Imported Upstream version 4.8.1
[platform/upstream/gcc48.git] / libgo / go / image / jpeg / idct.go
1 // Copyright 2009 The Go Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style
3 // license that can be found in the LICENSE file.
4
5 package jpeg
6
7 // This is a Go translation of idct.c from
8 //
9 // http://standards.iso.org/ittf/PubliclyAvailableStandards/ISO_IEC_13818-4_2004_Conformance_Testing/Video/verifier/mpeg2decode_960109.tar.gz
10 //
11 // which carries the following notice:
12
13 /* Copyright (C) 1996, MPEG Software Simulation Group. All Rights Reserved. */
14
15 /*
16  * Disclaimer of Warranty
17  *
18  * These software programs are available to the user without any license fee or
19  * royalty on an "as is" basis.  The MPEG Software Simulation Group disclaims
20  * any and all warranties, whether express, implied, or statuary, including any
21  * implied warranties or merchantability or of fitness for a particular
22  * purpose.  In no event shall the copyright-holder be liable for any
23  * incidental, punitive, or consequential damages of any kind whatsoever
24  * arising from the use of these programs.
25  *
26  * This disclaimer of warranty extends to the user of these programs and user's
27  * customers, employees, agents, transferees, successors, and assigns.
28  *
29  * The MPEG Software Simulation Group does not represent or warrant that the
30  * programs furnished hereunder are free of infringement of any third-party
31  * patents.
32  *
33  * Commercial implementations of MPEG-1 and MPEG-2 video, including shareware,
34  * are subject to royalty fees to patent holders.  Many of these patents are
35  * general enough such that they are unavoidable regardless of implementation
36  * design.
37  *
38  */
39
40 const blockSize = 64 // A DCT block is 8x8.
41
42 type block [blockSize]int32
43
44 const (
45         w1 = 2841 // 2048*sqrt(2)*cos(1*pi/16)
46         w2 = 2676 // 2048*sqrt(2)*cos(2*pi/16)
47         w3 = 2408 // 2048*sqrt(2)*cos(3*pi/16)
48         w5 = 1609 // 2048*sqrt(2)*cos(5*pi/16)
49         w6 = 1108 // 2048*sqrt(2)*cos(6*pi/16)
50         w7 = 565  // 2048*sqrt(2)*cos(7*pi/16)
51
52         w1pw7 = w1 + w7
53         w1mw7 = w1 - w7
54         w2pw6 = w2 + w6
55         w2mw6 = w2 - w6
56         w3pw5 = w3 + w5
57         w3mw5 = w3 - w5
58
59         r2 = 181 // 256/sqrt(2)
60 )
61
62 // idct performs a 2-D Inverse Discrete Cosine Transformation.
63 //
64 // The input coefficients should already have been multiplied by the
65 // appropriate quantization table. We use fixed-point computation, with the
66 // number of bits for the fractional component varying over the intermediate
67 // stages.
68 //
69 // For more on the actual algorithm, see Z. Wang, "Fast algorithms for the
70 // discrete W transform and for the discrete Fourier transform", IEEE Trans. on
71 // ASSP, Vol. ASSP- 32, pp. 803-816, Aug. 1984.
72 func idct(src *block) {
73         // Horizontal 1-D IDCT.
74         for y := 0; y < 8; y++ {
75                 y8 := y * 8
76                 // If all the AC components are zero, then the IDCT is trivial.
77                 if src[y8+1] == 0 && src[y8+2] == 0 && src[y8+3] == 0 &&
78                         src[y8+4] == 0 && src[y8+5] == 0 && src[y8+6] == 0 && src[y8+7] == 0 {
79                         dc := src[y8+0] << 3
80                         src[y8+0] = dc
81                         src[y8+1] = dc
82                         src[y8+2] = dc
83                         src[y8+3] = dc
84                         src[y8+4] = dc
85                         src[y8+5] = dc
86                         src[y8+6] = dc
87                         src[y8+7] = dc
88                         continue
89                 }
90
91                 // Prescale.
92                 x0 := (src[y8+0] << 11) + 128
93                 x1 := src[y8+4] << 11
94                 x2 := src[y8+6]
95                 x3 := src[y8+2]
96                 x4 := src[y8+1]
97                 x5 := src[y8+7]
98                 x6 := src[y8+5]
99                 x7 := src[y8+3]
100
101                 // Stage 1.
102                 x8 := w7 * (x4 + x5)
103                 x4 = x8 + w1mw7*x4
104                 x5 = x8 - w1pw7*x5
105                 x8 = w3 * (x6 + x7)
106                 x6 = x8 - w3mw5*x6
107                 x7 = x8 - w3pw5*x7
108
109                 // Stage 2.
110                 x8 = x0 + x1
111                 x0 -= x1
112                 x1 = w6 * (x3 + x2)
113                 x2 = x1 - w2pw6*x2
114                 x3 = x1 + w2mw6*x3
115                 x1 = x4 + x6
116                 x4 -= x6
117                 x6 = x5 + x7
118                 x5 -= x7
119
120                 // Stage 3.
121                 x7 = x8 + x3
122                 x8 -= x3
123                 x3 = x0 + x2
124                 x0 -= x2
125                 x2 = (r2*(x4+x5) + 128) >> 8
126                 x4 = (r2*(x4-x5) + 128) >> 8
127
128                 // Stage 4.
129                 src[y8+0] = (x7 + x1) >> 8
130                 src[y8+1] = (x3 + x2) >> 8
131                 src[y8+2] = (x0 + x4) >> 8
132                 src[y8+3] = (x8 + x6) >> 8
133                 src[y8+4] = (x8 - x6) >> 8
134                 src[y8+5] = (x0 - x4) >> 8
135                 src[y8+6] = (x3 - x2) >> 8
136                 src[y8+7] = (x7 - x1) >> 8
137         }
138
139         // Vertical 1-D IDCT.
140         for x := 0; x < 8; x++ {
141                 // Similar to the horizontal 1-D IDCT case, if all the AC components are zero, then the IDCT is trivial.
142                 // However, after performing the horizontal 1-D IDCT, there are typically non-zero AC components, so
143                 // we do not bother to check for the all-zero case.
144
145                 // Prescale.
146                 y0 := (src[8*0+x] << 8) + 8192
147                 y1 := src[8*4+x] << 8
148                 y2 := src[8*6+x]
149                 y3 := src[8*2+x]
150                 y4 := src[8*1+x]
151                 y5 := src[8*7+x]
152                 y6 := src[8*5+x]
153                 y7 := src[8*3+x]
154
155                 // Stage 1.
156                 y8 := w7*(y4+y5) + 4
157                 y4 = (y8 + w1mw7*y4) >> 3
158                 y5 = (y8 - w1pw7*y5) >> 3
159                 y8 = w3*(y6+y7) + 4
160                 y6 = (y8 - w3mw5*y6) >> 3
161                 y7 = (y8 - w3pw5*y7) >> 3
162
163                 // Stage 2.
164                 y8 = y0 + y1
165                 y0 -= y1
166                 y1 = w6*(y3+y2) + 4
167                 y2 = (y1 - w2pw6*y2) >> 3
168                 y3 = (y1 + w2mw6*y3) >> 3
169                 y1 = y4 + y6
170                 y4 -= y6
171                 y6 = y5 + y7
172                 y5 -= y7
173
174                 // Stage 3.
175                 y7 = y8 + y3
176                 y8 -= y3
177                 y3 = y0 + y2
178                 y0 -= y2
179                 y2 = (r2*(y4+y5) + 128) >> 8
180                 y4 = (r2*(y4-y5) + 128) >> 8
181
182                 // Stage 4.
183                 src[8*0+x] = (y7 + y1) >> 14
184                 src[8*1+x] = (y3 + y2) >> 14
185                 src[8*2+x] = (y0 + y4) >> 14
186                 src[8*3+x] = (y8 + y6) >> 14
187                 src[8*4+x] = (y8 - y6) >> 14
188                 src[8*5+x] = (y0 - y4) >> 14
189                 src[8*6+x] = (y3 - y2) >> 14
190                 src[8*7+x] = (y7 - y1) >> 14
191         }
192 }