1 /* Extended regular expression matching and search library,
3 (Implements POSIX draft P1003.2/D11.2, except for some of the
4 internationalization features.)
6 Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
7 2002, 2005, 2010, 2013 Free Software Foundation, Inc.
8 This file is part of the GNU C Library.
10 The GNU C Library is free software; you can redistribute it and/or
11 modify it under the terms of the GNU Lesser General Public
12 License as published by the Free Software Foundation; either
13 version 2.1 of the License, or (at your option) any later version.
15 The GNU C Library is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 Lesser General Public License for more details.
20 You should have received a copy of the GNU Lesser General Public
21 License along with the GNU C Library; if not, write to the Free
22 Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
25 /* This file has been modified for usage in libiberty. It includes "xregex.h"
26 instead of <regex.h>. The "xregex.h" header file renames all external
27 routines with an "x" prefix so they do not collide with the native regex
28 routines or with other components regex routines. */
29 /* AIX requires this to be the first thing in the file. */
30 #if defined _AIX && !defined __GNUC__ && !defined REGEX_MALLOC
37 #ifndef INSIDE_RECURSION
45 #ifndef INSIDE_RECURSION
47 # if defined STDC_HEADERS && !defined emacs
49 # define PTR_INT_TYPE ptrdiff_t
51 /* We need this for `regex.h', and perhaps for the Emacs include files. */
52 # include <sys/types.h>
53 # define PTR_INT_TYPE long
56 # define WIDE_CHAR_SUPPORT (HAVE_WCTYPE_H && HAVE_WCHAR_H && HAVE_BTOWC)
58 /* For platform which support the ISO C amendement 1 functionality we
59 support user defined character classes. */
60 # if defined _LIBC || WIDE_CHAR_SUPPORT
61 /* Solaris 2.5 has a bug: <wchar.h> must be included before <wctype.h>. */
67 /* We have to keep the namespace clean. */
68 # define regfree(preg) __regfree (preg)
69 # define regexec(pr, st, nm, pm, ef) __regexec (pr, st, nm, pm, ef)
70 # define regcomp(preg, pattern, cflags) __regcomp (preg, pattern, cflags)
71 # define regerror(errcode, preg, errbuf, errbuf_size) \
72 __regerror(errcode, preg, errbuf, errbuf_size)
73 # define re_set_registers(bu, re, nu, st, en) \
74 __re_set_registers (bu, re, nu, st, en)
75 # define re_match_2(bufp, string1, size1, string2, size2, pos, regs, stop) \
76 __re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
77 # define re_match(bufp, string, size, pos, regs) \
78 __re_match (bufp, string, size, pos, regs)
79 # define re_search(bufp, string, size, startpos, range, regs) \
80 __re_search (bufp, string, size, startpos, range, regs)
81 # define re_compile_pattern(pattern, length, bufp) \
82 __re_compile_pattern (pattern, length, bufp)
83 # define re_set_syntax(syntax) __re_set_syntax (syntax)
84 # define re_search_2(bufp, st1, s1, st2, s2, startpos, range, regs, stop) \
85 __re_search_2 (bufp, st1, s1, st2, s2, startpos, range, regs, stop)
86 # define re_compile_fastmap(bufp) __re_compile_fastmap (bufp)
88 # define btowc __btowc
90 /* We are also using some library internals. */
91 # include <locale/localeinfo.h>
92 # include <locale/elem-hash.h>
93 # include <langinfo.h>
94 # include <locale/coll-lookup.h>
97 /* This is for other GNU distributions with internationalized messages. */
98 # if (HAVE_LIBINTL_H && ENABLE_NLS) || defined _LIBC
102 # define gettext(msgid) __dcgettext ("libc", msgid, LC_MESSAGES)
105 # define gettext(msgid) (msgid)
108 # ifndef gettext_noop
109 /* This define is so xgettext can find the internationalizable
111 # define gettext_noop(String) String
114 /* The `emacs' switch turns on certain matching commands
115 that make sense only in Emacs. */
122 # else /* not emacs */
124 /* If we are not linking with Emacs proper,
125 we can't use the relocating allocator
126 even if config.h says that we can. */
129 # if defined STDC_HEADERS || defined _LIBC
136 /* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
137 If nothing else has been done, use the method below. */
138 # ifdef INHIBIT_STRING_HEADER
139 # if !(defined HAVE_BZERO && defined HAVE_BCOPY)
140 # if !defined bzero && !defined bcopy
141 # undef INHIBIT_STRING_HEADER
146 /* This is the normal way of making sure we have a bcopy and a bzero.
147 This is used in most programs--a few other programs avoid this
148 by defining INHIBIT_STRING_HEADER. */
149 # ifndef INHIBIT_STRING_HEADER
150 # if defined HAVE_STRING_H || defined STDC_HEADERS || defined _LIBC
154 # define bzero(s, n) ((void) memset (s, '\0', n))
156 # define bzero(s, n) __bzero (s, n)
160 # include <strings.h>
162 # define memcmp(s1, s2, n) bcmp (s1, s2, n)
165 # define memcpy(d, s, n) (bcopy (s, d, n), (d))
170 /* Define the syntax stuff for \<, \>, etc. */
172 /* This must be nonzero for the wordchar and notwordchar pattern
173 commands in re_match_2. */
178 # ifdef SWITCH_ENUM_BUG
179 # define SWITCH_ENUM_CAST(x) ((int)(x))
181 # define SWITCH_ENUM_CAST(x) (x)
184 # endif /* not emacs */
186 # if defined _LIBC || HAVE_LIMITS_H
191 # define MB_LEN_MAX 1
194 /* Get the interface, including the syntax bits. */
195 # include "xregex.h" /* change for libiberty */
197 /* isalpha etc. are used for the character classes. */
200 /* Jim Meyering writes:
202 "... Some ctype macros are valid only for character codes that
203 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
204 using /bin/cc or gcc but without giving an ansi option). So, all
205 ctype uses should be through macros like ISPRINT... If
206 STDC_HEADERS is defined, then autoconf has verified that the ctype
207 macros don't need to be guarded with references to isascii. ...
208 Defining isascii to 1 should let any compiler worth its salt
209 eliminate the && through constant folding."
210 Solaris defines some of these symbols so we must undefine them first. */
213 # if defined STDC_HEADERS || (!defined isascii && !defined HAVE_ISASCII)
214 # define ISASCII(c) 1
216 # define ISASCII(c) isascii(c)
220 # define ISBLANK(c) (ISASCII (c) && isblank (c))
222 # define ISBLANK(c) ((c) == ' ' || (c) == '\t')
225 # define ISGRAPH(c) (ISASCII (c) && isgraph (c))
227 # define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
231 # define ISPRINT(c) (ISASCII (c) && isprint (c))
232 # define ISDIGIT(c) (ISASCII (c) && isdigit (c))
233 # define ISALNUM(c) (ISASCII (c) && isalnum (c))
234 # define ISALPHA(c) (ISASCII (c) && isalpha (c))
235 # define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
236 # define ISLOWER(c) (ISASCII (c) && islower (c))
237 # define ISPUNCT(c) (ISASCII (c) && ispunct (c))
238 # define ISSPACE(c) (ISASCII (c) && isspace (c))
239 # define ISUPPER(c) (ISASCII (c) && isupper (c))
240 # define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
243 # define TOLOWER(c) _tolower(c)
245 # define TOLOWER(c) tolower(c)
249 # define NULL (void *)0
252 /* We remove any previous definition of `SIGN_EXTEND_CHAR',
253 since ours (we hope) works properly with all combinations of
254 machines, compilers, `char' and `unsigned char' argument types.
255 (Per Bothner suggested the basic approach.) */
256 # undef SIGN_EXTEND_CHAR
258 # define SIGN_EXTEND_CHAR(c) ((signed char) (c))
259 # else /* not __STDC__ */
260 /* As in Harbison and Steele. */
261 # define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
265 /* How many characters in the character set. */
266 # define CHAR_SET_SIZE 256
270 extern char *re_syntax_table;
272 # else /* not SYNTAX_TABLE */
274 static char re_syntax_table[CHAR_SET_SIZE];
276 static void init_syntax_once (void);
279 init_syntax_once (void)
286 bzero (re_syntax_table, sizeof re_syntax_table);
288 for (c = 0; c < CHAR_SET_SIZE; ++c)
290 re_syntax_table[c] = Sword;
292 re_syntax_table['_'] = Sword;
297 # endif /* not SYNTAX_TABLE */
299 # define SYNTAX(c) re_syntax_table[(unsigned char) (c)]
303 /* Integer type for pointers. */
304 # if !defined _LIBC && !defined HAVE_UINTPTR_T
305 typedef unsigned long int uintptr_t;
308 /* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
309 use `alloca' instead of `malloc'. This is because using malloc in
310 re_search* or re_match* could cause memory leaks when C-g is used in
311 Emacs; also, malloc is slower and causes storage fragmentation. On
312 the other hand, malloc is more portable, and easier to debug.
314 Because we sometimes use alloca, some routines have to be macros,
315 not functions -- `alloca'-allocated space disappears at the end of the
316 function it is called in. */
320 # define REGEX_ALLOCATE malloc
321 # define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
322 # define REGEX_FREE free
324 # else /* not REGEX_MALLOC */
326 /* Emacs already defines alloca, sometimes. */
329 /* Make alloca work the best possible way. */
331 # define alloca __builtin_alloca
332 # else /* not __GNUC__ */
335 # endif /* HAVE_ALLOCA_H */
336 # endif /* not __GNUC__ */
338 # endif /* not alloca */
340 # define REGEX_ALLOCATE alloca
342 /* Assumes a `char *destination' variable. */
343 # define REGEX_REALLOCATE(source, osize, nsize) \
344 (destination = (char *) alloca (nsize), \
345 memcpy (destination, source, osize))
347 /* No need to do anything to free, after alloca. */
348 # define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */
350 # endif /* not REGEX_MALLOC */
352 /* Define how to allocate the failure stack. */
354 # if defined REL_ALLOC && defined REGEX_MALLOC
356 # define REGEX_ALLOCATE_STACK(size) \
357 r_alloc (&failure_stack_ptr, (size))
358 # define REGEX_REALLOCATE_STACK(source, osize, nsize) \
359 r_re_alloc (&failure_stack_ptr, (nsize))
360 # define REGEX_FREE_STACK(ptr) \
361 r_alloc_free (&failure_stack_ptr)
363 # else /* not using relocating allocator */
367 # define REGEX_ALLOCATE_STACK malloc
368 # define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
369 # define REGEX_FREE_STACK free
371 # else /* not REGEX_MALLOC */
373 # define REGEX_ALLOCATE_STACK alloca
375 # define REGEX_REALLOCATE_STACK(source, osize, nsize) \
376 REGEX_REALLOCATE (source, osize, nsize)
377 /* No need to explicitly free anything. */
378 # define REGEX_FREE_STACK(arg)
380 # endif /* not REGEX_MALLOC */
381 # endif /* not using relocating allocator */
384 /* True if `size1' is non-NULL and PTR is pointing anywhere inside
385 `string1' or just past its end. This works if PTR is NULL, which is
387 # define FIRST_STRING_P(ptr) \
388 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
390 /* (Re)Allocate N items of type T using malloc, or fail. */
391 # define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
392 # define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
393 # define RETALLOC_IF(addr, n, t) \
394 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
395 # define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
397 # define BYTEWIDTH 8 /* In bits. */
399 # define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
403 # define MAX(a, b) ((a) > (b) ? (a) : (b))
404 # define MIN(a, b) ((a) < (b) ? (a) : (b))
406 typedef char boolean;
410 static reg_errcode_t byte_regex_compile (const char *pattern, size_t size,
412 struct re_pattern_buffer *bufp);
414 static int byte_re_match_2_internal (struct re_pattern_buffer *bufp,
415 const char *string1, int size1,
416 const char *string2, int size2,
418 struct re_registers *regs,
420 static int byte_re_search_2 (struct re_pattern_buffer *bufp,
421 const char *string1, int size1,
422 const char *string2, int size2,
423 int startpos, int range,
424 struct re_registers *regs, int stop);
425 static int byte_re_compile_fastmap (struct re_pattern_buffer *bufp);
428 static reg_errcode_t wcs_regex_compile (const char *pattern, size_t size,
430 struct re_pattern_buffer *bufp);
433 static int wcs_re_match_2_internal (struct re_pattern_buffer *bufp,
434 const char *cstring1, int csize1,
435 const char *cstring2, int csize2,
437 struct re_registers *regs,
439 wchar_t *string1, int size1,
440 wchar_t *string2, int size2,
441 int *mbs_offset1, int *mbs_offset2);
442 static int wcs_re_search_2 (struct re_pattern_buffer *bufp,
443 const char *string1, int size1,
444 const char *string2, int size2,
445 int startpos, int range,
446 struct re_registers *regs, int stop);
447 static int wcs_re_compile_fastmap (struct re_pattern_buffer *bufp);
450 /* These are the command codes that appear in compiled regular
451 expressions. Some opcodes are followed by argument bytes. A
452 command code can specify any interpretation whatsoever for its
453 arguments. Zero bytes may appear in the compiled regular expression. */
459 /* Succeed right away--no more backtracking. */
462 /* Followed by one byte giving n, then by n literal bytes. */
466 /* Same as exactn, but contains binary data. */
470 /* Matches any (more or less) character. */
473 /* Matches any one char belonging to specified set. First
474 following byte is number of bitmap bytes. Then come bytes
475 for a bitmap saying which chars are in. Bits in each byte
476 are ordered low-bit-first. A character is in the set if its
477 bit is 1. A character too large to have a bit in the map is
478 automatically not in the set. */
479 /* ifdef MBS_SUPPORT, following element is length of character
480 classes, length of collating symbols, length of equivalence
481 classes, length of character ranges, and length of characters.
482 Next, character class element, collating symbols elements,
483 equivalence class elements, range elements, and character
485 See regex_compile function. */
488 /* Same parameters as charset, but match any character that is
489 not one of those specified. */
492 /* Start remembering the text that is matched, for storing in a
493 register. Followed by one byte with the register number, in
494 the range 0 to one less than the pattern buffer's re_nsub
495 field. Then followed by one byte with the number of groups
496 inner to this one. (This last has to be part of the
497 start_memory only because we need it in the on_failure_jump
501 /* Stop remembering the text that is matched and store it in a
502 memory register. Followed by one byte with the register
503 number, in the range 0 to one less than `re_nsub' in the
504 pattern buffer, and one byte with the number of inner groups,
505 just like `start_memory'. (We need the number of inner
506 groups here because we don't have any easy way of finding the
507 corresponding start_memory when we're at a stop_memory.) */
510 /* Match a duplicate of something remembered. Followed by one
511 byte containing the register number. */
514 /* Fail unless at beginning of line. */
517 /* Fail unless at end of line. */
520 /* Succeeds if at beginning of buffer (if emacs) or at beginning
521 of string to be matched (if not). */
524 /* Analogously, for end of buffer/string. */
527 /* Followed by two byte relative address to which to jump. */
530 /* Same as jump, but marks the end of an alternative. */
533 /* Followed by two-byte relative address of place to resume at
534 in case of failure. */
535 /* ifdef MBS_SUPPORT, the size of address is 1. */
538 /* Like on_failure_jump, but pushes a placeholder instead of the
539 current string position when executed. */
540 on_failure_keep_string_jump,
542 /* Throw away latest failure point and then jump to following
543 two-byte relative address. */
544 /* ifdef MBS_SUPPORT, the size of address is 1. */
547 /* Change to pop_failure_jump if know won't have to backtrack to
548 match; otherwise change to jump. This is used to jump
549 back to the beginning of a repeat. If what follows this jump
550 clearly won't match what the repeat does, such that we can be
551 sure that there is no use backtracking out of repetitions
552 already matched, then we change it to a pop_failure_jump.
553 Followed by two-byte address. */
554 /* ifdef MBS_SUPPORT, the size of address is 1. */
557 /* Jump to following two-byte address, and push a dummy failure
558 point. This failure point will be thrown away if an attempt
559 is made to use it for a failure. A `+' construct makes this
560 before the first repeat. Also used as an intermediary kind
561 of jump when compiling an alternative. */
562 /* ifdef MBS_SUPPORT, the size of address is 1. */
565 /* Push a dummy failure point and continue. Used at the end of
569 /* Followed by two-byte relative address and two-byte number n.
570 After matching N times, jump to the address upon failure. */
571 /* ifdef MBS_SUPPORT, the size of address is 1. */
574 /* Followed by two-byte relative address, and two-byte number n.
575 Jump to the address N times, then fail. */
576 /* ifdef MBS_SUPPORT, the size of address is 1. */
579 /* Set the following two-byte relative address to the
580 subsequent two-byte number. The address *includes* the two
582 /* ifdef MBS_SUPPORT, the size of address is 1. */
585 wordchar, /* Matches any word-constituent character. */
586 notwordchar, /* Matches any char that is not a word-constituent. */
588 wordbeg, /* Succeeds if at word beginning. */
589 wordend, /* Succeeds if at word end. */
591 wordbound, /* Succeeds if at a word boundary. */
592 notwordbound /* Succeeds if not at a word boundary. */
595 ,before_dot, /* Succeeds if before point. */
596 at_dot, /* Succeeds if at point. */
597 after_dot, /* Succeeds if after point. */
599 /* Matches any character whose syntax is specified. Followed by
600 a byte which contains a syntax code, e.g., Sword. */
603 /* Matches any character whose syntax is not that specified. */
607 #endif /* not INSIDE_RECURSION */
612 # define UCHAR_T unsigned char
613 # define COMPILED_BUFFER_VAR bufp->buffer
614 # define OFFSET_ADDRESS_SIZE 2
615 # define PREFIX(name) byte_##name
616 # define ARG_PREFIX(name) name
617 # define PUT_CHAR(c) putchar (c)
620 # define CHAR_T wchar_t
621 # define UCHAR_T wchar_t
622 # define COMPILED_BUFFER_VAR wc_buffer
623 # define OFFSET_ADDRESS_SIZE 1 /* the size which STORE_NUMBER macro use */
624 # define CHAR_CLASS_SIZE ((__alignof__(wctype_t)+sizeof(wctype_t))/sizeof(CHAR_T)+1)
625 # define PREFIX(name) wcs_##name
626 # define ARG_PREFIX(name) c##name
627 /* Should we use wide stream?? */
628 # define PUT_CHAR(c) printf ("%C", c);
634 # define INSIDE_RECURSION
636 # undef INSIDE_RECURSION
639 # define INSIDE_RECURSION
641 # undef INSIDE_RECURSION
645 #ifdef INSIDE_RECURSION
646 /* Common operations on the compiled pattern. */
648 /* Store NUMBER in two contiguous bytes starting at DESTINATION. */
649 /* ifdef MBS_SUPPORT, we store NUMBER in 1 element. */
652 # define STORE_NUMBER(destination, number) \
654 *(destination) = (UCHAR_T)(number); \
657 # define STORE_NUMBER(destination, number) \
659 (destination)[0] = (number) & 0377; \
660 (destination)[1] = (number) >> 8; \
664 /* Same as STORE_NUMBER, except increment DESTINATION to
665 the byte after where the number is stored. Therefore, DESTINATION
666 must be an lvalue. */
667 /* ifdef MBS_SUPPORT, we store NUMBER in 1 element. */
669 # define STORE_NUMBER_AND_INCR(destination, number) \
671 STORE_NUMBER (destination, number); \
672 (destination) += OFFSET_ADDRESS_SIZE; \
675 /* Put into DESTINATION a number stored in two contiguous bytes starting
677 /* ifdef MBS_SUPPORT, we store NUMBER in 1 element. */
680 # define EXTRACT_NUMBER(destination, source) \
682 (destination) = *(source); \
685 # define EXTRACT_NUMBER(destination, source) \
687 (destination) = *(source) & 0377; \
688 (destination) += ((unsigned) SIGN_EXTEND_CHAR (*((source) + 1))) << 8; \
693 static void PREFIX(extract_number) (int *dest, UCHAR_T *source);
695 PREFIX(extract_number) (int *dest, UCHAR_T *source)
700 int temp = SIGN_EXTEND_CHAR (*(source + 1));
701 *dest = *source & 0377;
706 # ifndef EXTRACT_MACROS /* To debug the macros. */
707 # undef EXTRACT_NUMBER
708 # define EXTRACT_NUMBER(dest, src) PREFIX(extract_number) (&dest, src)
709 # endif /* not EXTRACT_MACROS */
713 /* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
714 SOURCE must be an lvalue. */
716 # define EXTRACT_NUMBER_AND_INCR(destination, source) \
718 EXTRACT_NUMBER (destination, source); \
719 (source) += OFFSET_ADDRESS_SIZE; \
723 static void PREFIX(extract_number_and_incr) (int *destination,
726 PREFIX(extract_number_and_incr) (int *destination, UCHAR_T **source)
728 PREFIX(extract_number) (destination, *source);
729 *source += OFFSET_ADDRESS_SIZE;
732 # ifndef EXTRACT_MACROS
733 # undef EXTRACT_NUMBER_AND_INCR
734 # define EXTRACT_NUMBER_AND_INCR(dest, src) \
735 PREFIX(extract_number_and_incr) (&dest, &src)
736 # endif /* not EXTRACT_MACROS */
742 /* If DEBUG is defined, Regex prints many voluminous messages about what
743 it is doing (if the variable `debug' is nonzero). If linked with the
744 main program in `iregex.c', you can enter patterns and strings
745 interactively. And if linked with the main program in `main.c' and
746 the other test files, you can run the already-written tests. */
750 # ifndef DEFINED_ONCE
752 /* We use standard I/O for debugging. */
755 /* It is useful to test things that ``must'' be true when debugging. */
760 # define DEBUG_STATEMENT(e) e
761 # define DEBUG_PRINT1(x) if (debug) printf (x)
762 # define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
763 # define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
764 # define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4)
765 # endif /* not DEFINED_ONCE */
767 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
768 if (debug) PREFIX(print_partial_compiled_pattern) (s, e)
769 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
770 if (debug) PREFIX(print_double_string) (w, s1, sz1, s2, sz2)
773 /* Print the fastmap in human-readable form. */
775 # ifndef DEFINED_ONCE
777 print_fastmap (char *fastmap)
779 unsigned was_a_range = 0;
782 while (i < (1 << BYTEWIDTH))
788 while (i < (1 << BYTEWIDTH) && fastmap[i])
802 # endif /* not DEFINED_ONCE */
805 /* Print a compiled pattern string in human-readable form, starting at
806 the START pointer into it and ending just before the pointer END. */
809 PREFIX(print_partial_compiled_pattern) (UCHAR_T *start, UCHAR_T *end)
822 /* Loop over pattern commands. */
826 printf ("%td:\t", p - start);
828 printf ("%ld:\t", (long int) (p - start));
831 switch ((re_opcode_t) *p++)
839 printf ("/exactn/%d", mcnt);
851 printf ("/exactn_bin/%d", mcnt);
854 printf("/%lx", (long int) *p++);
858 # endif /* MBS_SUPPORT */
862 printf ("/start_memory/%d/%ld", mcnt, (long int) *p++);
867 printf ("/stop_memory/%d/%ld", mcnt, (long int) *p++);
871 printf ("/duplicate/%ld", (long int) *p++);
884 printf ("/charset [%s",
885 (re_opcode_t) *(workp - 1) == charset_not ? "^" : "");
887 length = *workp++; /* the length of char_classes */
888 for (i=0 ; i<length ; i++)
889 printf("[:%lx:]", (long int) *p++);
890 length = *workp++; /* the length of collating_symbol */
891 for (i=0 ; i<length ;)
895 PUT_CHAR((i++,*p++));
899 length = *workp++; /* the length of equivalence_class */
900 for (i=0 ; i<length ;)
904 PUT_CHAR((i++,*p++));
908 length = *workp++; /* the length of char_range */
909 for (i=0 ; i<length ; i++)
911 wchar_t range_start = *p++;
912 wchar_t range_end = *p++;
913 printf("%C-%C", range_start, range_end);
915 length = *workp++; /* the length of char */
916 for (i=0 ; i<length ; i++)
920 register int c, last = -100;
921 register int in_range = 0;
923 printf ("/charset [%s",
924 (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
926 assert (p + *p < pend);
928 for (c = 0; c < 256; c++)
930 && (p[1 + (c/8)] & (1 << (c % 8))))
932 /* Are we starting a range? */
933 if (last + 1 == c && ! in_range)
938 /* Have we broken a range? */
939 else if (last + 1 != c && in_range)
969 case on_failure_jump:
970 PREFIX(extract_number_and_incr) (&mcnt, &p);
972 printf ("/on_failure_jump to %td", p + mcnt - start);
974 printf ("/on_failure_jump to %ld", (long int) (p + mcnt - start));
978 case on_failure_keep_string_jump:
979 PREFIX(extract_number_and_incr) (&mcnt, &p);
981 printf ("/on_failure_keep_string_jump to %td", p + mcnt - start);
983 printf ("/on_failure_keep_string_jump to %ld",
984 (long int) (p + mcnt - start));
988 case dummy_failure_jump:
989 PREFIX(extract_number_and_incr) (&mcnt, &p);
991 printf ("/dummy_failure_jump to %td", p + mcnt - start);
993 printf ("/dummy_failure_jump to %ld", (long int) (p + mcnt - start));
997 case push_dummy_failure:
998 printf ("/push_dummy_failure");
1001 case maybe_pop_jump:
1002 PREFIX(extract_number_and_incr) (&mcnt, &p);
1004 printf ("/maybe_pop_jump to %td", p + mcnt - start);
1006 printf ("/maybe_pop_jump to %ld", (long int) (p + mcnt - start));
1010 case pop_failure_jump:
1011 PREFIX(extract_number_and_incr) (&mcnt, &p);
1013 printf ("/pop_failure_jump to %td", p + mcnt - start);
1015 printf ("/pop_failure_jump to %ld", (long int) (p + mcnt - start));
1020 PREFIX(extract_number_and_incr) (&mcnt, &p);
1022 printf ("/jump_past_alt to %td", p + mcnt - start);
1024 printf ("/jump_past_alt to %ld", (long int) (p + mcnt - start));
1029 PREFIX(extract_number_and_incr) (&mcnt, &p);
1031 printf ("/jump to %td", p + mcnt - start);
1033 printf ("/jump to %ld", (long int) (p + mcnt - start));
1038 PREFIX(extract_number_and_incr) (&mcnt, &p);
1040 PREFIX(extract_number_and_incr) (&mcnt2, &p);
1042 printf ("/succeed_n to %td, %d times", p1 - start, mcnt2);
1044 printf ("/succeed_n to %ld, %d times",
1045 (long int) (p1 - start), mcnt2);
1050 PREFIX(extract_number_and_incr) (&mcnt, &p);
1052 PREFIX(extract_number_and_incr) (&mcnt2, &p);
1053 printf ("/jump_n to %d, %d times", p1 - start, mcnt2);
1057 PREFIX(extract_number_and_incr) (&mcnt, &p);
1059 PREFIX(extract_number_and_incr) (&mcnt2, &p);
1061 printf ("/set_number_at location %td to %d", p1 - start, mcnt2);
1063 printf ("/set_number_at location %ld to %d",
1064 (long int) (p1 - start), mcnt2);
1069 printf ("/wordbound");
1073 printf ("/notwordbound");
1077 printf ("/wordbeg");
1081 printf ("/wordend");
1086 printf ("/before_dot");
1094 printf ("/after_dot");
1098 printf ("/syntaxspec");
1100 printf ("/%d", mcnt);
1104 printf ("/notsyntaxspec");
1106 printf ("/%d", mcnt);
1111 printf ("/wordchar");
1115 printf ("/notwordchar");
1127 printf ("?%ld", (long int) *(p-1));
1134 printf ("%td:\tend of pattern.\n", p - start);
1136 printf ("%ld:\tend of pattern.\n", (long int) (p - start));
1142 PREFIX(print_compiled_pattern) (struct re_pattern_buffer *bufp)
1144 UCHAR_T *buffer = (UCHAR_T*) bufp->buffer;
1146 PREFIX(print_partial_compiled_pattern) (buffer, buffer
1147 + bufp->used / sizeof(UCHAR_T));
1148 printf ("%ld bytes used/%ld bytes allocated.\n",
1149 bufp->used, bufp->allocated);
1151 if (bufp->fastmap_accurate && bufp->fastmap)
1153 printf ("fastmap: ");
1154 print_fastmap (bufp->fastmap);
1158 printf ("re_nsub: %Zd\t", bufp->re_nsub);
1160 printf ("re_nsub: %ld\t", (long int) bufp->re_nsub);
1162 printf ("regs_alloc: %d\t", bufp->regs_allocated);
1163 printf ("can_be_null: %d\t", bufp->can_be_null);
1164 printf ("newline_anchor: %d\n", bufp->newline_anchor);
1165 printf ("no_sub: %d\t", bufp->no_sub);
1166 printf ("not_bol: %d\t", bufp->not_bol);
1167 printf ("not_eol: %d\t", bufp->not_eol);
1168 printf ("syntax: %lx\n", bufp->syntax);
1169 /* Perhaps we should print the translate table? */
1174 PREFIX(print_double_string) (const CHAR_T *where, const CHAR_T *string1,
1175 int size1, const CHAR_T *string2, int size2)
1185 if (FIRST_STRING_P (where))
1187 for (this_char = where - string1; this_char < size1; this_char++)
1188 PUT_CHAR (string1[this_char]);
1194 for (this_char = where - string2; this_char < size2; this_char++)
1196 PUT_CHAR (string2[this_char]);
1199 fputs ("...", stdout);
1206 # ifndef DEFINED_ONCE
1214 # else /* not DEBUG */
1216 # ifndef DEFINED_ONCE
1220 # define DEBUG_STATEMENT(e)
1221 # define DEBUG_PRINT1(x)
1222 # define DEBUG_PRINT2(x1, x2)
1223 # define DEBUG_PRINT3(x1, x2, x3)
1224 # define DEBUG_PRINT4(x1, x2, x3, x4)
1225 # endif /* not DEFINED_ONCE */
1226 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
1227 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
1229 # endif /* not DEBUG */
1234 /* This convert a multibyte string to a wide character string.
1235 And write their correspondances to offset_buffer(see below)
1236 and write whether each wchar_t is binary data to is_binary.
1237 This assume invalid multibyte sequences as binary data.
1238 We assume offset_buffer and is_binary is already allocated
1241 static size_t convert_mbs_to_wcs (CHAR_T *dest, const unsigned char* src,
1242 size_t len, int *offset_buffer,
1245 convert_mbs_to_wcs (CHAR_T *dest, const unsigned char*src, size_t len,
1246 int *offset_buffer, char *is_binary)
1247 /* It hold correspondances between src(char string) and
1248 dest(wchar_t string) for optimization.
1250 dest = {'X', 'Y', 'Z'}
1251 (each "xxx", "y" and "zz" represent one multibyte character
1252 corresponding to 'X', 'Y' and 'Z'.)
1253 offset_buffer = {0, 0+3("xxx"), 0+3+1("y"), 0+3+1+2("zz")}
1257 wchar_t *pdest = dest;
1258 const unsigned char *psrc = src;
1259 size_t wc_count = 0;
1263 size_t mb_remain = len;
1264 size_t mb_count = 0;
1266 /* Initialize the conversion state. */
1267 memset (&mbs, 0, sizeof (mbstate_t));
1269 offset_buffer[0] = 0;
1270 for( ; mb_remain > 0 ; ++wc_count, ++pdest, mb_remain -= consumed,
1274 consumed = __mbrtowc (pdest, psrc, mb_remain, &mbs);
1276 consumed = mbrtowc (pdest, psrc, mb_remain, &mbs);
1280 /* failed to convert. maybe src contains binary data.
1281 So we consume 1 byte manualy. */
1285 is_binary[wc_count] = TRUE;
1288 is_binary[wc_count] = FALSE;
1289 /* In sjis encoding, we use yen sign as escape character in
1290 place of reverse solidus. So we convert 0x5c(yen sign in
1291 sjis) to not 0xa5(yen sign in UCS2) but 0x5c(reverse
1292 solidus in UCS2). */
1293 if (consumed == 1 && (int) *psrc == 0x5c && (int) *pdest == 0xa5)
1294 *pdest = (wchar_t) *psrc;
1296 offset_buffer[wc_count + 1] = mb_count += consumed;
1299 /* Fill remain of the buffer with sentinel. */
1300 for (i = wc_count + 1 ; i <= len ; i++)
1301 offset_buffer[i] = mb_count + 1;
1308 #else /* not INSIDE_RECURSION */
1310 /* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
1311 also be assigned to arbitrarily: each pattern buffer stores its own
1312 syntax, so it can be changed between regex compilations. */
1313 /* This has no initializer because initialized variables in Emacs
1314 become read-only after dumping. */
1315 reg_syntax_t re_syntax_options;
1318 /* Specify the precise syntax of regexps for compilation. This provides
1319 for compatibility for various utilities which historically have
1320 different, incompatible syntaxes.
1322 The argument SYNTAX is a bit mask comprised of the various bits
1323 defined in regex.h. We return the old syntax. */
1326 re_set_syntax (reg_syntax_t syntax)
1328 reg_syntax_t ret = re_syntax_options;
1330 re_syntax_options = syntax;
1332 if (syntax & RE_DEBUG)
1334 else if (debug) /* was on but now is not */
1340 weak_alias (__re_set_syntax, re_set_syntax)
1343 /* This table gives an error message for each of the error codes listed
1344 in regex.h. Obviously the order here has to be same as there.
1345 POSIX doesn't require that we do anything for REG_NOERROR,
1346 but why not be nice? */
1348 static const char *re_error_msgid[] =
1350 gettext_noop ("Success"), /* REG_NOERROR */
1351 gettext_noop ("No match"), /* REG_NOMATCH */
1352 gettext_noop ("Invalid regular expression"), /* REG_BADPAT */
1353 gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */
1354 gettext_noop ("Invalid character class name"), /* REG_ECTYPE */
1355 gettext_noop ("Trailing backslash"), /* REG_EESCAPE */
1356 gettext_noop ("Invalid back reference"), /* REG_ESUBREG */
1357 gettext_noop ("Unmatched [ or [^"), /* REG_EBRACK */
1358 gettext_noop ("Unmatched ( or \\("), /* REG_EPAREN */
1359 gettext_noop ("Unmatched \\{"), /* REG_EBRACE */
1360 gettext_noop ("Invalid content of \\{\\}"), /* REG_BADBR */
1361 gettext_noop ("Invalid range end"), /* REG_ERANGE */
1362 gettext_noop ("Memory exhausted"), /* REG_ESPACE */
1363 gettext_noop ("Invalid preceding regular expression"), /* REG_BADRPT */
1364 gettext_noop ("Premature end of regular expression"), /* REG_EEND */
1365 gettext_noop ("Regular expression too big"), /* REG_ESIZE */
1366 gettext_noop ("Unmatched ) or \\)") /* REG_ERPAREN */
1369 #endif /* INSIDE_RECURSION */
1371 #ifndef DEFINED_ONCE
1372 /* Avoiding alloca during matching, to placate r_alloc. */
1374 /* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
1375 searching and matching functions should not call alloca. On some
1376 systems, alloca is implemented in terms of malloc, and if we're
1377 using the relocating allocator routines, then malloc could cause a
1378 relocation, which might (if the strings being searched are in the
1379 ralloc heap) shift the data out from underneath the regexp
1382 Here's another reason to avoid allocation: Emacs
1383 processes input from X in a signal handler; processing X input may
1384 call malloc; if input arrives while a matching routine is calling
1385 malloc, then we're scrod. But Emacs can't just block input while
1386 calling matching routines; then we don't notice interrupts when
1387 they come in. So, Emacs blocks input around all regexp calls
1388 except the matching calls, which it leaves unprotected, in the
1389 faith that they will not malloc. */
1391 /* Normally, this is fine. */
1392 # define MATCH_MAY_ALLOCATE
1394 /* When using GNU C, we are not REALLY using the C alloca, no matter
1395 what config.h may say. So don't take precautions for it. */
1400 /* The match routines may not allocate if (1) they would do it with malloc
1401 and (2) it's not safe for them to use malloc.
1402 Note that if REL_ALLOC is defined, matching would not use malloc for the
1403 failure stack, but we would still use it for the register vectors;
1404 so REL_ALLOC should not affect this. */
1405 # if (defined C_ALLOCA || defined REGEX_MALLOC) && defined emacs
1406 # undef MATCH_MAY_ALLOCATE
1408 #endif /* not DEFINED_ONCE */
1410 #ifdef INSIDE_RECURSION
1411 /* Failure stack declarations and macros; both re_compile_fastmap and
1412 re_match_2 use a failure stack. These have to be macros because of
1413 REGEX_ALLOCATE_STACK. */
1416 /* Number of failure points for which to initially allocate space
1417 when matching. If this number is exceeded, we allocate more
1418 space, so it is not a hard limit. */
1419 # ifndef INIT_FAILURE_ALLOC
1420 # define INIT_FAILURE_ALLOC 5
1423 /* Roughly the maximum number of failure points on the stack. Would be
1424 exactly that if always used MAX_FAILURE_ITEMS items each time we failed.
1425 This is a variable only so users of regex can assign to it; we never
1426 change it ourselves. */
1428 # ifdef INT_IS_16BIT
1430 # ifndef DEFINED_ONCE
1431 # if defined MATCH_MAY_ALLOCATE
1432 /* 4400 was enough to cause a crash on Alpha OSF/1,
1433 whose default stack limit is 2mb. */
1434 long int re_max_failures = 4000;
1436 long int re_max_failures = 2000;
1440 union PREFIX(fail_stack_elt)
1446 typedef union PREFIX(fail_stack_elt) PREFIX(fail_stack_elt_t);
1450 PREFIX(fail_stack_elt_t) *stack;
1451 unsigned long int size;
1452 unsigned long int avail; /* Offset of next open position. */
1453 } PREFIX(fail_stack_type);
1455 # else /* not INT_IS_16BIT */
1457 # ifndef DEFINED_ONCE
1458 # if defined MATCH_MAY_ALLOCATE
1459 /* 4400 was enough to cause a crash on Alpha OSF/1,
1460 whose default stack limit is 2mb. */
1461 int re_max_failures = 4000;
1463 int re_max_failures = 2000;
1467 union PREFIX(fail_stack_elt)
1473 typedef union PREFIX(fail_stack_elt) PREFIX(fail_stack_elt_t);
1477 PREFIX(fail_stack_elt_t) *stack;
1479 unsigned avail; /* Offset of next open position. */
1480 } PREFIX(fail_stack_type);
1482 # endif /* INT_IS_16BIT */
1484 # ifndef DEFINED_ONCE
1485 # define FAIL_STACK_EMPTY() (fail_stack.avail == 0)
1486 # define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0)
1487 # define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
1491 /* Define macros to initialize and free the failure stack.
1492 Do `return -2' if the alloc fails. */
1494 # ifdef MATCH_MAY_ALLOCATE
1495 # define INIT_FAIL_STACK() \
1497 fail_stack.stack = (PREFIX(fail_stack_elt_t) *) \
1498 REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * sizeof (PREFIX(fail_stack_elt_t))); \
1500 if (fail_stack.stack == NULL) \
1503 fail_stack.size = INIT_FAILURE_ALLOC; \
1504 fail_stack.avail = 0; \
1507 # define RESET_FAIL_STACK() REGEX_FREE_STACK (fail_stack.stack)
1509 # define INIT_FAIL_STACK() \
1511 fail_stack.avail = 0; \
1514 # define RESET_FAIL_STACK()
1518 /* Double the size of FAIL_STACK, up to approximately `re_max_failures' items.
1520 Return 1 if succeeds, and 0 if either ran out of memory
1521 allocating space for it or it was already too large.
1523 REGEX_REALLOCATE_STACK requires `destination' be declared. */
1525 # define DOUBLE_FAIL_STACK(fail_stack) \
1526 ((fail_stack).size > (unsigned) (re_max_failures * MAX_FAILURE_ITEMS) \
1528 : ((fail_stack).stack = (PREFIX(fail_stack_elt_t) *) \
1529 REGEX_REALLOCATE_STACK ((fail_stack).stack, \
1530 (fail_stack).size * sizeof (PREFIX(fail_stack_elt_t)), \
1531 ((fail_stack).size << 1) * sizeof (PREFIX(fail_stack_elt_t))),\
1533 (fail_stack).stack == NULL \
1535 : ((fail_stack).size <<= 1, \
1539 /* Push pointer POINTER on FAIL_STACK.
1540 Return 1 if was able to do so and 0 if ran out of memory allocating
1542 # define PUSH_PATTERN_OP(POINTER, FAIL_STACK) \
1543 ((FAIL_STACK_FULL () \
1544 && !DOUBLE_FAIL_STACK (FAIL_STACK)) \
1546 : ((FAIL_STACK).stack[(FAIL_STACK).avail++].pointer = POINTER, \
1549 /* Push a pointer value onto the failure stack.
1550 Assumes the variable `fail_stack'. Probably should only
1551 be called from within `PUSH_FAILURE_POINT'. */
1552 # define PUSH_FAILURE_POINTER(item) \
1553 fail_stack.stack[fail_stack.avail++].pointer = (UCHAR_T *) (item)
1555 /* This pushes an integer-valued item onto the failure stack.
1556 Assumes the variable `fail_stack'. Probably should only
1557 be called from within `PUSH_FAILURE_POINT'. */
1558 # define PUSH_FAILURE_INT(item) \
1559 fail_stack.stack[fail_stack.avail++].integer = (item)
1561 /* Push a fail_stack_elt_t value onto the failure stack.
1562 Assumes the variable `fail_stack'. Probably should only
1563 be called from within `PUSH_FAILURE_POINT'. */
1564 # define PUSH_FAILURE_ELT(item) \
1565 fail_stack.stack[fail_stack.avail++] = (item)
1567 /* These three POP... operations complement the three PUSH... operations.
1568 All assume that `fail_stack' is nonempty. */
1569 # define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1570 # define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1571 # define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
1573 /* Used to omit pushing failure point id's when we're not debugging. */
1575 # define DEBUG_PUSH PUSH_FAILURE_INT
1576 # define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_INT ()
1578 # define DEBUG_PUSH(item)
1579 # define DEBUG_POP(item_addr)
1583 /* Push the information about the state we will need
1584 if we ever fail back to it.
1586 Requires variables fail_stack, regstart, regend, reg_info, and
1587 num_regs_pushed be declared. DOUBLE_FAIL_STACK requires `destination'
1590 Does `return FAILURE_CODE' if runs out of memory. */
1592 # define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code) \
1594 char *destination; \
1595 /* Must be int, so when we don't save any registers, the arithmetic \
1596 of 0 + -1 isn't done as unsigned. */ \
1597 /* Can't be int, since there is not a shred of a guarantee that int \
1598 is wide enough to hold a value of something to which pointer can \
1600 active_reg_t this_reg; \
1602 DEBUG_STATEMENT (failure_id++); \
1603 DEBUG_STATEMENT (nfailure_points_pushed++); \
1604 DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id); \
1605 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail);\
1606 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
1608 DEBUG_PRINT2 (" slots needed: %ld\n", NUM_FAILURE_ITEMS); \
1609 DEBUG_PRINT2 (" available: %d\n", REMAINING_AVAIL_SLOTS); \
1611 /* Ensure we have enough space allocated for what we will push. */ \
1612 while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS) \
1614 if (!DOUBLE_FAIL_STACK (fail_stack)) \
1615 return failure_code; \
1617 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", \
1618 (fail_stack).size); \
1619 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1622 /* Push the info, starting with the registers. */ \
1623 DEBUG_PRINT1 ("\n"); \
1626 for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \
1629 DEBUG_PRINT2 (" Pushing reg: %lu\n", this_reg); \
1630 DEBUG_STATEMENT (num_regs_pushed++); \
1632 DEBUG_PRINT2 (" start: %p\n", regstart[this_reg]); \
1633 PUSH_FAILURE_POINTER (regstart[this_reg]); \
1635 DEBUG_PRINT2 (" end: %p\n", regend[this_reg]); \
1636 PUSH_FAILURE_POINTER (regend[this_reg]); \
1638 DEBUG_PRINT2 (" info: %p\n ", \
1639 reg_info[this_reg].word.pointer); \
1640 DEBUG_PRINT2 (" match_null=%d", \
1641 REG_MATCH_NULL_STRING_P (reg_info[this_reg])); \
1642 DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg])); \
1643 DEBUG_PRINT2 (" matched_something=%d", \
1644 MATCHED_SOMETHING (reg_info[this_reg])); \
1645 DEBUG_PRINT2 (" ever_matched=%d", \
1646 EVER_MATCHED_SOMETHING (reg_info[this_reg])); \
1647 DEBUG_PRINT1 ("\n"); \
1648 PUSH_FAILURE_ELT (reg_info[this_reg].word); \
1651 DEBUG_PRINT2 (" Pushing low active reg: %ld\n", lowest_active_reg);\
1652 PUSH_FAILURE_INT (lowest_active_reg); \
1654 DEBUG_PRINT2 (" Pushing high active reg: %ld\n", highest_active_reg);\
1655 PUSH_FAILURE_INT (highest_active_reg); \
1657 DEBUG_PRINT2 (" Pushing pattern %p:\n", pattern_place); \
1658 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend); \
1659 PUSH_FAILURE_POINTER (pattern_place); \
1661 DEBUG_PRINT2 (" Pushing string %p: `", string_place); \
1662 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, \
1664 DEBUG_PRINT1 ("'\n"); \
1665 PUSH_FAILURE_POINTER (string_place); \
1667 DEBUG_PRINT2 (" Pushing failure id: %u\n", failure_id); \
1668 DEBUG_PUSH (failure_id); \
1671 # ifndef DEFINED_ONCE
1672 /* This is the number of items that are pushed and popped on the stack
1673 for each register. */
1674 # define NUM_REG_ITEMS 3
1676 /* Individual items aside from the registers. */
1678 # define NUM_NONREG_ITEMS 5 /* Includes failure point id. */
1680 # define NUM_NONREG_ITEMS 4
1683 /* We push at most this many items on the stack. */
1684 /* We used to use (num_regs - 1), which is the number of registers
1685 this regexp will save; but that was changed to 5
1686 to avoid stack overflow for a regexp with lots of parens. */
1687 # define MAX_FAILURE_ITEMS (5 * NUM_REG_ITEMS + NUM_NONREG_ITEMS)
1689 /* We actually push this many items. */
1690 # define NUM_FAILURE_ITEMS \
1692 ? 0 : highest_active_reg - lowest_active_reg + 1) \
1696 /* How many items can still be added to the stack without overflowing it. */
1697 # define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1698 # endif /* not DEFINED_ONCE */
1701 /* Pops what PUSH_FAIL_STACK pushes.
1703 We restore into the parameters, all of which should be lvalues:
1704 STR -- the saved data position.
1705 PAT -- the saved pattern position.
1706 LOW_REG, HIGH_REG -- the highest and lowest active registers.
1707 REGSTART, REGEND -- arrays of string positions.
1708 REG_INFO -- array of information about each subexpression.
1710 Also assumes the variables `fail_stack' and (if debugging), `bufp',
1711 `pend', `string1', `size1', `string2', and `size2'. */
1712 # define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\
1714 DEBUG_STATEMENT (unsigned failure_id;) \
1715 active_reg_t this_reg; \
1716 const UCHAR_T *string_temp; \
1718 assert (!FAIL_STACK_EMPTY ()); \
1720 /* Remove failure points and point to how many regs pushed. */ \
1721 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
1722 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
1723 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
1725 assert (fail_stack.avail >= NUM_NONREG_ITEMS); \
1727 DEBUG_POP (&failure_id); \
1728 DEBUG_PRINT2 (" Popping failure id: %u\n", failure_id); \
1730 /* If the saved string location is NULL, it came from an \
1731 on_failure_keep_string_jump opcode, and we want to throw away the \
1732 saved NULL, thus retaining our current position in the string. */ \
1733 string_temp = POP_FAILURE_POINTER (); \
1734 if (string_temp != NULL) \
1735 str = (const CHAR_T *) string_temp; \
1737 DEBUG_PRINT2 (" Popping string %p: `", str); \
1738 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
1739 DEBUG_PRINT1 ("'\n"); \
1741 pat = (UCHAR_T *) POP_FAILURE_POINTER (); \
1742 DEBUG_PRINT2 (" Popping pattern %p:\n", pat); \
1743 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
1745 /* Restore register info. */ \
1746 high_reg = (active_reg_t) POP_FAILURE_INT (); \
1747 DEBUG_PRINT2 (" Popping high active reg: %ld\n", high_reg); \
1749 low_reg = (active_reg_t) POP_FAILURE_INT (); \
1750 DEBUG_PRINT2 (" Popping low active reg: %ld\n", low_reg); \
1753 for (this_reg = high_reg; this_reg >= low_reg; this_reg--) \
1755 DEBUG_PRINT2 (" Popping reg: %ld\n", this_reg); \
1757 reg_info[this_reg].word = POP_FAILURE_ELT (); \
1758 DEBUG_PRINT2 (" info: %p\n", \
1759 reg_info[this_reg].word.pointer); \
1761 regend[this_reg] = (const CHAR_T *) POP_FAILURE_POINTER (); \
1762 DEBUG_PRINT2 (" end: %p\n", regend[this_reg]); \
1764 regstart[this_reg] = (const CHAR_T *) POP_FAILURE_POINTER (); \
1765 DEBUG_PRINT2 (" start: %p\n", regstart[this_reg]); \
1769 for (this_reg = highest_active_reg; this_reg > high_reg; this_reg--) \
1771 reg_info[this_reg].word.integer = 0; \
1772 regend[this_reg] = 0; \
1773 regstart[this_reg] = 0; \
1775 highest_active_reg = high_reg; \
1778 set_regs_matched_done = 0; \
1779 DEBUG_STATEMENT (nfailure_points_popped++); \
1780 } /* POP_FAILURE_POINT */
1782 /* Structure for per-register (a.k.a. per-group) information.
1783 Other register information, such as the
1784 starting and ending positions (which are addresses), and the list of
1785 inner groups (which is a bits list) are maintained in separate
1788 We are making a (strictly speaking) nonportable assumption here: that
1789 the compiler will pack our bit fields into something that fits into
1790 the type of `word', i.e., is something that fits into one item on the
1794 /* Declarations and macros for re_match_2. */
1798 PREFIX(fail_stack_elt_t) word;
1801 /* This field is one if this group can match the empty string,
1802 zero if not. If not yet determined, `MATCH_NULL_UNSET_VALUE'. */
1803 # define MATCH_NULL_UNSET_VALUE 3
1804 unsigned match_null_string_p : 2;
1805 unsigned is_active : 1;
1806 unsigned matched_something : 1;
1807 unsigned ever_matched_something : 1;
1809 } PREFIX(register_info_type);
1811 # ifndef DEFINED_ONCE
1812 # define REG_MATCH_NULL_STRING_P(R) ((R).bits.match_null_string_p)
1813 # define IS_ACTIVE(R) ((R).bits.is_active)
1814 # define MATCHED_SOMETHING(R) ((R).bits.matched_something)
1815 # define EVER_MATCHED_SOMETHING(R) ((R).bits.ever_matched_something)
1818 /* Call this when have matched a real character; it sets `matched' flags
1819 for the subexpressions which we are currently inside. Also records
1820 that those subexprs have matched. */
1821 # define SET_REGS_MATCHED() \
1824 if (!set_regs_matched_done) \
1827 set_regs_matched_done = 1; \
1828 for (r = lowest_active_reg; r <= highest_active_reg; r++) \
1830 MATCHED_SOMETHING (reg_info[r]) \
1831 = EVER_MATCHED_SOMETHING (reg_info[r]) \
1837 # endif /* not DEFINED_ONCE */
1839 /* Registers are set to a sentinel when they haven't yet matched. */
1840 static CHAR_T PREFIX(reg_unset_dummy);
1841 # define REG_UNSET_VALUE (&PREFIX(reg_unset_dummy))
1842 # define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
1844 /* Subroutine declarations and macros for regex_compile. */
1845 static void PREFIX(store_op1) (re_opcode_t op, UCHAR_T *loc, int arg);
1846 static void PREFIX(store_op2) (re_opcode_t op, UCHAR_T *loc,
1847 int arg1, int arg2);
1848 static void PREFIX(insert_op1) (re_opcode_t op, UCHAR_T *loc,
1849 int arg, UCHAR_T *end);
1850 static void PREFIX(insert_op2) (re_opcode_t op, UCHAR_T *loc,
1851 int arg1, int arg2, UCHAR_T *end);
1852 static boolean PREFIX(at_begline_loc_p) (const CHAR_T *pattern,
1854 reg_syntax_t syntax);
1855 static boolean PREFIX(at_endline_loc_p) (const CHAR_T *p,
1857 reg_syntax_t syntax);
1859 static reg_errcode_t wcs_compile_range (CHAR_T range_start,
1860 const CHAR_T **p_ptr,
1863 reg_syntax_t syntax,
1866 static void insert_space (int num, CHAR_T *loc, CHAR_T *end);
1868 static reg_errcode_t byte_compile_range (unsigned int range_start,
1872 reg_syntax_t syntax,
1876 /* Fetch the next character in the uncompiled pattern---translating it
1877 if necessary. Also cast from a signed character in the constant
1878 string passed to us by the user to an unsigned char that we can use
1879 as an array index (in, e.g., `translate'). */
1880 /* ifdef MBS_SUPPORT, we translate only if character <= 0xff,
1881 because it is impossible to allocate 4GB array for some encodings
1882 which have 4 byte character_set like UCS4. */
1885 # define PATFETCH(c) \
1886 do {if (p == pend) return REG_EEND; \
1887 c = (UCHAR_T) *p++; \
1888 if (translate && (c <= 0xff)) c = (UCHAR_T) translate[c]; \
1891 # define PATFETCH(c) \
1892 do {if (p == pend) return REG_EEND; \
1893 c = (unsigned char) *p++; \
1894 if (translate) c = (unsigned char) translate[c]; \
1899 /* Fetch the next character in the uncompiled pattern, with no
1901 # define PATFETCH_RAW(c) \
1902 do {if (p == pend) return REG_EEND; \
1903 c = (UCHAR_T) *p++; \
1906 /* Go backwards one character in the pattern. */
1907 # define PATUNFETCH p--
1910 /* If `translate' is non-null, return translate[D], else just D. We
1911 cast the subscript to translate because some data is declared as
1912 `char *', to avoid warnings when a string constant is passed. But
1913 when we use a character as a subscript we must make it unsigned. */
1914 /* ifdef MBS_SUPPORT, we translate only if character <= 0xff,
1915 because it is impossible to allocate 4GB array for some encodings
1916 which have 4 byte character_set like UCS4. */
1920 # define TRANSLATE(d) \
1921 ((translate && ((UCHAR_T) (d)) <= 0xff) \
1922 ? (char) translate[(unsigned char) (d)] : (d))
1924 # define TRANSLATE(d) \
1925 (translate ? (char) translate[(unsigned char) (d)] : (char) (d))
1930 /* Macros for outputting the compiled pattern into `buffer'. */
1932 /* If the buffer isn't allocated when it comes in, use this. */
1933 # define INIT_BUF_SIZE (32 * sizeof(UCHAR_T))
1935 /* Make sure we have at least N more bytes of space in buffer. */
1937 # define GET_BUFFER_SPACE(n) \
1938 while (((unsigned long)b - (unsigned long)COMPILED_BUFFER_VAR \
1939 + (n)*sizeof(CHAR_T)) > bufp->allocated) \
1942 # define GET_BUFFER_SPACE(n) \
1943 while ((unsigned long) (b - bufp->buffer + (n)) > bufp->allocated) \
1947 /* Make sure we have one more byte of buffer space and then add C to it. */
1948 # define BUF_PUSH(c) \
1950 GET_BUFFER_SPACE (1); \
1951 *b++ = (UCHAR_T) (c); \
1955 /* Ensure we have two more bytes of buffer space and then append C1 and C2. */
1956 # define BUF_PUSH_2(c1, c2) \
1958 GET_BUFFER_SPACE (2); \
1959 *b++ = (UCHAR_T) (c1); \
1960 *b++ = (UCHAR_T) (c2); \
1964 /* As with BUF_PUSH_2, except for three bytes. */
1965 # define BUF_PUSH_3(c1, c2, c3) \
1967 GET_BUFFER_SPACE (3); \
1968 *b++ = (UCHAR_T) (c1); \
1969 *b++ = (UCHAR_T) (c2); \
1970 *b++ = (UCHAR_T) (c3); \
1973 /* Store a jump with opcode OP at LOC to location TO. We store a
1974 relative address offset by the three bytes the jump itself occupies. */
1975 # define STORE_JUMP(op, loc, to) \
1976 PREFIX(store_op1) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)))
1978 /* Likewise, for a two-argument jump. */
1979 # define STORE_JUMP2(op, loc, to, arg) \
1980 PREFIX(store_op2) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)), arg)
1982 /* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
1983 # define INSERT_JUMP(op, loc, to) \
1984 PREFIX(insert_op1) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)), b)
1986 /* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
1987 # define INSERT_JUMP2(op, loc, to, arg) \
1988 PREFIX(insert_op2) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)),\
1991 /* This is not an arbitrary limit: the arguments which represent offsets
1992 into the pattern are two bytes long. So if 2^16 bytes turns out to
1993 be too small, many things would have to change. */
1994 /* Any other compiler which, like MSC, has allocation limit below 2^16
1995 bytes will have to use approach similar to what was done below for
1996 MSC and drop MAX_BUF_SIZE a bit. Otherwise you may end up
1997 reallocating to 0 bytes. Such thing is not going to work too well.
1998 You have been warned!! */
1999 # ifndef DEFINED_ONCE
2000 # if defined _MSC_VER && !defined WIN32
2001 /* Microsoft C 16-bit versions limit malloc to approx 65512 bytes.
2002 The REALLOC define eliminates a flurry of conversion warnings,
2003 but is not required. */
2004 # define MAX_BUF_SIZE 65500L
2005 # define REALLOC(p,s) realloc ((p), (size_t) (s))
2007 # define MAX_BUF_SIZE (1L << 16)
2008 # define REALLOC(p,s) realloc ((p), (s))
2011 /* Extend the buffer by twice its current size via realloc and
2012 reset the pointers that pointed into the old block to point to the
2013 correct places in the new one. If extending the buffer results in it
2014 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
2015 # if __BOUNDED_POINTERS__
2016 # define SET_HIGH_BOUND(P) (__ptrhigh (P) = __ptrlow (P) + bufp->allocated)
2017 # define MOVE_BUFFER_POINTER(P) \
2018 (__ptrlow (P) += incr, SET_HIGH_BOUND (P), __ptrvalue (P) += incr)
2019 # define ELSE_EXTEND_BUFFER_HIGH_BOUND \
2022 SET_HIGH_BOUND (b); \
2023 SET_HIGH_BOUND (begalt); \
2024 if (fixup_alt_jump) \
2025 SET_HIGH_BOUND (fixup_alt_jump); \
2027 SET_HIGH_BOUND (laststart); \
2028 if (pending_exact) \
2029 SET_HIGH_BOUND (pending_exact); \
2032 # define MOVE_BUFFER_POINTER(P) (P) += incr
2033 # define ELSE_EXTEND_BUFFER_HIGH_BOUND
2035 # endif /* not DEFINED_ONCE */
2038 # define EXTEND_BUFFER() \
2040 UCHAR_T *old_buffer = COMPILED_BUFFER_VAR; \
2042 if (bufp->allocated + sizeof(UCHAR_T) > MAX_BUF_SIZE) \
2044 bufp->allocated <<= 1; \
2045 if (bufp->allocated > MAX_BUF_SIZE) \
2046 bufp->allocated = MAX_BUF_SIZE; \
2047 /* How many characters the new buffer can have? */ \
2048 wchar_count = bufp->allocated / sizeof(UCHAR_T); \
2049 if (wchar_count == 0) wchar_count = 1; \
2050 /* Truncate the buffer to CHAR_T align. */ \
2051 bufp->allocated = wchar_count * sizeof(UCHAR_T); \
2052 RETALLOC (COMPILED_BUFFER_VAR, wchar_count, UCHAR_T); \
2053 bufp->buffer = (char*)COMPILED_BUFFER_VAR; \
2054 if (COMPILED_BUFFER_VAR == NULL) \
2055 return REG_ESPACE; \
2056 /* If the buffer moved, move all the pointers into it. */ \
2057 if (old_buffer != COMPILED_BUFFER_VAR) \
2059 PTR_INT_TYPE incr = COMPILED_BUFFER_VAR - old_buffer; \
2060 MOVE_BUFFER_POINTER (b); \
2061 MOVE_BUFFER_POINTER (begalt); \
2062 if (fixup_alt_jump) \
2063 MOVE_BUFFER_POINTER (fixup_alt_jump); \
2065 MOVE_BUFFER_POINTER (laststart); \
2066 if (pending_exact) \
2067 MOVE_BUFFER_POINTER (pending_exact); \
2069 ELSE_EXTEND_BUFFER_HIGH_BOUND \
2072 # define EXTEND_BUFFER() \
2074 UCHAR_T *old_buffer = COMPILED_BUFFER_VAR; \
2075 if (bufp->allocated == MAX_BUF_SIZE) \
2077 bufp->allocated <<= 1; \
2078 if (bufp->allocated > MAX_BUF_SIZE) \
2079 bufp->allocated = MAX_BUF_SIZE; \
2080 bufp->buffer = (UCHAR_T *) REALLOC (COMPILED_BUFFER_VAR, \
2082 if (COMPILED_BUFFER_VAR == NULL) \
2083 return REG_ESPACE; \
2084 /* If the buffer moved, move all the pointers into it. */ \
2085 if (old_buffer != COMPILED_BUFFER_VAR) \
2087 PTR_INT_TYPE incr = COMPILED_BUFFER_VAR - old_buffer; \
2088 MOVE_BUFFER_POINTER (b); \
2089 MOVE_BUFFER_POINTER (begalt); \
2090 if (fixup_alt_jump) \
2091 MOVE_BUFFER_POINTER (fixup_alt_jump); \
2093 MOVE_BUFFER_POINTER (laststart); \
2094 if (pending_exact) \
2095 MOVE_BUFFER_POINTER (pending_exact); \
2097 ELSE_EXTEND_BUFFER_HIGH_BOUND \
2101 # ifndef DEFINED_ONCE
2102 /* Since we have one byte reserved for the register number argument to
2103 {start,stop}_memory, the maximum number of groups we can report
2104 things about is what fits in that byte. */
2105 # define MAX_REGNUM 255
2107 /* But patterns can have more than `MAX_REGNUM' registers. We just
2108 ignore the excess. */
2109 typedef unsigned regnum_t;
2112 /* Macros for the compile stack. */
2114 /* Since offsets can go either forwards or backwards, this type needs to
2115 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
2116 /* int may be not enough when sizeof(int) == 2. */
2117 typedef long pattern_offset_t;
2121 pattern_offset_t begalt_offset;
2122 pattern_offset_t fixup_alt_jump;
2123 pattern_offset_t inner_group_offset;
2124 pattern_offset_t laststart_offset;
2126 } compile_stack_elt_t;
2131 compile_stack_elt_t *stack;
2133 unsigned avail; /* Offset of next open position. */
2134 } compile_stack_type;
2137 # define INIT_COMPILE_STACK_SIZE 32
2139 # define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
2140 # define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
2142 /* The next available element. */
2143 # define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
2145 # endif /* not DEFINED_ONCE */
2147 /* Set the bit for character C in a list. */
2148 # ifndef DEFINED_ONCE
2149 # define SET_LIST_BIT(c) \
2150 (b[((unsigned char) (c)) / BYTEWIDTH] \
2151 |= 1 << (((unsigned char) c) % BYTEWIDTH))
2152 # endif /* DEFINED_ONCE */
2154 /* Get the next unsigned number in the uncompiled pattern. */
2155 # define GET_UNSIGNED_NUMBER(num) \
2160 if (c < '0' || c > '9') \
2162 if (num <= RE_DUP_MAX) \
2166 num = num * 10 + c - '0'; \
2171 # ifndef DEFINED_ONCE
2172 # if defined _LIBC || WIDE_CHAR_SUPPORT
2173 /* The GNU C library provides support for user-defined character classes
2174 and the functions from ISO C amendement 1. */
2175 # ifdef CHARCLASS_NAME_MAX
2176 # define CHAR_CLASS_MAX_LENGTH CHARCLASS_NAME_MAX
2178 /* This shouldn't happen but some implementation might still have this
2179 problem. Use a reasonable default value. */
2180 # define CHAR_CLASS_MAX_LENGTH 256
2184 # define IS_CHAR_CLASS(string) __wctype (string)
2186 # define IS_CHAR_CLASS(string) wctype (string)
2189 # define CHAR_CLASS_MAX_LENGTH 6 /* Namely, `xdigit'. */
2191 # define IS_CHAR_CLASS(string) \
2192 (STREQ (string, "alpha") || STREQ (string, "upper") \
2193 || STREQ (string, "lower") || STREQ (string, "digit") \
2194 || STREQ (string, "alnum") || STREQ (string, "xdigit") \
2195 || STREQ (string, "space") || STREQ (string, "print") \
2196 || STREQ (string, "punct") || STREQ (string, "graph") \
2197 || STREQ (string, "cntrl") || STREQ (string, "blank"))
2199 # endif /* DEFINED_ONCE */
2201 # ifndef MATCH_MAY_ALLOCATE
2203 /* If we cannot allocate large objects within re_match_2_internal,
2204 we make the fail stack and register vectors global.
2205 The fail stack, we grow to the maximum size when a regexp
2207 The register vectors, we adjust in size each time we
2208 compile a regexp, according to the number of registers it needs. */
2210 static PREFIX(fail_stack_type) fail_stack;
2212 /* Size with which the following vectors are currently allocated.
2213 That is so we can make them bigger as needed,
2214 but never make them smaller. */
2215 # ifdef DEFINED_ONCE
2216 static int regs_allocated_size;
2218 static const char ** regstart, ** regend;
2219 static const char ** old_regstart, ** old_regend;
2220 static const char **best_regstart, **best_regend;
2221 static const char **reg_dummy;
2222 # endif /* DEFINED_ONCE */
2224 static PREFIX(register_info_type) *PREFIX(reg_info);
2225 static PREFIX(register_info_type) *PREFIX(reg_info_dummy);
2227 /* Make the register vectors big enough for NUM_REGS registers,
2228 but don't make them smaller. */
2231 PREFIX(regex_grow_registers) (int num_regs)
2233 if (num_regs > regs_allocated_size)
2235 RETALLOC_IF (regstart, num_regs, const char *);
2236 RETALLOC_IF (regend, num_regs, const char *);
2237 RETALLOC_IF (old_regstart, num_regs, const char *);
2238 RETALLOC_IF (old_regend, num_regs, const char *);
2239 RETALLOC_IF (best_regstart, num_regs, const char *);
2240 RETALLOC_IF (best_regend, num_regs, const char *);
2241 RETALLOC_IF (PREFIX(reg_info), num_regs, PREFIX(register_info_type));
2242 RETALLOC_IF (reg_dummy, num_regs, const char *);
2243 RETALLOC_IF (PREFIX(reg_info_dummy), num_regs, PREFIX(register_info_type));
2245 regs_allocated_size = num_regs;
2249 # endif /* not MATCH_MAY_ALLOCATE */
2251 # ifndef DEFINED_ONCE
2252 static boolean group_in_compile_stack (compile_stack_type compile_stack,
2254 # endif /* not DEFINED_ONCE */
2256 /* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
2257 Returns one of error codes defined in `regex.h', or zero for success.
2259 Assumes the `allocated' (and perhaps `buffer') and `translate'
2260 fields are set in BUFP on entry.
2262 If it succeeds, results are put in BUFP (if it returns an error, the
2263 contents of BUFP are undefined):
2264 `buffer' is the compiled pattern;
2265 `syntax' is set to SYNTAX;
2266 `used' is set to the length of the compiled pattern;
2267 `fastmap_accurate' is zero;
2268 `re_nsub' is the number of subexpressions in PATTERN;
2269 `not_bol' and `not_eol' are zero;
2271 The `fastmap' and `newline_anchor' fields are neither
2272 examined nor set. */
2274 /* Return, freeing storage we allocated. */
2276 # define FREE_STACK_RETURN(value) \
2277 return (free(pattern), free(mbs_offset), free(is_binary), free (compile_stack.stack), value)
2279 # define FREE_STACK_RETURN(value) \
2280 return (free (compile_stack.stack), value)
2283 static reg_errcode_t
2284 PREFIX(regex_compile) (const char *ARG_PREFIX(pattern),
2285 size_t ARG_PREFIX(size), reg_syntax_t syntax,
2286 struct re_pattern_buffer *bufp)
2288 /* We fetch characters from PATTERN here. Even though PATTERN is
2289 `char *' (i.e., signed), we declare these variables as unsigned, so
2290 they can be reliably used as array indices. */
2291 register UCHAR_T c, c1;
2294 /* A temporary space to keep wchar_t pattern and compiled pattern. */
2295 CHAR_T *pattern, *COMPILED_BUFFER_VAR;
2297 /* offset buffer for optimization. See convert_mbs_to_wc. */
2298 int *mbs_offset = NULL;
2299 /* It hold whether each wchar_t is binary data or not. */
2300 char *is_binary = NULL;
2301 /* A flag whether exactn is handling binary data or not. */
2302 char is_exactn_bin = FALSE;
2305 /* A random temporary spot in PATTERN. */
2308 /* Points to the end of the buffer, where we should append. */
2309 register UCHAR_T *b;
2311 /* Keeps track of unclosed groups. */
2312 compile_stack_type compile_stack;
2314 /* Points to the current (ending) position in the pattern. */
2319 const CHAR_T *p = pattern;
2320 const CHAR_T *pend = pattern + size;
2323 /* How to translate the characters in the pattern. */
2324 RE_TRANSLATE_TYPE translate = bufp->translate;
2326 /* Address of the count-byte of the most recently inserted `exactn'
2327 command. This makes it possible to tell if a new exact-match
2328 character can be added to that command or if the character requires
2329 a new `exactn' command. */
2330 UCHAR_T *pending_exact = 0;
2332 /* Address of start of the most recently finished expression.
2333 This tells, e.g., postfix * where to find the start of its
2334 operand. Reset at the beginning of groups and alternatives. */
2335 UCHAR_T *laststart = 0;
2337 /* Address of beginning of regexp, or inside of last group. */
2340 /* Address of the place where a forward jump should go to the end of
2341 the containing expression. Each alternative of an `or' -- except the
2342 last -- ends with a forward jump of this sort. */
2343 UCHAR_T *fixup_alt_jump = 0;
2345 /* Counts open-groups as they are encountered. Remembered for the
2346 matching close-group on the compile stack, so the same register
2347 number is put in the stop_memory as the start_memory. */
2348 regnum_t regnum = 0;
2351 /* Initialize the wchar_t PATTERN and offset_buffer. */
2352 p = pend = pattern = TALLOC(csize + 1, CHAR_T);
2353 mbs_offset = TALLOC(csize + 1, int);
2354 is_binary = TALLOC(csize + 1, char);
2355 if (pattern == NULL || mbs_offset == NULL || is_binary == NULL)
2362 pattern[csize] = L'\0'; /* sentinel */
2363 size = convert_mbs_to_wcs(pattern, cpattern, csize, mbs_offset, is_binary);
2375 DEBUG_PRINT1 ("\nCompiling pattern: ");
2378 unsigned debug_count;
2380 for (debug_count = 0; debug_count < size; debug_count++)
2381 PUT_CHAR (pattern[debug_count]);
2386 /* Initialize the compile stack. */
2387 compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
2388 if (compile_stack.stack == NULL)
2398 compile_stack.size = INIT_COMPILE_STACK_SIZE;
2399 compile_stack.avail = 0;
2401 /* Initialize the pattern buffer. */
2402 bufp->syntax = syntax;
2403 bufp->fastmap_accurate = 0;
2404 bufp->not_bol = bufp->not_eol = 0;
2406 /* Set `used' to zero, so that if we return an error, the pattern
2407 printer (for debugging) will think there's no pattern. We reset it
2411 /* Always count groups, whether or not bufp->no_sub is set. */
2414 #if !defined emacs && !defined SYNTAX_TABLE
2415 /* Initialize the syntax table. */
2416 init_syntax_once ();
2419 if (bufp->allocated == 0)
2422 { /* If zero allocated, but buffer is non-null, try to realloc
2423 enough space. This loses if buffer's address is bogus, but
2424 that is the user's responsibility. */
2426 /* Free bufp->buffer and allocate an array for wchar_t pattern
2429 COMPILED_BUFFER_VAR = TALLOC (INIT_BUF_SIZE/sizeof(UCHAR_T),
2432 RETALLOC (COMPILED_BUFFER_VAR, INIT_BUF_SIZE, UCHAR_T);
2436 { /* Caller did not allocate a buffer. Do it for them. */
2437 COMPILED_BUFFER_VAR = TALLOC (INIT_BUF_SIZE / sizeof(UCHAR_T),
2441 if (!COMPILED_BUFFER_VAR) FREE_STACK_RETURN (REG_ESPACE);
2443 bufp->buffer = (char*)COMPILED_BUFFER_VAR;
2445 bufp->allocated = INIT_BUF_SIZE;
2449 COMPILED_BUFFER_VAR = (UCHAR_T*) bufp->buffer;
2452 begalt = b = COMPILED_BUFFER_VAR;
2454 /* Loop through the uncompiled pattern until we're at the end. */
2463 if ( /* If at start of pattern, it's an operator. */
2465 /* If context independent, it's an operator. */
2466 || syntax & RE_CONTEXT_INDEP_ANCHORS
2467 /* Otherwise, depends on what's come before. */
2468 || PREFIX(at_begline_loc_p) (pattern, p, syntax))
2478 if ( /* If at end of pattern, it's an operator. */
2480 /* If context independent, it's an operator. */
2481 || syntax & RE_CONTEXT_INDEP_ANCHORS
2482 /* Otherwise, depends on what's next. */
2483 || PREFIX(at_endline_loc_p) (p, pend, syntax))
2493 if ((syntax & RE_BK_PLUS_QM)
2494 || (syntax & RE_LIMITED_OPS))
2499 /* If there is no previous pattern... */
2502 if (syntax & RE_CONTEXT_INVALID_OPS)
2503 FREE_STACK_RETURN (REG_BADRPT);
2504 else if (!(syntax & RE_CONTEXT_INDEP_OPS))
2509 /* Are we optimizing this jump? */
2510 boolean keep_string_p = false;
2512 /* 1 means zero (many) matches is allowed. */
2513 char zero_times_ok = 0, many_times_ok = 0;
2515 /* If there is a sequence of repetition chars, collapse it
2516 down to just one (the right one). We can't combine
2517 interval operators with these because of, e.g., `a{2}*',
2518 which should only match an even number of `a's. */
2522 zero_times_ok |= c != '+';
2523 many_times_ok |= c != '?';
2531 || (!(syntax & RE_BK_PLUS_QM) && (c == '+' || c == '?')))
2534 else if (syntax & RE_BK_PLUS_QM && c == '\\')
2536 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2539 if (!(c1 == '+' || c1 == '?'))
2554 /* If we get here, we found another repeat character. */
2557 /* Star, etc. applied to an empty pattern is equivalent
2558 to an empty pattern. */
2562 /* Now we know whether or not zero matches is allowed
2563 and also whether or not two or more matches is allowed. */
2565 { /* More than one repetition is allowed, so put in at the
2566 end a backward relative jump from `b' to before the next
2567 jump we're going to put in below (which jumps from
2568 laststart to after this jump).
2570 But if we are at the `*' in the exact sequence `.*\n',
2571 insert an unconditional jump backwards to the .,
2572 instead of the beginning of the loop. This way we only
2573 push a failure point once, instead of every time
2574 through the loop. */
2575 assert (p - 1 > pattern);
2577 /* Allocate the space for the jump. */
2578 GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
2580 /* We know we are not at the first character of the pattern,
2581 because laststart was nonzero. And we've already
2582 incremented `p', by the way, to be the character after
2583 the `*'. Do we have to do something analogous here
2584 for null bytes, because of RE_DOT_NOT_NULL? */
2585 if (TRANSLATE (*(p - 2)) == TRANSLATE ('.')
2587 && p < pend && TRANSLATE (*p) == TRANSLATE ('\n')
2588 && !(syntax & RE_DOT_NEWLINE))
2589 { /* We have .*\n. */
2590 STORE_JUMP (jump, b, laststart);
2591 keep_string_p = true;
2594 /* Anything else. */
2595 STORE_JUMP (maybe_pop_jump, b, laststart -
2596 (1 + OFFSET_ADDRESS_SIZE));
2598 /* We've added more stuff to the buffer. */
2599 b += 1 + OFFSET_ADDRESS_SIZE;
2602 /* On failure, jump from laststart to b + 3, which will be the
2603 end of the buffer after this jump is inserted. */
2604 /* ifdef WCHAR, 'b + 1 + OFFSET_ADDRESS_SIZE' instead of
2606 GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
2607 INSERT_JUMP (keep_string_p ? on_failure_keep_string_jump
2609 laststart, b + 1 + OFFSET_ADDRESS_SIZE);
2611 b += 1 + OFFSET_ADDRESS_SIZE;
2615 /* At least one repetition is required, so insert a
2616 `dummy_failure_jump' before the initial
2617 `on_failure_jump' instruction of the loop. This
2618 effects a skip over that instruction the first time
2619 we hit that loop. */
2620 GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
2621 INSERT_JUMP (dummy_failure_jump, laststart, laststart +
2622 2 + 2 * OFFSET_ADDRESS_SIZE);
2623 b += 1 + OFFSET_ADDRESS_SIZE;
2637 boolean had_char_class = false;
2639 CHAR_T range_start = 0xffffffff;
2641 unsigned int range_start = 0xffffffff;
2643 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2646 /* We assume a charset(_not) structure as a wchar_t array.
2647 charset[0] = (re_opcode_t) charset(_not)
2648 charset[1] = l (= length of char_classes)
2649 charset[2] = m (= length of collating_symbols)
2650 charset[3] = n (= length of equivalence_classes)
2651 charset[4] = o (= length of char_ranges)
2652 charset[5] = p (= length of chars)
2654 charset[6] = char_class (wctype_t)
2655 charset[6+CHAR_CLASS_SIZE] = char_class (wctype_t)
2657 charset[l+5] = char_class (wctype_t)
2659 charset[l+6] = collating_symbol (wchar_t)
2661 charset[l+m+5] = collating_symbol (wchar_t)
2662 ifdef _LIBC we use the index if
2663 _NL_COLLATE_SYMB_EXTRAMB instead of
2666 charset[l+m+6] = equivalence_classes (wchar_t)
2668 charset[l+m+n+5] = equivalence_classes (wchar_t)
2669 ifdef _LIBC we use the index in
2670 _NL_COLLATE_WEIGHT instead of
2673 charset[l+m+n+6] = range_start
2674 charset[l+m+n+7] = range_end
2676 charset[l+m+n+2o+4] = range_start
2677 charset[l+m+n+2o+5] = range_end
2678 ifdef _LIBC we use the value looked up
2679 in _NL_COLLATE_COLLSEQ instead of
2682 charset[l+m+n+2o+6] = char
2684 charset[l+m+n+2o+p+5] = char
2688 /* We need at least 6 spaces: the opcode, the length of
2689 char_classes, the length of collating_symbols, the length of
2690 equivalence_classes, the length of char_ranges, the length of
2692 GET_BUFFER_SPACE (6);
2694 /* Save b as laststart. And We use laststart as the pointer
2695 to the first element of the charset here.
2696 In other words, laststart[i] indicates charset[i]. */
2699 /* We test `*p == '^' twice, instead of using an if
2700 statement, so we only need one BUF_PUSH. */
2701 BUF_PUSH (*p == '^' ? charset_not : charset);
2705 /* Push the length of char_classes, the length of
2706 collating_symbols, the length of equivalence_classes, the
2707 length of char_ranges and the length of chars. */
2708 BUF_PUSH_3 (0, 0, 0);
2711 /* Remember the first position in the bracket expression. */
2714 /* charset_not matches newline according to a syntax bit. */
2715 if ((re_opcode_t) b[-6] == charset_not
2716 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
2719 laststart[5]++; /* Update the length of characters */
2722 /* Read in characters and ranges, setting map bits. */
2725 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2729 /* \ might escape characters inside [...] and [^...]. */
2730 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
2732 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2736 laststart[5]++; /* Update the length of chars */
2741 /* Could be the end of the bracket expression. If it's
2742 not (i.e., when the bracket expression is `[]' so
2743 far), the ']' character bit gets set way below. */
2744 if (c == ']' && p != p1 + 1)
2747 /* Look ahead to see if it's a range when the last thing
2748 was a character class. */
2749 if (had_char_class && c == '-' && *p != ']')
2750 FREE_STACK_RETURN (REG_ERANGE);
2752 /* Look ahead to see if it's a range when the last thing
2753 was a character: if this is a hyphen not at the
2754 beginning or the end of a list, then it's the range
2757 && !(p - 2 >= pattern && p[-2] == '[')
2758 && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^')
2762 /* Allocate the space for range_start and range_end. */
2763 GET_BUFFER_SPACE (2);
2764 /* Update the pointer to indicate end of buffer. */
2766 ret = wcs_compile_range (range_start, &p, pend, translate,
2767 syntax, b, laststart);
2768 if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
2769 range_start = 0xffffffff;
2771 else if (p[0] == '-' && p[1] != ']')
2772 { /* This handles ranges made up of characters only. */
2775 /* Move past the `-'. */
2777 /* Allocate the space for range_start and range_end. */
2778 GET_BUFFER_SPACE (2);
2779 /* Update the pointer to indicate end of buffer. */
2781 ret = wcs_compile_range (c, &p, pend, translate, syntax, b,
2783 if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
2784 range_start = 0xffffffff;
2787 /* See if we're at the beginning of a possible character
2789 else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
2790 { /* Leave room for the null. */
2791 char str[CHAR_CLASS_MAX_LENGTH + 1];
2796 /* If pattern is `[[:'. */
2797 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2802 if ((c == ':' && *p == ']') || p == pend)
2804 if (c1 < CHAR_CLASS_MAX_LENGTH)
2807 /* This is in any case an invalid class name. */
2812 /* If isn't a word bracketed by `[:' and `:]':
2813 undo the ending character, the letters, and leave
2814 the leading `:' and `[' (but store them as character). */
2815 if (c == ':' && *p == ']')
2820 /* Query the character class as wctype_t. */
2821 wt = IS_CHAR_CLASS (str);
2823 FREE_STACK_RETURN (REG_ECTYPE);
2825 /* Throw away the ] at the end of the character
2829 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2831 /* Allocate the space for character class. */
2832 GET_BUFFER_SPACE(CHAR_CLASS_SIZE);
2833 /* Update the pointer to indicate end of buffer. */
2834 b += CHAR_CLASS_SIZE;
2835 /* Move data which follow character classes
2836 not to violate the data. */
2837 insert_space(CHAR_CLASS_SIZE,
2838 laststart + 6 + laststart[1],
2840 alignedp = ((uintptr_t)(laststart + 6 + laststart[1])
2841 + __alignof__(wctype_t) - 1)
2842 & ~(uintptr_t)(__alignof__(wctype_t) - 1);
2843 /* Store the character class. */
2844 *((wctype_t*)alignedp) = wt;
2845 /* Update length of char_classes */
2846 laststart[1] += CHAR_CLASS_SIZE;
2848 had_char_class = true;
2857 laststart[5] += 2; /* Update the length of characters */
2859 had_char_class = false;
2862 else if (syntax & RE_CHAR_CLASSES && c == '[' && (*p == '='
2865 CHAR_T str[128]; /* Should be large enough. */
2866 CHAR_T delim = *p; /* '=' or '.' */
2869 _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
2874 /* If pattern is `[[=' or '[[.'. */
2875 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2880 if ((c == delim && *p == ']') || p == pend)
2882 if (c1 < sizeof (str) - 1)
2885 /* This is in any case an invalid class name. */
2890 if (c == delim && *p == ']' && str[0] != '\0')
2892 unsigned int i, offset;
2893 /* If we have no collation data we use the default
2894 collation in which each character is in a class
2895 by itself. It also means that ASCII is the
2896 character set and therefore we cannot have character
2897 with more than one byte in the multibyte
2900 /* If not defined _LIBC, we push the name and
2901 `\0' for the sake of matching performance. */
2902 int datasize = c1 + 1;
2910 FREE_STACK_RETURN (REG_ECOLLATE);
2915 const int32_t *table;
2916 const int32_t *weights;
2917 const int32_t *extra;
2918 const int32_t *indirect;
2921 /* This #include defines a local function! */
2922 # include <locale/weightwc.h>
2926 /* We push the index for equivalence class. */
2929 table = (const int32_t *)
2930 _NL_CURRENT (LC_COLLATE,
2931 _NL_COLLATE_TABLEWC);
2932 weights = (const int32_t *)
2933 _NL_CURRENT (LC_COLLATE,
2934 _NL_COLLATE_WEIGHTWC);
2935 extra = (const int32_t *)
2936 _NL_CURRENT (LC_COLLATE,
2937 _NL_COLLATE_EXTRAWC);
2938 indirect = (const int32_t *)
2939 _NL_CURRENT (LC_COLLATE,
2940 _NL_COLLATE_INDIRECTWC);
2942 idx = findidx ((const wint_t**)&cp);
2943 if (idx == 0 || cp < (wint_t*) str + c1)
2944 /* This is no valid character. */
2945 FREE_STACK_RETURN (REG_ECOLLATE);
2947 str[0] = (wchar_t)idx;
2949 else /* delim == '.' */
2951 /* We push collation sequence value
2952 for collating symbol. */
2954 const int32_t *symb_table;
2955 const unsigned char *extra;
2962 /* We have to convert the name to a single-byte
2963 string. This is possible since the names
2964 consist of ASCII characters and the internal
2965 representation is UCS4. */
2966 for (i = 0; i < c1; ++i)
2967 char_str[i] = str[i];
2970 _NL_CURRENT_WORD (LC_COLLATE,
2971 _NL_COLLATE_SYMB_HASH_SIZEMB);
2972 symb_table = (const int32_t *)
2973 _NL_CURRENT (LC_COLLATE,
2974 _NL_COLLATE_SYMB_TABLEMB);
2975 extra = (const unsigned char *)
2976 _NL_CURRENT (LC_COLLATE,
2977 _NL_COLLATE_SYMB_EXTRAMB);
2979 /* Locate the character in the hashing table. */
2980 hash = elem_hash (char_str, c1);
2983 elem = hash % table_size;
2984 second = hash % (table_size - 2);
2985 while (symb_table[2 * elem] != 0)
2987 /* First compare the hashing value. */
2988 if (symb_table[2 * elem] == hash
2989 && c1 == extra[symb_table[2 * elem + 1]]
2990 && memcmp (char_str,
2991 &extra[symb_table[2 * elem + 1]
2994 /* Yep, this is the entry. */
2995 idx = symb_table[2 * elem + 1];
2996 idx += 1 + extra[idx];
3004 if (symb_table[2 * elem] != 0)
3006 /* Compute the index of the byte sequence
3008 idx += 1 + extra[idx];
3009 /* Adjust for the alignment. */
3010 idx = (idx + 3) & ~3;
3012 str[0] = (wchar_t) idx + 4;
3014 else if (symb_table[2 * elem] == 0 && c1 == 1)
3016 /* No valid character. Match it as a
3017 single byte character. */
3018 had_char_class = false;
3020 /* Update the length of characters */
3022 range_start = str[0];
3024 /* Throw away the ] at the end of the
3025 collating symbol. */
3027 /* exit from the switch block. */
3031 FREE_STACK_RETURN (REG_ECOLLATE);
3036 /* Throw away the ] at the end of the equivalence
3037 class (or collating symbol). */
3040 /* Allocate the space for the equivalence class
3041 (or collating symbol) (and '\0' if needed). */
3042 GET_BUFFER_SPACE(datasize);
3043 /* Update the pointer to indicate end of buffer. */
3047 { /* equivalence class */
3048 /* Calculate the offset of char_ranges,
3049 which is next to equivalence_classes. */
3050 offset = laststart[1] + laststart[2]
3053 insert_space(datasize, laststart + offset, b - 1);
3055 /* Write the equivalence_class and \0. */
3056 for (i = 0 ; i < datasize ; i++)
3057 laststart[offset + i] = str[i];
3059 /* Update the length of equivalence_classes. */
3060 laststart[3] += datasize;
3061 had_char_class = true;
3063 else /* delim == '.' */
3064 { /* collating symbol */
3065 /* Calculate the offset of the equivalence_classes,
3066 which is next to collating_symbols. */
3067 offset = laststart[1] + laststart[2] + 6;
3068 /* Insert space and write the collationg_symbol
3070 insert_space(datasize, laststart + offset, b-1);
3071 for (i = 0 ; i < datasize ; i++)
3072 laststart[offset + i] = str[i];
3074 /* In re_match_2_internal if range_start < -1, we
3075 assume -range_start is the offset of the
3076 collating symbol which is specified as
3077 the character of the range start. So we assign
3078 -(laststart[1] + laststart[2] + 6) to
3080 range_start = -(laststart[1] + laststart[2] + 6);
3081 /* Update the length of collating_symbol. */
3082 laststart[2] += datasize;
3083 had_char_class = false;
3093 laststart[5] += 2; /* Update the length of characters */
3094 range_start = delim;
3095 had_char_class = false;
3100 had_char_class = false;
3102 laststart[5]++; /* Update the length of characters */
3108 /* Ensure that we have enough space to push a charset: the
3109 opcode, the length count, and the bitset; 34 bytes in all. */
3110 GET_BUFFER_SPACE (34);
3114 /* We test `*p == '^' twice, instead of using an if
3115 statement, so we only need one BUF_PUSH. */
3116 BUF_PUSH (*p == '^' ? charset_not : charset);
3120 /* Remember the first position in the bracket expression. */
3123 /* Push the number of bytes in the bitmap. */
3124 BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
3126 /* Clear the whole map. */
3127 bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
3129 /* charset_not matches newline according to a syntax bit. */
3130 if ((re_opcode_t) b[-2] == charset_not
3131 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
3132 SET_LIST_BIT ('\n');
3134 /* Read in characters and ranges, setting map bits. */
3137 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3141 /* \ might escape characters inside [...] and [^...]. */
3142 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
3144 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
3152 /* Could be the end of the bracket expression. If it's
3153 not (i.e., when the bracket expression is `[]' so
3154 far), the ']' character bit gets set way below. */
3155 if (c == ']' && p != p1 + 1)
3158 /* Look ahead to see if it's a range when the last thing
3159 was a character class. */
3160 if (had_char_class && c == '-' && *p != ']')
3161 FREE_STACK_RETURN (REG_ERANGE);
3163 /* Look ahead to see if it's a range when the last thing
3164 was a character: if this is a hyphen not at the
3165 beginning or the end of a list, then it's the range
3168 && !(p - 2 >= pattern && p[-2] == '[')
3169 && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^')
3173 = byte_compile_range (range_start, &p, pend, translate,
3175 if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
3176 range_start = 0xffffffff;
3179 else if (p[0] == '-' && p[1] != ']')
3180 { /* This handles ranges made up of characters only. */
3183 /* Move past the `-'. */
3186 ret = byte_compile_range (c, &p, pend, translate, syntax, b);
3187 if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
3188 range_start = 0xffffffff;
3191 /* See if we're at the beginning of a possible character
3194 else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
3195 { /* Leave room for the null. */
3196 char str[CHAR_CLASS_MAX_LENGTH + 1];
3201 /* If pattern is `[[:'. */
3202 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3207 if ((c == ':' && *p == ']') || p == pend)
3209 if (c1 < CHAR_CLASS_MAX_LENGTH)
3212 /* This is in any case an invalid class name. */
3217 /* If isn't a word bracketed by `[:' and `:]':
3218 undo the ending character, the letters, and leave
3219 the leading `:' and `[' (but set bits for them). */
3220 if (c == ':' && *p == ']')
3222 # if defined _LIBC || WIDE_CHAR_SUPPORT
3223 boolean is_lower = STREQ (str, "lower");
3224 boolean is_upper = STREQ (str, "upper");
3228 wt = IS_CHAR_CLASS (str);
3230 FREE_STACK_RETURN (REG_ECTYPE);
3232 /* Throw away the ] at the end of the character
3236 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3238 for (ch = 0; ch < 1 << BYTEWIDTH; ++ch)
3241 if (__iswctype (__btowc (ch), wt))
3244 if (iswctype (btowc (ch), wt))
3248 if (translate && (is_upper || is_lower)
3249 && (ISUPPER (ch) || ISLOWER (ch)))
3253 had_char_class = true;
3256 boolean is_alnum = STREQ (str, "alnum");
3257 boolean is_alpha = STREQ (str, "alpha");
3258 boolean is_blank = STREQ (str, "blank");
3259 boolean is_cntrl = STREQ (str, "cntrl");
3260 boolean is_digit = STREQ (str, "digit");
3261 boolean is_graph = STREQ (str, "graph");
3262 boolean is_lower = STREQ (str, "lower");
3263 boolean is_print = STREQ (str, "print");
3264 boolean is_punct = STREQ (str, "punct");
3265 boolean is_space = STREQ (str, "space");
3266 boolean is_upper = STREQ (str, "upper");
3267 boolean is_xdigit = STREQ (str, "xdigit");
3269 if (!IS_CHAR_CLASS (str))
3270 FREE_STACK_RETURN (REG_ECTYPE);
3272 /* Throw away the ] at the end of the character
3276 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3278 for (ch = 0; ch < 1 << BYTEWIDTH; ch++)
3280 /* This was split into 3 if's to
3281 avoid an arbitrary limit in some compiler. */
3282 if ( (is_alnum && ISALNUM (ch))
3283 || (is_alpha && ISALPHA (ch))
3284 || (is_blank && ISBLANK (ch))
3285 || (is_cntrl && ISCNTRL (ch)))
3287 if ( (is_digit && ISDIGIT (ch))
3288 || (is_graph && ISGRAPH (ch))
3289 || (is_lower && ISLOWER (ch))
3290 || (is_print && ISPRINT (ch)))
3292 if ( (is_punct && ISPUNCT (ch))
3293 || (is_space && ISSPACE (ch))
3294 || (is_upper && ISUPPER (ch))
3295 || (is_xdigit && ISXDIGIT (ch)))
3297 if ( translate && (is_upper || is_lower)
3298 && (ISUPPER (ch) || ISLOWER (ch)))
3301 had_char_class = true;
3302 # endif /* libc || wctype.h */
3312 had_char_class = false;
3315 else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == '=')
3317 unsigned char str[MB_LEN_MAX + 1];
3320 _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
3326 /* If pattern is `[[='. */
3327 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3332 if ((c == '=' && *p == ']') || p == pend)
3334 if (c1 < MB_LEN_MAX)
3337 /* This is in any case an invalid class name. */
3342 if (c == '=' && *p == ']' && str[0] != '\0')
3344 /* If we have no collation data we use the default
3345 collation in which each character is in a class
3346 by itself. It also means that ASCII is the
3347 character set and therefore we cannot have character
3348 with more than one byte in the multibyte
3355 FREE_STACK_RETURN (REG_ECOLLATE);
3357 /* Throw away the ] at the end of the equivalence
3361 /* Set the bit for the character. */
3362 SET_LIST_BIT (str[0]);
3367 /* Try to match the byte sequence in `str' against
3368 those known to the collate implementation.
3369 First find out whether the bytes in `str' are
3370 actually from exactly one character. */
3371 const int32_t *table;
3372 const unsigned char *weights;
3373 const unsigned char *extra;
3374 const int32_t *indirect;
3376 const unsigned char *cp = str;
3379 /* This #include defines a local function! */
3380 # include <locale/weight.h>
3382 table = (const int32_t *)
3383 _NL_CURRENT (LC_COLLATE, _NL_COLLATE_TABLEMB);
3384 weights = (const unsigned char *)
3385 _NL_CURRENT (LC_COLLATE, _NL_COLLATE_WEIGHTMB);
3386 extra = (const unsigned char *)
3387 _NL_CURRENT (LC_COLLATE, _NL_COLLATE_EXTRAMB);
3388 indirect = (const int32_t *)
3389 _NL_CURRENT (LC_COLLATE, _NL_COLLATE_INDIRECTMB);
3391 idx = findidx (&cp);
3392 if (idx == 0 || cp < str + c1)
3393 /* This is no valid character. */
3394 FREE_STACK_RETURN (REG_ECOLLATE);
3396 /* Throw away the ] at the end of the equivalence
3400 /* Now we have to go through the whole table
3401 and find all characters which have the same
3404 XXX Note that this is not entirely correct.
3405 we would have to match multibyte sequences
3406 but this is not possible with the current
3408 for (ch = 1; ch < 256; ++ch)
3409 /* XXX This test would have to be changed if we
3410 would allow matching multibyte sequences. */
3413 int32_t idx2 = table[ch];
3414 size_t len = weights[idx2];
3416 /* Test whether the lenghts match. */
3417 if (weights[idx] == len)
3419 /* They do. New compare the bytes of
3424 && (weights[idx + 1 + cnt]
3425 == weights[idx2 + 1 + cnt]))
3429 /* They match. Mark the character as
3436 had_char_class = true;
3446 had_char_class = false;
3449 else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == '.')
3451 unsigned char str[128]; /* Should be large enough. */
3454 _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
3460 /* If pattern is `[[.'. */
3461 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3466 if ((c == '.' && *p == ']') || p == pend)
3468 if (c1 < sizeof (str))
3471 /* This is in any case an invalid class name. */
3476 if (c == '.' && *p == ']' && str[0] != '\0')
3478 /* If we have no collation data we use the default
3479 collation in which each character is the name
3480 for its own class which contains only the one
3481 character. It also means that ASCII is the
3482 character set and therefore we cannot have character
3483 with more than one byte in the multibyte
3490 FREE_STACK_RETURN (REG_ECOLLATE);
3492 /* Throw away the ] at the end of the equivalence
3496 /* Set the bit for the character. */
3497 SET_LIST_BIT (str[0]);
3498 range_start = ((const unsigned char *) str)[0];
3503 /* Try to match the byte sequence in `str' against
3504 those known to the collate implementation.
3505 First find out whether the bytes in `str' are
3506 actually from exactly one character. */
3508 const int32_t *symb_table;
3509 const unsigned char *extra;
3516 _NL_CURRENT_WORD (LC_COLLATE,
3517 _NL_COLLATE_SYMB_HASH_SIZEMB);
3518 symb_table = (const int32_t *)
3519 _NL_CURRENT (LC_COLLATE,
3520 _NL_COLLATE_SYMB_TABLEMB);
3521 extra = (const unsigned char *)
3522 _NL_CURRENT (LC_COLLATE,
3523 _NL_COLLATE_SYMB_EXTRAMB);
3525 /* Locate the character in the hashing table. */
3526 hash = elem_hash (str, c1);
3529 elem = hash % table_size;
3530 second = hash % (table_size - 2);
3531 while (symb_table[2 * elem] != 0)
3533 /* First compare the hashing value. */
3534 if (symb_table[2 * elem] == hash
3535 && c1 == extra[symb_table[2 * elem + 1]]
3537 &extra[symb_table[2 * elem + 1]
3541 /* Yep, this is the entry. */
3542 idx = symb_table[2 * elem + 1];
3543 idx += 1 + extra[idx];
3551 if (symb_table[2 * elem] == 0)
3552 /* This is no valid character. */
3553 FREE_STACK_RETURN (REG_ECOLLATE);
3555 /* Throw away the ] at the end of the equivalence
3559 /* Now add the multibyte character(s) we found
3562 XXX Note that this is not entirely correct.
3563 we would have to match multibyte sequences
3564 but this is not possible with the current
3565 implementation. Also, we have to match
3566 collating symbols, which expand to more than
3567 one file, as a whole and not allow the
3568 individual bytes. */
3571 range_start = extra[idx];
3574 SET_LIST_BIT (extra[idx]);
3579 had_char_class = false;
3589 had_char_class = false;
3594 had_char_class = false;
3600 /* Discard any (non)matching list bytes that are all 0 at the
3601 end of the map. Decrease the map-length byte too. */
3602 while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
3611 if (syntax & RE_NO_BK_PARENS)
3618 if (syntax & RE_NO_BK_PARENS)
3625 if (syntax & RE_NEWLINE_ALT)
3632 if (syntax & RE_NO_BK_VBAR)
3639 if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
3640 goto handle_interval;
3646 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
3648 /* Do not translate the character after the \, so that we can
3649 distinguish, e.g., \B from \b, even if we normally would
3650 translate, e.g., B to b. */
3656 if (syntax & RE_NO_BK_PARENS)
3657 goto normal_backslash;
3663 if (COMPILE_STACK_FULL)
3665 RETALLOC (compile_stack.stack, compile_stack.size << 1,
3666 compile_stack_elt_t);
3667 if (compile_stack.stack == NULL) return REG_ESPACE;
3669 compile_stack.size <<= 1;
3672 /* These are the values to restore when we hit end of this
3673 group. They are all relative offsets, so that if the
3674 whole pattern moves because of realloc, they will still
3676 COMPILE_STACK_TOP.begalt_offset = begalt - COMPILED_BUFFER_VAR;
3677 COMPILE_STACK_TOP.fixup_alt_jump
3678 = fixup_alt_jump ? fixup_alt_jump - COMPILED_BUFFER_VAR + 1 : 0;
3679 COMPILE_STACK_TOP.laststart_offset = b - COMPILED_BUFFER_VAR;
3680 COMPILE_STACK_TOP.regnum = regnum;
3682 /* We will eventually replace the 0 with the number of
3683 groups inner to this one. But do not push a
3684 start_memory for groups beyond the last one we can
3685 represent in the compiled pattern. */
3686 if (regnum <= MAX_REGNUM)
3688 COMPILE_STACK_TOP.inner_group_offset = b
3689 - COMPILED_BUFFER_VAR + 2;
3690 BUF_PUSH_3 (start_memory, regnum, 0);
3693 compile_stack.avail++;
3698 /* If we've reached MAX_REGNUM groups, then this open
3699 won't actually generate any code, so we'll have to
3700 clear pending_exact explicitly. */
3706 if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
3708 if (COMPILE_STACK_EMPTY)
3710 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
3711 goto normal_backslash;
3713 FREE_STACK_RETURN (REG_ERPAREN);
3718 { /* Push a dummy failure point at the end of the
3719 alternative for a possible future
3720 `pop_failure_jump' to pop. See comments at
3721 `push_dummy_failure' in `re_match_2'. */
3722 BUF_PUSH (push_dummy_failure);
3724 /* We allocated space for this jump when we assigned
3725 to `fixup_alt_jump', in the `handle_alt' case below. */
3726 STORE_JUMP (jump_past_alt, fixup_alt_jump, b - 1);
3729 /* See similar code for backslashed left paren above. */
3730 if (COMPILE_STACK_EMPTY)
3732 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
3735 FREE_STACK_RETURN (REG_ERPAREN);
3738 /* Since we just checked for an empty stack above, this
3739 ``can't happen''. */
3740 assert (compile_stack.avail != 0);
3742 /* We don't just want to restore into `regnum', because
3743 later groups should continue to be numbered higher,
3744 as in `(ab)c(de)' -- the second group is #2. */
3745 regnum_t this_group_regnum;
3747 compile_stack.avail--;
3748 begalt = COMPILED_BUFFER_VAR + COMPILE_STACK_TOP.begalt_offset;
3750 = COMPILE_STACK_TOP.fixup_alt_jump
3751 ? COMPILED_BUFFER_VAR + COMPILE_STACK_TOP.fixup_alt_jump - 1
3753 laststart = COMPILED_BUFFER_VAR + COMPILE_STACK_TOP.laststart_offset;
3754 this_group_regnum = COMPILE_STACK_TOP.regnum;
3755 /* If we've reached MAX_REGNUM groups, then this open
3756 won't actually generate any code, so we'll have to
3757 clear pending_exact explicitly. */
3760 /* We're at the end of the group, so now we know how many
3761 groups were inside this one. */
3762 if (this_group_regnum <= MAX_REGNUM)
3764 UCHAR_T *inner_group_loc
3765 = COMPILED_BUFFER_VAR + COMPILE_STACK_TOP.inner_group_offset;
3767 *inner_group_loc = regnum - this_group_regnum;
3768 BUF_PUSH_3 (stop_memory, this_group_regnum,
3769 regnum - this_group_regnum);
3775 case '|': /* `\|'. */
3776 if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
3777 goto normal_backslash;
3779 if (syntax & RE_LIMITED_OPS)
3782 /* Insert before the previous alternative a jump which
3783 jumps to this alternative if the former fails. */
3784 GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
3785 INSERT_JUMP (on_failure_jump, begalt,
3786 b + 2 + 2 * OFFSET_ADDRESS_SIZE);
3788 b += 1 + OFFSET_ADDRESS_SIZE;
3790 /* The alternative before this one has a jump after it
3791 which gets executed if it gets matched. Adjust that
3792 jump so it will jump to this alternative's analogous
3793 jump (put in below, which in turn will jump to the next
3794 (if any) alternative's such jump, etc.). The last such
3795 jump jumps to the correct final destination. A picture:
3801 If we are at `b', then fixup_alt_jump right now points to a
3802 three-byte space after `a'. We'll put in the jump, set
3803 fixup_alt_jump to right after `b', and leave behind three
3804 bytes which we'll fill in when we get to after `c'. */
3807 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
3809 /* Mark and leave space for a jump after this alternative,
3810 to be filled in later either by next alternative or
3811 when know we're at the end of a series of alternatives. */
3813 GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
3814 b += 1 + OFFSET_ADDRESS_SIZE;
3822 /* If \{ is a literal. */
3823 if (!(syntax & RE_INTERVALS)
3824 /* If we're at `\{' and it's not the open-interval
3826 || (syntax & RE_NO_BK_BRACES))
3827 goto normal_backslash;
3831 /* If got here, then the syntax allows intervals. */
3833 /* At least (most) this many matches must be made. */
3834 int lower_bound = -1, upper_bound = -1;
3836 /* Place in the uncompiled pattern (i.e., just after
3837 the '{') to go back to if the interval is invalid. */
3838 const CHAR_T *beg_interval = p;
3841 goto invalid_interval;
3843 GET_UNSIGNED_NUMBER (lower_bound);
3847 GET_UNSIGNED_NUMBER (upper_bound);
3848 if (upper_bound < 0)
3849 upper_bound = RE_DUP_MAX;
3852 /* Interval such as `{1}' => match exactly once. */
3853 upper_bound = lower_bound;
3855 if (! (0 <= lower_bound && lower_bound <= upper_bound))
3856 goto invalid_interval;
3858 if (!(syntax & RE_NO_BK_BRACES))
3860 if (c != '\\' || p == pend)
3861 goto invalid_interval;
3866 goto invalid_interval;
3868 /* If it's invalid to have no preceding re. */
3871 if (syntax & RE_CONTEXT_INVALID_OPS
3872 && !(syntax & RE_INVALID_INTERVAL_ORD))
3873 FREE_STACK_RETURN (REG_BADRPT);
3874 else if (syntax & RE_CONTEXT_INDEP_OPS)
3877 goto unfetch_interval;
3880 /* We just parsed a valid interval. */
3882 if (RE_DUP_MAX < upper_bound)
3883 FREE_STACK_RETURN (REG_BADBR);
3885 /* If the upper bound is zero, don't want to succeed at
3886 all; jump from `laststart' to `b + 3', which will be
3887 the end of the buffer after we insert the jump. */
3888 /* ifdef WCHAR, 'b + 1 + OFFSET_ADDRESS_SIZE'
3889 instead of 'b + 3'. */
3890 if (upper_bound == 0)
3892 GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
3893 INSERT_JUMP (jump, laststart, b + 1
3894 + OFFSET_ADDRESS_SIZE);
3895 b += 1 + OFFSET_ADDRESS_SIZE;
3898 /* Otherwise, we have a nontrivial interval. When
3899 we're all done, the pattern will look like:
3900 set_number_at <jump count> <upper bound>
3901 set_number_at <succeed_n count> <lower bound>
3902 succeed_n <after jump addr> <succeed_n count>
3904 jump_n <succeed_n addr> <jump count>
3905 (The upper bound and `jump_n' are omitted if
3906 `upper_bound' is 1, though.) */
3908 { /* If the upper bound is > 1, we need to insert
3909 more at the end of the loop. */
3910 unsigned nbytes = 2 + 4 * OFFSET_ADDRESS_SIZE +
3911 (upper_bound > 1) * (2 + 4 * OFFSET_ADDRESS_SIZE);
3913 GET_BUFFER_SPACE (nbytes);
3915 /* Initialize lower bound of the `succeed_n', even
3916 though it will be set during matching by its
3917 attendant `set_number_at' (inserted next),
3918 because `re_compile_fastmap' needs to know.
3919 Jump to the `jump_n' we might insert below. */
3920 INSERT_JUMP2 (succeed_n, laststart,
3921 b + 1 + 2 * OFFSET_ADDRESS_SIZE
3922 + (upper_bound > 1) * (1 + 2 * OFFSET_ADDRESS_SIZE)
3924 b += 1 + 2 * OFFSET_ADDRESS_SIZE;
3926 /* Code to initialize the lower bound. Insert
3927 before the `succeed_n'. The `5' is the last two
3928 bytes of this `set_number_at', plus 3 bytes of
3929 the following `succeed_n'. */
3930 /* ifdef WCHAR, The '1+2*OFFSET_ADDRESS_SIZE'
3931 is the 'set_number_at', plus '1+OFFSET_ADDRESS_SIZE'
3932 of the following `succeed_n'. */
3933 PREFIX(insert_op2) (set_number_at, laststart, 1
3934 + 2 * OFFSET_ADDRESS_SIZE, lower_bound, b);
3935 b += 1 + 2 * OFFSET_ADDRESS_SIZE;
3937 if (upper_bound > 1)
3938 { /* More than one repetition is allowed, so
3939 append a backward jump to the `succeed_n'
3940 that starts this interval.
3942 When we've reached this during matching,
3943 we'll have matched the interval once, so
3944 jump back only `upper_bound - 1' times. */
3945 STORE_JUMP2 (jump_n, b, laststart
3946 + 2 * OFFSET_ADDRESS_SIZE + 1,
3948 b += 1 + 2 * OFFSET_ADDRESS_SIZE;
3950 /* The location we want to set is the second
3951 parameter of the `jump_n'; that is `b-2' as
3952 an absolute address. `laststart' will be
3953 the `set_number_at' we're about to insert;
3954 `laststart+3' the number to set, the source
3955 for the relative address. But we are
3956 inserting into the middle of the pattern --
3957 so everything is getting moved up by 5.
3958 Conclusion: (b - 2) - (laststart + 3) + 5,
3959 i.e., b - laststart.
3961 We insert this at the beginning of the loop
3962 so that if we fail during matching, we'll
3963 reinitialize the bounds. */
3964 PREFIX(insert_op2) (set_number_at, laststart,
3966 upper_bound - 1, b);
3967 b += 1 + 2 * OFFSET_ADDRESS_SIZE;
3974 if (!(syntax & RE_INVALID_INTERVAL_ORD))
3975 FREE_STACK_RETURN (p == pend ? REG_EBRACE : REG_BADBR);
3977 /* Match the characters as literals. */
3980 if (syntax & RE_NO_BK_BRACES)
3983 goto normal_backslash;
3987 /* There is no way to specify the before_dot and after_dot
3988 operators. rms says this is ok. --karl */
3996 BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
4002 BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
4008 if (syntax & RE_NO_GNU_OPS)
4011 BUF_PUSH (wordchar);
4016 if (syntax & RE_NO_GNU_OPS)
4019 BUF_PUSH (notwordchar);
4024 if (syntax & RE_NO_GNU_OPS)
4030 if (syntax & RE_NO_GNU_OPS)
4036 if (syntax & RE_NO_GNU_OPS)
4038 BUF_PUSH (wordbound);
4042 if (syntax & RE_NO_GNU_OPS)
4044 BUF_PUSH (notwordbound);
4048 if (syntax & RE_NO_GNU_OPS)
4054 if (syntax & RE_NO_GNU_OPS)
4059 case '1': case '2': case '3': case '4': case '5':
4060 case '6': case '7': case '8': case '9':
4061 if (syntax & RE_NO_BK_REFS)
4067 FREE_STACK_RETURN (REG_ESUBREG);
4069 /* Can't back reference to a subexpression if inside of it. */
4070 if (group_in_compile_stack (compile_stack, (regnum_t) c1))
4074 BUF_PUSH_2 (duplicate, c1);
4080 if (syntax & RE_BK_PLUS_QM)
4083 goto normal_backslash;
4087 /* You might think it would be useful for \ to mean
4088 not to translate; but if we don't translate it
4089 it will never match anything. */
4097 /* Expects the character in `c'. */
4099 /* If no exactn currently being built. */
4102 /* If last exactn handle binary(or character) and
4103 new exactn handle character(or binary). */
4104 || is_exactn_bin != is_binary[p - 1 - pattern]
4107 /* If last exactn not at current position. */
4108 || pending_exact + *pending_exact + 1 != b
4110 /* We have only one byte following the exactn for the count. */
4111 || *pending_exact == (1 << BYTEWIDTH) - 1
4113 /* If followed by a repetition operator. */
4114 || *p == '*' || *p == '^'
4115 || ((syntax & RE_BK_PLUS_QM)
4116 ? *p == '\\' && (p[1] == '+' || p[1] == '?')
4117 : (*p == '+' || *p == '?'))
4118 || ((syntax & RE_INTERVALS)
4119 && ((syntax & RE_NO_BK_BRACES)
4121 : (p[0] == '\\' && p[1] == '{'))))
4123 /* Start building a new exactn. */
4128 /* Is this exactn binary data or character? */
4129 is_exactn_bin = is_binary[p - 1 - pattern];
4131 BUF_PUSH_2 (exactn_bin, 0);
4133 BUF_PUSH_2 (exactn, 0);
4135 BUF_PUSH_2 (exactn, 0);
4137 pending_exact = b - 1;
4144 } /* while p != pend */
4147 /* Through the pattern now. */
4150 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
4152 if (!COMPILE_STACK_EMPTY)
4153 FREE_STACK_RETURN (REG_EPAREN);
4155 /* If we don't want backtracking, force success
4156 the first time we reach the end of the compiled pattern. */
4157 if (syntax & RE_NO_POSIX_BACKTRACKING)
4165 free (compile_stack.stack);
4167 /* We have succeeded; set the length of the buffer. */
4169 bufp->used = (uintptr_t) b - (uintptr_t) COMPILED_BUFFER_VAR;
4171 bufp->used = b - bufp->buffer;
4177 DEBUG_PRINT1 ("\nCompiled pattern: \n");
4178 PREFIX(print_compiled_pattern) (bufp);
4182 #ifndef MATCH_MAY_ALLOCATE
4183 /* Initialize the failure stack to the largest possible stack. This
4184 isn't necessary unless we're trying to avoid calling alloca in
4185 the search and match routines. */
4187 int num_regs = bufp->re_nsub + 1;
4189 /* Since DOUBLE_FAIL_STACK refuses to double only if the current size
4190 is strictly greater than re_max_failures, the largest possible stack
4191 is 2 * re_max_failures failure points. */
4192 if (fail_stack.size < (2 * re_max_failures * MAX_FAILURE_ITEMS))
4194 fail_stack.size = (2 * re_max_failures * MAX_FAILURE_ITEMS);
4197 if (! fail_stack.stack)
4199 = (PREFIX(fail_stack_elt_t) *) xmalloc (fail_stack.size
4200 * sizeof (PREFIX(fail_stack_elt_t)));
4203 = (PREFIX(fail_stack_elt_t) *) xrealloc (fail_stack.stack,
4205 * sizeof (PREFIX(fail_stack_elt_t))));
4206 # else /* not emacs */
4207 if (! fail_stack.stack)
4209 = (PREFIX(fail_stack_elt_t) *) malloc (fail_stack.size
4210 * sizeof (PREFIX(fail_stack_elt_t)));
4213 = (PREFIX(fail_stack_elt_t) *) realloc (fail_stack.stack,
4215 * sizeof (PREFIX(fail_stack_elt_t))));
4216 # endif /* not emacs */
4219 PREFIX(regex_grow_registers) (num_regs);
4221 #endif /* not MATCH_MAY_ALLOCATE */
4224 } /* regex_compile */
4226 /* Subroutines for `regex_compile'. */
4228 /* Store OP at LOC followed by two-byte integer parameter ARG. */
4229 /* ifdef WCHAR, integer parameter is 1 wchar_t. */
4232 PREFIX(store_op1) (re_opcode_t op, UCHAR_T *loc, int arg)
4234 *loc = (UCHAR_T) op;
4235 STORE_NUMBER (loc + 1, arg);
4239 /* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
4240 /* ifdef WCHAR, integer parameter is 1 wchar_t. */
4243 PREFIX(store_op2) (re_opcode_t op, UCHAR_T *loc, int arg1, int arg2)
4245 *loc = (UCHAR_T) op;
4246 STORE_NUMBER (loc + 1, arg1);
4247 STORE_NUMBER (loc + 1 + OFFSET_ADDRESS_SIZE, arg2);
4251 /* Copy the bytes from LOC to END to open up three bytes of space at LOC
4252 for OP followed by two-byte integer parameter ARG. */
4253 /* ifdef WCHAR, integer parameter is 1 wchar_t. */
4256 PREFIX(insert_op1) (re_opcode_t op, UCHAR_T *loc, int arg, UCHAR_T *end)
4258 register UCHAR_T *pfrom = end;
4259 register UCHAR_T *pto = end + 1 + OFFSET_ADDRESS_SIZE;
4261 while (pfrom != loc)
4264 PREFIX(store_op1) (op, loc, arg);
4268 /* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
4269 /* ifdef WCHAR, integer parameter is 1 wchar_t. */
4272 PREFIX(insert_op2) (re_opcode_t op, UCHAR_T *loc, int arg1,
4273 int arg2, UCHAR_T *end)
4275 register UCHAR_T *pfrom = end;
4276 register UCHAR_T *pto = end + 1 + 2 * OFFSET_ADDRESS_SIZE;
4278 while (pfrom != loc)
4281 PREFIX(store_op2) (op, loc, arg1, arg2);
4285 /* P points to just after a ^ in PATTERN. Return true if that ^ comes
4286 after an alternative or a begin-subexpression. We assume there is at
4287 least one character before the ^. */
4290 PREFIX(at_begline_loc_p) (const CHAR_T *pattern, const CHAR_T *p,
4291 reg_syntax_t syntax)
4293 const CHAR_T *prev = p - 2;
4294 boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
4297 /* After a subexpression? */
4298 (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
4299 /* After an alternative? */
4300 || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash));
4304 /* The dual of at_begline_loc_p. This one is for $. We assume there is
4305 at least one character after the $, i.e., `P < PEND'. */
4308 PREFIX(at_endline_loc_p) (const CHAR_T *p, const CHAR_T *pend,
4309 reg_syntax_t syntax)
4311 const CHAR_T *next = p;
4312 boolean next_backslash = *next == '\\';
4313 const CHAR_T *next_next = p + 1 < pend ? p + 1 : 0;
4316 /* Before a subexpression? */
4317 (syntax & RE_NO_BK_PARENS ? *next == ')'
4318 : next_backslash && next_next && *next_next == ')')
4319 /* Before an alternative? */
4320 || (syntax & RE_NO_BK_VBAR ? *next == '|'
4321 : next_backslash && next_next && *next_next == '|');
4324 #else /* not INSIDE_RECURSION */
4326 /* Returns true if REGNUM is in one of COMPILE_STACK's elements and
4327 false if it's not. */
4330 group_in_compile_stack (compile_stack_type compile_stack, regnum_t regnum)
4334 for (this_element = compile_stack.avail - 1;
4337 if (compile_stack.stack[this_element].regnum == regnum)
4342 #endif /* not INSIDE_RECURSION */
4344 #ifdef INSIDE_RECURSION
4347 /* This insert space, which size is "num", into the pattern at "loc".
4348 "end" must point the end of the allocated buffer. */
4350 insert_space (int num, CHAR_T *loc, CHAR_T *end)
4352 register CHAR_T *pto = end;
4353 register CHAR_T *pfrom = end - num;
4355 while (pfrom >= loc)
4361 static reg_errcode_t
4362 wcs_compile_range (CHAR_T range_start_char, const CHAR_T **p_ptr,
4363 const CHAR_T *pend, RE_TRANSLATE_TYPE translate,
4364 reg_syntax_t syntax, CHAR_T *b, CHAR_T *char_set)
4366 const CHAR_T *p = *p_ptr;
4367 CHAR_T range_start, range_end;
4371 uint32_t start_val, end_val;
4377 nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
4380 const char *collseq = (const char *) _NL_CURRENT(LC_COLLATE,
4381 _NL_COLLATE_COLLSEQWC);
4382 const unsigned char *extra = (const unsigned char *)
4383 _NL_CURRENT (LC_COLLATE, _NL_COLLATE_SYMB_EXTRAMB);
4385 if (range_start_char < -1)
4387 /* range_start is a collating symbol. */
4389 /* Retreive the index and get collation sequence value. */
4390 wextra = (int32_t*)(extra + char_set[-range_start_char]);
4391 start_val = wextra[1 + *wextra];
4394 start_val = collseq_table_lookup(collseq, TRANSLATE(range_start_char));
4396 end_val = collseq_table_lookup (collseq, TRANSLATE (p[0]));
4398 /* Report an error if the range is empty and the syntax prohibits
4400 ret = ((syntax & RE_NO_EMPTY_RANGES)
4401 && (start_val > end_val))? REG_ERANGE : REG_NOERROR;
4403 /* Insert space to the end of the char_ranges. */
4404 insert_space(2, b - char_set[5] - 2, b - 1);
4405 *(b - char_set[5] - 2) = (wchar_t)start_val;
4406 *(b - char_set[5] - 1) = (wchar_t)end_val;
4407 char_set[4]++; /* ranges_index */
4412 range_start = (range_start_char >= 0)? TRANSLATE (range_start_char):
4414 range_end = TRANSLATE (p[0]);
4415 /* Report an error if the range is empty and the syntax prohibits
4417 ret = ((syntax & RE_NO_EMPTY_RANGES)
4418 && (range_start > range_end))? REG_ERANGE : REG_NOERROR;
4420 /* Insert space to the end of the char_ranges. */
4421 insert_space(2, b - char_set[5] - 2, b - 1);
4422 *(b - char_set[5] - 2) = range_start;
4423 *(b - char_set[5] - 1) = range_end;
4424 char_set[4]++; /* ranges_index */
4426 /* Have to increment the pointer into the pattern string, so the
4427 caller isn't still at the ending character. */
4433 /* Read the ending character of a range (in a bracket expression) from the
4434 uncompiled pattern *P_PTR (which ends at PEND). We assume the
4435 starting character is in `P[-2]'. (`P[-1]' is the character `-'.)
4436 Then we set the translation of all bits between the starting and
4437 ending characters (inclusive) in the compiled pattern B.
4439 Return an error code.
4441 We use these short variable names so we can use the same macros as
4442 `regex_compile' itself. */
4444 static reg_errcode_t
4445 byte_compile_range (unsigned int range_start_char, const char **p_ptr,
4446 const char *pend, RE_TRANSLATE_TYPE translate,
4447 reg_syntax_t syntax, unsigned char *b)
4450 const char *p = *p_ptr;
4453 const unsigned char *collseq;
4454 unsigned int start_colseq;
4455 unsigned int end_colseq;
4463 /* Have to increment the pointer into the pattern string, so the
4464 caller isn't still at the ending character. */
4467 /* Report an error if the range is empty and the syntax prohibits this. */
4468 ret = syntax & RE_NO_EMPTY_RANGES ? REG_ERANGE : REG_NOERROR;
4471 collseq = (const unsigned char *) _NL_CURRENT (LC_COLLATE,
4472 _NL_COLLATE_COLLSEQMB);
4474 start_colseq = collseq[(unsigned char) TRANSLATE (range_start_char)];
4475 end_colseq = collseq[(unsigned char) TRANSLATE (p[0])];
4476 for (this_char = 0; this_char <= (unsigned char) -1; ++this_char)
4478 unsigned int this_colseq = collseq[(unsigned char) TRANSLATE (this_char)];
4480 if (start_colseq <= this_colseq && this_colseq <= end_colseq)
4482 SET_LIST_BIT (TRANSLATE (this_char));
4487 /* Here we see why `this_char' has to be larger than an `unsigned
4488 char' -- we would otherwise go into an infinite loop, since all
4489 characters <= 0xff. */
4490 range_start_char = TRANSLATE (range_start_char);
4491 /* TRANSLATE(p[0]) is casted to char (not unsigned char) in TRANSLATE,
4492 and some compilers cast it to int implicitly, so following for_loop
4493 may fall to (almost) infinite loop.
4494 e.g. If translate[p[0]] = 0xff, end_char may equals to 0xffffffff.
4495 To avoid this, we cast p[0] to unsigned int and truncate it. */
4496 end_char = ((unsigned)TRANSLATE(p[0]) & ((1 << BYTEWIDTH) - 1));
4498 for (this_char = range_start_char; this_char <= end_char; ++this_char)
4500 SET_LIST_BIT (TRANSLATE (this_char));
4509 /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
4510 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
4511 characters can start a string that matches the pattern. This fastmap
4512 is used by re_search to skip quickly over impossible starting points.
4514 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
4515 area as BUFP->fastmap.
4517 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
4520 Returns 0 if we succeed, -2 if an internal error. */
4523 /* local function for re_compile_fastmap.
4524 truncate wchar_t character to char. */
4525 static unsigned char truncate_wchar (CHAR_T c);
4527 static unsigned char
4528 truncate_wchar (CHAR_T c)
4530 unsigned char buf[MB_CUR_MAX];
4533 memset (&state, '\0', sizeof (state));
4535 retval = __wcrtomb (buf, c, &state);
4537 retval = wcrtomb (buf, c, &state);
4539 return retval > 0 ? buf[0] : (unsigned char) c;
4544 PREFIX(re_compile_fastmap) (struct re_pattern_buffer *bufp)
4547 #ifdef MATCH_MAY_ALLOCATE
4548 PREFIX(fail_stack_type) fail_stack;
4550 #ifndef REGEX_MALLOC
4554 register char *fastmap = bufp->fastmap;
4557 /* We need to cast pattern to (wchar_t*), because we casted this compiled
4558 pattern to (char*) in regex_compile. */
4559 UCHAR_T *pattern = (UCHAR_T*)bufp->buffer;
4560 register UCHAR_T *pend = (UCHAR_T*) (bufp->buffer + bufp->used);
4562 UCHAR_T *pattern = bufp->buffer;
4563 register UCHAR_T *pend = pattern + bufp->used;
4565 UCHAR_T *p = pattern;
4568 /* This holds the pointer to the failure stack, when
4569 it is allocated relocatably. */
4570 fail_stack_elt_t *failure_stack_ptr;
4573 /* Assume that each path through the pattern can be null until
4574 proven otherwise. We set this false at the bottom of switch
4575 statement, to which we get only if a particular path doesn't
4576 match the empty string. */
4577 boolean path_can_be_null = true;
4579 /* We aren't doing a `succeed_n' to begin with. */
4580 boolean succeed_n_p = false;
4582 assert (fastmap != NULL && p != NULL);
4585 bzero (fastmap, 1 << BYTEWIDTH); /* Assume nothing's valid. */
4586 bufp->fastmap_accurate = 1; /* It will be when we're done. */
4587 bufp->can_be_null = 0;
4591 if (p == pend || *p == (UCHAR_T) succeed)
4593 /* We have reached the (effective) end of pattern. */
4594 if (!FAIL_STACK_EMPTY ())
4596 bufp->can_be_null |= path_can_be_null;
4598 /* Reset for next path. */
4599 path_can_be_null = true;
4601 p = fail_stack.stack[--fail_stack.avail].pointer;
4609 /* We should never be about to go beyond the end of the pattern. */
4612 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
4615 /* I guess the idea here is to simply not bother with a fastmap
4616 if a backreference is used, since it's too hard to figure out
4617 the fastmap for the corresponding group. Setting
4618 `can_be_null' stops `re_search_2' from using the fastmap, so
4619 that is all we do. */
4621 bufp->can_be_null = 1;
4625 /* Following are the cases which match a character. These end
4630 fastmap[truncate_wchar(p[1])] = 1;
4644 /* It is hard to distinguish fastmap from (multi byte) characters
4645 which depends on current locale. */
4650 bufp->can_be_null = 1;
4654 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
4655 if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))
4661 /* Chars beyond end of map must be allowed. */
4662 for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++)
4665 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
4666 if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))))
4672 for (j = 0; j < (1 << BYTEWIDTH); j++)
4673 if (SYNTAX (j) == Sword)
4679 for (j = 0; j < (1 << BYTEWIDTH); j++)
4680 if (SYNTAX (j) != Sword)
4687 int fastmap_newline = fastmap['\n'];
4689 /* `.' matches anything ... */
4690 for (j = 0; j < (1 << BYTEWIDTH); j++)
4693 /* ... except perhaps newline. */
4694 if (!(bufp->syntax & RE_DOT_NEWLINE))
4695 fastmap['\n'] = fastmap_newline;
4697 /* Return if we have already set `can_be_null'; if we have,
4698 then the fastmap is irrelevant. Something's wrong here. */
4699 else if (bufp->can_be_null)
4702 /* Otherwise, have to check alternative paths. */
4709 for (j = 0; j < (1 << BYTEWIDTH); j++)
4710 if (SYNTAX (j) == (enum syntaxcode) k)
4717 for (j = 0; j < (1 << BYTEWIDTH); j++)
4718 if (SYNTAX (j) != (enum syntaxcode) k)
4723 /* All cases after this match the empty string. These end with
4743 case push_dummy_failure:
4748 case pop_failure_jump:
4749 case maybe_pop_jump:
4752 case dummy_failure_jump:
4753 EXTRACT_NUMBER_AND_INCR (j, p);
4758 /* Jump backward implies we just went through the body of a
4759 loop and matched nothing. Opcode jumped to should be
4760 `on_failure_jump' or `succeed_n'. Just treat it like an
4761 ordinary jump. For a * loop, it has pushed its failure
4762 point already; if so, discard that as redundant. */
4763 if ((re_opcode_t) *p != on_failure_jump
4764 && (re_opcode_t) *p != succeed_n)
4768 EXTRACT_NUMBER_AND_INCR (j, p);
4771 /* If what's on the stack is where we are now, pop it. */
4772 if (!FAIL_STACK_EMPTY ()
4773 && fail_stack.stack[fail_stack.avail - 1].pointer == p)
4779 case on_failure_jump:
4780 case on_failure_keep_string_jump:
4781 handle_on_failure_jump:
4782 EXTRACT_NUMBER_AND_INCR (j, p);
4784 /* For some patterns, e.g., `(a?)?', `p+j' here points to the
4785 end of the pattern. We don't want to push such a point,
4786 since when we restore it above, entering the switch will
4787 increment `p' past the end of the pattern. We don't need
4788 to push such a point since we obviously won't find any more
4789 fastmap entries beyond `pend'. Such a pattern can match
4790 the null string, though. */
4793 if (!PUSH_PATTERN_OP (p + j, fail_stack))
4795 RESET_FAIL_STACK ();
4800 bufp->can_be_null = 1;
4804 EXTRACT_NUMBER_AND_INCR (k, p); /* Skip the n. */
4805 succeed_n_p = false;
4812 /* Get to the number of times to succeed. */
4813 p += OFFSET_ADDRESS_SIZE;
4815 /* Increment p past the n for when k != 0. */
4816 EXTRACT_NUMBER_AND_INCR (k, p);
4819 p -= 2 * OFFSET_ADDRESS_SIZE;
4820 succeed_n_p = true; /* Spaghetti code alert. */
4821 goto handle_on_failure_jump;
4827 p += 2 * OFFSET_ADDRESS_SIZE;
4838 abort (); /* We have listed all the cases. */
4841 /* Getting here means we have found the possible starting
4842 characters for one path of the pattern -- and that the empty
4843 string does not match. We need not follow this path further.
4844 Instead, look at the next alternative (remembered on the
4845 stack), or quit if no more. The test at the top of the loop
4846 does these things. */
4847 path_can_be_null = false;
4851 /* Set `can_be_null' for the last path (also the first path, if the
4852 pattern is empty). */
4853 bufp->can_be_null |= path_can_be_null;
4856 RESET_FAIL_STACK ();
4860 #else /* not INSIDE_RECURSION */
4863 re_compile_fastmap (struct re_pattern_buffer *bufp)
4866 if (MB_CUR_MAX != 1)
4867 return wcs_re_compile_fastmap(bufp);
4870 return byte_re_compile_fastmap(bufp);
4871 } /* re_compile_fastmap */
4873 weak_alias (__re_compile_fastmap, re_compile_fastmap)
4877 /* Set REGS to hold NUM_REGS registers, storing them in STARTS and
4878 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
4879 this memory for recording register information. STARTS and ENDS
4880 must be allocated using the malloc library routine, and must each
4881 be at least NUM_REGS * sizeof (regoff_t) bytes long.
4883 If NUM_REGS == 0, then subsequent matches should allocate their own
4886 Unless this function is called, the first search or match using
4887 PATTERN_BUFFER will allocate its own register data, without
4888 freeing the old data. */
4891 re_set_registers (struct re_pattern_buffer *bufp,
4892 struct re_registers *regs, unsigned num_regs,
4893 regoff_t *starts, regoff_t *ends)
4897 bufp->regs_allocated = REGS_REALLOCATE;
4898 regs->num_regs = num_regs;
4899 regs->start = starts;
4904 bufp->regs_allocated = REGS_UNALLOCATED;
4906 regs->start = regs->end = (regoff_t *) 0;
4910 weak_alias (__re_set_registers, re_set_registers)
4913 /* Searching routines. */
4915 /* Like re_search_2, below, but only one string is specified, and
4916 doesn't let you say where to stop matching. */
4919 re_search (struct re_pattern_buffer *bufp, const char *string, int size,
4920 int startpos, int range, struct re_registers *regs)
4922 return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
4926 weak_alias (__re_search, re_search)
4930 /* Using the compiled pattern in BUFP->buffer, first tries to match the
4931 virtual concatenation of STRING1 and STRING2, starting first at index
4932 STARTPOS, then at STARTPOS + 1, and so on.
4934 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
4936 RANGE is how far to scan while trying to match. RANGE = 0 means try
4937 only at STARTPOS; in general, the last start tried is STARTPOS +
4940 In REGS, return the indices of the virtual concatenation of STRING1
4941 and STRING2 that matched the entire BUFP->buffer and its contained
4944 Do not consider matching one past the index STOP in the virtual
4945 concatenation of STRING1 and STRING2.
4947 We return either the position in the strings at which the match was
4948 found, -1 if no match, or -2 if error (such as failure
4952 re_search_2 (struct re_pattern_buffer *bufp, const char *string1, int size1,
4953 const char *string2, int size2, int startpos, int range,
4954 struct re_registers *regs, int stop)
4957 if (MB_CUR_MAX != 1)
4958 return wcs_re_search_2 (bufp, string1, size1, string2, size2, startpos,
4962 return byte_re_search_2 (bufp, string1, size1, string2, size2, startpos,
4966 weak_alias (__re_search_2, re_search_2)
4969 #endif /* not INSIDE_RECURSION */
4971 #ifdef INSIDE_RECURSION
4973 #ifdef MATCH_MAY_ALLOCATE
4974 # define FREE_VAR(var) if (var) REGEX_FREE (var); var = NULL
4976 # define FREE_VAR(var) free (var); var = NULL
4980 # define MAX_ALLOCA_SIZE 2000
4982 # define FREE_WCS_BUFFERS() \
4984 if (size1 > MAX_ALLOCA_SIZE) \
4986 free (wcs_string1); \
4987 free (mbs_offset1); \
4991 FREE_VAR (wcs_string1); \
4992 FREE_VAR (mbs_offset1); \
4994 if (size2 > MAX_ALLOCA_SIZE) \
4996 free (wcs_string2); \
4997 free (mbs_offset2); \
5001 FREE_VAR (wcs_string2); \
5002 FREE_VAR (mbs_offset2); \
5010 PREFIX(re_search_2) (struct re_pattern_buffer *bufp, const char *string1,
5011 int size1, const char *string2, int size2,
5012 int startpos, int range,
5013 struct re_registers *regs, int stop)
5016 register char *fastmap = bufp->fastmap;
5017 register RE_TRANSLATE_TYPE translate = bufp->translate;
5018 int total_size = size1 + size2;
5019 int endpos = startpos + range;
5021 /* We need wchar_t* buffers correspond to cstring1, cstring2. */
5022 wchar_t *wcs_string1 = NULL, *wcs_string2 = NULL;
5023 /* We need the size of wchar_t buffers correspond to csize1, csize2. */
5024 int wcs_size1 = 0, wcs_size2 = 0;
5025 /* offset buffer for optimizatoin. See convert_mbs_to_wc. */
5026 int *mbs_offset1 = NULL, *mbs_offset2 = NULL;
5027 /* They hold whether each wchar_t is binary data or not. */
5028 char *is_binary = NULL;
5031 /* Check for out-of-range STARTPOS. */
5032 if (startpos < 0 || startpos > total_size)
5035 /* Fix up RANGE if it might eventually take us outside
5036 the virtual concatenation of STRING1 and STRING2.
5037 Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE. */
5039 range = 0 - startpos;
5040 else if (endpos > total_size)
5041 range = total_size - startpos;
5043 /* If the search isn't to be a backwards one, don't waste time in a
5044 search for a pattern that must be anchored. */
5045 if (bufp->used > 0 && range > 0
5046 && ((re_opcode_t) bufp->buffer[0] == begbuf
5047 /* `begline' is like `begbuf' if it cannot match at newlines. */
5048 || ((re_opcode_t) bufp->buffer[0] == begline
5049 && !bufp->newline_anchor)))
5058 /* In a forward search for something that starts with \=.
5059 don't keep searching past point. */
5060 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0)
5062 range = PT - startpos;
5068 /* Update the fastmap now if not correct already. */
5069 if (fastmap && !bufp->fastmap_accurate)
5070 if (re_compile_fastmap (bufp) == -2)
5074 /* Allocate wchar_t array for wcs_string1 and wcs_string2 and
5075 fill them with converted string. */
5078 if (size1 > MAX_ALLOCA_SIZE)
5080 wcs_string1 = TALLOC (size1 + 1, CHAR_T);
5081 mbs_offset1 = TALLOC (size1 + 1, int);
5082 is_binary = TALLOC (size1 + 1, char);
5086 wcs_string1 = REGEX_TALLOC (size1 + 1, CHAR_T);
5087 mbs_offset1 = REGEX_TALLOC (size1 + 1, int);
5088 is_binary = REGEX_TALLOC (size1 + 1, char);
5090 if (!wcs_string1 || !mbs_offset1 || !is_binary)
5092 if (size1 > MAX_ALLOCA_SIZE)
5100 FREE_VAR (wcs_string1);
5101 FREE_VAR (mbs_offset1);
5102 FREE_VAR (is_binary);
5106 wcs_size1 = convert_mbs_to_wcs(wcs_string1, string1, size1,
5107 mbs_offset1, is_binary);
5108 wcs_string1[wcs_size1] = L'\0'; /* for a sentinel */
5109 if (size1 > MAX_ALLOCA_SIZE)
5112 FREE_VAR (is_binary);
5116 if (size2 > MAX_ALLOCA_SIZE)
5118 wcs_string2 = TALLOC (size2 + 1, CHAR_T);
5119 mbs_offset2 = TALLOC (size2 + 1, int);
5120 is_binary = TALLOC (size2 + 1, char);
5124 wcs_string2 = REGEX_TALLOC (size2 + 1, CHAR_T);
5125 mbs_offset2 = REGEX_TALLOC (size2 + 1, int);
5126 is_binary = REGEX_TALLOC (size2 + 1, char);
5128 if (!wcs_string2 || !mbs_offset2 || !is_binary)
5130 FREE_WCS_BUFFERS ();
5131 if (size2 > MAX_ALLOCA_SIZE)
5134 FREE_VAR (is_binary);
5137 wcs_size2 = convert_mbs_to_wcs(wcs_string2, string2, size2,
5138 mbs_offset2, is_binary);
5139 wcs_string2[wcs_size2] = L'\0'; /* for a sentinel */
5140 if (size2 > MAX_ALLOCA_SIZE)
5143 FREE_VAR (is_binary);
5148 /* Loop through the string, looking for a place to start matching. */
5151 /* If a fastmap is supplied, skip quickly over characters that
5152 cannot be the start of a match. If the pattern can match the
5153 null string, however, we don't need to skip characters; we want
5154 the first null string. */
5155 if (fastmap && startpos < total_size && !bufp->can_be_null)
5157 if (range > 0) /* Searching forwards. */
5159 register const char *d;
5160 register int lim = 0;
5163 if (startpos < size1 && startpos + range >= size1)
5164 lim = range - (size1 - startpos);
5166 d = (startpos >= size1 ? string2 - size1 : string1) + startpos;
5168 /* Written out as an if-else to avoid testing `translate'
5172 && !fastmap[(unsigned char)
5173 translate[(unsigned char) *d++]])
5176 while (range > lim && !fastmap[(unsigned char) *d++])
5179 startpos += irange - range;
5181 else /* Searching backwards. */
5183 register CHAR_T c = (size1 == 0 || startpos >= size1
5184 ? string2[startpos - size1]
5185 : string1[startpos]);
5187 if (!fastmap[(unsigned char) TRANSLATE (c)])
5192 /* If can't match the null string, and that's all we have left, fail. */
5193 if (range >= 0 && startpos == total_size && fastmap
5194 && !bufp->can_be_null)
5197 FREE_WCS_BUFFERS ();
5203 val = wcs_re_match_2_internal (bufp, string1, size1, string2,
5204 size2, startpos, regs, stop,
5205 wcs_string1, wcs_size1,
5206 wcs_string2, wcs_size2,
5207 mbs_offset1, mbs_offset2);
5209 val = byte_re_match_2_internal (bufp, string1, size1, string2,
5210 size2, startpos, regs, stop);
5213 #ifndef REGEX_MALLOC
5222 FREE_WCS_BUFFERS ();
5230 FREE_WCS_BUFFERS ();
5250 FREE_WCS_BUFFERS ();
5256 /* This converts PTR, a pointer into one of the search wchar_t strings
5257 `string1' and `string2' into an multibyte string offset from the
5258 beginning of that string. We use mbs_offset to optimize.
5259 See convert_mbs_to_wcs. */
5260 # define POINTER_TO_OFFSET(ptr) \
5261 (FIRST_STRING_P (ptr) \
5262 ? ((regoff_t)(mbs_offset1 != NULL? mbs_offset1[(ptr)-string1] : 0)) \
5263 : ((regoff_t)((mbs_offset2 != NULL? mbs_offset2[(ptr)-string2] : 0) \
5266 /* This converts PTR, a pointer into one of the search strings `string1'
5267 and `string2' into an offset from the beginning of that string. */
5268 # define POINTER_TO_OFFSET(ptr) \
5269 (FIRST_STRING_P (ptr) \
5270 ? ((regoff_t) ((ptr) - string1)) \
5271 : ((regoff_t) ((ptr) - string2 + size1)))
5274 /* Macros for dealing with the split strings in re_match_2. */
5276 #define MATCHING_IN_FIRST_STRING (dend == end_match_1)
5278 /* Call before fetching a character with *d. This switches over to
5279 string2 if necessary. */
5280 #define PREFETCH() \
5283 /* End of string2 => fail. */ \
5284 if (dend == end_match_2) \
5286 /* End of string1 => advance to string2. */ \
5288 dend = end_match_2; \
5291 /* Test if at very beginning or at very end of the virtual concatenation
5292 of `string1' and `string2'. If only one string, it's `string2'. */
5293 #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
5294 #define AT_STRINGS_END(d) ((d) == end2)
5297 /* Test if D points to a character which is word-constituent. We have
5298 two special cases to check for: if past the end of string1, look at
5299 the first character in string2; and if before the beginning of
5300 string2, look at the last character in string1. */
5302 /* Use internationalized API instead of SYNTAX. */
5303 # define WORDCHAR_P(d) \
5304 (iswalnum ((wint_t)((d) == end1 ? *string2 \
5305 : (d) == string2 - 1 ? *(end1 - 1) : *(d))) != 0 \
5306 || ((d) == end1 ? *string2 \
5307 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) == L'_')
5309 # define WORDCHAR_P(d) \
5310 (SYNTAX ((d) == end1 ? *string2 \
5311 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
5315 /* Disabled due to a compiler bug -- see comment at case wordbound */
5317 /* Test if the character before D and the one at D differ with respect
5318 to being word-constituent. */
5319 #define AT_WORD_BOUNDARY(d) \
5320 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
5321 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
5324 /* Free everything we malloc. */
5325 #ifdef MATCH_MAY_ALLOCATE
5327 # define FREE_VARIABLES() \
5329 REGEX_FREE_STACK (fail_stack.stack); \
5330 FREE_VAR (regstart); \
5331 FREE_VAR (regend); \
5332 FREE_VAR (old_regstart); \
5333 FREE_VAR (old_regend); \
5334 FREE_VAR (best_regstart); \
5335 FREE_VAR (best_regend); \
5336 FREE_VAR (reg_info); \
5337 FREE_VAR (reg_dummy); \
5338 FREE_VAR (reg_info_dummy); \
5339 if (!cant_free_wcs_buf) \
5341 FREE_VAR (string1); \
5342 FREE_VAR (string2); \
5343 FREE_VAR (mbs_offset1); \
5344 FREE_VAR (mbs_offset2); \
5348 # define FREE_VARIABLES() \
5350 REGEX_FREE_STACK (fail_stack.stack); \
5351 FREE_VAR (regstart); \
5352 FREE_VAR (regend); \
5353 FREE_VAR (old_regstart); \
5354 FREE_VAR (old_regend); \
5355 FREE_VAR (best_regstart); \
5356 FREE_VAR (best_regend); \
5357 FREE_VAR (reg_info); \
5358 FREE_VAR (reg_dummy); \
5359 FREE_VAR (reg_info_dummy); \
5364 # define FREE_VARIABLES() \
5366 if (!cant_free_wcs_buf) \
5368 FREE_VAR (string1); \
5369 FREE_VAR (string2); \
5370 FREE_VAR (mbs_offset1); \
5371 FREE_VAR (mbs_offset2); \
5375 # define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */
5377 #endif /* not MATCH_MAY_ALLOCATE */
5379 /* These values must meet several constraints. They must not be valid
5380 register values; since we have a limit of 255 registers (because
5381 we use only one byte in the pattern for the register number), we can
5382 use numbers larger than 255. They must differ by 1, because of
5383 NUM_FAILURE_ITEMS above. And the value for the lowest register must
5384 be larger than the value for the highest register, so we do not try
5385 to actually save any registers when none are active. */
5386 #define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
5387 #define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
5389 #else /* not INSIDE_RECURSION */
5390 /* Matching routines. */
5392 #ifndef emacs /* Emacs never uses this. */
5393 /* re_match is like re_match_2 except it takes only a single string. */
5396 re_match (struct re_pattern_buffer *bufp, const char *string,
5397 int size, int pos, struct re_registers *regs)
5401 if (MB_CUR_MAX != 1)
5402 result = wcs_re_match_2_internal (bufp, NULL, 0, string, size,
5404 NULL, 0, NULL, 0, NULL, NULL);
5407 result = byte_re_match_2_internal (bufp, NULL, 0, string, size,
5409 # ifndef REGEX_MALLOC
5417 weak_alias (__re_match, re_match)
5419 #endif /* not emacs */
5421 #endif /* not INSIDE_RECURSION */
5423 #ifdef INSIDE_RECURSION
5424 static boolean PREFIX(group_match_null_string_p) (UCHAR_T **p,
5426 PREFIX(register_info_type) *reg_info);
5427 static boolean PREFIX(alt_match_null_string_p) (UCHAR_T *p,
5429 PREFIX(register_info_type) *reg_info);
5430 static boolean PREFIX(common_op_match_null_string_p) (UCHAR_T **p,
5432 PREFIX(register_info_type) *reg_info);
5433 static int PREFIX(bcmp_translate) (const CHAR_T *s1, const CHAR_T *s2,
5434 int len, char *translate);
5435 #else /* not INSIDE_RECURSION */
5437 /* re_match_2 matches the compiled pattern in BUFP against the
5438 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
5439 and SIZE2, respectively). We start matching at POS, and stop
5442 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
5443 store offsets for the substring each group matched in REGS. See the
5444 documentation for exactly how many groups we fill.
5446 We return -1 if no match, -2 if an internal error (such as the
5447 failure stack overflowing). Otherwise, we return the length of the
5448 matched substring. */
5451 re_match_2 (struct re_pattern_buffer *bufp, const char *string1, int size1,
5452 const char *string2, int size2, int pos,
5453 struct re_registers *regs, int stop)
5457 if (MB_CUR_MAX != 1)
5458 result = wcs_re_match_2_internal (bufp, string1, size1, string2, size2,
5460 NULL, 0, NULL, 0, NULL, NULL);
5463 result = byte_re_match_2_internal (bufp, string1, size1, string2, size2,
5466 #ifndef REGEX_MALLOC
5474 weak_alias (__re_match_2, re_match_2)
5477 #endif /* not INSIDE_RECURSION */
5479 #ifdef INSIDE_RECURSION
5482 static int count_mbs_length (int *, int);
5484 /* This check the substring (from 0, to length) of the multibyte string,
5485 to which offset_buffer correspond. And count how many wchar_t_characters
5486 the substring occupy. We use offset_buffer to optimization.
5487 See convert_mbs_to_wcs. */
5490 count_mbs_length(int *offset_buffer, int length)
5494 /* Check whether the size is valid. */
5498 if (offset_buffer == NULL)
5501 /* If there are no multibyte character, offset_buffer[i] == i.
5502 Optmize for this case. */
5503 if (offset_buffer[length] == length)
5506 /* Set up upper with length. (because for all i, offset_buffer[i] >= i) */
5512 int middle = (lower + upper) / 2;
5513 if (middle == lower || middle == upper)
5515 if (offset_buffer[middle] > length)
5517 else if (offset_buffer[middle] < length)
5527 /* This is a separate function so that we can force an alloca cleanup
5531 wcs_re_match_2_internal (struct re_pattern_buffer *bufp,
5532 const char *cstring1, int csize1,
5533 const char *cstring2, int csize2,
5535 struct re_registers *regs,
5537 /* string1 == string2 == NULL means string1/2, size1/2 and
5538 mbs_offset1/2 need seting up in this function. */
5539 /* We need wchar_t* buffers correspond to cstring1, cstring2. */
5540 wchar_t *string1, int size1,
5541 wchar_t *string2, int size2,
5542 /* offset buffer for optimizatoin. See convert_mbs_to_wc. */
5543 int *mbs_offset1, int *mbs_offset2)
5546 byte_re_match_2_internal (struct re_pattern_buffer *bufp,
5547 const char *string1, int size1,
5548 const char *string2, int size2,
5550 struct re_registers *regs, int stop)
5553 /* General temporaries. */
5557 /* They hold whether each wchar_t is binary data or not. */
5558 char *is_binary = NULL;
5559 /* If true, we can't free string1/2, mbs_offset1/2. */
5560 int cant_free_wcs_buf = 1;
5563 /* Just past the end of the corresponding string. */
5564 const CHAR_T *end1, *end2;
5566 /* Pointers into string1 and string2, just past the last characters in
5567 each to consider matching. */
5568 const CHAR_T *end_match_1, *end_match_2;
5570 /* Where we are in the data, and the end of the current string. */
5571 const CHAR_T *d, *dend;
5573 /* Where we are in the pattern, and the end of the pattern. */
5575 UCHAR_T *pattern, *p;
5576 register UCHAR_T *pend;
5578 UCHAR_T *p = bufp->buffer;
5579 register UCHAR_T *pend = p + bufp->used;
5582 /* Mark the opcode just after a start_memory, so we can test for an
5583 empty subpattern when we get to the stop_memory. */
5584 UCHAR_T *just_past_start_mem = 0;
5586 /* We use this to map every character in the string. */
5587 RE_TRANSLATE_TYPE translate = bufp->translate;
5589 /* Failure point stack. Each place that can handle a failure further
5590 down the line pushes a failure point on this stack. It consists of
5591 restart, regend, and reg_info for all registers corresponding to
5592 the subexpressions we're currently inside, plus the number of such
5593 registers, and, finally, two char *'s. The first char * is where
5594 to resume scanning the pattern; the second one is where to resume
5595 scanning the strings. If the latter is zero, the failure point is
5596 a ``dummy''; if a failure happens and the failure point is a dummy,
5597 it gets discarded and the next next one is tried. */
5598 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
5599 PREFIX(fail_stack_type) fail_stack;
5602 static unsigned failure_id;
5603 unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
5607 /* This holds the pointer to the failure stack, when
5608 it is allocated relocatably. */
5609 fail_stack_elt_t *failure_stack_ptr;
5612 /* We fill all the registers internally, independent of what we
5613 return, for use in backreferences. The number here includes
5614 an element for register zero. */
5615 size_t num_regs = bufp->re_nsub + 1;
5617 /* The currently active registers. */
5618 active_reg_t lowest_active_reg = NO_LOWEST_ACTIVE_REG;
5619 active_reg_t highest_active_reg = NO_HIGHEST_ACTIVE_REG;
5621 /* Information on the contents of registers. These are pointers into
5622 the input strings; they record just what was matched (on this
5623 attempt) by a subexpression part of the pattern, that is, the
5624 regnum-th regstart pointer points to where in the pattern we began
5625 matching and the regnum-th regend points to right after where we
5626 stopped matching the regnum-th subexpression. (The zeroth register
5627 keeps track of what the whole pattern matches.) */
5628 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
5629 const CHAR_T **regstart, **regend;
5632 /* If a group that's operated upon by a repetition operator fails to
5633 match anything, then the register for its start will need to be
5634 restored because it will have been set to wherever in the string we
5635 are when we last see its open-group operator. Similarly for a
5637 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
5638 const CHAR_T **old_regstart, **old_regend;
5641 /* The is_active field of reg_info helps us keep track of which (possibly
5642 nested) subexpressions we are currently in. The matched_something
5643 field of reg_info[reg_num] helps us tell whether or not we have
5644 matched any of the pattern so far this time through the reg_num-th
5645 subexpression. These two fields get reset each time through any
5646 loop their register is in. */
5647 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
5648 PREFIX(register_info_type) *reg_info;
5651 /* The following record the register info as found in the above
5652 variables when we find a match better than any we've seen before.
5653 This happens as we backtrack through the failure points, which in
5654 turn happens only if we have not yet matched the entire string. */
5655 unsigned best_regs_set = false;
5656 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
5657 const CHAR_T **best_regstart, **best_regend;
5660 /* Logically, this is `best_regend[0]'. But we don't want to have to
5661 allocate space for that if we're not allocating space for anything
5662 else (see below). Also, we never need info about register 0 for
5663 any of the other register vectors, and it seems rather a kludge to
5664 treat `best_regend' differently than the rest. So we keep track of
5665 the end of the best match so far in a separate variable. We
5666 initialize this to NULL so that when we backtrack the first time
5667 and need to test it, it's not garbage. */
5668 const CHAR_T *match_end = NULL;
5670 /* This helps SET_REGS_MATCHED avoid doing redundant work. */
5671 int set_regs_matched_done = 0;
5673 /* Used when we pop values we don't care about. */
5674 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
5675 const CHAR_T **reg_dummy;
5676 PREFIX(register_info_type) *reg_info_dummy;
5680 /* Counts the total number of registers pushed. */
5681 unsigned num_regs_pushed = 0;
5684 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
5688 #ifdef MATCH_MAY_ALLOCATE
5689 /* Do not bother to initialize all the register variables if there are
5690 no groups in the pattern, as it takes a fair amount of time. If
5691 there are groups, we include space for register 0 (the whole
5692 pattern), even though we never use it, since it simplifies the
5693 array indexing. We should fix this. */
5696 regstart = REGEX_TALLOC (num_regs, const CHAR_T *);
5697 regend = REGEX_TALLOC (num_regs, const CHAR_T *);
5698 old_regstart = REGEX_TALLOC (num_regs, const CHAR_T *);
5699 old_regend = REGEX_TALLOC (num_regs, const CHAR_T *);
5700 best_regstart = REGEX_TALLOC (num_regs, const CHAR_T *);
5701 best_regend = REGEX_TALLOC (num_regs, const CHAR_T *);
5702 reg_info = REGEX_TALLOC (num_regs, PREFIX(register_info_type));
5703 reg_dummy = REGEX_TALLOC (num_regs, const CHAR_T *);
5704 reg_info_dummy = REGEX_TALLOC (num_regs, PREFIX(register_info_type));
5706 if (!(regstart && regend && old_regstart && old_regend && reg_info
5707 && best_regstart && best_regend && reg_dummy && reg_info_dummy))
5715 /* We must initialize all our variables to NULL, so that
5716 `FREE_VARIABLES' doesn't try to free them. */
5717 regstart = regend = old_regstart = old_regend = best_regstart
5718 = best_regend = reg_dummy = NULL;
5719 reg_info = reg_info_dummy = (PREFIX(register_info_type) *) NULL;
5721 #endif /* MATCH_MAY_ALLOCATE */
5723 /* The starting position is bogus. */
5725 if (pos < 0 || pos > csize1 + csize2)
5727 if (pos < 0 || pos > size1 + size2)
5735 /* Allocate wchar_t array for string1 and string2 and
5736 fill them with converted string. */
5737 if (string1 == NULL && string2 == NULL)
5739 /* We need seting up buffers here. */
5741 /* We must free wcs buffers in this function. */
5742 cant_free_wcs_buf = 0;
5746 string1 = REGEX_TALLOC (csize1 + 1, CHAR_T);
5747 mbs_offset1 = REGEX_TALLOC (csize1 + 1, int);
5748 is_binary = REGEX_TALLOC (csize1 + 1, char);
5749 if (!string1 || !mbs_offset1 || !is_binary)
5752 FREE_VAR (mbs_offset1);
5753 FREE_VAR (is_binary);
5759 string2 = REGEX_TALLOC (csize2 + 1, CHAR_T);
5760 mbs_offset2 = REGEX_TALLOC (csize2 + 1, int);
5761 is_binary = REGEX_TALLOC (csize2 + 1, char);
5762 if (!string2 || !mbs_offset2 || !is_binary)
5765 FREE_VAR (mbs_offset1);
5767 FREE_VAR (mbs_offset2);
5768 FREE_VAR (is_binary);
5771 size2 = convert_mbs_to_wcs(string2, cstring2, csize2,
5772 mbs_offset2, is_binary);
5773 string2[size2] = L'\0'; /* for a sentinel */
5774 FREE_VAR (is_binary);
5778 /* We need to cast pattern to (wchar_t*), because we casted this compiled
5779 pattern to (char*) in regex_compile. */
5780 p = pattern = (CHAR_T*)bufp->buffer;
5781 pend = (CHAR_T*)(bufp->buffer + bufp->used);
5785 /* Initialize subexpression text positions to -1 to mark ones that no
5786 start_memory/stop_memory has been seen for. Also initialize the
5787 register information struct. */
5788 for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
5790 regstart[mcnt] = regend[mcnt]
5791 = old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE;
5793 REG_MATCH_NULL_STRING_P (reg_info[mcnt]) = MATCH_NULL_UNSET_VALUE;
5794 IS_ACTIVE (reg_info[mcnt]) = 0;
5795 MATCHED_SOMETHING (reg_info[mcnt]) = 0;
5796 EVER_MATCHED_SOMETHING (reg_info[mcnt]) = 0;
5799 /* We move `string1' into `string2' if the latter's empty -- but not if
5800 `string1' is null. */
5801 if (size2 == 0 && string1 != NULL)
5808 mbs_offset2 = mbs_offset1;
5814 end1 = string1 + size1;
5815 end2 = string2 + size2;
5817 /* Compute where to stop matching, within the two strings. */
5821 mcnt = count_mbs_length(mbs_offset1, stop);
5822 end_match_1 = string1 + mcnt;
5823 end_match_2 = string2;
5827 if (stop > csize1 + csize2)
5828 stop = csize1 + csize2;
5830 mcnt = count_mbs_length(mbs_offset2, stop-csize1);
5831 end_match_2 = string2 + mcnt;
5834 { /* count_mbs_length return error. */
5841 end_match_1 = string1 + stop;
5842 end_match_2 = string2;
5847 end_match_2 = string2 + stop - size1;
5851 /* `p' scans through the pattern as `d' scans through the data.
5852 `dend' is the end of the input string that `d' points within. `d'
5853 is advanced into the following input string whenever necessary, but
5854 this happens before fetching; therefore, at the beginning of the
5855 loop, `d' can be pointing at the end of a string, but it cannot
5858 if (size1 > 0 && pos <= csize1)
5860 mcnt = count_mbs_length(mbs_offset1, pos);
5866 mcnt = count_mbs_length(mbs_offset2, pos-csize1);
5872 { /* count_mbs_length return error. */
5877 if (size1 > 0 && pos <= size1)
5884 d = string2 + pos - size1;
5889 DEBUG_PRINT1 ("The compiled pattern is:\n");
5890 DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
5891 DEBUG_PRINT1 ("The string to match is: `");
5892 DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
5893 DEBUG_PRINT1 ("'\n");
5895 /* This loops over pattern commands. It exits by returning from the
5896 function if the match is complete, or it drops through if the match
5897 fails at this starting point in the input data. */
5901 DEBUG_PRINT2 ("\n%p: ", p);
5903 DEBUG_PRINT2 ("\n0x%x: ", p);
5907 { /* End of pattern means we might have succeeded. */
5908 DEBUG_PRINT1 ("end of pattern ... ");
5910 /* If we haven't matched the entire string, and we want the
5911 longest match, try backtracking. */
5912 if (d != end_match_2)
5914 /* 1 if this match ends in the same string (string1 or string2)
5915 as the best previous match. */
5918 /* 1 if this match is the best seen so far. */
5919 boolean best_match_p;
5921 same_str_p = (FIRST_STRING_P (match_end)
5922 == MATCHING_IN_FIRST_STRING);
5924 /* AIX compiler got confused when this was combined
5925 with the previous declaration. */
5927 best_match_p = d > match_end;
5929 best_match_p = !MATCHING_IN_FIRST_STRING;
5931 DEBUG_PRINT1 ("backtracking.\n");
5933 if (!FAIL_STACK_EMPTY ())
5934 { /* More failure points to try. */
5936 /* If exceeds best match so far, save it. */
5937 if (!best_regs_set || best_match_p)
5939 best_regs_set = true;
5942 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
5944 for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
5946 best_regstart[mcnt] = regstart[mcnt];
5947 best_regend[mcnt] = regend[mcnt];
5953 /* If no failure points, don't restore garbage. And if
5954 last match is real best match, don't restore second
5956 else if (best_regs_set && !best_match_p)
5959 /* Restore best match. It may happen that `dend ==
5960 end_match_1' while the restored d is in string2.
5961 For example, the pattern `x.*y.*z' against the
5962 strings `x-' and `y-z-', if the two strings are
5963 not consecutive in memory. */
5964 DEBUG_PRINT1 ("Restoring best registers.\n");
5967 dend = ((d >= string1 && d <= end1)
5968 ? end_match_1 : end_match_2);
5970 for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
5972 regstart[mcnt] = best_regstart[mcnt];
5973 regend[mcnt] = best_regend[mcnt];
5976 } /* d != end_match_2 */
5979 DEBUG_PRINT1 ("Accepting match.\n");
5980 /* If caller wants register contents data back, do it. */
5981 if (regs && !bufp->no_sub)
5983 /* Have the register data arrays been allocated? */
5984 if (bufp->regs_allocated == REGS_UNALLOCATED)
5985 { /* No. So allocate them with malloc. We need one
5986 extra element beyond `num_regs' for the `-1' marker
5988 regs->num_regs = MAX (RE_NREGS, num_regs + 1);
5989 regs->start = TALLOC (regs->num_regs, regoff_t);
5990 regs->end = TALLOC (regs->num_regs, regoff_t);
5991 if (regs->start == NULL || regs->end == NULL)
5996 bufp->regs_allocated = REGS_REALLOCATE;
5998 else if (bufp->regs_allocated == REGS_REALLOCATE)
5999 { /* Yes. If we need more elements than were already
6000 allocated, reallocate them. If we need fewer, just
6002 if (regs->num_regs < num_regs + 1)
6004 regs->num_regs = num_regs + 1;
6005 RETALLOC (regs->start, regs->num_regs, regoff_t);
6006 RETALLOC (regs->end, regs->num_regs, regoff_t);
6007 if (regs->start == NULL || regs->end == NULL)
6016 /* These braces fend off a "empty body in an else-statement"
6017 warning under GCC when assert expands to nothing. */
6018 assert (bufp->regs_allocated == REGS_FIXED);
6021 /* Convert the pointer data in `regstart' and `regend' to
6022 indices. Register zero has to be set differently,
6023 since we haven't kept track of any info for it. */
6024 if (regs->num_regs > 0)
6026 regs->start[0] = pos;
6028 if (MATCHING_IN_FIRST_STRING)
6029 regs->end[0] = mbs_offset1 != NULL ?
6030 mbs_offset1[d-string1] : 0;
6032 regs->end[0] = csize1 + (mbs_offset2 != NULL ?
6033 mbs_offset2[d-string2] : 0);
6035 regs->end[0] = (MATCHING_IN_FIRST_STRING
6036 ? ((regoff_t) (d - string1))
6037 : ((regoff_t) (d - string2 + size1)));
6041 /* Go through the first `min (num_regs, regs->num_regs)'
6042 registers, since that is all we initialized. */
6043 for (mcnt = 1; (unsigned) mcnt < MIN (num_regs, regs->num_regs);
6046 if (REG_UNSET (regstart[mcnt]) || REG_UNSET (regend[mcnt]))
6047 regs->start[mcnt] = regs->end[mcnt] = -1;
6051 = (regoff_t) POINTER_TO_OFFSET (regstart[mcnt]);
6053 = (regoff_t) POINTER_TO_OFFSET (regend[mcnt]);
6057 /* If the regs structure we return has more elements than
6058 were in the pattern, set the extra elements to -1. If
6059 we (re)allocated the registers, this is the case,
6060 because we always allocate enough to have at least one
6062 for (mcnt = num_regs; (unsigned) mcnt < regs->num_regs; mcnt++)
6063 regs->start[mcnt] = regs->end[mcnt] = -1;
6064 } /* regs && !bufp->no_sub */
6066 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
6067 nfailure_points_pushed, nfailure_points_popped,
6068 nfailure_points_pushed - nfailure_points_popped);
6069 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
6072 if (MATCHING_IN_FIRST_STRING)
6073 mcnt = mbs_offset1 != NULL ? mbs_offset1[d-string1] : 0;
6075 mcnt = (mbs_offset2 != NULL ? mbs_offset2[d-string2] : 0) +
6079 mcnt = d - pos - (MATCHING_IN_FIRST_STRING
6084 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
6090 /* Otherwise match next pattern command. */
6091 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
6093 /* Ignore these. Used to ignore the n of succeed_n's which
6094 currently have n == 0. */
6096 DEBUG_PRINT1 ("EXECUTING no_op.\n");
6100 DEBUG_PRINT1 ("EXECUTING succeed.\n");
6103 /* Match the next n pattern characters exactly. The following
6104 byte in the pattern defines n, and the n bytes after that
6105 are the characters to match. */
6111 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
6113 /* This is written out as an if-else so we don't waste time
6114 testing `translate' inside the loop. */
6123 if ((UCHAR_T) translate[(unsigned char) *d++]
6129 if (*d++ != (CHAR_T) *p++)
6133 if ((UCHAR_T) translate[(unsigned char) *d++]
6145 if (*d++ != (CHAR_T) *p++) goto fail;
6149 SET_REGS_MATCHED ();
6153 /* Match any character except possibly a newline or a null. */
6155 DEBUG_PRINT1 ("EXECUTING anychar.\n");
6159 if ((!(bufp->syntax & RE_DOT_NEWLINE) && TRANSLATE (*d) == '\n')
6160 || (bufp->syntax & RE_DOT_NOT_NULL && TRANSLATE (*d) == '\000'))
6163 SET_REGS_MATCHED ();
6164 DEBUG_PRINT2 (" Matched `%ld'.\n", (long int) *d);
6174 unsigned int i, char_class_length, coll_symbol_length,
6175 equiv_class_length, ranges_length, chars_length, length;
6176 CHAR_T *workp, *workp2, *charset_top;
6177 #define WORK_BUFFER_SIZE 128
6178 CHAR_T str_buf[WORK_BUFFER_SIZE];
6183 boolean negate = (re_opcode_t) *(p - 1) == charset_not;
6185 DEBUG_PRINT2 ("EXECUTING charset%s.\n", negate ? "_not" : "");
6187 c = TRANSLATE (*d); /* The character to match. */
6190 nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
6192 charset_top = p - 1;
6193 char_class_length = *p++;
6194 coll_symbol_length = *p++;
6195 equiv_class_length = *p++;
6196 ranges_length = *p++;
6197 chars_length = *p++;
6198 /* p points charset[6], so the address of the next instruction
6199 (charset[l+m+n+2o+k+p']) equals p[l+m+n+2*o+p'],
6200 where l=length of char_classes, m=length of collating_symbol,
6201 n=equivalence_class, o=length of char_range,
6202 p'=length of character. */
6204 /* Update p to indicate the next instruction. */
6205 p += char_class_length + coll_symbol_length+ equiv_class_length +
6206 2*ranges_length + chars_length;
6208 /* match with char_class? */
6209 for (i = 0; i < char_class_length ; i += CHAR_CLASS_SIZE)
6212 uintptr_t alignedp = ((uintptr_t)workp
6213 + __alignof__(wctype_t) - 1)
6214 & ~(uintptr_t)(__alignof__(wctype_t) - 1);
6215 wctype = *((wctype_t*)alignedp);
6216 workp += CHAR_CLASS_SIZE;
6218 if (__iswctype((wint_t)c, wctype))
6219 goto char_set_matched;
6221 if (iswctype((wint_t)c, wctype))
6222 goto char_set_matched;
6226 /* match with collating_symbol? */
6230 const unsigned char *extra = (const unsigned char *)
6231 _NL_CURRENT (LC_COLLATE, _NL_COLLATE_SYMB_EXTRAMB);
6233 for (workp2 = workp + coll_symbol_length ; workp < workp2 ;
6237 wextra = (int32_t*)(extra + *workp++);
6238 for (i = 0; i < *wextra; ++i)
6239 if (TRANSLATE(d[i]) != wextra[1 + i])
6244 /* Update d, however d will be incremented at
6245 char_set_matched:, we decrement d here. */
6247 goto char_set_matched;
6251 else /* (nrules == 0) */
6253 /* If we can't look up collation data, we use wcscoll
6256 for (workp2 = workp + coll_symbol_length ; workp < workp2 ;)
6258 const CHAR_T *backup_d = d, *backup_dend = dend;
6260 length = __wcslen (workp);
6262 length = wcslen (workp);
6265 /* If wcscoll(the collating symbol, whole string) > 0,
6266 any substring of the string never match with the
6267 collating symbol. */
6269 if (__wcscoll (workp, d) > 0)
6271 if (wcscoll (workp, d) > 0)
6274 workp += length + 1;
6278 /* First, we compare the collating symbol with
6279 the first character of the string.
6280 If it don't match, we add the next character to
6281 the compare buffer in turn. */
6282 for (i = 0 ; i < WORK_BUFFER_SIZE-1 ; i++, d++)
6287 if (dend == end_match_2)
6293 /* add next character to the compare buffer. */
6294 str_buf[i] = TRANSLATE(*d);
6295 str_buf[i+1] = '\0';
6298 match = __wcscoll (workp, str_buf);
6300 match = wcscoll (workp, str_buf);
6303 goto char_set_matched;
6306 /* (str_buf > workp) indicate (str_buf + X > workp),
6307 because for all X (str_buf + X > str_buf).
6308 So we don't need continue this loop. */
6311 /* Otherwise(str_buf < workp),
6312 (str_buf+next_character) may equals (workp).
6313 So we continue this loop. */
6318 workp += length + 1;
6321 /* match with equivalence_class? */
6325 const CHAR_T *backup_d = d, *backup_dend = dend;
6326 /* Try to match the equivalence class against
6327 those known to the collate implementation. */
6328 const int32_t *table;
6329 const int32_t *weights;
6330 const int32_t *extra;
6331 const int32_t *indirect;
6336 /* This #include defines a local function! */
6337 # include <locale/weightwc.h>
6339 table = (const int32_t *)
6340 _NL_CURRENT (LC_COLLATE, _NL_COLLATE_TABLEWC);
6341 weights = (const wint_t *)
6342 _NL_CURRENT (LC_COLLATE, _NL_COLLATE_WEIGHTWC);
6343 extra = (const wint_t *)
6344 _NL_CURRENT (LC_COLLATE, _NL_COLLATE_EXTRAWC);
6345 indirect = (const int32_t *)
6346 _NL_CURRENT (LC_COLLATE, _NL_COLLATE_INDIRECTWC);
6348 /* Write 1 collating element to str_buf, and
6352 for (i = 0 ; idx2 == 0 && i < WORK_BUFFER_SIZE - 1; i++)
6354 cp = (wint_t*)str_buf;
6357 if (dend == end_match_2)
6362 str_buf[i] = TRANSLATE(*(d+i));
6363 str_buf[i+1] = '\0'; /* sentinel */
6364 idx2 = findidx ((const wint_t**)&cp);
6367 /* Update d, however d will be incremented at
6368 char_set_matched:, we decrement d here. */
6369 d = backup_d + ((wchar_t*)cp - (wchar_t*)str_buf - 1);
6372 if (dend == end_match_2)
6381 len = weights[idx2];
6383 for (workp2 = workp + equiv_class_length ; workp < workp2 ;
6386 idx = (int32_t)*workp;
6387 /* We already checked idx != 0 in regex_compile. */
6389 if (idx2 != 0 && len == weights[idx])
6392 while (cnt < len && (weights[idx + 1 + cnt]
6393 == weights[idx2 + 1 + cnt]))
6397 goto char_set_matched;
6404 else /* (nrules == 0) */
6406 /* If we can't look up collation data, we use wcscoll
6409 for (workp2 = workp + equiv_class_length ; workp < workp2 ;)
6411 const CHAR_T *backup_d = d, *backup_dend = dend;
6413 length = __wcslen (workp);
6415 length = wcslen (workp);
6418 /* If wcscoll(the collating symbol, whole string) > 0,
6419 any substring of the string never match with the
6420 collating symbol. */
6422 if (__wcscoll (workp, d) > 0)
6424 if (wcscoll (workp, d) > 0)
6427 workp += length + 1;
6431 /* First, we compare the equivalence class with
6432 the first character of the string.
6433 If it don't match, we add the next character to
6434 the compare buffer in turn. */
6435 for (i = 0 ; i < WORK_BUFFER_SIZE - 1 ; i++, d++)
6440 if (dend == end_match_2)
6446 /* add next character to the compare buffer. */
6447 str_buf[i] = TRANSLATE(*d);
6448 str_buf[i+1] = '\0';
6451 match = __wcscoll (workp, str_buf);
6453 match = wcscoll (workp, str_buf);
6457 goto char_set_matched;
6460 /* (str_buf > workp) indicate (str_buf + X > workp),
6461 because for all X (str_buf + X > str_buf).
6462 So we don't need continue this loop. */
6465 /* Otherwise(str_buf < workp),
6466 (str_buf+next_character) may equals (workp).
6467 So we continue this loop. */
6472 workp += length + 1;
6476 /* match with char_range? */
6480 uint32_t collseqval;
6481 const char *collseq = (const char *)
6482 _NL_CURRENT(LC_COLLATE, _NL_COLLATE_COLLSEQWC);
6484 collseqval = collseq_table_lookup (collseq, c);
6486 for (; workp < p - chars_length ;)
6488 uint32_t start_val, end_val;
6490 /* We already compute the collation sequence value
6491 of the characters (or collating symbols). */
6492 start_val = (uint32_t) *workp++; /* range_start */
6493 end_val = (uint32_t) *workp++; /* range_end */
6495 if (start_val <= collseqval && collseqval <= end_val)
6496 goto char_set_matched;
6502 /* We set range_start_char at str_buf[0], range_end_char
6503 at str_buf[4], and compared char at str_buf[2]. */
6508 for (; workp < p - chars_length ;)
6510 wchar_t *range_start_char, *range_end_char;
6512 /* match if (range_start_char <= c <= range_end_char). */
6514 /* If range_start(or end) < 0, we assume -range_start(end)
6515 is the offset of the collating symbol which is specified
6516 as the character of the range start(end). */
6520 range_start_char = charset_top - (*workp++);
6523 str_buf[0] = *workp++;
6524 range_start_char = str_buf;
6529 range_end_char = charset_top - (*workp++);
6532 str_buf[4] = *workp++;
6533 range_end_char = str_buf + 4;
6537 if (__wcscoll (range_start_char, str_buf+2) <= 0
6538 && __wcscoll (str_buf+2, range_end_char) <= 0)
6540 if (wcscoll (range_start_char, str_buf+2) <= 0
6541 && wcscoll (str_buf+2, range_end_char) <= 0)
6543 goto char_set_matched;
6547 /* match with char? */
6548 for (; workp < p ; workp++)
6550 goto char_set_matched;
6555 if (negate) goto fail;
6557 /* Cast to `unsigned' instead of `unsigned char' in case the
6558 bit list is a full 32 bytes long. */
6559 if (c < (unsigned) (*p * BYTEWIDTH)
6560 && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
6565 if (!negate) goto fail;
6566 #undef WORK_BUFFER_SIZE
6568 SET_REGS_MATCHED ();
6574 /* The beginning of a group is represented by start_memory.
6575 The arguments are the register number in the next byte, and the
6576 number of groups inner to this one in the next. The text
6577 matched within the group is recorded (in the internal
6578 registers data structure) under the register number. */
6580 DEBUG_PRINT3 ("EXECUTING start_memory %ld (%ld):\n",
6581 (long int) *p, (long int) p[1]);
6583 /* Find out if this group can match the empty string. */
6584 p1 = p; /* To send to group_match_null_string_p. */
6586 if (REG_MATCH_NULL_STRING_P (reg_info[*p]) == MATCH_NULL_UNSET_VALUE)
6587 REG_MATCH_NULL_STRING_P (reg_info[*p])
6588 = PREFIX(group_match_null_string_p) (&p1, pend, reg_info);
6590 /* Save the position in the string where we were the last time
6591 we were at this open-group operator in case the group is
6592 operated upon by a repetition operator, e.g., with `(a*)*b'
6593 against `ab'; then we want to ignore where we are now in
6594 the string in case this attempt to match fails. */
6595 old_regstart[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
6596 ? REG_UNSET (regstart[*p]) ? d : regstart[*p]
6598 DEBUG_PRINT2 (" old_regstart: %d\n",
6599 POINTER_TO_OFFSET (old_regstart[*p]));
6602 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
6604 IS_ACTIVE (reg_info[*p]) = 1;
6605 MATCHED_SOMETHING (reg_info[*p]) = 0;
6607 /* Clear this whenever we change the register activity status. */
6608 set_regs_matched_done = 0;
6610 /* This is the new highest active register. */
6611 highest_active_reg = *p;
6613 /* If nothing was active before, this is the new lowest active
6615 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
6616 lowest_active_reg = *p;
6618 /* Move past the register number and inner group count. */
6620 just_past_start_mem = p;
6625 /* The stop_memory opcode represents the end of a group. Its
6626 arguments are the same as start_memory's: the register
6627 number, and the number of inner groups. */
6629 DEBUG_PRINT3 ("EXECUTING stop_memory %ld (%ld):\n",
6630 (long int) *p, (long int) p[1]);
6632 /* We need to save the string position the last time we were at
6633 this close-group operator in case the group is operated
6634 upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
6635 against `aba'; then we want to ignore where we are now in
6636 the string in case this attempt to match fails. */
6637 old_regend[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
6638 ? REG_UNSET (regend[*p]) ? d : regend[*p]
6640 DEBUG_PRINT2 (" old_regend: %d\n",
6641 POINTER_TO_OFFSET (old_regend[*p]));
6644 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
6646 /* This register isn't active anymore. */
6647 IS_ACTIVE (reg_info[*p]) = 0;
6649 /* Clear this whenever we change the register activity status. */
6650 set_regs_matched_done = 0;
6652 /* If this was the only register active, nothing is active
6654 if (lowest_active_reg == highest_active_reg)
6656 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
6657 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
6660 { /* We must scan for the new highest active register, since
6661 it isn't necessarily one less than now: consider
6662 (a(b)c(d(e)f)g). When group 3 ends, after the f), the
6663 new highest active register is 1. */
6665 while (r > 0 && !IS_ACTIVE (reg_info[r]))
6668 /* If we end up at register zero, that means that we saved
6669 the registers as the result of an `on_failure_jump', not
6670 a `start_memory', and we jumped to past the innermost
6671 `stop_memory'. For example, in ((.)*) we save
6672 registers 1 and 2 as a result of the *, but when we pop
6673 back to the second ), we are at the stop_memory 1.
6674 Thus, nothing is active. */
6677 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
6678 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
6681 highest_active_reg = r;
6684 /* If just failed to match something this time around with a
6685 group that's operated on by a repetition operator, try to
6686 force exit from the ``loop'', and restore the register
6687 information for this group that we had before trying this
6689 if ((!MATCHED_SOMETHING (reg_info[*p])
6690 || just_past_start_mem == p - 1)
6693 boolean is_a_jump_n = false;
6697 switch ((re_opcode_t) *p1++)
6702 case pop_failure_jump:
6703 case maybe_pop_jump:
6705 case dummy_failure_jump:
6706 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
6708 p1 += OFFSET_ADDRESS_SIZE;
6716 /* If the next operation is a jump backwards in the pattern
6717 to an on_failure_jump right before the start_memory
6718 corresponding to this stop_memory, exit from the loop
6719 by forcing a failure after pushing on the stack the
6720 on_failure_jump's jump in the pattern, and d. */
6721 if (mcnt < 0 && (re_opcode_t) *p1 == on_failure_jump
6722 && (re_opcode_t) p1[1+OFFSET_ADDRESS_SIZE] == start_memory
6723 && p1[2+OFFSET_ADDRESS_SIZE] == *p)
6725 /* If this group ever matched anything, then restore
6726 what its registers were before trying this last
6727 failed match, e.g., with `(a*)*b' against `ab' for
6728 regstart[1], and, e.g., with `((a*)*(b*)*)*'
6729 against `aba' for regend[3].
6731 Also restore the registers for inner groups for,
6732 e.g., `((a*)(b*))*' against `aba' (register 3 would
6733 otherwise get trashed). */
6735 if (EVER_MATCHED_SOMETHING (reg_info[*p]))
6739 EVER_MATCHED_SOMETHING (reg_info[*p]) = 0;
6741 /* Restore this and inner groups' (if any) registers. */
6742 for (r = *p; r < (unsigned) *p + (unsigned) *(p + 1);
6745 regstart[r] = old_regstart[r];
6747 /* xx why this test? */
6748 if (old_regend[r] >= regstart[r])
6749 regend[r] = old_regend[r];
6753 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
6754 PUSH_FAILURE_POINT (p1 + mcnt, d, -2);
6760 /* Move past the register number and the inner group count. */
6765 /* \<digit> has been turned into a `duplicate' command which is
6766 followed by the numeric value of <digit> as the register number. */
6769 register const CHAR_T *d2, *dend2;
6770 int regno = *p++; /* Get which register to match against. */
6771 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
6773 /* Can't back reference a group which we've never matched. */
6774 if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
6777 /* Where in input to try to start matching. */
6778 d2 = regstart[regno];
6780 /* Where to stop matching; if both the place to start and
6781 the place to stop matching are in the same string, then
6782 set to the place to stop, otherwise, for now have to use
6783 the end of the first string. */
6785 dend2 = ((FIRST_STRING_P (regstart[regno])
6786 == FIRST_STRING_P (regend[regno]))
6787 ? regend[regno] : end_match_1);
6790 /* If necessary, advance to next segment in register
6794 if (dend2 == end_match_2) break;
6795 if (dend2 == regend[regno]) break;
6797 /* End of string1 => advance to string2. */
6799 dend2 = regend[regno];
6801 /* At end of register contents => success */
6802 if (d2 == dend2) break;
6804 /* If necessary, advance to next segment in data. */
6807 /* How many characters left in this segment to match. */
6810 /* Want how many consecutive characters we can match in
6811 one shot, so, if necessary, adjust the count. */
6812 if (mcnt > dend2 - d2)
6815 /* Compare that many; failure if mismatch, else move
6818 ? PREFIX(bcmp_translate) (d, d2, mcnt, translate)
6819 : memcmp (d, d2, mcnt*sizeof(UCHAR_T)))
6821 d += mcnt, d2 += mcnt;
6823 /* Do this because we've match some characters. */
6824 SET_REGS_MATCHED ();
6830 /* begline matches the empty string at the beginning of the string
6831 (unless `not_bol' is set in `bufp'), and, if
6832 `newline_anchor' is set, after newlines. */
6834 DEBUG_PRINT1 ("EXECUTING begline.\n");
6836 if (AT_STRINGS_BEG (d))
6838 if (!bufp->not_bol) break;
6840 else if (d[-1] == '\n' && bufp->newline_anchor)
6844 /* In all other cases, we fail. */
6848 /* endline is the dual of begline. */
6850 DEBUG_PRINT1 ("EXECUTING endline.\n");
6852 if (AT_STRINGS_END (d))
6854 if (!bufp->not_eol) break;
6857 /* We have to ``prefetch'' the next character. */
6858 else if ((d == end1 ? *string2 : *d) == '\n'
6859 && bufp->newline_anchor)
6866 /* Match at the very beginning of the data. */
6868 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
6869 if (AT_STRINGS_BEG (d))
6874 /* Match at the very end of the data. */
6876 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
6877 if (AT_STRINGS_END (d))
6882 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
6883 pushes NULL as the value for the string on the stack. Then
6884 `pop_failure_point' will keep the current value for the
6885 string, instead of restoring it. To see why, consider
6886 matching `foo\nbar' against `.*\n'. The .* matches the foo;
6887 then the . fails against the \n. But the next thing we want
6888 to do is match the \n against the \n; if we restored the
6889 string value, we would be back at the foo.
6891 Because this is used only in specific cases, we don't need to
6892 check all the things that `on_failure_jump' does, to make
6893 sure the right things get saved on the stack. Hence we don't
6894 share its code. The only reason to push anything on the
6895 stack at all is that otherwise we would have to change
6896 `anychar's code to do something besides goto fail in this
6897 case; that seems worse than this. */
6898 case on_failure_keep_string_jump:
6899 DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump");
6901 EXTRACT_NUMBER_AND_INCR (mcnt, p);
6903 DEBUG_PRINT3 (" %d (to %p):\n", mcnt, p + mcnt);
6905 DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt, p + mcnt);
6908 PUSH_FAILURE_POINT (p + mcnt, NULL, -2);
6912 /* Uses of on_failure_jump:
6914 Each alternative starts with an on_failure_jump that points
6915 to the beginning of the next alternative. Each alternative
6916 except the last ends with a jump that in effect jumps past
6917 the rest of the alternatives. (They really jump to the
6918 ending jump of the following alternative, because tensioning
6919 these jumps is a hassle.)
6921 Repeats start with an on_failure_jump that points past both
6922 the repetition text and either the following jump or
6923 pop_failure_jump back to this on_failure_jump. */
6924 case on_failure_jump:
6926 DEBUG_PRINT1 ("EXECUTING on_failure_jump");
6928 EXTRACT_NUMBER_AND_INCR (mcnt, p);
6930 DEBUG_PRINT3 (" %d (to %p)", mcnt, p + mcnt);
6932 DEBUG_PRINT3 (" %d (to 0x%x)", mcnt, p + mcnt);
6935 /* If this on_failure_jump comes right before a group (i.e.,
6936 the original * applied to a group), save the information
6937 for that group and all inner ones, so that if we fail back
6938 to this point, the group's information will be correct.
6939 For example, in \(a*\)*\1, we need the preceding group,
6940 and in \(zz\(a*\)b*\)\2, we need the inner group. */
6942 /* We can't use `p' to check ahead because we push
6943 a failure point to `p + mcnt' after we do this. */
6946 /* We need to skip no_op's before we look for the
6947 start_memory in case this on_failure_jump is happening as
6948 the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
6950 while (p1 < pend && (re_opcode_t) *p1 == no_op)
6953 if (p1 < pend && (re_opcode_t) *p1 == start_memory)
6955 /* We have a new highest active register now. This will
6956 get reset at the start_memory we are about to get to,
6957 but we will have saved all the registers relevant to
6958 this repetition op, as described above. */
6959 highest_active_reg = *(p1 + 1) + *(p1 + 2);
6960 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
6961 lowest_active_reg = *(p1 + 1);
6964 DEBUG_PRINT1 (":\n");
6965 PUSH_FAILURE_POINT (p + mcnt, d, -2);
6969 /* A smart repeat ends with `maybe_pop_jump'.
6970 We change it to either `pop_failure_jump' or `jump'. */
6971 case maybe_pop_jump:
6972 EXTRACT_NUMBER_AND_INCR (mcnt, p);
6973 DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt);
6975 register UCHAR_T *p2 = p;
6977 /* Compare the beginning of the repeat with what in the
6978 pattern follows its end. If we can establish that there
6979 is nothing that they would both match, i.e., that we
6980 would have to backtrack because of (as in, e.g., `a*a')
6981 then we can change to pop_failure_jump, because we'll
6982 never have to backtrack.
6984 This is not true in the case of alternatives: in
6985 `(a|ab)*' we do need to backtrack to the `ab' alternative
6986 (e.g., if the string was `ab'). But instead of trying to
6987 detect that here, the alternative has put on a dummy
6988 failure point which is what we will end up popping. */
6990 /* Skip over open/close-group commands.
6991 If what follows this loop is a ...+ construct,
6992 look at what begins its body, since we will have to
6993 match at least one of that. */
6997 && ((re_opcode_t) *p2 == stop_memory
6998 || (re_opcode_t) *p2 == start_memory))
7000 else if (p2 + 2 + 2 * OFFSET_ADDRESS_SIZE < pend
7001 && (re_opcode_t) *p2 == dummy_failure_jump)
7002 p2 += 2 + 2 * OFFSET_ADDRESS_SIZE;
7008 /* p1[0] ... p1[2] are the `on_failure_jump' corresponding
7009 to the `maybe_finalize_jump' of this case. Examine what
7012 /* If we're at the end of the pattern, we can change. */
7015 /* Consider what happens when matching ":\(.*\)"
7016 against ":/". I don't really understand this code
7018 p[-(1+OFFSET_ADDRESS_SIZE)] = (UCHAR_T)
7021 (" End of pattern: change to `pop_failure_jump'.\n");
7024 else if ((re_opcode_t) *p2 == exactn
7026 || (re_opcode_t) *p2 == exactn_bin
7028 || (bufp->newline_anchor && (re_opcode_t) *p2 == endline))
7031 = *p2 == (UCHAR_T) endline ? '\n' : p2[2];
7033 if (((re_opcode_t) p1[1+OFFSET_ADDRESS_SIZE] == exactn
7035 || (re_opcode_t) p1[1+OFFSET_ADDRESS_SIZE] == exactn_bin
7037 ) && p1[3+OFFSET_ADDRESS_SIZE] != c)
7039 p[-(1+OFFSET_ADDRESS_SIZE)] = (UCHAR_T)
7042 DEBUG_PRINT3 (" %C != %C => pop_failure_jump.\n",
7044 (wint_t) p1[3+OFFSET_ADDRESS_SIZE]);
7046 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
7048 (char) p1[3+OFFSET_ADDRESS_SIZE]);
7053 else if ((re_opcode_t) p1[3] == charset
7054 || (re_opcode_t) p1[3] == charset_not)
7056 int negate = (re_opcode_t) p1[3] == charset_not;
7058 if (c < (unsigned) (p1[4] * BYTEWIDTH)
7059 && p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
7062 /* `negate' is equal to 1 if c would match, which means
7063 that we can't change to pop_failure_jump. */
7066 p[-3] = (unsigned char) pop_failure_jump;
7067 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
7070 #endif /* not WCHAR */
7073 else if ((re_opcode_t) *p2 == charset)
7075 /* We win if the first character of the loop is not part
7077 if ((re_opcode_t) p1[3] == exactn
7078 && ! ((int) p2[1] * BYTEWIDTH > (int) p1[5]
7079 && (p2[2 + p1[5] / BYTEWIDTH]
7080 & (1 << (p1[5] % BYTEWIDTH)))))
7082 p[-3] = (unsigned char) pop_failure_jump;
7083 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
7086 else if ((re_opcode_t) p1[3] == charset_not)
7089 /* We win if the charset_not inside the loop
7090 lists every character listed in the charset after. */
7091 for (idx = 0; idx < (int) p2[1]; idx++)
7092 if (! (p2[2 + idx] == 0
7093 || (idx < (int) p1[4]
7094 && ((p2[2 + idx] & ~ p1[5 + idx]) == 0))))
7099 p[-3] = (unsigned char) pop_failure_jump;
7100 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
7103 else if ((re_opcode_t) p1[3] == charset)
7106 /* We win if the charset inside the loop
7107 has no overlap with the one after the loop. */
7109 idx < (int) p2[1] && idx < (int) p1[4];
7111 if ((p2[2 + idx] & p1[5 + idx]) != 0)
7114 if (idx == p2[1] || idx == p1[4])
7116 p[-3] = (unsigned char) pop_failure_jump;
7117 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
7121 #endif /* not WCHAR */
7123 p -= OFFSET_ADDRESS_SIZE; /* Point at relative address again. */
7124 if ((re_opcode_t) p[-1] != pop_failure_jump)
7126 p[-1] = (UCHAR_T) jump;
7127 DEBUG_PRINT1 (" Match => jump.\n");
7128 goto unconditional_jump;
7133 /* The end of a simple repeat has a pop_failure_jump back to
7134 its matching on_failure_jump, where the latter will push a
7135 failure point. The pop_failure_jump takes off failure
7136 points put on by this pop_failure_jump's matching
7137 on_failure_jump; we got through the pattern to here from the
7138 matching on_failure_jump, so didn't fail. */
7139 case pop_failure_jump:
7141 /* We need to pass separate storage for the lowest and
7142 highest registers, even though we don't care about the
7143 actual values. Otherwise, we will restore only one
7144 register from the stack, since lowest will == highest in
7145 `pop_failure_point'. */
7146 active_reg_t dummy_low_reg, dummy_high_reg;
7147 UCHAR_T *pdummy ATTRIBUTE_UNUSED = NULL;
7148 const CHAR_T *sdummy ATTRIBUTE_UNUSED = NULL;
7150 DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n");
7151 POP_FAILURE_POINT (sdummy, pdummy,
7152 dummy_low_reg, dummy_high_reg,
7153 reg_dummy, reg_dummy, reg_info_dummy);
7159 DEBUG_PRINT2 ("\n%p: ", p);
7161 DEBUG_PRINT2 ("\n0x%x: ", p);
7163 /* Note fall through. */
7165 /* Unconditionally jump (without popping any failure points). */
7167 EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */
7168 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
7169 p += mcnt; /* Do the jump. */
7171 DEBUG_PRINT2 ("(to %p).\n", p);
7173 DEBUG_PRINT2 ("(to 0x%x).\n", p);
7178 /* We need this opcode so we can detect where alternatives end
7179 in `group_match_null_string_p' et al. */
7181 DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n");
7182 goto unconditional_jump;
7185 /* Normally, the on_failure_jump pushes a failure point, which
7186 then gets popped at pop_failure_jump. We will end up at
7187 pop_failure_jump, also, and with a pattern of, say, `a+', we
7188 are skipping over the on_failure_jump, so we have to push
7189 something meaningless for pop_failure_jump to pop. */
7190 case dummy_failure_jump:
7191 DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n");
7192 /* It doesn't matter what we push for the string here. What
7193 the code at `fail' tests is the value for the pattern. */
7194 PUSH_FAILURE_POINT (NULL, NULL, -2);
7195 goto unconditional_jump;
7198 /* At the end of an alternative, we need to push a dummy failure
7199 point in case we are followed by a `pop_failure_jump', because
7200 we don't want the failure point for the alternative to be
7201 popped. For example, matching `(a|ab)*' against `aab'
7202 requires that we match the `ab' alternative. */
7203 case push_dummy_failure:
7204 DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n");
7205 /* See comments just above at `dummy_failure_jump' about the
7207 PUSH_FAILURE_POINT (NULL, NULL, -2);
7210 /* Have to succeed matching what follows at least n times.
7211 After that, handle like `on_failure_jump'. */
7213 EXTRACT_NUMBER (mcnt, p + OFFSET_ADDRESS_SIZE);
7214 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
7217 /* Originally, this is how many times we HAVE to succeed. */
7221 p += OFFSET_ADDRESS_SIZE;
7222 STORE_NUMBER_AND_INCR (p, mcnt);
7224 DEBUG_PRINT3 (" Setting %p to %d.\n", p - OFFSET_ADDRESS_SIZE
7227 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p - OFFSET_ADDRESS_SIZE
7234 DEBUG_PRINT2 (" Setting two bytes from %p to no_op.\n",
7235 p + OFFSET_ADDRESS_SIZE);
7237 DEBUG_PRINT2 (" Setting two bytes from 0x%x to no_op.\n",
7238 p + OFFSET_ADDRESS_SIZE);
7242 p[1] = (UCHAR_T) no_op;
7244 p[2] = (UCHAR_T) no_op;
7245 p[3] = (UCHAR_T) no_op;
7252 EXTRACT_NUMBER (mcnt, p + OFFSET_ADDRESS_SIZE);
7253 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
7255 /* Originally, this is how many times we CAN jump. */
7259 STORE_NUMBER (p + OFFSET_ADDRESS_SIZE, mcnt);
7262 DEBUG_PRINT3 (" Setting %p to %d.\n", p + OFFSET_ADDRESS_SIZE,
7265 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p + OFFSET_ADDRESS_SIZE,
7268 goto unconditional_jump;
7270 /* If don't have to jump any more, skip over the rest of command. */
7272 p += 2 * OFFSET_ADDRESS_SIZE;
7277 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
7279 EXTRACT_NUMBER_AND_INCR (mcnt, p);
7281 EXTRACT_NUMBER_AND_INCR (mcnt, p);
7283 DEBUG_PRINT3 (" Setting %p to %d.\n", p1, mcnt);
7285 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p1, mcnt);
7287 STORE_NUMBER (p1, mcnt);
7292 /* The DEC Alpha C compiler 3.x generates incorrect code for the
7293 test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of
7294 AT_WORD_BOUNDARY, so this code is disabled. Expanding the
7295 macro and introducing temporary variables works around the bug. */
7298 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
7299 if (AT_WORD_BOUNDARY (d))
7304 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
7305 if (AT_WORD_BOUNDARY (d))
7311 boolean prevchar, thischar;
7313 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
7314 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
7317 prevchar = WORDCHAR_P (d - 1);
7318 thischar = WORDCHAR_P (d);
7319 if (prevchar != thischar)
7326 boolean prevchar, thischar;
7328 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
7329 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
7332 prevchar = WORDCHAR_P (d - 1);
7333 thischar = WORDCHAR_P (d);
7334 if (prevchar != thischar)
7341 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
7342 if (!AT_STRINGS_END (d) && WORDCHAR_P (d)
7343 && (AT_STRINGS_BEG (d) || !WORDCHAR_P (d - 1)))
7348 DEBUG_PRINT1 ("EXECUTING wordend.\n");
7349 if (!AT_STRINGS_BEG (d) && WORDCHAR_P (d - 1)
7350 && (AT_STRINGS_END (d) || !WORDCHAR_P (d)))
7356 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
7357 if (PTR_CHAR_POS ((unsigned char *) d) >= point)
7362 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
7363 if (PTR_CHAR_POS ((unsigned char *) d) != point)
7368 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
7369 if (PTR_CHAR_POS ((unsigned char *) d) <= point)
7374 DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt);
7379 DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n");
7383 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */
7385 if (SYNTAX (d[-1]) != (enum syntaxcode) mcnt)
7387 SET_REGS_MATCHED ();
7391 DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt);
7393 goto matchnotsyntax;
7396 DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n");
7400 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */
7402 if (SYNTAX (d[-1]) == (enum syntaxcode) mcnt)
7404 SET_REGS_MATCHED ();
7407 #else /* not emacs */
7409 DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n");
7411 if (!WORDCHAR_P (d))
7413 SET_REGS_MATCHED ();
7418 DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n");
7422 SET_REGS_MATCHED ();
7425 #endif /* not emacs */
7430 continue; /* Successfully executed one pattern command; keep going. */
7433 /* We goto here if a matching operation fails. */
7435 if (!FAIL_STACK_EMPTY ())
7436 { /* A restart point is known. Restore to that state. */
7437 DEBUG_PRINT1 ("\nFAIL:\n");
7438 POP_FAILURE_POINT (d, p,
7439 lowest_active_reg, highest_active_reg,
7440 regstart, regend, reg_info);
7442 /* If this failure point is a dummy, try the next one. */
7446 /* If we failed to the end of the pattern, don't examine *p. */
7450 boolean is_a_jump_n = false;
7452 /* If failed to a backwards jump that's part of a repetition
7453 loop, need to pop this failure point and use the next one. */
7454 switch ((re_opcode_t) *p)
7459 case maybe_pop_jump:
7460 case pop_failure_jump:
7463 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7466 if ((is_a_jump_n && (re_opcode_t) *p1 == succeed_n)
7468 && (re_opcode_t) *p1 == on_failure_jump))
7476 if (d >= string1 && d <= end1)
7480 break; /* Matching at this starting point really fails. */
7484 goto restore_best_regs;
7488 return -1; /* Failure to match. */
7491 /* Subroutine definitions for re_match_2. */
7494 /* We are passed P pointing to a register number after a start_memory.
7496 Return true if the pattern up to the corresponding stop_memory can
7497 match the empty string, and false otherwise.
7499 If we find the matching stop_memory, sets P to point to one past its number.
7500 Otherwise, sets P to an undefined byte less than or equal to END.
7502 We don't handle duplicates properly (yet). */
7505 PREFIX(group_match_null_string_p) (UCHAR_T **p, UCHAR_T *end,
7506 PREFIX(register_info_type) *reg_info)
7509 /* Point to after the args to the start_memory. */
7510 UCHAR_T *p1 = *p + 2;
7514 /* Skip over opcodes that can match nothing, and return true or
7515 false, as appropriate, when we get to one that can't, or to the
7516 matching stop_memory. */
7518 switch ((re_opcode_t) *p1)
7520 /* Could be either a loop or a series of alternatives. */
7521 case on_failure_jump:
7523 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7525 /* If the next operation is not a jump backwards in the
7530 /* Go through the on_failure_jumps of the alternatives,
7531 seeing if any of the alternatives cannot match nothing.
7532 The last alternative starts with only a jump,
7533 whereas the rest start with on_failure_jump and end
7534 with a jump, e.g., here is the pattern for `a|b|c':
7536 /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
7537 /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
7540 So, we have to first go through the first (n-1)
7541 alternatives and then deal with the last one separately. */
7544 /* Deal with the first (n-1) alternatives, which start
7545 with an on_failure_jump (see above) that jumps to right
7546 past a jump_past_alt. */
7548 while ((re_opcode_t) p1[mcnt-(1+OFFSET_ADDRESS_SIZE)] ==
7551 /* `mcnt' holds how many bytes long the alternative
7552 is, including the ending `jump_past_alt' and
7555 if (!PREFIX(alt_match_null_string_p) (p1, p1 + mcnt -
7556 (1 + OFFSET_ADDRESS_SIZE),
7560 /* Move to right after this alternative, including the
7564 /* Break if it's the beginning of an n-th alternative
7565 that doesn't begin with an on_failure_jump. */
7566 if ((re_opcode_t) *p1 != on_failure_jump)
7569 /* Still have to check that it's not an n-th
7570 alternative that starts with an on_failure_jump. */
7572 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7573 if ((re_opcode_t) p1[mcnt-(1+OFFSET_ADDRESS_SIZE)] !=
7576 /* Get to the beginning of the n-th alternative. */
7577 p1 -= 1 + OFFSET_ADDRESS_SIZE;
7582 /* Deal with the last alternative: go back and get number
7583 of the `jump_past_alt' just before it. `mcnt' contains
7584 the length of the alternative. */
7585 EXTRACT_NUMBER (mcnt, p1 - OFFSET_ADDRESS_SIZE);
7587 if (!PREFIX(alt_match_null_string_p) (p1, p1 + mcnt, reg_info))
7590 p1 += mcnt; /* Get past the n-th alternative. */
7596 assert (p1[1] == **p);
7602 if (!PREFIX(common_op_match_null_string_p) (&p1, end, reg_info))
7605 } /* while p1 < end */
7608 } /* group_match_null_string_p */
7611 /* Similar to group_match_null_string_p, but doesn't deal with alternatives:
7612 It expects P to be the first byte of a single alternative and END one
7613 byte past the last. The alternative can contain groups. */
7616 PREFIX(alt_match_null_string_p) (UCHAR_T *p, UCHAR_T *end,
7617 PREFIX(register_info_type) *reg_info)
7624 /* Skip over opcodes that can match nothing, and break when we get
7625 to one that can't. */
7627 switch ((re_opcode_t) *p1)
7630 case on_failure_jump:
7632 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7637 if (!PREFIX(common_op_match_null_string_p) (&p1, end, reg_info))
7640 } /* while p1 < end */
7643 } /* alt_match_null_string_p */
7646 /* Deals with the ops common to group_match_null_string_p and
7647 alt_match_null_string_p.
7649 Sets P to one after the op and its arguments, if any. */
7652 PREFIX(common_op_match_null_string_p) (UCHAR_T **p, UCHAR_T *end,
7653 PREFIX(register_info_type) *reg_info)
7660 switch ((re_opcode_t) *p1++)
7680 assert (reg_no > 0 && reg_no <= MAX_REGNUM);
7681 ret = PREFIX(group_match_null_string_p) (&p1, end, reg_info);
7683 /* Have to set this here in case we're checking a group which
7684 contains a group and a back reference to it. */
7686 if (REG_MATCH_NULL_STRING_P (reg_info[reg_no]) == MATCH_NULL_UNSET_VALUE)
7687 REG_MATCH_NULL_STRING_P (reg_info[reg_no]) = ret;
7693 /* If this is an optimized succeed_n for zero times, make the jump. */
7695 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7703 /* Get to the number of times to succeed. */
7704 p1 += OFFSET_ADDRESS_SIZE;
7705 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7709 p1 -= 2 * OFFSET_ADDRESS_SIZE;
7710 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7718 if (!REG_MATCH_NULL_STRING_P (reg_info[*p1]))
7723 p1 += 2 * OFFSET_ADDRESS_SIZE;
7727 /* All other opcodes mean we cannot match the empty string. */
7733 } /* common_op_match_null_string_p */
7736 /* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
7737 bytes; nonzero otherwise. */
7740 PREFIX(bcmp_translate) (const CHAR_T *s1, const CHAR_T *s2, register int len,
7741 RE_TRANSLATE_TYPE translate)
7743 register const UCHAR_T *p1 = (const UCHAR_T *) s1;
7744 register const UCHAR_T *p2 = (const UCHAR_T *) s2;
7748 if (((*p1<=0xff)?translate[*p1++]:*p1++)
7749 != ((*p2<=0xff)?translate[*p2++]:*p2++))
7752 if (translate[*p1++] != translate[*p2++]) return 1;
7760 #else /* not INSIDE_RECURSION */
7762 /* Entry points for GNU code. */
7764 /* re_compile_pattern is the GNU regular expression compiler: it
7765 compiles PATTERN (of length SIZE) and puts the result in BUFP.
7766 Returns 0 if the pattern was valid, otherwise an error string.
7768 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
7769 are set in BUFP on entry.
7771 We call regex_compile to do the actual compilation. */
7774 re_compile_pattern (const char *pattern, size_t length,
7775 struct re_pattern_buffer *bufp)
7779 /* GNU code is written to assume at least RE_NREGS registers will be set
7780 (and at least one extra will be -1). */
7781 bufp->regs_allocated = REGS_UNALLOCATED;
7783 /* And GNU code determines whether or not to get register information
7784 by passing null for the REGS argument to re_match, etc., not by
7788 /* Match anchors at newline. */
7789 bufp->newline_anchor = 1;
7792 if (MB_CUR_MAX != 1)
7793 ret = wcs_regex_compile (pattern, length, re_syntax_options, bufp);
7796 ret = byte_regex_compile (pattern, length, re_syntax_options, bufp);
7800 return gettext (re_error_msgid[(int) ret]);
7803 weak_alias (__re_compile_pattern, re_compile_pattern)
7806 /* Entry points compatible with 4.2 BSD regex library. We don't define
7807 them unless specifically requested. */
7809 #if defined _REGEX_RE_COMP || defined _LIBC
7811 /* BSD has one and only one pattern buffer. */
7812 static struct re_pattern_buffer re_comp_buf;
7816 /* Make these definitions weak in libc, so POSIX programs can redefine
7817 these names if they don't use our functions, and still use
7818 regcomp/regexec below without link errors. */
7821 re_comp (const char *s)
7827 if (!re_comp_buf.buffer)
7828 return (char *) gettext ("No previous regular expression");
7832 if (!re_comp_buf.buffer)
7834 re_comp_buf.buffer = (unsigned char *) malloc (200);
7835 if (re_comp_buf.buffer == NULL)
7836 return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
7837 re_comp_buf.allocated = 200;
7839 re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
7840 if (re_comp_buf.fastmap == NULL)
7841 return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
7844 /* Since `re_exec' always passes NULL for the `regs' argument, we
7845 don't need to initialize the pattern buffer fields which affect it. */
7847 /* Match anchors at newlines. */
7848 re_comp_buf.newline_anchor = 1;
7851 if (MB_CUR_MAX != 1)
7852 ret = wcs_regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
7855 ret = byte_regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
7860 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
7861 return (char *) gettext (re_error_msgid[(int) ret]);
7869 re_exec (const char *s)
7871 const int len = strlen (s);
7873 0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
7876 #endif /* _REGEX_RE_COMP */
7878 /* POSIX.2 functions. Don't define these for Emacs. */
7882 /* regcomp takes a regular expression as a string and compiles it.
7884 PREG is a regex_t *. We do not expect any fields to be initialized,
7885 since POSIX says we shouldn't. Thus, we set
7887 `buffer' to the compiled pattern;
7888 `used' to the length of the compiled pattern;
7889 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
7890 REG_EXTENDED bit in CFLAGS is set; otherwise, to
7891 RE_SYNTAX_POSIX_BASIC;
7892 `newline_anchor' to REG_NEWLINE being set in CFLAGS;
7893 `fastmap' to an allocated space for the fastmap;
7894 `fastmap_accurate' to zero;
7895 `re_nsub' to the number of subexpressions in PATTERN.
7897 PATTERN is the address of the pattern string.
7899 CFLAGS is a series of bits which affect compilation.
7901 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
7902 use POSIX basic syntax.
7904 If REG_NEWLINE is set, then . and [^...] don't match newline.
7905 Also, regexec will try a match beginning after every newline.
7907 If REG_ICASE is set, then we considers upper- and lowercase
7908 versions of letters to be equivalent when matching.
7910 If REG_NOSUB is set, then when PREG is passed to regexec, that
7911 routine will report only success or failure, and nothing about the
7914 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
7915 the return codes and their meanings.) */
7918 regcomp (regex_t *preg, const char *pattern, int cflags)
7922 = (cflags & REG_EXTENDED) ?
7923 RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
7925 /* regex_compile will allocate the space for the compiled pattern. */
7927 preg->allocated = 0;
7930 /* Try to allocate space for the fastmap. */
7931 preg->fastmap = (char *) malloc (1 << BYTEWIDTH);
7933 if (cflags & REG_ICASE)
7938 = (RE_TRANSLATE_TYPE) malloc (CHAR_SET_SIZE
7939 * sizeof (*(RE_TRANSLATE_TYPE)0));
7940 if (preg->translate == NULL)
7941 return (int) REG_ESPACE;
7943 /* Map uppercase characters to corresponding lowercase ones. */
7944 for (i = 0; i < CHAR_SET_SIZE; i++)
7945 preg->translate[i] = ISUPPER (i) ? TOLOWER (i) : i;
7948 preg->translate = NULL;
7950 /* If REG_NEWLINE is set, newlines are treated differently. */
7951 if (cflags & REG_NEWLINE)
7952 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
7953 syntax &= ~RE_DOT_NEWLINE;
7954 syntax |= RE_HAT_LISTS_NOT_NEWLINE;
7955 /* It also changes the matching behavior. */
7956 preg->newline_anchor = 1;
7959 preg->newline_anchor = 0;
7961 preg->no_sub = !!(cflags & REG_NOSUB);
7963 /* POSIX says a null character in the pattern terminates it, so we
7964 can use strlen here in compiling the pattern. */
7966 if (MB_CUR_MAX != 1)
7967 ret = wcs_regex_compile (pattern, strlen (pattern), syntax, preg);
7970 ret = byte_regex_compile (pattern, strlen (pattern), syntax, preg);
7972 /* POSIX doesn't distinguish between an unmatched open-group and an
7973 unmatched close-group: both are REG_EPAREN. */
7974 if (ret == REG_ERPAREN) ret = REG_EPAREN;
7976 if (ret == REG_NOERROR && preg->fastmap)
7978 /* Compute the fastmap now, since regexec cannot modify the pattern
7980 if (re_compile_fastmap (preg) == -2)
7982 /* Some error occurred while computing the fastmap, just forget
7984 free (preg->fastmap);
7985 preg->fastmap = NULL;
7992 weak_alias (__regcomp, regcomp)
7996 /* regexec searches for a given pattern, specified by PREG, in the
7999 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
8000 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
8001 least NMATCH elements, and we set them to the offsets of the
8002 corresponding matched substrings.
8004 EFLAGS specifies `execution flags' which affect matching: if
8005 REG_NOTBOL is set, then ^ does not match at the beginning of the
8006 string; if REG_NOTEOL is set, then $ does not match at the end.
8008 We return 0 if we find a match and REG_NOMATCH if not. */
8011 regexec (const regex_t *preg, const char *string, size_t nmatch,
8012 regmatch_t pmatch[], int eflags)
8015 struct re_registers regs;
8016 regex_t private_preg;
8017 int len = strlen (string);
8018 boolean want_reg_info = !preg->no_sub && nmatch > 0;
8020 private_preg = *preg;
8022 private_preg.not_bol = !!(eflags & REG_NOTBOL);
8023 private_preg.not_eol = !!(eflags & REG_NOTEOL);
8025 /* The user has told us exactly how many registers to return
8026 information about, via `nmatch'. We have to pass that on to the
8027 matching routines. */
8028 private_preg.regs_allocated = REGS_FIXED;
8032 regs.num_regs = nmatch;
8033 regs.start = TALLOC (nmatch * 2, regoff_t);
8034 if (regs.start == NULL)
8035 return (int) REG_NOMATCH;
8036 regs.end = regs.start + nmatch;
8039 /* Perform the searching operation. */
8040 ret = re_search (&private_preg, string, len,
8041 /* start: */ 0, /* range: */ len,
8042 want_reg_info ? ®s : (struct re_registers *) 0);
8044 /* Copy the register information to the POSIX structure. */
8051 for (r = 0; r < nmatch; r++)
8053 pmatch[r].rm_so = regs.start[r];
8054 pmatch[r].rm_eo = regs.end[r];
8058 /* If we needed the temporary register info, free the space now. */
8062 /* We want zero return to mean success, unlike `re_search'. */
8063 return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
8066 weak_alias (__regexec, regexec)
8070 /* Returns a message corresponding to an error code, ERRCODE, returned
8071 from either regcomp or regexec. We don't use PREG here. */
8074 regerror (int errcode, const regex_t *preg ATTRIBUTE_UNUSED,
8075 char *errbuf, size_t errbuf_size)
8081 || errcode >= (int) (sizeof (re_error_msgid)
8082 / sizeof (re_error_msgid[0])))
8083 /* Only error codes returned by the rest of the code should be passed
8084 to this routine. If we are given anything else, or if other regex
8085 code generates an invalid error code, then the program has a bug.
8086 Dump core so we can fix it. */
8089 msg = gettext (re_error_msgid[errcode]);
8091 msg_size = strlen (msg) + 1; /* Includes the null. */
8093 if (errbuf_size != 0)
8095 if (msg_size > errbuf_size)
8097 #if defined HAVE_MEMPCPY || defined _LIBC
8098 *((char *) mempcpy (errbuf, msg, errbuf_size - 1)) = '\0';
8100 (void) memcpy (errbuf, msg, errbuf_size - 1);
8101 errbuf[errbuf_size - 1] = 0;
8105 (void) memcpy (errbuf, msg, msg_size);
8111 weak_alias (__regerror, regerror)
8115 /* Free dynamically allocated space used by PREG. */
8118 regfree (regex_t *preg)
8120 free (preg->buffer);
8121 preg->buffer = NULL;
8123 preg->allocated = 0;
8126 free (preg->fastmap);
8127 preg->fastmap = NULL;
8128 preg->fastmap_accurate = 0;
8130 free (preg->translate);
8131 preg->translate = NULL;
8134 weak_alias (__regfree, regfree)
8137 #endif /* not emacs */
8139 #endif /* not INSIDE_RECURSION */
8143 #undef STORE_NUMBER_AND_INCR
8144 #undef EXTRACT_NUMBER
8145 #undef EXTRACT_NUMBER_AND_INCR
8147 #undef DEBUG_PRINT_COMPILED_PATTERN
8148 #undef DEBUG_PRINT_DOUBLE_STRING
8150 #undef INIT_FAIL_STACK
8151 #undef RESET_FAIL_STACK
8152 #undef DOUBLE_FAIL_STACK
8153 #undef PUSH_PATTERN_OP
8154 #undef PUSH_FAILURE_POINTER
8155 #undef PUSH_FAILURE_INT
8156 #undef PUSH_FAILURE_ELT
8157 #undef POP_FAILURE_POINTER
8158 #undef POP_FAILURE_INT
8159 #undef POP_FAILURE_ELT
8162 #undef PUSH_FAILURE_POINT
8163 #undef POP_FAILURE_POINT
8165 #undef REG_UNSET_VALUE
8173 #undef INIT_BUF_SIZE
8174 #undef GET_BUFFER_SPACE
8182 #undef EXTEND_BUFFER
8183 #undef GET_UNSIGNED_NUMBER
8184 #undef FREE_STACK_RETURN
8186 # undef POINTER_TO_OFFSET
8187 # undef MATCHING_IN_FRST_STRING
8189 # undef AT_STRINGS_BEG
8190 # undef AT_STRINGS_END
8193 # undef FREE_VARIABLES
8194 # undef NO_HIGHEST_ACTIVE_REG
8195 # undef NO_LOWEST_ACTIVE_REG
8199 # undef COMPILED_BUFFER_VAR
8200 # undef OFFSET_ADDRESS_SIZE
8201 # undef CHAR_CLASS_SIZE
8208 # define DEFINED_ONCE