there's nothing to prevent you from using the quantile function to convert a uniformly distributed
random number to another distribution, in practice there are much more efficient algorithms available that are

see Boost.Random.
For example, the binomial distribution has two parameters: n (the number of trials) and p (the probability of success on any one

specific to random number generation.

trial).
The binomial_distribution constructor therefore has two parameters:

binomial_distribution(RealType n, RealType p);

For this distribution the random variate is k: the number of successes observed. The probability density/mass function (pdf) is
The concept of a random variable is closely linked to the term random variate: a random variate is a particular

therefore written as f(k; n, p).

@ Random Variates and Distribution Parameters
kin, p) = probability of observing k successes out of n trials. K is the random variable, k is the random variate,

Note
value (outcome) of a random variable. and distribution parameters are conventionally distinguished (for example

in Wikipedia and Wolfram MathWorld) by placing a semi-colon or vertical bar) after the random variable (whose
value you ‘choose'), to separate the variate from the parameter(s) that defines the shape of the distribution.
For example, the binomial distribution probability distribution function (PDF) is written as f(k| n, p) = Pr(K =

Note

the parameters are n (trials) and p (probability).
By convention, random variate are lower case, usually k is integral, x if real, and random variable are upper case,

K if integral, X if real. But this implementation treats all as floating point values Real Type, so if you really want

N

an integral result, you must round: see note on Discrete Probability Distributions below for details.

As noted above the non-member function pdf has one parameter for the distribution object, and a second for the random variate.

So taking our binomial distribution example, we would write:

pdf(binomial_distribution<RealType>(n, p), k);
The ranges of random variate values that are permitted and are supported can be tested by using two functions range and support.

http://www.renderx.com/

The distribution (effectively the random variate) is said to be 'supported’ over a range that is "the smallest closed set whose com-
plement has probability zero". MathWorld uses the word ‘defined' for this range. Non-mathematicians might say it means the 'in-
teresting’ smallest range of random variate x that has the cdf going from zero to unity. Outside are uninteresting zones where the
126

pdf is zero, and the cdf zero or unity.
For most distributions, with probability distribution functions one might describe as ‘well-behaved', we have decided that it is most

useful for the supported range to exclude random variate values like exact zero if the end point is discontinuous. For example,

the Weibull (scale 1, shape 1) distribution smoothly heads for unity as the random variate x declines towards zero. But at x = zero,
the value of the pdf is suddenly exactly zero, by definition. If you are plotting the PDF, or otherwise calculating, zero is not the

render

http://www.boost.org/libs/random/
http://en.wikipedia.org/wiki/Random_variate
http://en.wikipedia.org/wiki/Random_variable
http://en.wikipedia.org/wiki/Random_variate
http://en.wikipedia.org/wiki/Parameter
http://en.wikipedia.org/wiki/Random_variable
http://en.wikipedia.org/wiki/Random_variable
http://en.wikipedia.org/wiki/Random_variate
http://en.wikipedia.org/wiki/Random_variate
http://en.wikipedia.org/wiki/Random_variable
http://en.wikipedia.org/wiki/Random_variate
http://en.wikipedia.org/wiki/Random_variate
http://en.wikipedia.org/wiki/Probability_distribution
http://en.wikipedia.org/wiki/Probability_distribution
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Statistical Distributions and Functions

most useful value for the lower limit of supported, as we discovered. So for this, and similar distributions, we have decided it is
most numerically useful to use the closest value to zero, min_value, for the limit of the supported range. (The range remains from
zero, so you will still get pdf(weibull, 0) == 0). (Exponential and gamma distributions have similarly discontinuous functions).

Mathematically, the functions may make sense with an (+ or -) infinite value, but except for a few special cases (in the Normal
and Cauchy distributions) this implementation limits random variates to finite values from the max to min for the Real Type. (See

Handling of Floating-Point Infinity for rationale).
Note that the discrete distributions, including the binomial, negative binomial, Poisson & Bernoulli, are all

mathematically defined as discrete functions: that is to say the functions cdf and pdf are only defined for integral

@ Note
Discrete Probability Distributions
values of the random variate.
However, because the method of calculation often uses continuous functions it is convenient to treat them as if
they were continuous functions, and permit non-integral values of their parameters.
Users wanting to enforce a strict mathematical model may use floor or cei I functions on the random variate
The quantile functions for these distributions are hard to specify in a manner that will satisfy everyone all of the
time. The default behaviour is to return an integer result, that has been rounded outwards: that is to say, lower
quantiles - where the probablity is less than 0.5 are rounded down, while upper quantiles - where the probability

prior to calling the distribution function.

is greater than 0.5 - are rounded up. This behaviour ensures that if an X% quantile is requested, then at least the
This behaviour can be changed so that the quantile functions are rounded differently, or return a real-valued result

requested coverage will be present in the central region, and no more than the requested coverage will be present

in the tails.
using Policies. It is strongly recommended that you read the tutorial Understanding Quantiles of Discrete Distri-

butions before using the quantile function on a discrete distribtion. The reference docs describe how to change

the rounding policy for these distributions.
For similar reasons continuous distributions with parameters like "degrees of freedom” that might appear to be

integral, are treated as real values (and are promoted from integer to floating-point if necessary). In this case

however, there are a small number of situations where non-integral degrees of freedom do have a genuine meaning.

Complements are supported too - and when to use them
In this library, whenever you want to receive a complement, just wrap all the function arguments in a call to complement(...),

Often you don't want the value of the CDF, but its complement, which is to say 1-p rather than p. It is tempting to calculate the
CDF and subtract it from 1, but if p is very close to 1 then cancellation error will cause you to lose accuracy, perhaps totally.
<< cdf(complement(dist, 1.0)) << endl;

1 is

<< cdf(dist, 1.0) << endl;
But wait, now that we have a complement, we have to be able to use it as well. Any function that accepts a probability as an argument

See below "Why and when to use complements?"

for example:
students_t dist(5);
cout << "CDF at t = 1
cout << "Complement of CDF at t
http://www.renderx.com/

is "
can also accept a complement by wrapping all of its arguments in a call to complement(.- - .), for example:
127

render

http://en.wikipedia.org/wiki/Discrete_probability_distribution
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

3
i

Statistical Distributions and Functions

students_t dist(5);

for(double 1 = 10; i < 1el0; 1 *= 10)

{

// Calculate the quantile for a 1 in i chance:

double t = quantile(complement(dist, 1/i));

// Print it out:

cout << "Quantile of students-t with 5 degrees of freedom\n"
"for a 1 in " << i << " chance is " << t << endl;

@ Tip

Critical values are just quantiles

Some texts talk about quantiles, or percentiles or fractiles, others about critical values, the basic rule is:
Lower critical values are the same as the quantile.

Upper critical values are the same as the quantile from the complement of the probability.

For example, suppose we have a Bernoulli process, giving rise to a binomial distribution with success ratio 0.1
and 100 trials in total. The lower critical value for a probability of 0.05 is given by:

quantile(binomial (100, 0.1), 0.05)
and the upper critical value is given by:
quantile(complement(binomial (100, 0.1), 0.05))

which return 4.82 and 14.63 respectively.

128

htto://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Statistical Distributions and Functions

Tip
Why bother with complements anyway?
It's very tempting to dispense with complements, and simply subtract the probability from 1 when required.
However, consider what happens when the probability is very close to 1: let's say the probability expressed at
float precision is 0.999999940F, then 1 - 0.999999940f = 5.96046448e-008, hut the result is actually
Or to look at this another way: consider that we want the risk of falsely rejecting the null-hypothesis in the Student's
ttest to be 1 in 1 billion, for a sample size of 10,000. This gives a probability of 1 - 10°°, which is exactly 1 when
calculated at float precision. In this case calculating the quantile from the complement neatly solves the problem,

accurate to just one single bit: the only bit that didn't cancel out!

so for example:

quantile(complement(students_t(10000), 1e-9))
returns the expected t-statistic 6 .00336, where as:

quantile(students_t(10000), 1-1e-9f)

raises an overflow error, since it is the same as:
quantile(students_t(10000), 1)

Which has no finite result.
With all distributions, even for more reasonable probability (unless the value of p can be represented exactly in

the floating-point type) the loss of accuracy quickly becomes significant if you simply calculate probability from
1 - p (because it will be mostly garbage digits for p ~ 1).
So always avoid, for example, using a probability near to unity like 0.99999

and instead use

quantile(my_distribution, 0.99999)
quantile(complement(my_distribution, 0.00001))
since 1 - 0.99999 is not exactly equal to 0.00001 when using floating-point arithmetic.

This assumes that the 0.00001 value is either a constant, or can be computed by some manner other than subtracting

0.99999 from 1.

Parameters can be calculated
Sometimes it's the parameters that define the distribution that you need to find. Suppose, for example, you have conducted a Students-
t test for equal means and the result is borderline. Maybe your two samples differ from each other, or maybe they don't; based on

the result of the test you can't be sure. A legitimate question to ask then is "How many more measurements would | have to take
before 1 would get an X% probability that the difference is real?" Parameter finders can answer questions like this, and are neces-
sarily different for each distribution. They are implemented as static member functions of the distributions, for example:

// difference from true mean to detect
// maximum risk of falsely rejecting the null-hypothesis.
// maximum risk of falsely failing to reject the null-hypothesis.

http://www.renderx.com/

// sample standard deviation
129

1.3,

0.05,

0.1,
0.13);
Returns the number of degrees of freedom required to obtain a 95% probability that the observed differences in means is not down

students_t: :find_degrees_of_freedom(
to chance alone. In the case that a borderline Students-t test result was previously obtained, this can be used to estimate how large

render

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Statistical Distributions and Functions

the sample size would have to become before the observed difference was considered significant. It assumes, of course, that the
sample mean and standard deviation are invariant with sample size.

Summary
« Distributions are objects, which are constructed from whatever parameters the distribution may have.
« Member functions allow you to retrieve the parameters of a distribution.

< Generic non-member functions provide access to the properties that are common to all the distributions (PDF, CDF, quantile
etc).

« Complements of probabilities are calculated by wrapping the function's arguments in a call to complement(...).

 Functions that accept a probability can accept a complement of the probability as well, by wrapping the function's arguments
in a call to complement(...).

« Static member functions allow the parameters of a distribution to be found from other information.

Now that you have the basics, the next section looks at some worked examples.

Worked Examples

Distribution Construction Examples

The structure of distributions is rather different from some other statistical libraries, for example, those written in less object-oriented
language like FORTRAN and C that provide a few arguments to each free function.

Boost.Math library instead provides each distribution as a template C++ class. A distribution is constructed with a few arguments,
and then member and non-member functions are used to find values of the distribution, often a function of a random variate.

For this demonstration, first we need some includes to access the negative binomial distribution (and the binomial, beta and gamma
distributions too).

To demonstrate the use with a high precision User-defined floating-point type cpp_bin_float, we also need an include from
Boost.Multiprecision. (We could equally well have used a cpp_dec_float multiprecision type).

We choose a typedef cpp_bin_float_50 to provide a 50 decimal digit type, but we could equally have chosen at 128-bit type
cpp_bin_float_quad, or on some platforms __ float128, providing about 35 decimal digits.

#include <boost/math/distributions/negative_binomial _hpp> // for negative_binomial_distribution
using boost: :math::negative_binomial_distribution; // default type is double.
using boost: :math::negative_binomial; // typedef provides default type is double.

#include <boost/math/distributions/binomial _hpp> // for binomial_distribution.

#include <boost/math/distributions/beta.hpp> // for beta_distribution.

#include <boost/math/distributions/gamma.hpp> // for gamma_distribution.

#include <boost/math/distributions/normal _hpp> // for normal_distribution.

#include <boost/multiprecision/cpp_bin_float_hpp> // for cpp_bin_float 50

Several examples of constructing distributions follow:

First, a negative binomial distribution with 8 successes and a success fraction 0.25, 25% or 1 in 4, is constructed like this:
boost: :math: :negative_binomial_distribution<double> mydist0(8., 0.25);

But this is inconveniently long, so we might be tempted to write

130

render

htto://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

rende

r

Statistical Distributions and Functions

using namespace boost::math;

but this might risk ambiguity with names in std random so much better is explicit using boost: :math: : statements, for
example:

using boost::math::negative_binomial_distribution;

and we can still reduce typing.

Since the vast majority of applications use will be using double precision, the template argument to the distribution (Real Type)
defaults to type double, so we can also write:

negative_binomial_distribution<> mydist9(8., 0.25); // Uses default “RealType = double™.

But the name negative_binomial_distribution s still inconveniently long, so, for most distributions, a convenience typedef
is provided, for example:

typedef negative_binomial_distribution<double> negative_binomial; // Reserved name of type [1
double.

Caution

This convenience typedef is not provided if a clash would occur with the name of a function; currently only beta
and gamma fall into this category.

So, after a using statement,
using boost: :math::negative_binomial;
we have a convenient typedef to negative_binomial_distribution<double>:
negative_binomial mydist(8., 0.25);
Some more examples using the convenience typedef:
negative_binomial mydistl0(5., 0.4); // Both arguments double.
And automatic conversion of arguments takes place, so you can use integers and floats:

negative_binomial mydistll(5, 0.4); // Using provided typedef of type double, and int and []
double arguments.

This is probably the most common usage. Other combination are possible too:

negative_binomial mydistl12(5., 0.4F); // Double and float arguments.
negative_binomial mydistl3(5, 1); // Both arguments integer.

Similarly for most other distributions like the binomial.

131

htto://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Statistical Distributions and Functions

binomial mybinomial(l, 0.5); // is more concise than
binomial_distribution<> mybinomd1(l1, 0.5);

For cases when the typdef distribution name would clash with a math special function (currently only beta and gamma) the typedef
is deliberately not provided, and the longer version of the name must be used, so for example, do not use:

using boost::math::beta;
beta mybetadO(1l, 0.5); // Error beta is a math FUNCTION!

Which produces the error messages:

error C2146: syntax error - missing ";" before identifier "mybetadO*
warning C4551: function call missing argument list
error C3861: "mybetadO": identifier not found

Instead you should use:

using boost: :math::beta_distribution;
beta_distribution<> mybetadl(1l, 0.5);

or for the gamma distribution:
gamma_distribution<> mygammadl(l, 0.5);
We can, of course, still provide the type explicitly thus:

// Explicit double precision: both arguments are double:
negative_binomial_distribution<double> mydistl(8., 0.25);

// Explicit float precision, double arguments are truncated to float:
negative_binomial_distribution<float> mydist2(8., 0.25);

// Explicit float precision, integer & double arguments converted to float:
negative_binomial_distribution<float> mydist3(8, 0.25);

// Explicit float precision, float arguments, so no conversion:
negative_binomial_distribution<float> mydist4(8.F, 0.25F);

// Explicit float precision, integer arguments promoted to float.
negative_binomial_distribution<float> mydist5(8, 1);

// Explicit double precision:
negative_binomial_distribution<double> mydist6(5., 0.4);

// Explicit long double precision:
negative_binomial_distribution<long double> mydist7(8., 0.25);

And you can use your own template RealType, for example, boost: :math: :cpp_bin_float_50 (an arbitrary 50 decimal digits
precision type), then we can write:

3
i

132

htto://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Statistical Distributions and Functions

using namespace boost::multiprecision;
negative_binomial_distribution<cpp_bin_float_50> mydist8(8, 0.25);

// "integer” arguments are promoted to your RealType exactly, but
// “double”™ argument are converted to RealType,
// most likely losing precision!
// So DON"T be tempted to write the "obvious”:
negative_binomial_distribution<cpp_bin_float 50> mydist20(8, 0.23456789012345678901234567890) ;
// to avoid truncation of second parameter to ~0.2345678901234567" and loss of precision.
// Instead pass a quoted decimal digit string:
negative_binomial_distribution<cpp_bin_float 50> []
mydist21(8, cpp_bin_float 50("'0.23456789012345678901234567890™"));
// Ensure that all potentially significant digits are shown.
std: :cout.precision(std: :numeric_limits<cpp_bin_float _50>::digitsl0);
//

cpp_bin_float 50 x(''1.23456789012345678901234567890™) ;
std: :cout << pdf(mydist8, x) << std::endl;

showing 0.00012630010495970320103876754721976419438231705359935
0.00012630010495970320103876754721976419438231528547467

O Warning
When using multiprecision, it is all too easy to get accidental truncation!

For example, if you write

std: :cout << pdf(mydist8, 1.23456789012345678901234567890) << std::endl;

showing 0.00012630010495970318465064569310967179576805651692929, which is wrong at about the 17th decimal digit!
This is because the value provided is truncated to a doubl e, effectively double x = 1.23456789012345678901234567890;
Then the now double x is passed to function pdf, and this truncated doubl e value is finally promoted to cpp_bin_float_50.

Another way of quietly getting the wrong answer is to write:

std: :cout << pdf(mydist8, cpp_bin_float 50(1.23456789012345678901234567890)) << std::endl;

A correct way from a multi-digit string value is

std: :cout << pdf(mydist8, cpp_bin_float 50("1.23456789012345678901234567890"")) << std::endl;

Tip

Getting about 17 decimal digits followed by many zeros is often a sign of accidental truncation.

133

3
i

htto://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Statistical Distributions and Functions

Default arguments to distribution constructors.

Note that default constructor arguments are only provided for some distributions. So if you wrongly assume a default argument,
you will get an error message, for example:

negative binomial_distribution<> mydist8;

error C2512 no appropriate default constructor available.

No default constructors are provided for the negative binomial distribution, because it is difficult to chose any sensible default
values for this distribution.

For other distributions, like the normal distribution, it is obviously very useful to provide 'standard' defaults for the mean (zero)
and standard deviation (unity) thus:

normal_distribution(RealType mean = 0, RealType sd = 1);
So in this case we can more tersely write:

using boost: :math::normal;
normal norml; // Standard normal distribution N[O,1].-

normal norm2(2); // Mean = 2, std deviation = 1.
normal norm3(2, 3); // Mean = 2, std deviation = 3.

catch(std: :exception &ex)

{

std::cout << ex.what() << std::endl;
b
return O;

¥ /7 int main(Q)

There is no useful output from this demonstration program, of course.

See distribution_construction.cpp for full source code.

Student's t Distribution Examples

Calculating confidence intervals on the mean with the Students-t distribution

Let's say you have a sample mean, you may wish to know what confidence intervals you can place on that mean. Colloquially: "I
want an interval that | can be P% sure contains the true mean". (On a technical point, note that the interval either contains the true
mean or it does not: the meaning of the confidence level is subtly different from this colloquialism. More background information
can be found on the NIST site).

The formula for the interval can be expressed as:
Y.+t -
STENTINN

Where, Y is the sample mean, s is the sample standard deviation, N is the sample size, /a/ is the desired significance level and
t(ar2,n-1) 1S the upper critical value of the Students-t distribution with N-1 degrees of freedom.

134

render

htto://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/math/doc/html/../../example/distribution_construction.cpp
http://www.itl.nist.gov/div898/handbook/eda/section3/eda352.htm
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Statistical Distributions and Functions

@ Note
The quantity a is the maximum acceptable risk of falsely rejecting the null-hypothesis. The smaller the value
of a the greater the strength of the test.

The confidence level of the test is defined as 1 - a, and often expressed as a percentage. So for example a signi-
ficance level of 0.05, is equivalent to a 95% confidence level. Refer to "What are confidence intervals?" in
NIST/SEMATECH e-Handbook of Statistical Methods. for more information.

@ Note
The usual assumptions of independent and identically distributed (i.i.d.) variables and normal distribution of
course apply here, as they do in other examples.

From the formula, it should be clear that:

« The width of the confidence interval decreases as the sample size increases.

» The width increases as the standard deviation increases.

« The width increases as the confidence level increases (0.5 towards 0.99999 - stronger).

e The width increases as the significance level decreases (0.5 towards 0.00000...01 - stronger).
The following example code is taken from the example program students_t _single_sample.cpp.

We'll begin by defining a procedure to calculate intervals for various confidence levels; the procedure will print these out as a
table:

// Needed includes:

#include <boost/math/distributions/students_t.hpp>
#include <iostream>

#include <iomanip>

// Bring everything into global namespace for ease of use:
using namespace boost::math;

using namespace std;

void confidence_ limits_on_mean(

double Sm, // Sm = Sample Mean.
double Sd, // Sd = Sample Standard Deviation.
unsigned Sn) // Sn = Sample Size.

using namespace std;
using namespace boost::math;

// Print out general info:

cout <<
.- \n"
"2-Sided Confidence Limits For Mean\n"
" \n\n"*;
cout << setprecision(7);
cout << setw(40) << left << "Number of Observations™ << "= " << Sn << "\n"';
cout << setw(40) << left << "Mean™ << "= " << Sm << "\n"";
cout << setw(40) << left << "Standard Deviation™ << "= " << Sd << "\n"";

We'll define a table of significance/risk levels for which we'll compute intervals:

135

3
i

htto://www.renderx.com/

http://www.itl.nist.gov/div898/handbook/prc/section1/prc14.htm
http://www.itl.nist.gov/div898/handbook/
http://en.wikipedia.org/wiki/Independent_and_identically-distributed_random_variables
http://en.wikipedia.org/wiki/Normal_distribution
http://www.boost.org/doc/libs/release/libs/math/doc/html/../../example/students_t_single_sample.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Statistical Distributions and Functions

double alpha[] = { 0.5, 0.25, 0.1, 0.05, 0.01, 0.001, 0.0001, 0.00001 }%;

Note that these are the complements of the confidence/probability levels: 0.5, 0.75, 0.9 .. 0.99999).
Next we'll declare the distribution object we'll need, note that the degrees of freedom parameter is the sample size less one:

students_t dist(Sn - 1);
Most of what follows in the program is pretty printing, so let's focus on the calculation of the interval. First we need the t-statistic,
computed using the quantile function and our significance level. Note that since the significance levels are the complement of the

probability, we have to wrap the arguments in a call to complement(...):

double T = quantile(complement(dist, alpha[i] 7/ 2));

Note that alpha was divided by two, since we'll be calculating both the upper and lower bounds: had we been interested in a single
Now to complete the picture, we'll get the (one-sided) width of the interval from the t-statistic by multiplying by the standard de-

sided interval then we would have omitted this step.
viation, and dividing by the square root of the sample size:

double w = T * Sd / sqrt(double(Sn));
The two-sided interval is then the sample mean plus and minus this width.
And apart from some more pretty-printing that completes the procedure.

Let's take a look at some sample output, first using the Heat flow data from the NIST site. The data set was collected by Bob Zarr
can be found in section 3.5.2 of the NIST/SEMATECH e-Handbook of Statistical Methods..

of NIST in January, 1990 from a heat flow meter calibration and stability analysis. The corresponding dataplot output for this test

2-Sided Confidence Limits For Mean
Number of Observations = 195
Mean = 9.26146
Standard Deviation = 0.02278881
Confidence T Interval Lower Upper
Value (%) Value Width Limit Limit
50.000 0.676 1.103e-003 9.26036 9.26256
75.000 1.154 1.883e-003 9.25958 9.26334
90.000 1.653 2.697e-003 9.25876 9.26416
95.000 1.972 3.219e-003 9.25824 9.26468
99.000 2.601 4_245e-003 9.25721 9.26571
99.900 3.341 5.453e-003 9.25601 9.26691
99.990 3.973 6.484e-003 9.25498 9.26794
99.999 4_537 7.404e-003 9.25406 9.26886
As you can see the large sample size (195) and small standard deviation (0.023) have combined to give very small intervals, indeed
we can be very confident that the true mean is 9.2.
For comparison the next example data output is taken from P.K.Hou, O. W. Lau & M.C. Wong, Analyst (1983) vol. 108, p 64. and
from Statistics for Analytical Chemistry, 3rd ed. (1994), pp 54-55 J. C. Miller and J. N. Miller, Ellis Horwood ISBN 0 13 0309907
The values result from the determination of mercury by cold-vapour atomic absorption.
136
http://www.renderx.com/

render

http://www.itl.nist.gov/div898/handbook/eda/section4/eda428.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda352.htm
http://www.itl.nist.gov/div898/handbook/
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

rende

r

Statistical Distributions and Functions

2-Sided Confidence Limits For Mean

Number of Observations = 3

Mean = 37.8000000

Standard Deviation = 0.9643650

Confidence T Interval Lower Upper

Value (%) Value Width Limit Limit
50.000 0.816 0.455 37.34539 38.25461
75.000 1.604 0.893 36.90717 38.69283
90.000 2.920 1.626 36.17422 39.42578
95.000 4.303 2.396 35.40438 40.19562
99.000 9.925 5.526 32.27408 43.32592
99.900 31.599 17.594 20.20639 55.39361
99.990 99.992 55.673 -17.87346 93.47346
99.999 316.225 176.067 -138.26683 213.86683

This time the fact that there are only three measurements leads to much wider intervals, indeed such large intervals that it's hard
to be very confident in the location of the mean.

Testing a sample mean for difference from a "true™ mean

When calibrating or comparing a scientific instrument or measurement method of some kind, we want to be answer the question
"Does an observed sample mean differ from the "true™ mean in any significant way?". If it does, then we have evidence of a sys-
tematic difference. This question can be answered with a Students-t test: more information can be found on the NIST site.

Of course, the assignment of "true" to one mean may be quite arbitrary, often this is simply a "traditional™ method of measurement.
The following example code is taken from the example program students_t_single_sample.cpp.

We'll begin by defining a procedure to determine which of the possible hypothesis are rejected or not-rejected at a given significance
level:

@ Note
Non-statisticians might say 'not-rejected' means 'accepted’, (often of the null-hypothesis) implying, wrongly, that
there really IS no difference, but statisticans eschew this to avoid implying that there is positive evidence of 'no
difference'. 'Not-rejected' here means there is no evidence of difference, but there still might well be a difference.
For example, see argument from ignorance and Absence of evidence does not constitute evidence of absence.

137

http://www.renderx.com/

http://www.itl.nist.gov/div898/handbook/eda/section3/eda352.htm
http://www.boost.org/doc/libs/release/libs/math/doc/html/../../example/students_t_single_sample.cpp
http://en.wikipedia.org/wiki/Argument_from_ignorance
http://www.bmj.com/cgi/content/full/311/7003/485
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

rende

r

Statistical Distributions and Functions

// Needed includes:

#include <boost/math/distributions/students_t.hpp>
#include <iostream>

#include <iomanip>

// Bring everything into global namespace for ease of use:
using namespace boost::math;

using namespace std;

void single_sample_t_test(double M, double Sm, double Sd, unsigned Sn, double alpha)

{
//

// M = true mean.

// Sm = Sample Mean.
// Sd = Sample Standard Deviation.
// Sn = Sample Size.

// alpha = Significance Level.

Most of the procedure is pretty-printing, so let's just focus on the calculation, we begin by calculating the t-statistic:

// Difference in means:

double diff = Sm - M;

// Degrees of freedom:

unsigned v = Sn - 1;

// t-statistic:

double t_stat = diff * sqrt(double(Sn)) / Sd;

Finally calculate the probability from the t-statistic. If we're interested in simply whether there is a difference (either less or
greater) or not, we don't care about the sign of the t-statistic, and we take the complement of the probability for comparison to the
significance level:

students_t dist(v);
double q = cdf(complement(dist, fabs(t_stat))):

The procedure then prints out the results of the various tests that can be done, these can be summarised in the following table:

Hypothesis Test

The Null-hypothesis: there is no difference in means Reject if complement of CDF for [t| < significance level / 2:
cdf(complement(dist, fabs(t))) < alpha /7 2

The Alternative-hypothesis: there is difference in means Reject if complement of CDF for [t| > significance level / 2:
cdf(complement(dist, fabs(t))) > alpha /7 2

The Alternative-hypothesis: the sample mean is less than the = Reject if CDF of t > 1 - significance level:

true mean.
cdf(complement(dist, t)) < alpha

The Alternative-hypothesis: the sample mean is greater than Reject if complement of CDF of t < significance level:

the true mean.
cdf(dist, t) < alpha

@ Note
Notice that the comparisons are against alpha / 2 for a two-sided test and against alpha for a one-sided test

138

htto://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

rende

r

Statistical Distributions and Functions

Now that we have all the parts in place, let's take a look at some sample output, first using the Heat flow data from the NIST site.
The data set was collected by Bob Zarr of NIST in January, 1990 from a heat flow meter calibration and stability analysis. The
corresponding dataplot output for this test can be found in section 3.5.2 of the NIST/SEMATECH e-Handbook of Statistical

Methods..

Student t test for a single sample

Number of Observations = 195

Sample Mean = 9.26146
Sample Standard Deviation = 0.02279
Expected True Mean = 5.00000
Sample Mean - Expected Test Mean = 4.26146
Degrees of Freedom = 194

T Statistic = 2611.28380
Probability that difference is due to chance = 0.000e+000
Results for Alternative Hypothesis and alpha = 0.0500
Alternative Hypothesis Conclusion

Mean != 5.000 NOT REJECTED

Mean < 5.000 REJECTED

Mean > 5.000 NOT REJECTED

You will note the line that says the probability that the difference is due to chance is zero. From a philosophical point of view, of
course, the probability can never reach zero. However, in this case the calculated probability is smaller than the smallest representable
double precision number, hence the appearance of a zero here. Whatever its "true" value is, we know it must be extraordinarily
small, so the alternative hypothesis - that there is a difference in means - is not rejected.

For comparison the next example data output is taken from P.K.Hou, O. W. Lau & M.C. Wong, Analyst (1983) vol. 108, p 64. and
from Statistics for Analytical Chemistry, 3rd ed. (1994), pp 54-55 J. C. Miller and J. N. Miller, Ellis Horwood ISBN 0 13 0309907.
The values result from the determination of mercury by cold-vapour atomic absorption.

Student t test for a single sample

Number of Observations = 3

Sample Mean = 37.80000
Sample Standard Deviation = 0.96437
Expected True Mean = 38.90000
Sample Mean - Expected Test Mean = -1.10000
Degrees of Freedom = 2

T Statistic = -1.97566
Probability that difference is due to chance = 1.869e-001
Results for Alternative Hypothesis and alpha = 0.0500
Alternative Hypothesis Conclusion

Mean != 38.900 REJECTED

Mean < 38.900 NOT REJECTED

Mean > 38.900 NOT REJECTED

As you can see the small humber of measurements (3) has led to a large uncertainty in the location of the true mean. So even
though there appears to be a difference between the sample mean and the expected true mean, we conclude that there is no signi-
ficant difference, and are unable to reject the null hypothesis. However, if we were to lower the bar for acceptance down to alpha
=0.1 (a 90% confidence level) we see a different output:

139

http://www.renderx.com/

http://www.itl.nist.gov/div898/handbook/eda/section4/eda428.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda352.htm
http://www.itl.nist.gov/div898/handbook/
http://www.itl.nist.gov/div898/handbook/
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Statistical Distributions and Functions

Student t test for a single sample

Number of Observations = 3

Sample Mean = 37.80000
Sample Standard Deviation = 0.96437
Expected True Mean = 38.90000
Sample Mean - Expected Test Mean = -1.10000
Degrees of Freedom = 2

T Statistic = -1.97566
Probability that difference is due to chance = 1.869e-001
Results for Alternative Hypothesis and alpha = 0.1000
Alternative Hypothesis Conclusion

Mean != 38.900 REJECTED

Mean < 38.900 NOT REJECTED

Mean > 38.900 REJECTED

In this case, we really have a borderline result, and more data (and/or more accurate data), is needed for a more convincing con-
clusion.

Estimating how large a sample size would have to become in order to give a significant Stu-
dents-t test result with a single sample test

Imagine you have conducted a Students-t test on a single sample in order to check for systematic errors in your measurements.
Imagine that the result is borderline. At this point one might go off and collect more data, but it might be prudent to first ask the
question "How much more?". The parameter estimators of the students_t_distribution class can provide this information.

This section is based on the example code in students_t_single_sample.cpp and we begin by defining a procedure that will print
out a table of estimated sample sizes for various confidence levels:

// Needed includes:

#include <boost/math/distributions/students_t._hpp>
#include <iostream>

#include <iomanip>

// Bring everything into global namespace for ease of use:
using namespace boost::math;

using namespace std;

void single_sample_find_df(

double M, // M = true mean.
double Sm, // Sm = Sample Mean.
double Sd) // Sd = Sample Standard Deviation.

{

Next we define a table of significance levels:

double alpha[] = { 0.5, 0.25, 0.1, 0.05, 0.01, 0.001, 0.0001, 0.00001 };

Printing out the table of sample sizes required for various confidence levels begins with the table header:

140

render

htto://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/math/doc/html/../../example/students_t_single_sample.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Statistical Distributions and Functions

cout << "\n\n"

\n"
"Confidence Estimated Estimated\n"
" Value (%) Sample Size Sample Size\n"
' (one sided test) (two sided test)\n"

\n";

And now the important part: the sample sizes required. Class students_t_distribution has a static member function
find_degrees_of_freedom that will calculate how large a sample size needs to be in order to give a definitive result.

The first argument is the difference between the means that you wish to be able to detect, here it's the absolute value of the difference
between the sample mean, and the true mean.

Then come two probability values: alpha and beta. Alpha is the maximum acceptable risk of rejecting the null-hypothesis when
it is in fact true. Beta is the maximum acceptable risk of failing to reject the null-hypothesis when in fact it is false. Also note that
for a two-sided test, alpha must be divided by 2.

The final parameter of the function is the standard deviation of the sample.

In this example, we assume that alpha and beta are the same, and call find_degrees_of_freedom twice: once with alpha for
a one-sided test, and once with alpha/2 for a two-sided test.

for(unsigned 1 = 0; 1 < sizeof(alpha)/sizeof(alpha[0]); ++i)
{
// Confidence value:
cout << Ffixed << setprecision(3) << setw(10) << right << 100 * (l1-alpha[i]);
// calculate df for single sided test:
double df = students_t::find_degrees_of freedom(
fabs(M - Sm), alpha[i], alpha[i], Sd);
// convert to sample size:
double size = ceil(df) + 1;
// Print size:
cout << Ffixed << setprecision(0) << setw(16) << right << size;
// calculate df for two sided test:
df = students_t::find_degrees_of freedom(
fabs(M - Sm), alpha[i]/2, alpha[i], Sd);
// convert to sample size:
size = ceil(df) + 1;
// Print size:
cout << Ffixed << setprecision(0) << setw(16) << right << size << endl;
}

cout << endl;

}

Let's now look at some sample output using data taken from P.K.Hou, O. W. Lau & M.C. Wong, Analyst (1983) vol. 108, p 64.
and from Statistics for Analytical Chemistry, 3rd ed. (1994), pp 54-55 J. C. Miller and J. N. Miller, Ellis Horwood ISBN 0 13
0309907. The values result from the determination of mercury by cold-vapour atomic absorption.

Only three measurements were made, and the Students-t test above gave a borderline result, so this example will show us how
many samples would need to be collected:

141

render

htto://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

rende

r

Statistical Distributions and Functions

Estimated sample sizes required for various confidence levels

True Mean = 38.90000
Sample Mean = 37.80000
Sample Standard Deviation = 0.96437
Confidence Estimated Estimated
Value (%) Sample Size Sample Size
(one sided test) (two sided test)

75.000 3 4

90.000 7 9

95.000 11 13

99.000 20 22

99.900 35 37

99.990 50 53

99.999 66 68

So in this case, many more measurements would have had to be made, for example at the 95% level, 14 measurements in total for
a two-sided test.

Comparing the means of two samples with the Students-t test

Imagine that we have two samples, and we wish to determine whether their means are different or not. This situation often arises
when determining whether a new process or treatment is better than an old one.

In this example, we'll be using the Car Mileage sample data from the NIST website. The data compares miles per gallon of US
cars with miles per gallon of Japanese cars.

The sample code is in students_t_two_samples.cpp.

There are two ways in which this test can be conducted: we can assume that the true standard deviations of the two samples are
equal or not. If the standard deviations are assumed to be equal, then the calculation of the t-statistic is greatly simplified, so we'll
examine that case first. In real life we should verify whether this assumption is valid with a Chi-Squared test for equal variances.

We begin by defining a procedure that will conduct our test assuming equal variances:

// Needed headers:

#include <boost/math/distributions/students_t._hpp>
#include <iostream>

#include <iomanip>

// Simplify usage:

using namespace boost::math;

using namespace std;

void two_samples_t_test_equal_sd(

double Sml, // Sml = Sample 1 Mean.

double Sdi, // Sd1 = Sample 1 Standard Deviation.
unsigned Sni, // Snl = Sample 1 Size.

double Sm2, // Sm2 = Sample 2 Mean.

double Sd2, // Sd2 = Sample 2 Standard Deviation.
unsigned Sn2, // Sn2 = Sample 2 Size.

double alpha) // alpha = Significance Level.

{

Our procedure will begin by calculating the t-statistic, assuming equal variances the needed formulae are:

142

htto://www.renderx.com/

http://www.itl.nist.gov/div898/handbook/eda/section3/eda3531.htm
http://www.itl.nist.gov
http://www.boost.org/doc/libs/release/libs/math/doc/html/../../example/students_t_two_samples.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Statistical Distributions and Functions

Smlfsm2
ro= T T
Sp Sn1 Sn2
Sn, — 1\Sd2 + (Sn, — 1\Sd2
_ (Sny — 1)Sdy+ (Sny — 1)Sd3
Sp T Sn, +8n, 2
Vv = Sn1+Sn2—2

where Sp is the "pooled” standard deviation of the two samples, and v is the number of degrees of freedom of the two combined
samples. We can now write the code to calculate the t-statistic:

// Degrees of freedom:

double v = Snl + Sn2 - 2;

cout << setw(55) << left << "Degrees of Freedom™ << "= ' << v << "\n"';

// Pooled variance:

double sp = sqrt(((Snl-1) * Sd1 * Sd1 + (Sn2-1) * Sd2 * Sd2) / v);

cout << setw(55) << left << "Pooled Standard Deviation™ << "= " << gp << "\n"";
// t-statistic:

double t_stat = (Sml1 - Sm2) / (sp * sqrt(1.0 /7 Sn1l + 1.0 /7 Sn2));

cout << setw(55) << left << "T Statistic” << "= " << t_stat << "\n"";

The next step is to define our distribution object, and calculate the complement of the probability:

students_t dist(v);

double q = cdf(complement(dist, fabs(t_stat))):

cout << setw(55) << left << "Probability that difference is due to chance"™ << "=
<< setprecision(3) << scientific << 2 * g << "\n\n"";

Here we've used the absolute value of the t-statistic, because we initially want to know simply whether there is a difference or not
(a two-sided test). However, we can also test whether the mean of the second sample is greater or is less (one-sided test) than that
of the first: all the possible tests are summed up in the following table:

Hypothesis Test

The Null-hypothesis: there is no difference in means Reject if complement of CDF for [t| < significance level / 2:
cdf(complement(dist, fabs(t))) < alpha /7 2

The Alternative-hypothesis: there is a difference in means Reject if complement of CDF for [t| > significance level / 2:
cdf(complement(dist, fabs(t))) > alpha /7 2

The Alternative-hypothesis: Sample 1 Mean is less than Sample = Reject if CDF of t > significance level:

2 Mean.
cdf(dist, t) > alpha

The Alternative-hypothesis: Sample 1 Mean is greater than Reject if complement of CDF of t > significance level:

Sample 2 Mean.
cdf(complement(dist, t)) > alpha

@ Note
For a two-sided test we must compare against alpha / 2 and not alpha.

Most of the rest of the sample program is pretty-printing, so we'll skip over that, and take a look at the sample output for alpha=0.05
(a 95% probability level). For comparison the dataplot output for the same data is in section 1.3.5.3 of the NIST/SEMATECH e-
Handbook of Statistical Methods..

143

render

htto://www.renderx.com/

http://www.itl.nist.gov/div898/handbook/eda/section3/eda353.htm
http://www.itl.nist.gov/div898/handbook/
http://www.itl.nist.gov/div898/handbook/
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Statistical Distributions and Functions

Student t test for two samples (equal variances)

Number of Observations (Sample 1) = 249
Sample 1 Mean = 20.145
Sample 1 Standard Deviation = 6.4147
Number of Observations (Sample 2) = 79
Sample 2 Mean = 30.481
Sample 2 Standard Deviation = 6.1077
Degrees of Freedom = 326
Pooled Standard Deviation = 6.3426
T Statistic = -12.621
Probability that difference is due to chance = 5.273e-030
Results for Alternative Hypothesis and alpha = 0.0500
Alternative Hypothesis Conclusion

Sample 1 Mean !'= Sample 2 Mean NOT REJECTED

Sample 1 Mean < Sample 2 Mean NOT REJECTED

Sample 1 Mean > Sample 2 Mean REJECTED

So with a probability that the difference is due to chance of just 5.273e-030, we can safely conclude that there is indeed a difference.

The tests on the alternative hypothesis show that we must also reject the hypothesis that Sample 1 Mean is greater than that for
Sample 2: in this case Sample 1 represents the miles per gallon for Japanese cars, and Sample 2 the miles per gallon for US cars,
so we conclude that Japanese cars are on average more fuel efficient.

Now that we have the simple case out of the way, let's look for a moment at the more complex one: that the standard deviations
of the two samples are not equal. In this case the formula for the t-statistic becomes:

Sm; — Sm,

L= sd? sd?
e]

Snl Sn2

And for the combined degrees of freedom we use the Welch-Satterthwaite approximation:

s s\’
+
Sny Sn,

'v =
2\2 2\2
st [sg
Sn1 Sn2

(Sn;— 1) + (Sny— 1)

Note that this is one of the rare situations where the degrees-of-freedom parameter to the Student's t distribution is a real number,
and not an integer value.

@ Note
Some statistical packages truncate the effective degrees of freedom to an integer value: this may be necessary if
you are relying on lookup tables, but since our code fully supports non-integer degrees of freedom there is no
need to truncate in this case. Also note that when the degrees of freedom is small then the Welch-Satterthwaite

approximation may be a significant source of error.

Putting these formulae into code we get:

144

render

http://www.renderx.com/

http://en.wikipedia.org/wiki/Welch-Satterthwaite_equation
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Statistical Distributions and Functions

// Degrees of freedom:

double v = Sd1 * Sd1 / Snl + Sd2 * Sd2 / Sn2;

vV *= v;

double t1 = Sd1 * Sd1 / Snil;

tl *= t1;

tl1 /= (Snl1 - 1);

double t2 = Sd2 * Sd2 / Sn2;

t2 *= t2;

t2 /= (Sn2 - 1);

v /= (t1 + t2);

cout << setw(55) << left << "Degrees of Freedom" << "= " << v << "\n"';
// t-statistic:

double t_stat = (Sml - Sm2) / sqrt(Sdl * Sd1 /7 Snl + Sd2 * Sd2 / Sn2);
cout << setw(55) << left << "T Statistic” << "= " << t_stat << "\n"";

Thereafter the code and the tests are performed the same as before. Using are car mileage data again, here's what the output looks
like:

Student t test for two samples (unequal variances)

Number of Observations (Sample 1) = 249
Sample 1 Mean = 20.145
Sample 1 Standard Deviation = 6.4147
Number of Observations (Sample 2) = 79
Sample 2 Mean = 30.481
Sample 2 Standard Deviation = 6.1077
Degrees of Freedom = 136.87
T Statistic = -12.946
Probability that difference is due to chance = 1.571e-025
Results for Alternative Hypothesis and alpha = 0.0500
Alternative Hypothesis Conclusion

Sample 1 Mean !'= Sample 2 Mean NOT REJECTED

Sample 1 Mean < Sample 2 Mean NOT REJECTED

Sample 1 Mean > Sample 2 Mean REJECTED

This time allowing the variances in the two samples to differ has yielded a higher likelihood that the observed difference is down
to chance alone (1.571e-025 compared to 5.273e-030 when equal variances were assumed). However, the conclusion remains the
same: US cars are less fuel efficient than Japanese models.

Comparing two paired samples with the Student's t distribution

Imagine that we have a before and after reading for each item in the sample: for example we might have measured blood pressure
before and after administration of a new drug. We can't pool the results and compare the means before and after the change, because
each patient will have a different baseline reading. Instead we calculate the difference between before and after measurements in
each patient, and calculate the mean and standard deviation of the differences. To test whether a significant change has taken place,
we can then test the null-hypothesis that the true mean is zero using the same procedure we used in the single sample cases previously
discussed.

That means we can:

« Calculate confidence intervals of the mean. If the endpoints of the interval differ in sign then we are unable to reject the null-
hypothesis that there is no change.

* Test whether the true mean is zero. If the result is consistent with a true mean of zero, then we are unable to reject the null-hy-
pothesis that there is no change.

145

render

htto://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

3
i

Statistical Distributions and Functions

« Calculate how many pairs of readings we would need in order to obtain a significant result.
Chi Squared Distribution Examples

Confidence Intervals on the Standard Deviation

Once you have calculated the standard deviation for your data, a legitimate question to ask is "How reliable is the calculated
standard deviation?". For this situation the Chi Squared distribution can be used to calculate confidence intervals for the standard
deviation.

The full example code & sample output is in chi_square_std_dev_test.cpp.

We'll begin by defining the procedure that will calculate and print out the confidence intervals:

void confidence_limits_on_std_deviation(
double Sd, // Sample Standard Deviation
unsigned N) // Sample size

{

We'll begin by printing out some general information:

cout <<
" \n"
""2-Sided Confidence Limits For Standard Deviation\n"
" \n\n"";
cout << setprecision(7);
cout << setw(40) << left << "Number of Observations"™ << "= " << N << "\n";
cout << setw(40) << left << "Standard Deviation” << "= " << Sd << "\n"';

and then define a table of significance levels for which we'll calculate intervals:
double alpha[] = { 0.5, 0.25, 0.1, 0.05, 0.01, 0.001, 0.0001, 0.00001 };

The distribution we'll need to calculate the confidence intervals is a Chi Squared distribution, with N-1 degrees of freedom:
chi_squared dist(N - 1);

For each value of alpha, the formula for the confidence interval is given by:

IA

Where

2
(gN-1)

is the upper critical value, and
2
X(1-4N-1)

is the lower critical value of the Chi Squared distribution.

In code we begin by printing out a table header:

146

htto://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/math/doc/html/../../example/chi_square_std_dev_test.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Statistical Distributions and Functions

cout << "\n\n"
" \nll

"Confidence Lower Upper\n"
" Value (%) Limit Limit\n"
' \n"';

and then loop over the values of alpha and calculate the intervals for each: remember that the lower critical value is the same as
the quantile, and the upper critical value is the same as the quantile from the complement of the probability:

for(unsigned i = 0; i1 < sizeof(alpha)/sizeof(alpha[0]); ++i)

{
// Confidence value:
cout << fixed << setprecision(3) << setw(10) << right << 100 * (1-alphal[i]):
// Calculate limits:
double lower_limit = sqrt((N - 1) * Sd * Sd / quantile(complement(dist, alphal[i] 7 2))):
double upper_limit = sqrt((N - 1) * Sd * Sd / quantile(dist, alphal[i] 7 2)):
// Print Limits:
cout << fixed << setprecision(5) << setw(1l5) << right << lower_limit;
cout << fixed << setprecision(b5) << setw(1l5) << right << upper_limit << endl;
b

cout << endl;

To see some example output we'll use the gear data from the NIST/SEMATECH e-Handbook of Statistical Methods.. The data
represents measurements of gear diameter from a manufacturing process.

2-Sided Confidence Limits For Standard Deviation

100
0.006278908

Number of Observations
Standard Deviation

Confidence Lower Upper
Value (%) Limit Limit
50.000 0.00601 0.00662
75.000 0.00582 0.00685
90.000 0.00563 0.00712
95.000 0.00551 0.00729
99.000 0.00530 0.00766
99.900 0.00507 0.00812
99.990 0.00489 0.00855
99.999 0.00474 0.00895

So at the 95% confidence level we conclude that the standard deviation is between 0.00551 and 0.00729.

Confidence intervals as a function of the number of observations

Similarly, we can also list the confidence intervals for the standard deviation for the common confidence levels 95%, for increasing
numbers of observations.

The standard deviation used to compute these values is unity, so the limits listed are multipliers for any particular standard deviation.
For example, given a standard deviation of 0.0062789 as in the example above; for 100 observations the multiplier is 0.8780 giving
the lower confidence limit of 0.8780 * 0.006728 = 0.00551.

147

render

htto://www.renderx.com/

http://www.itl.nist.gov/div898/handbook/eda/section3/eda3581.htm
http://www.itl.nist.gov/div898/handbook/
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

and is still highly skewed with an upper limit twice the median.

Statistical Distributions and Functions
Confidence level (two-sided) = 0.0500000
Standard Deviation = 1.0000000
Observations Lower Upper
Limit Limit
2 0.4461 31.9102
3 0.5207 6.2847
4 0.5665 3.7285
5 0.5991 2.8736
6 0.6242 2.4526
7 0.6444 2.2021
8 0.6612 2.0353
9 0.6755 1.9158
10 0.6878 1.8256
15 0.7321 1.5771
20 0.7605 1.4606
30 0.7964 1.3443
40 0.8192 1.2840
50 0.8353 1.2461
60 0.8476 1.2197
100 0.8780 1.1617
120 0.8875 1.1454
1000 0.9580 1.0459
10000 0.9863 1.0141
50000 0.9938 1.0062
100000 0.9956 1.0044
1000000 0.9986 1.0014
With just 2 observations the limits are from 0.445 up to to 31.9, so the standard deviation might be about half the observed value
up to 30 times the observed value!
Estimating a standard deviation with just a handful of values leaves a very great uncertainty, especially the upper limit. Note espe-
cially how far the upper limit is skewed from the most likely standard deviation.
Even for 10 observations, normally considered a reasonable number, the range is still from 0.69 to 1.8, about a range of 0.7 to 2,
When we have 1000 observations, the estimate of the standard deviation is starting to look convincing, with a range from 0.95 to

1.05 - now near symmetrical, but still about + or - 5%.
Only when we have 10000 or more repeated observations can we start to be reasonably confident (provided we are sure that other

For 10000 observations, the interval is 0.99 to 1.1 - finally a really convincing + or -1% confidence.

Chi-Square Test for the Standard Deviation
We use this test to determine whether the standard deviation of a sample differs from a specified value. Typically this occurs in

factors like drift are not creeping in).
process change situations where we wish to compare the standard deviation of a new process to an established one.
The code for this example is contained in chi_square_std_dev_test.cpp, and we'll begin by defining the procedure that will print

http://www.renderx.com/

out the test statistics:
148

render

http://www.boost.org/doc/libs/release/libs/math/doc/html/../../example/chi_square_std_dev_test.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Statistical Distributions and Functions

void chi_squared_test(
double Sd, // Sample std deviation
double D, // True std deviation
unsigned N, // Sample size
double alpha) // Significance level

{

The procedure begins by printing a summary of the input data:

using namespace std;
using namespace boost::math;

// Print header:
cout <<

\n"

"Chi Squared test for sample standard deviation\n"

\n\n"";

cout << setprecision(b5);

cout << setw(55) << left << "Number of Observations" << "=
cout << setw(55) << left << "Sample Standard Deviation™ << "=
cout << setw(55) << left << "Expected True Standard Deviation™ << "=

<< N << "\n"";
'<< Sd << "\n"";
''<< D << "\n\n"";

The test statistic (T) is simply the ratio of the sample and "true" standard deviations squared, multiplied by the number of degrees

of freedom (the sample size less one):

double t_stat = (N - 1) * (Sd /7 D) * (Sd /7 D);
cout << setw(55) << left << "Test Statistic” << "=

The distribution we need to use, is a Chi Squared distribution with N-1 degrees of freedom:
chi_squared dist(N - 1);

The various hypothesis that can be tested are summarised in the following table:

' << t_stat << '"\n"';

Hypothesis

The null-hypothesis: there is no difference in standard deviation
from the specified value

The alternative hypothesis: there is a difference in standard
deviation from the specified value

The alternative hypothesis: the standard deviation is less than
the specified value

The alternative hypothesis: the standard deviation is greater
than the specified value

Test

Reject if T < x2(1-a|pha/2; N-1 OF T > Xz(alphaIZ; N-1)
Reject if Xz(l-alphaJZ; N-1) == T>= Xz(alphaIZ; N-1)
Reject if X2(1-a|pha; Ny <= T

Rﬂedifxammed)>:T

Where Xz(alpha; n-1) IS the upper critical value of the Chi Squared distribution, and X2(l-alpha; n-1) IS the lower critical value.

Recall that the lower critical value is the same as the quantile, and the upper critical value is the same as the quantile from the
complement of the probability, that gives us the following code to calculate the critical values:

149

3
i

htto://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

3
i

Statistical Distributions and Functions

double ucv = quantile(complement(dist, alpha));
double ucv2 = quantile(complement(dist, alpha 7/ 2));
double lIcv = quantile(dist, alpha);

double lIcv2 = quantile(dist, alpha /7 2);

cout << setw(55) << left << "Upper Critical Value at alpha: " << "= "

<< setprecision(3) << scientific << ucv << "\n"";
cout << setw(55) << left << "Upper Critical Value at alphas2: " << "=
<< setprecision(3) << scientific << ucv2 << "\n";

cout << setw(55) << left << "Lower Critical Value at alpha: " << "= "

<< setprecision(3) << scientific << lcv << "\n"";
cout << setw(55) << left << "Lower Critical Value at alphas2: " << "=
<< setprecision(3) << scientific << Icv2 << "\n\n"';

Now that we have the critical values, we can compare these to our test statistic, and print out the result of each hypothesis and

test:

cout << setw(55) << left <<
"Results for Alternative Hypothesis and alpha"™ << "= '
<< setprecision(4) << fixed << alpha << "\n\n";

cout << "Alternative Hypothesis Conclusion\n™;

cout << "Standard Deviation != " << setprecision(3) << fixed << D << "
if((ucv2 < t_stat) || (Icv2 > t_stat))

cout << "ACCEPTED\n";
else

cout << "REJECTED\n";

cout << "'Standard Deviation < ' << setprecision(3) << fixed << D << "
if(lcv > t_stat)

cout << "ACCEPTED\n";
else

cout << "REJECTED\n";

cout << "'Standard Deviation > ' << setprecision(3) << fixed << D << "
if(ucv < t_stat)
cout << "ACCEPTED\n";
else
cout << "REJECTED\n";
cout << endl << endl;

To see some example output we'll use the gear data from the NIST/SEMATECH e-Handbook of Statistical Methods.. The data
represents measurements of gear diameter from a manufacturing process. The program output is deliberately designed to mirror

the DATAPLOT output shown in the NIST Handbook Example.

150

htto://www.renderx.com/

http://www.itl.nist.gov/div898/handbook/eda/section3/eda3581.htm
http://www.itl.nist.gov/div898/handbook/
http://www.itl.nist.gov/div898/handbook/eda/section3/eda358.htm
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Statistical Distributions and Functions

Chi Squared test for sample standard deviation
Number of Observations = 100
= 0.00628
= 0.10000
= 0.39030
= 1.438e-099
= 1.232e+002
= 1.284e+002
= 7.705e+001
= 7.336e+001
= 0.0500

Sample Standard Deviation
Expected True Standard Deviation
alpha:
alphas2:
alpha:
alphas2:
Hypothesis and alpha
Conclusion
ACCEPTED
ACCEPTED

Value at
REJECTED

CDF of test statistic:
Upper Critical Value at
Value at

Test Statistic
Upper Critical Value at

Lower Critical
Results for Alternative
.100

Alternative Hypothesis
Standard Deviation !'= 0
Standard Deviation < 0.100
> 0.100
For an alternative example, consider the silicon wafer data again from the NIST/SEMATECH e-Handbook of Statistical Methods..
In this scenario a supplier of 100 ohm.cm silicon wafers claims that his fabrication process can produce wafers with sufficient
consistency so that the standard deviation of resistivity for the lot does not exceed 10 ohm.cm. A sample of N = 10 wafers taken
from the lot has a standard deviation of 13.97 ohm.cm, and the question we ask ourselves is "Is the suppliers claim correct?".

Lower Critical
Standard Deviation
In this case we are testing whether the sample standard deviation is 0.1, and the null-hypothesis is rejected, so we conclude that

10
13.97000
10.00000

17.56448
594e-001
692e+001
-902e+001
-325e+000
700e+000

the standard deviation is not 0.1.

NWEFPEFLO

The program output now looks like this:
Chi Squared test for sample standard deviation

.0500

o

Number of Observations
Sample Standard Deviation
Expected True Standard Deviation

Test Statistic
CDF of test statistic:
Upper Critical Value at alpha:
Upper Critical Value at alpha/2:
Lower Critical Value at alpha:
Lower Critical Value at alpha/2:
Results for Alternative Hypothesis and alpha
Conclusion
REJECTED
REJECTED
ACCEPTED
In this case, our null-hypothesis is that the standard deviation of the sample is less than 10: this hypothesis is rejected in the ana-

< 10.000

Standard Deviation

Standard Deviation

lysis above, and so we reject the manufacturers claim.
http://www.renderx.com/

Alternative Hypothesis
Standard Deviation != 10.000
Estimating the Required Sample Sizes for a Chi-Square Test for the Standard Deviation
151

> 10.000
Suppose we conduct a Chi Squared test for standard deviation and the result is borderline, a legitimate question to ask is "How

large would the sample size have to be in order to produce a definitive result?"

render

http://www.itl.nist.gov/div898/handbook/prc/section2/prc23.htm
http://www.itl.nist.gov/div898/handbook/
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

3
i

Statistical Distributions and Functions

The class template chi_squared_distribution has a static method find_degrees_of freedom that will calculate this value for

some acceptable risk of type | failure alpha, type Il failure beta, and difference from the standard deviation diff. Please note that

The code for this example is located in chi_square_std_dev_test.cpp.

We begin by defining a procedure to print out the sample sizes required for various risk levels:

void chi_squared_sample_sized(
double diff, // difference from variance to detect
double variance) // true variance

{

The procedure begins by printing out the input data:

using namespace std;
using namespace boost::math;

// Print out general info:

cout <<
" \n"
"Estimated sample sizes required for various confidence levels\n"
" \n\n"*;
cout << setprecision(5);
cout << setw(40) << left << "True Variance"™ << "= " << variance << "\n"
cout << setw(40) << left << "Difference to detect"” << "= " << diff <<

And defines a table of significance levels for which we'll calculate sample sizes:

the method used works on variance, and not standard deviation as is usual for the Chi Squared Test.

"\n"";

double alpha[] = { 0.5, 0.25, 0.1, 0.05, 0.01, 0.001, 0.0001, 0.00001 };

For each value of alpha we can calculate two sample sizes: one where the sample variance is less than the true value by diff and
one where it is greater than the true value by diff. Thanks to the asymmetric nature of the Chi Squared distribution these two values
will not be the same, the difference in their calculation differs only in the sign of diff that's passed to find_degrees_of_freedom.

Finally in this example we'll simply things, and let risk level beta be the same as alpha:

152

htto://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/math/doc/html/../../example/chi_square_std_dev_test.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

3
i

Statistical Distributions and Functions

cout << "\n\n"

\n"
"Confidence Estimated Estimated\n"
" Value (%) Sample Size Sample Size\n"
' (lower one (upper one\n"
sided test) sided test)\n"
\n"';
//
// Now print out the data for the table rows.
//
for(unsigned i = 0; i < sizeof(alpha)/sizeof(alpha[0]); ++i)
{

// Confidence value:
cout << fixed << setprecision(3) << setw(10) << right << 100 * (1-alphal[i]):
// calculate df for a lower single sided test:
double df = chi_squared: :find_degrees_of_freedom(
-diff, alpha[i], alpha[i], variance);
// convert to sample size:
double size = ceil(df) + 1;
// Print size:
cout << fixed << setprecision(0) << setw(1l6) << right << size;
// calculate df for an upper single sided test:
df = chi_squared::find_degrees_of_freedom(
diff, alpha[i], alpha[i], variance);
// convert to sample size:
size = ceil(df) + 1;
// Print size:
cout << fixed << setprecision(0) << setw(1l6) << right << size << endl;
}

cout << endl;

For some example output, consider the silicon wafer data from the NIST/SEMATECH e-Handbook of Statistical Methods.. In
this scenario a supplier of 100 ohm.cm silicon wafers claims that his fabrication process can produce wafers with sufficient con-
sistency so that the standard deviation of resistivity for the lot does not exceed 10 ohm.cm. A sample of N = 10 wafers taken from
the lot has a standard deviation of 13.97 ohm.cm, and the question we ask ourselves is "How large would our sample have to be
to reliably detect this difference?".

To use our procedure above, we have to convert the standard deviations to variance (square them), after which the program output
looks like this:

153

htto://www.renderx.com/

http://www.itl.nist.gov/div898/handbook/prc/section2/prc23.htm
http://www.itl.nist.gov/div898/handbook/
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Statistical Distributions and Functions

Estimated sample sizes required for various confidence levels

True Variance = 100.00000
Difference to detect = 95.16090
Confidence Estimated Estimated
Value (%) Sample Size Sample Size
(lower one (upper one
sided test) sided test)
50.000 2 2
75.000 2 10
90.000 4 32
95.000 5 51
99.000 7 99
99.900 11 174
99.990 15 251
99.999 20 330

In this case we are interested in a upper single sided test. So for example, if the maximum acceptable risk of falsely rejecting the
null-hypothesis is 0.05 (Type | error), and the maximum acceptable risk of failing to reject the null-hypothesis is also 0.05 (Type
Il error), we estimate that we would need a sample size of 51.

F Distribution Examples

Imagine that you want to compare the standard deviations of two sample to determine if they differ in any significant way, in this
situation you use the F distribution and perform an F-test. This situation commonly occurs when conducting a process change
comparison: "is a new process more consistent that the old one?".

In this example we'll be using the data for ceramic strength from http://mww.itl.nist.gov/div898/handbook/eda/section4/edad2al.htm.
The data for this case study were collected by Said Jahanmir of the NIST Ceramics Division in 1996 in connection with a
NIST/industry ceramics consortium for strength optimization of ceramic strength.

The example program is f_test.cpp, program output has been deliberately made as similar as possible to the DATAPLOT output
in the corresponding NIST EngineeringStatistics Handbook example.

We'll begin by defining the procedure to conduct the test:

void f_test(

double sdi, // Sample 1 std deviation
double sd2, // Sample 2 std deviation
double N1, // Sample 1 size
double N2, // Sample 2 size

double alpha) // Significance level
{

The procedure begins by printing out a summary of our input data:

154

render

htto://www.renderx.com/

http://www.itl.nist.gov/div898/handbook/eda/section4/eda42a1.htm
http://www.boost.org/doc/libs/release/libs/math/doc/html/../../example/f_test.cpp
http://www.itl.nist.gov/div898/handbook/eda/section3/eda359.htm
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Statistical Distributions and Functions

using namespace std;
using namespace boost::math;

// Print header:

cout <<
1] \n"
"F test for equal standard deviations\n"
" \n\n""';

cout << setprecision(5);

cout << "Sample 1:\n";

cout << setw(55) << left << "Number of Observations™ << "= " << N1 << "\n"";

cout << setw(55) << left << "Sample Standard Deviation™ << ' "o<< sdl << "\n\n"';
cout << "Sample 2:\n";

cout << setw(55) << left << "Number of Observations™ << "= " << N2 << "\n"";

cout << setw(55) << left << "Sample Standard Deviation™ << ' "o<< sd2 << "\n\n"';

The test statistic for an F-test is simply the ratio of the square of the two standard deviations:
F= 512 / 522

where s, is the standard deviation of the first sample and s, is the standard deviation of the second sample. Or in code:

double F = (sdl1 / sd2);
F *= F;
cout << setw(55) << left << "Test Statistic” << "= " << F << "\n\n"";

At this point a word of caution: the F distribution is asymmetric, so we have to be careful how we compute the tests, the following
table summarises the options available:

Hypothesis Test

The null-hypothesis: there is no difference in standard devi- Reject if F <= F(q_aphas2; N1-1, N2-1) OF F >= Feaiphar2; N1-1, N2-1)
ations (two sided test)

The alternative hypothesis: there is a difference in means (two Reject if F(y_aiphar2: N1-1, N2-1) <= F <= Faphas2; N1-1, N2-1)
sided test)

The alternative hypothesis: Standard deviation of sample 1is Reject if F < Fiygna; N1-1, N2-1)
greater than that of sample 2

The alternative hypothesis: Standard deviation of sample 1 is Reject if F > F_ajpha; N1-1, N2-1)
less than that of sample 2

Where Fy_aipha; N1-1, N2-1) 1S the lower critical value of the F distribution with degrees of freedom N1-1 and N2-1, and Fajpna; N1-1,
n2-1) IS the upper critical value of the F distribution with degrees of freedom N1-1 and N2-1.

The upper and lower critical values can be computed using the quantile function:
F(1-alpha: N1-1, N2-1) = quantile(Fisher_f(N1-1, N2-1), alpha)
mehaN14’N}1):quantiIe(complement(fisher_f(Nl—l, N2-1), alpha))

In our example program we need both upper and lower critical values for alpha and for alpha/2:

3
i

155

htto://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Statistical Distributions and Functions

double ucv = quantile(complement(dist, alpha));

double ucv2 = quantile(complement(dist, alpha 7/ 2));

double lIcv = quantile(dist, alpha);

double lIcv2 = quantile(dist, alpha /7 2);

cout << setw(55) << left << "Upper Critical Value at alpha: " << "= "
<< setprecision(3) << scientific << ucv << "\n"";

cout << setw(55) << left << "Upper Critical Value at alphas2: " << "= "
<< setprecision(3) << scientific << ucv2 << "\n";

cout << setw(55) << left << "Lower Critical Value at alpha: " << "= "
<< setprecision(3) << scientific << lcv << "\n"";
cout << setw(55) << left << "Lower Critical Value at alphas2: " << "= "

<< setprecision(3) << scientific << Icv2 << "\n\n"';

The final step is to perform the comparisons given above, and print out whether the hypothesis is rejected or not:

cout << setw(55) << left <<
"Results for Alternative Hypothesis and alpha"™ << "= '
<< setprecision(4) << fixed << alpha << "\n\n";
cout << "Alternative Hypothesis Conclusion\n™;

cout << "'Standard deviations are unequal (two sided test) -
if((ucv2 < F) || (lev2 > F))

cout << "ACCEPTED\n";
else

cout << ""REJECTED\n";

cout << "Standard deviation 1 is less than standard deviation 2 "
if(lecv > F)

cout << "ACCEPTED\n"';
else

cout << "REJECTED\n"';

cout << "'Standard deviation 1 is greater than standard deviation 2 *';

if(ucv < F)
cout << "ACCEPTED\n";
else

cout << "REJECTED\n"';
cout << endl << endl;

Using the ceramic strength data as an example we get the following output:

3
i

156

htto://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Statistical Distributions and Functions

F test for equal standard deviations
Sample 1:
Number of Observations = 240
Sample Standard Deviation = 65.549
Sample 2:
Number of Observations = 240
Sample Standard Deviation = 61.854
Test Statistic = 1.123
= 8.148e-001
alpha: = 1.238e+000
alphas2: = 1.289e+000
alpha: = 8.080e-001
alphas2: = 7.756e-001
= 0.0500
Conclusion
REJECTED
REJECTED

CDF of test statistic:
Upper Critical Value at
Upper Critical Value at
Value at
Value at
Hypothesis and alpha

Lower Critical
Lower Critical

Results for Alternative
unequal (two sided test)
less than standard deviation 2
greater than standard deviation 2 REJECTED

Standard deviation 1

Alternative Hypothesis
is
Standard deviation 1
In this case we are unable to reject the null-hypothesis, and must instead reject the alternative hypothesis.
By contrast let's see what happens when we use some different sample data:, once again from the NIST Engineering Statistics

Standard deviations are
is
Handbook: A new procedure to assemble a device is introduced and tested for possible improvement in time of assembly. The
question being addressed is whether the standard deviation of the new assembly process (sample 2) is better (i.e., smaller) than

the standard deviation for the old assembly process (sample 1).

157
http://www.renderx.com/

render

http://www.itl.nist.gov/div898/handbook/prc/section3/prc32.htm
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Statistical Distributions and Functions

F test for equal standard deviations
Sample 1:
Number of Observations = 11.00000
Sample Standard Deviation = 4.90820
Sample 2:
Number of Observations = 9.00000
Sample Standard Deviation = 2.58740
Test Statistic = 3.59847
= 9.589e-001
alpha: = 3.347e+000
alphas2: = 4.295e+000
= 3.256e-001
= 2.594e-001
= 0.0500
Conclusion
REJECTED
REJECTED

CDF of test statistic:
Upper Critical Value at
Upper Critical Value at
Value at alpha:

Value at alpha/2:
Hypothesis and alpha

Lower Critical
Lower Critical

Results for Alternative
unequal (two sided test)
less than standard deviation 2
greater than standard deviation 2 ACCEPTED

Alternative Hypothesis
Standard deviations are
is
is
since 3.35 < 3.6 this hypothesis must be rejected. We therefore conclude that there is a change for the better in our standard deviation.

Standard deviation 1
Standard deviation 1

In this case we take our null hypothesis as “standard deviation 1 is less than or equal to standard deviation 2", since this represents
the "no change" situation. So we want to compare the upper critical value at alpha (a one sided test) with the test statistic, and

Binomial Distribution Examples
See also the reference documentation for the Binomial Distribution.

Binomial Coin-Flipping Example
An example of a Bernoulli process is coin flipping. A variable in such a sequence may be called a Bernoulli variable.

This example shows using the Binomial distribution to predict the probability of heads and tails when throwing a coin.
The number of correct answers (say heads), X, is distributed as a binomial random variable with binomial distribution parameters

number of trials (flips) n = 10 and probability (success_fraction) of getting a head p = 0.5 (a 'fair’ coin).

(Our coin is assumed fair, but we could easily change the success_fraction parameter p from 0.5 to some other value to simulate
an unfair coin, say 0.6 for one with chewing gum on the tail, so it is more likely to fall tails down and heads up).

First we need some includes and using statements to be able to use the binomial distribution, some std input and output, and get

started:

158
http://www.renderx.com/

render

http://en.wikipedia.org/wiki/Bernoulli_process
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Statistical Distributions and Functions

#include <boost/math/distributions/binomial.hpp>
using boost::math::binomial;

#include <iostream>

using std::cout; wusing std::endl; using std::left;
#include <iomanip>

using std::setw;

int main()

{
cout << "Using Binomial distribution to predict how many heads and tails." << endl;
try
{

See note with the catch block about why a try and catch block is always a good idea.

First, construct a binomial distribution with parameters success_fraction 1/2, and how many flips.

const double success_fraction = 0.5; // = 50% = 1/2 for a "fair" coin.
int flips = 10;
binomial Flip(Fflips, success_fraction);

cout.precision(4);
Then some examples of using Binomial moments (and echoing the parameters).

cout << "From " << Flips << " one can expect to get on average "'
<< mean(flip) << " heads (or tails)." << endl;
cout << "Mode is " << mode(flip) << endl;
cout << "'Standard deviation is ' << standard_deviation(flip) << endl;
cout << "'So about 2/3 will lie within 1 standard deviation and get between *
<< ceil(mean(flip) - standard_deviation(flip)) << " and ™
<< Floor(mean(flip) + standard_deviation(flip)) << " correct."” << endl;
cout << "Skewness is " << skewness(flip) << endl;
// Skewness of binomial distributions is only zero (symmetrical)
// 1T success_fraction is exactly one half,
// for example, when flipping "fair® coins.
cout << "Skewness iT success_fraction is " << Fflip.success_fraction()
<< " Is " << skewness(flip) << endl << endl; // Expect zero for a "fair® coin.

Now we show a variety of predictions on the probability of heads:

cout << "For " << Flip.trials() << " coin flips: " << endl;
cout << "Probability of getting no heads is " << pdf(flip, 0) << endl;
cout << "Probability of getting at least one head is " << 1. - pdf(flip, 0) << endl;

When we want to calculate the probability for a range or values we can sum the PDF's:

cout << "Probability of getting O or 1 heads is "
<< pdf(flip, 0) + pdf(flip, 1) << endl; // sum of exactly == probabilities

Or we can use the cdf.

cout << "Probability of getting 0 or 1 (<= 1) heads is " << cdf(flip, 1) << endl;
cout << "Probability of getting 9 or 10 heads is " << pdf(Fflip, 9) + pdf(flip, 10) << endl;

Note that using

159

3
i

htto://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Statistical Distributions and Functions

cout << "Probability of getting 9 or 10 heads is " << 1. - cdf(flip, 8) << endl;
is less accurate than using the complement
cout << "Probability of getting 9 or 10 heads is " << cdf(complement(flip, 8)) << endl;

Since the subtraction may involve cancellation error, where as cdf(complement(flip, 8)) does not use such a subtraction
internally, and so does not exhibit the problem.

To get the probability for a range of heads, we can either add the pdfs for each number of heads

cout << "Probability of between 4 and 6 heads (4 or 5 or 6) is "
// P(XX =4) + P(X ==5) + P(X == 6)
<< pdf(flip, 4) + pdf(flip, 5) + pdf(flip, 6) << endl;

But this is probably less efficient than using the cdf

cout << "Probability of between 4 and 6 heads (4 or 5 or 6) is "
// P(X <=6) - P(X<=3) == P(X < 4)
<< cdf(Flip, 6) - cdf(flip, 3) << endl;

Certainly for a bigger range like, 3to 7

cout << "Probability of between 3 and 7 heads (3, 4, 5, 6 or 7) is "
// P(X<=7) - PX<=2) == P(X < 3)
<< cdf(flip, 7) - cdf(flip, 2) << endl;

cout << endl;

Finally, print two tables of probability for the exactly and at least a number of heads.

// Print a table of probability for the exactly a number of heads.
cout << "Probability of getting exactly (==) heads" << endl;
for (int successes = 0; successes <= Flips; successes++)
{ // Say success means getting a head (or equally success means getting a tail).
double probability = pdf(flip, successes);
cout << left << setw(2) << successes << " " << setw(10)
<< probability << " or 1 in " << 1. / probability
<< ", or " << probability * 100. << "%" << endl;
Yy // for i
cout << endl;

// Tabulate the probability of getting between zero heads and O upto 10 heads.
cout << "Probability of getting upto (<=) heads" << endl;
for (int successes = 0; successes <= Flips; successes++)
{ // Say success means getting a head
// (equally success could mean getting a tail).
double probability = cdf(flip, successes); // P(X <= heads)
cout << setw(2) << successes << " " << setw(10) << left
<< probability << " or 1 in " << 1. / probability << ", or "
<< probability * 100. << "%"<< endl;
Yy // for i

The last (0 to 10 heads) must, of course, be 100% probability.

160

3
i

htto://www.renderx.com/

http://docs.sun.com/source/806-3568/ncg_goldberg.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

3
i

Statistical Distributions and Functions

double probability = 0.3;

double q = quantile(Fflip, probability);

std::cout << "Quantile (flip, " << probability << ") = " << q << std::endl; // Quantile [1
(flip, 0.3) =3

probability = 0.6;

q = quantile(flip, probability);

std::cout << "Quantile (flip, " << probability << ") = " << q << std::endl; // Quantile [1
(flip, 0.6) =5

}

catch(const std: :exception& e)

{
//

It is always essential to include try & catch blocks because default policies are to throw exceptions on arguments that are out of
domain or cause errors like numeric-overflow.

Lacking try & catch blocks, the program will abort, whereas the message below from the thrown exception will give some helpful
clues as to the cause of the problem.

std: :cout <<
"\n""'"Message from thrown exception was:\n " << e.what() << std::endl;

}

See binomial_coinflip_example.cpp for full source code, the program output looks like this:

161

htto://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/math/doc/html/../../example/binomial_coinflip_example.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Statistical Distributions and Functions

Using Binomial distribution to predict how many heads and tails.
2/3 will lie within 1 standard deviation and get between 4 and 6 correct.

From 10 one can expect to get on average 5 heads (or tails).

Mode is 5
Standard deviation is 1.581
So about
Skewness is 0
Skewness if success_fraction is 0.5 is 0
For 10 coin flips:
Probability of getting no heads is 0.0009766
Probability of getting at least one head is 0.999
Probability of getting O or 1 heads is 0.01074
Probability of getting O or 1 (<= 1) heads is 0.01074
Probability of getting 9 or 10 heads is 0.01074
Probability of getting 9 or 10 heads is 0.01074
Probability of getting 9 or 10 heads is 0.01074
Probability of between 4 and 6 heads (4 or 5 or 6) is 0.6562
Probability of between 4 and 6 heads (4 or 5 or 6) is 0.6563
Probability of between 3 and 7 heads (3, 4, 5, 6 or 7) is 0.8906
Probability of getting exactly (==) heads
0 0.0009766 or 1 in 1024, or 0.09766%
1 0.009766 or 1 in 102.4, or 0.9766%
2 0.04395 or 1 in 22.76, or 4.395%
3 0.1172 or 1 in 8.533, or 11.72%
4 0.2051 or 1 in 4.876, or 20.51%
5 0.2461 or 1 in 4.063, or 24.61%
6 0.2051 or 1 in 4.876, or 20.51%
7 0.1172 or 1 in 8.533, or 11.72%
8 0.04395 or 1 in 22.76, or 4.395%
9 0.009766 or 1 in 102.4, or 0.9766%
10 0.0009766 or 1 in 1024, or 0.09766%
Probability of getting upto (<=) heads
0.0009766 or 1 in 1024, or 0.09766%
1 0.01074 or 1 in 93.09, or 1.074%
2 0.05469 or 1 in 18.29, or 5.469%%
3 0.1719 or 1 in 5.818, or 17.19%
4 0.377 or 1 in 2.653, or 37.7%
5 0.623 or 1 in 1.605, or 62.3%
6 0.8281 or 1 in 1.208, or 82.81%
7 0.9453 or 1 in 1.058, or 94.53%
8 0.9893 or 1 in 1.011, or 98.93%
9 0.999 or 1 in 1.001, or 99.9%
10 1 or 1 in 1, or 100%
Binomial Quiz Example
A multiple choice test has four possible answers to each of 16 questions. A student guesses the answer to each question, so the
probability of getting a correct answer on any given question is one in four, a quarter, 1/4, 25% or fraction 0.25. The conditions
of the binomial experiment are assumed to be met: n = 16 questions constitute the trials; each question results in one of two possible
outcomes (correct or incorrect); the probability of being correct is 0.25 and is constant if no knowledge about the subject is assumed;
the questions are answered independently if the student's answer to a question in no way influences his/her answer to another

http://www.renderx.com/

question.
First, we need to be able to use the binomial distribution constructor (and some std input/output, of course).
162

render

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Statistical Distributions and Functions

#include <boost/math/distributions/binomial.hpp>
using boost::math::binomial;

#include <iostream>

using std::cout; using std::endl;

using std::ios; using std::flush; using std::left; using std::right; using std::fixed;
#include <iomanip>

using std::setw; using std::setprecision;
#include <exception>

The number of correct answers, X, is distributed as a binomial random variable with binomial distribution parameters: questions
n and success fraction probability p. So we construct a binomial distribution;

int questions = 16; // All the questions in the quiz.

int answers = 4; // Possible answers to each question.

double success_fraction = 1. / answers; // If a random guess, p = 1/4 = 0.25.
binomial quiz(questions, success_fraction);

and display the distribution parameters we used thus:

cout << "In a quiz with " << quiz.trials(Q)
<< " questions and with a probability of guessing right of "
<< quiz.success_fraction() * 100 << ' %"
<< " or 1 in " << static_cast<int>(1l. / quiz.success_fraction()) << endl;

Show a few probabilities of just guessing:

cout << "Probability of getting none right is " << pdf(quiz, 0) << endl; // 0.010023

cout << "Probability of getting exactly one right is " << pdf(quiz, 1) << endl;

cout << "Probability of getting exactly two right is " << pdf(quiz, 2) << endl;

int pass_score = 11;

cout << "Probability of getting exactly " << pass_score << " answers right by chance is "
<< pdf(quiz, pass_score) << endl;

cout << "Probability of getting all " << guestions << " answers right by chance is "
<< pdf(quiz, questions) << endl;

Probability of getting none right is 0.0100226

Probability of getting exactly one right is 0.0534538

Probability of getting exactly two right is 0.133635

Probability of getting exactly 11 right is 0.000247132

Probability of getting exactly all 16 answers right by chance is 2.32831e-010

These don't give any encouragement to guessers!

We can tabulate the 'getting exactly right' (== probabilities thus:

3
i

163

htto://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

3
i

Statistical Distributions and Functions

cout << "\n" "Guessed Probability" << right << endl;
for (int successes = 0; successes <= questions; successes++)

{
double probability = pdf(quiz, successes);
cout << setw(2) << successes << " " << probability << endl;

}

cout << endl;

Guessed Probability

0 0.0100226

1 0.0534538

2 0.133635

3 0.207876

4 0.225199

5 0.180159

6 0.110097

7 0.0524273

8 0.0196602

9 0.00582526
10 0.00135923
11 0.000247132
12 3.43239e-005
13 3.5204e-006
14 2.51457e-007
15 1.11759e-008
16 2.32831e-010

Then we can add the probabilities of some ‘exactly right' like this:

cout << "Probability of getting none or one right is " << pdf(quiz, 0) + pdf(quiz, 1) << endl;

Probability of getting none or one right is 0.0634764

But if more than a couple of scores are involved, it is more convenient (and may be more accurate) to use the Cumulative Distri-
bution Function (cdf) instead:

cout << "Probability of getting none or one right is " << cdf(quiz, 1) << endl;

Probability of getting none or one right is 0.0634764

Since the cdf is inclusive, we can get the probability of getting up to 10 right (<=)

cout << "Probability of getting <= 10 right (to fail) is " << cdf(quiz, 10) << endl;

Probability of getting <= 10 right (to fail) is 0.999715

To get the probability of getting 11 or more right (to pass), it is tempting to use
1 - cdf(quiz, 10)

to get the probability of > 10

164

htto://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

3
i

Statistical Distributions and Functions

cout << "Probability of getting > 10 right (to pass) is " << 1 - cdf(quiz, 10) << endl;

Probability of getting > 10 right (to pass) is 0.000285239

But this should be resisted in favor of using the complements function (see why complements?).

cout << "Probability of getting > 10 right (to pass) is " << cdf(complement(quiz, 10)) << endl;

Probability of getting > 10 right (to pass) is 0.000285239
And we can check that these two, <= 10 and > 10, add up to unity.
BOOST_ASSERT((cdf(quiz, 10) + cdf(complement(quiz, 10))) == 1.);
If we want a < rather than a <= test, because the CDF is inclusive, we must subtract one from the score.

cout << "Probability of getting less than ' << pass_score
<< " (< " << pass_score << ") answers right by guessing is "
<< cdf(quiz, pass_score -1) << endl;

Probability of getting less than 11 (< 11) answers right by guessing is 0.999715

and similarly to get a >= rather than a > test we also need to subtract one from the score (and can again check the sum is unity).
This is because if the cdf is inclusive, then its complement must be exclusive otherwise there would be one possible outcome
counted twice!

cout << "Probability of getting at least " << pass_score
<< "(>= " << pass_score << ") answers right by guessing is "
<< cdf(complement(quiz, pass_score-1))
<< ", only 1 in " << 1/cdf(complement(quiz, pass_score-1)) << endl;

BOOST_ASSERT((cdf(quiz, pass_score -1) + cdf(complement(quiz, pass_score-1))) == 1);

Probability of getting at least 11 (>= 11) answers right by guessing iIs 0.000285239, only 1 [1
in 3505.83

Finally we can tabulate some probabilities:

165

htto://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Statistical Distributions and Functions

cout << "\n" "At most (<=)"""\n"""Guessed OK Probability" << right << endl;
for (int score = 0; score <= questions; score++)
{
cout << setw(2) << score << " " << setprecision(10)
<< cdf(quiz, score) << endl;

}

cout << endl;

At most (<=)
Guessed OK Probability

0 0.01002259576
1 0.0634764398
2 0.1971110499
3 0.4049871101
4 0.6301861752
5 0.8103454274
6 0.9204427481
7 0.9728700437
8 0.9925302796
9 0.9983555346
10 0.9997147608
11 0.9999618928
12 0.9999962167
13 0.9999997371
14 0.9999999886
15 0.9999999998
16 1

cout << "\n" At least (>)"""\n""Guessed OK Probability" << right << endl;
for (int score = 0; score <= questions; score++)
{
cout << setw(2) << score << " " << setprecision(10)
<< cdf(complement(quiz, score)) << endl;

At least (&)
Guessed OK Probability

0 0.9899774042

1 0.9365235602

2 0.8028889501

3 0.5950128899

4 0.3698138248

5 0.1896545726

6 0.07955725188

7 0.02712995629

8 0.00746972044

9 0.001644465374
10 0.0002852391917
11 3.810715862e-005
12 3.783265129e-006
13 2.628657967e-007
14 1.140870154e-008
15 2.328306437e-010
16 0]

We now consider the probabilities of ranges of correct guesses.

First, calculate the probability of getting a range of guesses right, by adding the exact probabilities of each from low ... high.

166

render

htto://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

3

i

Statistical Distributions and Functions

int low = 3; // Getting at least 3 right.

int high = 5; // Getting as most 5 right.
double sum = 0.;
for (int i = low; i1 <= high; i++)
{
sum += pdf(quiz, i);
}

cout.precision(4);

cout << "Probability of getting between "
<< low << " and " << high << " answers right by guessing is "
<< sum << endl; // 0.61323

Probability of getting between 3 and 5 answers right by guessing is 0.6132

Or, usually better, we can use the difference of cdfs instead:

cout << "Probability of getting between " << low << " and " << high << " answers right by guess[1
ing is "
<< cdf(quiz, high) - cdf(quiz, low - 1) << endl; // 0.61323

Probability of getting between 3 and 5 answers right by guessing is 0.6132
And we can also try a few more combinations of high and low choices:

low = 1; high = 6;
cout << "Probability of getting between " << low << ™ and " << high << ™ answers right by guess[1
ing is "

<< cdf(quiz, high) - cdf(quiz, low - 1) << endl; // 1 and 6 P= 0.91042
low = 1; high = 8;
cout << "Probability of getting between " << low << ™ and " << high << ™ answers right by guess[1
ing is "

<< cdf(quiz, high) - cdf(quiz, low - 1) << endl; // 1 <= x 8 P = 0.9825
low = 4; high = 4;
cout << "Probability of getting between " << low << ™ and " << high << ™ answers right by guess[1
ing is "

<< cdf(quiz, high) - cdf(quiz, low - 1) << endl; // 4 <= x 4 P = 0.22520

Probability of getting between 1 and 6 answers right by guessing is 0.9104
Probability of getting between 1 and 8 answers right by guessing is 0.9825
Probability of getting between 4 and 4 answers right by guessing is 0.2252

Using Binomial distribution moments

Using moments of the distribution, we can say more about the spread of results from guessing.

167

htto://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

3
i

Statistical Distributions and Functions

cout << "By guessing, on average, one can expect to get " << mean(quiz) << " correct an[1
swers." << endl;
cout << "Standard deviation is ' << standard_deviation(quiz) << endl;
cout << "So about 2/3 will lie within 1 standard deviation and get between "
<< ceil(mean(quiz) - standard_deviation(quiz)) << " and "
<< Floor(mean(quiz) + standard_deviation(quiz)) << " correct." << endl;
cout << "Mode (the most frequent) is " << mode(quiz) << endl;
cout << "Skewness is " << skewness(quiz) << endl;

By guessing, on average, one can expect to get 4 correct answers.

Standard deviation is 1.732

So about 2/3 will lie within 1 standard deviation and get between 3 and 5 correct.
Mode (the most frequent) is 4

Skewness is 0.2887

Quantiles

The quantiles (percentiles or percentage points) for a few probability levels:

cout << "Quartiles " << quantile(quiz, 0.25) << "™ to "
<< quantile(complement(quiz, 0.25)) << endl; // Quartiles
cout << "1 standard deviation " << quantile(quiz, 0.33) << " to "
<< quantile(quiz, 0.67) << endl; // 1 sd
cout << "Deciles " << quantile(quiz, 0.1) << "™ to "
<< quantile(complement(quiz, 0.1))<< endl; // Deciles
cout << "5 to 95% " << quantile(quiz, 0.05) << "™ to "
<< quantile(complement(quiz, 0.05))<< endl; // 5 to 95%
cout << "2.5 to 97.5% " << quantile(quiz, 0.025) << " to "
<< quantile(complement(quiz, 0.025)) << endl; // 2.5 to 97.5%
cout << "2 to 98% " << quantile(quiz, 0.02) << "™ to "
<< quantile(complement(quiz, 0.02)) << endl; // 2 to 98%

cout << "If guessing then percentiles 1 to 99% will get " << quantile(quiz, 0.01)
<< " to " << quantile(complement(quiz, 0.01)) << " right." << endl;

Notice that these output integral values because the default policy is integer_round_outwards.

Quartiles 2 to 5

1 standard deviation 2 to 5
Deciles 1 to 6

5 to 95% 0 to 7

2.5 to 97.5% 0 to 8

2 to 98% 0 to 8

Quantiles values are controlled by the understanding discrete quantiles quantile policy chosen. The default is integer_round_out-
wards, so the lower quantile is rounded down, and the upper quantile is rounded up.

But we might believe that the real values tell us a little more - see discrete functions.

We could control the policy for all distributions by

#define BOOST MATH_DISCRETE_QUANTILE_POLICY real

at the head of the program would make this policy apply

to this one, and only, translation unit.

Or we can now create a (typedef for) policy that has discrete quantiles real (here avoiding any 'using namespaces ...' statements):

168

htto://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Statistical Distributions and Functions

using boost::math::policies: :policy;

using boost::math::policies: :discrete_quantile;

using boost::math::policies::real;

using boost::math::policies::integer_round_outwards; // Default.

typedef boost::math::policies: :policy<discrete_quantile<real> > real_quantile_policy;

Add a custom binomial distribution called

real_quantile_binomial
that uses

real_quantile_policy

using boost::math::binomial_distribution;
typedef binomial_distribution<double, real_quantile_policy> real_quantile_binomial;

Construct an object of this custom distribution:

real_quantile_binomial quiz_real(questions, success_fraction);

And use this to show some quantiles - that now have real rather than integer values.

cout << "Quartiles " << quantile(quiz, 0.25) << " to
<< quantile(complement(quiz_real, 0.25)) << endl; // Quartiles 2 to 4.6212
cout << "1 standard deviation " << quantile(quiz_real, 0.33) << " to "
<< quantile(quiz_real, 0.67) << endl; // 1 sd 2.6654 4.194
cout << "Deciles " << quantile(quiz_real, 0.1) << ™ to ™
<< quantile(complement(quiz_real, 0.1))<< endl; // Deciles 1.3487 5.7583
cout << "5 to 95% " << quantile(quiz_real, 0.05) << " to "
<< quantile(complement(quiz_real, 0.05))<< endl; // 5 to 95% 0.83739 6.4559
cout << 2.5 to 97.5% " << quantile(quiz_real, 0.025) << " to ™
<< quantile(complement(quiz_real, 0.025)) << endl; // 2.5 to 97.5% 0.42806 7.0688
cout << "2 to 98% " << quantile(quiz_real, 0.02) << " to "
<< quantile(complement(quiz_real, 0.02)) << endl; // 2 to 98% 0.31311 7.7880

cout << "IT guessing, then percentiles 1 to 99% will get " << quantile(quiz_real, 0.01)
<< " to " << quantile(complement(quiz_real, 0.01)) << " right.” << endl;

Real Quantiles

Quartiles 2 to 4.621

1 standard deviation 2.665 to 4.194

Deciles 1.349 to 5.758

5 to 95% 0.8374 to 6.456

2.5 to 97.5% 0.4281 to 7.069

2 to 98% 0.3131 to 7.252

IT guessing then percentiles 1 to 99% will get O to 7.788 right.

See binomial_quiz_example.cpp for full source code and output.

Calculating Confidence Limits on the Frequency of Occurrence for a Binomial Distribution

Imagine you have a process that follows a binomial distribution: for each trial conducted, an event either occurs or does it does
not, referred to as "successes" and "failures"”. If, by experiment, you want to measure the frequency with which successes occur,
the best estimate is given simply by k / N, for k successes out of N trials. However our confidence in that estimate will be shaped
by how many trials were conducted, and how many successes were observed. The static member functions binomial_distri-

169

render

htto://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/math/doc/html/../../example/binomial_quiz_example.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

3
i

Statistical Distributions and Functions

bution<>::find_lower_bound_on_pandbinomial_distribution<>::find_upper_bound_on_p allow you to calculate
the confidence intervals for your estimate of the occurrence frequency.

The sample program binomial_confidence_limits.cpp illustrates their use. It begins by defining a procedure that will print a table
of confidence limits for various degrees of certainty:

#include <iostream>
#include <iomanip>
#include <boost/math/distributions/binomial.hpp>

void confidence_limits_on_frequency(unsigned trials, unsigned successes)
{
//
// trials = Total number of trials.
// successes = Total number of observed successes.
//
// Calculate confidence limits for an observed
// frequency of occurrence that follows a binomial
// distribution.
//
using namespace std;
using namespace boost::math;

// Print out general info:

cout <<
- \n"
""2-Sided Confidence Limits For Success Ratio\n"
' \n\n"';
cout << setprecision(7);
cout << setw(40) << left << "Number of Observations™ << "= " << trials << "\n"";
cout << setw(40) << left << "Number of successes"™ << "= ' << successes << "\n"";
cout << setw(40) << left << "Sample frequency of occurrence™ << "= " << double(sucl]

cesses) / trials << "\n"";

The procedure now defines a table of significance levels: these are the probabilities that the true occurrence frequency lies outside
the calculated interval:

double alpha[] = { 0.5, 0.25, 0.1, 0.05, 0.01, 0.001, 0.0001, 0.00001 };
Some pretty printing of the table header follows:

cout << "\n\n"

\n"
"Confidence Lower CP Upper CP Lower JP Upper JP\n"
" Value (%) Limit Limit Limit Limit\n"
' \n"';

And now for the important part - the intervals themselves - for each value of alpha, we call find_lower_bound_on_p and
find_lower_upper_on_p to obtain lower and upper bounds respectively. Note that since we are calculating a two-sided interval,
we must divide the value of alpha in two.

Please note that calculating two separate single sided bounds, each with risk level a is not the same thing as calculating a two
sided interval. Had we calculate two single-sided intervals each with a risk that the true value is outside the interval of a, then:

* The risk that it is less than the lower bound is a.
and

e The risk that it is greater than the upper bound is also a.

170

htto://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/math/doc/html/../../example/binomial_confidence_limits.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Statistical Distributions and Functions

So the risk it is outside upper or lower bound, is twice alpha, and the probability that it is inside the bounds is therefore not nearly
as high as one might have thought. This is why a/2 must be used in the calculations below.

In contrast, had we been calculating a single-sided interval, for example: "Calculate a lower bound so that we are P% sure that
the true occurrence frequency is greater than some value" then we would not have divided by two.

Finally note that binomial_distribution provides a choice of two methods for the calculation, we print out the results from
both methods in this example:

for(unsigned 1 = 0; 1 < sizeof(alpha)/sizeof(alpha[0]); ++i)

{
// Confidence value:
cout << fixed << setprecision(3) << setw(10) << right << 100 * (1-alpha[i]);
// Calculate Clopper Pearson bounds:
double 1 = binomial_distribution<>::find_lower_bound_on_p(
trials, successes, alphal[i]/2);
double u = binomial_distribution<>::find_upper_bound_on_p(
trials, successes, alphal[i]/2);
// Print Clopper Pearson Limits:
cout << fixed << setprecision(5) << setw(15) << right << I;
cout << fixed << setprecision(5) << setw(15) << right << u;
// Calculate Jeffreys Prior Bounds:
1 = binomial_distribution<>::find_lower_bound_on_p(
trials, successes, alphali]/2,
binomial_distribution<>::jeffreys_prior_interval);
u = binomial_distribution<>::find_upper_bound_on_p(
trials, successes, alphali]/2,
binomial_distribution<>::jeffreys_prior_interval);
// Print Jeffreys Prior Limits:
cout << fixed << setprecision(5) << setw(15) << right << I;
cout << Fixed << setprecision(5) << setw(1l5) << right << u << std::endl;
}

cout << endl;

}

And that's all there is to it. Let's see some sample output for a 2 in 10 success ratio, first for 20 trials:

171

render

htto://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

rende

r

Statistical Distributions and Functions

2-Sided Confidence Limits For Success Ratio

Number of Observations = 20

Number of successes = 4

Sample frequency of occurrence = 0.2

Confidence Lower CP Upper CP Lower JP Upper JP

Value (%) Limit Limit Limit Limit
50.000 0.12840 0.29588 0.14974 0.26916
75.000 0.09775 0.34633 0.11653 0.31861
90.000 0.07135 0.40103 0.08734 0.37274
95.000 0.05733 0.43661 0.07152 0.40823
99.000 0.03576 0.50661 0.04655 0.47859
99.900 0.01905 0.58632 0.02634 0.55960
99.990 0.01042 0.64997 0.01530 0.62495
99.999 0.00577 0.70216 0.00901 0.67897

As you can see, even at the 95% confidence level the bounds are really quite wide (this example is chosen to be easily compared
to the one in the NIST/SEMATECH e-Handbook of Statistical Methods. here). Note also that the Clopper-Pearson calculation
method (CP above) produces quite noticeably more pessimistic estimates than the Jeffreys Prior method (JP above).

Compare that with the program output for 2000 trials:

2-Sided Confidence Limits For Success Ratio

Number of Observations = 2000

Number of successes = 400

Sample frequency of occurrence = 0.2000000

Confidence Lower CP Upper CP Lower JP Upper JP

Value (%) Limit Limit Limit Limit
50.000 0.19382 0.20638 0.19406 0.20613
75.000 0.18965 0.21072 0.18990 0.21047
90.000 0.18537 0.21528 0.18561 0.21503
95.000 0.18267 0.21821 0.18291 0.21796
99.000 0.17745 0.22400 0.17769 0.22374
99.900 0.17150 0.23079 0.17173 0.23053
99.990 0.16658 0.23657 0.16681 0.23631
99.999 0.16233 0.24169 0.16256 0.24143

Now even when the confidence level is very high, the limits are really quite close to the experimentally calculated value of 0.2.
Furthermore the difference between the two calculation methods is now really quite small.

Estimating Sample Sizes for a Binomial Distribution.

Imagine you have a critical component that you know will fail in 1 in N "uses™ (for some suitable definition of "use"). You may
want to schedule routine replacement of the component so that its chance of failure between routine replacements is less than P%.
If the failures follow a binomial distribution (each time the component is "used" it either fails or does not) then the static member
function binomial _distibution<>::find_maximum_number_of trials can be used to estimate the maximum number
of "uses" of that component for some acceptable risk level alpha.

172

http://www.renderx.com/

http://www.itl.nist.gov/div898/handbook/
http://www.itl.nist.gov/div898/handbook/prc/section2/prc241.htm
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

rende

r

Statistical Distributions and Functions

The example program binomial_sample_sizes.cpp demonstrates its usage. It centres on a routine that prints out a table of maximum
sample sizes for various probability thresholds:

void find_max_sample_size(
double p, // success ratio.
unsigned successes) // Total number of observed successes permitted.

{

The routine then declares a table of probability thresholds: these are the maximum acceptable probability that successes or fewer
events will be observed. In our example, successes will be always zero, since we want no component failures, but in other situations
non-zero values may well make sense.

double alpha[] = { 0.5, 0.25, 0.1, 0.05, 0.01, 0.001, 0.0001, 0.00001 }%;

Much of the rest of the program is pretty-printing, the important part is in the calculation of maximum number of permitted trials
for each value of alpha:

for(unsigned i = 0; i1 < sizeof(alpha)/sizeof(alpha[0]); ++i)

{
// Confidence value:
cout << fixed << setprecision(3) << setw(10) << right << 100 * (1-alphal[i]):
// calculate trials:
double t = binomial::find_maximum _number_of trials(
successes, p, alphali]);
t = floor(t);
// Print Trials:
cout << Ffixed << setprecision(b5) << setw(1l5) << right << t << endl;
b

Note that since we're calculating the maximum number of trials permitted, we'll err on the safe side and take the floor of the result.
Had we been calculating the minimum number of trials required to observe a certain number of successes using find_minim-
um_number_of_trials we would have taken the ceiling instead.

We'll finish off by looking at some sample output, firstly for a 1 in 1000 chance of component failure with each use:

Maximum Number of Trials

Success ratio 0.001

Maximum Number of *successes' permitted

Confidence Max Number
Value (%) Of Trials
50.000 692
75.000 287
90.000 105
95.000 51
99.000 10
99.900 0
99.990 0
99.999 0

So 51 "uses" of the component would yield a 95% chance that no component failures would be observed.

Compare that with a 1 in 1 million chance of component failure:

173

htto://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/math/doc/html/../../example/binomial_sample_sizes.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

rende

r

Statistical Distributions and Functions

Maximum Number of Trials

0.0000010
0

Success ratio
Maximum Number of "successes' permitted

Confidence Max Number
Value (%) Of Trials
50.000 693146
75.000 287681
90.000 105360
95.000 51293
99.000 10050
99.900 1000
99.990 100
99.999 10

In this case, even 1000 uses of the component would still yield a less than 1 in 1000 chance of observing a component failure (i.e.
a 99.9% chance of no failure).

Geometric Distribution Examples

For this example, we will opt to #define two macros to control the error and discrete handling policies. For this simple example,
we want to avoid throwing an exception (the default policy) and just return infinity. We want to treat the distribution as if it was
continuous, so we choose a discrete_quantile policy of real, rather than the default policy integer_round_outwards.

#define BOOST_MATH_OVERFLOW_ERROR_POLICY ignore_error
#define BOOST_MATH_DISCRETE_QUANTILE_POLICY real

Caution

It is vital to #include distributions etc after the above #defines

After that we need some includes to provide easy access to the negative binomial distribution, and we need some std library
iostream, of course.

174

htto://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Statistical Distributions and Functions

#include <boost/math/distributions/geometric.hpp>

// for geometric_distribution

using ::boost::math::geometric_distribution; //

using ::boost::math::geometric; // typedef provides default type is double.

using ::boost::math::pdf; // Probability mass function.

using ::boost::math::cdf; // Cumulative density function.

using ::boost::math::quantile;
#include <boost/math/distributions/negative_binomial.hpp>

// for negative_binomial_distribution

using boost: :math::negative_binomial; // typedef provides default type is double.
#include <boost/math/distributions/normal . hpp>

// for negative_binomial_distribution

using boost::math::normal; // typedef provides default type is double.
#include <iostream>

using std::cout; using std::endl;

using std::noshowpoint; using std::fixed; using std::right; using std::left;
#include <iomanip>

using std::setprecision; using std::setw;

#include <limits>
using std::numeric_limits;

It is always sensible to use try and catch blocks because defaults policies are to throw an exception if anything goes wrong.

Simple try'n'catch blocks (see below) will ensure that you get a helpful error message instead of an abrupt (and silent) program
abort.

Throwing a dice

The Geometric distribution describes the probability (p) of a number of failures to get the first success in k Bernoulli trials. (A
Bernoulli trial is one with only two possible outcomes, success of failure, and p is the probability of success).

Suppose an ‘fair' 6-face dice is thrown repeatedly:

double success_fraction = 1./6; // success_fraction (p) = 0.1666
// (so failure_fraction is 1 - success_fraction = 5./6 = 1- 0.1666 = 0.8333)

If the dice is thrown repeatedly until the first time a three appears. The probablility distribution of the number of times it is thrown
not getting a three (not-a-threes number of failures to get a three) is a geometric distribution with the success_fraction = 1/6 =
0.1666 .

We therefore start by constructing a geometric distribution with the one parameter success_fraction, the probability of success.
geometric g6(success_fraction); // type double by default.

To confirm, we can echo the success_fraction parameter of the distribution.
cout << "success fraction of a six-sided dice is " << g6.success_fraction() << endl;

So the probability of getting a three at the first throw (zero failures) is

175

render

htto://www.renderx.com/

http://en.wikipedia.org/wiki/Bernoulli_distribution
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Statistical Distributions and Functions

cout << pdf(g6, 0) << endl; // 0.1667
cout << cdf(g6, 0) << endl; // 0.1667

Note that the cdf and pdf are identical because the is only one throw. If we want the probability of getting the first three on the
2nd throw:

cout << pdf(g6, 1) << endl; // 0.1389
If we want the probability of getting the first three on the 1st or 2nd throw (allowing one failure):
cout << "pdf(g6, 0) + pdf(g6, 1) = " << pdf(g6, 0) + pdfF(g6, 1) << endl;
Or more conveniently, and more generally, we can use the Cumulative Distribution Function CDF.
cout << "cdf(g6, 1) = " << cdf(g6, 1) << endl; // 0.3056
If we allow many more (12) throws, the probability of getting our three gets very high:
cout << "cdf(g6, 12) = " << cdf(g6, 12) << endl; // 0.9065 or 90% probability.
If we want to be much more confident, say 99%, we can estimate the number of throws to be this sure using the inverse or quantile.
cout << "quantile(g6, 0.99) = " << quantile(g6, 0.99) << endl; // 24.26

Note that the value returned is not an integer: if you want an integer result you should use either floor, round or ceil functions, or
use the policies mechanism.

See understanding discrete quantiles.

The geometric distribution is related to the negative binomial negative_binomial_distribution(RealType r, RealType
p) ; with parameter r = 1. So we could get the same result using the negative binomial, but using the geometric the results will be
faster, and may be more accurate.

negative_binomial nb(1l, success_fraction);
cout << pdf(nb, 1) << endl; // 0.1389
cout << cdf(nb, 1) << endl; // 0.3056

We could also the complement to express the required probability as 1 - 0.99 = 0.01 (and get the same result):

cout << "quantile(complement(g6, 1 - p)) " << quantile(complement(g6, 0.01)) << endl; // 24.26

Note too that Boost.Math geometric distribution is implemented as a continuous function. Unlike other implementations (for example
R) it uses the number of failures as a real parameter, not as an integer. If you want this integer behaviour, you may need to enforce
this by rounding the parameter you pass, probably rounding down, to the nearest integer. For example, R returns the success
fraction probability for all values of failures from 0 to 0.999999 thus:

R> formatC(pgeom(0.0001,0.5, FALSE), digits=17) " 0.5"

So in Boost.Math the equivalent is

176

render

htto://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

3
g

Statistical Distributions and Functions

geometric g05(0.5); // Probability of success = 0.5 or 50%
// Output all potentially significant digits for the type, here double.

#ifdef BOOST_NO_CXX11_NUMERIC_LIMITS
int max_digitsl0 = 2 + (boost::math::policies::di[1

gits<double, boost::math::policies::policy<> >() * 30103UL) / 100000UL;
cout << "BOOST_NO_CXX11_ NUMERIC_LIMITS is defined" << endl;

#else
int max_digitsl0 = std::numeric_limits<double>::max_digitsl0;

#endif

cout << "Show all potentially significant decimal digits std::numeric_limits<double>::max_di[]
gitslo = "

<< max_digitsl0 << endl;
cout.precision(max_digitsl0); //

cout << cdf(g05, 0.0001) << endl; // returns 0.5000346561579232, not exact 0.5.
To get the R discrete behaviour, you simply need to round with, for example, the floor function.

cout << cdf(g05, floor(0.0001)) << endl; // returns exactly 0.5

> formatC(pgeom(0.9999999,0.5, FALSE), digits=17) [1] 0.25"
> formatC(pgeom(1.999999,0.5, FALSE), digits=17)[1] " 0.25" k

=1
> formatC(pgeom(1.9999999,0.5, FALSE), digits=17)[1] "0.12500000000000003" k =

2

shows that R makes an arbitrary round-up decision at about 1e7 from the next integer above. This may be convenient in practice,
and could be replicated in C++ if desired.

Surveying customers to find one with a faulty product

A company knows from warranty claims that 2% of their products will be faulty, so the 'success_fraction' of finding a fault is 0.02.
It wants to interview a purchaser of faulty products to assess their 'user experience'.

To estimate how many customers they will probably need to contact in order to find one who has suffered from the fault, we first
construct a geometric distribution with probability 0.02, and then chose a confidence, say 80%, 95%, or 99% to finding a customer
with a fault. Finally, we probably want to round up the result to the integer above using the ceil function. (We could also use a
policy, but that is hardly worthwhile for this simple application.)

(This also assumes that each customer only buys one product: if customers bought more than one item, the probability of finding
a customer with a fault obviously improves.)

177

htto://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

3
i

Statistical Distributions and Functions

cout.precision(5);

geometric g(0.02); // On average, 2 in 100 products are faulty.
double ¢ = 0.95; // 95% confidence.

cout << " quantile(g, " << c << ") = " << quantile(g, ¢) << endl;

cout << "To be " << ¢ * 100
<< "% confident of finding we customer with a fault, need to survey "
<< ceil(quantile(g, c)) << " customers." << endl; // 148

c = 0.99; // Very confident.

cout << "To be " << ¢ * 100
<< "% confident of finding we customer with a fault, need to survey "
<< ceil(quantile(g, c)) << " customers." << endl; // 227

c = 0.80; // Only reasonably confident.

cout << "To be " << ¢ * 100
<< "% confident of finding we customer with a fault, need to survey "
<< ceil(quantile(g, ¢c)) << " customers.” << endl; // 79

Basket Ball Shooters

According to Wikipedia, average pro basket ball players get free throws in the baskets 70 to 80 % of the time, but some get as
high as 95%, and others as low as 50%. Suppose we want to compare the probabilities of failing to get a score only on the first or
on the fifth shot? To start we will consider the average shooter, say 75%. So we construct a geometric distribution with success_frac-
tion parameter 75/100 = 0.75.

cout.precision(2);
geometric gav(0.75); // Shooter averages 7.5 out of 10 in the basket.

What is probability of getting 1st try in the basket, that is with no failures?
cout << "Probability of score on 1st try = " << pdf(gav, 0) << endl; // 0.75

This is, of course, the success_fraction probability 75%. What is the probability that the shooter only scores on the fifth shot? So
there are 5-1 = 4 failures before the first success.

cout << "Probability of score on 5th try = " << pdf(gav, 4) << endl; // 0.0029

Now compare this with the poor and the best players success fraction. We need to constructing new distributions with the different
success fractions, and then get the corresponding probability density functions values:

geometric gbest(0.95);

cout << "Probability of score on 5th try = " << pdf(gbest, 4) << endl; // 5.9e-6
geometric gmediocre(0.50);
cout << "Probability of score on 5th try = " << pdf(gmediocre, 4) << endl; // 0.031

So we can see the very much smaller chance (0.000006) of 4 failures by the best shooters, compared to the 0.03 of the mediocre.
Estimating failures
Of course one man's failure is an other man's success. So a fault can be defined as a 'success'.

If a fault occurs once after 100 flights, then one might naively say that the risk of fault is obviously 1 in 100 = 1/100, a probability
of 0.01.

This is the best estimate we can make, but while it is the truth, it is not the whole truth, for it hides the big uncertainty when estim-
ating from a single event. "One swallow doesn't make a summer." To show the magnitude of the uncertainty, the geometric (or
the negative binomial) distribution can be used.

178

htto://www.renderx.com/

http://en.wikipedia.org/wiki/Free_throw
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Statistical Distributions and Functions

If we chose the popular 95% confidence in the limits, corresponding to an alpha of 0.05, because we are calculating a two-sided
interval, we must divide alpha by two.

double alpha = 0.05;

double k = 100; // So frequency of occurrence is 1/100.

cout << "Probability is failure is " << 1/k << endl;

double t = geometric::find_lower_bound_on_p(k, alphas2);

cout << "geometric::find_lower_bound_on_p(" << int(k) << ", " << alpha/2 << ™) ="
<< t << endl; // 0.00025

t = geometric::find_upper_bound_on_p(k, alpha/2);

cout << "geometric::find_upper_bound_on_p(" << int(k) << ", " << alpha/2 << ™) ="
<< t << endl; // 0.037

So while we estimate the probability is 0.01, it might lie between 0.0003 and 0.04. Even if we relax our confidence to alpha =
90%, the bounds only contract to 0.0005 and 0.03. And if we require a high confidence, they widen to 0.00005 to 0.05.

alpha = 0.1; // 90% confidence.

t = geometric::find_lower_bound_on_p(k, alpha/2);

cout << ""geometric::find_lower_bound_on_p(" << int(k) << ", " << alpha/2 << ™) ="
<< t << endl; // 0.0005

t = geometric::find_upper_bound_on_p(k, alpha/2);

cout << ""geometric::find_upper_bound_on_p(" << int(k) << ", " << alpha/2 << ™) ="
<< t << endl; // 0.03

alpha = 0.01; // 99% confidence.
t = geometric::find_lower_bound_on_p(k, alpha/2);
cout << ""geometric::find_lower_bound_on_p(" << int(k) << ", " << alphas/2 << ™) ="
<< t << endl; // 5e-005
t = geometric::find_upper_bound_on_p(k, alpha/2);
cout << ""geometric::find_upper_bound_on_p(" << int(k) << ", " << alpha/2 << ™) ="
<< t << endl; // 0.052

In real life, there will usually be more than one event (fault or success), when the negative binomial, which has the neccessary
extra parameter, will be needed.

As noted above, using a catch block is always a good idea, even if you hope not to use it!

}

catch(const std: :exception& e)
{ // Since we have set an overflow policy of ignore_error,
// an overflow exception should never be thrown.
std: :cout << "\nMessage from thrown exception was:\n " << e.what() << std::endl;

For example, without a ignore domain error policy, if we asked for
pdf(g. -1)
for example, we would get an unhelpful abort, but with a catch:

Message from thrown exception was:
Error in function boost::math::pdf(const exponential_distribution<double>&, double):
Number of failures argument is -1, but must be >= 0 !

See full source C++ of this example at geometric_examples.cpp

See negative_binomial confidence interval example.

3
i

179

htto://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/math/doc/html/../../example/geometric_examples.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

rende

r

Statistical Distributions and Functions

Negative Binomial Distribution Examples

(See also the reference documentation for the Negative Binomial Distribution.)

Calculating Confidence Limits on the Frequency of Occurrence for the Negative Binomial
Distribution

Imagine you have a process that follows a negative binomial distribution: for each trial conducted, an event either occurs or does
it does not, referred to as "successes" and "failures". The frequency with which successes occur is variously referred to as the
success fraction, success ratio, success percentage, occurrence frequency, or probability of occurrence.

If, by experiment, you want to measure the the best estimate of success fraction is given simply by k / N, for k successes out of N
trials.

However our confidence in that estimate will be shaped by how many trials were conducted, and how many successes were observed.
The static member functions negative_binomial_distribution<>::find_lower_bound_on_p and negative_binomi-
al_distribution<>::find_upper_bound_on_p allow you to calculate the confidence intervals for your estimate of the

success fraction.
The sample program neg_binom_confidence_limits.cpp illustrates their use.

First we need some includes to access the negative binomial distribution (and some basic std output of course).

#include <boost/math/distributions/negative_binomial .hpp>
using boost: :math::negative_binomial;

#include <iostream>

using std::cout; using std::endl;

#include <iomanip>

using std: :setprecision;

using std::setw; using std::left; using std::fixed; using std::right;

First define a table of significance levels: these are the probabilities that the true occurrence frequency lies outside the calculated
interval:

double alpha[] = { 0.5, 0.25, 0.1, 0.05, 0.01, 0.001, 0.0001, 0.00001 };
Confidence value as % is (1 - alpha) * 100, so alpha 0.05 == 95% confidence that the true occurrence frequency lies inside the
calculated interval.

We need a function to calculate and print confidence limits for an observed frequency of occurrence that follows a negative bino-
mial distribution.

180

htto://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/math/doc/html/../../example/neg_binom_confidence_limits.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Statistical Distributions and Functions

void confidence_limits_on_frequency(unsigned trials, unsigned successes)
{

// trials = Total number of trials.

// successes = Total number of observed successes.

// failures = trials - successes.

// success_fraction = successes /trials.

// Print out general info:

cout <<
" "
"2-Sided Confidence Limits For Success Fraction\n"
" \n\n"";
cout << setprecision(7);
cout << setw(40) << left << "Number of trials" << " = " << trials << "\n";
cout << setw(40) << left << "Number of successes"™ << " = " << successes << "\n"";
cout << setw(40) << left << "Number of failures"™ << "™ = " << trials - successes << "\n";
cout << setw(40) << left << "Observed frequency of occurrence" << " = " << double(sucl]
cesses) / trials << "\n"";
// Print table header:
cout << "\n\n"
" \n"
"Confidence Lower Upper\n"
" Value (%) Limit Limit\n"
" \n"";

And now for the important part - the bounds themselves. For each value of alpha, we call find_lower_bound_on_p and
find_upper_bound_on_p to obtain lower and upper bounds respectively. Note that since we are calculating a two-sided interval,
we must divide the value of alpha in two. Had we been calculating a single-sided interval, for example: "Calculate a lower bound
so that we are P% sure that the true occurrence frequency is greater than some value" then we would not have divided by two.

// Now print out the upper and lower limits for the alpha table values.
for(unsigned 1 = 0; 1 < sizeof(alpha)/sizeof(alphal[0]); ++i)

{
// Confidence value:
cout << Fixed << setprecision(3) << setw(10) << right << 100 * (1-alphal[i]):
// Calculate bounds:
double lower = negative_binomial::find_lower_bound_on_p(trials, successes, alpha[i]/2);
double upper = negative_binomial::find_upper_bound_on_p(trials, successes, alphal[i]/2);
// Print limits:
cout << Fixed << setprecision(5) << setw(1l5) << right << lower;
cout << Fixed << setprecision(5) << setw(1l5) << right << upper << endl;
}

cout << endl;
} // void confidence_limits_on_frequency(unsigned trials, unsigned successes)

And then call confidence_limits_on_frequency with increasing numbers of trials, but always the same success fraction 0.1, or 1
in 10.

int main()
{
confidence_limits_on_frequency(20, 2); // 20 trials, 2 successes, 2 in 20, =1 in 10 = 0.1 [
success fraction.
confidence_limits_on_frequency (200, 20); // More trials, but same 0.1 success fraction.
confidence_limits_on_frequency (2000, 200); // Many more trials, but same 0.1 success fraction.

return O;
¥ /7 int mainQ)

Let's see some sample output for a 1 in 10 success ratio, first for a mere 20 trials:

181

3
i

htto://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

rende

r

Statistical Distributions and Functions

2-Sided Confidence Limits For Success Fraction

Number of trials = 20

Number of successes = 2

Number of failures = 18

Observed frequency of occurrence = 0.1

Confidence Lower Upper

Value (%) Limit Limit
50.000 0.04812 0.13554
75.000 0.03078 0.17727
90.000 0.01807 0.22637
95.000 0.01235 0.26028
99.000 0.00530 0.33111
99.900 0.00164 0.41802
99.990 0.00051 0.49202
99.999 0.00016 0.55574

As you can see, even at the 95% confidence level the bounds (0.012 to 0.26) are really very wide, and very asymmetric about the
observed value 0.1.

Compare that with the program output for a mass 2000 trials:

2-Sided Confidence Limits For Success Fraction

Number of trials = 2000
Number of successes = 200
Number of failures = 1800
Observed frequency of occurrence = 0.1
Confidence Lower Upper
Value (%) Limit Limit

50.000 0.09536 0.10445

75.000 0.09228 0.10776

90.000 0.08916 0.11125

95.000 0.08720 0.11352

99.000 0.08344 0.11802

99.900 0.07921 0.12336

99.990 0.07577 0.12795

99.999 0.07282 0.13206

Now even when the confidence level is very high, the limits (at 99.999%, 0.07 to 0.13) are really quite close and nearly symmetric
to the observed value of 0.1.

Estimating Sample Sizes for the Negative Binomial.

Imagine you have an event (let's call it a "failure” - though we could equally well call it a success if we felt it was a 'good' event)
that you know will occur in 1 in N trials. You may want to know how many trials you need to conduct to be P% sure of observing
at least k such failures. If the failure events follow a negative binomial distribution (each trial either succeeds or fails) then the
static member function negative_binomial_distibution<>::find_minimum_number_of_trials canbe used to estimate
the minimum number of trials required to be P% sure of observing the desired number of failures.

The example program neg_binomial_sample_sizes.cpp demonstrates its usage.

It centres around a routine that prints out a table of minimum sample sizes (number of trials) for various probability thresholds:

182

http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/math/doc/html/../../example/neg_binomial_sample_sizes.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

3
i

Statistical Distributions and Functions

void find_number_of_trials(double failures, double p);
First define a table of significance levels: these are the maximum acceptable probability that failure or fewer events will be observed.
double alpha[] = { 0.5, 0.25, 0.1, 0.05, 0.01, 0.001, 0.0001, 0.00001 }%;

Confidence value as % is (1 - alpha) * 100, so alpha 0.05 == 95% confidence that the desired number of failures will be observed.
The values range from a very low 0.5 or 50% confidence up to an extremely high confidence of 99.999.

Much of the rest of the program is pretty-printing, the important part is in the calculation of minimum number of trials required
for each value of alpha using:

(int)ceil(negative_binomial::find_minimum_number_of_trials(failures, p, alphal[i]):
find_minimum_number_of trials returns a double, so cei I rounds this up to ensure we have an integral minimum number of trials.

void find_number_of_trials(double failures, double p)

{
// trials = number of trials
// failures = number of failures before achieving required success(es).
// p = success fraction (0 <= p <= 1.).
//
// Calculate how many trials we need to ensure the
// required number of failures DOES exceed "failures™.
cout << "\n""Target number of failures = " << (int)failures;
cout << ', Success fraction = " << fixed << setprecision(l) << 100 * p << "%" << endl;
// Print table header:
cout << " \n"'
"Confidence Min Number\n®
" Value (%) Of Trials \n"

\n"';
// Now print out the data for the alpha table values.
for(unsigned i = 0; i < sizeof(alpha)/sizeof(alpha[0]); ++i)
{ // Confidence values %:
cout << fixed << setprecision(3) << setw(10) << right << 100 * (1-alphal[i]) << "
// Find_minimum_number_of_trials
<< setw(6) << right
<< (int)ceil(negative_binomial::find_minimum_number_of_ trials(failures, p, alphal[i]))
<< endl;

}

cout << endl;
} // void find_number_of_trials(double failures, double p)

finally we can produce some tables of minimum trials for the chosen confidence levels:

183

htto://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Statistical Distributions and Functions

int main()

{
find_number_of_trials(5, 0.5);
find_number_of_trials(50, 0.5);
find_number_of_trials(500, 0.5);
find_number_of_trials(50, 0.1);
find_number_of_trials(500, 0.1);
find_number_of_trials(5, 0.9);

return 0O;
¥} /7 int mainQ)

@ Note
Since we're calculating the minimum number of trials required, we'll err on the safe side and take the ceiling of
the result. Had we been calculating the maximum number of trials permitted to observe less than a certain number
of failures then we would have taken the floor instead. We would also have called find_minimum_num-
ber_of_trials like this:

floor(negative_binomial: :find_minimum_number_of_trials(failures, p, alphali]))

which would give us the largest number of trials we could conduct and still be P% sure of observing failures or
less failure events, when the probability of success is p.

We'll finish off by looking at some sample output, firstly suppose we wish to observe at least 5 "failures" with a 50/50 (0.5) chance
of success or failure:

Target number of failures = 5, Success fraction = 50%

Confidence Min Number

Value (%) Of Trials
50.000 11
75.000 14
90.000 17
95.000 18
99.000 22
99.900 27
99.990 31
99.999 36

So 18 trials or more would yield a 95% chance that at least our 5 required failures would be observed.

Compare that to what happens if the success ratio is 90%:

184

render

htto://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Statistical Distributions and Functions

5.000,

90.000%

Success fraction

Target number of failures

Confidence Min Number

Value (%) Of Trials
000 57

000 73

000 91

103

127

159

50.
75.

95.
99.
99.
217

000
900
99.990
99

meeting a sales quota.
What is the probability mass (density) function (pdf) for selling the last (fifth) candy bar at the nth house?
success on the last trial. (A Bernoulli trial is one with only two possible outcomes, success of failure, and p is the probability of

Negative Binomial Sales Quota Example.
is not supposed to return home until five candy bars have been sold. So the child goes door to door, selling candy bars. At each

90.
000
189
So now 103 trials are required to observe at least 5 failures with 95% certainty.
This example program negative_binomial_examplel.cpp (full source code) demonstrates a simple use to find the probability of

-999
Based on a problem by Dr. Diane Evans, Professor of Mathematics at Rose-Hulman Institute of Technology.
Pat is required to sell candy bars to raise money for the 6th grade field trip. There are thirty houses in the neighborhood, and Pat

house, there is a 0.4 probability (40%) of selling one candy bar and a 0.6 probability (60%) of selling nothing.
The Negative Binomial(r, p) distribution describes the probability of k failures and r successes in k+r Bernoulli(p) trials with

mial distribution can be implemented with this library: it is also deliberately over-commented.

In this example, we will deliberately produce a variety of calculations and outputs to demonstrate the ways that the negative bino-
First we need to #define macros to control the error and discrete handling policies. For this simple example, we want to avoid

success). See also Bernoulli distribution and Bernoulli applications.
throwing an exception (the default policy) and just return infinity. We want to treat the distribution as if it was continuous, so we

choose a discrete_quantile policy of real, rather than the default policy integer_round_outwards.
#define BOOST_MATH_OVERFLOW_ERROR_POLICY ignore_error
#define BOOST_MATH_DISCRETE_QUANTILE_POLICY real

After that we need some includes to provide easy access to the negative binomial distribution,

Caution
It is vital to #include distributions etc after the above #defines

http://www.renderx.com/

and we need some std library iostream, of course.
185

render

http://www.boost.org/doc/libs/release/libs/math/doc/html/../../example/negative_binomial_example1.cpp
http://en.wikipedia.org/wiki/Negative_binomial_distribution
http://en.wikipedia.org/wiki/Bernoulli_distribution
http://en.wikipedia.org/wiki/Bernoulli_distribution
http://www.math.uah.edu/stat/bernoulli/Introduction.xhtml
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

rende

r

Statistical Distributions and Functions

#include <boost/math/distributions/negative_binomial.hpp>
// for negative_binomial_distribution
using boost: :math::negative_binomial; // typedef provides default type is double.
using ::boost::math::pdf; // Probability mass function.
using ::boost::math::cdf; // Cumulative density function.
using ::boost::math::quantile;
#include <iostream>
using std::cout; using std::endl;
using std::noshowpoint; using std::fixed; using std::right; using std::left;
#include <iomanip>
using std::setprecision; using std::setw;

#include <limits>
using std::numeric_limits;

It is always sensible to use try and catch blocks because defaults policies are to throw an exception if anything goes wrong.

A simple catch block (see below) will ensure that you get a helpful error message instead of an abrupt program abort.

try
{

Selling five candy bars means getting five successes, so successes r = 5. The total number of trials (n, in this case, houses visited)
this takes is therefore = sucesses + failures or k + r =k + 5.

double sales_quota = 5; // Pat"s sales quota - successes (r).
At each house, there is a 0.4 probability (40%) of selling one candy bar and a 0.6 probability (60%) of selling nothing.
double success_fraction = 0.4; // success_fraction (p) - so failure_fraction is 0.6.

The Negative Binomial(r, p) distribution describes the probability of k failures and r successes in k+r Bernoulli(p) trials with
success on the last trial. (A Bernoulli trial is one with only two possible outcomes, success of failure, and p is the probability of
success).

We therefore start by constructing a negative binomial distribution with parameters sales_quota (required successes) and probab-
ility of success.

negative_binomial nb(sales_quota, success_fraction); // type double by default.

To confirm, display the success_fraction & successes parameters of the distribution.

186

htto://www.renderx.com/

http://en.wikipedia.org/wiki/Bernoulli_distribution
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

3
i

Statistical Distributions and Functions

cout << "Pat has a sales per house success rate of " << success_fraction
<< "_\nTherefore he would, on average, sell " << nb.success_fraction() * 100
<< " bars after trying 100 houses." << endl;

int all_houses = 30; // The number of houses on the estate.

cout << "With a success rate of " << nb.success_fraction()
<< ", he might expect, on average,\n"
"to need to visit about " << success_fraction * all_houses
<< " houses in order to sell all " << nb.successes() << " bars. " << endl;

Pat has a sales per house success rate of 0.4.

Therefore he would, on average, sell 40 bars after trying 100 houses.
With a success rate of 0.4, he might expect, on average,

to need to visit about 12 houses in order to sell all 5 bars.

The random variable of interest is the number of houses that must be visited to sell five candy bars, so we substitute k =n - 5 into
a negative_binomial(5, 0.4) and obtain the Probability Density Function of the distribution of houses visited. Obviously, the best
possible case is that Pat makes sales on all the first five houses.

We calculate this using the pdf function:

cout << "Probability that Pat finishes on the " << sales_quota << "th house is "
<< pdf(nb, 5 - sales_quota) << endl; // == pdf(nb, 0)

Of course, he could not finish on fewer than 5 houses because he must sell 5 candy bars. So the 5th house is the first that he could
possibly finish on.

To finish on or before the 8th house, Pat must finish at the 5th, 6th, 7th or 8th house. The probability that he will finish on exactly
(==) on any house is the Probability Density Function (pdf).

cout << "Probability that Pat finishes on the 6th house is "
<< pdf(nb, 6 - sales_quota) << endl;

cout << "Probability that Pat finishes on the 7th house is "
<< pdf(nb, 7 - sales_quota) << endl;

cout << "Probability that Pat finishes on the 8th house is "
<< pdf(nb, 8 - sales_quota) << endl;

Probability that Pat finishes on the 6th house is 0.03072
Probability that Pat finishes on the 7th house is 0.055296
Probability that Pat finishes on the 8th house is 0.077414

The sum of the probabilities for these houses is the Cumulative Distribution Function (cdf). We can calculate it by adding the in-
dividual probabilities.

187

htto://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Statistical Distributions and Functions

cout << "Probability that Pat finishes on or before the 8th house is sum "
"\n" << "pdf(sales_quota) + pdf(6) + pdf(7) + pdf(8) = "
// Sum each of the mass/density probabilities for houses sales _quota = 5, 6, 7, & 8.
<< pdf(nb, 5 - sales_quota) // 0 failures.
+ pdf(nb, 6 - sales_quota) // 1 failure.
+ pdf(nb, 7 - sales_quota) // 2 fTailures.
+ pdf(nb, 8 - sales_quota) // 3 failures.
<< endl;

pdf(sales_quota) + pdf(6) + pdf(7) + pdf(8) = 0.17367
Or, usually better, by using the negative binomial cumulative distribution function.

cout << "\nProbability of selling his quota of " << sales_quota
<< " bars\non or before the " << 8 << "th house is "
<< cdf(nb, 8 - sales_quota) << endl;

Probability of selling his quota of 5 bars on or before the 8th house is 0.17367

cout << "\nProbability that Pat finishes exactly on the 10th house is "
<< pdf(nb, 10 - sales_quota) << endl;

cout << "\nProbability of selling his quota of " << sales_quota
<< " bars\non or before the " << 10 << "th house is "
<< cdf(nb, 10 - sales_quota) << endl;

Probability that Pat finishes exactly on the 10th house is 0.10033
Probability of selling his quota of 5 bars on or before the 10th house is 0.3669

cout << "Probability that Pat finishes exactly on the 11th house is "
<< pdf(nb, 11 - sales_quota) << endl;

cout << "\nProbability of selling his quota of " << sales_quota
<< " bars\non or before the " << 11 << "th house is "
<< cdf(nb, 11 - sales_quota) << endl;

Probability that Pat finishes on the 11th house is 0.10033
Probability of selling his quota of 5 candy bars
on or before the 11th house is 0.46723

cout << "Probability that Pat finishes exactly on the 12th house is "
<< pdf(nb, 12 - sales_quota) << endl;

cout << "\nProbability of selling his quota of " << sales_quota
<< " bars\non or before the " << 12 << "th house is "
<< cdf(nb, 12 - sales_qguota) << endl;

Probability that Pat finishes on the 12th house is 0.094596
Probability of selling his quota of 5 candy bars
on or before the 12th house is 0.56182

Finally consider the risk of Pat not selling his quota of 5 bars even after visiting all the houses. Calculate the probability that he
will sell on or before the last house: Calculate the probability that he would sell all his quota on the very last house.

188

3
i

htto://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

3
i

Statistical Distributions and Functions

cout << "Probability that Pat finishes on the " << all_houses
<< " house is " << pdf(nb, all_houses - sales_quota) << endl;

Probability of selling his quota of 5 bars on the 30th house is
Probability that Pat finishes on the 30 house is 0.00069145

when he'd be very unlucky indeed!

What is the probability that Pat exhausts all 30 houses in the neighborhood, and still doesn't sell the required 5 candy bars?

cout << "\nProbability of selling his quota of " << sales_quota
<< " bars\non or before the " << all_houses << "th house is "
<< cdf(nb, all_houses - sales_quota) << endl;

Probability of selling his quota of 5 bars
on or before the 30th house is 0.99849

So the risk of failing even after visiting all the houses is 1 - this probability,
1 - cdf(nb, all_houses - sales_quota

But using this expression may cause serious inaccuracy, so it would be much better to use the complement of the cdf: So the risk
of failing even at, or after, the 31th (non-existent) houses is 1 - this probability,

1 - cdf(nb, all_houses - sales_quota)

But using this expression may cause serious inaccuracy. So it would be much better to use the __complement of the cdf (see why
complements?).

cout << "\nProbability of failing to sell his quota of " << sales_quota
<< " bars\neven after visiting all " << all_houses << " houses is "
<< cdf(complement(nb, all_houses - sales_quota)) << endl;

Probability of failing to sell his quota of 5 bars
even after visiting all 30 houses is 0.0015101

We can also use the quantile (percentile), the inverse of the cdf, to predict which house Pat will finish on. So for the 8th house:

189

htto://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Statistical Distributions and Functions

double p = cdf(nb, (8 - sales_quota));
cout << "Probability of meeting sales quota on or before 8th house is "<< p << endl;

Probability of meeting sales quota on or before 8th house is 0.174
cout << "If the confidence of meeting sales quota is " << p

<< ", then the finishing house is " << quantile(nb, p) + sales_quota << endl;

cout<< " quantile(nb, p) = " << quantile(nb, p) << endl;

IT the confidence of meeting sales quota is 0.17367, then the finishing house is 8

Demanding absolute certainty that all 5 will be sold, implies an infinite number of trials. (Of course, there are only 30 houses on
the estate, so he can't ever be certain of selling his quota).

cout << "If the confidence of meeting sales quota is " << 1.
<< ', then the finishing house is " << quantile(nb, 1) + sales_quota << endl;
// 1_#INF == infinity.

IT the confidence of meeting sales quota is 1, then the finishing house is 1.#INF
And similarly for a few other probabilities:

cout << "If the confidence of meeting sales quota is " << O.
<< ', then the finishing house is " << quantile(nb, 0.) + sales_quota << endl;

cout << "If the confidence of meeting sales quota is " << 0.5
<< ', then the finishing house is " << quantile(nb, 0.5) + sales_quota << endl;

cout << "If the confidence of meeting sales quota is " << 1 - 0.00151 // 30 th

<< ', then the finishing house is " << quantile(nb, 1 - 0.00151) + sales_quota << endl;

IT the confidence of meeting sales quota is 0, then the finishing house is 5
IT the confidence of meeting sales quota is 0.5, then the finishing house is 11.337
IT the confidence of meeting sales quota is 0.99849, then the finishing house is 30

Notice that because we chose a discrete quantile policy of real, the result can be an 'unreal’ fractional house.

If the opposite is true, we don't want to assume any confidence, then this is tantamount to assuming that all the first sales_quota
trials will be successful sales.

cout << "If confidence of meeting quota is zero\n(we assume all houses are successful sales)"
", then Finishing house is " << sales_guota << endl;

IT confidence of meeting quota is zero (we assume all houses are successful sales), then fin[]
ishing house is 5
IT confidence of meeting quota is 0, then finishing house is 5

We can list quantiles for a few probabilities:

190

3
i

htto://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

rende

r

Statistical Distributions and Functions

double ps[] = {0., 0.001, 0.01, 0.05, 0.1, 0.5, 0.9, 0.95, 0.99, 0.999, 1.%};
// Confidence as fraction = l-alpha, as percent = 100 * (1-alpha[i]) %
cout.precision(3);

for (unsigned i = 0; i < sizeof(ps)/sizeof(ps[0]); i++)

{
cout << "If confidence of meeting quota is " << ps[i]
<< ', then finishing house is " << quantile(nb, ps[i]) + sales_quota
<< endl;

IT confidence of meeting quota
IT confidence of meeting quota
IT confidence of meeting quota
IT confidence of meeting quota
IT confidence of meeting quota
IT confidence of meeting quota
IT confidence of meeting quota
IT confidence of meeting quota
IT confidence of meeting quota
IT confidence of meeting quota
IT confidence of meeting quota

0, then finishing house is 5

.001, then finishing house is 5
.01, then Ffinishing house is 5
.05, then finishing house is 6.2
.1, then finishing house is 7.06
.5, then finishing house is 11.3
.9, then finishing house is 17.8
.95, then finishing house is 20.1
.99, then finishing house is 24.8
-999, then finishing house is 31.1
1, then Ffinishing house is 1.#INF

nuonnonnnnononon
[eNeoNoNeoNoNoNoNeoNe]

We could have applied a ceil function to obtain a ‘worst case' integer value for house.
ceil(quantile(nb, ps[il]))
Or, if we had used the default discrete quantile policy, integer_outside, by omitting

#define BOOST_MATH_DISCRETE_QUANTILE_POLICY real

we would have achieved the same effect.

The real result gives some suggestion which house is most likely. For example, compare the real and integer_outside for 95%
confidence.

IT confidence of meeting quota is 0.95, then finishing house is 20.1
IT confidence of meeting quota is 0.95, then finishing house is 21

The real value 20.1 is much closer to 20 than 21, so integer_outside is pessimistic. We could also use integer_round_nearest policy
to suggest that 20 is more likely.

Finally, we can tabulate the probability for the last sale being exactly on each house.

191

htto://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Statistical Distributions and Functions

3
i

cout << "\nHouse for " << sales_quota << "th (last) sale. Probability (%)" << endl;
cout.precision(5);
for (int i = (int)sales_quota; i < all_houses+1; i++)
{
cout << left << setw(3) << i << " 1
' << setw(8) << cdf(nb, 1 - sales_quota) << endl;
}

cout << endl;

House for 5 th (last) sale. Probability (%)

5 0.01024
6 0.04096
7 0.096256
8 0.17367
9 0.26657
10 0.3669
11 0.46723
12 0.56182
13 0.64696
14 0.72074
15 0.78272
16 0.83343
17 0.874
18 0.90583
19 0.93039
20 0.94905
21 0.96304
22 0.97342
23 0.98103
24 0.98655
25 0.99053
26 0.99337
27 0.99539
28 0.99681
29 0.9978
30 0.99849

As noted above, using a catch block is always a good idea, even if you do not expect to use it.

}

catch(const std::exception& e)
{ /7 Since we have set an overflow policy of ignore_error,
// an overflow exception should never be thrown.
std: :cout << "\nMessage from thrown exception was:\n " << e.what() << std::endl;

For example, without a ignore domain error policy, if we asked for
pdf(nb, -1)
for example, we would get:

Message from thrown exception was:
Error in function boost::math::pdf(const negative_binomial_distribution<double>&, double):
Number of failures argument is -1, but must be >= 0 !

Negative Binomial Table Printing Example.

Example program showing output of a table of values of cdf and pdf for various k failures.

192

htto://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Statistical Distributions and Functions

// Print a table of values that can be used to plot
// using Excel, or some other superior graphical display tool.

cout.precision(1l7); // Use max_digitsl0 precision, the maximum available for a reference table.
cout << showpoint << endl; // include trailing zeros.

// This is a maximum possible precision for the type (here double) to suit a reference table.
int maxk = static_cast<int>(2. * mynbdist.successes() / mynbdist.success_fraction());

uwmﬁ

// This maxk shows most of the range of interest, probability about 0.0001 to 0.999.

cout <

< \nt ok

pdf

for (int k = 0; k < maxk; k++)

{

cdf""\n" << endl;

cout << right << setprecision(1l7) << showpoint

<<
<<
<<

right << setw(3) << k

<< "

left << setw(25) << pdf(mynbdist, static_cast<double>(k))
left << setw(25) << cdf(mynbdist, static_cast<double>(k))

<< endl;

}
cout << endl;

k pdf cdf

0, 1.5258789062500000e-005 1.5258789062500003e-005
1, 9.1552734375000000e-005 0.00010681152343750000
2, 0.00030899047851562522 0.00041580200195312500
3, 0.00077247619628906272 0.0011882781982421875
4, 0.0015932321548461918 0.0027815103530883789
5, 0.0028678178787231476 0.0056493282318115234
6, 0.0046602040529251142 0.010309532284736633
7, 0.0069903060793876605 0.017299838364124298
8, 0.0098301179241389001 0.027129956288263202
9, 0.013106823898851871 0.040236780187115073
10, 0.016711200471036140 0.056947980658151209
11, 0.020509200578089786 0.077457181236241013
12, 0.024354675686481652 0.10181185692272265
13, 0.028101548869017230 0.12991340579173993
14, 0.031614242477644432 0.16152764826938440
15, 0.034775666725408917 0.19630331499479325
16, 0.037492515688331451 0.23379583068312471
17, 0.039697957787645101 0.27349378847076977
18, 0.041352039362130305 0.31484582783290005
19, 0.042440250924291580 0.35728607875719176
20, 0.042970754060845245 0.40025683281803687
21, 0.042970754060845225 0.44322758687888220
22, 0.042482450037426581 0.48571003691630876
23, 0.041558918514873783 0.52726895543118257
24, 0.040260202311284021 0.56752915774246648
25, 0.038649794218832620 0.60617895196129912
26, 0.036791631035234917 0.64297058299653398
27, 0.034747651533277427 0.67771823452981139
28, 0.032575923312447595 0.71029415784225891
29, 0.030329307911589130 0.74062346575384819
30, 0.028054609818219924 0.76867807557206813
31, 0.025792141284492545 0.79447021685656061
32, 0.023575629142856460 0.81804584599941710
33, 0.021432390129869489 0.83947823612928651
34, 0.019383705779220189 0.85886194190850684
35, 0.017445335201298231 0.87630727710980494
36, 0.015628112784496322 0.89193538989430121
37, 0.013938587078064250 0.90587397697236549
38, 0.012379666154859701 0.91825364312722524
39, 0.010951243136991251 0.92920488626421649
40, 0.0096507830144735539 0.93885566927869002
41, 0.0084738582566109364 0.94732952753530097

193

htto://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

3
i

Statistical Distributions and Functions

42,
43,
a4,
45,
46,
47,
48,
49,
50,
51,
52,
53,
54,
55,
56,
57,
58,
59,
60,
61,
62,
63,

[eNeoNeoNoNoNoNoNoNoNeoNoNoNoNoNoNoNoNoNoNoNoNe)

.0074146259745345548
.0064662435824429246
.0056212231142827853
.0048717266990450708
.0042098073105878630
.0036275999165703964
.0031174686783026818
.0026721160099737302
.0022846591885275322
.0019486798960970148
.0016582516423517923
.0014079495076571762
.0011928461106539983
.0010084971662802015
.00085091948404891532
.00071656377604119542
.00060228420831048650
.00050530624256557675
.00042319397814867202
.00035381791615708398
.00029532382517950324
.00024610318764958566

[eNeNeoNoNoNoNoNoloNeoloNolNolNoNoNoNoNeoNoNoNe)

-95474415350983555
-96121039709227851
-96683162020656122
-97170334690560634
-97591315421619418
-97954075413276465
-98265822281106729
-98533033882104104
-98761499800956853
-98956367790566557
-99122192954801736
-99262987905567457
-99382272516632852
-99483122233260868
-99568214181665760
-99639870559269883
-99700098980100937
-99750629604357488
-99792949002172360
-99828330793788067
-99857863176306016
-99882473495070978

Normal Distribution Examples

(See also the reference documentation for the Normal Distribution.)

Some Miscellaneous Examples of the Normal (Gaussian) Distribution

The sample program normal_misc_examples.cpp illustrates their use.

Traditional Tables

First we need some includes to access the normal distribution (and some std output of course).

#include <boost/math/distributions/normal _hpp> // for normal_distribution
using boost::math::normal; // typedef provides default type is double.

#include <iostream>

using std::cout; using std::endl; using std::left; using std::showpoint; using std::noshow[]

point;
#include <iomanip>

using std::setw; using std::setprecision;

#include <limits>

using std::numeric_limits;

int main()

{

cout << "Example: Normal distribution, Miscellaneous Applications.";

try

{ // Traditional tables and values.

Let's start by printing some traditional tables.

194

htto://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/math/doc/html/../../example/normal_misc_examples.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

3
i

Statistical Distributions and Functions

double step = 1.; // in z

double range = 4; // min and max z = -range to +range.

int precision = 17; // traditional tables are only computed to much lower precision.
// but std::numeric_limits<double>::max_digitsl0; on new Standard Libraries gives
// 17, the maximum number of digits that can possibly be significant.

// std::numeric_limits<double>::digitsl0; == 15 is number of guaranteed digits,

// the other two digits being "noisy".

// Construct a standard normal distribution s
normal s; // (default mean = zero, and standard deviation = unity)

cout << "Standard normal distribution, mean = "<< s.mean()
<< ', standard deviation = " << s.standard_deviation() << endl;

First the probability distribution function (pdf).

cout << "Probability distribution function values" << endl;

cout << " z " " pdf " << endl;
cout.precision(5);

for (double z = -range; z < range + step; z += step)
{

cout << left << setprecision(3) << setw(6) << z << ™ ™
<< setprecision(precision) << setw(12) << pdf(s, z) << endl;

}
cout.precision(6); // default

And the area under the normal curve from -co up to z, the cumulative distribution function (cdf).

// For a standard normal distribution
cout << "Standard normal mean = "<< s.mean()
<< ", standard deviation = " << s._standard_deviation() << endl;
cout << "Integral (area under the curve) from - infinity up to z " << endl;
cout << " z "™ " cdf " << endl;
for (double z = -range; z < range + step; z += step)

{

cout << left << setprecision(3) << setw(6) << z << "™ "
<< setprecision(precision) << setw(12) << cdf(s, z) << endl;
}

cout.precision(6); // default

And all this you can do with a nanoscopic amount of work compared to the team of human computers toiling with Milton Ab-
ramovitz and Irene Stegen at the US National Bureau of Standards (now NIST). Starting in 1938, their "Handbook of Mathemat-
ical Functions with Formulas, Graphs and Mathematical Tables", was eventually published in 1964, and has been reprinted numerous
times since. (A major replacement is planned at Digital Library of Mathematical Functions).

Pretty-printing a traditional 2-dimensional table is left as an exercise for the student, but why bother now that the Math Toolkit
lets you write

double z = 2_;
cout << "Area for z = " << z << " is " << cdf(s, z) << endl; // to get the area for z.

Correspondingly, we can obtain the traditional ‘critical’ values for significance levels. For the 95% confidence level, the significance
level usually called alpha, is 0.05 = 1 - 0.95 (for a one-sided test), so we can write

cout << "95% of area has a z below " << quantile(s, 0.95) << endl;
// 95% of area has a z below 1.64485

and a two-sided test (a comparison between two levels, rather than a one-sided test)

195

htto://www.renderx.com/

http://www.nist.gov
http://dlmf.nist.gov
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

3
i

Statistical Distributions and Functions

cout << "95% of area has a z between " << quantile(s, 0.975)
<< " and " << -quantile(s, 0.975) << endl;
// 95% of area has a z between 1.95996 and -1.95996

First, define a table of significance levels: these are the probabilities that the true occurrence frequency lies outside the calculated
interval.

It is convenient to have an alpha level for the probability that z lies outside just one standard deviation. This will not be some nice
neat number like 0.05, but we can easily calculate it,

double alphal = cdf(s, -1) * 2; // 0.3173105078629142
cout << setprecision(17) << "Significance level for z == 1 is " << alphal << endl;

and place in our array of favorite alpha values.

double alpha[] = {0.3173105078629142, // z for 1 standard deviation.
0.20, 0.1, 0.05, 0.01, 0.001, 0.0001, 0.00001 };

Confidence value as % is (1 - alpha) * 100 (so alpha 0.05 == 95% confidence) that the true occurrence frequency lies inside the
calculated interval.

cout << "level of significance (alpha)" << setprecision(4) << endl;

cout << "2-sided 1 -sided z(alpha) " << endl;
for (unsigned 1 = 0; i1 < sizeof(alpha)/sizeof(alpha[0]); ++i)
{

cout << setw(15) << alpha[i] << setw(15) << alpha[i] /2 << setw(10) << quantile(complement(s, [
alphal[i]/2)) << endl;

// Use quantile(complement(s, alpha[i]/2)) to avoid potential loss of accuracy from []
quantile(s, 1 - alphal[i]l/2)
}

cout << endl;

Notice the distinction between one-sided (also called one-tailed) where we are using a > or < test (and not both) and considering
the area of the tail (integral) from z up to +co, and a two-sided test where we are using two > and < tests, and thus considering two
tails, from -co up to z low and z high up to +co.

So the 2-sided values alphali] are calculated using alpha[i]/2.

If we consider a simple example of alpha = 0.05, then for a two-sided test, the lower tail area from -co up to -1.96 is 0.025 (alpha/2)
and the upper tail area from +z up to +1.96 is also 0.025 (alpha/2), and the area between -1.96 up to 12.96 is alpha = 0.95. and the
sum of the two tails is 0.025 + 0.025 = 0.05,

Standard deviations either side of the Mean

Armed with the cumulative distribution function, we can easily calculate the easy to remember proportion of values that lie within
1, 2 and 3 standard deviations from the mean.

196

htto://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

3
i

Statistical Distributions and Functions

cout.precision(3);
cout << showpoint << "cdf(s, s.standard_deviation()) = "
<< cdf(s, s.standard_deviation()) << endl; // from -infinity to 1 sd
cout << "cdf(complement(s, s.standard_deviation())) = "
<< cdf(complement(s, s.standard_deviation())) << endl;
cout << "Fraction 1 standard deviation within either side of mean is "

<< 1 - cdf(complement(s, s.standard_deviation())) * 2 << endl;
cout << "Fraction 2 standard deviations within either side of mean is "
<< 1 - cdf(complement(s, 2 * s.standard_deviation())) * 2 << endl;
cout << "Fraction 3 standard deviations within either side of mean is "
<< 1 - cdf(complement(s, 3 * s.standard_deviation())) * 2 << endl;

To a useful precision, the 1, 2 & 3 percentages are 68, 95 and 99.7, and these are worth memorising as useful 'rules of thumb', as,
for example, in standard deviation;

Fraction 1 standard deviation within either side of mean is 0.683
Fraction 2 standard deviations within either side of mean is 0.954
Fraction 3 standard deviations within either side of mean is 0.997

We could of course get some really accurate values for these confidence intervals by using cout.precision(15);

Fraction 1 standard deviation within either side of mean is 0.682689492137086
Fraction 2 standard deviations within either side of mean is 0.954499736103642
Fraction 3 standard deviations within either side of mean is 0.997300203936740

But before you get too excited about this impressive precision, don't forget that the confidence intervals of the standard deviation
are surprisingly wide, especially if you have estimated the standard deviation from only a few measurements.

Some simple examples

Life of light bulbs

Examples from K. Krishnamoorthy, Handbook of Statistical Distributions with Applications, ISBN 1 58488 635 8, page 125...
implemented using the Math Toolkit library.

A few very simple examples are shown here:

// K. Krishnamoorthy, Handbook of Statistical Distributions with Applications,
// ISBN 1 58488 635 8, page 125, example 10.3.5

Mean lifespan of 100 W bulbs is 1100 h with standard deviation of 100 h. Assuming, perhaps with little evidence and much faith,
that the distribution is normal, we construct a normal distribution called bulbs with these values:

double mean_life = 1100.;

double life_standard _deviation = 100.;

normal bulbs(mean_life, life_standard _deviation);
double expected_life = 1000.;

The we can use the Cumulative distribution function to predict fractions (or percentages, if * 100) that will last various lifetimes.

197

htto://www.renderx.com/

http://en.wikipedia.org/wiki/Standard_deviation
http://en.wikipedia.org/wiki/Confidence_interval
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Statistical Distributions and Functions

cout << "Fraction of bulbs that will last at best (<=) " // P(X <= 1000)

<< expected_life << " is "<< cdf(bulbs, expected_life) << endl;
cout << "Fraction of bulbs that will last at least () " // P(X > 1000)

<< expected_life << " is "<< cdf(complement(bulbs, expected_life)) << endl;
double min_life = 900;
double max_life = 1200;
cout << "Fraction of bulbs that will last between "

<< min_life << " and " << max_life << " is "

<< cdf(bulbs, max_life) // P(X <= 1200)

- cdf(bulbs, min_life) << endl; // P(X <= 900)

g Note
Real-life failures are often very ab-normal, with a significant number that 'dead-on-arrival' or suffer failure very
early in their life: the lifetime of the survivors of 'early mortality' may be well described by the normal distribution.

How many onions?

Weekly demand for 5 Ib sacks of onions at a store is normally distributed with mean 140 sacks and standard deviation 10.

double mean = 140.; // sacks per week.
double standard_deviation = 10;
normal sacks(mean, standard_deviation);

double stock = 160.; // per week.
cout << "Percentage of weeks overstocked '

<< cdf(sacks, stock) * 100. << endl; // P(X <=160)
// Percentage of weeks overstocked 97.7

So there will be lots of mouldy onions! So we should be able to say what stock level will meet demand 95% of the weeks.

double stock 95 = quantile(sacks, 0.95);
cout << "Store should stock " << int(stock 95) << " sacks to meet 95% of demands." << endl;

And it is easy to estimate how to meet 80% of demand, and waste even less.

double stock_80 = quantile(sacks, 0.80);
cout << "Store should stock " << int(stock_80) << ' sacks to meet 8 out of 10 demands." << endl;

Packing beef

A machine is set to pack 3 kg of ground beef per pack. Over a long period of time it is found that the average packed was 3 kg
with a standard deviation of 0.1 kg. Assuming the packing is normally distributed, we can find the fraction (or %) of packages
that weigh more than 3.1 kg.

198

3
i

htto://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Statistical Distributions and Functions

double mean = 3.; // kg
double standard_deviation = 0.1; // kg
normal packs(mean, standard_deviation);

double max_weight = 3.1; // kg
cout << "Percentage of packs > " << max_weight << " is "
<< cdf(complement(packs, max_weight)) << endl; // P(X > 3.1)

double under_weight = 2.9;
cout <<"fraction of packs <= " << under_weight << " with a mean of " << mean
<< " iIs " << cdf(complement(packs, under_weight)) << endl;
// fraction of packs <= 2.9 with a mean of 3 is 0.841345
// This is 0.84 - more than the target 0.95
// Want 95% to be over this weight, so what should we set the mean weight to be?
// KK StatCalc says:
double over_mean = 3.0664;
normal xpacks(over_mean, standard_deviation);
cout << "fraction of packs >= " << under_weight
<< " with a mean of " << xpacks.mean()
<< " is " << cdf(complement(xpacks, under_weight)) << endl;
// fraction of packs >= 2.9 with a mean of 3.06449 is 0.950005
double under_fraction = 0.05; // so 95% are above the minimum weight mean - sd = 2.9
double low_limit = standard_deviation;
double offset = mean - low_limit - quantile(packs, under_fraction);
double nominal_mean = mean + offset;

normal nominal_packs(nominal_mean, standard_deviation);
cout << "Setting the packer to " << nominal_mean << " will mean that "

<< "fraction of packs >= " << under_weight
<< " is " << cdf(complement(nominal_packs, under_weight)) << endl;

Setting the packer to 3.06449 will mean that fraction of packs >= 2.9 is 0.95.

Setting the packer to 3.13263 will mean that fraction of packs >= 2.9 is 0.99, but will more than double the mean loss from 0.0644
to 0.133.

Alternatively, we could invest in a better (more precise) packer with a lower standard deviation.

To estimate how much better (how much smaller standard deviation) it would have to be, we need to get the 5% quantile to be
located at the under_weight limit, 2.9

double p = 0.05; // wanted p th quantile.
cout << "Quantile of " << p << " = " << quantile(packs, p)
<< ', mean = " << packs.mean() << ", sd = " << packs.standard_deviation() << endl; //

Quantile of 0.05 = 2.83551, mean = 3,sd = 0.1

With the current packer (mean = 3, sd = 0.1), the 5% quantile is at 2.8551 kg, a little below our target of 2.9 kg. So we know that
the standard deviation is going to have to be smaller.

Let's start by guessing that it (now 0.1) needs to be halved, to a standard deviation of 0.05

3
i

199

htto://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Statistical Distributions and Functions

normal packO5(mean, 0.05);

cout << "Quantille of " << p << " = " << quantile(pack05, p)
<< ', mean = " << packO5.mean() << ', sd = " << packO5.standard_deviation() << endl;
cout <<"Fraction of packs >= " << under_weight << " with a mean of " << mean

<< " and standard deviation of " << pack05.standard_deviation()
<< " is " << cdf(complement(pack05, under_weight)) << endl;
//

Fraction of packs >= 2.9 with a mean of 3 and standard deviation of 0.05 is 0.9772

So 0.05 was quite a good guess, but we are a little over the 2.9 target, so the standard deviation could be a tiny bit more. So we
could do some more guessing to get closer, say by increasing to 0.06

normal packO6(mean, 0.06);

cout << "Quantille of " << p << " = " << quantile(pack06, p)
<< ", mean = " << packO6.mean() << ", sd = " << pack06.standard_deviation() << endl;
cout <<"Fraction of packs >= " << under_weight << " with a mean of " << mean

<< " and standard deviation of " << pack06.standard_deviation()
<< " is " << cdf(complement(pack06, under_weight)) << endl;

Fraction of packs >= 2.9 with a mean of 3 and standard deviation of 0.06 is 0.9522

Now we are getting really close, but to do the job properly, we could use root finding method, for example the tools provided, and
used elsewhere, in the Math Toolkit, see root-finding without derivatives.

But in this normal distribution case, we could be even smarter and make a direct calculation.

normal s; // For standard normal distribution,

double sd = 0.1;

double x = 2.9; // Our required limit.

// then probability p = N((x - mean) / sd)

// So if we want to find the standard deviation that would be required to meet this limit,
// so that the p th quantile is located at x,

// in this case the 0.95 (95%) quantile at 2.9 kg pack weight, when the mean is 3 kg-

double prob = pdf(s, (x - mean) / sd);

double gqp = quantile(s, 0.95);

cout << "prob = " << prob << ", quantile(p) " << gp << endl; // p = 0.241971, quantile(p) 1.64485
// Rearranging, we can directly calculate the required standard deviation:

double sd95 = std::abs((x - mean)) / qp;

cout << "IFf we want the << p << " th quantile to be located at "
<< x << ", would need a standard deviation of " << sd95 << endl;

normal pack95(mean, sd95); // Distribution of the "ideal better® packer.
cout <<"Fraction of packs >= " << under_weight << " with a mean of " << mean
<< " and standard deviation of " << pack95.standard_deviation()
<< " is " << cdf(complement(pack95, under_weight)) << endl;

// Fraction of packs >= 2.9 with a mean of 3 and standard deviation of 0.0608 is 0.95
Notice that these two deceptively simple questions (do we over-fill or measure better) are actually very common. The weight of

beef might be replaced by a measurement of more or less anything. But the calculations rely on the accuracy of the standard deviation
- something that is almost always less good than we might wish, especially if based on a few measurements.

200

3
i

htto://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

rende

r

Statistical Distributions and Functions

Length of bolts

A bolt is usable if between 3.9 and 4.1 long. From a large batch of bolts, a sample of 50 show a mean length of 3.95 with standard
deviation 0.1. Assuming a normal distribution, what proportion is usable? The true sample mean is unknown, but we can use the
sample mean and standard deviation to find approximate solutions.

normal bolts(3.95, 0.1);
double top = 4.1;
double bottom = 3.9;

cout << "Fraction long enough [P(X <= " << top << ")] is " << cdf(bolts, top) << endl;
cout << "Fraction too short [P(X <= ™ << bottom << ")] is " << cdf(bolts, bottom) << endl;
cout << "Fraction OK -between " << bottom << " and ™ << top

<< "[P(X <= " << top << ") - P(X<= " << bottom << ™)] is "

<< cdf(bolts, top) - cdf(bolts, bottom) << endl;

cout << "Fraction too long [P(X > " << top <<)] is
<< cdf(complement(bolts, top)) << endl;

cout << "95% of bolts are shorter than " << quantile(bolts, 0.95) << endl;

Inverse Chi-Squared Distribution Bayes Example

The scaled-inversed-chi-squared distribution is the conjugate prior distribution for the variance (02) parameter of a normal distri-
bution with known expectation (1). As such it has widespread application in Bayesian statistics:

In Bayesian inference, the strength of belief into certain parameter values is itself described through a distribution. Parameters
hence become themselves modelled and interpreted as random variables.

In this worked example, we perform such a Bayesian analysis by using the scaled-inverse-chi-squared distribution as prior and
posterior distribution for the variance parameter of a normal distribution.

For more general information on Bayesian type of analyses, see:
¢ Andrew Gelman, John B. Carlin, Hal E. Stern, Donald B. Rubin, Bayesian Data Analysis, 2003, ISBN 978-1439840955.
« Jim Albert, Bayesian Compution with R, Springer, 2009, ISBN 978-0387922973.

(As the scaled-inversed-chi-squared is another parameterization of the inverse-gamma distribution, this example could also have
used the inverse-gamma distribution).

Consider precision machines which produce balls for a high-quality ball bearing. Ideally each ball should have a diameter of precisely
3000 pm (3 mm). Assume that machines generally produce balls of that size on average (mean), but individual balls can vary
slightly in either direction following (approximately) a normal distribution. Depending on various production conditions (e.g. raw
material used for balls, workplace temperature and humidity, maintenance frequency and quality) some machines produce balls
tighter distributed around the target of 3000 um, while others produce balls with a wider distribution. Therefore the variance
parameter of the normal distribution of the ball sizes varies from machine to machine. An extensive survey by the precision machinery
manufacturer, however, has shown that most machines operate with a variance between 15 and 50, and near 25 um2 on average.

Using this information, we want to model the variance of the machines. The variance is strictly positive, and therefore we look
for a statistical distribution with support in the positive domain of the real numbers. Given the expectation of the normal distribution
of the balls is known (3000 um), for reasons of conjugacy, it is customary practice in Bayesian statistics to model the variance to
be scaled-inverse-chi-squared distributed.

In a first step, we will try to use the survey information to model the general knowledge about the variance parameter of machines
measured by the manufacturer. This will provide us with a generic prior distribution that is applicable if nothing more specific is
known about a particular machine.

In a second step, we will then combine the prior-distribution information in a Bayesian analysis with data on a specific single
machine to derive a posterior distribution for that machine.

201

htto://www.renderx.com/

http://en.wikipedia.org/wiki/Bayesian_inference
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Statistical Distributions and Functions

Step one: Using the survey information.

Using the survey results, we try to find the parameter set of a scaled-inverse-chi-squared distribution so that the properties of this
distribution match the results. Using the mathematical properties of the scaled-inverse-chi-squared distribution as guideline, we
see that that both the mean and mode of the scaled-inverse-chi-squared distribution are approximately given by the scale parameter
(s) of the distribution. As the survey machines operated at a variance of 25 um2 on average, we hence set the scale parameter
(Sprior) Of our prior distribution equal to this value. Using some trial-and-error and calls to the global quantile function, we also
find that a value of 20 for the degrees-of-freedom (vyior) parameter is adequate so that most of the prior distribution mass is located
between 15 and 50 (see figure below).

We first construct our prior distribution using these values, and then list out a few quantiles:

double priorDF = 20.0;
double priorScale = 25.0;

inverse_chi_squared prior(priorDF, priorScale);
// Using an inverse_gamma distribution instead, we could equivalently write
// inverse_gamma prior(priorDF / 2.0, priorScale * priorDF /7 2.0);

cout << "Prior distribution:" << endl << endl;

cout << " 2.5% quantile: " << quantile(prior, 0.025) << endl;
cout << " 50% quantile: " << quantile(prior, 0.5) << endl;
cout << " 97.5% quantile: " << quantile(prior, 0.975) << endl << endl;

This produces this output:

Prior distribution:

2.5% quantile: 14.6
50% quantile: 25.9
97.5% quantile: 52.1

Based on this distribution, we can now calculate the probability of having a machine working with an unusual work precision
(variance) at <= 15 or > 50. For this task, we use calls to the boost: :math: : functions cdf and complement, respectively, and
find a probability of about 0.031 (3.1%) for each case.

cout << " probability variance <= 15: " << boost::math::cdf(prior, 15.0) << endl;
cout << " probability variance <= 25: " << boost::math::cdf(prior, 25.0) << endl;
cout << " probability variance > 50: "

<< boost: :math: :cdf(boost: :math: :complement(prior, 50.0))
<< endl << endl;

This produces this output:

probability variance <= 15: 0.031
probability variance <= 25: 0.458
probability variance > 50: 0.0318

Therefore, only 3.1% of all precision machines produce balls with a variance of 15 or less (particularly precise machines), but
also only 3.2% of all machines produce balls with a variance of as high as 50 or more (particularly imprecise machines). Moreover,
slightly more than one-half (1 - 0.458 = 54.2%) of the machines work at a variance greater than 25.

Notice here the distinction between a Bayesian analysis and a frequentist analysis: because we model the variance as random
variable itself, we can calculate and straightforwardly interpret probabilities for given parameter values directly, while such an
approach is not possible (and interpretationally a strict must-not) in the frequentist world.

202

render

htto://www.renderx.com/

http://en.wikipedia.org/wiki/Bayesian_inference
http://en.wikipedia.org/wiki/Frequentist_inference
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Statistical Distributions and Functions

Step 2: Investigate a single machine

In the second step, we investigate a single machine, which is suspected to suffer from a major fault as the produced balls show
fairly high size variability. Based on the prior distribution of generic machinery performance (derived above) and data on balls
produced by the suspect machine, we calculate the posterior distribution for that machine and use its properties for guidance re-
garding continued machine operation or suspension.

It can be shown that if the prior distribution was chosen to be scaled-inverse-chi-square distributed, then the posterior distribution
is also scaled-inverse-chi-squared-distributed (prior and posterior distributions are hence conjugate). For more details regarding
conjugacy and formula to derive the parameters set for the posterior distribution see Conjugate prior.

Given the prior distribution parameters and sample data (of size n), the posterior distribution parameters are given by the two ex-
pressions:

Vposterior = Vprior T N
which gives the posteriorDF below, and
— n 2
Sposterior - (Vpriorsprior +2 izl(xi - IJ)) / (Vprior + n)

which after some rearrangement gives the formula for the posteriorScale below.

Machine-specific data consist of 100 balls which were accurately measured and show the expected mean of 3000 um and a sample
variance of 55 (calculated for a sample mean defined to be 3000 exactly). From these data, the prior parameterization, and noting
that the term ="_; (x; - p)2 equals the sample variance multiplied by n - 1, it follows that the posterior distribution of the variance
parameter is scaled-inverse-chi-squared distribution with degrees-of-freedom (Vpqsterior) = 120 and scale (Sposterior) = 49.54.

int ballsSampleSize = 100;

cout <<"balls sample size: " << ballsSampleSize << endl;
double ballsSampleVariance = 55.0;
cout <<"balls sample variance: " << ballsSampleVariance << endl;

double posteriorDF = priorDF + ballsSampleSize;
cout << "prior degrees-of-freedom: " << priorDF << endl;
cout << "posterior degrees-of-freedom: " << posteriorDF << endl;

double posteriorScale =

(priorDF * priorScale + (ballsSampleVariance * (ballsSampleSize - 1))) / posteriorDF;
cout << "prior scale: " << priorScale << endl;
cout << "posterior scale: " << posteriorScale << endl;

An interesting feature here is that one needs only to know a summary statistics of the sample to parameterize the posterior distri-
bution: the 100 individual ball measurements are irrelevant, just knowledge of the sample variance and number of measurements
is sufficient.

That produces this output:

balls sample size: 100

balls sample variance: 55

prior degrees-of-freedom: 20
posterior degrees-of-freedom: 120
prior scale: 25

posterior scale: 49.5

To compare the generic machinery performance with our suspect machine, we calculate again the same quantiles and probabilities
as above, and find a distribution clearly shifted to greater values (see figure).

203

render

htto://www.renderx.com/

http://en.wikipedia.org/wiki/Conjugate_prior
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

3
i

Statistical Distributions and Functions

probability density

Prior and Posterior Distributions
0.07

0.06 4 — prior

0.05 4 — posterior
0.04 4
0.03 4
0.02 4
0.01 4

0 T T T T
0 20 40 60 80 100
machine operation variance

inverse_chi_squared posterior(posteriorDF, posteriorScale);

cout
cout
cout
cout

cout
cout
cout

<<

<<
<<
<<
<<

<<
<<
<<

"Posterior distribution:” << endl << endl;

2.5% quantile: " << boost::math::quantile(posterior, 0.025) << endl;
50% quantile: " << boost::math::quantile(posterior, 0.5) << endl;
97.5% quantile: " << boost::math::quantile(posterior, 0.975) << endl << endl;

probability variance <= 15: " << boost::math::cdf(posterior, 15.0) << endl;
probability variance <= 25: " << boost::math::cdf(posterior, 25.0) << endl;
probability variance > 50:

boost: :math: :cdf(boost: :math: :complement(posterior, 50.0)) << endl;

This produces this output:

Posterior distribution:

2.5% quantile: 39.1
50% quantile: 49.8
97.5% quantile: 64.9

probability variance <= 15: 2.97e-031
probability variance <= 25: 8.85e-010
probability variance > 50: 0.489

Indeed, the probability that the machine works at a low variance (<= 15) is almost zero, and even the probability of working at
average or better performance is negligibly small (less than one-millionth of a permille). On the other hand, with an almost near-
half probability (49%), the machine operates in the extreme high variance range of > 50 characteristic for poorly performing ma-

chines.

Based on this information the operation of the machine is taken out of use and serviced.

In summary, the Bayesian analysis allowed us to make exact probabilistic statements about a parameter of interest, and hence

provided us results with straightforward interpretation.

A full sample output is:

204

htto://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Statistical Distributions and Functions

Inverse_chi_squared_distribution Bayes example:
Prior distribution:

2.5% quantile: 14.6
50% quantile: 25.9
97.5% quantile: 52.1

probability variance <= 15: 0.031
probability variance <= 25: 0.458
probability variance > 50: 0.0318

balls sample size: 100

balls sample variance: 55

prior degrees-of-freedom: 20
posterior degrees-of-freedom: 120
prior scale: 25

posterior scale: 49.5

Posterior distribution:

2.5% quantile: 39.1

50% quantile: 49.8

97.5% quantile: 64.9

probability variance <= 15: 2.97e-031

probability variance <= 25: 8.85e-010
probability variance > 50: 0.489

(See also the reference documentation for the Inverse chi squared Distribution.)

See the full source C++ of this example at ../../example/inverse_chi_squared_bayes_eg.cpp

Non Central Chi Squared Example
(See also the reference documentation for the Noncentral Chi Squared Distribution.)
Tables of the power function of the chi” test.

This example computes a table of the power of the x2 test at the 5% significance level, for various degrees of freedom and non-
centrality parameters. The table is deliberately the same as Table 6 from "The Non-Central x2 and F-Distributions and their applic-
ations.", P. B. Patnaik, Biometrika, Vol. 36, No. 1/2 (June 1949), 202-232.

First we need some includes to access the non-central chi squared distribution (and some basic std output of course).

#include <boost/math/distributions/non_central_chi_squared.hpp>
using boost::math::chi_squared;
using boost: :math::non_central_chi_squared;

#include <iostream>
using std::cout; using std::endl;
using std: :setprecision;

int main()

{

Create a table of the power of the)(2 test at 5% significance level, start with a table header:

205

render

htto://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/math/doc/html/../../example/inverse_chi_squared_bayes_eg.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

3
i

Statistical Distributions and Functions

cout << "[table\n[[[nul]l";
for(int lam = 2; lam <= 20; lam += 2)

{
}

cout << "J\n";

cout << "[[lambda]=" << lam << "]"

(Note: the enclosing [] brackets are to format as a table in Boost.Quickbook).

Enumerate the rows and columns and print the power of the test for each table cell:

for(int n = 2; n <= 20; ++n)

{

cout << "[[" << n << "™
for(int lam = 2; lam <= 20; lam += 2)

{
Calculate the)(2 statistic for a 5% significance:

double cs = quantile(complement(chi_squared(n), 0.05));
The power of the test is given by the complement of the CDF of the non-central)(2 distribution:

double beta = cdf(complement(non_central_chi_squared(n, lam), cs)):

Then output the cell value:

cout << "[" << setprecision(3) << beta << "]"

}

cout << """ << endl;

}

cout << """ << endl;

}

The output from this program is a table in Boost.Quickbook format as shown below.

We can interpret this as follows - for example if v=10 and A=10 then the power of the test is 0.542 - so we have only a 54% chance
of correctly detecting that our null hypothesis is false, and a 46% chance of incurring a type Il error (failing to reject the null hy-
pothesis when it is in fact false):

206

htto://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

20

A=18
0.985

8

Statistical Distributions and Functions
A=2 A=4 A=6 A= A=10 A=12 A=14 A=16

0.226 0.415 0.584 0.718 0.815 0.883 0.928 0.957 0.974

0.192 0.359 0.518 0.654 0.761 0.84 0.896 0.934 0.959 0.975

0.171 0.32 0.47 0.605 0.716 0.802 0.866 0.912 0.943 0.964
5 0.157 0.292 0.433 0.564 0.677 0.769 0.839 0.89 0.927 0.952

6 0.146 0.27 0.403 0.531 0.644 0.738 0.813 0.869 0.911 0.94

7 0.138 0.252 0.378 0.502 0.614 0.71 0.788 0.849 0.895 0.928

8 0.131 0.238 0.357 0.477 0.588 0.685 0.765 0.829 0.879 0.915
9 0.125 0.225 0.339 0.454 0.564 0.661 0.744 0.811 0.863 0.903
10 0.121 0.215 0.323 0.435 0.542 0.64 0.723 0.793 0.848 0.891
11 0.117 0.206 0.309 0.417 0.523 0.62 0.704 0.775 0.833 0.878
12 0.113 0.198 0.297 0.402 0.505 0.601 0.686 0.759 0.818 0.866
13 0.11 0.191 0.286 0.387 0.488 0.584 0.669 0.743 0.804 0.854
14 0.108 0.185 0.276 0.374 0.473 0.567 0.653 0.728 0.791 0.842
15 0.105 0.179 0.267 0.362 0.459 0.552 0.638 0.713 0.777 0.83
0.103 0.174 0.259 0.351 0.446 0.538 0.623 0.699 0.764 0.819
0.169 0.251 0.341 0.434 0.525 0.609 0.686 0.752 0.807
0.244 0.332 0.423 0.512 0.596 0.673 0.74 0.796
0.323 0.412 0.5 0.584 0.66 0.728 0.786
0.402 0.489 0.572 0.648 0.716 0.775

0.165
0.161 0.238
0.232 0.315

16
0.101

17
18 0.0992
0.0976
0.158
See error handling documentation for a detailed explanation of the mechanism of handling errors, including the common "bad"

20
Error Handling Example

19
0.0961
See nc_chi_sq_example.cpp for the full C++ source code.
But, by default, exceptions will be raised, for domain errors, pole errors, numeric overflow, and internal evaluation errors. To
avoid the exceptions from getting thrown and instead get an appropriate value returned, usually a NaN (domain errors pole errors

or internal errors), or infinity (from overflow), you need to change the policy.

arguments to distributions and functions, and how to use Policies to control it.
The following example demonstrates the effect of setting the macro BOOST_MATH_DOMAIN_ERROR_POLICY when an in-
http://www.renderx.com/

valid argument is encountered. For the purposes of this example, we'll pass a negative degrees of freedom parameter to the student's

t distribution.
Since we know that this is a single file program we could just add:
207

render

http://www.boost.org/doc/libs/release/libs/math/doc/html/../../example/nc_chi_sq_example.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

rende

r

Statistical Distributions and Functions

#define BOOST_MATH_DOMAIN_ERROR_POLICY ignore_error

to the top of the source file to change the default policy to one that simply returns a NaN when a domain error occurs. Alternatively
we could use:

#define BOOST_MATH_DOMAIN_ERROR_POLICY errno_on_error

To ensure the - zerrno is set when a domain error occurs as well as returning a NaN.

This is safe provided the program consists of a single translation unit and we place the define before any #includes. Note that
should we add the define after the includes then it will have no effect! A warning such as:

warning C4005: "BOOST_MATH_OVERFLOW_ERROR_POLICY®" : macro redefinition

is a certain sign that it will not have the desired effect.

We'll begin our sample program with the needed includes:

#define BOOST_MATH_DOMAIN_ERROR_POLICY ignore_error

// Boost
#include <boost/math/distributions/students_t_hpp>
using boost::math::students_t; // Probability of students_t(df, t).

// std

#include <iostream>
using std: :cout;
using std::endl;

#include <stdexcept>

#include <cstddef>
// using ::errno

Next we'll define the program'’s main() to call the student's t distribution with an invalid degrees of freedom parameter, the program
is set up to handle either an exception or a NaN:

208

htto://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Statistical Distributions and Functions

int main()
{
cout << "Example error handling using Student®s t function. " << endl;
cout << ""BOOST_MATH_DOMAIN_ERROR_POLICY is set to: "
<< BOOST_STRINGIZE(BOOST_MATH_DOMAIN_ERROR_POLICY) << endl;

double degrees_of freedom = -1; // A bad argument!
double t = 10;

try
{
errno = 0; // Clear/reset.
students_t dist(degrees_of_freedom); // exception is thrown here if enabled.
double p = cdf(dist, t);
// Test for error reported by other means:
if((boost: :math::isnan)(p))

{
cout << "cdf returned a NaN!" << endl;
if (errno = 0)
{ // So errno has been set.
cout << "errno is set to: " << errno << endl;
}
}
else
cout << "Probability of Student®s t is " << p << endl;
}
catch(const std: :exception& e)
{
std: :cout <<
"\n"""Message from thrown exception was:\n " << e.what() << std::endl;
}
return O;

¥ /7 int main(Q)

Here's what the program output looks like with a default build (one that does throw exceptions):

Example error handling using Student®s t function.
BOOST_MATH_DOMAIN_ERROR_POLICY is set to: throw_on_error

Message from thrown exception was:
Error in function boost::math::students_t_distribution<double>::students_t_distribution:
Degrees of freedom argument is -1, but must be > 0 !

Alternatively let's build with:
#define BOOST_MATH_DOMAIN_ERROR_POLICY ignore_error
Now the program output is:

Example error handling using Student®s t function.
BOOST_MATH_DOMAIN_ERROR_POLICY is set to: ignore_error
cdf returned a NaN!

And finally let's build with:

#define BOOST_MATH_DOMAIN_ERROR_POLICY errno_on_error

Which gives the output show errno:

209

3
i

htto://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

rende

r

Statistical Distributions and Functions

Example error handling using Student®"s t function.
BOOST_MATH_DOMAIN_ERROR_POLICY is set to: errno_on_error
cdf returned a NaN!

errno is set to: 33

Caution

If throwing of exceptions is enabled (the default) but you do not have try & catch block, then the program will
terminate with an uncaught exception and probably abort.

Therefore to get the benefit of helpful error messages, enabling all exceptions and using try & catch is recom-
mended for most applications.

However, for simplicity, the is not done for most examples.

Find Location and Scale Examples

Find Location (Mean) Example

First we need some includes to access the normal distribution, the algorithms to find location (and some std output of course).

#include <boost/math/distributions/normal_hpp> // for normal_distribution
using boost::math::normal; // typedef provides default type is double.
#include <boost/math/distributions/cauchy.hpp> // for cauchy_distribution
using boost: :math::cauchy; // typedef provides default type is double.
#include <boost/math/distributions/find_location.hpp>
using boost::math::Ffind_location; // for mean
#include <boost/math/distributions/find_scale_hpp>
using boost: :math::find_scale; // for standard devation
using boost: :math::complement; // Needed if you want to use the complement version.
using boost::math::policies: :policy;

#include <iostream>

using std::cout; using std::endl;
#include <iomanip>

using std::setw; using std::setprecision;
#include <limits>

using std::numeric_limits;

For this example, we will use the standard normal distribution, with mean (location) zero and standard deviation (scale) unity.
This is also the default for this implementation.

normal NO1; // Default "standard® normal distribution with zero mean and
double sd = 1.; // normal default standard deviation is 1.

Suppose we want to find a different normal distribution whose mean is shifted so that only fraction p (here 0.001 or 0.1%) are
below a certain chosen limit (here -2, two standard deviations).

210

htto://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Statistical Distributions and Functions

double z = -2.; // z to give prob p

double p = 0.001; /7 only 0.1% below z

cout << "Normal distribution with mean = " << NO1.location()
<< ", standard deviation " << NOl.scale()
<< ", has " << "fraction <= " << z
<< ", p =" << cdf(NO1, z) << endl;

cout << "Normal distribution with mean = " << NO1l.location()

<< ', standard deviation " << NOl.scale()
<< ", has " << "fraction > " << z
<< ", p =" << cdf(complement(NO1, z)) << endl; // Note: uses complement.

Normal distribution with mean
Normal distribution with mean

0, standard deviation 1, has fraction <= -2, p = 0.0227501
0, standard deviation 1, has fraction > -2, p = 0.97725

We can now use "find_location" to give a new offset mean.

double 1 = find_location<normal>(z, p, sd);
cout << "offset location (mean) = " << I << endl;

that outputs:
offset location (mean) = 1.09023

showing that we need to shift the mean just over one standard deviation from its previous value of zero.

Then we can check that we have achieved our objective by constructing a new distribution with the offset mean (but same standard
deviation):

normal np001lpc(l, sd); // Same standard_deviation (scale) but with mean (location) shifted.

And re-calculating the fraction below our chosen limit.

cout << "Normal distribution with mean = " << 1
<< " has " << "fraction <= " << Zz
<< ", p =" << cdf(np00lpc, z) << endl;
cout << "Normal distribution with mean = " << 1
<< " has " << "fraction > " << z
<< ", p =" << cdf(complement(np00lpc, z)) << endl;

Normal distribution with mean
Normal distribution with mean

1.09023 has fraction <= -2, p = 0.001
1.09023 has fraction > -2, p = 0.999

Controlling Error Handling from find_location

We can also control the policy for handling various errors. For example, we can define a new (possibly unwise) policy to ignore
domain errors (‘bad' arguments).

Unless we are using the boost::math namespace, we will need:

using boost::math::policies: :policy;
using boost::math::policies: :domain_error;
using boost::math::policies::ignore_error;

Using a typedef is often convenient, especially if it is re-used, although it is not required, as the various examples below show.

211

3
i

htto://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

3
i

Statistical Distributions and Functions

typedef policy<domain_error<ignore_error> > ignore_domain_policy;

// Tind_location with new policy, using typedef.

1 = find_location<normal>(z, p, sd, ignore_domain_policy());

// Default policy policy<>, needs "using boost::math::policies::policy;"

1 = find_location<normal>(z, p, sd, policy<>());

// Default policy, fully specified.

1 = find_location<normal>(z, p, sd, boost::math::policies::policy<>());

// A new policy, ignoring domain errors, without using a typedef.

1 = find_location<normal>(z, p, sd, policy<domain_error<ignore_error> >());

If we want to use a probability that is the complements of our probability, we should not even think of writing find_location<nor-
mal>(z, 1 - p, sd), but use the complement version, see why complements?.

z = 2.,
double q = 0.95; // =1 - p; // complement.
1 = find_location<normal>(complement(z, q, sd)):

normal np95pc(l, sd); // Same standard_deviation (scale) but with mean(location) shifted
cout << "Normal distribution with mean = " << I << ™ has "

<< "fraction <= " << z << " = " << cdF(np95pc, z) << endl;
cout << "Normal distribution with mean = " << I << ™ has "

<< "fraction > " << z << " = " << cdf(complement(np95pc, z)) << endl;

See find_location_example.cpp for full source code: the program output looks like this:

Example: Find location (mean).
Normal distribution with mean = 0, standard deviation 1, has fraction <= -2, p = 0.0227501
Normal distribution with mean 0, standard deviation 1, has fraction > -2, p = 0.97725
offset location (mean) = 1.09023

Normal distribution with mean
Normal distribution with mean
Normal distribution with mean
Normal distribution with mean

1.09023 has fraction <= -2, p = 0.001
1.09023 has fraction > -2, p = 0.999
0.355146 has fraction <= 2 = 0.95
0.355146 has fraction > 2 = 0.0

Find Scale (Standard Deviation) Example

First we need some includes to access the Normal Distribution, the algorithms to find scale (and some std output of course).

#include <boost/math/distributions/normal _hpp> // for normal_distribution
using boost::math::normal; // typedef provides default type is double.
#include <boost/math/distributions/find_scale._hpp>
using boost: :math::find_scale;
using boost::math::complement; // Needed if you want to use the complement version.
using boost::math::policies::policy; // Needed to specify the error handling policy.

#include <iostream>

using std::cout; using std::endl;
#include <iomanip>

using std::setw; using std::setprecision;
#include <limits>

using std::numeric_limits;

For this example, we will use the standard Normal Distribution, with location (mean) zero and standard deviation (scale) unity.
Conveniently, this is also the default for this implementation's constructor.

212

htto://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/math/doc/html/../../example/find_location_example.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Statistical Distributions and Functions

normal NO1; // Default "standard® normal distribution with zero mean
double sd = 1.; // and standard deviation is 1.

Suppose we want to find a different normal distribution with standard deviation so that only fraction p (here 0.001 or 0.1%) are
below a certain chosen limit (here -2. standard deviations).

double z = -2_; // z to give prob p

double p = 0.001; // only 0.1% below z = -2

cout << "Normal distribution with mean = " << NOl.location() // aka NOl.mean()
<< ', standard deviation " << NOl.scale() // aka NOl.standard_deviation()
<< ", has " << "fraction <= " << z
<< ", p =" << cdF(NO1l, z) << endl;

cout << "Normal distribution with mean = " << NO1.location()

<< "', standard deviation " << NOl.scale()
<< ", has " << "fraction > " << z
<< ", p =" << cdf(complement(NO1, z)) << endl; // Note: uses complement.

Normal distribution with mean
Normal distribution with mean

0 has fraction <= -2, p = 0.0227501
0 has fraction > -2, p = 0.97725

Noting that p = 0.02 instead of our target of 0.001, we can now use find_scale to give a new standard deviation.

double 1 = NO1.location();

double s = find_scale<normal>(z, p, 1);

cout << "scale (standard deviation) = " << s << endl;
that outputs:

scale (standard deviation) = 0.647201

showing that we need to reduce the standard deviation from 1. to 0.65.

Then we can check that we have achieved our objective by constructing a new distribution with the new standard deviation (but
same zero mean):

normal np001pc(NO1.location(), S);

And re-calculating the fraction below (and above) our chosen limit.

cout << "Normal distribution with mean = " << 1
<< " has " << "fraction <= " << z
<< ", p =" << cdf(np00lpc, z) << endl;
cout << "Normal distribution with mean = " << 1
<< " has " << "fraction > " << z
<< ", p =" << cdf(complement(np00lpc, z)) << endl;

Normal distribution with mean
Normal distribution with mean

0 has fraction <= -2, p = 0.001
0 has fraction > -2, p = 0.999

Controlling how Errors from find_scale are handled

We can also control the policy for handling various errors. For example, we can define a new (possibly unwise) policy to ignore
domain errors (‘bad' arguments).

213

3
i

htto://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Statistical Distributions and Functions

Unless we are using the boost::math namespace, we will need:

using boost::math::policies: :policy;
using boost::math::policies: :domain_error;
using boost::math::policies::ignore_error;

Using a typedef is convenient, especially if it is re-used, although it is not required, as the various examples below show.

typedef policy<domain_error<ignore_error> > ignore_domain_policy;

// find_scale with new policy, using typedef.

1 = find_scale<normal>(z, p, 1, ignore_domain_policy());

// Default policy policy<>, needs using boost::math::policies::policy;

1 = find_scale<normal>(z, p, I, policy<>()):

// Default policy, fully specified.

1 = find_scale<normal>(z, p, |, boost::math::policies::policy<>());

// New policy, without typedef.

I = find_scale<normal>(z, p, 1, policy<domain_error<ignore_error> >());

If we want to express a probability, say 0.999, that is a complement, 1 - p we should not even think of writing
find_scale<normal>(z, 1 - p, 1), butusethe complements version (see why complements?).

z = -2.;
double q = 0.999; // =1 - p; // complement of 0.001.
sd = find_scale<normal>(complement(z, q, 1));

normal np95pc(l, sd); // Same standard_deviation (scale) but with mean(scale) shifted
cout << "Normal distribution with mean = " << I << ™ has "

<< "fraction <= " << z << " = " << cdf(np95pc, z) << endl;
cout << "Normal distribution with mean = " << I << ™ has "

<< "fraction > " << z << " = " << cdf(complement(np95pc, z)) << endl;

Sadly, it is all too easy to get probabilities the wrong way round, when you may get a warning like this:

Message from thrown exception was:

Error in function boost::math::find_scale<Dist, Policy>(complement(double, double, double, []
Policy)):

Computed scale (-0.48043523852179076) is <= 0! Was the complement intended?

The default error handling policy is to throw an exception with this message, but if you chose a policy to ignore the error, the
(impossible) negative scale is quietly returned.

See find_scale_example.cpp for full source code: the program output looks like this:

Example: Find scale (standard deviation).

Normal distribution with mean = 0, standard deviation 1, has fraction <= -2, p = 0.0227501
Normal distribution with mean = 0, standard deviation 1, has fraction > -2, p = 0.97725
scale (standard deviation) = 0.647201

Normal distribution with mean 0 has fraction <= -2, p = 0.001

Normal distribution with mean 0 has fraction > -2, p = 0.999

Normal distribution with mean 0.946339 has fraction <= -2 = 0.001

Normal distribution with mean 0.946339 has fraction > -2 = 0.999

Find mean and standard deviation example

First we need some includes to access the normal distribution, the algorithms to find location and scale (and some std output of
course).

214

render

htto://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/math/doc/html/../../example/find_scale_example.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Statistical Distributions and Functions

#include <boost/math/distributions/normal_hpp> // for normal_distribution
using boost::math::normal; // typedef provides default type is double.
#include <boost/math/distributions/cauchy._hpp> // for cauchy_distribution
using boost::math::cauchy; // typedef provides default type is double.
#include <boost/math/distributions/find_location.hpp>

using boost::math::find_location;
#include <boost/math/distributions/find_scale.hpp>
using boost::math::find_scale;
using boost::math::complement;
using boost::math::policies: :policy;

#include <iostream>
using std::cout; using std::endl; using std::left; using std::showpoint; using std::noshow[]
point;
#include <iomanip>
using std::setw; using std::setprecision;
#include <limits>
using std::numeric_limits;
#include <stdexcept>

Using find_location and find_scale to meet dispensing and measurement specifications

Consider an example from K Krishnamoorthy, Handbook of Statistical Distributions with Applications, ISBN 1-58488-635-8,
(2006) p 126, example 10.3.7.

"A machine is set to pack 3 kg of ground beef per pack. Over a long period of time it is found that the average packed was 3 kg
with a standard deviation of 0.1 kg. Assume the packing is normally distributed."”

We start by constructing a normal distribution with the given parameters:

double mean = 3.; // kg
double standard_deviation = 0.1; // kg
normal packs(mean, standard_deviation);

We can then find the fraction (or %) of packages that weigh more than 3.1 kg.

double max_weight = 3.1; // kg
cout << "Percentage of packs > " << max_weight << " is "
<< cdf(complement(packs, max_weight)) * 100. << endl; // P(X > 3.1)

We might want to ensure that 95% of packs are over a minimum weight specification, then we want the value of the mean such
that P(X < 2.9) = 0.05.

Using the mean of 3 kg, we can estimate the fraction of packs that fail to meet the specification of 2.9 kg.

double minimum_weight = 2.9;

cout <<"Fraction of packs <= " << minimum_weight << " with a mean of " << mean
<< " is " << cdf(complement(packs, minimum_weight)) << endl;

// fraction of packs <= 2.9 with a mean of 3 is 0.841345

This is 0.84 - more than the target fraction of 0.95. If we want 95% to be over the minimum weight, what should we set the mean
weight to be?

Using the KK StatCalc program supplied with the book and the method given on page 126 gives 3.06449.

We can confirm this by constructing a new distribution which we call 'xpacks’ with a safety margin mean of 3.06449 thus:

215

render

htto://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

3
i

Statistical Distributions and Functions

double over_mean = 3.06449;
normal xpacks(over_mean, standard_deviation);
cout << "Fraction of packs >= " << minimum_weight
<< " with a mean of " << xpacks.mean()
<< " is " << cdf(complement(xpacks, minimum_weight)) << endl;
// fraction of packs >= 2.9 with a mean of 3.06449 is 0.950005

Using this Math Toolkit, we can calculate the required mean directly thus:

double under_fraction = 0.05; // so 95% are above the minimum weight mean - sd = 2.9
double low_limit = standard_deviation;

double offset = mean - low_limit - quantile(packs, under_fraction);

double nominal_mean = mean + offset;

// mean + (mean - low_limit - quantile(packs, under_fraction));

normal nominal_packs(nominal_mean, standard_deviation):
cout << "'Setting the packer to "™ << nominal_mean << "™ will mean that "'
<< "fraction of packs >= " << minimum_weight
<< " 1s " << cdf(complement(nominal_packs, minimum_weight)) << endl;
// Setting the packer to 3.06449 will mean that fraction of packs >= 2.9 is 0.95

This calculation is generalized as the free function called find_location, see algorithms.

To use this we will need to

#include <boost/math/distributions/find_location.hpp>
using boost::math::find_location;

and then use find_location function to find safe_mean, & construct a new normal distribution called 'goodpacks'.

double safe_mean = Ffind_location<normal>(minimum_weight, under_fraction, standard_deviation);
normal good_packs(safe_mean, standard_deviation);

with the same confirmation as before:

cout << "Setting the packer to "™ << nominal_mean << "™ will mean that "'
<< "fraction of packs >= " << minimum_weight
<< " Is " << cdf(complement(good_packs, minimum_weight)) << endl;
// Setting the packer to 3.06449 will mean that fraction of packs >= 2.9 is 0.95

Using Cauchy-Lorentz instead of normal distribution

After examining the weight distribution of a large number of packs, we might decide that, after all, the assumption of a normal
distribution is not really justified. We might find that the fit is better to a Cauchy Distribution. This distribution has wider 'wings',
so that whereas most of the values are closer to the mean than the normal, there are also more values than 'normal’ that lie further
from the mean than the normal.

This might happen because a larger than normal lump of meat is either included or excluded.

We first create a Cauchy Distribution with the original mean and standard deviation, and estimate the fraction that lie below our
minimum weight specification.

216

htto://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

3
i

Statistical Distributions and Functions

cauchy cpacks(mean, standard_deviation);
cout << "Cauchy Setting the packer to " << mean << " will mean that "
<< "fraction of packs >= " << minimum_weight
<< " is " << cdf(complement(cpacks, minimum_weight)) << endl;
// Cauchy Setting the packer to 3 will mean that fraction of packs >= 2.9 is 0.75

Note that far fewer of the packs meet the specification, only 75% instead of 95%. Now we can repeat the find_location, using the
cauchy distribution as template parameter, in place of the normal used above.

double Ic = find_location<cauchy>(minimum_weight, under_fraction, standard_deviation);

cout << "find_location<cauchy>(minimum_weight, over fraction, standard deviation); [1

' << Ic << endl;

// find_location<cauchy>(minimum_weight, over fraction, packs.standard_deviation()); 3.53138

Note that the safe_mean setting needs to be much higher, 3.53138 instead of 3.06449, so we will make rather less profit.

And again confirm that the fraction meeting specification is as expected.

cauchy goodcpacks(lc, standard_deviation);
cout << "Cauchy Setting the packer to " << Ic << " will mean that "
<< "fraction of packs >= " << minimum_weight
<< " 1s " << cdf(complement(goodcpacks, minimum_weight)) << endl;
// Cauchy Setting the packer to 3.53138 will mean that fraction of packs >= 2.9 is 0.95

Finally we could estimate the effect of a much tighter specification, that 99% of packs met the specification.

cout << "Cauchy Setting the packer to "
<< Find_location<cauchy>(minimum_weight, 0.99, standard_deviation)
<< " will mean that "
<< "fraction of packs >= " << minimum_weight
<< " is " << cdf(complement(goodcpacks, minimum_weight)) << endl;

Setting the packer to 3.13263 will mean that fraction of packs >= 2.9 is 0.99, but will more than double the mean loss from 0.0644
to 0.133 kg per pack.

Of course, this calculation is not limited to packs of meat, it applies to dispensing anything, and it also applies to a 'virtual' mater-
ial like any measurement.

The only caveat is that the calculation assumes that the standard deviation (scale) is known with a reasonably low uncertainty,
something that is not so easy to ensure in practice. And that the distribution is well defined, Normal Distribution or Cauchy Distri-
bution, or some other.

If one is simply dispensing a very large number of packs, then it may be feasible to measure the weight of hundreds or thousands
of packs. With a healthy 'degrees of freedom', the confidence intervals for the standard deviation are not too wide, typically about
+ and - 10% for hundreds of observations.

For other applications, where it is more difficult or expensive to make many observations, the confidence intervals are depressingly
wide.

See Confidence Intervals on the standard deviation for a worked example chi_square_std_dev_test.cpp of estimating these intervals.
Changing the scale or standard deviation
Alternatively, we could invest in a better (more precise) packer (or measuring device) with a lower standard deviation, or scale.

This might cost more, but would reduce the amount we have to 'give away' in order to meet the specification.

217

htto://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/math/doc/html/../../example/chi_square_std_dev_test.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Statistical Distributions and Functions

To estimate how much better (how much smaller standard deviation) it would have to be, we need to get the 5% quantile to be
located at the under_weight limit, 2.9

double p = 0.05; // wanted p th quantile.
cout << "Quantile of " << p << " = " << quantile(packs, p)
<< ', mean = " << packs.mean() << ", sd = " << packs.standard_deviation() << endl;

Quantile of 0.05 = 2.83551, mean = 3,sd = 0.1

With the current packer (mean = 3, sd = 0.1), the 5% quantile is at 2.8551 kg, a little below our target of 2.9 kg. So we know that
the standard deviation is going to have to be smaller.

Let's start by guessing that it (now 0.1) needs to be halved, to a standard deviation of 0.05 kg.

normal packO5(mean, 0.05);
cout << "Quantile of " << p << " = " << quantile(pack05, p)

<< ", mean = " << packO5.mean() << ", sd = " << pack05.standard_deviation() << endl;
// Quantile of 0.05 = 2.91776, mean = 3, sd = 0.05

cout <<"Fraction of packs >= " << minimum_weight << " with a mean of " << mean
<< " and standard deviation of " << packO05.standard_deviation()
<< " is " << cdf(complement(pack05, minimum_weight)) << endl;
// Fraction of packs >= 2.9 with a mean of 3 and standard deviation of 0.05 is 0.97725

So 0.05 was quite a good guess, but we are a little over the 2.9 target, so the standard deviation could be a tiny bit more. So we
could do some more guessing to get closer, say by increasing standard deviation to 0.06 kg, constructing another new distribution
called pack06.

normal packO6(mean, 0.06);
cout << "Quantille of " << p << " = " << quantile(pack06, p)

<< ', mean = " << packO6.mean() << ', sd = " << pack06.standard_deviation() << endl;
// Quantile of 0.05 = 2.90131, mean = 3, sd = 0.06

cout <<"Fraction of packs >= " << minimum_weight << ' with a mean of " << mean
<< " and standard deviation of " << pack06.standard_deviation()
<< " is " << cdf(complement(pack06, minimum_weight)) << endl;
// Fraction of packs >= 2.9 with a mean of 3 and standard deviation of 0.06 is 0.95221

Now we are getting really close, but to do the job properly, we might need to use root finding method, for example the tools
provided, and used elsewhere, in the Math Toolkit, see root-finding without derivatives

But in this (normal) distribution case, we can and should be even smarter and make a direct calculation.

Our required limit is minimum_weight = 2.9 kg, often called the random variate z. For a standard normal distribution, then prob-
ability p = N((minimum_weight - mean) / sd).

We want to find the standard deviation that would be required to meet this limit, so that the p th quantile is located at z (minim-
um_weight). In this case, the 0.05 (5%) quantile is at 2.9 kg pack weight, when the mean is 3 kg, ensuring that 0.95 (95%) of packs
are above the minimum weight.

Rearranging, we can directly calculate the required standard deviation:

218

3
i

htto://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

3
i

Statistical Distributions and Functions

normal NO1; // standard normal distribution with mean zero and unit standard deviation.
p = 0.05;

double gqp = quantile(NOl, p);

double sd95 = (minimum_weight - mean) / qp:

cout << "For the "<< p << "th quantile to be located at "
<< minimum_weight << ", would need a standard deviation of " << sd95 << endl;
// For the 0.05th quantile to be located at 2.9, would need a standard deviation of 0.0607957

We can now construct a new (normal) distribution pack95 for the 'better' packer, and check that our distribution will meet the
specification.

normal pack95(mean, sd95);
cout <<"Fraction of packs >= " << minimum_weight << ' with a mean of " << mean
<< " and standard deviation of " << pack95.standard_deviation()
<< " Is " << cdf(complement(pack95, minimum_weight)) << endl;
// Fraction of packs >= 2.9 with a mean of 3 and standard deviation of 0.0607957 is 0.95

This calculation is generalized in the free function find_scale, as shown below, giving the same standard deviation.

double ss = find_scale<normal>(minimum_weight, under_fraction, packs.mean());
cout << "find_scale<normal>(minimum_weight, under_fraction, packs.mean()); " << ss << endl;
// find_scale<normal>(minimum_weight, under_fraction, packs.mean()); 0.0607957

If we had defined an over_fraction, or percentage that must pass specification

double over_fraction = 0.95;
And (wrongly) written

double sso = find_scale<normal>(minimum_weight, over_fraction, packs.mean());
With the default policy, we would get a message like

Message from thrown exception was:
Error in function boost::math::find_scale<Dist, Policy>(double, double, double, Policy):
Computed scale (-0.060795683191176959) is <= 0! Was the complement intended?

But this would return a negative standard deviation - obviously impossible. The probability should be 1 - over_fraction, not
over_fraction, thus:

double sslo = find_scale<normal>(minimum_weight, 1 - over_fraction, packs.mean()):
cout << "find_scale<normal>(minimum_weight, under_fraction, packs.mean()); " << sslo << endl;
// find_scale<normal>(minimum_weight, under_fraction, packs.mean()); 0.0607957

But notice that using '1 - over_fraction' - will lead to a loss of accuracy, especially if over_fraction was close to unity. (See why
complements?). In this (very common) case, we should instead use the complements, giving the most accurate result.

double ssc = find_scale<normal>(complement(minimum_weight, over_fraction, packs.mean())):
cout << "find_scale<normal>(complement(minimum_weight, over_fraction, packs.mean())); [
' << ssc << endl;

// find_scale<normal>(complement(minimum_weight, over_fraction, packs.mean())); 0.0607957

Note that our guess of 0.06 was close to the accurate value of 0.060795683191176959.

219

htto://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Statistical Distributions and Functions

We can again confirm our prediction thus:

normal pack95c(mean, ssc);
cout <<"Fraction of packs >= " << minimum_weight << ' with a mean of " << mean
<< " and standard deviation of " << pack95c.standard_deviation()
<< " Is " << cdf(complement(pack95c, minimum_weight)) << endl;
// Fraction of packs >= 2.9 with a mean of 3 and standard deviation of 0.0607957 is 0.95

Notice that these two deceptively simple questions:

« Do we over-fill to make sure we meet a minimum specification (or under-fill to avoid an overdose)?
and/or

« Do we measure better?

are actually extremely common.

The weight of beef might be replaced by a measurement of more or less anything, from drug tablet content, Apollo landing rocket
firing, X-ray treatment doses...

The scale can be variation in dispensing or uncertainty in measurement.

See find_mean_and_sd_normal.cpp for full source code & appended program output.

Comparison with C, R, FORTRAN-style Free Functions

You are probably familiar with a statistics library that has free functions, for example the classic NAG C library and matching
NAG FORTRAN Library, Microsoft Excel BINOMDIST (number_s,trials,probability _s,cumulative), R, MathCAD pbinom and
many others.

If so, you may find 'Distributions as Objects' unfamiliar, if not alien.
However, do not panic, both definition and usage are not really very different.

A very simple example of generating the same values as the NAG C library for the binomial distribution follows. (If you find
slightly different values, the Boost C++ version, using double or better, is very likely to be the more accurate. Of course, accuracy
is not usually a concern for most applications of this function).

The NAG function specification is

void nag_binomial_dist(Integer n, double p, Integer Kk,
double *plek, double *pgtk, double *pegk, NagError *fail)

and is called
g0lbjc(n, p, k, &plek, &pgtk, &peqgk, NAGERR_DEFAULT);
The equivalent using this Boost C++ library is:

using namespace boost::math; // Using declaration avoids very long names.
binomial my dist(4, 0.5); // c.f. NAG n =4, p =0.5

and values can be output thus:

220

render

htto://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/math/doc/html/../../example/find_mean_and_sd_normal.cpp
http://nag.com/numeric/CL/CLdescription.asp
http://nag.com/numeric/FL/FLdescription.asp
http://office.microsoft.com/en-us/excel/HP052090051033.aspx
http://www.r-project.org/
http://www.ptc.com/products/mathcad/mathcad14/mathcad_func_chart.htm
http://nag.com/numeric/CL/CLdescription.asp
http://www.nag.co.uk/numeric/cl/manual/pdf/G01/g01bjc.pdf
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

rende

r

Statistical Distributions and Functions

cout
<< my_dist.trials() << " " // Echo the NAG input n = 4 trials
<< my_dist.success_fraction() << " " // Echo the NAG input p = 0.5
<< cdf(my_dist, 2) << " " // NAG plek with k = 2
<< cdf(complement(my_dist, 2)) << " " // NAG pgtk with k = 2
<< pdf(my_dist, 2) << endl; // NAG pegk with k = 2

cdf(dist, k) isequivalent to NAG library plek, lower tail probability of <= k
cdf(complement(dist, k)) isequivalentto NAG library pgtk, upper tail probability of > k
pdf(dist, k) isequivalentto NAG library pegk, point probability of ==

See binomial_example_nag.cpp for details.

Using the Distributions from Within C#

The distributions in this library can be used from the C# programming language when they are built using Microsoft's Common
Language Runtime (CLR) option.

An example of this kind of usage is given in the Distribution Explorer example. See boost-root/libs/math/dot_net_example
for the source code: the application consists of a C++ .dll that contains the actual distributions, and a C# GUI that allows you to
explore their properties.

Random Variates and Distribution Parameters

Random variates and distribution parameters are conventionally distinguished (for example in Wikipedia and Wolfram MathWorld
by placing a semi-colon after the random variate (whose value you 'choose"), to separate the variate from the parameter(s) that
defines the shape of the distribution.

For example, the binomial distribution has two parameters: n (the number of trials) and p (the probability of success on one trial).
It also has the random variate k: the number of successes observed. This means the probability density/mass function (pdf) is
written as f(k; n, p).

Translating this into code the binomial_distribution constructor therefore has two parameters:
binomial_distribution(RealType n, RealType p):;

While the function pdf has one argument specifying the distribution type (which includes its parameters, if any), and a second
argument for the random variate. So taking our binomial distribution example, we would write:

pdf(binomial_distribution<RealType>(n, p), k);

Discrete Probability Distributions

Note that the discrete distributions, including the binomial, negative binomial, Poisson & Bernoulli, are all mathematically defined
as discrete functions: only integral values of the random variate are envisaged and the functions are only defined at these integral
values. However because the method of calculation often uses continuous functions, it is convenient to treat them as if they were
continuous functions, and permit non-integral values of their parameters.

To enforce a strict mathematical model, users may use floor or ceil functions on the random variate, prior to calling the distribution
function, to enforce integral values.

For similar reasons, in continuous distributions, parameters like degrees of freedom that might appear to be integral, are treated
as real values (and are promoted from integer to floating-point if necessary). In this case however, that there are a small number
of situations where non-integral degrees of freedom do have a genuine meaning.

221

htto://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/math/doc/html/../../example/binomial_example_nag.cpp
http://www.boost.org/doc/libs/release/libs/math/doc/html/../distexplorer/html/index.html
http://en.wikipedia.org/wiki/Random_variate
http://en.wikipedia.org/wiki/Parameter
http://en.wikipedia.org/wiki/Random_variate
http://en.wikipedia.org/wiki/Random_variate
http://en.wikipedia.org/wiki/Random_variate
http://en.wikipedia.org/wiki/Discrete_probability_distribution
http://en.wikipedia.org/wiki/Random_variate
http://en.wikipedia.org/wiki/Random_variate
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Statistical Distributions and Functions

Generally speaking there is no loss of performance from allowing real-values parameters: the underlying special functions contain

optimizations for integer-valued arguments when applicable.
The quantile function of a discrete distribution will by default return an integer result that has been rounded out-
wards. That is to say lower quantiles (where the probability is less than 0.5) are rounded downward, and upper
quantiles (where the probability is greater than 0.5) are rounded upwards. This behaviour ensures that if an X%
quantile is requested, then at least the requested coverage will be present in the central region, and no more than

the requested coverage will be present in the tails.
This behaviour can be changed so that the quantile functions are rounded differently, or even return a real-valued

Caution
result using Policies. It is strongly recommended that you read the tutorial Understanding Quantiles of Discrete
Distributions before using the quantile function on a discrete distribution. The reference docs describe how to

change the rounding policy for these distributions.

222

http://www.renderx.com/

render

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

3
i

Statistical Distributions and Functions

Statistical Distributions Reference

Non-Member Properties

Properties that are common to all distributions are accessed via non-member getter functions: non-membership allows more of
these functions to be added over time, as the need arises. Unfortunately the literature uses many different and confusing names to
refer to a rather small number of actual concepts; refer to the concept index to find the property you want by the name you are
most familiar with. Or use the function index to go straight to the function you want if you already know its name.

Function Index
» Cumulative Distribution Function.
e Complement of the Cumulative Distribution Function.
e Cumulative Hazard Function.
 Hazard Function.
* kurtosis.
« kurtosis_excess
* mean.
e median.
¢ mode.
« Probability Density Function.
* range.
¢ Quantile.
¢ Quantile from the complement of the probability.
 skewness.
« standard deviation.
* support.
* variance.

Conceptual Index
e Complement of the Cumulative Distribution Function.
e Cumulative Distribution Function.
* Cumulative Hazard Function.
* Inverse Cumulative Distribution Function.
« Inverse Survival Function.
» Hazard Function

¢ Lower Critical Value.

223

htto://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

3
i

Statistical Distributions and Functions

* kurtosis.

« kurtosis_excess

* mean.

* median.

* mode.

. P.

« Percent Point Function.

* Probability Density Function.
 Probability Mass Function.

* range.

. Q.

¢ Quantile.

 Quantile from the complement of the probability.
* skewness.

« standard deviation

« Survival Function.

* support.

» Upper Critical Value.

* variance.

Cumulative Distribution Function

template <class RealType, class Policy>
RealType cdf(const Distribution-Type<RealType, Policy>& dist, const RealType& x);

The Cumulative Distribution Function is the probability that the variable takes a value less than or equal to x. It is equivalent to
the integral from -infinity to x of the Probability Density Function.

This function may return a domain_error if the random variable is outside the defined range for the distribution.

For example, the following graph shows the cdf for the normal distribution:

224

htto://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

3
i

Statistical Distributions and Functions

CDF for the Normal Distribution

-
s

[E

L1

Complement of the Cumulative Distribution Function

template <class Distribution, class RealType>
RealType cdf(const Unspecified-Complement-Type<Distribution, RealType>& comp);

The complement of the Cumulative Distribution Function is the probability that the variable takes a value greater than x. It is
equivalent to the integral from x to infinity of the Probability Density Function, or 1 minus the Cumulative Distribution Function
of x.

This is also known as the survival function.
This function may return a domain_error if the random variable is outside the defined range for the distribution.

In this library, it is obtained by wrapping the arguments to the cdf function in a call to complement, for example:

// standard normal distribution object:

boost: :math: :normal norm;

// print survival function for x=2.0:

std: :cout << cdf(complement(norm, 2.0)) << std::endl;

For example, the following graph shows the __complement of the cdf for the normal distribution:

225

htto://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Statistical Distributions and Functions

Survival Function / Complement of the CDF of the Normal Distribution

[E

See why complements? for why the complement is useful and when it should be used.

Hazard Function

template <class RealType, class Policy>
RealType hazard(const Distribution-Type<RealType, Policy>& dist, const RealType& X);

Returns the Hazard Function of x and distibution dist.

This function may return a domain_error if the random variable is outside the defined range for the distribution.

df
hazard(x) = h(x) = %

Caution

Some authors refer to this as the conditional failure density function rather than the hazard function.

Cumulative Hazard Function

template <class RealType, class Policy>
RealType chf(const Distribution-Type<RealType, Policy>& dist, const RealType& Xx);

Returns the Cumulative Hazard Function of x and distibution dist.

This function may return a domain_error if the random variable is outside the defined range for the distribution.

chf (dist, x) = HE) = [hGodu

226

render

htto://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

rende

r

Statistical Distributions and Functions

Caution

Some authors refer to this as simply the "Hazard Function".

mean

template<class RealType, class Policy>
RealType mean(const Distribution-Type<RealType, Policy>& dist);

Returns the mean of the distribution dist.

This function may return a domain_error if the distribution does not have a defined mean (for example the Cauchy distribution).

median

template<class RealType, class Policy>
RealType median(const Distribution-Type<RealType, Policy>& dist);

Returns the median of the distribution dist.

mode

template<class RealType, Policy>
RealType mode(const Distribution-Type<RealType, Policy>& dist);

Returns the mode of the distribution dist.

This function may return a domain_error if the distribution does not have a defined mode.

Probability Density Function

template <class RealType, class Policy>
RealType pdf(const Distribution-Type<RealType, Policy>& dist, const RealType& X);

For a continuous function, the probability density function (pdf) returns the probability that the variate has the value x. Since for
continuous distributions the probability at a single point is actually zero, the probability is better expressed as the integral of the
pdf between two points: see the Cumulative Distribution Function.

For a discrete distribution, the pdf is the probability that the variate takes the value x.
This function may return a domain_error if the random variable is outside the defined range for the distribution.

For example, for a standard normal distribution the pdf looks like this:

227

htto://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

rende

r

Statistical Distributions and Functions

The Nnn‘q@l Distribution

Tt

a3

(=8)

Range

template<class RealType, class Policy>
std: :pair<RealType, RealType> range(const Distribution-Type<RealType, Policy>& dist);

Returns the valid range of the random variable over distribution dist.

Quantile

template <class RealType, class Policy>
RealType quantile(const Distribution-Type<RealType, Policy>& dist, const RealType& p):;

The quantile is best viewed as the inverse of the Cumulative Distribution Function, it returns a value x such that cdf(dist, x)
== p.

This is also known as the percent point function, or percentile, or fractile, it is also the same as calculating the lower critical value
of a distribution.

This function returns a domain_error if the probability lies outside [0,1]. The function may return an overflow_error if there is no
finite value that has the specified probability.

The following graph shows the quantile function for a standard normal distribution:

228

htto://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Statistical Distributions and Functions

CQuantile of the Normal Distribution

Quantile from the complement of the probability.

See also complements.

template <class Distribution, class RealType>
RealType quantile(const Unspecified-Complement-Type<Distribution, RealType>& comp);

This is the inverse of the Complement of the Cumulative Distribution Function. It is calculated by wrapping the arguments in a
call to the quantile function in a call to complement. For example:

// define a standard normal distribution:

boost: :math::normal norm;

// print the value of x for which the complement

// of the probability is 0.05:

std: :cout << quantile(complement(norm, 0.05)) << std::endl;

The function computes a value x such that cdf(complement(dist, x)) == g where g is complement of the probability.
Why complements?
This function is also called the inverse survival function, and is the same as calculating the upper critical value of a distribution.

This function returns a domain_error if the probablity lies outside [0,1]. The function may return an overflow_error if there is no
finite value that has the specified probability.

The following graph show the inverse survival function for the normal distribution:

229

render

htto://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Statistical Distributions and Functions

Inverse Survival Function

Standard Deviation

template <class RealType, class Policy>
RealType standard_deviation(const Distribution-Type<RealType, Policy>& dist);

Returns the standard deviation of distribution dist.
This function may return a domain_error if the distribution does not have a defined standard deviation.
support

template<class RealType, class Policy>
std: :pair<RealType, RealType> support(const Distribution-Type<RealType, Policy>& dist);

Returns the supported range of random variable over the distribution dist.

The distribution is said to be 'supported' over a range that is "the smallest closed set whose complement has probability zero".
Non-mathematicians might say it means the 'interesting' smallest range of random variate x that has the cdf going from zero to
unity. Outside are uninteresting zones where the pdf is zero, and the cdf zero or unity.

Variance

template <class RealType, class Policy>
RealType variance(const Distribution-Type<RealType, Policy>& dist);

Returns the variance of the distribution dist.

This function may return a domain_error if the distribution does not have a defined variance.

230

render

htto://www.renderx.com/

http://en.wikipedia.org/wiki/Probability_distribution
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Statistical Distributions and Functions

Skewness

template <class RealType, class Policy>
RealType skewness(const Distribution-Type<RealType, Policy>& dist);

Returns the skewness of the distribution dist.

This function may return a domain_error if the distribution does not have a defined skewness.

Kurtosis

template <class RealType, class Policy>
RealType kurtosis(const Distribution-Type<RealType, Policy>& dist);

Returns the 'proper' kurtosis (normalized fourth moment) of the distribution dist.

kertosis = B, =y / 1p?

Where y; is the i'th central moment of the distribution, and in particular 1, is the variance of the distribution.
The Kkurtosis is a measure of the "peakedness" of a distribution.

Note that the literature definition of kurtosis is confusing. The definition used here is that used by for example Wolfram MathWorld
(that includes a table of formulae for kurtosis excess for various distributions) but NOT the definition of kurtosis used by Wikipedia
which treats "kurtosis" and "kurtosis excess" as the same quantity.

kurtosis_excess = “proper” kurtosis - 3

This subtraction of 3 is convenient so that the kurtosis excess of a normal distribution is zero.
This function may return a domain_error if the distribution does not have a defined kurtosis.

'Proper' kurtosis can have a value from zero to + infinity.

Kurtosis excess

template <class RealType, Policy>
RealType kurtosis_excess(const Distribution-Type<RealType, Policy>& dist);

Returns the kurtosis excess of the distribution dist.
kurtosis excess =y, =y / p22 - 3 = kurtosis - 3
Where ; is the i'th central moment of the distribution, and in particular 1, is the variance of the distribution.

The Kkurtosis excess is a measure of the "peakedness"” of a distribution, and is more widely used than the "kurtosis proper". It is
defined so that the kurtosis excess of a normal distribution is zero.

This function may return a domain_error if the distribution does not have a defined kurtosis excess.

Kurtosis excess can have a value from -2 to + infinity.

kurtosis = kurtosis_excess +3;

The kurtosis excess of a normal distribution is zero.

231

render

htto://www.renderx.com/

http://mathworld.wolfram.com/Kurtosis.html
http://en.wikipedia.org/wiki/Kurtosis
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

rende

r

Statistical Distributions and Functions

Pand Q

The terms P and Q are sometimes used to refer to the Cumulative Distribution Function and its complement respectively. Lowercase
p and g are sometimes used to refer to the values returned by these functions.

Percent Point Function or Percentile
The percent point function, also known as the percentile, is the same as the Quantile.
Inverse CDF Function.
The inverse of the cumulative distribution function, is the same as the Quantile.
Inverse Survival Function.
The inverse of the survival function, is the same as computing the quantile from the complement of the probability.
Probability Mass Function
The Probability Mass Function is the same as the Probability Density Function.

The term Mass Function is usually applied to discrete distributions, while the term Probability Density Function applies to continuous
distributions.

Lower Critical Value.

The lower critical value calculates the value of the random variable given the area under the left tail of the distribution. It is equi-
valent to calculating the Quantile.

Upper Critical Value.

The upper critical value calculates the value of the random variable given the area under the right tail of the distribution. It is
equivalent to calculating the quantile from the complement of the probability.

Survival Function

Refer to the Complement of the Cumulative Distribution Function.

Distributions
Arcsine Distribution

#include <boost/math/distributions/arcsine.hpp>

232

htto://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Statistical Distributions and Functions

namespace boost{ namespace math{

template <class RealType = double,
class Policy = policies::policy<> >
class arcsine_distribution;

typedef arcsine_distribution<double> arcsine; // double precision standard arcsine distribul—]
tion [0,1]-

template <class RealType, class Policy>
class arcsine_distribution

{

public:
typedef RealType value_type;
typedef Policy policy_type;

// Constructor from two range parameters, x_min and X_max:
arcsine_distribution(RealType x_min, RealType x_max);

// Range Parameter accessors:

RealType x_min() const;
RealType x_max() const;

}.

}} // namespaces

The class type arcsine_distribution represents an arcsine probability distribution function. The arcsine distribution is named
because its CDF uses the inverse sin or arcsine.

This is implemented as a generalized version with support from x_min to x_max providing the 'standard arcsine distribution' as
default with x_min = 0 and x_max = 1. (A few make other choices for 'standard’).

The arcsine distribution is generalized to include any bounded support a <= x <= b by Wolfram and Wikipedia, but also using
location and scale parameters by Virtual Laboratories in Probability and Statistics Arcsine distribution. The end-point version is
simpler and more obvious, so we implement that. If desired, this outlines how the Beta Distribution can be used to add a shape
factor.

The probability density function PDF for the arcsine distribution defined on the interval [x_min, x_max] is given by:
f(x; x_min, x_max) = 1 /(m((x - x_min){X_max - Xx_min))

For example, Wolfram Alpha arcsine distribution, from input of
N[PDF[arcsinedistribution[0, 1], 0.5], 50]
computes the PDF value

0.63661977236758134307553505349005744813783858296183

The Probability Density Functions (PDF) of generalized arcsine distributions are symmetric U-shaped curves, centered on (x_max
- X_min)/2, highest (infinite) near the two extrema, and quite flat over the central region.

If random variate x is x_min or x_max, then the PDF is infinity. If random variate x is x_min then the CDF is zero. If random
variate X is x_max then the CDF is unity.

The 'Standard' (0, 1) arcsine distribution is shown in blue and some generalized examples with other x ranges.

233

render

htto://www.renderx.com/

http://en.wikipedia.org/wiki/arcsine_distribution
http://en.wikipedia.org/wiki/Probability_distribution
http://reference.wolfram.com/language/ref/ArcSinDistribution.html
http://en.wikipedia.org/wiki/arcsine_distribution
http://www.math.uah.edu/stat/index.html
http://www.math.uah.edu/stat/special/Arcsine.html
http://en.wikipedia.org/wiki/arcsine_distribution
http://en.wikipedia.org/wiki/Probability_density_function
http://en.wikipedia.org/wiki/arcsine_distribution
http://www.wolframalpha.com/
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

3
i

Statistical Distributions and Functions

Probability

Arcsine Distribution PDF

2.5 AV
__ X_min=0, x_max=1
2 __ X_min=-1, x_max=1
__ X_min=-1, x_max=2
1.5 4 __ X_min=-1, x_max=4
X_min=2, x_max=4
R
0.5 4
0 L] L] L]
-1 0 1 2 3

Random Variable x

The Cumulative Distribution Function CDF is defined as

F(x) = 2@rcsin(v((x-x_min)/(x_max - x))) / 1t

Probability

Arcsine Distribution CDF

0.9 4

0.8 4

0.7 4

0.6 4

0.5 4

0.4 4

0.3

0.2 4

0.1 4

Xx_min=0, x_max=1

x_min=-1, x_max=1
X_min=-1, x_max=2
Xx_min=-1, x_max=4

X_min=2, x_max=4

o

1 2 3
Random Variable x

Constructor

arcsine_distribution(RealType x_min, RealType x_max);

constructs an arcsine distribution with range parameters x_min and x_max.

Requires x_min < x_max, otherwise domain_error is called.

For example:

234

htto://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

rende

r

Statistical Distributions and Functions

arcsine_distribution<> myarcsine(-2, 4);

constructs an arcsine distribution with x_min = -2 and x_max = 4.

Default values of x_min=0and x_max =1anda typedef arcsine_distribution<double> arcsine; mean that
arcsine as;

constructs a 'Standard 01" arcsine distribution.

Parameter Accessors

RealType x_min() const;
RealType x_max() const;

Return the parameter x_min or x_max from which this distribution was constructed.

So, for example:

using boost: :math::arcsine_distribution;
arcsine_distribution<> as(2, 5); // Cconstructs a double arcsine distribution.

assert(as.x_min() == 2.); // as.x_min() returns 2.
assert(as.x_max() == 5.); // as.x_max() returns 5.

Non-member Accessor Functions

All the usual non-member accessor functions that are generic to all distributions are supported: Cumulative Distribution Function,
Probability Density Function, Quantile, Hazard Function, Cumulative Hazard Function, mean, median, mode, variance, standard
deviation, skewness, kurtosis, kurtosis_excess, range and support.

The formulae for calculating these are shown in the table below, and at Wolfram Mathworld.

@ Note
There are always two values for the mode, at x_min and at x_max, default 0 and 1, so instead we raise the exception
domain_error. At these extrema, the PDFs are infinite, and the CDFs zero or unity.

Applications

The arcsine distribution is useful to describe Random walks, (including drunken walks) Brownian motion, Weiner processes,
Bernoulli trials, and their appplication to solve stock market and other ruinous gambling games.

The random variate x is constrained to x_min and x_max, (for our 'standard' distribution, 0 and 1), and is usually some fraction.
For any other x_min and x_max a fraction can be obtained from x using

fraction = (x - x_min) / (x_max - X_min)

The simplest example is tossing heads and tails with a fair coin and modelling the risk of losing, or winning. Walkers (molecules,
drunks...) moving left or right of a centre line are another common example.

The random variate x is the fraction of time spent on the ‘winning' side. If half the time is spent on the 'winning' side (and so the
other half on the 'losing’ side) then x = 1/2.

For large numbers of tosses, this is modelled by the (standard [0,1]) arcsine distribution, and the PDF can be calculated thus:

235

htto://www.renderx.com/

http://mathworld.wolfram.com/arcsineDistribution.html
http://en.wikipedia.org/wiki/Random_walk
http://en.wikipedia.org/wiki/Brownian_motion
http://en.wikipedia.org/wiki/Wiener_process
http://en.wikipedia.org/wiki/Bernoulli_trial
http://en.wikipedia.org/wiki/Gambler%27s_ruin
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Statistical Distributions and Functions

std::cout << pdf(as, 1. /7 2) << std::endl; // 0.637
// pdf has a minimum at x = 0.5

From the plot of PDF, it is clear that x = %2 is the minimum of the curve, so this is the least likely scenario. (This is highly counter-
intuitive, considering that fair tosses must eventually become equal. It turns out that eventually is not just very long, but infinite!).

The most likely scenarios are towards the extrema where x = 0 or x = 1.

If fraction of time on the left is a ¥, it is only slightly more likely because the curve is quite flat bottomed.
std::cout << pdf(as, 1. /7 4) << std::endl; // 0.735

If we consider fair coin-tossing games being played for 100 days (hypothetically continuously to be ‘at-limit) the person winning
after day 5 will not change in fraction 0.144 of the cases.

We can easily compute this setting x = 5./100 = 0.05
std: :cout << cdf(as, 0.05) << std::endl; // 0.144

Similarly, we can compute from a fraction of 0.05 /2 = 0.025 (halved because we are considering both winners and losers) corres-
ponding to 1 - 0.025 or 97.5% of the gamblers, (walkers, particles...) on the same side of the origin

std::cout << 2 * cdf(as, 1 - 0.975) << std::endl; // 0.202

(use of the complement gives a bit more clarity, and avoids potential loss of accuracy when x is close to unity, see why comple-
ments?).

std::cout << 2 * cdf(complement(as, 0.975)) << std::endl; // 0.202

or we can reverse the calculation by assuming a fraction of time on one side, say fraction 0.2,

std::cout << quantile(as, 1 - 0.2 / 2) << std::endl; // 0.976

std: :cout << quantile(complement(as, 0.2 / 2)) << std::endl; // 0.976

Summary: Every time we toss, the odds are equal, so on average we have the same change of winning and losing.
But this is not true for an an individual game where one will be mostly in a bad or good patch.
This is quite counter-intuitive to most people, but the mathematics is clear, and gamblers continue to provide proof.
Moral: if you in a losing patch, leave the game. (Because the odds to recover to a good patch are poor).
Corollary: Quit while you are ahead?
A working example is at arcsine_example.cpp including sample output .

Related distributions

The arcsine distribution with x_min = 0 and x_max = 1 is special case of the Beta Distribution with a = 1/2 and = 1/2.
Accuracy
This distribution is implemented using sqrt, sine, cos and arc sine and cos trigonometric functions which are normally accurate to

a few machine epsilon. But all values suffer from loss of significance or cancellation error for values of x close to x_max. For ex-
ample, for a standard [0, 1] arcsine distribution as, the pdf is symmetric about random variate x = 0.5 so that one would expect

236

render

htto://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/math/doc/html/../../example/arcsine_example.cpp
http://en.wikipedia.org/wiki/Machine_epsilon
http://en.wikipedia.org/wiki/Loss_of_significance
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

rende

r

Statistical Distributions and Functions

pdf(as, 0.01) == pdf(as, 0.99). But as x nears unity, there is increasing loss of significance. To counteract this, the
complement versions of CDF and quantile are implemented with alternative expressions using cos™ instead of sin™. Users should
see why complements? for guidance on when to avoid loss of accuracy by using complements.

Testing

The results were tested against a few accurate spot values computed by Wolfram Alpha, for example:

N[PDF[arcsinedistribution[0, 1], 0.5], 50]
0.63661977236758134307553505349005744813783858296183

Implementation

In the following table a and b are the parameters x_min and x_max, x is the random variable, p is the probability and its complement

qg=1-p.
Function
support
pdf
cdf
cdf of complement
quantile
quantile from the complement
mean
median
mode
variance
skewness
kurtosis excess

kurtosis

Implementation Notes

x [1al b], default x 0, 1]

f(x; a, b) = /(M (x - a){b - X))
F(x) = 2mEin (V(x-a) / (b - a))
2/(nos ™ (V(x - a) / (b - a)))
-aSin?(%n(p) + a + bEin?(¥np)
-aldos?(%.n(p) + a + bdos?(%4n(g)
Y2(a+h)

Y2(a+h)

x []al b], so raises domain_error (returning NaN).
(b-a)/8

0

-3/2

kurtosis_excess + 3

The quantile was calculated using an expression obtained by using Wolfram Alpha to invert the formula for the CDF thus
solve [p - 2/pi sin™-1(sqrt((x-a)/(b-a))) = 0, x]

which was interpreted as
Solve[p - (2 ArcSin[Sqgrt[(-a + x)/(-a + b)]]1)/Pi == 0, x, MaxExtraConditions -> Automatic]

and produced the resulting expression

237

htto://www.renderx.com/

http://en.wikipedia.org/wiki/Loss_of_significance
http://www.wolframalpha.com/
http://www.wolframalpha.com/
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

3
i

Statistical Distributions and Functions

X = —a sin™2((pi p)/2)+a+b sin*2((pi p)/2)

Thanks to Wolfram for providing this facility.
References
» Wikipedia arcsine distribution
» Wikipedia Beta distribution
* Wolfram MathWorld
* Wolfram Alpha
Sources
« The probability of going through a bad patch Esteban Moro's Blog.
» What soschumcks and the arc sine have in common Peter Haggstrom.
« arcsine distribution.
« Wolfram reference arcsine examples.

« Shlomo Sternberg slides.

Bernoulli Distribution

#include <boost/math/distributions/bernoulli.hpp>

namespace boost{ namespace math{
template <class RealType = double,

class Policy = policies::policy<> >
class bernoulli_distribution;

typedef bernoulli_distribution<> bernoulli;

template <class RealType, class Policy>
class bernoulli_distribution

{

public:
typedef RealType value_type;
typedef Policy policy_type;

bernoulli_distribution(RealType p); // Constructor.
// Accessor function.

RealType success_ fraction() const

// Probability of success (as a fraction).

}_

}} // namespaces

The Bernoulli distribution is a discrete distribution of the outcome of a single trial with only two results, 0 (failure) or 1 (success),
with a probability of success p.

The Bernoulli distribution is the simplest building block on which other discrete distributions of sequences of independent Bernoulli
trials can be based.

The Bernoulli is the binomial distribution (k = 1, p) with only one trial.

238

htto://www.renderx.com/

http://en.wikipedia.org/wiki/arcsine_distribution
http://en.wikipedia.org/wiki/Beta_distribution
http://mathworld.wolfram.com/BetaDistribution.html
http://www.wolframalpha.com/
http://estebanmoro.org/2009/04/the-probability-of-going-through-a-bad-patch
http://www.gotohaggstrom.com/What%20do%20schmucks%20and%20the%20arc%20sine%20law%20have%20in%20common.pdf
http://www.math.uah.edu/stat/special/Arcsine.html
http://reference.wolfram.com/language/ref/ArcSinDistribution.html
http://www.math.harvard.edu/library/sternberg/slides/1180908.pdf
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

3
i

Statistical Distributions and Functions

probability density function pdf f(0) = 1 - p, f(1) = p. Cumulative distribution function D(k) = if (k ==0) 1 - p else 1.

The following graph illustrates how the probability density function pdf varies with the outcome of the single trial:

Bernoulli Distribution PDF

_ p=0.25
— p=0.5
_ p=0.75
=
E
©
0
g
o
Random Variable
and the Cumulative distribution function
Bernoulli Distribution CDF
1.1
14 _ p=0.25
0.9 4 _ p=0.5
08 - _ p=0.75
> 0.7 4
= 0.6 -
3
g 0.5 4
8 0.4 4
0.3 4
0.2 4
0.1 4
0 4
Random Variable

Member Functions

bernoulli_distribution(RealType p);

Constructs a bernoulli distribution with success_fraction p.

239

htto://www.renderx.com/

http://en.wikipedia.org/wiki/Probability_density_function
http://en.wikipedia.org/wiki/Cumulative_Distribution_Function
http://en.wikipedia.org/wiki/Probability_density_function
http://en.wikipedia.org/wiki/Cumulative_Distribution_Function
http://en.wikipedia.org/wiki/bernoulli_distribution
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Statistical Distributions and Functions

Returns the success_fraction parameter of this distribution.

Non-member Accessors

Accuracy

deviation, skewness, kurtosis, kurtosis_excess, range and support.
The domain of the random variable is 0 and 1, and the useful supported range is only 0 or 1.

RealType success_fraction() const
All the usual non-member accessor functions that are generic to all distributions are supported: Cumulative Distribution Function,
Probability Density Function, Quantile, Hazard Function, Cumulative Hazard Function, mean, median, mode, variance, standard

Outside this range, functions are undefined, or may throw domain_error exception and make an error message available.

The Bernoulli distribution is implemented with simple arithmetic operators and so should have errors within an epsilon or two.

Implementation Notes

Implementation
Using the relation: pdf =1 - p for k =0, else p

Note

The Bernoulli distribution is implemented here as a strict discrete distribution. If a generalised version, allowing
{0, 1}

In the following table p is the probability of success and g = 1-p. k is the random variate, either O or 1.
k to be any real, is required then the binomial distribution with a single trial should be used, for example:
Using the relation: cdf =1 -pfork =0, else 1

K

binomial_distribution(1, 0.25)

q=1-p

if x<=(1-p)Oelse 1

if x<=(1-p) Lelse 0

p

Function

Supported range

pdf

cdf
cdf complement
quantile
quantile from the complement
mean
variance p*(1-p)
mode if(p<0.5)0elsel
skewness (1-2*p)/sqrt(p*q)
6*p*p-6*p+l/p*q
kurtosis -3
240
htto://www.renderx.com/

kurtosis
kurtosis excess

render

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Statistical Distributions and Functions

References
» Wikpedia Bernoulli distribution

* Weisstein, Eric W. "Bernoulli Distribution." From MathWorld--A Wolfram Web Resource.

Beta Distribution

#include <boost/math/distributions/beta.hpp>

namespace boost{ namespace math{

template <class RealType
class Policy
class beta distribution;

double,
policies::policy<> >

// typedef beta_distribution<double> beta;
// Note that this is deliberately NOT provided,
// to avoid a clash with the function name beta.

template <class RealType, class Policy>
class beta_distribution
{
public:
typedef RealType value_type;
typedef Policy policy_type;
// Constructor from two shape parameters, alpha & beta:
beta_distribution(RealType a, RealType b);

// Parameter accessors:
RealType alpha() const;
RealType beta() const;

// Parameter estimators of alpha or beta from mean and variance.
static RealType find_alpha(

RealType mean, // Expected value of mean.

RealType variance); // Expected value of variance.

static RealType find_beta(
RealType mean, // Expected value of mean.
RealType variance); // Expected value of variance.

// Parameter estimators from
// either alpha or beta, and x and probability.

static RealType find_alpha(
RealType beta, // from beta.
RealType x, // X.
RealType probability); // cdf

static RealType find_beta(
RealType alpha, // alpha.

RealType x, // probability x.
RealType probability); // probability cdf.

};
}} // namespaces

The class type beta_distribution represents a beta probability distribution function.

The beta distribution is used as a prior distribution for binomial proportions in Bayesian analysis.

3
i

241

htto://www.renderx.com/

http://en.wikipedia.org/wiki/Bernoulli_distribution
http://mathworld.wolfram.com/BernoulliDistribution.html
http://en.wikipedia.org/wiki/Beta_distribution
http://en.wikipedia.org/wiki/Probability_distribution
http://mathworld.wolfram.com/BetaDistribution.htm
http://en.wikipedia.org/wiki/Prior_distribution
http://mathworld.wolfram.com/BayesianAnalysis.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Statistical Distributions and Functions

See also: beta distribution and Bayesian statistics.

How the beta distribution is used for Bayesian analysis of one parameter models is discussed by Jeff Grynaviski.
The probability density function PDF for the beta distribution defined on the interval [0,1] is given by:

foca,B) =x** (L-x)P ™/ B(a, B)

where B(q, B) is the beta function, implemented in this library as beta. Division by the beta function ensures that the pdf is normalized
to the range zero to unity.

The following graph illustrates examples of the pdf for various values of the shape parameters. Note the a = 3 = 2 (blue line) is
dome-shaped, and might be approximated by a symmetrical triangular distribution.

Beta Distribution PDF
3 4
__ alpha=0.5, beta=0.5
2.5 4 __ alpha=5, beta=1
__ alpha=1, beta=3
> 2 4
£ alpha=2, beta=2
=
815 alpha=2, beta=5
o
a
1 4
0.5
0 L] L] L] L] L] L] L] L] L]
0 01 02 03 04 05 06 07 08 0.9 1
Random Variable

If a=p =1, thenitisa__space uniform distribution, equal to unity in the entire interval x =0 to 1. If a __space and 3 __space
are < 1, then the pdf is U-shaped. If a = (3, then the shape is asymmetric and could be approximated by a triangle whose apex is
away from the centre (where x = half).

Member Functions
Constructor
beta_distribution(RealType alpha, RealType beta);

Constructs a beta distribution with shape parameters alpha and beta.

Requires alpha,beta > 0,otherwise domain_error is called. Note that technically the beta distribution is defined for alpha,beta >=
0, but it's not clear whether any program can actually make use of that latitude or how many of the non-member functions can be
usefully defined in that case. Therefore for now, we regard it as an error if alpha or beta is zero.

For example:
beta_distribution<> mybeta(2, 5);

Constructs a the beta distribution with alpha=2 and beta=5 (shown in yellow in the graph above).

242

3
i

htto://www.renderx.com/

http://documents.wolfram.com/calculationcenter/v2/Functions/ListsMatrices/Statistics/BetaDistribution.html
http://en.wikipedia.org/wiki/Bayesian_statistics
http://home.uchicago.edu/~grynav/bayes/ABSLec5.ppt
http://en.wikipedia.org/wiki/Probability_density_function
http://en.wikipedia.org/wiki/Beta_distribution
http://en.wikipedia.org/wiki/Beta_function
http://en.wikipedia.org/wiki/Uniform_distribution_%28continuous%29
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Statistical Distributions and Functions

Parameter Accessors
RealType alpha() const;
Returns the parameter alpha from which this distribution was constructed.
RealType beta() const;

Returns the parameter beta from which this distribution was constructed.

So for example:

beta_distribution<> mybeta(2, 5);
assert(mybeta.alpha() == 2.); // mybeta.alpha() returns 2
assert(mybeta.beta() == 5.); // mybeta.beta() returns 5

Parameter Estimators
Two pairs of parameter estimators are provided.
One estimates either o __space or 3 __space from presumed-known mean and variance.
The other pair estimates either o __space or B __space from the cdf and x.

It is also possible to estimate o space and 3 __space from 'known' mode & quantile. For example, calculators are provided by
the Pooled Prevalence Calculator and Beta Buster but this is not yet implemented here.

static RealType find_alpha(
RealType mean, // Expected value of mean.
RealType variance); // Expected value of variance.

Returns the unique value of a that corresponds to a beta distribution with mean mean and variance variance.

static RealType find_beta(
RealType mean, // Expected value of mean.
RealType variance); // Expected value of variance.

Returns the unique value of B that corresponds to a beta distribution with mean mean and variance variance.

static RealType find_alpha(
RealType beta, // from beta.
RealType x, // X.
RealType probability); // probability cdf

Returns the value of a that gives: cdf(beta_distribution<RealType>(alpha, beta), x) == probability.

static RealType find_beta(
RealType alpha, // alpha.
RealType x, // probability Xx.
RealType probability); // probability cdf.

Returns the value of 3 that gives: cdf(beta_distribution<RealType>(alpha, beta), x) == probability.

243

render

htto://www.renderx.com/

http://www.ausvet.com.au/pprev/content.php?page=PPscript
http://www.epi.ucdavis.edu/diagnostictests/betabuster.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

rende

r

Statistical Distributions and Functions

Non-member Accessor Functions

All the usual non-member accessor functions that are generic to all distributions are supported: Cumulative Distribution Function,
Probability Density Function, Quantile, Hazard Function, Cumulative Hazard Function, mean, median, mode, variance, standard
deviation, skewness, kurtosis, kurtosis_excess, range and support.

The formulae for calculating these are shown in the table below, and at Wolfram Mathworld.

Applications

The beta distribution can be used to model events constrained to take place within an interval defined by a minimum and maximum
value: so it is used in project management systems.

It is also widely used in Bayesian statistical inference.

Related distributions
The beta distribution with both a __space and 3 = 1 follows a uniform distribution.
The triangular is used when less precise information is available.
The binomial distribution is closely related when a __space and 3 __space are integers.

With integer values of a __space and B __space the distribution B(i, j) is that of the j-th highest of a sample of i + j + 1 independent
random variables uniformly distributed between 0 and 1. The cumulative probability from 0 to x is thus the probability that the j-
th highest value is less than x. Or it is the probability that at least i of the random variables are less than x, a probability given by
summing over the Binomial Distribution with its p parameter set to X.

Accuracy

This distribution is implemented using the beta functions beta and incomplete beta functions ibeta and ibetac; please refer to these
functions for information on accuracy.

Implementation

In the following table a and b are the parameters a and (3, x is the random variable, p is the probability and q = 1-p.

244

htto://www.renderx.com/

http://mathworld.wolfram.com/BetaDistribution.html
http://en.wikipedia.org/wiki/Bayesian_inference
http://en.wikipedia.org/wiki/Uniform_distribution_%28continuous%29
http://en.wikipedia.org/wiki/Triangular_distribution
http://en.wikipedia.org/wiki/Binomial_distribution
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Statistical Distributions and Functions

Function

pdf

cdf

cdf complement

quantile

quantile from the complement
mean

variance

mode

skewness

kurtosis excess

kurtosis

parameter estimation

alpha

from mean and variance

beta

from mean and variance

The member functions find_alpha and find_beta
from cdf and probability x

and either alpha or beta

find_alpha

find_beta

References
Wikipedia Beta distribution
NIST Exploratory Data Analysis

Wolfram MathWorld

Implementation Notes

fx;o,B) =x* "1 (1 - %P1/ B(a, B)

Implemented using ibeta_derivative(a, b, X).

Using the incomplete beta function ibeta(a, b, X)

ibetac(a, b, x)

Using the inverse incomplete beta function ibeta_inv(a, b, p)
ibetac_inv(a, b, q)

a/(a+b)

a*b/ (ath)?2 * (a+ b + 1)

(a-1)) / (a +b -2)

2 (b-a) sgrt(at+b+1)/(a+b+2) * sqrt(a * b)

@ =’ B— 1)+ F(B—1)—2aB(B +2)

6 aBat B+ 2)a+ fi3)

kurtosis + 3

mean * (((mean * (1 - mean)) / variance)- 1)

@ - mean) * (((mean * (1 - mean)) /vari-
ance)-1)

Implemented in terms of the inverse incomplete beta functions

ibeta_inva, and ibeta_invb respectively.

ibeta_inva(beta, x, probability)

ibeta_invb(alpha, x, probability)

245

render

htto://www.renderx.com/

http://en.wikipedia.org/wiki/Beta_distribution
http://www.itl.nist.gov/div898/handbook/eda/section3/eda366h.htm
http://mathworld.wolfram.com/BetaDistribution.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Statistical Distributions and Functions

Binomial Distribution

#include <boost/math/distributions/binomial_hpp>

namespace boost{ namespace math{

template <class RealType = double,

class Policy = policies::policy<> >

class binomial _distribution;

typedef binomial_distribution<> binomial;

template <class RealType, class Policy>
class binomial _distribution

{
public:
typedef RealType value_type;
typedef Policy policy_type;
static const unspecified-type clopper_pearson_exact_interval;
static const unspecified-type jeffreys prior_interval;
// construct:
binomial_distribution(RealType n, RealType p);
// parameter access::
RealType success_fraction() const;
RealType trials() const;
// Bounds on success fraction:
static RealType find_lower_bound_on_p(
RealType trials,
RealType successes,
RealType probability,
unspecified-type method = clopper_pearson_exact_interval);
static RealType find_upper_bound_on_p(
RealType trials,
RealType successes,
RealType probability,
unspecified-type method = clopper_pearson_exact_interval);
// estimate min/max number of trials:
static RealType find_minimum_number_of trials(
RealType k, // number of events
RealType p, // success fraction
RealType alpha); // risk level
static RealType find_maximum_number_of trials(
RealType k, // number of events
RealType p, // success fraction
RealType alpha); // risk level
}:

}}y // namespaces

The class type binomial_distribution represents a binomial distribution: it is used when there are exactly two mutually ex-
clusive outcomes of a trial. These outcomes are labelled "success"” and "failure”. The Binomial Distribution is used to obtain the
probability of observing k successes in N trials, with the probability of success on a single trial denoted by p. The binomial distri-
bution assumes that p is fixed for all trials.

246

htto://www.renderx.com/

http://mathworld.wolfram.com/BinomialDistribution.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Statistical Distributions and Functions

i

3

@ Note
The random variable for the binomial distribution is the number of successes, (the number of trials is a fixed
property of the distribution) whe