Imported Upstream version 1.72.0
[platform/upstream/boost.git] / libs / math / doc / html / math_toolkit / expint / expint_i.html
1 <html>
2 <head>
3 <meta http-equiv="Content-Type" content="text/html; charset=US-ASCII">
4 <title>Exponential Integral Ei</title>
5 <link rel="stylesheet" href="../../math.css" type="text/css">
6 <meta name="generator" content="DocBook XSL Stylesheets V1.79.1">
7 <link rel="home" href="../../index.html" title="Math Toolkit 2.11.0">
8 <link rel="up" href="../expint.html" title="Exponential Integrals">
9 <link rel="prev" href="expint_n.html" title="Exponential Integral En">
10 <link rel="next" href="../hypergeometric.html" title="Hypergeometric Functions">
11 </head>
12 <body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
13 <table cellpadding="2" width="100%"><tr>
14 <td valign="top"><img alt="Boost C++ Libraries" width="277" height="86" src="../../../../../../boost.png"></td>
15 <td align="center"><a href="../../../../../../index.html">Home</a></td>
16 <td align="center"><a href="../../../../../../libs/libraries.htm">Libraries</a></td>
17 <td align="center"><a href="http://www.boost.org/users/people.html">People</a></td>
18 <td align="center"><a href="http://www.boost.org/users/faq.html">FAQ</a></td>
19 <td align="center"><a href="../../../../../../more/index.htm">More</a></td>
20 </tr></table>
21 <hr>
22 <div class="spirit-nav">
23 <a accesskey="p" href="expint_n.html"><img src="../../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../expint.html"><img src="../../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../../index.html"><img src="../../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="../hypergeometric.html"><img src="../../../../../../doc/src/images/next.png" alt="Next"></a>
24 </div>
25 <div class="section">
26 <div class="titlepage"><div><div><h3 class="title">
27 <a name="math_toolkit.expint.expint_i"></a><a class="link" href="expint_i.html" title="Exponential Integral Ei">Exponential Integral Ei</a>
28 </h3></div></div></div>
29 <h5>
30 <a name="math_toolkit.expint.expint_i.h0"></a>
31         <span class="phrase"><a name="math_toolkit.expint.expint_i.synopsis"></a></span><a class="link" href="expint_i.html#math_toolkit.expint.expint_i.synopsis">Synopsis</a>
32       </h5>
33 <pre class="programlisting"><span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">math</span><span class="special">/</span><span class="identifier">special_functions</span><span class="special">/</span><span class="identifier">expint</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span>
34 </pre>
35 <pre class="programlisting"><span class="keyword">namespace</span> <span class="identifier">boost</span><span class="special">{</span> <span class="keyword">namespace</span> <span class="identifier">math</span><span class="special">{</span>
36
37 <span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">&gt;</span>
38 <a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">expint</span><span class="special">(</span><span class="identifier">T</span> <span class="identifier">z</span><span class="special">);</span>
39
40 <span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">,</span> <span class="keyword">class</span> <a class="link" href="../../policy.html" title="Chapter&#160;20.&#160;Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&gt;</span>
41 <a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">expint</span><span class="special">(</span><span class="identifier">T</span> <span class="identifier">z</span><span class="special">,</span> <span class="keyword">const</span> <a class="link" href="../../policy.html" title="Chapter&#160;20.&#160;Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&amp;);</span>
42
43 <span class="special">}}</span> <span class="comment">// namespaces</span>
44 </pre>
45 <p>
46         The return type of these functions is computed using the <a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>result
47         type calculation rules</em></span></a>: the return type is <code class="computeroutput"><span class="keyword">double</span></code> if T is an integer type, and T otherwise.
48       </p>
49 <p>
50         The final <a class="link" href="../../policy.html" title="Chapter&#160;20.&#160;Policies: Controlling Precision, Error Handling etc">Policy</a> argument is optional and can
51         be used to control the behaviour of the function: how it handles errors,
52         what level of precision to use etc. Refer to the <a class="link" href="../../policy.html" title="Chapter&#160;20.&#160;Policies: Controlling Precision, Error Handling etc">policy
53         documentation for more details</a>.
54       </p>
55 <h5>
56 <a name="math_toolkit.expint.expint_i.h1"></a>
57         <span class="phrase"><a name="math_toolkit.expint.expint_i.description"></a></span><a class="link" href="expint_i.html#math_toolkit.expint.expint_i.description">Description</a>
58       </h5>
59 <pre class="programlisting"><span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">&gt;</span>
60 <a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">expint</span><span class="special">(</span><span class="identifier">T</span> <span class="identifier">z</span><span class="special">);</span>
61
62 <span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T</span><span class="special">,</span> <span class="keyword">class</span> <a class="link" href="../../policy.html" title="Chapter&#160;20.&#160;Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&gt;</span>
63 <a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">expint</span><span class="special">(</span><span class="identifier">T</span> <span class="identifier">z</span><span class="special">,</span> <span class="keyword">const</span> <a class="link" href="../../policy.html" title="Chapter&#160;20.&#160;Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&amp;);</span>
64 </pre>
65 <p>
66         Returns the <a href="http://mathworld.wolfram.com/ExponentialIntegral.html" target="_top">exponential
67         integral</a> of z:
68       </p>
69 <div class="blockquote"><blockquote class="blockquote"><p>
70           <span class="inlinemediaobject"><img src="../../../equations/expint_i_1.svg"></span>
71
72         </p></blockquote></div>
73 <div class="blockquote"><blockquote class="blockquote"><p>
74           <span class="inlinemediaobject"><img src="../../../graphs/expint_i.svg" align="middle"></span>
75
76         </p></blockquote></div>
77 <h5>
78 <a name="math_toolkit.expint.expint_i.h2"></a>
79         <span class="phrase"><a name="math_toolkit.expint.expint_i.accuracy"></a></span><a class="link" href="expint_i.html#math_toolkit.expint.expint_i.accuracy">Accuracy</a>
80       </h5>
81 <p>
82         The following table shows the peak errors (in units of epsilon) found on
83         various platforms with various floating point types, along with comparisons
84         to Cody's SPECFUN implementation and the <a href="http://www.gnu.org/software/gsl/" target="_top">GSL-1.9</a>
85         library. Unless otherwise specified any floating point type that is narrower
86         than the one shown will have <a class="link" href="../relative_error.html#math_toolkit.relative_error.zero_error">effectively
87         zero error</a>.
88       </p>
89 <div class="table">
90 <a name="math_toolkit.expint.expint_i.table_expint_Ei_"></a><p class="title"><b>Table&#160;8.78.&#160;Error rates for expint (Ei)</b></p>
91 <div class="table-contents"><table class="table" summary="Error rates for expint (Ei)">
92 <colgroup>
93 <col>
94 <col>
95 <col>
96 <col>
97 <col>
98 </colgroup>
99 <thead><tr>
100 <th>
101               </th>
102 <th>
103                 <p>
104                   GNU C++ version 7.1.0<br> linux<br> long double
105                 </p>
106               </th>
107 <th>
108                 <p>
109                   GNU C++ version 7.1.0<br> linux<br> double
110                 </p>
111               </th>
112 <th>
113                 <p>
114                   Sun compiler version 0x5150<br> Sun Solaris<br> long double
115                 </p>
116               </th>
117 <th>
118                 <p>
119                   Microsoft Visual C++ version 14.1<br> Win32<br> double
120                 </p>
121               </th>
122 </tr></thead>
123 <tbody>
124 <tr>
125 <td>
126                 <p>
127                   Exponential Integral Ei
128                 </p>
129               </td>
130 <td>
131                 <p>
132                   <span class="blue">Max = 5.05&#949; (Mean = 0.821&#949;)</span><br> <br>
133                   (<span class="emphasis"><em>&lt;cmath&gt;:</em></span> Max = 14.1&#949; (Mean = 2.43&#949;) <a class="link" href="../logs_and_tables/logs.html#errors_GNU_C_version_7_1_0_linux_long_double_expint_Ei___cmath__Exponential_Integral_Ei">And
134                   other failures.</a>)
135                 </p>
136               </td>
137 <td>
138                 <p>
139                   <span class="blue">Max = 0.994&#949; (Mean = 0.142&#949;)</span><br> <br>
140                   (<span class="emphasis"><em>GSL 2.1:</em></span> Max = 8.96&#949; (Mean = 0.703&#949;))
141                 </p>
142               </td>
143 <td>
144                 <p>
145                   <span class="blue">Max = 5.05&#949; (Mean = 0.835&#949;)</span>
146                 </p>
147               </td>
148 <td>
149                 <p>
150                   <span class="blue">Max = 1.43&#949; (Mean = 0.54&#949;)</span>
151                 </p>
152               </td>
153 </tr>
154 <tr>
155 <td>
156                 <p>
157                   Exponential Integral Ei: double exponent range
158                 </p>
159               </td>
160 <td>
161                 <p>
162                   <span class="blue">Max = 1.72&#949; (Mean = 0.593&#949;)</span><br> <br>
163                   (<span class="emphasis"><em>&lt;cmath&gt;:</em></span> Max = 3.11&#949; (Mean = 1.13&#949;))
164                 </p>
165               </td>
166 <td>
167                 <p>
168                   <span class="blue">Max = 0.998&#949; (Mean = 0.156&#949;)</span><br> <br>
169                   (<span class="emphasis"><em>GSL 2.1:</em></span> Max = 1.5&#949; (Mean = 0.612&#949;))
170                 </p>
171               </td>
172 <td>
173                 <p>
174                   <span class="blue">Max = 1.72&#949; (Mean = 0.607&#949;)</span>
175                 </p>
176               </td>
177 <td>
178                 <p>
179                   <span class="blue">Max = 1.7&#949; (Mean = 0.66&#949;)</span>
180                 </p>
181               </td>
182 </tr>
183 <tr>
184 <td>
185                 <p>
186                   Exponential Integral Ei: long exponent range
187                 </p>
188               </td>
189 <td>
190                 <p>
191                   <span class="blue">Max = 1.98&#949; (Mean = 0.595&#949;)</span><br> <br>
192                   (<span class="emphasis"><em>&lt;cmath&gt;:</em></span> Max = 1.93&#949; (Mean = 0.855&#949;))
193                 </p>
194               </td>
195 <td>
196               </td>
197 <td>
198                 <p>
199                   <span class="blue">Max = 1.98&#949; (Mean = 0.575&#949;)</span>
200                 </p>
201               </td>
202 <td>
203               </td>
204 </tr>
205 </tbody>
206 </table></div>
207 </div>
208 <br class="table-break"><p>
209         It should be noted that all three libraries tested above offer sub-epsilon
210         precision over most of their range.
211       </p>
212 <p>
213         GSL has the greatest difficulty near the positive root of En, while Cody's
214         SPECFUN along with this implementation increase their error rates very slightly
215         over the range [4,6].
216       </p>
217 <p>
218         The following error plot are based on an exhaustive search of the functions
219         domain, MSVC-15.5 at <code class="computeroutput"><span class="keyword">double</span></code>
220         precision, and GCC-7.1/Ubuntu for <code class="computeroutput"><span class="keyword">long</span>
221         <span class="keyword">double</span></code> and <code class="computeroutput"><span class="identifier">__float128</span></code>.
222       </p>
223 <div class="blockquote"><blockquote class="blockquote"><p>
224           <span class="inlinemediaobject"><img src="../../../graphs/exponential_integral_ei__double.svg" align="middle"></span>
225
226         </p></blockquote></div>
227 <div class="blockquote"><blockquote class="blockquote"><p>
228           <span class="inlinemediaobject"><img src="../../../graphs/exponential_integral_ei__80_bit_long_double.svg" align="middle"></span>
229
230         </p></blockquote></div>
231 <div class="blockquote"><blockquote class="blockquote"><p>
232           <span class="inlinemediaobject"><img src="../../../graphs/exponential_integral_ei____float128.svg" align="middle"></span>
233
234         </p></blockquote></div>
235 <h5>
236 <a name="math_toolkit.expint.expint_i.h3"></a>
237         <span class="phrase"><a name="math_toolkit.expint.expint_i.testing"></a></span><a class="link" href="expint_i.html#math_toolkit.expint.expint_i.testing">Testing</a>
238       </h5>
239 <p>
240         The tests for these functions come in two parts: basic sanity checks use
241         spot values calculated using <a href="http://functions.wolfram.com/webMathematica/FunctionEvaluation.jsp?name=ExpIntegralEi" target="_top">Mathworld's
242         online evaluator</a>, while accuracy checks use high-precision test values
243         calculated at 1000-bit precision with <a href="http://shoup.net/ntl/doc/RR.txt" target="_top">NTL::RR</a>
244         and this implementation. Note that the generic and type-specific versions
245         of these functions use differing implementations internally, so this gives
246         us reasonably independent test data. Using our test data to test other "known
247         good" implementations also provides an additional sanity check.
248       </p>
249 <h5>
250 <a name="math_toolkit.expint.expint_i.h4"></a>
251         <span class="phrase"><a name="math_toolkit.expint.expint_i.implementation"></a></span><a class="link" href="expint_i.html#math_toolkit.expint.expint_i.implementation">Implementation</a>
252       </h5>
253 <p>
254         For x &lt; 0 this function just calls <a class="link" href="expint_n.html" title="Exponential Integral En">zeta</a>(1,
255         -x): which in turn is implemented in terms of rational approximations when
256         the type of x has 113 or fewer bits of precision.
257       </p>
258 <p>
259         For x &gt; 0 the generic version is implemented using the infinte series:
260       </p>
261 <div class="blockquote"><blockquote class="blockquote"><p>
262           <span class="inlinemediaobject"><img src="../../../equations/expint_i_2.svg"></span>
263
264         </p></blockquote></div>
265 <p>
266         However, when the precision of the argument type is known at compile time
267         and is 113 bits or less, then rational approximations <a class="link" href="../sf_implementation.html#math_toolkit.sf_implementation.rational_approximations_used">devised
268         by JM</a> are used.
269       </p>
270 <p>
271         For 0 &lt; z &lt; 6 a root-preserving approximation of the form:
272       </p>
273 <div class="blockquote"><blockquote class="blockquote"><p>
274           <span class="inlinemediaobject"><img src="../../../equations/expint_i_3.svg"></span>
275
276         </p></blockquote></div>
277 <p>
278         is used, where z<sub>0</sub> is the positive root of the function, and R(z/3 - 1) is
279         a minimax rational approximation rescaled so that it is evaluated over [-1,1].
280         Note that while the rational approximation over [0,6] converges rapidly to
281         the minimax solution it is rather ill-conditioned in practice. Cody and Thacher
282         <a href="#ftn.math_toolkit.expint.expint_i.f0" class="footnote" name="math_toolkit.expint.expint_i.f0"><sup class="footnote">[5]</sup></a> experienced the same issue and converted the polynomials into
283         Chebeshev form to ensure stable computation. By experiment we found that
284         the polynomials are just as stable in polynomial as Chebyshev form, <span class="emphasis"><em>provided</em></span>
285         they are computed over the interval [-1,1].
286       </p>
287 <p>
288         Over the a series of intervals <span class="emphasis"><em>[a, b]</em></span> and <span class="emphasis"><em>[b,
289         INF]</em></span> the rational approximation takes the form:
290       </p>
291 <div class="blockquote"><blockquote class="blockquote"><p>
292           <span class="inlinemediaobject"><img src="../../../equations/expint_i_4.svg"></span>
293
294         </p></blockquote></div>
295 <p>
296         where <span class="emphasis"><em>c</em></span> is a constant, and <span class="emphasis"><em>R(t)</em></span>
297         is a minimax solution optimised for low absolute error compared to <span class="emphasis"><em>c</em></span>.
298         Variable <span class="emphasis"><em>t</em></span> is <code class="computeroutput"><span class="number">1</span><span class="special">/</span><span class="identifier">z</span></code> when
299         the range in infinite and <code class="computeroutput"><span class="number">2</span><span class="identifier">z</span><span class="special">/(</span><span class="identifier">b</span><span class="special">-</span><span class="identifier">a</span><span class="special">)</span> <span class="special">-</span>
300         <span class="special">(</span><span class="number">2</span><span class="identifier">a</span><span class="special">/(</span><span class="identifier">b</span><span class="special">-</span><span class="identifier">a</span><span class="special">)</span>
301         <span class="special">+</span> <span class="number">1</span><span class="special">)</span></code> otherwise: this has the effect of scaling
302         z to the interval [-1,1]. As before rational approximations over arbitrary
303         intervals were found to be ill-conditioned: Cody and Thacher solved this
304         issue by converting the polynomials to their J-Fraction equivalent. However,
305         as long as the interval of evaluation was [-1,1] and the number of terms
306         carefully chosen, it was found that the polynomials <span class="emphasis"><em>could</em></span>
307         be evaluated to suitable precision: error rates are typically 2 to 3 epsilon
308         which is comparible to the error rate that Cody and Thacher achieved using
309         J-Fractions, but marginally more efficient given that fewer divisions are
310         involved.
311       </p>
312 <div class="footnotes">
313 <br><hr style="width:100; text-align:left;margin-left: 0">
314 <div id="ftn.math_toolkit.expint.expint_i.f0" class="footnote"><p><a href="#math_toolkit.expint.expint_i.f0" class="para"><sup class="para">[5] </sup></a>
315           W. J. Cody and H. C. Thacher, Jr., Rational Chebyshev approximations for
316           the exponential integral E<sub>1</sub>(x), Math. Comp. 22 (1968), 641-649, and W.
317           J. Cody and H. C. Thacher, Jr., Chebyshev approximations for the exponential
318           integral Ei(x), Math. Comp. 23 (1969), 289-303.
319         </p></div>
320 </div>
321 </div>
322 <table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr>
323 <td align="left"></td>
324 <td align="right"><div class="copyright-footer">Copyright &#169; 2006-2019 Nikhar
325       Agrawal, Anton Bikineev, Paul A. Bristow, Marco Guazzone, Christopher Kormanyos,
326       Hubert Holin, Bruno Lalande, John Maddock, Jeremy Murphy, Matthew Pulver, Johan
327       R&#229;de, Gautam Sewani, Benjamin Sobotta, Nicholas Thompson, Thijs van den Berg,
328       Daryle Walker and Xiaogang Zhang<p>
329         Distributed under the Boost Software License, Version 1.0. (See accompanying
330         file LICENSE_1_0.txt or copy at <a href="http://www.boost.org/LICENSE_1_0.txt" target="_top">http://www.boost.org/LICENSE_1_0.txt</a>)
331       </p>
332 </div></td>
333 </tr></table>
334 <hr>
335 <div class="spirit-nav">
336 <a accesskey="p" href="expint_n.html"><img src="../../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../expint.html"><img src="../../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../../index.html"><img src="../../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="../hypergeometric.html"><img src="../../../../../../doc/src/images/next.png" alt="Next"></a>
337 </div>
338 </body>
339 </html>