1 /* Decimal 64-bit format module for the decNumber C Library.
2 Copyright (C) 2005, 2007 Free Software Foundation, Inc.
3 Contributed by IBM Corporation. Author Mike Cowlishaw.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
12 In addition to the permissions in the GNU General Public License,
13 the Free Software Foundation gives you unlimited permission to link
14 the compiled version of this file into combinations with other
15 programs, and to distribute those combinations without any
16 restriction coming from the use of this file. (The General Public
17 License restrictions do apply in other respects; for example, they
18 cover modification of the file, and distribution when not linked
19 into a combine executable.)
21 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
22 WARRANTY; without even the implied warranty of MERCHANTABILITY or
23 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
26 You should have received a copy of the GNU General Public License
27 along with GCC; see the file COPYING. If not, write to the Free
28 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
31 /* ------------------------------------------------------------------ */
32 /* Decimal 64-bit format module */
33 /* ------------------------------------------------------------------ */
34 /* This module comprises the routines for decimal64 format numbers. */
35 /* Conversions are supplied to and from decNumber and String. */
37 /* This is used when decNumber provides operations, either for all */
38 /* operations or as a proxy between decNumber and decSingle. */
40 /* Error handling is the same as decNumber (qv.). */
41 /* ------------------------------------------------------------------ */
42 #include <string.h> /* [for memset/memcpy] */
43 #include <stdio.h> /* [for printf] */
45 #include "dconfig.h" /* GCC definitions */
46 #define DECNUMDIGITS 16 /* make decNumbers with space for 16 */
47 #include "decNumber.h" /* base number library */
48 #include "decNumberLocal.h" /* decNumber local types, etc. */
49 #include "decimal64.h" /* our primary include */
51 /* Utility routines and tables [in decimal64.c]; externs for C++ */
52 extern const uInt COMBEXP[32], COMBMSD[32];
53 extern const uShort DPD2BIN[1024];
54 extern const uShort BIN2DPD[1000];
55 extern const uByte BIN2CHAR[4001];
57 extern void decDigitsFromDPD(decNumber *, const uInt *, Int);
58 extern void decDigitsToDPD(const decNumber *, uInt *, Int);
60 #if DECTRACE || DECCHECK
61 void decimal64Show(const decimal64 *); /* for debug */
62 extern void decNumberShow(const decNumber *); /* .. */
66 /* Clear a structure (e.g., a decNumber) */
67 #define DEC_clear(d) memset(d, 0, sizeof(*d))
69 /* define and include the tables to use for conversions */
70 #define DEC_BIN2CHAR 1
72 #define DEC_BIN2DPD 1 /* used for all sizes */
73 #include "decDPD.h" /* lookup tables */
75 /* ------------------------------------------------------------------ */
76 /* decimal64FromNumber -- convert decNumber to decimal64 */
78 /* ds is the target decimal64 */
79 /* dn is the source number (assumed valid) */
80 /* set is the context, used only for reporting errors */
82 /* The set argument is used only for status reporting and for the */
83 /* rounding mode (used if the coefficient is more than DECIMAL64_Pmax */
84 /* digits or an overflow is detected). If the exponent is out of the */
85 /* valid range then Overflow or Underflow will be raised. */
86 /* After Underflow a subnormal result is possible. */
88 /* DEC_Clamped is set if the number has to be 'folded down' to fit, */
89 /* by reducing its exponent and multiplying the coefficient by a */
90 /* power of ten, or if the exponent on a zero had to be clamped. */
91 /* ------------------------------------------------------------------ */
92 decimal64 * decimal64FromNumber(decimal64 *d64, const decNumber *dn,
94 uInt status=0; /* status accumulator */
95 Int ae; /* adjusted exponent */
96 decNumber dw; /* work */
97 decContext dc; /* .. */
99 uInt comb, exp; /* .. */
100 uInt targar[2]={0, 0}; /* target 64-bit */
101 #define targhi targar[1] /* name the word with the sign */
102 #define targlo targar[0] /* and the other */
104 /* If the number has too many digits, or the exponent could be */
105 /* out of range then reduce the number under the appropriate */
106 /* constraints. This could push the number to Infinity or zero, */
107 /* so this check and rounding must be done before generating the */
109 ae=dn->exponent+dn->digits-1; /* [0 if special] */
110 if (dn->digits>DECIMAL64_Pmax /* too many digits */
111 || ae>DECIMAL64_Emax /* likely overflow */
112 || ae<DECIMAL64_Emin) { /* likely underflow */
113 decContextDefault(&dc, DEC_INIT_DECIMAL64); /* [no traps] */
114 dc.round=set->round; /* use supplied rounding */
115 decNumberPlus(&dw, dn, &dc); /* (round and check) */
116 /* [this changes -0 to 0, so enforce the sign...] */
117 dw.bits|=dn->bits&DECNEG;
118 status=dc.status; /* save status */
119 dn=&dw; /* use the work number */
120 } /* maybe out of range */
122 if (dn->bits&DECSPECIAL) { /* a special value */
123 if (dn->bits&DECINF) targhi=DECIMAL_Inf<<24;
124 else { /* sNaN or qNaN */
125 if ((*dn->lsu!=0 || dn->digits>1) /* non-zero coefficient */
126 && (dn->digits<DECIMAL64_Pmax)) { /* coefficient fits */
127 decDigitsToDPD(dn, targar, 0);
129 if (dn->bits&DECNAN) targhi|=DECIMAL_NaN<<24;
130 else targhi|=DECIMAL_sNaN<<24;
134 else { /* is finite */
135 if (decNumberIsZero(dn)) { /* is a zero */
136 /* set and clamp exponent */
137 if (dn->exponent<-DECIMAL64_Bias) {
138 exp=0; /* low clamp */
142 exp=dn->exponent+DECIMAL64_Bias; /* bias exponent */
143 if (exp>DECIMAL64_Ehigh) { /* top clamp */
148 comb=(exp>>5) & 0x18; /* msd=0, exp top 2 bits .. */
150 else { /* non-zero finite number */
152 Int pad=0; /* coefficient pad digits */
154 /* the dn is known to fit, but it may need to be padded */
155 exp=(uInt)(dn->exponent+DECIMAL64_Bias); /* bias exponent */
156 if (exp>DECIMAL64_Ehigh) { /* fold-down case */
157 pad=exp-DECIMAL64_Ehigh;
158 exp=DECIMAL64_Ehigh; /* [to maximum] */
162 /* fastpath common case */
163 if (DECDPUN==3 && pad==0) {
164 uInt dpd[6]={0,0,0,0,0,0};
167 for (i=0; d>0; i++, d-=3) dpd[i]=BIN2DPD[dn->lsu[i]];
176 msd=dpd[5]; /* [did not really need conversion] */
178 else { /* general case */
179 decDigitsToDPD(dn, targar, pad);
180 /* save and clear the top digit */
185 /* create the combination field */
186 if (msd>=8) comb=0x18 | ((exp>>7) & 0x06) | (msd & 0x01);
187 else comb=((exp>>5) & 0x18) | msd;
189 targhi|=comb<<26; /* add combination field .. */
190 targhi|=(exp&0xff)<<18; /* .. and exponent continuation */
193 if (dn->bits&DECNEG) targhi|=0x80000000; /* add sign bit */
195 /* now write to storage; this is now always endian */
196 pu=(uInt *)d64->bytes; /* overlay */
198 pu[0]=targar[0]; /* directly store the low int */
199 pu[1]=targar[1]; /* then the high int */
202 pu[0]=targar[1]; /* directly store the high int */
203 pu[1]=targar[0]; /* then the low int */
206 if (status!=0) decContextSetStatus(set, status); /* pass on status */
207 /* decimal64Show(d64); */
209 } /* decimal64FromNumber */
211 /* ------------------------------------------------------------------ */
212 /* decimal64ToNumber -- convert decimal64 to decNumber */
213 /* d64 is the source decimal64 */
214 /* dn is the target number, with appropriate space */
215 /* No error is possible. */
216 /* ------------------------------------------------------------------ */
217 decNumber * decimal64ToNumber(const decimal64 *d64, decNumber *dn) {
218 uInt msd; /* coefficient MSD */
219 uInt exp; /* exponent top two bits */
220 uInt comb; /* combination field */
221 const uInt *pu; /* work */
223 uInt sourar[2]; /* source 64-bit */
224 #define sourhi sourar[1] /* name the word with the sign */
225 #define sourlo sourar[0] /* and the lower word */
227 /* load source from storage; this is endian */
228 pu=(const uInt *)d64->bytes; /* overlay */
230 sourlo=pu[0]; /* directly load the low int */
231 sourhi=pu[1]; /* then the high int */
234 sourhi=pu[0]; /* directly load the high int */
235 sourlo=pu[1]; /* then the low int */
238 comb=(sourhi>>26)&0x1f; /* combination field */
240 decNumberZero(dn); /* clean number */
241 if (sourhi&0x80000000) dn->bits=DECNEG; /* set sign if negative */
243 msd=COMBMSD[comb]; /* decode the combination field */
244 exp=COMBEXP[comb]; /* .. */
246 if (exp==3) { /* is a special */
249 return dn; /* no coefficient needed */
251 else if (sourhi&0x02000000) dn->bits|=DECSNAN;
252 else dn->bits|=DECNAN;
253 msd=0; /* no top digit */
255 else { /* is a finite number */
256 dn->exponent=(exp<<8)+((sourhi>>18)&0xff)-DECIMAL64_Bias; /* unbiased */
259 /* get the coefficient */
260 sourhi&=0x0003ffff; /* clean coefficient continuation */
261 if (msd) { /* non-zero msd */
262 sourhi|=msd<<18; /* prefix to coefficient */
263 need=6; /* process 6 declets */
266 if (!sourhi) { /* top word 0 */
267 if (!sourlo) return dn; /* easy: coefficient is 0 */
268 need=3; /* process at least 3 declets */
269 if (sourlo&0xc0000000) need++; /* process 4 declets */
270 /* [could reduce some more, here] */
272 else { /* some bits in top word, msd=0 */
273 need=4; /* process at least 4 declets */
274 if (sourhi&0x0003ff00) need++; /* top declet!=0, process 5 */
278 decDigitsFromDPD(dn, sourar, need); /* process declets */
280 } /* decimal64ToNumber */
283 /* ------------------------------------------------------------------ */
284 /* to-scientific-string -- conversion to numeric string */
285 /* to-engineering-string -- conversion to numeric string */
287 /* decimal64ToString(d64, string); */
288 /* decimal64ToEngString(d64, string); */
290 /* d64 is the decimal64 format number to convert */
291 /* string is the string where the result will be laid out */
293 /* string must be at least 24 characters */
295 /* No error is possible, and no status can be set. */
296 /* ------------------------------------------------------------------ */
297 char * decimal64ToEngString(const decimal64 *d64, char *string){
298 decNumber dn; /* work */
299 decimal64ToNumber(d64, &dn);
300 decNumberToEngString(&dn, string);
302 } /* decimal64ToEngString */
304 char * decimal64ToString(const decimal64 *d64, char *string){
305 uInt msd; /* coefficient MSD */
306 Int exp; /* exponent top two bits or full */
307 uInt comb; /* combination field */
308 char *cstart; /* coefficient start */
309 char *c; /* output pointer in string */
310 const uInt *pu; /* work */
311 char *s, *t; /* .. (source, target) */
314 const uByte *u; /* .. */
316 uInt sourar[2]; /* source 64-bit */
317 #define sourhi sourar[1] /* name the word with the sign */
318 #define sourlo sourar[0] /* and the lower word */
320 /* load source from storage; this is endian */
321 pu=(const uInt *)d64->bytes; /* overlay */
323 sourlo=pu[0]; /* directly load the low int */
324 sourhi=pu[1]; /* then the high int */
327 sourhi=pu[0]; /* directly load the high int */
328 sourlo=pu[1]; /* then the low int */
331 c=string; /* where result will go */
332 if (((Int)sourhi)<0) *c++='-'; /* handle sign */
334 comb=(sourhi>>26)&0x1f; /* combination field */
335 msd=COMBMSD[comb]; /* decode the combination field */
336 exp=COMBEXP[comb]; /* .. */
339 if (msd==0) { /* infinity */
341 strcpy(c+3, "inity");
342 return string; /* easy */
344 if (sourhi&0x02000000) *c++='s'; /* sNaN */
345 strcpy(c, "NaN"); /* complete word */
346 c+=3; /* step past */
347 if (sourlo==0 && (sourhi&0x0003ffff)==0) return string; /* zero payload */
348 /* otherwise drop through to add integer; set correct exp */
349 exp=0; msd=0; /* setup for following code */
351 else exp=(exp<<8)+((sourhi>>18)&0xff)-DECIMAL64_Bias;
353 /* convert 16 digits of significand to characters */
354 cstart=c; /* save start of coefficient */
355 if (msd) *c++='0'+(char)msd; /* non-zero most significant digit */
357 /* Now decode the declets. After extracting each one, it is */
358 /* decoded to binary and then to a 4-char sequence by table lookup; */
359 /* the 4-chars are a 1-char length (significant digits, except 000 */
360 /* has length 0). This allows us to left-align the first declet */
361 /* with non-zero content, then remaining ones are full 3-char */
362 /* length. We use fixed-length memcpys because variable-length */
363 /* causes a subroutine call in GCC. (These are length 4 for speed */
364 /* and are safe because the array has an extra terminator byte.) */
365 #define dpd2char u=&BIN2CHAR[DPD2BIN[dpd]*4]; \
366 if (c!=cstart) {memcpy(c, u+1, 4); c+=3;} \
367 else if (*u) {memcpy(c, u+4-*u, 4); c+=*u;}
369 dpd=(sourhi>>8)&0x3ff; /* declet 1 */
371 dpd=((sourhi&0xff)<<2) | (sourlo>>30); /* declet 2 */
373 dpd=(sourlo>>20)&0x3ff; /* declet 3 */
375 dpd=(sourlo>>10)&0x3ff; /* declet 4 */
377 dpd=(sourlo)&0x3ff; /* declet 5 */
380 if (c==cstart) *c++='0'; /* all zeros -- make 0 */
382 if (exp==0) { /* integer or NaN case -- easy */
383 *c='\0'; /* terminate */
388 e=0; /* assume no E */
390 /* [here, pre-exp is the digits count (==1 for zero)] */
391 if (exp>0 || pre<-5) { /* need exponential form */
392 e=pre-1; /* calculate E value */
393 pre=1; /* assume one digit before '.' */
394 } /* exponential form */
396 /* modify the coefficient, adding 0s, '.', and E+nn as needed */
397 s=c-1; /* source (LSD) */
398 if (pre>0) { /* ddd.ddd (plain), perhaps with E */
399 char *dotat=cstart+pre;
400 if (dotat<c) { /* if embedded dot needed... */
402 for (; s>=dotat; s--, t--) *t=*s; /* open the gap; leave t at gap */
403 *t='.'; /* insert the dot */
404 c++; /* length increased by one */
407 /* finally add the E-part, if needed; it will never be 0, and has */
408 /* a maximum length of 3 digits */
410 *c++='E'; /* starts with E */
411 *c++='+'; /* assume positive */
413 *(c-1)='-'; /* oops, need '-' */
414 e=-e; /* uInt, please */
416 u=&BIN2CHAR[e*4]; /* -> length byte */
417 memcpy(c, u+4-*u, 4); /* copy fixed 4 characters [is safe] */
418 c+=*u; /* bump pointer appropriately */
420 *c='\0'; /* add terminator */
421 /*printf("res %s\n", string); */
425 /* -5<=pre<=0: here for plain 0.ddd or 0.000ddd forms (can never have E) */
427 *(t+1)='\0'; /* can add terminator now */
428 for (; s>=cstart; s--, t--) *t=*s; /* shift whole coefficient right */
430 *c++='0'; /* always starts with 0. */
432 for (; pre<0; pre++) *c++='0'; /* add any 0's after '.' */
433 /*printf("res %s\n", string); */
435 } /* decimal64ToString */
437 /* ------------------------------------------------------------------ */
438 /* to-number -- conversion from numeric string */
440 /* decimal64FromString(result, string, set); */
442 /* result is the decimal64 format number which gets the result of */
444 /* *string is the character string which should contain a valid */
445 /* number (which may be a special value) */
446 /* set is the context */
448 /* The context is supplied to this routine is used for error handling */
449 /* (setting of status and traps) and for the rounding mode, only. */
450 /* If an error occurs, the result will be a valid decimal64 NaN. */
451 /* ------------------------------------------------------------------ */
452 decimal64 * decimal64FromString(decimal64 *result, const char *string,
454 decContext dc; /* work */
455 decNumber dn; /* .. */
457 decContextDefault(&dc, DEC_INIT_DECIMAL64); /* no traps, please */
458 dc.round=set->round; /* use supplied rounding */
460 decNumberFromString(&dn, string, &dc); /* will round if needed */
462 decimal64FromNumber(result, &dn, &dc);
463 if (dc.status!=0) { /* something happened */
464 decContextSetStatus(set, dc.status); /* .. pass it on */
467 } /* decimal64FromString */
469 /* ------------------------------------------------------------------ */
470 /* decimal64IsCanonical -- test whether encoding is canonical */
471 /* d64 is the source decimal64 */
472 /* returns 1 if the encoding of d64 is canonical, 0 otherwise */
473 /* No error is possible. */
474 /* ------------------------------------------------------------------ */
475 uint32_t decimal64IsCanonical(const decimal64 *d64) {
476 decNumber dn; /* work */
477 decimal64 canon; /* .. */
478 decContext dc; /* .. */
479 decContextDefault(&dc, DEC_INIT_DECIMAL64);
480 decimal64ToNumber(d64, &dn);
481 decimal64FromNumber(&canon, &dn, &dc);/* canon will now be canonical */
482 return memcmp(d64, &canon, DECIMAL64_Bytes)==0;
483 } /* decimal64IsCanonical */
485 /* ------------------------------------------------------------------ */
486 /* decimal64Canonical -- copy an encoding, ensuring it is canonical */
487 /* d64 is the source decimal64 */
488 /* result is the target (may be the same decimal64) */
490 /* No error is possible. */
491 /* ------------------------------------------------------------------ */
492 decimal64 * decimal64Canonical(decimal64 *result, const decimal64 *d64) {
493 decNumber dn; /* work */
494 decContext dc; /* .. */
495 decContextDefault(&dc, DEC_INIT_DECIMAL64);
496 decimal64ToNumber(d64, &dn);
497 decimal64FromNumber(result, &dn, &dc);/* result will now be canonical */
499 } /* decimal64Canonical */
501 #if DECTRACE || DECCHECK
502 /* Macros for accessing decimal64 fields. These assume the
503 argument is a reference (pointer) to the decimal64 structure,
504 and the decimal64 is in network byte order (big-endian) */
506 #define decimal64Sign(d) ((unsigned)(d)->bytes[0]>>7)
508 /* Get combination field */
509 #define decimal64Comb(d) (((d)->bytes[0] & 0x7c)>>2)
511 /* Get exponent continuation [does not remove bias] */
512 #define decimal64ExpCon(d) ((((d)->bytes[0] & 0x03)<<6) \
513 | ((unsigned)(d)->bytes[1]>>2))
515 /* Set sign [this assumes sign previously 0] */
516 #define decimal64SetSign(d, b) { \
517 (d)->bytes[0]|=((unsigned)(b)<<7);}
519 /* Set exponent continuation [does not apply bias] */
520 /* This assumes range has been checked and exponent previously 0; */
521 /* type of exponent must be unsigned */
522 #define decimal64SetExpCon(d, e) { \
523 (d)->bytes[0]|=(uint8_t)((e)>>6); \
524 (d)->bytes[1]|=(uint8_t)(((e)&0x3F)<<2);}
526 /* ------------------------------------------------------------------ */
527 /* decimal64Show -- display a decimal64 in hexadecimal [debug aid] */
528 /* d64 -- the number to show */
529 /* ------------------------------------------------------------------ */
530 /* Also shows sign/cob/expconfields extracted */
531 void decimal64Show(const decimal64 *d64) {
532 char buf[DECIMAL64_Bytes*2+1];
536 for (i=0; i<DECIMAL64_Bytes; i++, j+=2) {
537 sprintf(&buf[j], "%02x", d64->bytes[7-i]);
539 printf(" D64> %s [S:%d Cb:%02x Ec:%02x] LittleEndian\n", buf,
540 d64->bytes[7]>>7, (d64->bytes[7]>>2)&0x1f,
541 ((d64->bytes[7]&0x3)<<6)| (d64->bytes[6]>>2));
543 else { /* big-endian */
544 for (i=0; i<DECIMAL64_Bytes; i++, j+=2) {
545 sprintf(&buf[j], "%02x", d64->bytes[i]);
547 printf(" D64> %s [S:%d Cb:%02x Ec:%02x] BigEndian\n", buf,
548 decimal64Sign(d64), decimal64Comb(d64), decimal64ExpCon(d64));
550 } /* decimal64Show */
553 /* ================================================================== */
554 /* Shared utility routines and tables */
555 /* ================================================================== */
556 /* define and include the conversion tables to use for shared code */
558 #define DEC_DPD2BIN 1
560 #define DEC_DPD2BCD 1
562 #include "decDPD.h" /* lookup tables */
564 /* The maximum number of decNumberUnits needed for a working copy of */
565 /* the units array is the ceiling of digits/DECDPUN, where digits is */
566 /* the maximum number of digits in any of the formats for which this */
567 /* is used. decimal128.h must not be included in this module, so, as */
568 /* a very special case, that number is defined as a literal here. */
570 #define DECMAXUNITS ((DECMAX754+DECDPUN-1)/DECDPUN)
572 /* ------------------------------------------------------------------ */
573 /* Combination field lookup tables (uInts to save measurable work) */
575 /* COMBEXP - 2-bit most-significant-bits of exponent */
576 /* [11 if an Infinity or NaN] */
577 /* COMBMSD - 4-bit most-significant-digit */
578 /* [0=Infinity, 1=NaN if COMBEXP=11] */
580 /* Both are indexed by the 5-bit combination field (0-31) */
581 /* ------------------------------------------------------------------ */
582 const uInt COMBEXP[32]={0, 0, 0, 0, 0, 0, 0, 0,
583 1, 1, 1, 1, 1, 1, 1, 1,
584 2, 2, 2, 2, 2, 2, 2, 2,
585 0, 0, 1, 1, 2, 2, 3, 3};
586 const uInt COMBMSD[32]={0, 1, 2, 3, 4, 5, 6, 7,
587 0, 1, 2, 3, 4, 5, 6, 7,
588 0, 1, 2, 3, 4, 5, 6, 7,
589 8, 9, 8, 9, 8, 9, 0, 1};
591 /* ------------------------------------------------------------------ */
592 /* decDigitsToDPD -- pack coefficient into DPD form */
594 /* dn is the source number (assumed valid, max DECMAX754 digits) */
595 /* targ is 1, 2, or 4-element uInt array, which the caller must */
596 /* have cleared to zeros */
597 /* shift is the number of 0 digits to add on the right (normally 0) */
599 /* The coefficient must be known small enough to fit. The full */
600 /* coefficient is copied, including the leading 'odd' digit. This */
601 /* digit is retrieved and packed into the combination field by the */
604 /* The target uInts are altered only as necessary to receive the */
605 /* digits of the decNumber. When more than one uInt is needed, they */
606 /* are filled from left to right (that is, the uInt at offset 0 will */
607 /* end up with the least-significant digits). */
609 /* shift is used for 'fold-down' padding. */
611 /* No error is possible. */
612 /* ------------------------------------------------------------------ */
614 /* Constant multipliers for divide-by-power-of five using reciprocal */
615 /* multiply, after removing powers of 2 by shifting, and final shift */
616 /* of 17 [we only need up to **4] */
617 static const uInt multies[]={131073, 26215, 5243, 1049, 210};
618 /* QUOT10 -- macro to return the quotient of unit u divided by 10**n */
619 #define QUOT10(u, n) ((((uInt)(u)>>(n))*multies[n])>>17)
621 void decDigitsToDPD(const decNumber *dn, uInt *targ, Int shift) {
623 Int n; /* output bunch counter */
624 Int digits=dn->digits; /* digit countdown */
625 uInt dpd; /* densely packed decimal value */
626 uInt bin; /* binary value 0-999 */
627 uInt *uout=targ; /* -> current output uInt */
628 uInt uoff=0; /* -> current output offset [from right] */
629 const Unit *inu=dn->lsu; /* -> current input unit */
630 Unit uar[DECMAXUNITS]; /* working copy of units, iff shifted */
631 #if DECDPUN!=3 /* not fast path */
632 Unit in; /* current unit */
635 if (shift!=0) { /* shift towards most significant required */
636 /* shift the units array to the left by pad digits and copy */
637 /* [this code is a special case of decShiftToMost, which could */
638 /* be used instead if exposed and the array were copied first] */
639 const Unit *source; /* .. */
640 Unit *target, *first; /* .. */
641 uInt next=0; /* work */
643 source=dn->lsu+D2U(digits)-1; /* where msu comes from */
644 target=uar+D2U(digits)-1+D2U(shift);/* where upper part of first cut goes */
645 cut=DECDPUN-MSUDIGITS(shift); /* where to slice */
646 if (cut==0) { /* unit-boundary case */
647 for (; source>=dn->lsu; source--, target--) *target=*source;
650 first=uar+D2U(digits+shift)-1; /* where msu will end up */
651 for (; source>=dn->lsu; source--, target--) {
652 /* split the source Unit and accumulate remainder for next */
654 uInt quot=QUOT10(*source, cut);
655 uInt rem=*source-quot*DECPOWERS[cut];
658 uInt rem=*source%DECPOWERS[cut];
659 next+=*source/DECPOWERS[cut];
661 if (target<=first) *target=(Unit)next; /* write to target iff valid */
662 next=rem*DECPOWERS[DECDPUN-cut]; /* save remainder for next Unit */
665 /* propagate remainder to one below and clear the rest */
666 for (; target>=uar; target--) {
670 digits+=shift; /* add count (shift) of zeros added */
671 inu=uar; /* use units in working array */
674 /* now densely pack the coefficient into DPD declets */
676 #if DECDPUN!=3 /* not fast path */
677 in=*inu; /* current unit */
678 cut=0; /* at lowest digit */
679 bin=0; /* [keep compiler quiet] */
682 for(n=0; digits>0; n++) { /* each output bunch */
683 #if DECDPUN==3 /* fast path, 3-at-a-time */
684 bin=*inu; /* 3 digits ready for convert */
685 digits-=3; /* [may go negative] */
686 inu++; /* may need another */
688 #else /* must collect digit-by-digit */
689 Unit dig; /* current digit */
690 Int j; /* digit-in-declet count */
691 for (j=0; j<3; j++) {
693 Unit temp=(Unit)((uInt)(in*6554)>>16);
694 dig=(Unit)(in-X10(temp));
701 else if (j==1) bin+=X10(dig);
702 else /* j==2 */ bin+=X100(dig);
704 if (digits==0) break; /* [also protects *inu below] */
706 if (cut==DECDPUN) {inu++; in=*inu; cut=0;}
709 /* here there are 3 digits in bin, or have used all input digits */
713 /* write declet to uInt array */
716 if (uoff<32) continue; /* no uInt boundary cross */
719 *uout|=dpd>>(10-uoff); /* collect top bits */
722 } /* decDigitsToDPD */
724 /* ------------------------------------------------------------------ */
725 /* decDigitsFromDPD -- unpack a format's coefficient */
727 /* dn is the target number, with 7, 16, or 34-digit space. */
728 /* sour is a 1, 2, or 4-element uInt array containing only declets */
729 /* declets is the number of (right-aligned) declets in sour to */
730 /* be processed. This may be 1 more than the obvious number in */
731 /* a format, as any top digit is prefixed to the coefficient */
732 /* continuation field. It also may be as small as 1, as the */
733 /* caller may pre-process leading zero declets. */
735 /* When doing the 'extra declet' case care is taken to avoid writing */
736 /* extra digits when there are leading zeros, as these could overflow */
737 /* the units array when DECDPUN is not 3. */
739 /* The target uInts are used only as necessary to process declets */
740 /* declets into the decNumber. When more than one uInt is needed, */
741 /* they are used from left to right (that is, the uInt at offset 0 */
742 /* provides the least-significant digits). */
744 /* dn->digits is set, but not the sign or exponent. */
745 /* No error is possible [the redundant 888 codes are allowed]. */
746 /* ------------------------------------------------------------------ */
747 void decDigitsFromDPD(decNumber *dn, const uInt *sour, Int declets) {
749 uInt dpd; /* collector for 10 bits */
751 Unit *uout=dn->lsu; /* -> current output unit */
752 Unit *last=uout; /* will be unit containing msd */
753 const uInt *uin=sour; /* -> current input uInt */
754 uInt uoff=0; /* -> current input offset [from right] */
757 uInt bcd; /* BCD result */
758 uInt nibble; /* work */
759 Unit out=0; /* accumulator */
760 Int cut=0; /* power of ten in current unit */
763 uInt const *pow; /* work */
766 /* Expand the densely-packed integer, right to left */
767 for (n=declets-1; n>=0; n--) { /* count down declets of 10 bits */
770 if (uoff>32) { /* crossed uInt boundary */
773 dpd|=*uin<<(10-uoff); /* get waiting bits */
775 dpd&=0x3ff; /* clear uninteresting bits */
780 *uout=DPD2BIN[dpd]; /* convert 10 bits to binary 0-999 */
781 last=uout; /* record most significant unit */
786 #else /* DECDPUN!=3 */
787 if (dpd==0) { /* fastpath [e.g., leading zeros] */
788 /* write out three 0 digits (nibbles); out may have digit(s) */
790 if (cut==DECDPUN) {*uout=out; if (out) {last=uout; out=0;} uout++; cut=0;}
791 if (n==0) break; /* [as below, works even if MSD=0] */
793 if (cut==DECDPUN) {*uout=out; if (out) {last=uout; out=0;} uout++; cut=0;}
795 if (cut==DECDPUN) {*uout=out; if (out) {last=uout; out=0;} uout++; cut=0;}
799 bcd=DPD2BCD[dpd]; /* convert 10 bits to 12 bits BCD */
801 /* now accumulate the 3 BCD nibbles into units */
803 if (nibble) out=(Unit)(out+nibble*DECPOWERS[cut]);
805 if (cut==DECDPUN) {*uout=out; if (out) {last=uout; out=0;} uout++; cut=0;}
808 /* if this is the last declet and the remaining nibbles in bcd */
809 /* are 00 then process no more nibbles, because this could be */
810 /* the 'odd' MSD declet and writing any more Units would then */
811 /* overflow the unit array */
812 if (n==0 && !bcd) break;
815 if (nibble) out=(Unit)(out+nibble*DECPOWERS[cut]);
817 if (cut==DECDPUN) {*uout=out; if (out) {last=uout; out=0;} uout++; cut=0;}
821 if (nibble) out=(Unit)(out+nibble*DECPOWERS[cut]);
823 if (cut==DECDPUN) {*uout=out; if (out) {last=uout; out=0;} uout++; cut=0;}
825 if (cut!=0) { /* some more left over */
826 *uout=out; /* write out final unit */
827 if (out) last=uout; /* and note if non-zero */
831 /* here, last points to the most significant unit with digits; */
832 /* inspect it to get the final digits count -- this is essentially */
833 /* the same code as decGetDigits in decNumber.c */
834 dn->digits=(last-dn->lsu)*DECDPUN+1; /* floor of digits, plus */
835 /* must be at least 1 digit */
837 if (*last<10) return; /* common odd digit or 0 */
838 dn->digits++; /* must be 2 at least */
840 if (*last<100) return; /* 10-99 */
841 dn->digits++; /* must be 3 at least */
843 if (*last<1000) return; /* 100-999 */
844 dn->digits++; /* must be 4 at least */
846 for (pow=&DECPOWERS[4]; *last>=*pow; pow++) dn->digits++;
852 } /*decDigitsFromDPD */