Imported Upstream version 1.72.0
[platform/upstream/boost.git] / libs / math / doc / html / math_toolkit / signal_statistics.html
1 <html>
2 <head>
3 <meta http-equiv="Content-Type" content="text/html; charset=US-ASCII">
4 <title>Signal Statistics</title>
5 <link rel="stylesheet" href="../math.css" type="text/css">
6 <meta name="generator" content="DocBook XSL Stylesheets V1.79.1">
7 <link rel="home" href="../index.html" title="Math Toolkit 2.11.0">
8 <link rel="up" href="../statistics.html" title="Chapter&#160;6.&#160;Statistics">
9 <link rel="prev" href="bivariate_statistics.html" title="Bivariate Statistics">
10 <link rel="next" href="anderson_darling.html" title="The Anderson-Darling Test">
11 </head>
12 <body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
13 <table cellpadding="2" width="100%"><tr>
14 <td valign="top"><img alt="Boost C++ Libraries" width="277" height="86" src="../../../../../boost.png"></td>
15 <td align="center"><a href="../../../../../index.html">Home</a></td>
16 <td align="center"><a href="../../../../../libs/libraries.htm">Libraries</a></td>
17 <td align="center"><a href="http://www.boost.org/users/people.html">People</a></td>
18 <td align="center"><a href="http://www.boost.org/users/faq.html">FAQ</a></td>
19 <td align="center"><a href="../../../../../more/index.htm">More</a></td>
20 </tr></table>
21 <hr>
22 <div class="spirit-nav">
23 <a accesskey="p" href="bivariate_statistics.html"><img src="../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../statistics.html"><img src="../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../index.html"><img src="../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="anderson_darling.html"><img src="../../../../../doc/src/images/next.png" alt="Next"></a>
24 </div>
25 <div class="section">
26 <div class="titlepage"><div><div><h2 class="title" style="clear: both">
27 <a name="math_toolkit.signal_statistics"></a><a class="link" href="signal_statistics.html" title="Signal Statistics">Signal Statistics</a>
28 </h2></div></div></div>
29 <h4>
30 <a name="math_toolkit.signal_statistics.h0"></a>
31       <span class="phrase"><a name="math_toolkit.signal_statistics.synopsis"></a></span><a class="link" href="signal_statistics.html#math_toolkit.signal_statistics.synopsis">Synopsis</a>
32     </h4>
33 <pre class="programlisting"><span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">math</span><span class="special">/</span><span class="identifier">statistics</span><span class="special">/</span><span class="identifier">signal_statistics</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span>
34
35 <span class="keyword">namespace</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">statistics</span> <span class="special">{</span>
36
37     <span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">Container</span><span class="special">&gt;</span>
38     <span class="keyword">auto</span> <span class="identifier">absolute_gini_coefficient</span><span class="special">(</span><span class="identifier">Container</span> <span class="special">&amp;</span> <span class="identifier">c</span><span class="special">);</span>
39
40     <span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">ForwardIterator</span><span class="special">&gt;</span>
41     <span class="keyword">auto</span> <span class="identifier">absolute_gini_coefficient</span><span class="special">(</span><span class="identifier">ForwardIterator</span> <span class="identifier">first</span><span class="special">,</span> <span class="identifier">ForwardIterator</span> <span class="identifier">last</span><span class="special">);</span>
42
43     <span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">Container</span><span class="special">&gt;</span>
44     <span class="keyword">auto</span> <span class="identifier">sample_absolute_gini_coefficient</span><span class="special">(</span><span class="identifier">Container</span> <span class="special">&amp;</span> <span class="identifier">c</span><span class="special">);</span>
45
46     <span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">ForwardIterator</span><span class="special">&gt;</span>
47     <span class="keyword">auto</span> <span class="identifier">sample_absolute_gini_coefficient</span><span class="special">(</span><span class="identifier">ForwardIterator</span> <span class="identifier">first</span><span class="special">,</span> <span class="identifier">ForwardIterator</span> <span class="identifier">last</span><span class="special">);</span>
48
49     <span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">Container</span><span class="special">&gt;</span>
50     <span class="keyword">auto</span> <span class="identifier">hoyer_sparsity</span><span class="special">(</span><span class="identifier">Container</span> <span class="keyword">const</span> <span class="special">&amp;</span> <span class="identifier">c</span><span class="special">);</span>
51
52     <span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">ForwardIterator</span><span class="special">&gt;</span>
53     <span class="keyword">auto</span> <span class="identifier">hoyer_sparsity</span><span class="special">(</span><span class="identifier">ForwardIterator</span> <span class="identifier">first</span><span class="special">,</span> <span class="identifier">ForwardIterator</span> <span class="identifier">last</span><span class="special">);</span>
54
55     <span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">Container</span><span class="special">&gt;</span>
56     <span class="keyword">auto</span> <span class="identifier">oracle_snr</span><span class="special">(</span><span class="identifier">Container</span> <span class="keyword">const</span> <span class="special">&amp;</span> <span class="identifier">signal</span><span class="special">,</span> <span class="identifier">Container</span> <span class="keyword">const</span> <span class="special">&amp;</span> <span class="identifier">noisy_signal</span><span class="special">);</span>
57
58     <span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">Container</span><span class="special">&gt;</span>
59     <span class="keyword">auto</span> <span class="identifier">oracle_snr_db</span><span class="special">(</span><span class="identifier">Container</span> <span class="keyword">const</span> <span class="special">&amp;</span> <span class="identifier">signal</span><span class="special">,</span> <span class="identifier">Container</span> <span class="keyword">const</span> <span class="special">&amp;</span> <span class="identifier">noisy_signal</span><span class="special">);</span>
60
61     <span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">ForwardIterator</span><span class="special">&gt;</span>
62     <span class="keyword">auto</span> <span class="identifier">m2m4_snr_estimator</span><span class="special">(</span><span class="identifier">ForwardIterator</span> <span class="identifier">first</span><span class="special">,</span> <span class="identifier">ForwardIterator</span> <span class="identifier">last</span><span class="special">,</span> <span class="keyword">decltype</span><span class="special">(*</span><span class="identifier">first</span><span class="special">)</span> <span class="identifier">estimated_signal_kurtosis</span><span class="special">=</span><span class="number">1</span><span class="special">,</span> <span class="keyword">decltype</span><span class="special">(*</span><span class="identifier">first</span><span class="special">)</span> <span class="identifier">estimated_noise_kurtosis</span><span class="special">=</span><span class="number">3</span><span class="special">);</span>
63
64     <span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">Container</span><span class="special">&gt;</span>
65     <span class="keyword">auto</span> <span class="identifier">m2m4_snr_estimator</span><span class="special">(</span><span class="identifier">Container</span> <span class="keyword">const</span> <span class="special">&amp;</span> <span class="identifier">noisy_signal</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">Container</span><span class="special">::</span><span class="identifier">value_type</span> <span class="identifier">estimated_signal_kurtosis</span><span class="special">=</span><span class="number">1</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">Container</span><span class="special">::</span><span class="identifier">value_type</span> <span class="identifier">estimate_noise_kurtosis</span><span class="special">=</span><span class="number">3</span><span class="special">);</span>
66
67     <span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">ForwardIterator</span><span class="special">&gt;</span>
68     <span class="keyword">auto</span> <span class="identifier">m2m4_snr_estimator_db</span><span class="special">(</span><span class="identifier">ForwardIterator</span> <span class="identifier">first</span><span class="special">,</span> <span class="identifier">ForwardIterator</span> <span class="identifier">last</span><span class="special">,</span> <span class="keyword">decltype</span><span class="special">(*</span><span class="identifier">first</span><span class="special">)</span> <span class="identifier">estimated_signal_kurtosis</span><span class="special">=</span><span class="number">1</span><span class="special">,</span> <span class="keyword">decltype</span><span class="special">(*</span><span class="identifier">first</span><span class="special">)</span> <span class="identifier">estimated_noise_kurtosis</span><span class="special">=</span><span class="number">3</span><span class="special">);</span>
69
70     <span class="keyword">template</span><span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">Container</span><span class="special">&gt;</span>
71     <span class="keyword">auto</span> <span class="identifier">m2m4_snr_estimator_db</span><span class="special">(</span><span class="identifier">Container</span> <span class="keyword">const</span> <span class="special">&amp;</span> <span class="identifier">noisy_signal</span><span class="special">,</span><span class="keyword">typename</span> <span class="identifier">Container</span><span class="special">::</span><span class="identifier">value_type</span> <span class="identifier">estimated_signal_kurtosis</span><span class="special">=</span><span class="number">1</span><span class="special">,</span> <span class="keyword">typename</span> <span class="identifier">Container</span><span class="special">::</span><span class="identifier">value_type</span> <span class="identifier">estimate_noise_kurtosis</span><span class="special">=</span><span class="number">3</span><span class="special">);</span>
72
73 <span class="special">}</span>
74 </pre>
75 <h4>
76 <a name="math_toolkit.signal_statistics.h1"></a>
77       <span class="phrase"><a name="math_toolkit.signal_statistics.description"></a></span><a class="link" href="signal_statistics.html#math_toolkit.signal_statistics.description">Description</a>
78     </h4>
79 <p>
80       The file <code class="computeroutput"><span class="identifier">boost</span><span class="special">/</span><span class="identifier">math</span><span class="special">/</span><span class="identifier">statistics</span><span class="special">/</span><span class="identifier">signal_statistics</span><span class="special">.</span><span class="identifier">hpp</span></code> is a
81       set of facilities for computing quantities commonly used in signal analysis.
82     </p>
83 <p>
84       Our examples use <code class="computeroutput"><span class="identifier">std</span><span class="special">::</span><span class="identifier">vector</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;</span></code> to
85       hold the data, but this not required. In general, you can store your data in
86       an Eigen array, and Armadillo vector, <code class="computeroutput"><span class="identifier">std</span><span class="special">::</span><span class="identifier">array</span></code>,
87       and for many of the routines, a <code class="computeroutput"><span class="identifier">std</span><span class="special">::</span><span class="identifier">forward_list</span></code>.
88       These routines are usable in float, double, long double, and Boost.Multiprecision
89       precision, as well as their complex extensions whenever the computation is
90       well-defined.
91     </p>
92 <h4>
93 <a name="math_toolkit.signal_statistics.h2"></a>
94       <span class="phrase"><a name="math_toolkit.signal_statistics.absolute_gini_coefficient"></a></span><a class="link" href="signal_statistics.html#math_toolkit.signal_statistics.absolute_gini_coefficient">Absolute
95       Gini Coefficient</a>
96     </h4>
97 <p>
98       The Gini coefficient, first used to measure wealth inequality, is also one
99       of the best measures of the sparsity of an expansion in a basis. A sparse expansion
100       has most of its norm concentrated in just a few coefficients, making the connection
101       with wealth inequality obvious. See <a href="https://arxiv.org/pdf/0811.4706.pdf" target="_top">Hurley
102       and Rickard</a> for details. However, for measuring sparsity, the phase
103       of the numbers is irrelevant, so we provide the <code class="computeroutput"><span class="identifier">absolute_gini_coefficient</span></code>:
104     </p>
105 <pre class="programlisting"><span class="keyword">using</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">statistics</span><span class="special">::</span><span class="identifier">sample_absolute_gini_coefficient</span><span class="special">;</span>
106 <span class="keyword">using</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">statistics</span><span class="special">::</span><span class="identifier">absolute_gini_coefficient</span><span class="special">;</span>
107 <span class="identifier">std</span><span class="special">::</span><span class="identifier">vector</span><span class="special">&lt;</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">complex</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;&gt;</span> <span class="identifier">v</span><span class="special">{{</span><span class="number">0</span><span class="special">,</span><span class="number">1</span><span class="special">},</span> <span class="special">{</span><span class="number">0</span><span class="special">,</span><span class="number">0</span><span class="special">},</span> <span class="special">{</span><span class="number">0</span><span class="special">,</span><span class="number">0</span><span class="special">},</span> <span class="special">{</span><span class="number">0</span><span class="special">,</span><span class="number">0</span><span class="special">}};</span>
108 <span class="keyword">double</span> <span class="identifier">abs_gini</span> <span class="special">=</span> <span class="identifier">sample_absolute_gini_coefficient</span><span class="special">(</span><span class="identifier">v</span><span class="special">);</span>
109 <span class="comment">// now abs_gini = 1; maximally unequal</span>
110
111 <span class="identifier">std</span><span class="special">::</span><span class="identifier">vector</span><span class="special">&lt;</span><span class="identifier">std</span><span class="special">::</span><span class="identifier">complex</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;&gt;</span> <span class="identifier">w</span><span class="special">{{</span><span class="number">0</span><span class="special">,</span><span class="number">1</span><span class="special">},</span> <span class="special">{</span><span class="number">1</span><span class="special">,</span><span class="number">0</span><span class="special">},</span> <span class="special">{</span><span class="number">0</span><span class="special">,-</span><span class="number">1</span><span class="special">},</span> <span class="special">{-</span><span class="number">1</span><span class="special">,</span><span class="number">0</span><span class="special">}};</span>
112 <span class="identifier">abs_gini</span> <span class="special">=</span> <span class="identifier">absolute_gini_coefficient</span><span class="special">(</span><span class="identifier">w</span><span class="special">);</span>
113 <span class="comment">// now abs_gini = 0; every element of the vector has equal magnitude</span>
114
115 <span class="identifier">std</span><span class="special">::</span><span class="identifier">vector</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;</span> <span class="identifier">u</span><span class="special">{-</span><span class="number">1</span><span class="special">,</span> <span class="number">1</span><span class="special">,</span> <span class="special">-</span><span class="number">1</span><span class="special">};</span>
116 <span class="identifier">abs_gini</span> <span class="special">=</span> <span class="identifier">absolute_gini_coefficient</span><span class="special">(</span><span class="identifier">u</span><span class="special">);</span>
117 <span class="comment">// now abs_gini = 0</span>
118 <span class="comment">// Alternative call useful for computing over subset of the input:</span>
119 <span class="identifier">abs_gini</span> <span class="special">=</span> <span class="identifier">absolute_gini_coefficient</span><span class="special">(</span><span class="identifier">u</span><span class="special">.</span><span class="identifier">begin</span><span class="special">(),</span> <span class="identifier">u</span><span class="special">.</span><span class="identifier">begin</span><span class="special">()</span> <span class="special">+</span> <span class="number">1</span><span class="special">);</span>
120 </pre>
121 <p>
122       The sample Gini coefficient returns unity for a vector which has only one nonzero
123       coefficient. The population Gini coefficient of a vector with one non-zero
124       element is dependent on the length of the input.
125     </p>
126 <p>
127       The sample Gini coefficient lacks one desirable property of the population
128       Gini coefficient, namely that "cloning" a vector has the same Gini
129       coefficient; though cloning holds to very high accuracy with the sample Gini
130       coefficient and can easily be recovered by a rescaling.
131     </p>
132 <p>
133       If sorting the input data is too much expense for a sparsity measure (is it
134       going to be perfect anyway?), consider calculating the Hoyer sparsity instead.
135     </p>
136 <h4>
137 <a name="math_toolkit.signal_statistics.h3"></a>
138       <span class="phrase"><a name="math_toolkit.signal_statistics.hoyer_sparsity"></a></span><a class="link" href="signal_statistics.html#math_toolkit.signal_statistics.hoyer_sparsity">Hoyer
139       Sparsity</a>
140     </h4>
141 <p>
142       The Hoyer sparsity measures a normalized ratio of the &#8467;<sup>1</sup> and &#8467;<sup>2</sup> norms.
143       As the name suggests, it is used to measure the sparsity of an expansion in
144       some basis.
145     </p>
146 <p>
147       The Hoyer sparsity computes (&#8730;<span class="emphasis"><em>N</em></span> - &#8467;<sup>1</sup>(v)/&#8467;<sup>2</sup>(v))/(&#8730;N
148       -1). For details, see <a href="http://www.jmlr.org/papers/volume5/hoyer04a/hoyer04a.pdf" target="_top">Hoyer</a>
149       as well as <a href="https://arxiv.org/pdf/0811.4706.pdf" target="_top">Hurley and Rickard</a>.
150     </p>
151 <p>
152       A few special cases will serve to clarify the intended use: If <span class="emphasis"><em>v</em></span>
153       has only one nonzero coefficient, the Hoyer sparsity attains its maxima of
154       1. If the coefficients of <span class="emphasis"><em>v</em></span> all have the same magnitude,
155       then the Hoyer sparsity attains its minima of zero. If the elements of <span class="emphasis"><em>v</em></span>
156       are uniformly distributed on an interval [0, <span class="emphasis"><em>b</em></span>], then
157       the Hoyer sparsity is approximately 0.133.
158     </p>
159 <p>
160       Usage:
161     </p>
162 <pre class="programlisting"><span class="identifier">std</span><span class="special">::</span><span class="identifier">vector</span><span class="special">&lt;</span><span class="identifier">Real</span><span class="special">&gt;</span> <span class="identifier">v</span><span class="special">{</span><span class="number">1</span><span class="special">,</span><span class="number">0</span><span class="special">,</span><span class="number">0</span><span class="special">};</span>
163 <span class="identifier">Real</span> <span class="identifier">hs</span> <span class="special">=</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">statistics</span><span class="special">::</span><span class="identifier">hoyer_sparsity</span><span class="special">(</span><span class="identifier">v</span><span class="special">);</span>
164 <span class="comment">// hs = 1</span>
165 <span class="identifier">std</span><span class="special">::</span><span class="identifier">vector</span><span class="special">&lt;</span><span class="identifier">Real</span><span class="special">&gt;</span> <span class="identifier">v</span><span class="special">{</span><span class="number">1</span><span class="special">,-</span><span class="number">1</span><span class="special">,</span><span class="number">1</span><span class="special">};</span>
166 <span class="identifier">Real</span> <span class="identifier">hs</span> <span class="special">=</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">statistics</span><span class="special">::</span><span class="identifier">hoyer_sparsity</span><span class="special">(</span><span class="identifier">v</span><span class="special">.</span><span class="identifier">begin</span><span class="special">(),</span> <span class="identifier">v</span><span class="special">.</span><span class="identifier">end</span><span class="special">());</span>
167 <span class="comment">// hs = 0</span>
168 </pre>
169 <p>
170       The container must be forward iterable and the contents are not modified. Accepts
171       real, complex, and integer inputs. If the input is an integral type, the output
172       is a double precision float.
173     </p>
174 <h4>
175 <a name="math_toolkit.signal_statistics.h4"></a>
176       <span class="phrase"><a name="math_toolkit.signal_statistics.oracle_signal_to_noise_ratio"></a></span><a class="link" href="signal_statistics.html#math_toolkit.signal_statistics.oracle_signal_to_noise_ratio">Oracle
177       Signal-to-noise ratio</a>
178     </h4>
179 <p>
180       The function <code class="computeroutput"><span class="identifier">oracle_snr</span></code> computes
181       the ratio &#8214; <span class="emphasis"><em>s</em></span> &#8214;<sub>2</sub><sup>2</sup> / &#8214; <span class="emphasis"><em>s</em></span>
182       - <span class="emphasis"><em>x</em></span> &#8214;<sub>2</sub><sup>2</sup>, where <span class="emphasis"><em>s</em></span> is signal
183       and <span class="emphasis"><em>x</em></span> is a noisy signal. The function <code class="computeroutput"><span class="identifier">oracle_snr_db</span></code>
184       computes 10<code class="computeroutput"><span class="identifier">log</span></code><sub>10</sub>(&#8214;
185       <span class="emphasis"><em>s</em></span> &#8214;<sup>2</sup> / &#8214; <span class="emphasis"><em>s</em></span> - <span class="emphasis"><em>x</em></span>
186       &#8214;<sup>2</sup>). The functions are so named because in general, one does not know
187       how to decompose a real signal <span class="emphasis"><em>x</em></span> into <span class="emphasis"><em>s</em></span>
188       + <span class="emphasis"><em>w</em></span> and as such <span class="emphasis"><em>s</em></span> is regarded as
189       oracle information. Hence this function is mainly useful for unit testing other
190       SNR estimators.
191     </p>
192 <p>
193       Usage:
194     </p>
195 <pre class="programlisting"><span class="identifier">std</span><span class="special">::</span><span class="identifier">vector</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;</span> <span class="identifier">signal</span><span class="special">(</span><span class="number">500</span><span class="special">,</span> <span class="number">3.2</span><span class="special">);</span>
196 <span class="identifier">std</span><span class="special">::</span><span class="identifier">vector</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;</span> <span class="identifier">noisy_signal</span><span class="special">(</span><span class="number">500</span><span class="special">);</span>
197 <span class="comment">// fill 'noisy_signal' signal + noise</span>
198 <span class="keyword">double</span> <span class="identifier">snr_db</span> <span class="special">=</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">statistics</span><span class="special">::</span><span class="identifier">oracle_snr_db</span><span class="special">(</span><span class="identifier">signal</span><span class="special">,</span> <span class="identifier">noisy_signal</span><span class="special">);</span>
199 <span class="keyword">double</span> <span class="identifier">snr</span> <span class="special">=</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">statistics</span><span class="special">::</span><span class="identifier">oracle_snr</span><span class="special">(</span><span class="identifier">signal</span><span class="special">,</span> <span class="identifier">noisy_signal</span><span class="special">);</span>
200 </pre>
201 <p>
202       The input can be real, complex, or integral. Integral inputs produce double
203       precision floating point outputs. The input data is not modified and must satisfy
204       the requirements of a <code class="computeroutput"><span class="identifier">RandomAccessContainer</span></code>.
205     </p>
206 <h4>
207 <a name="math_toolkit.signal_statistics.h5"></a>
208       <span class="phrase"><a name="math_toolkit.signal_statistics.m_sub_2_m_sub_4_snr_estimation"></a></span><a class="link" href="signal_statistics.html#math_toolkit.signal_statistics.m_sub_2_m_sub_4_snr_estimation"><span class="emphasis"><em>M</em></span><sub>2</sub><span class="emphasis"><em>M</em></span><sub>4</sub> SNR
209       Estimation</a>
210     </h4>
211 <p>
212       Estimates the SNR of a noisy signal via the <span class="emphasis"><em>M</em></span><sub>2</sub><span class="emphasis"><em>M</em></span><sub>4</sub> method.
213       See <a href="https://doi.org/10.1109/26.871393" target="_top">Pauluzzi and N.C. Beaulieu</a>
214       and <a href="https://doi.org/10.1109/ISIT.1994.394869" target="_top">Matzner and Englberger</a>
215       for details.
216     </p>
217 <pre class="programlisting"><span class="identifier">std</span><span class="special">::</span><span class="identifier">vector</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;</span> <span class="identifier">noisy_signal</span><span class="special">(</span><span class="number">512</span><span class="special">);</span>
218 <span class="comment">// fill noisy_signal with data contaminated by Gaussian white noise:</span>
219 <span class="keyword">double</span> <span class="identifier">est_snr_db</span> <span class="special">=</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">statistics</span><span class="special">::</span><span class="identifier">m2m4_snr_estimator_db</span><span class="special">(</span><span class="identifier">noisy_signal</span><span class="special">);</span>
220 </pre>
221 <p>
222       The <span class="emphasis"><em>M</em></span><sub>2</sub><span class="emphasis"><em>M</em></span><sub>4</sub> SNR estimator is an "in-service"
223       estimator, meaning that the estimate is made using the noisy, data-bearing
224       signal, and does not require a background estimate. This estimator has been
225       found to be work best between roughly -3 and 15db, tending to overestimate
226       the noise below -3db, and underestimate the noise above 15db. See <a href="https://www.mdpi.com/2078-2489/8/3/75/pdf" target="_top">Xue
227       et al</a> for details.
228     </p>
229 <p>
230       The <span class="emphasis"><em>M</em></span><sub>2</sub><span class="emphasis"><em>M</em></span><sub>4</sub> SNR estimator, by default,
231       assumes that the kurtosis of the signal is 1 and the kurtosis of the noise
232       is 3, the latter corresponding to Gaussian noise. These parameters, however,
233       can be overridden:
234     </p>
235 <pre class="programlisting"><span class="identifier">std</span><span class="special">::</span><span class="identifier">vector</span><span class="special">&lt;</span><span class="keyword">double</span><span class="special">&gt;</span> <span class="identifier">noisy_signal</span><span class="special">(</span><span class="number">512</span><span class="special">);</span>
236 <span class="comment">// fill noisy_signal with the data:</span>
237 <span class="keyword">double</span> <span class="identifier">signal_kurtosis</span> <span class="special">=</span> <span class="number">1.5</span><span class="special">;</span>
238 <span class="comment">// Noise is assumed to follow Laplace distribution, which has kurtosis of 6:</span>
239 <span class="keyword">double</span> <span class="identifier">noise_kurtosis</span> <span class="special">=</span> <span class="number">6</span><span class="special">;</span>
240 <span class="keyword">double</span> <span class="identifier">est_snr</span> <span class="special">=</span> <span class="identifier">boost</span><span class="special">::</span><span class="identifier">math</span><span class="special">::</span><span class="identifier">statistics</span><span class="special">::</span><span class="identifier">m2m4_snr_estimator_db</span><span class="special">(</span><span class="identifier">noisy_signal</span><span class="special">,</span> <span class="identifier">signal_kurtosis</span><span class="special">,</span> <span class="identifier">noise_kurtosis</span><span class="special">);</span>
241 </pre>
242 <p>
243       Now, technically the method is a "blind SNR estimator", meaning that
244       the no <span class="emphasis"><em>a-priori</em></span> information about the signal is required
245       to use the method. However, the performance of the method is <span class="emphasis"><em>vastly</em></span>
246       better if you can come up with a better estimate of the signal and noise kurtosis.
247       How can we do this? Suppose we know that the SNR is much greater than 1. Then
248       we can estimate the signal kurtosis simply by using the noisy signal kurtosis.
249       If the SNR is much less than one, this method breaks down as the noisy signal
250       kurtosis will tend to the noise kurtosis-though in this limit we have an excellent
251       estimator of the noise kurtosis! In addition, if you have a model of what your
252       signal should look like, you can precompute the signal kurtosis. For example,
253       sinusoids have a kurtosis of 1.5. See <a href="http://www.jcomputers.us/vol8/jcp0808-21.pdf" target="_top">here</a>
254       for a study which uses estimates of this sort to improve the performance of
255       the <span class="emphasis"><em>M</em></span><sub>2</sub><span class="emphasis"><em>M</em></span><sub>4</sub> estimator.
256     </p>
257 <p>
258       <span class="emphasis"><em>Nota bene</em></span>: The traditional definition of SNR is <span class="emphasis"><em>not</em></span>
259       mean invariant. By this we mean that if a constant is added to every sample
260       of a signal, the SNR is changed. For example, adding DC bias to a signal changes
261       its SNR. For most use cases, this is really not what you intend; for example
262       a signal consisting of zeros plus Gaussian noise has an SNR of zero, whereas
263       a signal with a constant DC bias and random Gaussian noise might have a very
264       large SNR.
265     </p>
266 <p>
267       The <span class="emphasis"><em>M</em></span><sub>2</sub><span class="emphasis"><em>M</em></span><sub>4</sub> SNR estimator is computed
268       from mean-invariant quantities, and hence it should really be compared to the
269       mean-invariant SNR.
270     </p>
271 <p>
272       <span class="emphasis"><em>Nota bene</em></span>: This computation requires the solution of a
273       system of quadratic equations involving the noise kurtosis, the signal kurtosis,
274       and the second and fourth moments of the data. There is no guarantee that a
275       solution of this system exists for all value of these parameters, in fact nonexistence
276       can easily be demonstrated for certain data. If there is no solution to the
277       system, then failure is communicated by returning NaNs. This happens distressingly
278       often; if a user is aware of any blind SNR estimators which do not suffer from
279       this drawback, please open a github ticket and let us know.
280     </p>
281 <p>
282       The author has not managed to fully characterize the conditions under which
283       a real solution with <span class="emphasis"><em>S &gt; 0</em></span> and <span class="emphasis"><em>N &gt;0</em></span>
284       exists. However, a very intuitive example demonstrates why nonexistence can
285       occur. Suppose the signal and noise kurtosis are equal. Then the method has
286       no way to distinguish between the signal and the noise, and the solution is
287       non-unique.
288     </p>
289 <h4>
290 <a name="math_toolkit.signal_statistics.h6"></a>
291       <span class="phrase"><a name="math_toolkit.signal_statistics.references"></a></span><a class="link" href="signal_statistics.html#math_toolkit.signal_statistics.references">References</a>
292     </h4>
293 <div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; ">
294 <li class="listitem">
295           Mallat, Stephane. <span class="emphasis"><em>A wavelet tour of signal processing: the sparse
296           way.</em></span> Academic press, 2008.
297         </li>
298 <li class="listitem">
299           Hurley, Niall, and Scott Rickard. <span class="emphasis"><em>Comparing measures of sparsity.</em></span>
300           IEEE Transactions on Information Theory 55.10 (2009): 4723-4741.
301         </li>
302 <li class="listitem">
303           Jensen, Arne, and Anders la Cour-Harbo. <span class="emphasis"><em>Ripples in mathematics:
304           the discrete wavelet transform.</em></span> Springer Science &amp; Business
305           Media, 2001.
306         </li>
307 <li class="listitem">
308           D. R. Pauluzzi and N. C. Beaulieu, <span class="emphasis"><em>A comparison of SNR estimation
309           techniques for the AWGN channel,</em></span> IEEE Trans. Communications,
310           Vol. 48, No. 10, pp. 1681-1691, 2000.
311         </li>
312 <li class="listitem">
313           Hoyer, Patrik O. <span class="emphasis"><em>Non-negative matrix factorization with sparseness
314           constraints.</em></span>, Journal of machine learning research 5.Nov (2004):
315           1457-1469.
316         </li>
317 </ul></div>
318 </div>
319 <table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr>
320 <td align="left"></td>
321 <td align="right"><div class="copyright-footer">Copyright &#169; 2006-2019 Nikhar
322       Agrawal, Anton Bikineev, Paul A. Bristow, Marco Guazzone, Christopher Kormanyos,
323       Hubert Holin, Bruno Lalande, John Maddock, Jeremy Murphy, Matthew Pulver, Johan
324       R&#229;de, Gautam Sewani, Benjamin Sobotta, Nicholas Thompson, Thijs van den Berg,
325       Daryle Walker and Xiaogang Zhang<p>
326         Distributed under the Boost Software License, Version 1.0. (See accompanying
327         file LICENSE_1_0.txt or copy at <a href="http://www.boost.org/LICENSE_1_0.txt" target="_top">http://www.boost.org/LICENSE_1_0.txt</a>)
328       </p>
329 </div></td>
330 </tr></table>
331 <hr>
332 <div class="spirit-nav">
333 <a accesskey="p" href="bivariate_statistics.html"><img src="../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../statistics.html"><img src="../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../index.html"><img src="../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="anderson_darling.html"><img src="../../../../../doc/src/images/next.png" alt="Next"></a>
334 </div>
335 </body>
336 </html>