* buildsym.c (subfile_stack): Move here from buildsym.h.
[platform/upstream/binutils.git] / libiberty / floatformat.c
1 /* IEEE floating point support routines, for GDB, the GNU Debugger.
2    Copyright 1991, 1994, 1999, 2000, 2003, 2005, 2006, 2010, 2012
3    Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA.  */
20
21 /* This is needed to pick up the NAN macro on some systems.  */
22 #define _GNU_SOURCE
23
24 #ifdef HAVE_CONFIG_H
25 #include "config.h"
26 #endif
27
28 #include <math.h>
29
30 #ifdef HAVE_STRING_H
31 #include <string.h>
32 #endif
33
34 /* On some platforms, <float.h> provides DBL_QNAN.  */
35 #ifdef STDC_HEADERS
36 #include <float.h>
37 #endif
38
39 #include "ansidecl.h"
40 #include "libiberty.h"
41 #include "floatformat.h"
42
43 #ifndef INFINITY
44 #ifdef HUGE_VAL
45 #define INFINITY HUGE_VAL
46 #else
47 #define INFINITY (1.0 / 0.0)
48 #endif
49 #endif
50
51 #ifndef NAN
52 #ifdef DBL_QNAN
53 #define NAN DBL_QNAN
54 #else
55 #define NAN (0.0 / 0.0)
56 #endif
57 #endif
58
59 static int mant_bits_set (const struct floatformat *, const unsigned char *);
60 static unsigned long get_field (const unsigned char *,
61                                 enum floatformat_byteorders,
62                                 unsigned int,
63                                 unsigned int,
64                                 unsigned int);
65 static int floatformat_always_valid (const struct floatformat *fmt,
66                                      const void *from);
67
68 static int
69 floatformat_always_valid (const struct floatformat *fmt ATTRIBUTE_UNUSED,
70                           const void *from ATTRIBUTE_UNUSED)
71 {
72   return 1;
73 }
74
75 /* The odds that CHAR_BIT will be anything but 8 are low enough that I'm not
76    going to bother with trying to muck around with whether it is defined in
77    a system header, what we do if not, etc.  */
78 #define FLOATFORMAT_CHAR_BIT 8
79
80 /* floatformats for IEEE half, single and double, big and little endian.  */
81 const struct floatformat floatformat_ieee_half_big =
82 {
83   floatformat_big, 16, 0, 1, 5, 15, 31, 6, 10,
84   floatformat_intbit_no,
85   "floatformat_ieee_half_big",
86   floatformat_always_valid,
87   NULL
88 };
89 const struct floatformat floatformat_ieee_half_little =
90 {
91   floatformat_little, 16, 0, 1, 5, 15, 31, 6, 10,
92   floatformat_intbit_no,
93   "floatformat_ieee_half_little",
94   floatformat_always_valid,
95   NULL
96 };
97 const struct floatformat floatformat_ieee_single_big =
98 {
99   floatformat_big, 32, 0, 1, 8, 127, 255, 9, 23,
100   floatformat_intbit_no,
101   "floatformat_ieee_single_big",
102   floatformat_always_valid,
103   NULL
104 };
105 const struct floatformat floatformat_ieee_single_little =
106 {
107   floatformat_little, 32, 0, 1, 8, 127, 255, 9, 23,
108   floatformat_intbit_no,
109   "floatformat_ieee_single_little",
110   floatformat_always_valid,
111   NULL
112 };
113 const struct floatformat floatformat_ieee_double_big =
114 {
115   floatformat_big, 64, 0, 1, 11, 1023, 2047, 12, 52,
116   floatformat_intbit_no,
117   "floatformat_ieee_double_big",
118   floatformat_always_valid,
119   NULL
120 };
121 const struct floatformat floatformat_ieee_double_little =
122 {
123   floatformat_little, 64, 0, 1, 11, 1023, 2047, 12, 52,
124   floatformat_intbit_no,
125   "floatformat_ieee_double_little",
126   floatformat_always_valid,
127   NULL
128 };
129
130 /* floatformat for IEEE double, little endian byte order, with big endian word
131    ordering, as on the ARM.  */
132
133 const struct floatformat floatformat_ieee_double_littlebyte_bigword =
134 {
135   floatformat_littlebyte_bigword, 64, 0, 1, 11, 1023, 2047, 12, 52,
136   floatformat_intbit_no,
137   "floatformat_ieee_double_littlebyte_bigword",
138   floatformat_always_valid,
139   NULL
140 };
141
142 /* floatformat for VAX.  Not quite IEEE, but close enough.  */
143
144 const struct floatformat floatformat_vax_f =
145 {
146   floatformat_vax, 32, 0, 1, 8, 129, 0, 9, 23,
147   floatformat_intbit_no,
148   "floatformat_vax_f",
149   floatformat_always_valid,
150   NULL
151 };
152 const struct floatformat floatformat_vax_d =
153 {
154   floatformat_vax, 64, 0, 1, 8, 129, 0, 9, 55,
155   floatformat_intbit_no,
156   "floatformat_vax_d",
157   floatformat_always_valid,
158   NULL
159 };
160 const struct floatformat floatformat_vax_g =
161 {
162   floatformat_vax, 64, 0, 1, 11, 1025, 0, 12, 52,
163   floatformat_intbit_no,
164   "floatformat_vax_g",
165   floatformat_always_valid,
166   NULL
167 };
168
169 static int floatformat_i387_ext_is_valid (const struct floatformat *fmt,
170                                           const void *from);
171
172 static int
173 floatformat_i387_ext_is_valid (const struct floatformat *fmt, const void *from)
174 {
175   /* In the i387 double-extended format, if the exponent is all ones,
176      then the integer bit must be set.  If the exponent is neither 0
177      nor ~0, the intbit must also be set.  Only if the exponent is
178      zero can it be zero, and then it must be zero.  */
179   unsigned long exponent, int_bit;
180   const unsigned char *ufrom = (const unsigned char *) from;
181
182   exponent = get_field (ufrom, fmt->byteorder, fmt->totalsize,
183                         fmt->exp_start, fmt->exp_len);
184   int_bit = get_field (ufrom, fmt->byteorder, fmt->totalsize,
185                        fmt->man_start, 1);
186
187   if ((exponent == 0) != (int_bit == 0))
188     return 0;
189   else
190     return 1;
191 }
192
193 const struct floatformat floatformat_i387_ext =
194 {
195   floatformat_little, 80, 0, 1, 15, 0x3fff, 0x7fff, 16, 64,
196   floatformat_intbit_yes,
197   "floatformat_i387_ext",
198   floatformat_i387_ext_is_valid,
199   NULL
200 };
201 const struct floatformat floatformat_m68881_ext =
202 {
203   /* Note that the bits from 16 to 31 are unused.  */
204   floatformat_big, 96, 0, 1, 15, 0x3fff, 0x7fff, 32, 64,
205   floatformat_intbit_yes,
206   "floatformat_m68881_ext",
207   floatformat_always_valid,
208   NULL
209 };
210 const struct floatformat floatformat_i960_ext =
211 {
212   /* Note that the bits from 0 to 15 are unused.  */
213   floatformat_little, 96, 16, 17, 15, 0x3fff, 0x7fff, 32, 64,
214   floatformat_intbit_yes,
215   "floatformat_i960_ext",
216   floatformat_always_valid,
217   NULL
218 };
219 const struct floatformat floatformat_m88110_ext =
220 {
221   floatformat_big, 80, 0, 1, 15, 0x3fff, 0x7fff, 16, 64,
222   floatformat_intbit_yes,
223   "floatformat_m88110_ext",
224   floatformat_always_valid,
225   NULL
226 };
227 const struct floatformat floatformat_m88110_harris_ext =
228 {
229   /* Harris uses raw format 128 bytes long, but the number is just an ieee
230      double, and the last 64 bits are wasted. */
231   floatformat_big,128, 0, 1, 11,  0x3ff,  0x7ff, 12, 52,
232   floatformat_intbit_no,
233   "floatformat_m88110_ext_harris",
234   floatformat_always_valid,
235   NULL
236 };
237 const struct floatformat floatformat_arm_ext_big =
238 {
239   /* Bits 1 to 16 are unused.  */
240   floatformat_big, 96, 0, 17, 15, 0x3fff, 0x7fff, 32, 64,
241   floatformat_intbit_yes,
242   "floatformat_arm_ext_big",
243   floatformat_always_valid,
244   NULL
245 };
246 const struct floatformat floatformat_arm_ext_littlebyte_bigword =
247 {
248   /* Bits 1 to 16 are unused.  */
249   floatformat_littlebyte_bigword, 96, 0, 17, 15, 0x3fff, 0x7fff, 32, 64,
250   floatformat_intbit_yes,
251   "floatformat_arm_ext_littlebyte_bigword",
252   floatformat_always_valid,
253   NULL
254 };
255 const struct floatformat floatformat_ia64_spill_big =
256 {
257   floatformat_big, 128, 0, 1, 17, 65535, 0x1ffff, 18, 64,
258   floatformat_intbit_yes,
259   "floatformat_ia64_spill_big",
260   floatformat_always_valid,
261   NULL
262 };
263 const struct floatformat floatformat_ia64_spill_little =
264 {
265   floatformat_little, 128, 0, 1, 17, 65535, 0x1ffff, 18, 64,
266   floatformat_intbit_yes,
267   "floatformat_ia64_spill_little",
268   floatformat_always_valid,
269   NULL
270 };
271 const struct floatformat floatformat_ia64_quad_big =
272 {
273   floatformat_big, 128, 0, 1, 15, 16383, 0x7fff, 16, 112,
274   floatformat_intbit_no,
275   "floatformat_ia64_quad_big",
276   floatformat_always_valid,
277   NULL
278 };
279 const struct floatformat floatformat_ia64_quad_little =
280 {
281   floatformat_little, 128, 0, 1, 15, 16383, 0x7fff, 16, 112,
282   floatformat_intbit_no,
283   "floatformat_ia64_quad_little",
284   floatformat_always_valid,
285   NULL
286 };
287
288 static int
289 floatformat_ibm_long_double_is_valid (const struct floatformat *fmt,
290                                       const void *from)
291 {
292   const unsigned char *ufrom = (const unsigned char *) from;
293   const struct floatformat *hfmt = fmt->split_half;
294   long top_exp, bot_exp;
295   int top_nan = 0;
296
297   top_exp = get_field (ufrom, hfmt->byteorder, hfmt->totalsize,
298                        hfmt->exp_start, hfmt->exp_len);
299   bot_exp = get_field (ufrom + 8, hfmt->byteorder, hfmt->totalsize,
300                        hfmt->exp_start, hfmt->exp_len);
301
302   if ((unsigned long) top_exp == hfmt->exp_nan)
303     top_nan = mant_bits_set (hfmt, ufrom);
304
305   /* A NaN is valid with any low part.  */
306   if (top_nan)
307     return 1;
308
309   /* An infinity, zero or denormal requires low part 0 (positive or
310      negative).  */
311   if ((unsigned long) top_exp == hfmt->exp_nan || top_exp == 0)
312     {
313       if (bot_exp != 0)
314         return 0;
315
316       return !mant_bits_set (hfmt, ufrom + 8);
317     }
318
319   /* The top part is now a finite normal value.  The long double value
320      is the sum of the two parts, and the top part must equal the
321      result of rounding the long double value to nearest double.  Thus
322      the bottom part must be <= 0.5ulp of the top part in absolute
323      value, and if it is < 0.5ulp then the long double is definitely
324      valid.  */
325   if (bot_exp < top_exp - 53)
326     return 1;
327   if (bot_exp > top_exp - 53 && bot_exp != 0)
328     return 0;
329   if (bot_exp == 0)
330     {
331       /* The bottom part is 0 or denormal.  Determine which, and if
332          denormal the first two set bits.  */
333       int first_bit = -1, second_bit = -1, cur_bit;
334       for (cur_bit = 0; (unsigned int) cur_bit < hfmt->man_len; cur_bit++)
335         if (get_field (ufrom + 8, hfmt->byteorder, hfmt->totalsize,
336                        hfmt->man_start + cur_bit, 1))
337           {
338             if (first_bit == -1)
339               first_bit = cur_bit;
340             else
341               {
342                 second_bit = cur_bit;
343                 break;
344               }
345           }
346       /* Bottom part 0 is OK.  */
347       if (first_bit == -1)
348         return 1;
349       /* The real exponent of the bottom part is -first_bit.  */
350       if (-first_bit < top_exp - 53)
351         return 1;
352       if (-first_bit > top_exp - 53)
353         return 0;
354       /* The bottom part is at least 0.5ulp of the top part.  For this
355          to be OK, the bottom part must be exactly 0.5ulp (i.e. no
356          more bits set) and the top part must have last bit 0.  */
357       if (second_bit != -1)
358         return 0;
359       return !get_field (ufrom, hfmt->byteorder, hfmt->totalsize,
360                          hfmt->man_start + hfmt->man_len - 1, 1);
361     }
362   else
363     {
364       /* The bottom part is at least 0.5ulp of the top part.  For this
365          to be OK, it must be exactly 0.5ulp (i.e. no explicit bits
366          set) and the top part must have last bit 0.  */
367       if (get_field (ufrom, hfmt->byteorder, hfmt->totalsize,
368                      hfmt->man_start + hfmt->man_len - 1, 1))
369         return 0;
370       return !mant_bits_set (hfmt, ufrom + 8);
371     }
372 }
373
374 const struct floatformat floatformat_ibm_long_double_big =
375 {
376   floatformat_big, 128, 0, 1, 11, 1023, 2047, 12, 52,
377   floatformat_intbit_no,
378   "floatformat_ibm_long_double_big",
379   floatformat_ibm_long_double_is_valid,
380   &floatformat_ieee_double_big
381 };
382
383 const struct floatformat floatformat_ibm_long_double_little =
384 {
385   floatformat_little, 128, 0, 1, 11, 1023, 2047, 12, 52,
386   floatformat_intbit_no,
387   "floatformat_ibm_long_double_little",
388   floatformat_ibm_long_double_is_valid,
389   &floatformat_ieee_double_little
390 };
391 \f
392
393 #ifndef min
394 #define min(a, b) ((a) < (b) ? (a) : (b))
395 #endif
396
397 /* Return 1 if any bits are explicitly set in the mantissa of UFROM,
398    format FMT, 0 otherwise.  */
399 static int
400 mant_bits_set (const struct floatformat *fmt, const unsigned char *ufrom)
401 {
402   unsigned int mant_bits, mant_off;
403   int mant_bits_left;
404
405   mant_off = fmt->man_start;
406   mant_bits_left = fmt->man_len;
407   while (mant_bits_left > 0)
408     {
409       mant_bits = min (mant_bits_left, 32);
410
411       if (get_field (ufrom, fmt->byteorder, fmt->totalsize,
412                      mant_off, mant_bits) != 0)
413         return 1;
414
415       mant_off += mant_bits;
416       mant_bits_left -= mant_bits;
417     }
418   return 0;
419 }
420
421 /* Extract a field which starts at START and is LEN bits long.  DATA and
422    TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER.  */
423 static unsigned long
424 get_field (const unsigned char *data, enum floatformat_byteorders order,
425            unsigned int total_len, unsigned int start, unsigned int len)
426 {
427   unsigned long result = 0;
428   unsigned int cur_byte;
429   int lo_bit, hi_bit, cur_bitshift = 0;
430   int nextbyte = (order == floatformat_little) ? 1 : -1;
431
432   /* Start is in big-endian bit order!  Fix that first.  */
433   start = total_len - (start + len);
434
435   /* Start at the least significant part of the field.  */
436   if (order == floatformat_little)
437     cur_byte = start / FLOATFORMAT_CHAR_BIT;
438   else
439     cur_byte = (total_len - start - 1) / FLOATFORMAT_CHAR_BIT;
440
441   lo_bit = start % FLOATFORMAT_CHAR_BIT;
442   hi_bit = min (lo_bit + len, FLOATFORMAT_CHAR_BIT);
443   
444   do
445     {
446       unsigned int shifted = *(data + cur_byte) >> lo_bit;
447       unsigned int bits = hi_bit - lo_bit;
448       unsigned int mask = (1 << bits) - 1;
449       result |= (shifted & mask) << cur_bitshift;
450       len -= bits;
451       cur_bitshift += bits;
452       cur_byte += nextbyte;
453       lo_bit = 0;
454       hi_bit = min (len, FLOATFORMAT_CHAR_BIT);
455     }
456   while (len != 0);
457
458   return result;
459 }
460   
461 /* Convert from FMT to a double.
462    FROM is the address of the extended float.
463    Store the double in *TO.  */
464
465 void
466 floatformat_to_double (const struct floatformat *fmt,
467                        const void *from, double *to)
468 {
469   const unsigned char *ufrom = (const unsigned char *) from;
470   double dto;
471   long exponent;
472   unsigned long mant;
473   unsigned int mant_bits, mant_off;
474   int mant_bits_left;
475
476   /* Split values are not handled specially, since the top half has
477      the correctly rounded double value (in the only supported case of
478      split values).  */
479
480   exponent = get_field (ufrom, fmt->byteorder, fmt->totalsize,
481                         fmt->exp_start, fmt->exp_len);
482
483   /* If the exponent indicates a NaN, we don't have information to
484      decide what to do.  So we handle it like IEEE, except that we
485      don't try to preserve the type of NaN.  FIXME.  */
486   if ((unsigned long) exponent == fmt->exp_nan)
487     {
488       int nan = mant_bits_set (fmt, ufrom);
489
490       /* On certain systems (such as GNU/Linux), the use of the
491          INFINITY macro below may generate a warning that can not be
492          silenced due to a bug in GCC (PR preprocessor/11931).  The
493          preprocessor fails to recognise the __extension__ keyword in
494          conjunction with the GNU/C99 extension for hexadecimal
495          floating point constants and will issue a warning when
496          compiling with -pedantic.  */
497       if (nan)
498         dto = NAN;
499       else
500         dto = INFINITY;
501
502       if (get_field (ufrom, fmt->byteorder, fmt->totalsize, fmt->sign_start, 1))
503         dto = -dto;
504
505       *to = dto;
506
507       return;
508     }
509
510   mant_bits_left = fmt->man_len;
511   mant_off = fmt->man_start;
512   dto = 0.0;
513
514   /* Build the result algebraically.  Might go infinite, underflow, etc;
515      who cares. */
516
517   /* For denorms use minimum exponent.  */
518   if (exponent == 0)
519     exponent = 1 - fmt->exp_bias;
520   else
521     {
522       exponent -= fmt->exp_bias;
523
524       /* If this format uses a hidden bit, explicitly add it in now.
525          Otherwise, increment the exponent by one to account for the
526          integer bit.  */
527
528       if (fmt->intbit == floatformat_intbit_no)
529         dto = ldexp (1.0, exponent);
530       else
531         exponent++;
532     }
533
534   while (mant_bits_left > 0)
535     {
536       mant_bits = min (mant_bits_left, 32);
537
538       mant = get_field (ufrom, fmt->byteorder, fmt->totalsize,
539                          mant_off, mant_bits);
540
541       dto += ldexp ((double) mant, exponent - mant_bits);
542       exponent -= mant_bits;
543       mant_off += mant_bits;
544       mant_bits_left -= mant_bits;
545     }
546
547   /* Negate it if negative.  */
548   if (get_field (ufrom, fmt->byteorder, fmt->totalsize, fmt->sign_start, 1))
549     dto = -dto;
550   *to = dto;
551 }
552 \f
553 static void put_field (unsigned char *, enum floatformat_byteorders,
554                        unsigned int,
555                        unsigned int,
556                        unsigned int,
557                        unsigned long);
558
559 /* Set a field which starts at START and is LEN bits long.  DATA and
560    TOTAL_LEN are the thing we are extracting it from, in byteorder ORDER.  */
561 static void
562 put_field (unsigned char *data, enum floatformat_byteorders order,
563            unsigned int total_len, unsigned int start, unsigned int len,
564            unsigned long stuff_to_put)
565 {
566   unsigned int cur_byte;
567   int lo_bit, hi_bit;
568   int nextbyte = (order == floatformat_little) ? 1 : -1;
569
570   /* Start is in big-endian bit order!  Fix that first.  */
571   start = total_len - (start + len);
572
573   /* Start at the least significant part of the field.  */
574   if (order == floatformat_little)
575     cur_byte = start / FLOATFORMAT_CHAR_BIT;
576   else
577     cur_byte = (total_len - start - 1) / FLOATFORMAT_CHAR_BIT;
578
579   lo_bit = start % FLOATFORMAT_CHAR_BIT;
580   hi_bit = min (lo_bit + len, FLOATFORMAT_CHAR_BIT);
581   
582   do
583     {
584       unsigned char *byte_ptr = data + cur_byte;
585       unsigned int bits = hi_bit - lo_bit;
586       unsigned int mask = ((1 << bits) - 1) << lo_bit;
587       *byte_ptr = (*byte_ptr & ~mask) | ((stuff_to_put << lo_bit) & mask);
588       stuff_to_put >>= bits;
589       len -= bits;
590       cur_byte += nextbyte;
591       lo_bit = 0;
592       hi_bit = min (len, FLOATFORMAT_CHAR_BIT);
593     }
594   while (len != 0);
595 }
596
597 /* The converse: convert the double *FROM to an extended float
598    and store where TO points.  Neither FROM nor TO have any alignment
599    restrictions.  */
600
601 void
602 floatformat_from_double (const struct floatformat *fmt,
603                          const double *from, void *to)
604 {
605   double dfrom;
606   int exponent;
607   double mant;
608   unsigned int mant_bits, mant_off;
609   int mant_bits_left;
610   unsigned char *uto = (unsigned char *) to;
611
612   dfrom = *from;
613   memset (uto, 0, fmt->totalsize / FLOATFORMAT_CHAR_BIT);
614
615   /* Split values are not handled specially, since a bottom half of
616      zero is correct for any value representable as double (in the
617      only supported case of split values).  */
618
619   /* If negative, set the sign bit.  */
620   if (dfrom < 0)
621     {
622       put_field (uto, fmt->byteorder, fmt->totalsize, fmt->sign_start, 1, 1);
623       dfrom = -dfrom;
624     }
625
626   if (dfrom == 0)
627     {
628       /* 0.0.  */
629       return;
630     }
631
632   if (dfrom != dfrom)
633     {
634       /* NaN.  */
635       put_field (uto, fmt->byteorder, fmt->totalsize, fmt->exp_start,
636                  fmt->exp_len, fmt->exp_nan);
637       /* Be sure it's not infinity, but NaN value is irrelevant.  */
638       put_field (uto, fmt->byteorder, fmt->totalsize, fmt->man_start,
639                  32, 1);
640       return;
641     }
642
643   if (dfrom + dfrom == dfrom)
644     {
645       /* This can only happen for an infinite value (or zero, which we
646          already handled above).  */
647       put_field (uto, fmt->byteorder, fmt->totalsize, fmt->exp_start,
648                  fmt->exp_len, fmt->exp_nan);
649       return;
650     }
651
652   mant = frexp (dfrom, &exponent);
653   if (exponent + fmt->exp_bias - 1 > 0)
654     put_field (uto, fmt->byteorder, fmt->totalsize, fmt->exp_start,
655                fmt->exp_len, exponent + fmt->exp_bias - 1);
656   else
657     {
658       /* Handle a denormalized number.  FIXME: What should we do for
659          non-IEEE formats?  */
660       put_field (uto, fmt->byteorder, fmt->totalsize, fmt->exp_start,
661                  fmt->exp_len, 0);
662       mant = ldexp (mant, exponent + fmt->exp_bias - 1);
663     }
664
665   mant_bits_left = fmt->man_len;
666   mant_off = fmt->man_start;
667   while (mant_bits_left > 0)
668     {
669       unsigned long mant_long;
670       mant_bits = mant_bits_left < 32 ? mant_bits_left : 32;
671
672       mant *= 4294967296.0;
673       mant_long = (unsigned long)mant;
674       mant -= mant_long;
675
676       /* If the integer bit is implicit, and we are not creating a
677          denormalized number, then we need to discard it.  */
678       if ((unsigned int) mant_bits_left == fmt->man_len
679           && fmt->intbit == floatformat_intbit_no
680           && exponent + fmt->exp_bias - 1 > 0)
681         {
682           mant_long &= 0x7fffffff;
683           mant_bits -= 1;
684         }
685       else if (mant_bits < 32)
686         {
687           /* The bits we want are in the most significant MANT_BITS bits of
688              mant_long.  Move them to the least significant.  */
689           mant_long >>= 32 - mant_bits;
690         }
691
692       put_field (uto, fmt->byteorder, fmt->totalsize,
693                  mant_off, mant_bits, mant_long);
694       mant_off += mant_bits;
695       mant_bits_left -= mant_bits;
696     }
697 }
698
699 /* Return non-zero iff the data at FROM is a valid number in format FMT.  */
700
701 int
702 floatformat_is_valid (const struct floatformat *fmt, const void *from)
703 {
704   return fmt->is_valid (fmt, from);
705 }
706
707
708 #ifdef IEEE_DEBUG
709
710 #include <stdio.h>
711
712 /* This is to be run on a host which uses IEEE floating point.  */
713
714 void
715 ieee_test (double n)
716 {
717   double result;
718
719   floatformat_to_double (&floatformat_ieee_double_little, &n, &result);
720   if ((n != result && (! isnan (n) || ! isnan (result)))
721       || (n < 0 && result >= 0)
722       || (n >= 0 && result < 0))
723     printf ("Differ(to): %.20g -> %.20g\n", n, result);
724
725   floatformat_from_double (&floatformat_ieee_double_little, &n, &result);
726   if ((n != result && (! isnan (n) || ! isnan (result)))
727       || (n < 0 && result >= 0)
728       || (n >= 0 && result < 0))
729     printf ("Differ(from): %.20g -> %.20g\n", n, result);
730
731 #if 0
732   {
733     char exten[16];
734
735     floatformat_from_double (&floatformat_m68881_ext, &n, exten);
736     floatformat_to_double (&floatformat_m68881_ext, exten, &result);
737     if (n != result)
738       printf ("Differ(to+from): %.20g -> %.20g\n", n, result);
739   }
740 #endif
741
742 #if IEEE_DEBUG > 1
743   /* This is to be run on a host which uses 68881 format.  */
744   {
745     long double ex = *(long double *)exten;
746     if (ex != n)
747       printf ("Differ(from vs. extended): %.20g\n", n);
748   }
749 #endif
750 }
751
752 int
753 main (void)
754 {
755   ieee_test (0.0);
756   ieee_test (0.5);
757   ieee_test (1.1);
758   ieee_test (256.0);
759   ieee_test (0.12345);
760   ieee_test (234235.78907234);
761   ieee_test (-512.0);
762   ieee_test (-0.004321);
763   ieee_test (1.2E-70);
764   ieee_test (1.2E-316);
765   ieee_test (4.9406564584124654E-324);
766   ieee_test (- 4.9406564584124654E-324);
767   ieee_test (- 0.0);
768   ieee_test (- INFINITY);
769   ieee_test (- NAN);
770   ieee_test (INFINITY);
771   ieee_test (NAN);
772   return 0;
773 }
774 #endif