1 /* Decimal number arithmetic module for the decNumber C Library.
2 Copyright (C) 2005, 2007 Free Software Foundation, Inc.
3 Contributed by IBM Corporation. Author Mike Cowlishaw.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
12 In addition to the permissions in the GNU General Public License,
13 the Free Software Foundation gives you unlimited permission to link
14 the compiled version of this file into combinations with other
15 programs, and to distribute those combinations without any
16 restriction coming from the use of this file. (The General Public
17 License restrictions do apply in other respects; for example, they
18 cover modification of the file, and distribution when not linked
19 into a combine executable.)
21 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
22 WARRANTY; without even the implied warranty of MERCHANTABILITY or
23 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
26 You should have received a copy of the GNU General Public License
27 along with GCC; see the file COPYING. If not, write to the Free
28 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
31 /* ------------------------------------------------------------------ */
32 /* Decimal Number arithmetic module */
33 /* ------------------------------------------------------------------ */
34 /* This module comprises the routines for arbitrary-precision General */
35 /* Decimal Arithmetic as defined in the specification which may be */
36 /* found on the General Decimal Arithmetic pages. It implements both */
37 /* the full ('extended') arithmetic and the simpler ('subset') */
42 /* 1. This code is ANSI C89 except: */
44 /* a) C99 line comments (double forward slash) are used. (Most C */
45 /* compilers accept these. If yours does not, a simple script */
46 /* can be used to convert them to ANSI C comments.) */
48 /* b) Types from C99 stdint.h are used. If you do not have this */
49 /* header file, see the User's Guide section of the decNumber */
50 /* documentation; this lists the necessary definitions. */
52 /* c) If DECDPUN>4 or DECUSE64=1, the C99 64-bit int64_t and */
53 /* uint64_t types may be used. To avoid these, set DECUSE64=0 */
54 /* and DECDPUN<=4 (see documentation). */
56 /* The code also conforms to C99 restrictions; in particular, */
57 /* strict aliasing rules are observed. */
59 /* 2. The decNumber format which this library uses is optimized for */
60 /* efficient processing of relatively short numbers; in particular */
61 /* it allows the use of fixed sized structures and minimizes copy */
62 /* and move operations. It does, however, support arbitrary */
63 /* precision (up to 999,999,999 digits) and arbitrary exponent */
64 /* range (Emax in the range 0 through 999,999,999 and Emin in the */
65 /* range -999,999,999 through 0). Mathematical functions (for */
66 /* example decNumberExp) as identified below are restricted more */
67 /* tightly: digits, emax, and -emin in the context must be <= */
68 /* DEC_MAX_MATH (999999), and their operand(s) must be within */
71 /* 3. Logical functions are further restricted; their operands must */
72 /* be finite, positive, have an exponent of zero, and all digits */
73 /* must be either 0 or 1. The result will only contain digits */
74 /* which are 0 or 1 (and will have exponent=0 and a sign of 0). */
76 /* 4. Operands to operator functions are never modified unless they */
77 /* are also specified to be the result number (which is always */
78 /* permitted). Other than that case, operands must not overlap. */
80 /* 5. Error handling: the type of the error is ORed into the status */
81 /* flags in the current context (decContext structure). The */
82 /* SIGFPE signal is then raised if the corresponding trap-enabler */
83 /* flag in the decContext is set (is 1). */
85 /* It is the responsibility of the caller to clear the status */
86 /* flags as required. */
88 /* The result of any routine which returns a number will always */
89 /* be a valid number (which may be a special value, such as an */
90 /* Infinity or NaN). */
92 /* 6. The decNumber format is not an exchangeable concrete */
93 /* representation as it comprises fields which may be machine- */
94 /* dependent (packed or unpacked, or special length, for example). */
95 /* Canonical conversions to and from strings are provided; other */
96 /* conversions are available in separate modules. */
98 /* 7. Normally, input operands are assumed to be valid. Set DECCHECK */
99 /* to 1 for extended operand checking (including NULL operands). */
100 /* Results are undefined if a badly-formed structure (or a NULL */
101 /* pointer to a structure) is provided, though with DECCHECK */
102 /* enabled the operator routines are protected against exceptions. */
103 /* (Except if the result pointer is NULL, which is unrecoverable.) */
105 /* However, the routines will never cause exceptions if they are */
106 /* given well-formed operands, even if the value of the operands */
107 /* is inappropriate for the operation and DECCHECK is not set. */
108 /* (Except for SIGFPE, as and where documented.) */
110 /* 8. Subset arithmetic is available only if DECSUBSET is set to 1. */
111 /* ------------------------------------------------------------------ */
112 /* Implementation notes for maintenance of this module: */
114 /* 1. Storage leak protection: Routines which use malloc are not */
115 /* permitted to use return for fastpath or error exits (i.e., */
116 /* they follow strict structured programming conventions). */
117 /* Instead they have a do{}while(0); construct surrounding the */
118 /* code which is protected -- break may be used to exit this. */
119 /* Other routines can safely use the return statement inline. */
121 /* Storage leak accounting can be enabled using DECALLOC. */
123 /* 2. All loops use the for(;;) construct. Any do construct does */
124 /* not loop; it is for allocation protection as just described. */
126 /* 3. Setting status in the context must always be the very last */
127 /* action in a routine, as non-0 status may raise a trap and hence */
128 /* the call to set status may not return (if the handler uses long */
129 /* jump). Therefore all cleanup must be done first. In general, */
130 /* to achieve this status is accumulated and is only applied just */
131 /* before return by calling decContextSetStatus (via decStatus). */
133 /* Routines which allocate storage cannot, in general, use the */
134 /* 'top level' routines which could cause a non-returning */
135 /* transfer of control. The decXxxxOp routines are safe (do not */
136 /* call decStatus even if traps are set in the context) and should */
137 /* be used instead (they are also a little faster). */
139 /* 4. Exponent checking is minimized by allowing the exponent to */
140 /* grow outside its limits during calculations, provided that */
141 /* the decFinalize function is called later. Multiplication and */
142 /* division, and intermediate calculations in exponentiation, */
143 /* require more careful checks because of the risk of 31-bit */
144 /* overflow (the most negative valid exponent is -1999999997, for */
145 /* a 999999999-digit number with adjusted exponent of -999999999). */
147 /* 5. Rounding is deferred until finalization of results, with any */
148 /* 'off to the right' data being represented as a single digit */
149 /* residue (in the range -1 through 9). This avoids any double- */
150 /* rounding when more than one shortening takes place (for */
151 /* example, when a result is subnormal). */
153 /* 6. The digits count is allowed to rise to a multiple of DECDPUN */
154 /* during many operations, so whole Units are handled and exact */
155 /* accounting of digits is not needed. The correct digits value */
156 /* is found by decGetDigits, which accounts for leading zeros. */
157 /* This must be called before any rounding if the number of digits */
158 /* is not known exactly. */
160 /* 7. The multiply-by-reciprocal 'trick' is used for partitioning */
161 /* numbers up to four digits, using appropriate constants. This */
162 /* is not useful for longer numbers because overflow of 32 bits */
163 /* would lead to 4 multiplies, which is almost as expensive as */
164 /* a divide (unless a floating-point or 64-bit multiply is */
165 /* assumed to be available). */
167 /* 8. Unusual abbreviations that may be used in the commentary: */
168 /* lhs -- left hand side (operand, of an operation) */
169 /* lsd -- least significant digit (of coefficient) */
170 /* lsu -- least significant Unit (of coefficient) */
171 /* msd -- most significant digit (of coefficient) */
172 /* msi -- most significant item (in an array) */
173 /* msu -- most significant Unit (of coefficient) */
174 /* rhs -- right hand side (operand, of an operation) */
175 /* +ve -- positive */
176 /* -ve -- negative */
177 /* ** -- raise to the power */
178 /* ------------------------------------------------------------------ */
180 #include <stdlib.h> /* for malloc, free, etc. */
181 #include <stdio.h> /* for printf [if needed] */
182 #include <string.h> /* for strcpy */
183 #include <ctype.h> /* for lower */
184 #include "dconfig.h" /* for GCC definitions */
185 #include "decNumber.h" /* base number library */
186 #include "decNumberLocal.h" /* decNumber local types, etc. */
189 /* Public lookup table used by the D2U macro */
190 const uByte d2utable[DECMAXD2U+1]=D2UTABLE;
192 #define DECVERB 1 /* set to 1 for verbose DECCHECK */
193 #define powers DECPOWERS /* old internal name */
195 /* Local constants */
196 #define DIVIDE 0x80 /* Divide operators */
197 #define REMAINDER 0x40 /* .. */
198 #define DIVIDEINT 0x20 /* .. */
199 #define REMNEAR 0x10 /* .. */
200 #define COMPARE 0x01 /* Compare operators */
201 #define COMPMAX 0x02 /* .. */
202 #define COMPMIN 0x03 /* .. */
203 #define COMPTOTAL 0x04 /* .. */
204 #define COMPNAN 0x05 /* .. [NaN processing] */
205 #define COMPSIG 0x06 /* .. [signaling COMPARE] */
206 #define COMPMAXMAG 0x07 /* .. */
207 #define COMPMINMAG 0x08 /* .. */
209 #define DEC_sNaN 0x40000000 /* local status: sNaN signal */
210 #define BADINT (Int)0x80000000 /* most-negative Int; error indicator */
211 /* Next two indicate an integer >= 10**6, and its parity (bottom bit) */
212 #define BIGEVEN (Int)0x80000002
213 #define BIGODD (Int)0x80000003
215 static Unit uarrone[1]={1}; /* Unit array of 1, used for incrementing */
217 /* Granularity-dependent code */
219 #define eInt Int /* extended integer */
220 #define ueInt uInt /* unsigned extended integer */
221 /* Constant multipliers for divide-by-power-of five using reciprocal */
222 /* multiply, after removing powers of 2 by shifting, and final shift */
223 /* of 17 [we only need up to **4] */
224 static const uInt multies[]={131073, 26215, 5243, 1049, 210};
225 /* QUOT10 -- macro to return the quotient of unit u divided by 10**n */
226 #define QUOT10(u, n) ((((uInt)(u)>>(n))*multies[n])>>17)
228 /* For DECDPUN>4 non-ANSI-89 64-bit types are needed. */
230 #error decNumber.c: DECUSE64 must be 1 when DECDPUN>4
232 #define eInt Long /* extended integer */
233 #define ueInt uLong /* unsigned extended integer */
237 static decNumber * decAddOp(decNumber *, const decNumber *, const decNumber *,
238 decContext *, uByte, uInt *);
239 static Flag decBiStr(const char *, const char *, const char *);
240 static uInt decCheckMath(const decNumber *, decContext *, uInt *);
241 static void decApplyRound(decNumber *, decContext *, Int, uInt *);
242 static Int decCompare(const decNumber *lhs, const decNumber *rhs, Flag);
243 static decNumber * decCompareOp(decNumber *, const decNumber *,
244 const decNumber *, decContext *,
246 static void decCopyFit(decNumber *, const decNumber *, decContext *,
248 static decNumber * decDecap(decNumber *, Int);
249 static decNumber * decDivideOp(decNumber *, const decNumber *,
250 const decNumber *, decContext *, Flag, uInt *);
251 static decNumber * decExpOp(decNumber *, const decNumber *,
252 decContext *, uInt *);
253 static void decFinalize(decNumber *, decContext *, Int *, uInt *);
254 static Int decGetDigits(Unit *, Int);
255 static Int decGetInt(const decNumber *);
256 static decNumber * decLnOp(decNumber *, const decNumber *,
257 decContext *, uInt *);
258 static decNumber * decMultiplyOp(decNumber *, const decNumber *,
259 const decNumber *, decContext *,
261 static decNumber * decNaNs(decNumber *, const decNumber *,
262 const decNumber *, decContext *, uInt *);
263 static decNumber * decQuantizeOp(decNumber *, const decNumber *,
264 const decNumber *, decContext *, Flag,
266 static void decReverse(Unit *, Unit *);
267 static void decSetCoeff(decNumber *, decContext *, const Unit *,
269 static void decSetMaxValue(decNumber *, decContext *);
270 static void decSetOverflow(decNumber *, decContext *, uInt *);
271 static void decSetSubnormal(decNumber *, decContext *, Int *, uInt *);
272 static Int decShiftToLeast(Unit *, Int, Int);
273 static Int decShiftToMost(Unit *, Int, Int);
274 static void decStatus(decNumber *, uInt, decContext *);
275 static void decToString(const decNumber *, char[], Flag);
276 static decNumber * decTrim(decNumber *, decContext *, Flag, Flag, Int *);
277 static Int decUnitAddSub(const Unit *, Int, const Unit *, Int, Int,
279 static Int decUnitCompare(const Unit *, Int, const Unit *, Int, Int);
282 /* decFinish == decFinalize when no subset arithmetic needed */
283 #define decFinish(a,b,c,d) decFinalize(a,b,c,d)
285 static void decFinish(decNumber *, decContext *, Int *, uInt *);
286 static decNumber * decRoundOperand(const decNumber *, decContext *, uInt *);
290 /* masked special-values bits */
291 #define SPECIALARG (rhs->bits & DECSPECIAL)
292 #define SPECIALARGS ((lhs->bits | rhs->bits) & DECSPECIAL)
294 /* Diagnostic macros, etc. */
296 /* Handle malloc/free accounting. If enabled, our accountable routines */
297 /* are used; otherwise the code just goes straight to the system malloc */
298 /* and free routines. */
299 #define malloc(a) decMalloc(a)
300 #define free(a) decFree(a)
301 #define DECFENCE 0x5a /* corruption detector */
302 /* 'Our' malloc and free: */
303 static void *decMalloc(size_t);
304 static void decFree(void *);
305 uInt decAllocBytes=0; /* count of bytes allocated */
306 /* Note that DECALLOC code only checks for storage buffer overflow. */
307 /* To check for memory leaks, the decAllocBytes variable must be */
308 /* checked to be 0 at appropriate times (e.g., after the test */
309 /* harness completes a set of tests). This checking may be unreliable */
310 /* if the testing is done in a multi-thread environment. */
314 /* Optional checking routines. Enabling these means that decNumber */
315 /* and decContext operands to operator routines are checked for */
316 /* correctness. This roughly doubles the execution time of the */
317 /* fastest routines (and adds 600+ bytes), so should not normally be */
318 /* used in 'production'. */
319 /* decCheckInexact is used to check that inexact results have a full */
320 /* complement of digits (where appropriate -- this is not the case */
321 /* for Quantize, for example) */
322 #define DECUNRESU ((decNumber *)(void *)0xffffffff)
323 #define DECUNUSED ((const decNumber *)(void *)0xffffffff)
324 #define DECUNCONT ((decContext *)(void *)(0xffffffff))
325 static Flag decCheckOperands(decNumber *, const decNumber *,
326 const decNumber *, decContext *);
327 static Flag decCheckNumber(const decNumber *);
328 static void decCheckInexact(const decNumber *, decContext *);
331 #if DECTRACE || DECCHECK
332 /* Optional trace/debugging routines (may or may not be used) */
333 void decNumberShow(const decNumber *); /* displays the components of a number */
334 static void decDumpAr(char, const Unit *, Int);
337 /* ================================================================== */
339 /* ================================================================== */
341 /* ------------------------------------------------------------------ */
342 /* from-int32 -- conversion from Int or uInt */
344 /* dn is the decNumber to receive the integer */
345 /* in or uin is the integer to be converted */
348 /* No error is possible. */
349 /* ------------------------------------------------------------------ */
350 decNumber * decNumberFromInt32(decNumber *dn, Int in) {
353 else { /* negative (possibly BADINT) */
354 if (in==BADINT) unsig=(uInt)1073741824*2; /* special case */
355 else unsig=-in; /* invert */
357 /* in is now positive */
358 decNumberFromUInt32(dn, unsig);
359 if (in<0) dn->bits=DECNEG; /* sign needed */
361 } /* decNumberFromInt32 */
363 decNumber * decNumberFromUInt32(decNumber *dn, uInt uin) {
364 Unit *up; /* work pointer */
365 decNumberZero(dn); /* clean */
366 if (uin==0) return dn; /* [or decGetDigits bad call] */
367 for (up=dn->lsu; uin>0; up++) {
368 *up=(Unit)(uin%(DECDPUNMAX+1));
369 uin=uin/(DECDPUNMAX+1);
371 dn->digits=decGetDigits(dn->lsu, up-dn->lsu);
373 } /* decNumberFromUInt32 */
375 /* ------------------------------------------------------------------ */
376 /* to-int32 -- conversion to Int or uInt */
378 /* dn is the decNumber to convert */
379 /* set is the context for reporting errors */
380 /* returns the converted decNumber, or 0 if Invalid is set */
382 /* Invalid is set if the decNumber does not have exponent==0 or if */
383 /* it is a NaN, Infinite, or out-of-range. */
384 /* ------------------------------------------------------------------ */
385 Int decNumberToInt32(const decNumber *dn, decContext *set) {
387 if (decCheckOperands(DECUNRESU, DECUNUSED, dn, set)) return 0;
390 /* special or too many digits, or bad exponent */
391 if (dn->bits&DECSPECIAL || dn->digits>10 || dn->exponent!=0) ; /* bad */
392 else { /* is a finite integer with 10 or fewer digits */
394 const Unit *up; /* .. */
395 uInt hi=0, lo; /* .. */
396 up=dn->lsu; /* -> lsu */
397 lo=*up; /* get 1 to 9 digits */
398 #if DECDPUN>1 /* split to higher */
403 /* collect remaining Units, if any, into hi */
404 for (d=DECDPUN; d<dn->digits; up++, d+=DECDPUN) hi+=*up*powers[d-1];
405 /* now low has the lsd, hi the remainder */
406 if (hi>214748364 || (hi==214748364 && lo>7)) { /* out of range? */
407 /* most-negative is a reprieve */
408 if (dn->bits&DECNEG && hi==214748364 && lo==8) return 0x80000000;
409 /* bad -- drop through */
411 else { /* in-range always */
413 if (dn->bits&DECNEG) return -i;
417 decContextSetStatus(set, DEC_Invalid_operation); /* [may not return] */
419 } /* decNumberToInt32 */
421 uInt decNumberToUInt32(const decNumber *dn, decContext *set) {
423 if (decCheckOperands(DECUNRESU, DECUNUSED, dn, set)) return 0;
425 /* special or too many digits, or bad exponent, or negative (<0) */
426 if (dn->bits&DECSPECIAL || dn->digits>10 || dn->exponent!=0
427 || (dn->bits&DECNEG && !ISZERO(dn))); /* bad */
428 else { /* is a finite integer with 10 or fewer digits */
430 const Unit *up; /* .. */
431 uInt hi=0, lo; /* .. */
432 up=dn->lsu; /* -> lsu */
433 lo=*up; /* get 1 to 9 digits */
434 #if DECDPUN>1 /* split to higher */
439 /* collect remaining Units, if any, into hi */
440 for (d=DECDPUN; d<dn->digits; up++, d+=DECDPUN) hi+=*up*powers[d-1];
442 /* now low has the lsd, hi the remainder */
443 if (hi>429496729 || (hi==429496729 && lo>5)) ; /* no reprieve possible */
444 else return X10(hi)+lo;
446 decContextSetStatus(set, DEC_Invalid_operation); /* [may not return] */
448 } /* decNumberToUInt32 */
450 /* ------------------------------------------------------------------ */
451 /* to-scientific-string -- conversion to numeric string */
452 /* to-engineering-string -- conversion to numeric string */
454 /* decNumberToString(dn, string); */
455 /* decNumberToEngString(dn, string); */
457 /* dn is the decNumber to convert */
458 /* string is the string where the result will be laid out */
460 /* string must be at least dn->digits+14 characters long */
462 /* No error is possible, and no status can be set. */
463 /* ------------------------------------------------------------------ */
464 char * decNumberToString(const decNumber *dn, char *string){
465 decToString(dn, string, 0);
467 } /* DecNumberToString */
469 char * decNumberToEngString(const decNumber *dn, char *string){
470 decToString(dn, string, 1);
472 } /* DecNumberToEngString */
474 /* ------------------------------------------------------------------ */
475 /* to-number -- conversion from numeric string */
477 /* decNumberFromString -- convert string to decNumber */
478 /* dn -- the number structure to fill */
479 /* chars[] -- the string to convert ('\0' terminated) */
480 /* set -- the context used for processing any error, */
481 /* determining the maximum precision available */
482 /* (set.digits), determining the maximum and minimum */
483 /* exponent (set.emax and set.emin), determining if */
484 /* extended values are allowed, and checking the */
485 /* rounding mode if overflow occurs or rounding is */
488 /* The length of the coefficient and the size of the exponent are */
489 /* checked by this routine, so the correct error (Underflow or */
490 /* Overflow) can be reported or rounding applied, as necessary. */
492 /* If bad syntax is detected, the result will be a quiet NaN. */
493 /* ------------------------------------------------------------------ */
494 decNumber * decNumberFromString(decNumber *dn, const char chars[],
496 Int exponent=0; /* working exponent [assume 0] */
497 uByte bits=0; /* working flags [assume +ve] */
498 Unit *res; /* where result will be built */
499 Unit resbuff[SD2U(DECBUFFER+9)];/* local buffer in case need temporary */
500 /* [+9 allows for ln() constants] */
501 Unit *allocres=NULL; /* -> allocated result, iff allocated */
502 Int d=0; /* count of digits found in decimal part */
503 const char *dotchar=NULL; /* where dot was found */
504 const char *cfirst=chars; /* -> first character of decimal part */
505 const char *last=NULL; /* -> last digit of decimal part */
506 const char *c; /* work */
509 Int cut, out; /* .. */
511 Int residue; /* rounding residue */
512 uInt status=0; /* error code */
515 if (decCheckOperands(DECUNRESU, DECUNUSED, DECUNUSED, set))
516 return decNumberZero(dn);
519 do { /* status & malloc protection */
520 for (c=chars;; c++) { /* -> input character */
521 if (*c>='0' && *c<='9') { /* test for Arabic digit */
523 d++; /* count of real digits */
524 continue; /* still in decimal part */
526 if (*c=='.' && dotchar==NULL) { /* first '.' */
527 dotchar=c; /* record offset into decimal part */
528 if (c==cfirst) cfirst++; /* first digit must follow */
530 if (c==chars) { /* first in string... */
531 if (*c=='-') { /* valid - sign */
535 if (*c=='+') { /* valid + sign */
539 /* *c is not a digit, or a valid +, -, or '.' */
543 if (last==NULL) { /* no digits yet */
544 status=DEC_Conversion_syntax;/* assume the worst */
545 if (*c=='\0') break; /* and no more to come... */
547 /* if subset then infinities and NaNs are not allowed */
548 if (!set->extended) break; /* hopeless */
550 /* Infinities and NaNs are possible, here */
551 if (dotchar!=NULL) break; /* .. unless had a dot */
552 decNumberZero(dn); /* be optimistic */
553 if (decBiStr(c, "infinity", "INFINITY")
554 || decBiStr(c, "inf", "INF")) {
555 dn->bits=bits | DECINF;
556 status=0; /* is OK */
557 break; /* all done */
560 /* 2003.09.10 NaNs are now permitted to have a sign */
561 dn->bits=bits | DECNAN; /* assume simple NaN */
562 if (*c=='s' || *c=='S') { /* looks like an sNaN */
564 dn->bits=bits | DECSNAN;
566 if (*c!='n' && *c!='N') break; /* check caseless "NaN" */
568 if (*c!='a' && *c!='A') break; /* .. */
570 if (*c!='n' && *c!='N') break; /* .. */
572 /* now either nothing, or nnnn payload, expected */
573 /* -> start of integer and skip leading 0s [including plain 0] */
574 for (cfirst=c; *cfirst=='0';) cfirst++;
575 if (*cfirst=='\0') { /* "NaN" or "sNaN", maybe with all 0s */
576 status=0; /* it's good */
579 /* something other than 0s; setup last and d as usual [no dots] */
580 for (c=cfirst;; c++, d++) {
581 if (*c<'0' || *c>'9') break; /* test for Arabic digit */
584 if (*c!='\0') break; /* not all digits */
585 if (d>set->digits-1) {
586 /* [NB: payload in a decNumber can be full length unless */
587 /* clamped, in which case can only be digits-1] */
588 if (set->clamp) break;
589 if (d>set->digits) break;
590 } /* too many digits? */
591 /* good; drop through to convert the integer to coefficient */
592 status=0; /* syntax is OK */
593 bits=dn->bits; /* for copy-back */
596 else if (*c!='\0') { /* more to process... */
597 /* had some digits; exponent is only valid sequence now */
598 Flag nege; /* 1=negative exponent */
599 const char *firstexp; /* -> first significant exponent digit */
600 status=DEC_Conversion_syntax;/* assume the worst */
601 if (*c!='e' && *c!='E') break;
602 /* Found 'e' or 'E' -- now process explicit exponent */
603 /* 1998.07.11: sign no longer required */
605 c++; /* to (possible) sign */
606 if (*c=='-') {nege=1; c++;}
607 else if (*c=='+') c++;
610 for (; *c=='0' && *(c+1)!='\0';) c++; /* strip insignificant zeros */
611 firstexp=c; /* save exponent digit place */
613 if (*c<'0' || *c>'9') break; /* not a digit */
614 exponent=X10(exponent)+(Int)*c-(Int)'0';
616 /* if not now on a '\0', *c must not be a digit */
619 /* (this next test must be after the syntax checks) */
620 /* if it was too long the exponent may have wrapped, so check */
621 /* carefully and set it to a certain overflow if wrap possible */
622 if (c>=firstexp+9+1) {
623 if (c>firstexp+9+1 || *firstexp>'1') exponent=DECNUMMAXE*2;
624 /* [up to 1999999999 is OK, for example 1E-1000000998] */
626 if (nege) exponent=-exponent; /* was negative */
627 status=0; /* is OK */
628 } /* stuff after digits */
630 /* Here when whole string has been inspected; syntax is good */
631 /* cfirst->first digit (never dot), last->last digit (ditto) */
633 /* strip leading zeros/dot [leave final 0 if all 0's] */
634 if (*cfirst=='0') { /* [cfirst has stepped over .] */
635 for (c=cfirst; c<last; c++, cfirst++) {
636 if (*c=='.') continue; /* ignore dots */
637 if (*c!='0') break; /* non-zero found */
638 d--; /* 0 stripped */
641 /* make a rapid exit for easy zeros if !extended */
642 if (*cfirst=='0' && !set->extended) {
643 decNumberZero(dn); /* clean result */
644 break; /* [could be return] */
647 } /* at least one leading 0 */
649 /* Handle decimal point... */
650 if (dotchar!=NULL && dotchar<last) /* non-trailing '.' found? */
651 exponent-=(last-dotchar); /* adjust exponent */
652 /* [we can now ignore the .] */
654 /* OK, the digits string is good. Assemble in the decNumber, or in */
655 /* a temporary units array if rounding is needed */
656 if (d<=set->digits) res=dn->lsu; /* fits into supplied decNumber */
657 else { /* rounding needed */
658 Int needbytes=D2U(d)*sizeof(Unit);/* bytes needed */
659 res=resbuff; /* assume use local buffer */
660 if (needbytes>(Int)sizeof(resbuff)) { /* too big for local */
661 allocres=(Unit *)malloc(needbytes);
662 if (allocres==NULL) {status|=DEC_Insufficient_storage; break;}
666 /* res now -> number lsu, buffer, or allocated storage for Unit array */
668 /* Place the coefficient into the selected Unit array */
669 /* [this is often 70% of the cost of this function when DECDPUN>1] */
671 out=0; /* accumulator */
672 up=res+D2U(d)-1; /* -> msu */
673 cut=d-(up-res)*DECDPUN; /* digits in top unit */
674 for (c=cfirst;; c++) { /* along the digits */
675 if (*c=='.') continue; /* ignore '.' [don't decrement cut] */
676 out=X10(out)+(Int)*c-(Int)'0';
677 if (c==last) break; /* done [never get to trailing '.'] */
679 if (cut>0) continue; /* more for this unit */
680 *up=(Unit)out; /* write unit */
681 up--; /* prepare for unit below.. */
682 cut=DECDPUN; /* .. */
685 *up=(Unit)out; /* write lsu */
690 for (c=last; c>=cfirst; c--) { /* over each character, from least */
691 if (*c=='.') continue; /* ignore . [don't step up] */
692 *up=(Unit)((Int)*c-(Int)'0');
698 dn->exponent=exponent;
701 /* if not in number (too long) shorten into the number */
704 decSetCoeff(dn, set, res, d, &residue, &status);
705 /* always check for overflow or subnormal and round as needed */
706 decFinalize(dn, set, &residue, &status);
708 else { /* no rounding, but may still have overflow or subnormal */
709 /* [these tests are just for performance; finalize repeats them] */
710 if ((dn->exponent-1<set->emin-dn->digits)
711 || (dn->exponent-1>set->emax-set->digits)) {
713 decFinalize(dn, set, &residue, &status);
716 /* decNumberShow(dn); */
717 } while(0); /* [for break] */
719 if (allocres!=NULL) free(allocres); /* drop any storage used */
720 if (status!=0) decStatus(dn, status, set);
722 } /* decNumberFromString */
724 /* ================================================================== */
726 /* ================================================================== */
728 /* ------------------------------------------------------------------ */
729 /* decNumberAbs -- absolute value operator */
731 /* This computes C = abs(A) */
733 /* res is C, the result. C may be A */
735 /* set is the context */
737 /* See also decNumberCopyAbs for a quiet bitwise version of this. */
738 /* C must have space for set->digits digits. */
739 /* ------------------------------------------------------------------ */
740 /* This has the same effect as decNumberPlus unless A is negative, */
741 /* in which case it has the same effect as decNumberMinus. */
742 /* ------------------------------------------------------------------ */
743 decNumber * decNumberAbs(decNumber *res, const decNumber *rhs,
745 decNumber dzero; /* for 0 */
746 uInt status=0; /* accumulator */
749 if (decCheckOperands(res, DECUNUSED, rhs, set)) return res;
752 decNumberZero(&dzero); /* set 0 */
753 dzero.exponent=rhs->exponent; /* [no coefficient expansion] */
754 decAddOp(res, &dzero, rhs, set, (uByte)(rhs->bits & DECNEG), &status);
755 if (status!=0) decStatus(res, status, set);
757 decCheckInexact(res, set);
762 /* ------------------------------------------------------------------ */
763 /* decNumberAdd -- add two Numbers */
765 /* This computes C = A + B */
767 /* res is C, the result. C may be A and/or B (e.g., X=X+X) */
770 /* set is the context */
772 /* C must have space for set->digits digits. */
773 /* ------------------------------------------------------------------ */
774 /* This just calls the routine shared with Subtract */
775 decNumber * decNumberAdd(decNumber *res, const decNumber *lhs,
776 const decNumber *rhs, decContext *set) {
777 uInt status=0; /* accumulator */
778 decAddOp(res, lhs, rhs, set, 0, &status);
779 if (status!=0) decStatus(res, status, set);
781 decCheckInexact(res, set);
786 /* ------------------------------------------------------------------ */
787 /* decNumberAnd -- AND two Numbers, digitwise */
789 /* This computes C = A & B */
791 /* res is C, the result. C may be A and/or B (e.g., X=X&X) */
794 /* set is the context (used for result length and error report) */
796 /* C must have space for set->digits digits. */
798 /* Logical function restrictions apply (see above); a NaN is */
799 /* returned with Invalid_operation if a restriction is violated. */
800 /* ------------------------------------------------------------------ */
801 decNumber * decNumberAnd(decNumber *res, const decNumber *lhs,
802 const decNumber *rhs, decContext *set) {
803 const Unit *ua, *ub; /* -> operands */
804 const Unit *msua, *msub; /* -> operand msus */
805 Unit *uc, *msuc; /* -> result and its msu */
806 Int msudigs; /* digits in res msu */
808 if (decCheckOperands(res, lhs, rhs, set)) return res;
811 if (lhs->exponent!=0 || decNumberIsSpecial(lhs) || decNumberIsNegative(lhs)
812 || rhs->exponent!=0 || decNumberIsSpecial(rhs) || decNumberIsNegative(rhs)) {
813 decStatus(res, DEC_Invalid_operation, set);
817 /* operands are valid */
818 ua=lhs->lsu; /* bottom-up */
819 ub=rhs->lsu; /* .. */
820 uc=res->lsu; /* .. */
821 msua=ua+D2U(lhs->digits)-1; /* -> msu of lhs */
822 msub=ub+D2U(rhs->digits)-1; /* -> msu of rhs */
823 msuc=uc+D2U(set->digits)-1; /* -> msu of result */
824 msudigs=MSUDIGITS(set->digits); /* [faster than remainder] */
825 for (; uc<=msuc; ua++, ub++, uc++) { /* Unit loop */
826 Unit a, b; /* extract units */
831 *uc=0; /* can now write back */
832 if (a|b) { /* maybe 1 bits to examine */
834 *uc=0; /* can now write back */
835 /* This loop could be unrolled and/or use BIN2BCD tables */
836 for (i=0; i<DECDPUN; i++) {
837 if (a&b&1) *uc=*uc+(Unit)powers[i]; /* effect AND */
843 decStatus(res, DEC_Invalid_operation, set);
846 if (uc==msuc && i==msudigs-1) break; /* just did final digit */
850 /* [here uc-1 is the msu of the result] */
851 res->digits=decGetDigits(res->lsu, uc-res->lsu);
852 res->exponent=0; /* integer */
853 res->bits=0; /* sign=0 */
854 return res; /* [no status to set] */
857 /* ------------------------------------------------------------------ */
858 /* decNumberCompare -- compare two Numbers */
860 /* This computes C = A ? B */
862 /* res is C, the result. C may be A and/or B (e.g., X=X?X) */
865 /* set is the context */
867 /* C must have space for one digit (or NaN). */
868 /* ------------------------------------------------------------------ */
869 decNumber * decNumberCompare(decNumber *res, const decNumber *lhs,
870 const decNumber *rhs, decContext *set) {
871 uInt status=0; /* accumulator */
872 decCompareOp(res, lhs, rhs, set, COMPARE, &status);
873 if (status!=0) decStatus(res, status, set);
875 } /* decNumberCompare */
877 /* ------------------------------------------------------------------ */
878 /* decNumberCompareSignal -- compare, signalling on all NaNs */
880 /* This computes C = A ? B */
882 /* res is C, the result. C may be A and/or B (e.g., X=X?X) */
885 /* set is the context */
887 /* C must have space for one digit (or NaN). */
888 /* ------------------------------------------------------------------ */
889 decNumber * decNumberCompareSignal(decNumber *res, const decNumber *lhs,
890 const decNumber *rhs, decContext *set) {
891 uInt status=0; /* accumulator */
892 decCompareOp(res, lhs, rhs, set, COMPSIG, &status);
893 if (status!=0) decStatus(res, status, set);
895 } /* decNumberCompareSignal */
897 /* ------------------------------------------------------------------ */
898 /* decNumberCompareTotal -- compare two Numbers, using total ordering */
900 /* This computes C = A ? B, under total ordering */
902 /* res is C, the result. C may be A and/or B (e.g., X=X?X) */
905 /* set is the context */
907 /* C must have space for one digit; the result will always be one of */
909 /* ------------------------------------------------------------------ */
910 decNumber * decNumberCompareTotal(decNumber *res, const decNumber *lhs,
911 const decNumber *rhs, decContext *set) {
912 uInt status=0; /* accumulator */
913 decCompareOp(res, lhs, rhs, set, COMPTOTAL, &status);
914 if (status!=0) decStatus(res, status, set);
916 } /* decNumberCompareTotal */
918 /* ------------------------------------------------------------------ */
919 /* decNumberCompareTotalMag -- compare, total ordering of magnitudes */
921 /* This computes C = |A| ? |B|, under total ordering */
923 /* res is C, the result. C may be A and/or B (e.g., X=X?X) */
926 /* set is the context */
928 /* C must have space for one digit; the result will always be one of */
930 /* ------------------------------------------------------------------ */
931 decNumber * decNumberCompareTotalMag(decNumber *res, const decNumber *lhs,
932 const decNumber *rhs, decContext *set) {
933 uInt status=0; /* accumulator */
934 uInt needbytes; /* for space calculations */
935 decNumber bufa[D2N(DECBUFFER+1)];/* +1 in case DECBUFFER=0 */
936 decNumber *allocbufa=NULL; /* -> allocated bufa, iff allocated */
937 decNumber bufb[D2N(DECBUFFER+1)];
938 decNumber *allocbufb=NULL; /* -> allocated bufb, iff allocated */
939 decNumber *a, *b; /* temporary pointers */
942 if (decCheckOperands(res, lhs, rhs, set)) return res;
945 do { /* protect allocated storage */
946 /* if either is negative, take a copy and absolute */
947 if (decNumberIsNegative(lhs)) { /* lhs<0 */
949 needbytes=sizeof(decNumber)+(D2U(lhs->digits)-1)*sizeof(Unit);
950 if (needbytes>sizeof(bufa)) { /* need malloc space */
951 allocbufa=(decNumber *)malloc(needbytes);
952 if (allocbufa==NULL) { /* hopeless -- abandon */
953 status|=DEC_Insufficient_storage;
955 a=allocbufa; /* use the allocated space */
957 decNumberCopy(a, lhs); /* copy content */
958 a->bits&=~DECNEG; /* .. and clear the sign */
959 lhs=a; /* use copy from here on */
961 if (decNumberIsNegative(rhs)) { /* rhs<0 */
963 needbytes=sizeof(decNumber)+(D2U(rhs->digits)-1)*sizeof(Unit);
964 if (needbytes>sizeof(bufb)) { /* need malloc space */
965 allocbufb=(decNumber *)malloc(needbytes);
966 if (allocbufb==NULL) { /* hopeless -- abandon */
967 status|=DEC_Insufficient_storage;
969 b=allocbufb; /* use the allocated space */
971 decNumberCopy(b, rhs); /* copy content */
972 b->bits&=~DECNEG; /* .. and clear the sign */
973 rhs=b; /* use copy from here on */
975 decCompareOp(res, lhs, rhs, set, COMPTOTAL, &status);
976 } while(0); /* end protected */
978 if (allocbufa!=NULL) free(allocbufa); /* drop any storage used */
979 if (allocbufb!=NULL) free(allocbufb); /* .. */
980 if (status!=0) decStatus(res, status, set);
982 } /* decNumberCompareTotalMag */
984 /* ------------------------------------------------------------------ */
985 /* decNumberDivide -- divide one number by another */
987 /* This computes C = A / B */
989 /* res is C, the result. C may be A and/or B (e.g., X=X/X) */
992 /* set is the context */
994 /* C must have space for set->digits digits. */
995 /* ------------------------------------------------------------------ */
996 decNumber * decNumberDivide(decNumber *res, const decNumber *lhs,
997 const decNumber *rhs, decContext *set) {
998 uInt status=0; /* accumulator */
999 decDivideOp(res, lhs, rhs, set, DIVIDE, &status);
1000 if (status!=0) decStatus(res, status, set);
1002 decCheckInexact(res, set);
1005 } /* decNumberDivide */
1007 /* ------------------------------------------------------------------ */
1008 /* decNumberDivideInteger -- divide and return integer quotient */
1010 /* This computes C = A # B, where # is the integer divide operator */
1012 /* res is C, the result. C may be A and/or B (e.g., X=X#X) */
1015 /* set is the context */
1017 /* C must have space for set->digits digits. */
1018 /* ------------------------------------------------------------------ */
1019 decNumber * decNumberDivideInteger(decNumber *res, const decNumber *lhs,
1020 const decNumber *rhs, decContext *set) {
1021 uInt status=0; /* accumulator */
1022 decDivideOp(res, lhs, rhs, set, DIVIDEINT, &status);
1023 if (status!=0) decStatus(res, status, set);
1025 } /* decNumberDivideInteger */
1027 /* ------------------------------------------------------------------ */
1028 /* decNumberExp -- exponentiation */
1030 /* This computes C = exp(A) */
1032 /* res is C, the result. C may be A */
1034 /* set is the context; note that rounding mode has no effect */
1036 /* C must have space for set->digits digits. */
1038 /* Mathematical function restrictions apply (see above); a NaN is */
1039 /* returned with Invalid_operation if a restriction is violated. */
1041 /* Finite results will always be full precision and Inexact, except */
1042 /* when A is a zero or -Infinity (giving 1 or 0 respectively). */
1044 /* An Inexact result is rounded using DEC_ROUND_HALF_EVEN; it will */
1045 /* almost always be correctly rounded, but may be up to 1 ulp in */
1046 /* error in rare cases. */
1047 /* ------------------------------------------------------------------ */
1048 /* This is a wrapper for decExpOp which can handle the slightly wider */
1049 /* (double) range needed by Ln (which has to be able to calculate */
1050 /* exp(-a) where a can be the tiniest number (Ntiny). */
1051 /* ------------------------------------------------------------------ */
1052 decNumber * decNumberExp(decNumber *res, const decNumber *rhs,
1054 uInt status=0; /* accumulator */
1056 decNumber *allocrhs=NULL; /* non-NULL if rounded rhs allocated */
1060 if (decCheckOperands(res, DECUNUSED, rhs, set)) return res;
1063 /* Check restrictions; these restrictions ensure that if h=8 (see */
1064 /* decExpOp) then the result will either overflow or underflow to 0. */
1065 /* Other math functions restrict the input range, too, for inverses. */
1066 /* If not violated then carry out the operation. */
1067 if (!decCheckMath(rhs, set, &status)) do { /* protect allocation */
1069 if (!set->extended) {
1070 /* reduce operand and set lostDigits status, as needed */
1071 if (rhs->digits>set->digits) {
1072 allocrhs=decRoundOperand(rhs, set, &status);
1073 if (allocrhs==NULL) break;
1078 decExpOp(res, rhs, set, &status);
1079 } while(0); /* end protected */
1082 if (allocrhs !=NULL) free(allocrhs); /* drop any storage used */
1084 /* apply significant status */
1085 if (status!=0) decStatus(res, status, set);
1087 decCheckInexact(res, set);
1090 } /* decNumberExp */
1092 /* ------------------------------------------------------------------ */
1093 /* decNumberFMA -- fused multiply add */
1095 /* This computes D = (A * B) + C with only one rounding */
1097 /* res is D, the result. D may be A or B or C (e.g., X=FMA(X,X,X)) */
1100 /* fhs is C [far hand side] */
1101 /* set is the context */
1103 /* Mathematical function restrictions apply (see above); a NaN is */
1104 /* returned with Invalid_operation if a restriction is violated. */
1106 /* C must have space for set->digits digits. */
1107 /* ------------------------------------------------------------------ */
1108 decNumber * decNumberFMA(decNumber *res, const decNumber *lhs,
1109 const decNumber *rhs, const decNumber *fhs,
1111 uInt status=0; /* accumulator */
1112 decContext dcmul; /* context for the multiplication */
1113 uInt needbytes; /* for space calculations */
1114 decNumber bufa[D2N(DECBUFFER*2+1)];
1115 decNumber *allocbufa=NULL; /* -> allocated bufa, iff allocated */
1116 decNumber *acc; /* accumulator pointer */
1117 decNumber dzero; /* work */
1120 if (decCheckOperands(res, lhs, rhs, set)) return res;
1121 if (decCheckOperands(res, fhs, DECUNUSED, set)) return res;
1124 do { /* protect allocated storage */
1126 if (!set->extended) { /* [undefined if subset] */
1127 status|=DEC_Invalid_operation;
1130 /* Check math restrictions [these ensure no overflow or underflow] */
1131 if ((!decNumberIsSpecial(lhs) && decCheckMath(lhs, set, &status))
1132 || (!decNumberIsSpecial(rhs) && decCheckMath(rhs, set, &status))
1133 || (!decNumberIsSpecial(fhs) && decCheckMath(fhs, set, &status))) break;
1134 /* set up context for multiply */
1136 dcmul.digits=lhs->digits+rhs->digits; /* just enough */
1137 /* [The above may be an over-estimate for subset arithmetic, but that's OK] */
1138 dcmul.emax=DEC_MAX_EMAX; /* effectively unbounded .. */
1139 dcmul.emin=DEC_MIN_EMIN; /* [thanks to Math restrictions] */
1140 /* set up decNumber space to receive the result of the multiply */
1141 acc=bufa; /* may fit */
1142 needbytes=sizeof(decNumber)+(D2U(dcmul.digits)-1)*sizeof(Unit);
1143 if (needbytes>sizeof(bufa)) { /* need malloc space */
1144 allocbufa=(decNumber *)malloc(needbytes);
1145 if (allocbufa==NULL) { /* hopeless -- abandon */
1146 status|=DEC_Insufficient_storage;
1148 acc=allocbufa; /* use the allocated space */
1150 /* multiply with extended range and necessary precision */
1151 /*printf("emin=%ld\n", dcmul.emin); */
1152 decMultiplyOp(acc, lhs, rhs, &dcmul, &status);
1153 /* Only Invalid operation (from sNaN or Inf * 0) is possible in */
1154 /* status; if either is seen than ignore fhs (in case it is */
1155 /* another sNaN) and set acc to NaN unless we had an sNaN */
1156 /* [decMultiplyOp leaves that to caller] */
1157 /* Note sNaN has to go through addOp to shorten payload if */
1159 if ((status&DEC_Invalid_operation)!=0) {
1160 if (!(status&DEC_sNaN)) { /* but be true invalid */
1161 decNumberZero(res); /* acc not yet set */
1165 decNumberZero(&dzero); /* make 0 (any non-NaN would do) */
1166 fhs=&dzero; /* use that */
1169 else { /* multiply was OK */
1170 if (status!=0) printf("Status=%08lx after FMA multiply\n", (LI)status);
1173 /* add the third operand and result -> res, and all is done */
1174 decAddOp(res, acc, fhs, set, 0, &status);
1175 } while(0); /* end protected */
1177 if (allocbufa!=NULL) free(allocbufa); /* drop any storage used */
1178 if (status!=0) decStatus(res, status, set);
1180 decCheckInexact(res, set);
1183 } /* decNumberFMA */
1185 /* ------------------------------------------------------------------ */
1186 /* decNumberInvert -- invert a Number, digitwise */
1188 /* This computes C = ~A */
1190 /* res is C, the result. C may be A (e.g., X=~X) */
1192 /* set is the context (used for result length and error report) */
1194 /* C must have space for set->digits digits. */
1196 /* Logical function restrictions apply (see above); a NaN is */
1197 /* returned with Invalid_operation if a restriction is violated. */
1198 /* ------------------------------------------------------------------ */
1199 decNumber * decNumberInvert(decNumber *res, const decNumber *rhs,
1201 const Unit *ua, *msua; /* -> operand and its msu */
1202 Unit *uc, *msuc; /* -> result and its msu */
1203 Int msudigs; /* digits in res msu */
1205 if (decCheckOperands(res, DECUNUSED, rhs, set)) return res;
1208 if (rhs->exponent!=0 || decNumberIsSpecial(rhs) || decNumberIsNegative(rhs)) {
1209 decStatus(res, DEC_Invalid_operation, set);
1212 /* operand is valid */
1213 ua=rhs->lsu; /* bottom-up */
1214 uc=res->lsu; /* .. */
1215 msua=ua+D2U(rhs->digits)-1; /* -> msu of rhs */
1216 msuc=uc+D2U(set->digits)-1; /* -> msu of result */
1217 msudigs=MSUDIGITS(set->digits); /* [faster than remainder] */
1218 for (; uc<=msuc; ua++, uc++) { /* Unit loop */
1219 Unit a; /* extract unit */
1220 Int i, j; /* work */
1223 *uc=0; /* can now write back */
1224 /* always need to examine all bits in rhs */
1225 /* This loop could be unrolled and/or use BIN2BCD tables */
1226 for (i=0; i<DECDPUN; i++) {
1227 if ((~a)&1) *uc=*uc+(Unit)powers[i]; /* effect INVERT */
1231 decStatus(res, DEC_Invalid_operation, set);
1234 if (uc==msuc && i==msudigs-1) break; /* just did final digit */
1237 /* [here uc-1 is the msu of the result] */
1238 res->digits=decGetDigits(res->lsu, uc-res->lsu);
1239 res->exponent=0; /* integer */
1240 res->bits=0; /* sign=0 */
1241 return res; /* [no status to set] */
1242 } /* decNumberInvert */
1244 /* ------------------------------------------------------------------ */
1245 /* decNumberLn -- natural logarithm */
1247 /* This computes C = ln(A) */
1249 /* res is C, the result. C may be A */
1251 /* set is the context; note that rounding mode has no effect */
1253 /* C must have space for set->digits digits. */
1255 /* Notable cases: */
1256 /* A<0 -> Invalid */
1257 /* A=0 -> -Infinity (Exact) */
1258 /* A=+Infinity -> +Infinity (Exact) */
1259 /* A=1 exactly -> 0 (Exact) */
1261 /* Mathematical function restrictions apply (see above); a NaN is */
1262 /* returned with Invalid_operation if a restriction is violated. */
1264 /* An Inexact result is rounded using DEC_ROUND_HALF_EVEN; it will */
1265 /* almost always be correctly rounded, but may be up to 1 ulp in */
1266 /* error in rare cases. */
1267 /* ------------------------------------------------------------------ */
1268 /* This is a wrapper for decLnOp which can handle the slightly wider */
1269 /* (+11) range needed by Ln, Log10, etc. (which may have to be able */
1270 /* to calculate at p+e+2). */
1271 /* ------------------------------------------------------------------ */
1272 decNumber * decNumberLn(decNumber *res, const decNumber *rhs,
1274 uInt status=0; /* accumulator */
1276 decNumber *allocrhs=NULL; /* non-NULL if rounded rhs allocated */
1280 if (decCheckOperands(res, DECUNUSED, rhs, set)) return res;
1283 /* Check restrictions; this is a math function; if not violated */
1284 /* then carry out the operation. */
1285 if (!decCheckMath(rhs, set, &status)) do { /* protect allocation */
1287 if (!set->extended) {
1288 /* reduce operand and set lostDigits status, as needed */
1289 if (rhs->digits>set->digits) {
1290 allocrhs=decRoundOperand(rhs, set, &status);
1291 if (allocrhs==NULL) break;
1294 /* special check in subset for rhs=0 */
1295 if (ISZERO(rhs)) { /* +/- zeros -> error */
1296 status|=DEC_Invalid_operation;
1300 decLnOp(res, rhs, set, &status);
1301 } while(0); /* end protected */
1304 if (allocrhs !=NULL) free(allocrhs); /* drop any storage used */
1306 /* apply significant status */
1307 if (status!=0) decStatus(res, status, set);
1309 decCheckInexact(res, set);
1314 /* ------------------------------------------------------------------ */
1315 /* decNumberLogB - get adjusted exponent, by 754 rules */
1317 /* This computes C = adjustedexponent(A) */
1319 /* res is C, the result. C may be A */
1321 /* set is the context, used only for digits and status */
1323 /* C must have space for 10 digits (A might have 10**9 digits and */
1324 /* an exponent of +999999999, or one digit and an exponent of */
1327 /* This returns the adjusted exponent of A after (in theory) padding */
1328 /* with zeros on the right to set->digits digits while keeping the */
1329 /* same value. The exponent is not limited by emin/emax. */
1331 /* Notable cases: */
1332 /* A<0 -> Use |A| */
1333 /* A=0 -> -Infinity (Division by zero) */
1334 /* A=Infinite -> +Infinity (Exact) */
1335 /* A=1 exactly -> 0 (Exact) */
1336 /* NaNs are propagated as usual */
1337 /* ------------------------------------------------------------------ */
1338 decNumber * decNumberLogB(decNumber *res, const decNumber *rhs,
1340 uInt status=0; /* accumulator */
1343 if (decCheckOperands(res, DECUNUSED, rhs, set)) return res;
1346 /* NaNs as usual; Infinities return +Infinity; 0->oops */
1347 if (decNumberIsNaN(rhs)) decNaNs(res, rhs, NULL, set, &status);
1348 else if (decNumberIsInfinite(rhs)) decNumberCopyAbs(res, rhs);
1349 else if (decNumberIsZero(rhs)) {
1350 decNumberZero(res); /* prepare for Infinity */
1351 res->bits=DECNEG|DECINF; /* -Infinity */
1352 status|=DEC_Division_by_zero; /* as per 754 */
1354 else { /* finite non-zero */
1355 Int ae=rhs->exponent+rhs->digits-1; /* adjusted exponent */
1356 decNumberFromInt32(res, ae); /* lay it out */
1359 if (status!=0) decStatus(res, status, set);
1361 } /* decNumberLogB */
1363 /* ------------------------------------------------------------------ */
1364 /* decNumberLog10 -- logarithm in base 10 */
1366 /* This computes C = log10(A) */
1368 /* res is C, the result. C may be A */
1370 /* set is the context; note that rounding mode has no effect */
1372 /* C must have space for set->digits digits. */
1374 /* Notable cases: */
1375 /* A<0 -> Invalid */
1376 /* A=0 -> -Infinity (Exact) */
1377 /* A=+Infinity -> +Infinity (Exact) */
1378 /* A=10**n (if n is an integer) -> n (Exact) */
1380 /* Mathematical function restrictions apply (see above); a NaN is */
1381 /* returned with Invalid_operation if a restriction is violated. */
1383 /* An Inexact result is rounded using DEC_ROUND_HALF_EVEN; it will */
1384 /* almost always be correctly rounded, but may be up to 1 ulp in */
1385 /* error in rare cases. */
1386 /* ------------------------------------------------------------------ */
1387 /* This calculates ln(A)/ln(10) using appropriate precision. For */
1388 /* ln(A) this is the max(p, rhs->digits + t) + 3, where p is the */
1389 /* requested digits and t is the number of digits in the exponent */
1390 /* (maximum 6). For ln(10) it is p + 3; this is often handled by the */
1391 /* fastpath in decLnOp. The final division is done to the requested */
1393 /* ------------------------------------------------------------------ */
1394 decNumber * decNumberLog10(decNumber *res, const decNumber *rhs,
1396 uInt status=0, ignore=0; /* status accumulators */
1397 uInt needbytes; /* for space calculations */
1398 Int p; /* working precision */
1399 Int t; /* digits in exponent of A */
1401 /* buffers for a and b working decimals */
1402 /* (adjustment calculator, same size) */
1403 decNumber bufa[D2N(DECBUFFER+2)];
1404 decNumber *allocbufa=NULL; /* -> allocated bufa, iff allocated */
1405 decNumber *a=bufa; /* temporary a */
1406 decNumber bufb[D2N(DECBUFFER+2)];
1407 decNumber *allocbufb=NULL; /* -> allocated bufb, iff allocated */
1408 decNumber *b=bufb; /* temporary b */
1409 decNumber bufw[D2N(10)]; /* working 2-10 digit number */
1410 decNumber *w=bufw; /* .. */
1412 decNumber *allocrhs=NULL; /* non-NULL if rounded rhs allocated */
1415 decContext aset; /* working context */
1418 if (decCheckOperands(res, DECUNUSED, rhs, set)) return res;
1421 /* Check restrictions; this is a math function; if not violated */
1422 /* then carry out the operation. */
1423 if (!decCheckMath(rhs, set, &status)) do { /* protect malloc */
1425 if (!set->extended) {
1426 /* reduce operand and set lostDigits status, as needed */
1427 if (rhs->digits>set->digits) {
1428 allocrhs=decRoundOperand(rhs, set, &status);
1429 if (allocrhs==NULL) break;
1432 /* special check in subset for rhs=0 */
1433 if (ISZERO(rhs)) { /* +/- zeros -> error */
1434 status|=DEC_Invalid_operation;
1439 decContextDefault(&aset, DEC_INIT_DECIMAL64); /* clean context */
1441 /* handle exact powers of 10; only check if +ve finite */
1442 if (!(rhs->bits&(DECNEG|DECSPECIAL)) && !ISZERO(rhs)) {
1443 Int residue=0; /* (no residue) */
1444 uInt copystat=0; /* clean status */
1446 /* round to a single digit... */
1448 decCopyFit(w, rhs, &aset, &residue, ©stat); /* copy & shorten */
1449 /* if exact and the digit is 1, rhs is a power of 10 */
1450 if (!(copystat&DEC_Inexact) && w->lsu[0]==1) {
1451 /* the exponent, conveniently, is the power of 10; making */
1452 /* this the result needs a little care as it might not fit, */
1453 /* so first convert it into the working number, and then move */
1455 decNumberFromInt32(w, w->exponent);
1457 decCopyFit(res, w, set, &residue, &status); /* copy & round */
1458 decFinish(res, set, &residue, &status); /* cleanup/set flags */
1460 } /* not a power of 10 */
1461 } /* not a candidate for exact */
1463 /* simplify the information-content calculation to use 'total */
1464 /* number of digits in a, including exponent' as compared to the */
1465 /* requested digits, as increasing this will only rarely cost an */
1466 /* iteration in ln(a) anyway */
1467 t=6; /* it can never be >6 */
1469 /* allocate space when needed... */
1470 p=(rhs->digits+t>set->digits?rhs->digits+t:set->digits)+3;
1471 needbytes=sizeof(decNumber)+(D2U(p)-1)*sizeof(Unit);
1472 if (needbytes>sizeof(bufa)) { /* need malloc space */
1473 allocbufa=(decNumber *)malloc(needbytes);
1474 if (allocbufa==NULL) { /* hopeless -- abandon */
1475 status|=DEC_Insufficient_storage;
1477 a=allocbufa; /* use the allocated space */
1479 aset.digits=p; /* as calculated */
1480 aset.emax=DEC_MAX_MATH; /* usual bounds */
1481 aset.emin=-DEC_MAX_MATH; /* .. */
1482 aset.clamp=0; /* and no concrete format */
1483 decLnOp(a, rhs, &aset, &status); /* a=ln(rhs) */
1485 /* skip the division if the result so far is infinite, NaN, or */
1486 /* zero, or there was an error; note NaN from sNaN needs copy */
1487 if (status&DEC_NaNs && !(status&DEC_sNaN)) break;
1488 if (a->bits&DECSPECIAL || ISZERO(a)) {
1489 decNumberCopy(res, a); /* [will fit] */
1492 /* for ln(10) an extra 3 digits of precision are needed */
1494 needbytes=sizeof(decNumber)+(D2U(p)-1)*sizeof(Unit);
1495 if (needbytes>sizeof(bufb)) { /* need malloc space */
1496 allocbufb=(decNumber *)malloc(needbytes);
1497 if (allocbufb==NULL) { /* hopeless -- abandon */
1498 status|=DEC_Insufficient_storage;
1500 b=allocbufb; /* use the allocated space */
1502 decNumberZero(w); /* set up 10... */
1504 w->lsu[1]=1; w->lsu[0]=0; /* .. */
1506 w->lsu[0]=10; /* .. */
1508 w->digits=2; /* .. */
1511 decLnOp(b, w, &aset, &ignore); /* b=ln(10) */
1513 aset.digits=set->digits; /* for final divide */
1514 decDivideOp(res, a, b, &aset, DIVIDE, &status); /* into result */
1515 } while(0); /* [for break] */
1517 if (allocbufa!=NULL) free(allocbufa); /* drop any storage used */
1518 if (allocbufb!=NULL) free(allocbufb); /* .. */
1520 if (allocrhs !=NULL) free(allocrhs); /* .. */
1522 /* apply significant status */
1523 if (status!=0) decStatus(res, status, set);
1525 decCheckInexact(res, set);
1528 } /* decNumberLog10 */
1530 /* ------------------------------------------------------------------ */
1531 /* decNumberMax -- compare two Numbers and return the maximum */
1533 /* This computes C = A ? B, returning the maximum by 754 rules */
1535 /* res is C, the result. C may be A and/or B (e.g., X=X?X) */
1538 /* set is the context */
1540 /* C must have space for set->digits digits. */
1541 /* ------------------------------------------------------------------ */
1542 decNumber * decNumberMax(decNumber *res, const decNumber *lhs,
1543 const decNumber *rhs, decContext *set) {
1544 uInt status=0; /* accumulator */
1545 decCompareOp(res, lhs, rhs, set, COMPMAX, &status);
1546 if (status!=0) decStatus(res, status, set);
1548 decCheckInexact(res, set);
1551 } /* decNumberMax */
1553 /* ------------------------------------------------------------------ */
1554 /* decNumberMaxMag -- compare and return the maximum by magnitude */
1556 /* This computes C = A ? B, returning the maximum by 754 rules */
1558 /* res is C, the result. C may be A and/or B (e.g., X=X?X) */
1561 /* set is the context */
1563 /* C must have space for set->digits digits. */
1564 /* ------------------------------------------------------------------ */
1565 decNumber * decNumberMaxMag(decNumber *res, const decNumber *lhs,
1566 const decNumber *rhs, decContext *set) {
1567 uInt status=0; /* accumulator */
1568 decCompareOp(res, lhs, rhs, set, COMPMAXMAG, &status);
1569 if (status!=0) decStatus(res, status, set);
1571 decCheckInexact(res, set);
1574 } /* decNumberMaxMag */
1576 /* ------------------------------------------------------------------ */
1577 /* decNumberMin -- compare two Numbers and return the minimum */
1579 /* This computes C = A ? B, returning the minimum by 754 rules */
1581 /* res is C, the result. C may be A and/or B (e.g., X=X?X) */
1584 /* set is the context */
1586 /* C must have space for set->digits digits. */
1587 /* ------------------------------------------------------------------ */
1588 decNumber * decNumberMin(decNumber *res, const decNumber *lhs,
1589 const decNumber *rhs, decContext *set) {
1590 uInt status=0; /* accumulator */
1591 decCompareOp(res, lhs, rhs, set, COMPMIN, &status);
1592 if (status!=0) decStatus(res, status, set);
1594 decCheckInexact(res, set);
1597 } /* decNumberMin */
1599 /* ------------------------------------------------------------------ */
1600 /* decNumberMinMag -- compare and return the minimum by magnitude */
1602 /* This computes C = A ? B, returning the minimum by 754 rules */
1604 /* res is C, the result. C may be A and/or B (e.g., X=X?X) */
1607 /* set is the context */
1609 /* C must have space for set->digits digits. */
1610 /* ------------------------------------------------------------------ */
1611 decNumber * decNumberMinMag(decNumber *res, const decNumber *lhs,
1612 const decNumber *rhs, decContext *set) {
1613 uInt status=0; /* accumulator */
1614 decCompareOp(res, lhs, rhs, set, COMPMINMAG, &status);
1615 if (status!=0) decStatus(res, status, set);
1617 decCheckInexact(res, set);
1620 } /* decNumberMinMag */
1622 /* ------------------------------------------------------------------ */
1623 /* decNumberMinus -- prefix minus operator */
1625 /* This computes C = 0 - A */
1627 /* res is C, the result. C may be A */
1629 /* set is the context */
1631 /* See also decNumberCopyNegate for a quiet bitwise version of this. */
1632 /* C must have space for set->digits digits. */
1633 /* ------------------------------------------------------------------ */
1634 /* Simply use AddOp for the subtract, which will do the necessary. */
1635 /* ------------------------------------------------------------------ */
1636 decNumber * decNumberMinus(decNumber *res, const decNumber *rhs,
1639 uInt status=0; /* accumulator */
1642 if (decCheckOperands(res, DECUNUSED, rhs, set)) return res;
1645 decNumberZero(&dzero); /* make 0 */
1646 dzero.exponent=rhs->exponent; /* [no coefficient expansion] */
1647 decAddOp(res, &dzero, rhs, set, DECNEG, &status);
1648 if (status!=0) decStatus(res, status, set);
1650 decCheckInexact(res, set);
1653 } /* decNumberMinus */
1655 /* ------------------------------------------------------------------ */
1656 /* decNumberNextMinus -- next towards -Infinity */
1658 /* This computes C = A - infinitesimal, rounded towards -Infinity */
1660 /* res is C, the result. C may be A */
1662 /* set is the context */
1664 /* This is a generalization of 754 NextDown. */
1665 /* ------------------------------------------------------------------ */
1666 decNumber * decNumberNextMinus(decNumber *res, const decNumber *rhs,
1668 decNumber dtiny; /* constant */
1669 decContext workset=*set; /* work */
1670 uInt status=0; /* accumulator */
1672 if (decCheckOperands(res, DECUNUSED, rhs, set)) return res;
1675 /* +Infinity is the special case */
1676 if ((rhs->bits&(DECINF|DECNEG))==DECINF) {
1677 decSetMaxValue(res, set); /* is +ve */
1678 /* there is no status to set */
1681 decNumberZero(&dtiny); /* start with 0 */
1682 dtiny.lsu[0]=1; /* make number that is .. */
1683 dtiny.exponent=DEC_MIN_EMIN-1; /* .. smaller than tiniest */
1684 workset.round=DEC_ROUND_FLOOR;
1685 decAddOp(res, rhs, &dtiny, &workset, DECNEG, &status);
1686 status&=DEC_Invalid_operation|DEC_sNaN; /* only sNaN Invalid please */
1687 if (status!=0) decStatus(res, status, set);
1689 } /* decNumberNextMinus */
1691 /* ------------------------------------------------------------------ */
1692 /* decNumberNextPlus -- next towards +Infinity */
1694 /* This computes C = A + infinitesimal, rounded towards +Infinity */
1696 /* res is C, the result. C may be A */
1698 /* set is the context */
1700 /* This is a generalization of 754 NextUp. */
1701 /* ------------------------------------------------------------------ */
1702 decNumber * decNumberNextPlus(decNumber *res, const decNumber *rhs,
1704 decNumber dtiny; /* constant */
1705 decContext workset=*set; /* work */
1706 uInt status=0; /* accumulator */
1708 if (decCheckOperands(res, DECUNUSED, rhs, set)) return res;
1711 /* -Infinity is the special case */
1712 if ((rhs->bits&(DECINF|DECNEG))==(DECINF|DECNEG)) {
1713 decSetMaxValue(res, set);
1714 res->bits=DECNEG; /* negative */
1715 /* there is no status to set */
1718 decNumberZero(&dtiny); /* start with 0 */
1719 dtiny.lsu[0]=1; /* make number that is .. */
1720 dtiny.exponent=DEC_MIN_EMIN-1; /* .. smaller than tiniest */
1721 workset.round=DEC_ROUND_CEILING;
1722 decAddOp(res, rhs, &dtiny, &workset, 0, &status);
1723 status&=DEC_Invalid_operation|DEC_sNaN; /* only sNaN Invalid please */
1724 if (status!=0) decStatus(res, status, set);
1726 } /* decNumberNextPlus */
1728 /* ------------------------------------------------------------------ */
1729 /* decNumberNextToward -- next towards rhs */
1731 /* This computes C = A +/- infinitesimal, rounded towards */
1732 /* +/-Infinity in the direction of B, as per 754-1985 nextafter */
1733 /* modified during revision but dropped from 754-2008. */
1735 /* res is C, the result. C may be A or B. */
1738 /* set is the context */
1740 /* This is a generalization of 754-1985 NextAfter. */
1741 /* ------------------------------------------------------------------ */
1742 decNumber * decNumberNextToward(decNumber *res, const decNumber *lhs,
1743 const decNumber *rhs, decContext *set) {
1744 decNumber dtiny; /* constant */
1745 decContext workset=*set; /* work */
1746 Int result; /* .. */
1747 uInt status=0; /* accumulator */
1749 if (decCheckOperands(res, lhs, rhs, set)) return res;
1752 if (decNumberIsNaN(lhs) || decNumberIsNaN(rhs)) {
1753 decNaNs(res, lhs, rhs, set, &status);
1755 else { /* Is numeric, so no chance of sNaN Invalid, etc. */
1756 result=decCompare(lhs, rhs, 0); /* sign matters */
1757 if (result==BADINT) status|=DEC_Insufficient_storage; /* rare */
1758 else { /* valid compare */
1759 if (result==0) decNumberCopySign(res, lhs, rhs); /* easy */
1760 else { /* differ: need NextPlus or NextMinus */
1761 uByte sub; /* add or subtract */
1762 if (result<0) { /* lhs<rhs, do nextplus */
1763 /* -Infinity is the special case */
1764 if ((lhs->bits&(DECINF|DECNEG))==(DECINF|DECNEG)) {
1765 decSetMaxValue(res, set);
1766 res->bits=DECNEG; /* negative */
1767 return res; /* there is no status to set */
1769 workset.round=DEC_ROUND_CEILING;
1770 sub=0; /* add, please */
1772 else { /* lhs>rhs, do nextminus */
1773 /* +Infinity is the special case */
1774 if ((lhs->bits&(DECINF|DECNEG))==DECINF) {
1775 decSetMaxValue(res, set);
1776 return res; /* there is no status to set */
1778 workset.round=DEC_ROUND_FLOOR;
1779 sub=DECNEG; /* subtract, please */
1781 decNumberZero(&dtiny); /* start with 0 */
1782 dtiny.lsu[0]=1; /* make number that is .. */
1783 dtiny.exponent=DEC_MIN_EMIN-1; /* .. smaller than tiniest */
1784 decAddOp(res, lhs, &dtiny, &workset, sub, &status); /* + or - */
1785 /* turn off exceptions if the result is a normal number */
1786 /* (including Nmin), otherwise let all status through */
1787 if (decNumberIsNormal(res, set)) status=0;
1791 if (status!=0) decStatus(res, status, set);
1793 } /* decNumberNextToward */
1795 /* ------------------------------------------------------------------ */
1796 /* decNumberOr -- OR two Numbers, digitwise */
1798 /* This computes C = A | B */
1800 /* res is C, the result. C may be A and/or B (e.g., X=X|X) */
1803 /* set is the context (used for result length and error report) */
1805 /* C must have space for set->digits digits. */
1807 /* Logical function restrictions apply (see above); a NaN is */
1808 /* returned with Invalid_operation if a restriction is violated. */
1809 /* ------------------------------------------------------------------ */
1810 decNumber * decNumberOr(decNumber *res, const decNumber *lhs,
1811 const decNumber *rhs, decContext *set) {
1812 const Unit *ua, *ub; /* -> operands */
1813 const Unit *msua, *msub; /* -> operand msus */
1814 Unit *uc, *msuc; /* -> result and its msu */
1815 Int msudigs; /* digits in res msu */
1817 if (decCheckOperands(res, lhs, rhs, set)) return res;
1820 if (lhs->exponent!=0 || decNumberIsSpecial(lhs) || decNumberIsNegative(lhs)
1821 || rhs->exponent!=0 || decNumberIsSpecial(rhs) || decNumberIsNegative(rhs)) {
1822 decStatus(res, DEC_Invalid_operation, set);
1825 /* operands are valid */
1826 ua=lhs->lsu; /* bottom-up */
1827 ub=rhs->lsu; /* .. */
1828 uc=res->lsu; /* .. */
1829 msua=ua+D2U(lhs->digits)-1; /* -> msu of lhs */
1830 msub=ub+D2U(rhs->digits)-1; /* -> msu of rhs */
1831 msuc=uc+D2U(set->digits)-1; /* -> msu of result */
1832 msudigs=MSUDIGITS(set->digits); /* [faster than remainder] */
1833 for (; uc<=msuc; ua++, ub++, uc++) { /* Unit loop */
1834 Unit a, b; /* extract units */
1839 *uc=0; /* can now write back */
1840 if (a|b) { /* maybe 1 bits to examine */
1842 /* This loop could be unrolled and/or use BIN2BCD tables */
1843 for (i=0; i<DECDPUN; i++) {
1844 if ((a|b)&1) *uc=*uc+(Unit)powers[i]; /* effect OR */
1850 decStatus(res, DEC_Invalid_operation, set);
1853 if (uc==msuc && i==msudigs-1) break; /* just did final digit */
1857 /* [here uc-1 is the msu of the result] */
1858 res->digits=decGetDigits(res->lsu, uc-res->lsu);
1859 res->exponent=0; /* integer */
1860 res->bits=0; /* sign=0 */
1861 return res; /* [no status to set] */
1864 /* ------------------------------------------------------------------ */
1865 /* decNumberPlus -- prefix plus operator */
1867 /* This computes C = 0 + A */
1869 /* res is C, the result. C may be A */
1871 /* set is the context */
1873 /* See also decNumberCopy for a quiet bitwise version of this. */
1874 /* C must have space for set->digits digits. */
1875 /* ------------------------------------------------------------------ */
1876 /* This simply uses AddOp; Add will take fast path after preparing A. */
1877 /* Performance is a concern here, as this routine is often used to */
1878 /* check operands and apply rounding and overflow/underflow testing. */
1879 /* ------------------------------------------------------------------ */
1880 decNumber * decNumberPlus(decNumber *res, const decNumber *rhs,
1883 uInt status=0; /* accumulator */
1885 if (decCheckOperands(res, DECUNUSED, rhs, set)) return res;
1888 decNumberZero(&dzero); /* make 0 */
1889 dzero.exponent=rhs->exponent; /* [no coefficient expansion] */
1890 decAddOp(res, &dzero, rhs, set, 0, &status);
1891 if (status!=0) decStatus(res, status, set);
1893 decCheckInexact(res, set);
1896 } /* decNumberPlus */
1898 /* ------------------------------------------------------------------ */
1899 /* decNumberMultiply -- multiply two Numbers */
1901 /* This computes C = A x B */
1903 /* res is C, the result. C may be A and/or B (e.g., X=X+X) */
1906 /* set is the context */
1908 /* C must have space for set->digits digits. */
1909 /* ------------------------------------------------------------------ */
1910 decNumber * decNumberMultiply(decNumber *res, const decNumber *lhs,
1911 const decNumber *rhs, decContext *set) {
1912 uInt status=0; /* accumulator */
1913 decMultiplyOp(res, lhs, rhs, set, &status);
1914 if (status!=0) decStatus(res, status, set);
1916 decCheckInexact(res, set);
1919 } /* decNumberMultiply */
1921 /* ------------------------------------------------------------------ */
1922 /* decNumberPower -- raise a number to a power */
1924 /* This computes C = A ** B */
1926 /* res is C, the result. C may be A and/or B (e.g., X=X**X) */
1929 /* set is the context */
1931 /* C must have space for set->digits digits. */
1933 /* Mathematical function restrictions apply (see above); a NaN is */
1934 /* returned with Invalid_operation if a restriction is violated. */
1936 /* However, if 1999999997<=B<=999999999 and B is an integer then the */
1937 /* restrictions on A and the context are relaxed to the usual bounds, */
1938 /* for compatibility with the earlier (integer power only) version */
1939 /* of this function. */
1941 /* When B is an integer, the result may be exact, even if rounded. */
1943 /* The final result is rounded according to the context; it will */
1944 /* almost always be correctly rounded, but may be up to 1 ulp in */
1945 /* error in rare cases. */
1946 /* ------------------------------------------------------------------ */
1947 decNumber * decNumberPower(decNumber *res, const decNumber *lhs,
1948 const decNumber *rhs, decContext *set) {
1950 decNumber *alloclhs=NULL; /* non-NULL if rounded lhs allocated */
1951 decNumber *allocrhs=NULL; /* .., rhs */
1953 decNumber *allocdac=NULL; /* -> allocated acc buffer, iff used */
1954 decNumber *allocinv=NULL; /* -> allocated 1/x buffer, iff used */
1955 Int reqdigits=set->digits; /* requested DIGITS */
1956 Int n; /* rhs in binary */
1957 Flag rhsint=0; /* 1 if rhs is an integer */
1958 Flag useint=0; /* 1 if can use integer calculation */
1959 Flag isoddint=0; /* 1 if rhs is an integer and odd */
1962 Int dropped; /* .. */
1964 uInt needbytes; /* buffer size needed */
1965 Flag seenbit; /* seen a bit while powering */
1966 Int residue=0; /* rounding residue */
1967 uInt status=0; /* accumulators */
1968 uByte bits=0; /* result sign if errors */
1969 decContext aset; /* working context */
1970 decNumber dnOne; /* work value 1... */
1971 /* local accumulator buffer [a decNumber, with digits+elength+1 digits] */
1972 decNumber dacbuff[D2N(DECBUFFER+9)];
1973 decNumber *dac=dacbuff; /* -> result accumulator */
1974 /* same again for possible 1/lhs calculation */
1975 decNumber invbuff[D2N(DECBUFFER+9)];
1978 if (decCheckOperands(res, lhs, rhs, set)) return res;
1981 do { /* protect allocated storage */
1983 if (!set->extended) { /* reduce operands and set status, as needed */
1984 if (lhs->digits>reqdigits) {
1985 alloclhs=decRoundOperand(lhs, set, &status);
1986 if (alloclhs==NULL) break;
1989 if (rhs->digits>reqdigits) {
1990 allocrhs=decRoundOperand(rhs, set, &status);
1991 if (allocrhs==NULL) break;
1996 /* [following code does not require input rounding] */
1998 /* handle NaNs and rhs Infinity (lhs infinity is harder) */
2000 if (decNumberIsNaN(lhs) || decNumberIsNaN(rhs)) { /* NaNs */
2001 decNaNs(res, lhs, rhs, set, &status);
2003 if (decNumberIsInfinite(rhs)) { /* rhs Infinity */
2004 Flag rhsneg=rhs->bits&DECNEG; /* save rhs sign */
2005 if (decNumberIsNegative(lhs) /* lhs<0 */
2006 && !decNumberIsZero(lhs)) /* .. */
2007 status|=DEC_Invalid_operation;
2008 else { /* lhs >=0 */
2009 decNumberZero(&dnOne); /* set up 1 */
2011 decNumberCompare(dac, lhs, &dnOne, set); /* lhs ? 1 */
2012 decNumberZero(res); /* prepare for 0/1/Infinity */
2013 if (decNumberIsNegative(dac)) { /* lhs<1 */
2014 if (rhsneg) res->bits|=DECINF; /* +Infinity [else is +0] */
2016 else if (dac->lsu[0]==0) { /* lhs=1 */
2017 /* 1**Infinity is inexact, so return fully-padded 1.0000 */
2018 Int shift=set->digits-1;
2019 *res->lsu=1; /* was 0, make int 1 */
2020 res->digits=decShiftToMost(res->lsu, 1, shift);
2021 res->exponent=-shift; /* make 1.0000... */
2022 status|=DEC_Inexact|DEC_Rounded; /* deemed inexact */
2025 if (!rhsneg) res->bits|=DECINF; /* +Infinity [else is +0] */
2029 /* [lhs infinity drops through] */
2032 /* Original rhs may be an integer that fits and is in range */
2034 if (n!=BADINT) { /* it is an integer */
2035 rhsint=1; /* record the fact for 1**n */
2036 isoddint=(Flag)n&1; /* [works even if big] */
2037 if (n!=BIGEVEN && n!=BIGODD) /* can use integer path? */
2038 useint=1; /* looks good */
2041 if (decNumberIsNegative(lhs) /* -x .. */
2042 && isoddint) bits=DECNEG; /* .. to an odd power */
2044 /* handle LHS infinity */
2045 if (decNumberIsInfinite(lhs)) { /* [NaNs already handled] */
2046 uByte rbits=rhs->bits; /* save */
2047 decNumberZero(res); /* prepare */
2048 if (n==0) *res->lsu=1; /* [-]Inf**0 => 1 */
2050 /* -Inf**nonint -> error */
2051 if (!rhsint && decNumberIsNegative(lhs)) {
2052 status|=DEC_Invalid_operation; /* -Inf**nonint is error */
2054 if (!(rbits & DECNEG)) bits|=DECINF; /* was not a **-n */
2055 /* [otherwise will be 0 or -0] */
2060 /* similarly handle LHS zero */
2061 if (decNumberIsZero(lhs)) {
2062 if (n==0) { /* 0**0 => Error */
2064 if (!set->extended) { /* [unless subset] */
2066 *res->lsu=1; /* return 1 */
2069 status|=DEC_Invalid_operation;
2072 uByte rbits=rhs->bits; /* save */
2073 if (rbits & DECNEG) { /* was a 0**(-n) */
2075 if (!set->extended) { /* [bad if subset] */
2076 status|=DEC_Invalid_operation;
2081 decNumberZero(res); /* prepare */
2082 /* [otherwise will be 0 or -0] */
2087 /* here both lhs and rhs are finite; rhs==0 is handled in the */
2088 /* integer path. Next handle the non-integer cases */
2089 if (!useint) { /* non-integral rhs */
2090 /* any -ve lhs is bad, as is either operand or context out of */
2092 if (decNumberIsNegative(lhs)) {
2093 status|=DEC_Invalid_operation;
2095 if (decCheckMath(lhs, set, &status)
2096 || decCheckMath(rhs, set, &status)) break; /* variable status */
2098 decContextDefault(&aset, DEC_INIT_DECIMAL64); /* clean context */
2099 aset.emax=DEC_MAX_MATH; /* usual bounds */
2100 aset.emin=-DEC_MAX_MATH; /* .. */
2101 aset.clamp=0; /* and no concrete format */
2103 /* calculate the result using exp(ln(lhs)*rhs), which can */
2104 /* all be done into the accumulator, dac. The precision needed */
2105 /* is enough to contain the full information in the lhs (which */
2106 /* is the total digits, including exponent), or the requested */
2107 /* precision, if larger, + 4; 6 is used for the exponent */
2108 /* maximum length, and this is also used when it is shorter */
2109 /* than the requested digits as it greatly reduces the >0.5 ulp */
2110 /* cases at little cost (because Ln doubles digits each */
2111 /* iteration so a few extra digits rarely causes an extra */
2113 aset.digits=MAXI(lhs->digits, set->digits)+6+4;
2114 } /* non-integer rhs */
2116 else { /* rhs is in-range integer */
2117 if (n==0) { /* x**0 = 1 */
2118 /* (0**0 was handled above) */
2119 decNumberZero(res); /* result=1 */
2120 *res->lsu=1; /* .. */
2122 /* rhs is a non-zero integer */
2123 if (n<0) n=-n; /* use abs(n) */
2125 aset=*set; /* clone the context */
2126 aset.round=DEC_ROUND_HALF_EVEN; /* internally use balanced */
2127 /* calculate the working DIGITS */
2128 aset.digits=reqdigits+(rhs->digits+rhs->exponent)+2;
2130 if (!set->extended) aset.digits--; /* use classic precision */
2132 /* it's an error if this is more than can be handled */
2133 if (aset.digits>DECNUMMAXP) {status|=DEC_Invalid_operation; break;}
2134 } /* integer path */
2136 /* aset.digits is the count of digits for the accumulator needed */
2137 /* if accumulator is too long for local storage, then allocate */
2138 needbytes=sizeof(decNumber)+(D2U(aset.digits)-1)*sizeof(Unit);
2139 /* [needbytes also used below if 1/lhs needed] */
2140 if (needbytes>sizeof(dacbuff)) {
2141 allocdac=(decNumber *)malloc(needbytes);
2142 if (allocdac==NULL) { /* hopeless -- abandon */
2143 status|=DEC_Insufficient_storage;
2145 dac=allocdac; /* use the allocated space */
2147 /* here, aset is set up and accumulator is ready for use */
2149 if (!useint) { /* non-integral rhs */
2150 /* x ** y; special-case x=1 here as it will otherwise always */
2151 /* reduce to integer 1; decLnOp has a fastpath which detects */
2152 /* the case of x=1 */
2153 decLnOp(dac, lhs, &aset, &status); /* dac=ln(lhs) */
2154 /* [no error possible, as lhs 0 already handled] */
2155 if (ISZERO(dac)) { /* x==1, 1.0, etc. */
2156 /* need to return fully-padded 1.0000 etc., but rhsint->1 */
2157 *dac->lsu=1; /* was 0, make int 1 */
2158 if (!rhsint) { /* add padding */
2159 Int shift=set->digits-1;
2160 dac->digits=decShiftToMost(dac->lsu, 1, shift);
2161 dac->exponent=-shift; /* make 1.0000... */
2162 status|=DEC_Inexact|DEC_Rounded; /* deemed inexact */
2166 decMultiplyOp(dac, dac, rhs, &aset, &status); /* dac=dac*rhs */
2167 decExpOp(dac, dac, &aset, &status); /* dac=exp(dac) */
2169 /* and drop through for final rounding */
2170 } /* non-integer rhs */
2172 else { /* carry on with integer */
2173 decNumberZero(dac); /* acc=1 */
2174 *dac->lsu=1; /* .. */
2176 /* if a negative power the constant 1 is needed, and if not subset */
2177 /* invert the lhs now rather than inverting the result later */
2178 if (decNumberIsNegative(rhs)) { /* was a **-n [hence digits>0] */
2179 decNumber *inv=invbuff; /* asssume use fixed buffer */
2180 decNumberCopy(&dnOne, dac); /* dnOne=1; [needed now or later] */
2182 if (set->extended) { /* need to calculate 1/lhs */
2184 /* divide lhs into 1, putting result in dac [dac=1/dac] */
2185 decDivideOp(dac, &dnOne, lhs, &aset, DIVIDE, &status);
2186 /* now locate or allocate space for the inverted lhs */
2187 if (needbytes>sizeof(invbuff)) {
2188 allocinv=(decNumber *)malloc(needbytes);
2189 if (allocinv==NULL) { /* hopeless -- abandon */
2190 status|=DEC_Insufficient_storage;
2192 inv=allocinv; /* use the allocated space */
2194 /* [inv now points to big-enough buffer or allocated storage] */
2195 decNumberCopy(inv, dac); /* copy the 1/lhs */
2196 decNumberCopy(dac, &dnOne); /* restore acc=1 */
2197 lhs=inv; /* .. and go forward with new lhs */
2203 /* Raise-to-the-power loop... */
2204 seenbit=0; /* set once a 1-bit is encountered */
2205 for (i=1;;i++){ /* for each bit [top bit ignored] */
2206 /* abandon if had overflow or terminal underflow */
2207 if (status & (DEC_Overflow|DEC_Underflow)) { /* interesting? */
2208 if (status&DEC_Overflow || ISZERO(dac)) break;
2210 /* [the following two lines revealed an optimizer bug in a C++ */
2211 /* compiler, with symptom: 5**3 -> 25, when n=n+n was used] */
2212 n=n<<1; /* move next bit to testable position */
2213 if (n<0) { /* top bit is set */
2214 seenbit=1; /* OK, significant bit seen */
2215 decMultiplyOp(dac, dac, lhs, &aset, &status); /* dac=dac*x */
2217 if (i==31) break; /* that was the last bit */
2218 if (!seenbit) continue; /* no need to square 1 */
2219 decMultiplyOp(dac, dac, dac, &aset, &status); /* dac=dac*dac [square] */
2220 } /*i*/ /* 32 bits */
2222 /* complete internal overflow or underflow processing */
2223 if (status & (DEC_Overflow|DEC_Underflow)) {
2225 /* If subset, and power was negative, reverse the kind of -erflow */
2226 /* [1/x not yet done] */
2227 if (!set->extended && decNumberIsNegative(rhs)) {
2228 if (status & DEC_Overflow)
2229 status^=DEC_Overflow | DEC_Underflow | DEC_Subnormal;
2230 else { /* trickier -- Underflow may or may not be set */
2231 status&=~(DEC_Underflow | DEC_Subnormal); /* [one or both] */
2232 status|=DEC_Overflow;
2236 dac->bits=(dac->bits & ~DECNEG) | bits; /* force correct sign */
2237 /* round subnormals [to set.digits rather than aset.digits] */
2238 /* or set overflow result similarly as required */
2239 decFinalize(dac, set, &residue, &status);
2240 decNumberCopy(res, dac); /* copy to result (is now OK length) */
2245 if (!set->extended && /* subset math */
2246 decNumberIsNegative(rhs)) { /* was a **-n [hence digits>0] */
2247 /* so divide result into 1 [dac=1/dac] */
2248 decDivideOp(dac, &dnOne, dac, &aset, DIVIDE, &status);
2251 } /* rhs integer path */
2253 /* reduce result to the requested length and copy to result */
2254 decCopyFit(res, dac, set, &residue, &status);
2255 decFinish(res, set, &residue, &status); /* final cleanup */
2257 if (!set->extended) decTrim(res, set, 0, 1, &dropped); /* trailing zeros */
2259 } while(0); /* end protected */
2261 if (allocdac!=NULL) free(allocdac); /* drop any storage used */
2262 if (allocinv!=NULL) free(allocinv); /* .. */
2264 if (alloclhs!=NULL) free(alloclhs); /* .. */
2265 if (allocrhs!=NULL) free(allocrhs); /* .. */
2267 if (status!=0) decStatus(res, status, set);
2269 decCheckInexact(res, set);
2272 } /* decNumberPower */
2274 /* ------------------------------------------------------------------ */
2275 /* decNumberQuantize -- force exponent to requested value */
2277 /* This computes C = op(A, B), where op adjusts the coefficient */
2278 /* of C (by rounding or shifting) such that the exponent (-scale) */
2279 /* of C has exponent of B. The numerical value of C will equal A, */
2280 /* except for the effects of any rounding that occurred. */
2282 /* res is C, the result. C may be A or B */
2283 /* lhs is A, the number to adjust */
2284 /* rhs is B, the number with exponent to match */
2285 /* set is the context */
2287 /* C must have space for set->digits digits. */
2289 /* Unless there is an error or the result is infinite, the exponent */
2290 /* after the operation is guaranteed to be equal to that of B. */
2291 /* ------------------------------------------------------------------ */
2292 decNumber * decNumberQuantize(decNumber *res, const decNumber *lhs,
2293 const decNumber *rhs, decContext *set) {
2294 uInt status=0; /* accumulator */
2295 decQuantizeOp(res, lhs, rhs, set, 1, &status);
2296 if (status!=0) decStatus(res, status, set);
2298 } /* decNumberQuantize */
2300 /* ------------------------------------------------------------------ */
2301 /* decNumberReduce -- remove trailing zeros */
2303 /* This computes C = 0 + A, and normalizes the result */
2305 /* res is C, the result. C may be A */
2307 /* set is the context */
2309 /* C must have space for set->digits digits. */
2310 /* ------------------------------------------------------------------ */
2311 /* Previously known as Normalize */
2312 decNumber * decNumberNormalize(decNumber *res, const decNumber *rhs,
2314 return decNumberReduce(res, rhs, set);
2315 } /* decNumberNormalize */
2317 decNumber * decNumberReduce(decNumber *res, const decNumber *rhs,
2320 decNumber *allocrhs=NULL; /* non-NULL if rounded rhs allocated */
2322 uInt status=0; /* as usual */
2323 Int residue=0; /* as usual */
2324 Int dropped; /* work */
2327 if (decCheckOperands(res, DECUNUSED, rhs, set)) return res;
2330 do { /* protect allocated storage */
2332 if (!set->extended) {
2333 /* reduce operand and set lostDigits status, as needed */
2334 if (rhs->digits>set->digits) {
2335 allocrhs=decRoundOperand(rhs, set, &status);
2336 if (allocrhs==NULL) break;
2341 /* [following code does not require input rounding] */
2343 /* Infinities copy through; NaNs need usual treatment */
2344 if (decNumberIsNaN(rhs)) {
2345 decNaNs(res, rhs, NULL, set, &status);
2349 /* reduce result to the requested length and copy to result */
2350 decCopyFit(res, rhs, set, &residue, &status); /* copy & round */
2351 decFinish(res, set, &residue, &status); /* cleanup/set flags */
2352 decTrim(res, set, 1, 0, &dropped); /* normalize in place */
2354 } while(0); /* end protected */
2357 if (allocrhs !=NULL) free(allocrhs); /* .. */
2359 if (status!=0) decStatus(res, status, set);/* then report status */
2361 } /* decNumberReduce */
2363 /* ------------------------------------------------------------------ */
2364 /* decNumberRescale -- force exponent to requested value */
2366 /* This computes C = op(A, B), where op adjusts the coefficient */
2367 /* of C (by rounding or shifting) such that the exponent (-scale) */
2368 /* of C has the value B. The numerical value of C will equal A, */
2369 /* except for the effects of any rounding that occurred. */
2371 /* res is C, the result. C may be A or B */
2372 /* lhs is A, the number to adjust */
2373 /* rhs is B, the requested exponent */
2374 /* set is the context */
2376 /* C must have space for set->digits digits. */
2378 /* Unless there is an error or the result is infinite, the exponent */
2379 /* after the operation is guaranteed to be equal to B. */
2380 /* ------------------------------------------------------------------ */
2381 decNumber * decNumberRescale(decNumber *res, const decNumber *lhs,
2382 const decNumber *rhs, decContext *set) {
2383 uInt status=0; /* accumulator */
2384 decQuantizeOp(res, lhs, rhs, set, 0, &status);
2385 if (status!=0) decStatus(res, status, set);
2387 } /* decNumberRescale */
2389 /* ------------------------------------------------------------------ */
2390 /* decNumberRemainder -- divide and return remainder */
2392 /* This computes C = A % B */
2394 /* res is C, the result. C may be A and/or B (e.g., X=X%X) */
2397 /* set is the context */
2399 /* C must have space for set->digits digits. */
2400 /* ------------------------------------------------------------------ */
2401 decNumber * decNumberRemainder(decNumber *res, const decNumber *lhs,
2402 const decNumber *rhs, decContext *set) {
2403 uInt status=0; /* accumulator */
2404 decDivideOp(res, lhs, rhs, set, REMAINDER, &status);
2405 if (status!=0) decStatus(res, status, set);
2407 decCheckInexact(res, set);
2410 } /* decNumberRemainder */
2412 /* ------------------------------------------------------------------ */
2413 /* decNumberRemainderNear -- divide and return remainder from nearest */
2415 /* This computes C = A % B, where % is the IEEE remainder operator */
2417 /* res is C, the result. C may be A and/or B (e.g., X=X%X) */
2420 /* set is the context */
2422 /* C must have space for set->digits digits. */
2423 /* ------------------------------------------------------------------ */
2424 decNumber * decNumberRemainderNear(decNumber *res, const decNumber *lhs,
2425 const decNumber *rhs, decContext *set) {
2426 uInt status=0; /* accumulator */
2427 decDivideOp(res, lhs, rhs, set, REMNEAR, &status);
2428 if (status!=0) decStatus(res, status, set);
2430 decCheckInexact(res, set);
2433 } /* decNumberRemainderNear */
2435 /* ------------------------------------------------------------------ */
2436 /* decNumberRotate -- rotate the coefficient of a Number left/right */
2438 /* This computes C = A rot B (in base ten and rotating set->digits */
2441 /* res is C, the result. C may be A and/or B (e.g., X=XrotX) */
2443 /* rhs is B, the number of digits to rotate (-ve to right) */
2444 /* set is the context */
2446 /* The digits of the coefficient of A are rotated to the left (if B */
2447 /* is positive) or to the right (if B is negative) without adjusting */
2448 /* the exponent or the sign of A. If lhs->digits is less than */
2449 /* set->digits the coefficient is padded with zeros on the left */
2450 /* before the rotate. Any leading zeros in the result are removed */
2453 /* B must be an integer (q=0) and in the range -set->digits through */
2455 /* C must have space for set->digits digits. */
2456 /* NaNs are propagated as usual. Infinities are unaffected (but */
2457 /* B must be valid). No status is set unless B is invalid or an */
2458 /* operand is an sNaN. */
2459 /* ------------------------------------------------------------------ */
2460 decNumber * decNumberRotate(decNumber *res, const decNumber *lhs,
2461 const decNumber *rhs, decContext *set) {
2462 uInt status=0; /* accumulator */
2463 Int rotate; /* rhs as an Int */
2466 if (decCheckOperands(res, lhs, rhs, set)) return res;
2469 /* NaNs propagate as normal */
2470 if (decNumberIsNaN(lhs) || decNumberIsNaN(rhs))
2471 decNaNs(res, lhs, rhs, set, &status);
2472 /* rhs must be an integer */
2473 else if (decNumberIsInfinite(rhs) || rhs->exponent!=0)
2474 status=DEC_Invalid_operation;
2475 else { /* both numeric, rhs is an integer */
2476 rotate=decGetInt(rhs); /* [cannot fail] */
2477 if (rotate==BADINT /* something bad .. */
2478 || rotate==BIGODD || rotate==BIGEVEN /* .. very big .. */
2479 || abs(rotate)>set->digits) /* .. or out of range */
2480 status=DEC_Invalid_operation;
2481 else { /* rhs is OK */
2482 decNumberCopy(res, lhs);
2483 /* convert -ve rotate to equivalent positive rotation */
2484 if (rotate<0) rotate=set->digits+rotate;
2485 if (rotate!=0 && rotate!=set->digits /* zero or full rotation */
2486 && !decNumberIsInfinite(res)) { /* lhs was infinite */
2487 /* left-rotate to do; 0 < rotate < set->digits */
2488 uInt units, shift; /* work */
2489 uInt msudigits; /* digits in result msu */
2490 Unit *msu=res->lsu+D2U(res->digits)-1; /* current msu */
2491 Unit *msumax=res->lsu+D2U(set->digits)-1; /* rotation msu */
2492 for (msu++; msu<=msumax; msu++) *msu=0; /* ensure high units=0 */
2493 res->digits=set->digits; /* now full-length */
2494 msudigits=MSUDIGITS(res->digits); /* actual digits in msu */
2496 /* rotation here is done in-place, in three steps */
2497 /* 1. shift all to least up to one unit to unit-align final */
2498 /* lsd [any digits shifted out are rotated to the left, */
2499 /* abutted to the original msd (which may require split)] */
2501 /* [if there are no whole units left to rotate, the */
2502 /* rotation is now complete] */
2504 /* 2. shift to least, from below the split point only, so that */
2505 /* the final msd is in the right place in its Unit [any */
2506 /* digits shifted out will fit exactly in the current msu, */
2507 /* left aligned, no split required] */
2509 /* 3. rotate all the units by reversing left part, right */
2510 /* part, and then whole */
2512 /* example: rotate right 8 digits (2 units + 2), DECDPUN=3. */
2514 /* start: 00a bcd efg hij klm npq */
2516 /* 1a 000 0ab cde fgh|ijk lmn [pq saved] */
2517 /* 1b 00p qab cde fgh|ijk lmn */
2519 /* 2a 00p qab cde fgh|00i jkl [mn saved] */
2520 /* 2b mnp qab cde fgh|00i jkl */
2522 /* 3a fgh cde qab mnp|00i jkl */
2523 /* 3b fgh cde qab mnp|jkl 00i */
2524 /* 3c 00i jkl mnp qab cde fgh */
2526 /* Step 1: amount to shift is the partial right-rotate count */
2527 rotate=set->digits-rotate; /* make it right-rotate */
2528 units=rotate/DECDPUN; /* whole units to rotate */
2529 shift=rotate%DECDPUN; /* left-over digits count */
2530 if (shift>0) { /* not an exact number of units */
2531 uInt save=res->lsu[0]%powers[shift]; /* save low digit(s) */
2532 decShiftToLeast(res->lsu, D2U(res->digits), shift);
2533 if (shift>msudigits) { /* msumax-1 needs >0 digits */
2534 uInt rem=save%powers[shift-msudigits];/* split save */
2535 *msumax=(Unit)(save/powers[shift-msudigits]); /* and insert */
2536 *(msumax-1)=*(msumax-1)
2537 +(Unit)(rem*powers[DECDPUN-(shift-msudigits)]); /* .. */
2539 else { /* all fits in msumax */
2540 *msumax=*msumax+(Unit)(save*powers[msudigits-shift]); /* [maybe *1] */
2542 } /* digits shift needed */
2544 /* If whole units to rotate... */
2545 if (units>0) { /* some to do */
2546 /* Step 2: the units to touch are the whole ones in rotate, */
2547 /* if any, and the shift is DECDPUN-msudigits (which may be */
2549 shift=DECDPUN-msudigits;
2550 if (shift>0) { /* not an exact number of units */
2551 uInt save=res->lsu[0]%powers[shift]; /* save low digit(s) */
2552 decShiftToLeast(res->lsu, units, shift);
2553 *msumax=*msumax+(Unit)(save*powers[msudigits]);
2554 } /* partial shift needed */
2556 /* Step 3: rotate the units array using triple reverse */
2557 /* (reversing is easy and fast) */
2558 decReverse(res->lsu+units, msumax); /* left part */
2559 decReverse(res->lsu, res->lsu+units-1); /* right part */
2560 decReverse(res->lsu, msumax); /* whole */
2561 } /* whole units to rotate */
2562 /* the rotation may have left an undetermined number of zeros */
2563 /* on the left, so true length needs to be calculated */
2564 res->digits=decGetDigits(res->lsu, msumax-res->lsu+1);
2565 } /* rotate needed */
2568 if (status!=0) decStatus(res, status, set);
2570 } /* decNumberRotate */
2572 /* ------------------------------------------------------------------ */
2573 /* decNumberSameQuantum -- test for equal exponents */
2575 /* res is the result number, which will contain either 0 or 1 */
2576 /* lhs is a number to test */
2577 /* rhs is the second (usually a pattern) */
2579 /* No errors are possible and no context is needed. */
2580 /* ------------------------------------------------------------------ */
2581 decNumber * decNumberSameQuantum(decNumber *res, const decNumber *lhs,
2582 const decNumber *rhs) {
2583 Unit ret=0; /* return value */
2586 if (decCheckOperands(res, lhs, rhs, DECUNCONT)) return res;
2590 if (decNumberIsNaN(lhs) && decNumberIsNaN(rhs)) ret=1;
2591 else if (decNumberIsInfinite(lhs) && decNumberIsInfinite(rhs)) ret=1;
2592 /* [anything else with a special gives 0] */
2594 else if (lhs->exponent==rhs->exponent) ret=1;
2596 decNumberZero(res); /* OK to overwrite an operand now */
2599 } /* decNumberSameQuantum */
2601 /* ------------------------------------------------------------------ */
2602 /* decNumberScaleB -- multiply by a power of 10 */
2604 /* This computes C = A x 10**B where B is an integer (q=0) with */
2605 /* maximum magnitude 2*(emax+digits) */
2607 /* res is C, the result. C may be A or B */
2608 /* lhs is A, the number to adjust */
2609 /* rhs is B, the requested power of ten to use */
2610 /* set is the context */
2612 /* C must have space for set->digits digits. */
2614 /* The result may underflow or overflow. */
2615 /* ------------------------------------------------------------------ */
2616 decNumber * decNumberScaleB(decNumber *res, const decNumber *lhs,
2617 const decNumber *rhs, decContext *set) {
2618 Int reqexp; /* requested exponent change [B] */
2619 uInt status=0; /* accumulator */
2620 Int residue; /* work */
2623 if (decCheckOperands(res, lhs, rhs, set)) return res;
2626 /* Handle special values except lhs infinite */
2627 if (decNumberIsNaN(lhs) || decNumberIsNaN(rhs))
2628 decNaNs(res, lhs, rhs, set, &status);
2629 /* rhs must be an integer */
2630 else if (decNumberIsInfinite(rhs) || rhs->exponent!=0)
2631 status=DEC_Invalid_operation;
2633 /* lhs is a number; rhs is a finite with q==0 */
2634 reqexp=decGetInt(rhs); /* [cannot fail] */
2635 if (reqexp==BADINT /* something bad .. */
2636 || reqexp==BIGODD || reqexp==BIGEVEN /* .. very big .. */
2637 || abs(reqexp)>(2*(set->digits+set->emax))) /* .. or out of range */
2638 status=DEC_Invalid_operation;
2639 else { /* rhs is OK */
2640 decNumberCopy(res, lhs); /* all done if infinite lhs */
2641 if (!decNumberIsInfinite(res)) { /* prepare to scale */
2642 res->exponent+=reqexp; /* adjust the exponent */
2644 decFinalize(res, set, &residue, &status); /* .. and check */
2648 if (status!=0) decStatus(res, status, set);
2650 } /* decNumberScaleB */
2652 /* ------------------------------------------------------------------ */
2653 /* decNumberShift -- shift the coefficient of a Number left or right */
2655 /* This computes C = A << B or C = A >> -B (in base ten). */
2657 /* res is C, the result. C may be A and/or B (e.g., X=X<<X) */
2659 /* rhs is B, the number of digits to shift (-ve to right) */
2660 /* set is the context */
2662 /* The digits of the coefficient of A are shifted to the left (if B */
2663 /* is positive) or to the right (if B is negative) without adjusting */
2664 /* the exponent or the sign of A. */
2666 /* B must be an integer (q=0) and in the range -set->digits through */
2668 /* C must have space for set->digits digits. */
2669 /* NaNs are propagated as usual. Infinities are unaffected (but */
2670 /* B must be valid). No status is set unless B is invalid or an */
2671 /* operand is an sNaN. */
2672 /* ------------------------------------------------------------------ */
2673 decNumber * decNumberShift(decNumber *res, const decNumber *lhs,
2674 const decNumber *rhs, decContext *set) {
2675 uInt status=0; /* accumulator */
2676 Int shift; /* rhs as an Int */
2679 if (decCheckOperands(res, lhs, rhs, set)) return res;
2682 /* NaNs propagate as normal */
2683 if (decNumberIsNaN(lhs) || decNumberIsNaN(rhs))
2684 decNaNs(res, lhs, rhs, set, &status);
2685 /* rhs must be an integer */
2686 else if (decNumberIsInfinite(rhs) || rhs->exponent!=0)
2687 status=DEC_Invalid_operation;
2688 else { /* both numeric, rhs is an integer */
2689 shift=decGetInt(rhs); /* [cannot fail] */
2690 if (shift==BADINT /* something bad .. */
2691 || shift==BIGODD || shift==BIGEVEN /* .. very big .. */
2692 || abs(shift)>set->digits) /* .. or out of range */
2693 status=DEC_Invalid_operation;
2694 else { /* rhs is OK */
2695 decNumberCopy(res, lhs);
2696 if (shift!=0 && !decNumberIsInfinite(res)) { /* something to do */
2697 if (shift>0) { /* to left */
2698 if (shift==set->digits) { /* removing all */
2699 *res->lsu=0; /* so place 0 */
2700 res->digits=1; /* .. */
2703 /* first remove leading digits if necessary */
2704 if (res->digits+shift>set->digits) {
2705 decDecap(res, res->digits+shift-set->digits);
2706 /* that updated res->digits; may have gone to 1 (for a */
2707 /* single digit or for zero */
2709 if (res->digits>1 || *res->lsu) /* if non-zero.. */
2710 res->digits=decShiftToMost(res->lsu, res->digits, shift);
2711 } /* partial left */
2713 else { /* to right */
2714 if (-shift>=res->digits) { /* discarding all */
2715 *res->lsu=0; /* so place 0 */
2716 res->digits=1; /* .. */
2719 decShiftToLeast(res->lsu, D2U(res->digits), -shift);
2720 res->digits-=(-shift);
2723 } /* non-0 non-Inf shift */
2726 if (status!=0) decStatus(res, status, set);
2728 } /* decNumberShift */
2730 /* ------------------------------------------------------------------ */
2731 /* decNumberSquareRoot -- square root operator */
2733 /* This computes C = squareroot(A) */
2735 /* res is C, the result. C may be A */
2737 /* set is the context; note that rounding mode has no effect */
2739 /* C must have space for set->digits digits. */
2740 /* ------------------------------------------------------------------ */
2741 /* This uses the following varying-precision algorithm in: */
2743 /* Properly Rounded Variable Precision Square Root, T. E. Hull and */
2744 /* A. Abrham, ACM Transactions on Mathematical Software, Vol 11 #3, */
2745 /* pp229-237, ACM, September 1985. */
2747 /* The square-root is calculated using Newton's method, after which */
2748 /* a check is made to ensure the result is correctly rounded. */
2750 /* % [Reformatted original Numerical Turing source code follows.] */
2751 /* function sqrt(x : real) : real */
2752 /* % sqrt(x) returns the properly rounded approximation to the square */
2753 /* % root of x, in the precision of the calling environment, or it */
2754 /* % fails if x < 0. */
2755 /* % t e hull and a abrham, august, 1984 */
2756 /* if x <= 0 then */
2763 /* var f := setexp(x, 0) % fraction part of x [0.1 <= x < 1] */
2764 /* var e := getexp(x) % exponent part of x */
2765 /* var approx : real */
2766 /* if e mod 2 = 0 then */
2767 /* approx := .259 + .819 * f % approx to root of f */
2769 /* f := f/l0 % adjustments */
2770 /* e := e + 1 % for odd */
2771 /* approx := .0819 + 2.59 * f % exponent */
2775 /* const maxp := currentprecision + 2 */
2777 /* p := min(2*p - 2, maxp) % p = 4,6,10, . . . , maxp */
2779 /* approx := .5 * (approx + f/approx) */
2780 /* exit when p = maxp */
2783 /* % approx is now within 1 ulp of the properly rounded square root */
2784 /* % of f; to ensure proper rounding, compare squares of (approx - */
2785 /* % l/2 ulp) and (approx + l/2 ulp) with f. */
2786 /* p := currentprecision */
2788 /* precision p + 2 */
2789 /* const approxsubhalf := approx - setexp(.5, -p) */
2790 /* if mulru(approxsubhalf, approxsubhalf) > f then */
2791 /* approx := approx - setexp(.l, -p + 1) */
2793 /* const approxaddhalf := approx + setexp(.5, -p) */
2794 /* if mulrd(approxaddhalf, approxaddhalf) < f then */
2795 /* approx := approx + setexp(.l, -p + 1) */
2799 /* result setexp(approx, e div 2) % fix exponent */
2801 /* ------------------------------------------------------------------ */
2802 decNumber * decNumberSquareRoot(decNumber *res, const decNumber *rhs,
2804 decContext workset, approxset; /* work contexts */
2805 decNumber dzero; /* used for constant zero */
2806 Int maxp; /* largest working precision */
2807 Int workp; /* working precision */
2808 Int residue=0; /* rounding residue */
2809 uInt status=0, ignore=0; /* status accumulators */
2810 uInt rstatus; /* .. */
2811 Int exp; /* working exponent */
2812 Int ideal; /* ideal (preferred) exponent */
2813 Int needbytes; /* work */
2814 Int dropped; /* .. */
2817 decNumber *allocrhs=NULL; /* non-NULL if rounded rhs allocated */
2819 /* buffer for f [needs +1 in case DECBUFFER 0] */
2820 decNumber buff[D2N(DECBUFFER+1)];
2821 /* buffer for a [needs +2 to match likely maxp] */
2822 decNumber bufa[D2N(DECBUFFER+2)];
2823 /* buffer for temporary, b [must be same size as a] */
2824 decNumber bufb[D2N(DECBUFFER+2)];
2825 decNumber *allocbuff=NULL; /* -> allocated buff, iff allocated */
2826 decNumber *allocbufa=NULL; /* -> allocated bufa, iff allocated */
2827 decNumber *allocbufb=NULL; /* -> allocated bufb, iff allocated */
2828 decNumber *f=buff; /* reduced fraction */
2829 decNumber *a=bufa; /* approximation to result */
2830 decNumber *b=bufb; /* intermediate result */
2831 /* buffer for temporary variable, up to 3 digits */
2832 decNumber buft[D2N(3)];
2833 decNumber *t=buft; /* up-to-3-digit constant or work */
2836 if (decCheckOperands(res, DECUNUSED, rhs, set)) return res;
2839 do { /* protect allocated storage */
2841 if (!set->extended) {
2842 /* reduce operand and set lostDigits status, as needed */
2843 if (rhs->digits>set->digits) {
2844 allocrhs=decRoundOperand(rhs, set, &status);
2845 if (allocrhs==NULL) break;
2846 /* [Note: 'f' allocation below could reuse this buffer if */
2847 /* used, but as this is rare they are kept separate for clarity.] */
2852 /* [following code does not require input rounding] */
2854 /* handle infinities and NaNs */
2856 if (decNumberIsInfinite(rhs)) { /* an infinity */
2857 if (decNumberIsNegative(rhs)) status|=DEC_Invalid_operation;
2858 else decNumberCopy(res, rhs); /* +Infinity */
2860 else decNaNs(res, rhs, NULL, set, &status); /* a NaN */
2864 /* calculate the ideal (preferred) exponent [floor(exp/2)] */
2865 /* [It would be nicer to write: ideal=rhs->exponent>>1, but this */
2866 /* generates a compiler warning. Generated code is the same.] */
2867 ideal=(rhs->exponent&~1)/2; /* target */
2871 decNumberCopy(res, rhs); /* could be 0 or -0 */
2872 res->exponent=ideal; /* use the ideal [safe] */
2873 /* use decFinish to clamp any out-of-range exponent, etc. */
2874 decFinish(res, set, &residue, &status);
2878 /* any other -x is an oops */
2879 if (decNumberIsNegative(rhs)) {
2880 status|=DEC_Invalid_operation;
2884 /* space is needed for three working variables */
2885 /* f -- the same precision as the RHS, reduced to 0.01->0.99... */
2886 /* a -- Hull's approximation -- precision, when assigned, is */
2887 /* currentprecision+1 or the input argument precision, */
2888 /* whichever is larger (+2 for use as temporary) */
2889 /* b -- intermediate temporary result (same size as a) */
2890 /* if any is too long for local storage, then allocate */
2891 workp=MAXI(set->digits+1, rhs->digits); /* actual rounding precision */
2892 workp=MAXI(workp, 7); /* at least 7 for low cases */
2893 maxp=workp+2; /* largest working precision */
2895 needbytes=sizeof(decNumber)+(D2U(rhs->digits)-1)*sizeof(Unit);
2896 if (needbytes>(Int)sizeof(buff)) {
2897 allocbuff=(decNumber *)malloc(needbytes);
2898 if (allocbuff==NULL) { /* hopeless -- abandon */
2899 status|=DEC_Insufficient_storage;
2901 f=allocbuff; /* use the allocated space */
2903 /* a and b both need to be able to hold a maxp-length number */
2904 needbytes=sizeof(decNumber)+(D2U(maxp)-1)*sizeof(Unit);
2905 if (needbytes>(Int)sizeof(bufa)) { /* [same applies to b] */
2906 allocbufa=(decNumber *)malloc(needbytes);
2907 allocbufb=(decNumber *)malloc(needbytes);
2908 if (allocbufa==NULL || allocbufb==NULL) { /* hopeless */
2909 status|=DEC_Insufficient_storage;
2911 a=allocbufa; /* use the allocated spaces */
2912 b=allocbufb; /* .. */
2915 /* copy rhs -> f, save exponent, and reduce so 0.1 <= f < 1 */
2916 decNumberCopy(f, rhs);
2917 exp=f->exponent+f->digits; /* adjusted to Hull rules */
2918 f->exponent=-(f->digits); /* to range */
2920 /* set up working context */
2921 decContextDefault(&workset, DEC_INIT_DECIMAL64);
2922 workset.emax=DEC_MAX_EMAX;
2923 workset.emin=DEC_MIN_EMIN;
2925 /* [Until further notice, no error is possible and status bits */
2926 /* (Rounded, etc.) should be ignored, not accumulated.] */
2928 /* Calculate initial approximation, and allow for odd exponent */
2929 workset.digits=workp; /* p for initial calculation */
2930 t->bits=0; t->digits=3;
2931 a->bits=0; a->digits=3;
2932 if ((exp & 1)==0) { /* even exponent */
2933 /* Set t=0.259, a=0.819 */
2940 t->lsu[0]=59; t->lsu[1]=2;
2941 a->lsu[0]=19; a->lsu[1]=8;
2943 t->lsu[0]=9; t->lsu[1]=5; t->lsu[2]=2;
2944 a->lsu[0]=9; a->lsu[1]=1; a->lsu[2]=8;
2947 else { /* odd exponent */
2948 /* Set t=0.0819, a=2.59 */
2949 f->exponent--; /* f=f/10 */
2957 t->lsu[0]=19; t->lsu[1]=8;
2958 a->lsu[0]=59; a->lsu[1]=2;
2960 t->lsu[0]=9; t->lsu[1]=1; t->lsu[2]=8;
2961 a->lsu[0]=9; a->lsu[1]=5; a->lsu[2]=2;
2965 decMultiplyOp(a, a, f, &workset, &ignore); /* a=a*f */
2966 decAddOp(a, a, t, &workset, 0, &ignore); /* ..+t */
2967 /* [a is now the initial approximation for sqrt(f), calculated with */
2968 /* currentprecision, which is also a's precision.] */
2970 /* the main calculation loop */
2971 decNumberZero(&dzero); /* make 0 */
2972 decNumberZero(t); /* set t = 0.5 */
2973 t->lsu[0]=5; /* .. */
2974 t->exponent=-1; /* .. */
2975 workset.digits=3; /* initial p */
2976 for (; workset.digits<maxp;) {
2977 /* set p to min(2*p - 2, maxp) [hence 3; or: 4, 6, 10, ... , maxp] */
2978 workset.digits=MINI(workset.digits*2-2, maxp);
2979 /* a = 0.5 * (a + f/a) */
2980 /* [calculated at p then rounded to currentprecision] */
2981 decDivideOp(b, f, a, &workset, DIVIDE, &ignore); /* b=f/a */
2982 decAddOp(b, b, a, &workset, 0, &ignore); /* b=b+a */
2983 decMultiplyOp(a, b, t, &workset, &ignore); /* a=b*0.5 */
2986 /* Here, 0.1 <= a < 1 [Hull], and a has maxp digits */
2987 /* now reduce to length, etc.; this needs to be done with a */
2988 /* having the correct exponent so as to handle subnormals */
2990 approxset=*set; /* get emin, emax, etc. */
2991 approxset.round=DEC_ROUND_HALF_EVEN;
2992 a->exponent+=exp/2; /* set correct exponent */
2993 rstatus=0; /* clear status */
2994 residue=0; /* .. and accumulator */
2995 decCopyFit(a, a, &approxset, &residue, &rstatus); /* reduce (if needed) */
2996 decFinish(a, &approxset, &residue, &rstatus); /* clean and finalize */
2998 /* Overflow was possible if the input exponent was out-of-range, */
2999 /* in which case quit */
3000 if (rstatus&DEC_Overflow) {
3001 status=rstatus; /* use the status as-is */
3002 decNumberCopy(res, a); /* copy to result */
3006 /* Preserve status except Inexact/Rounded */
3007 status|=(rstatus & ~(DEC_Rounded|DEC_Inexact));
3009 /* Carry out the Hull correction */
3010 a->exponent-=exp/2; /* back to 0.1->1 */
3012 /* a is now at final precision and within 1 ulp of the properly */
3013 /* rounded square root of f; to ensure proper rounding, compare */
3014 /* squares of (a - l/2 ulp) and (a + l/2 ulp) with f. */
3015 /* Here workset.digits=maxp and t=0.5, and a->digits determines */
3017 workset.digits--; /* maxp-1 is OK now */
3018 t->exponent=-a->digits-1; /* make 0.5 ulp */
3019 decAddOp(b, a, t, &workset, DECNEG, &ignore); /* b = a - 0.5 ulp */
3020 workset.round=DEC_ROUND_UP;
3021 decMultiplyOp(b, b, b, &workset, &ignore); /* b = mulru(b, b) */
3022 decCompareOp(b, f, b, &workset, COMPARE, &ignore); /* b ? f, reversed */
3023 if (decNumberIsNegative(b)) { /* f < b [i.e., b > f] */
3024 /* this is the more common adjustment, though both are rare */
3025 t->exponent++; /* make 1.0 ulp */
3026 t->lsu[0]=1; /* .. */
3027 decAddOp(a, a, t, &workset, DECNEG, &ignore); /* a = a - 1 ulp */
3028 /* assign to approx [round to length] */
3029 approxset.emin-=exp/2; /* adjust to match a */
3030 approxset.emax-=exp/2;
3031 decAddOp(a, &dzero, a, &approxset, 0, &ignore);
3034 decAddOp(b, a, t, &workset, 0, &ignore); /* b = a + 0.5 ulp */
3035 workset.round=DEC_ROUND_DOWN;
3036 decMultiplyOp(b, b, b, &workset, &ignore); /* b = mulrd(b, b) */
3037 decCompareOp(b, b, f, &workset, COMPARE, &ignore); /* b ? f */
3038 if (decNumberIsNegative(b)) { /* b < f */
3039 t->exponent++; /* make 1.0 ulp */
3040 t->lsu[0]=1; /* .. */
3041 decAddOp(a, a, t, &workset, 0, &ignore); /* a = a + 1 ulp */
3042 /* assign to approx [round to length] */
3043 approxset.emin-=exp/2; /* adjust to match a */
3044 approxset.emax-=exp/2;
3045 decAddOp(a, &dzero, a, &approxset, 0, &ignore);
3048 /* [no errors are possible in the above, and rounding/inexact during */
3049 /* estimation are irrelevant, so status was not accumulated] */
3051 /* Here, 0.1 <= a < 1 (still), so adjust back */
3052 a->exponent+=exp/2; /* set correct exponent */
3054 /* count droppable zeros [after any subnormal rounding] by */
3055 /* trimming a copy */
3056 decNumberCopy(b, a);
3057 decTrim(b, set, 1, 1, &dropped); /* [drops trailing zeros] */
3059 /* Set Inexact and Rounded. The answer can only be exact if */
3060 /* it is short enough so that squaring it could fit in workp */
3061 /* digits, so this is the only (relatively rare) condition that */
3062 /* a careful check is needed */
3063 if (b->digits*2-1 > workp) { /* cannot fit */
3064 status|=DEC_Inexact|DEC_Rounded;
3066 else { /* could be exact/unrounded */
3067 uInt mstatus=0; /* local status */
3068 decMultiplyOp(b, b, b, &workset, &mstatus); /* try the multiply */
3069 if (mstatus&DEC_Overflow) { /* result just won't fit */
3070 status|=DEC_Inexact|DEC_Rounded;
3072 else { /* plausible */
3073 decCompareOp(t, b, rhs, &workset, COMPARE, &mstatus); /* b ? rhs */
3074 if (!ISZERO(t)) status|=DEC_Inexact|DEC_Rounded; /* not equal */
3075 else { /* is Exact */
3076 /* here, dropped is the count of trailing zeros in 'a' */
3077 /* use closest exponent to ideal... */
3078 Int todrop=ideal-a->exponent; /* most that can be dropped */
3079 if (todrop<0) status|=DEC_Rounded; /* ideally would add 0s */
3080 else { /* unrounded */
3081 /* there are some to drop, but emax may not allow all */
3082 Int maxexp=set->emax-set->digits+1;
3083 Int maxdrop=maxexp-a->exponent;
3084 if (todrop>maxdrop && set->clamp) { /* apply clamping */
3086 status|=DEC_Clamped;
3088 if (dropped<todrop) { /* clamp to those available */
3090 status|=DEC_Clamped;
3092 if (todrop>0) { /* have some to drop */
3093 decShiftToLeast(a->lsu, D2U(a->digits), todrop);
3094 a->exponent+=todrop; /* maintain numerical value */
3095 a->digits-=todrop; /* new length */
3102 /* double-check Underflow, as perhaps the result could not have */
3103 /* been subnormal (initial argument too big), or it is now Exact */
3104 if (status&DEC_Underflow) {
3105 Int ae=rhs->exponent+rhs->digits-1; /* adjusted exponent */
3106 /* check if truly subnormal */
3107 #if DECEXTFLAG /* DEC_Subnormal too */
3108 if (ae>=set->emin*2) status&=~(DEC_Subnormal|DEC_Underflow);
3110 if (ae>=set->emin*2) status&=~DEC_Underflow;
3112 /* check if truly inexact */
3113 if (!(status&DEC_Inexact)) status&=~DEC_Underflow;
3116 decNumberCopy(res, a); /* a is now the result */
3117 } while(0); /* end protected */
3119 if (allocbuff!=NULL) free(allocbuff); /* drop any storage used */
3120 if (allocbufa!=NULL) free(allocbufa); /* .. */
3121 if (allocbufb!=NULL) free(allocbufb); /* .. */
3123 if (allocrhs !=NULL) free(allocrhs); /* .. */
3125 if (status!=0) decStatus(res, status, set);/* then report status */
3127 decCheckInexact(res, set);
3130 } /* decNumberSquareRoot */
3132 /* ------------------------------------------------------------------ */
3133 /* decNumberSubtract -- subtract two Numbers */
3135 /* This computes C = A - B */
3137 /* res is C, the result. C may be A and/or B (e.g., X=X-X) */
3140 /* set is the context */
3142 /* C must have space for set->digits digits. */
3143 /* ------------------------------------------------------------------ */
3144 decNumber * decNumberSubtract(decNumber *res, const decNumber *lhs,
3145 const decNumber *rhs, decContext *set) {
3146 uInt status=0; /* accumulator */
3148 decAddOp(res, lhs, rhs, set, DECNEG, &status);
3149 if (status!=0) decStatus(res, status, set);
3151 decCheckInexact(res, set);
3154 } /* decNumberSubtract */
3156 /* ------------------------------------------------------------------ */
3157 /* decNumberToIntegralExact -- round-to-integral-value with InExact */
3158 /* decNumberToIntegralValue -- round-to-integral-value */
3160 /* res is the result */
3161 /* rhs is input number */
3162 /* set is the context */
3164 /* res must have space for any value of rhs. */
3166 /* This implements the IEEE special operators and therefore treats */
3167 /* special values as valid. For finite numbers it returns */
3168 /* rescale(rhs, 0) if rhs->exponent is <0. */
3169 /* Otherwise the result is rhs (so no error is possible, except for */
3172 /* The context is used for rounding mode and status after sNaN, but */
3173 /* the digits setting is ignored. The Exact version will signal */
3174 /* Inexact if the result differs numerically from rhs; the other */
3175 /* never signals Inexact. */
3176 /* ------------------------------------------------------------------ */
3177 decNumber * decNumberToIntegralExact(decNumber *res, const decNumber *rhs,
3180 decContext workset; /* working context */
3181 uInt status=0; /* accumulator */
3184 if (decCheckOperands(res, DECUNUSED, rhs, set)) return res;
3187 /* handle infinities and NaNs */
3189 if (decNumberIsInfinite(rhs)) decNumberCopy(res, rhs); /* an Infinity */
3190 else decNaNs(res, rhs, NULL, set, &status); /* a NaN */
3193 /* have a finite number; no error possible (res must be big enough) */
3194 if (rhs->exponent>=0) return decNumberCopy(res, rhs);
3195 /* that was easy, but if negative exponent there is work to do... */
3196 workset=*set; /* clone rounding, etc. */
3197 workset.digits=rhs->digits; /* no length rounding */
3198 workset.traps=0; /* no traps */
3199 decNumberZero(&dn); /* make a number with exponent 0 */
3200 decNumberQuantize(res, rhs, &dn, &workset);
3201 status|=workset.status;
3203 if (status!=0) decStatus(res, status, set);
3205 } /* decNumberToIntegralExact */
3207 decNumber * decNumberToIntegralValue(decNumber *res, const decNumber *rhs,
3209 decContext workset=*set; /* working context */
3210 workset.traps=0; /* no traps */
3211 decNumberToIntegralExact(res, rhs, &workset);
3212 /* this never affects set, except for sNaNs; NaN will have been set */
3213 /* or propagated already, so no need to call decStatus */
3214 set->status|=workset.status&DEC_Invalid_operation;
3216 } /* decNumberToIntegralValue */
3218 /* ------------------------------------------------------------------ */
3219 /* decNumberXor -- XOR two Numbers, digitwise */
3221 /* This computes C = A ^ B */
3223 /* res is C, the result. C may be A and/or B (e.g., X=X^X) */
3226 /* set is the context (used for result length and error report) */
3228 /* C must have space for set->digits digits. */
3230 /* Logical function restrictions apply (see above); a NaN is */
3231 /* returned with Invalid_operation if a restriction is violated. */
3232 /* ------------------------------------------------------------------ */
3233 decNumber * decNumberXor(decNumber *res, const decNumber *lhs,
3234 const decNumber *rhs, decContext *set) {
3235 const Unit *ua, *ub; /* -> operands */
3236 const Unit *msua, *msub; /* -> operand msus */
3237 Unit *uc, *msuc; /* -> result and its msu */
3238 Int msudigs; /* digits in res msu */
3240 if (decCheckOperands(res, lhs, rhs, set)) return res;
3243 if (lhs->exponent!=0 || decNumberIsSpecial(lhs) || decNumberIsNegative(lhs)
3244 || rhs->exponent!=0 || decNumberIsSpecial(rhs) || decNumberIsNegative(rhs)) {
3245 decStatus(res, DEC_Invalid_operation, set);
3248 /* operands are valid */
3249 ua=lhs->lsu; /* bottom-up */
3250 ub=rhs->lsu; /* .. */
3251 uc=res->lsu; /* .. */
3252 msua=ua+D2U(lhs->digits)-1; /* -> msu of lhs */
3253 msub=ub+D2U(rhs->digits)-1; /* -> msu of rhs */
3254 msuc=uc+D2U(set->digits)-1; /* -> msu of result */
3255 msudigs=MSUDIGITS(set->digits); /* [faster than remainder] */
3256 for (; uc<=msuc; ua++, ub++, uc++) { /* Unit loop */
3257 Unit a, b; /* extract units */
3262 *uc=0; /* can now write back */
3263 if (a|b) { /* maybe 1 bits to examine */
3265 /* This loop could be unrolled and/or use BIN2BCD tables */
3266 for (i=0; i<DECDPUN; i++) {
3267 if ((a^b)&1) *uc=*uc+(Unit)powers[i]; /* effect XOR */
3273 decStatus(res, DEC_Invalid_operation, set);
3276 if (uc==msuc && i==msudigs-1) break; /* just did final digit */
3280 /* [here uc-1 is the msu of the result] */
3281 res->digits=decGetDigits(res->lsu, uc-res->lsu);
3282 res->exponent=0; /* integer */
3283 res->bits=0; /* sign=0 */
3284 return res; /* [no status to set] */
3285 } /* decNumberXor */
3288 /* ================================================================== */
3289 /* Utility routines */
3290 /* ================================================================== */
3292 /* ------------------------------------------------------------------ */
3293 /* decNumberClass -- return the decClass of a decNumber */
3294 /* dn -- the decNumber to test */
3295 /* set -- the context to use for Emin */
3296 /* returns the decClass enum */
3297 /* ------------------------------------------------------------------ */
3298 enum decClass decNumberClass(const decNumber *dn, decContext *set) {
3299 if (decNumberIsSpecial(dn)) {
3300 if (decNumberIsQNaN(dn)) return DEC_CLASS_QNAN;
3301 if (decNumberIsSNaN(dn)) return DEC_CLASS_SNAN;
3302 /* must be an infinity */
3303 if (decNumberIsNegative(dn)) return DEC_CLASS_NEG_INF;
3304 return DEC_CLASS_POS_INF;
3307 if (decNumberIsNormal(dn, set)) { /* most common */
3308 if (decNumberIsNegative(dn)) return DEC_CLASS_NEG_NORMAL;
3309 return DEC_CLASS_POS_NORMAL;
3311 /* is subnormal or zero */
3312 if (decNumberIsZero(dn)) { /* most common */
3313 if (decNumberIsNegative(dn)) return DEC_CLASS_NEG_ZERO;
3314 return DEC_CLASS_POS_ZERO;
3316 if (decNumberIsNegative(dn)) return DEC_CLASS_NEG_SUBNORMAL;
3317 return DEC_CLASS_POS_SUBNORMAL;
3318 } /* decNumberClass */
3320 /* ------------------------------------------------------------------ */
3321 /* decNumberClassToString -- convert decClass to a string */
3323 /* eclass is a valid decClass */
3324 /* returns a constant string describing the class (max 13+1 chars) */
3325 /* ------------------------------------------------------------------ */
3326 const char *decNumberClassToString(enum decClass eclass) {
3327 if (eclass==DEC_CLASS_POS_NORMAL) return DEC_ClassString_PN;
3328 if (eclass==DEC_CLASS_NEG_NORMAL) return DEC_ClassString_NN;
3329 if (eclass==DEC_CLASS_POS_ZERO) return DEC_ClassString_PZ;
3330 if (eclass==DEC_CLASS_NEG_ZERO) return DEC_ClassString_NZ;
3331 if (eclass==DEC_CLASS_POS_SUBNORMAL) return DEC_ClassString_PS;
3332 if (eclass==DEC_CLASS_NEG_SUBNORMAL) return DEC_ClassString_NS;
3333 if (eclass==DEC_CLASS_POS_INF) return DEC_ClassString_PI;
3334 if (eclass==DEC_CLASS_NEG_INF) return DEC_ClassString_NI;
3335 if (eclass==DEC_CLASS_QNAN) return DEC_ClassString_QN;
3336 if (eclass==DEC_CLASS_SNAN) return DEC_ClassString_SN;
3337 return DEC_ClassString_UN; /* Unknown */
3338 } /* decNumberClassToString */
3340 /* ------------------------------------------------------------------ */
3341 /* decNumberCopy -- copy a number */
3343 /* dest is the target decNumber */
3344 /* src is the source decNumber */
3347 /* (dest==src is allowed and is a no-op) */
3348 /* All fields are updated as required. This is a utility operation, */
3349 /* so special values are unchanged and no error is possible. */
3350 /* ------------------------------------------------------------------ */
3351 decNumber * decNumberCopy(decNumber *dest, const decNumber *src) {
3354 if (src==NULL) return decNumberZero(dest);
3357 if (dest==src) return dest; /* no copy required */
3359 /* Use explicit assignments here as structure assignment could copy */
3360 /* more than just the lsu (for small DECDPUN). This would not affect */
3361 /* the value of the results, but could disturb test harness spill */
3363 dest->bits=src->bits;
3364 dest->exponent=src->exponent;
3365 dest->digits=src->digits;
3366 dest->lsu[0]=src->lsu[0];
3367 if (src->digits>DECDPUN) { /* more Units to come */
3368 const Unit *smsup, *s; /* work */
3370 /* memcpy for the remaining Units would be safe as they cannot */
3371 /* overlap. However, this explicit loop is faster in short cases. */
3372 d=dest->lsu+1; /* -> first destination */
3373 smsup=src->lsu+D2U(src->digits); /* -> source msu+1 */
3374 for (s=src->lsu+1; s<smsup; s++, d++) *d=*s;
3377 } /* decNumberCopy */
3379 /* ------------------------------------------------------------------ */
3380 /* decNumberCopyAbs -- quiet absolute value operator */
3382 /* This sets C = abs(A) */
3384 /* res is C, the result. C may be A */
3387 /* C must have space for set->digits digits. */
3388 /* No exception or error can occur; this is a quiet bitwise operation.*/
3389 /* See also decNumberAbs for a checking version of this. */
3390 /* ------------------------------------------------------------------ */
3391 decNumber * decNumberCopyAbs(decNumber *res, const decNumber *rhs) {
3393 if (decCheckOperands(res, DECUNUSED, rhs, DECUNCONT)) return res;
3395 decNumberCopy(res, rhs);
3396 res->bits&=~DECNEG; /* turn off sign */
3398 } /* decNumberCopyAbs */
3400 /* ------------------------------------------------------------------ */
3401 /* decNumberCopyNegate -- quiet negate value operator */
3403 /* This sets C = negate(A) */
3405 /* res is C, the result. C may be A */
3408 /* C must have space for set->digits digits. */
3409 /* No exception or error can occur; this is a quiet bitwise operation.*/
3410 /* See also decNumberMinus for a checking version of this. */
3411 /* ------------------------------------------------------------------ */
3412 decNumber * decNumberCopyNegate(decNumber *res, const decNumber *rhs) {
3414 if (decCheckOperands(res, DECUNUSED, rhs, DECUNCONT)) return res;
3416 decNumberCopy(res, rhs);
3417 res->bits^=DECNEG; /* invert the sign */
3419 } /* decNumberCopyNegate */
3421 /* ------------------------------------------------------------------ */
3422 /* decNumberCopySign -- quiet copy and set sign operator */
3424 /* This sets C = A with the sign of B */
3426 /* res is C, the result. C may be A */
3430 /* C must have space for set->digits digits. */
3431 /* No exception or error can occur; this is a quiet bitwise operation.*/
3432 /* ------------------------------------------------------------------ */
3433 decNumber * decNumberCopySign(decNumber *res, const decNumber *lhs,
3434 const decNumber *rhs) {
3435 uByte sign; /* rhs sign */
3437 if (decCheckOperands(res, DECUNUSED, rhs, DECUNCONT)) return res;
3439 sign=rhs->bits & DECNEG; /* save sign bit */
3440 decNumberCopy(res, lhs);
3441 res->bits&=~DECNEG; /* clear the sign */
3442 res->bits|=sign; /* set from rhs */
3444 } /* decNumberCopySign */
3446 /* ------------------------------------------------------------------ */
3447 /* decNumberGetBCD -- get the coefficient in BCD8 */
3448 /* dn is the source decNumber */
3449 /* bcd is the uInt array that will receive dn->digits BCD bytes, */
3450 /* most-significant at offset 0 */
3453 /* bcd must have at least dn->digits bytes. No error is possible; if */
3454 /* dn is a NaN or Infinite, digits must be 1 and the coefficient 0. */
3455 /* ------------------------------------------------------------------ */
3456 uByte * decNumberGetBCD(const decNumber *dn, uByte *bcd) {
3457 uByte *ub=bcd+dn->digits-1; /* -> lsd */
3458 const Unit *up=dn->lsu; /* Unit pointer, -> lsu */
3460 #if DECDPUN==1 /* trivial simple copy */
3461 for (; ub>=bcd; ub--, up++) *ub=*up;
3462 #else /* chopping needed */
3463 uInt u=*up; /* work */
3464 uInt cut=DECDPUN; /* downcounter through unit */
3465 for (; ub>=bcd; ub--) {
3466 *ub=(uByte)(u%10); /* [*6554 trick inhibits, here] */
3469 if (cut>0) continue; /* more in this unit */
3476 } /* decNumberGetBCD */
3478 /* ------------------------------------------------------------------ */
3479 /* decNumberSetBCD -- set (replace) the coefficient from BCD8 */
3480 /* dn is the target decNumber */
3481 /* bcd is the uInt array that will source n BCD bytes, most- */
3482 /* significant at offset 0 */
3483 /* n is the number of digits in the source BCD array (bcd) */
3486 /* dn must have space for at least n digits. No error is possible; */
3487 /* if dn is a NaN, or Infinite, or is to become a zero, n must be 1 */
3488 /* and bcd[0] zero. */
3489 /* ------------------------------------------------------------------ */
3490 decNumber * decNumberSetBCD(decNumber *dn, const uByte *bcd, uInt n) {
3491 Unit *up=dn->lsu+D2U(dn->digits)-1; /* -> msu [target pointer] */
3492 const uByte *ub=bcd; /* -> source msd */
3494 #if DECDPUN==1 /* trivial simple copy */
3495 for (; ub<bcd+n; ub++, up--) *up=*ub;
3496 #else /* some assembly needed */
3497 /* calculate how many digits in msu, and hence first cut */
3498 Int cut=MSUDIGITS(n); /* [faster than remainder] */
3499 for (;up>=dn->lsu; up--) { /* each Unit from msu */
3500 *up=0; /* will take <=DECDPUN digits */
3501 for (; cut>0; ub++, cut--) *up=X10(*up)+*ub;
3502 cut=DECDPUN; /* next Unit has all digits */
3505 dn->digits=n; /* set digit count */
3507 } /* decNumberSetBCD */
3509 /* ------------------------------------------------------------------ */
3510 /* decNumberIsNormal -- test normality of a decNumber */
3511 /* dn is the decNumber to test */
3512 /* set is the context to use for Emin */
3513 /* returns 1 if |dn| is finite and >=Nmin, 0 otherwise */
3514 /* ------------------------------------------------------------------ */
3515 Int decNumberIsNormal(const decNumber *dn, decContext *set) {
3516 Int ae; /* adjusted exponent */
3518 if (decCheckOperands(DECUNRESU, DECUNUSED, dn, set)) return 0;
3521 if (decNumberIsSpecial(dn)) return 0; /* not finite */
3522 if (decNumberIsZero(dn)) return 0; /* not non-zero */
3524 ae=dn->exponent+dn->digits-1; /* adjusted exponent */
3525 if (ae<set->emin) return 0; /* is subnormal */
3527 } /* decNumberIsNormal */
3529 /* ------------------------------------------------------------------ */
3530 /* decNumberIsSubnormal -- test subnormality of a decNumber */
3531 /* dn is the decNumber to test */
3532 /* set is the context to use for Emin */
3533 /* returns 1 if |dn| is finite, non-zero, and <Nmin, 0 otherwise */
3534 /* ------------------------------------------------------------------ */
3535 Int decNumberIsSubnormal(const decNumber *dn, decContext *set) {
3536 Int ae; /* adjusted exponent */
3538 if (decCheckOperands(DECUNRESU, DECUNUSED, dn, set)) return 0;
3541 if (decNumberIsSpecial(dn)) return 0; /* not finite */
3542 if (decNumberIsZero(dn)) return 0; /* not non-zero */
3544 ae=dn->exponent+dn->digits-1; /* adjusted exponent */
3545 if (ae<set->emin) return 1; /* is subnormal */
3547 } /* decNumberIsSubnormal */
3549 /* ------------------------------------------------------------------ */
3550 /* decNumberTrim -- remove insignificant zeros */
3552 /* dn is the number to trim */
3555 /* All fields are updated as required. This is a utility operation, */
3556 /* so special values are unchanged and no error is possible. The */
3557 /* zeros are removed unconditionally. */
3558 /* ------------------------------------------------------------------ */
3559 decNumber * decNumberTrim(decNumber *dn) {
3560 Int dropped; /* work */
3561 decContext set; /* .. */
3563 if (decCheckOperands(DECUNRESU, DECUNUSED, dn, DECUNCONT)) return dn;
3565 decContextDefault(&set, DEC_INIT_BASE); /* clamp=0 */
3566 return decTrim(dn, &set, 0, 1, &dropped);
3567 } /* decNumberTrim */
3569 /* ------------------------------------------------------------------ */
3570 /* decNumberVersion -- return the name and version of this module */
3572 /* No error is possible. */
3573 /* ------------------------------------------------------------------ */
3574 const char * decNumberVersion(void) {
3576 } /* decNumberVersion */
3578 /* ------------------------------------------------------------------ */
3579 /* decNumberZero -- set a number to 0 */
3581 /* dn is the number to set, with space for one digit */
3584 /* No error is possible. */
3585 /* ------------------------------------------------------------------ */
3586 /* Memset is not used as it is much slower in some environments. */
3587 decNumber * decNumberZero(decNumber *dn) {
3590 if (decCheckOperands(dn, DECUNUSED, DECUNUSED, DECUNCONT)) return dn;
3598 } /* decNumberZero */
3600 /* ================================================================== */
3601 /* Local routines */
3602 /* ================================================================== */
3604 /* ------------------------------------------------------------------ */
3605 /* decToString -- lay out a number into a string */
3607 /* dn is the number to lay out */
3608 /* string is where to lay out the number */
3609 /* eng is 1 if Engineering, 0 if Scientific */
3611 /* string must be at least dn->digits+14 characters long */
3612 /* No error is possible. */
3614 /* Note that this routine can generate a -0 or 0.000. These are */
3615 /* never generated in subset to-number or arithmetic, but can occur */
3616 /* in non-subset arithmetic (e.g., -1*0 or 1.234-1.234). */
3617 /* ------------------------------------------------------------------ */
3618 /* If DECCHECK is enabled the string "?" is returned if a number is */
3620 static void decToString(const decNumber *dn, char *string, Flag eng) {
3621 Int exp=dn->exponent; /* local copy */
3622 Int e; /* E-part value */
3623 Int pre; /* digits before the '.' */
3624 Int cut; /* for counting digits in a Unit */
3625 char *c=string; /* work [output pointer] */
3626 const Unit *up=dn->lsu+D2U(dn->digits)-1; /* -> msu [input pointer] */
3627 uInt u, pow; /* work */
3630 if (decCheckOperands(DECUNRESU, dn, DECUNUSED, DECUNCONT)) {
3631 strcpy(string, "?");
3635 if (decNumberIsNegative(dn)) { /* Negatives get a minus */
3639 if (dn->bits&DECSPECIAL) { /* Is a special value */
3640 if (decNumberIsInfinite(dn)) {
3642 strcpy(c+3, "inity");
3645 if (dn->bits&DECSNAN) { /* signalling NaN */
3650 c+=3; /* step past */
3651 /* if not a clean non-zero coefficient, that's all there is in a */
3653 if (exp!=0 || (*dn->lsu==0 && dn->digits==1)) return;
3654 /* [drop through to add integer] */
3657 /* calculate how many digits in msu, and hence first cut */
3658 cut=MSUDIGITS(dn->digits); /* [faster than remainder] */
3659 cut--; /* power of ten for digit */
3661 if (exp==0) { /* simple integer [common fastpath] */
3662 for (;up>=dn->lsu; up--) { /* each Unit from msu */
3663 u=*up; /* contains DECDPUN digits to lay out */
3664 for (; cut>=0; c++, cut--) TODIGIT(u, cut, c, pow);
3665 cut=DECDPUN-1; /* next Unit has all digits */
3667 *c='\0'; /* terminate the string */
3670 /* non-0 exponent -- assume plain form */
3671 pre=dn->digits+exp; /* digits before '.' */
3673 if ((exp>0) || (pre<-5)) { /* need exponential form */
3674 e=exp+dn->digits-1; /* calculate E value */
3675 pre=1; /* assume one digit before '.' */
3676 if (eng && (e!=0)) { /* engineering: may need to adjust */
3677 Int adj; /* adjustment */
3678 /* The C remainder operator is undefined for negative numbers, so */
3679 /* a positive remainder calculation must be used here */
3682 if (adj!=0) adj=3-adj;
3688 /* if dealing with zero still produce an exponent which is a */
3689 /* multiple of three, as expected, but there will only be the */
3690 /* one zero before the E, still. Otherwise note the padding. */
3691 if (!ISZERO(dn)) pre+=adj;
3692 else { /* is zero */
3693 if (adj!=0) { /* 0.00Esnn needed */
3699 } /* need exponent */
3701 /* lay out the digits of the coefficient, adding 0s and . as needed */
3703 if (pre>0) { /* xxx.xxx or xx00 (engineering) form */
3705 for (; pre>0; pre--, c++, cut--) {
3706 if (cut<0) { /* need new Unit */
3707 if (up==dn->lsu) break; /* out of input digits (pre>digits) */
3712 TODIGIT(u, cut, c, pow);
3714 if (n<dn->digits) { /* more to come, after '.' */
3716 for (;; c++, cut--) {
3717 if (cut<0) { /* need new Unit */
3718 if (up==dn->lsu) break; /* out of input digits */
3723 TODIGIT(u, cut, c, pow);
3726 else for (; pre>0; pre--, c++) *c='0'; /* 0 padding (for engineering) needed */
3728 else { /* 0.xxx or 0.000xxx form */
3731 for (; pre<0; pre++, c++) *c='0'; /* add any 0's after '.' */
3732 for (; ; c++, cut--) {
3733 if (cut<0) { /* need new Unit */
3734 if (up==dn->lsu) break; /* out of input digits */
3739 TODIGIT(u, cut, c, pow);
3743 /* Finally add the E-part, if needed. It will never be 0, has a
3744 base maximum and minimum of +999999999 through -999999999, but
3745 could range down to -1999999998 for anormal numbers */
3747 Flag had=0; /* 1=had non-zero */
3749 *c='+'; c++; /* assume positive */
3752 *(c-1)='-'; /* oops, need - */
3753 u=-e; /* uInt, please */
3755 /* lay out the exponent [_itoa or equivalent is not ANSI C] */
3756 for (cut=9; cut>=0; cut--) {
3757 TODIGIT(u, cut, c, pow);
3758 if (*c=='0' && !had) continue; /* skip leading zeros */
3759 had=1; /* had non-0 */
3760 c++; /* step for next */
3763 *c='\0'; /* terminate the string (all paths) */
3767 /* ------------------------------------------------------------------ */
3768 /* decAddOp -- add/subtract operation */
3770 /* This computes C = A + B */
3772 /* res is C, the result. C may be A and/or B (e.g., X=X+X) */
3775 /* set is the context */
3776 /* negate is DECNEG if rhs should be negated, or 0 otherwise */
3777 /* status accumulates status for the caller */
3779 /* C must have space for set->digits digits. */
3780 /* Inexact in status must be 0 for correct Exact zero sign in result */
3781 /* ------------------------------------------------------------------ */
3782 /* If possible, the coefficient is calculated directly into C. */
3784 /* -- a digits+1 calculation is needed because the numbers are */
3785 /* unaligned and span more than set->digits digits */
3786 /* -- a carry to digits+1 digits looks possible */
3787 /* -- C is the same as A or B, and the result would destructively */
3788 /* overlap the A or B coefficient */
3789 /* then the result must be calculated into a temporary buffer. In */
3790 /* this case a local (stack) buffer is used if possible, and only if */
3791 /* too long for that does malloc become the final resort. */
3793 /* Misalignment is handled as follows: */
3794 /* Apad: (AExp>BExp) Swap operands and proceed as for BExp>AExp. */
3795 /* BPad: Apply the padding by a combination of shifting (whole */
3796 /* units) and multiplication (part units). */
3798 /* Addition, especially x=x+1, is speed-critical. */
3799 /* The static buffer is larger than might be expected to allow for */
3800 /* calls from higher-level funtions (notable exp). */
3801 /* ------------------------------------------------------------------ */
3802 static decNumber * decAddOp(decNumber *res, const decNumber *lhs,
3803 const decNumber *rhs, decContext *set,
3804 uByte negate, uInt *status) {
3806 decNumber *alloclhs=NULL; /* non-NULL if rounded lhs allocated */
3807 decNumber *allocrhs=NULL; /* .., rhs */
3809 Int rhsshift; /* working shift (in Units) */
3810 Int maxdigits; /* longest logical length */
3811 Int mult; /* multiplier */
3812 Int residue; /* rounding accumulator */
3813 uByte bits; /* result bits */
3814 Flag diffsign; /* non-0 if arguments have different sign */
3815 Unit *acc; /* accumulator for result */
3816 Unit accbuff[SD2U(DECBUFFER*2+20)]; /* local buffer [*2+20 reduces many */
3817 /* allocations when called from */
3818 /* other operations, notable exp] */
3819 Unit *allocacc=NULL; /* -> allocated acc buffer, iff allocated */
3820 Int reqdigits=set->digits; /* local copy; requested DIGITS */
3821 Int padding; /* work */
3824 if (decCheckOperands(res, lhs, rhs, set)) return res;
3827 do { /* protect allocated storage */
3829 if (!set->extended) {
3830 /* reduce operands and set lostDigits status, as needed */
3831 if (lhs->digits>reqdigits) {
3832 alloclhs=decRoundOperand(lhs, set, status);
3833 if (alloclhs==NULL) break;
3836 if (rhs->digits>reqdigits) {
3837 allocrhs=decRoundOperand(rhs, set, status);
3838 if (allocrhs==NULL) break;
3843 /* [following code does not require input rounding] */
3845 /* note whether signs differ [used all paths] */
3846 diffsign=(Flag)((lhs->bits^rhs->bits^negate)&DECNEG);
3848 /* handle infinities and NaNs */
3849 if (SPECIALARGS) { /* a special bit set */
3850 if (SPECIALARGS & (DECSNAN | DECNAN)) /* a NaN */
3851 decNaNs(res, lhs, rhs, set, status);
3852 else { /* one or two infinities */
3853 if (decNumberIsInfinite(lhs)) { /* LHS is infinity */
3854 /* two infinities with different signs is invalid */
3855 if (decNumberIsInfinite(rhs) && diffsign) {
3856 *status|=DEC_Invalid_operation;
3859 bits=lhs->bits & DECNEG; /* get sign from LHS */
3861 else bits=(rhs->bits^negate) & DECNEG;/* RHS must be Infinity */
3864 res->bits=bits; /* set +/- infinity */
3869 /* Quick exit for add 0s; return the non-0, modified as need be */
3871 Int adjust; /* work */
3872 Int lexp=lhs->exponent; /* save in case LHS==RES */
3873 bits=lhs->bits; /* .. */
3874 residue=0; /* clear accumulator */
3875 decCopyFit(res, rhs, set, &residue, status); /* copy (as needed) */
3876 res->bits^=negate; /* flip if rhs was negated */
3878 if (set->extended) { /* exponents on zeros count */
3880 /* exponent will be the lower of the two */
3881 adjust=lexp-res->exponent; /* adjustment needed [if -ve] */
3882 if (ISZERO(res)) { /* both 0: special IEEE 754 rules */
3883 if (adjust<0) res->exponent=lexp; /* set exponent */
3884 /* 0-0 gives +0 unless rounding to -infinity, and -0-0 gives -0 */
3886 if (set->round!=DEC_ROUND_FLOOR) res->bits=0;
3887 else res->bits=DECNEG; /* preserve 0 sign */
3890 else { /* non-0 res */
3891 if (adjust<0) { /* 0-padding needed */
3892 if ((res->digits-adjust)>set->digits) {
3893 adjust=res->digits-set->digits; /* to fit exactly */
3894 *status|=DEC_Rounded; /* [but exact] */
3896 res->digits=decShiftToMost(res->lsu, res->digits, -adjust);
3897 res->exponent+=adjust; /* set the exponent. */
3903 decFinish(res, set, &residue, status); /* clean and finalize */
3906 if (ISZERO(rhs)) { /* [lhs is non-zero] */
3907 Int adjust; /* work */
3908 Int rexp=rhs->exponent; /* save in case RHS==RES */
3909 bits=rhs->bits; /* be clean */
3910 residue=0; /* clear accumulator */
3911 decCopyFit(res, lhs, set, &residue, status); /* copy (as needed) */
3913 if (set->extended) { /* exponents on zeros count */
3915 /* exponent will be the lower of the two */
3916 /* [0-0 case handled above] */
3917 adjust=rexp-res->exponent; /* adjustment needed [if -ve] */
3918 if (adjust<0) { /* 0-padding needed */
3919 if ((res->digits-adjust)>set->digits) {
3920 adjust=res->digits-set->digits; /* to fit exactly */
3921 *status|=DEC_Rounded; /* [but exact] */
3923 res->digits=decShiftToMost(res->lsu, res->digits, -adjust);
3924 res->exponent+=adjust; /* set the exponent. */
3929 decFinish(res, set, &residue, status); /* clean and finalize */
3932 /* [NB: both fastpath and mainpath code below assume these cases */
3933 /* (notably 0-0) have already been handled] */
3935 /* calculate the padding needed to align the operands */
3936 padding=rhs->exponent-lhs->exponent;
3938 /* Fastpath cases where the numbers are aligned and normal, the RHS */
3939 /* is all in one unit, no operand rounding is needed, and no carry, */
3940 /* lengthening, or borrow is needed */
3942 && rhs->digits<=DECDPUN
3943 && rhs->exponent>=set->emin /* [some normals drop through] */
3944 && rhs->exponent<=set->emax-set->digits+1 /* [could clamp] */
3945 && rhs->digits<=reqdigits
3946 && lhs->digits<=reqdigits) {
3947 Int partial=*lhs->lsu;
3948 if (!diffsign) { /* adding */
3950 if ((partial<=DECDPUNMAX) /* result fits in unit */
3951 && (lhs->digits>=DECDPUN || /* .. and no digits-count change */
3952 partial<(Int)powers[lhs->digits])) { /* .. */
3953 if (res!=lhs) decNumberCopy(res, lhs); /* not in place */
3954 *res->lsu=(Unit)partial; /* [copy could have overwritten RHS] */
3957 /* else drop out for careful add */
3959 else { /* signs differ */
3961 if (partial>0) { /* no borrow needed, and non-0 result */
3962 if (res!=lhs) decNumberCopy(res, lhs); /* not in place */
3963 *res->lsu=(Unit)partial;
3964 /* this could have reduced digits [but result>0] */
3965 res->digits=decGetDigits(res->lsu, D2U(res->digits));
3968 /* else drop out for careful subtract */
3972 /* Now align (pad) the lhs or rhs so they can be added or */
3973 /* subtracted, as necessary. If one number is much larger than */
3974 /* the other (that is, if in plain form there is a least one */
3975 /* digit between the lowest digit of one and the highest of the */
3976 /* other) padding with up to DIGITS-1 trailing zeros may be */
3977 /* needed; then apply rounding (as exotic rounding modes may be */
3978 /* affected by the residue). */
3979 rhsshift=0; /* rhs shift to left (padding) in Units */
3980 bits=lhs->bits; /* assume sign is that of LHS */
3981 mult=1; /* likely multiplier */
3983 /* [if padding==0 the operands are aligned; no padding is needed] */
3985 /* some padding needed; always pad the RHS, as any required */
3986 /* padding can then be effected by a simple combination of */
3987 /* shifts and a multiply */
3989 if (padding<0) { /* LHS needs the padding */
3991 padding=-padding; /* will be +ve */
3992 bits=(uByte)(rhs->bits^negate); /* assumed sign is now that of RHS */
3993 t=lhs; lhs=rhs; rhs=t;
3997 /* If, after pad, rhs would be longer than lhs by digits+1 or */
3998 /* more then lhs cannot affect the answer, except as a residue, */
3999 /* so only need to pad up to a length of DIGITS+1. */
4000 if (rhs->digits+padding > lhs->digits+reqdigits+1) {
4001 /* The RHS is sufficient */
4002 /* for residue use the relative sign indication... */
4003 Int shift=reqdigits-rhs->digits; /* left shift needed */
4004 residue=1; /* residue for rounding */
4005 if (diffsign) residue=-residue; /* signs differ */
4006 /* copy, shortening if necessary */
4007 decCopyFit(res, rhs, set, &residue, status);
4008 /* if it was already shorter, then need to pad with zeros */
4010 res->digits=decShiftToMost(res->lsu, res->digits, shift);
4011 res->exponent-=shift; /* adjust the exponent. */
4013 /* flip the result sign if unswapped and rhs was negated */
4014 if (!swapped) res->bits^=negate;
4015 decFinish(res, set, &residue, status); /* done */
4018 /* LHS digits may affect result */
4019 rhsshift=D2U(padding+1)-1; /* this much by Unit shift .. */
4020 mult=powers[padding-(rhsshift*DECDPUN)]; /* .. this by multiplication */
4021 } /* padding needed */
4023 if (diffsign) mult=-mult; /* signs differ */
4025 /* determine the longer operand */
4026 maxdigits=rhs->digits+padding; /* virtual length of RHS */
4027 if (lhs->digits>maxdigits) maxdigits=lhs->digits;
4029 /* Decide on the result buffer to use; if possible place directly */
4031 acc=res->lsu; /* assume add direct to result */
4032 /* If destructive overlap, or the number is too long, or a carry or */
4033 /* borrow to DIGITS+1 might be possible, a buffer must be used. */
4034 /* [Might be worth more sophisticated tests when maxdigits==reqdigits] */
4035 if ((maxdigits>=reqdigits) /* is, or could be, too large */
4036 || (res==rhs && rhsshift>0)) { /* destructive overlap */
4037 /* buffer needed, choose it; units for maxdigits digits will be */
4038 /* needed, +1 Unit for carry or borrow */
4039 Int need=D2U(maxdigits)+1;
4040 acc=accbuff; /* assume use local buffer */
4041 if (need*sizeof(Unit)>sizeof(accbuff)) {
4042 /* printf("malloc add %ld %ld\n", need, sizeof(accbuff)); */
4043 allocacc=(Unit *)malloc(need*sizeof(Unit));
4044 if (allocacc==NULL) { /* hopeless -- abandon */
4045 *status|=DEC_Insufficient_storage;
4051 res->bits=(uByte)(bits&DECNEG); /* it's now safe to overwrite.. */
4052 res->exponent=lhs->exponent; /* .. operands (even if aliased) */
4055 decDumpAr('A', lhs->lsu, D2U(lhs->digits));
4056 decDumpAr('B', rhs->lsu, D2U(rhs->digits));
4057 printf(" :h: %ld %ld\n", rhsshift, mult);
4060 /* add [A+B*m] or subtract [A+B*(-m)] */
4061 res->digits=decUnitAddSub(lhs->lsu, D2U(lhs->digits),
4062 rhs->lsu, D2U(rhs->digits),
4063 rhsshift, acc, mult)
4064 *DECDPUN; /* [units -> digits] */
4065 if (res->digits<0) { /* borrowed... */
4066 res->digits=-res->digits;
4067 res->bits^=DECNEG; /* flip the sign */
4070 decDumpAr('+', acc, D2U(res->digits));
4073 /* If a buffer was used the result must be copied back, possibly */
4074 /* shortening. (If no buffer was used then the result must have */
4075 /* fit, so can't need rounding and residue must be 0.) */
4076 residue=0; /* clear accumulator */
4077 if (acc!=res->lsu) {
4079 if (set->extended) { /* round from first significant digit */
4081 /* remove leading zeros that were added due to rounding up to */
4082 /* integral Units -- before the test for rounding. */
4083 if (res->digits>reqdigits)
4084 res->digits=decGetDigits(acc, D2U(res->digits));
4085 decSetCoeff(res, set, acc, res->digits, &residue, status);
4088 else { /* subset arithmetic rounds from original significant digit */
4089 /* May have an underestimate. This only occurs when both */
4090 /* numbers fit in DECDPUN digits and are padding with a */
4091 /* negative multiple (-10, -100...) and the top digit(s) become */
4092 /* 0. (This only matters when using X3.274 rules where the */
4093 /* leading zero could be included in the rounding.) */
4094 if (res->digits<maxdigits) {
4095 *(acc+D2U(res->digits))=0; /* ensure leading 0 is there */
4096 res->digits=maxdigits;
4099 /* remove leading zeros that added due to rounding up to */
4100 /* integral Units (but only those in excess of the original */
4101 /* maxdigits length, unless extended) before test for rounding. */
4102 if (res->digits>reqdigits) {
4103 res->digits=decGetDigits(acc, D2U(res->digits));
4104 if (res->digits<maxdigits) res->digits=maxdigits;
4107 decSetCoeff(res, set, acc, res->digits, &residue, status);
4108 /* Now apply rounding if needed before removing leading zeros. */
4109 /* This is safe because subnormals are not a possibility */
4111 decApplyRound(res, set, residue, status);
4112 residue=0; /* did what needed to be done */
4118 /* strip leading zeros [these were left on in case of subset subtract] */
4119 res->digits=decGetDigits(res->lsu, D2U(res->digits));
4121 /* apply checks and rounding */
4122 decFinish(res, set, &residue, status);
4124 /* "When the sum of two operands with opposite signs is exactly */
4125 /* zero, the sign of that sum shall be '+' in all rounding modes */
4126 /* except round toward -Infinity, in which mode that sign shall be */
4127 /* '-'." [Subset zeros also never have '-', set by decFinish.] */
4128 if (ISZERO(res) && diffsign
4132 && (*status&DEC_Inexact)==0) {
4133 if (set->round==DEC_ROUND_FLOOR) res->bits|=DECNEG; /* sign - */
4134 else res->bits&=~DECNEG; /* sign + */
4136 } while(0); /* end protected */
4138 if (allocacc!=NULL) free(allocacc); /* drop any storage used */
4140 if (allocrhs!=NULL) free(allocrhs); /* .. */
4141 if (alloclhs!=NULL) free(alloclhs); /* .. */
4146 /* ------------------------------------------------------------------ */
4147 /* decDivideOp -- division operation */
4149 /* This routine performs the calculations for all four division */
4150 /* operators (divide, divideInteger, remainder, remainderNear). */
4154 /* res is C, the result. C may be A and/or B (e.g., X=X/X) */
4157 /* set is the context */
4158 /* op is DIVIDE, DIVIDEINT, REMAINDER, or REMNEAR respectively. */
4159 /* status is the usual accumulator */
4161 /* C must have space for set->digits digits. */
4163 /* ------------------------------------------------------------------ */
4164 /* The underlying algorithm of this routine is the same as in the */
4165 /* 1981 S/370 implementation, that is, non-restoring long division */
4166 /* with bi-unit (rather than bi-digit) estimation for each unit */
4167 /* multiplier. In this pseudocode overview, complications for the */
4168 /* Remainder operators and division residues for exact rounding are */
4169 /* omitted for clarity. */
4171 /* Prepare operands and handle special values */
4172 /* Test for x/0 and then 0/x */
4173 /* Exp =Exp1 - Exp2 */
4174 /* Exp =Exp +len(var1) -len(var2) */
4175 /* Sign=Sign1 * Sign2 */
4176 /* Pad accumulator (Var1) to double-length with 0's (pad1) */
4177 /* Pad Var2 to same length as Var1 */
4178 /* msu2pair/plus=1st 2 or 1 units of var2, +1 to allow for round */
4180 /* Do until (have=digits+1 OR residue=0) */
4181 /* if exp<0 then if integer divide/residue then leave */
4184 /* compare numbers */
4185 /* if <0 then leave inner_loop */
4186 /* if =0 then (* quick exit without subtract *) do */
4187 /* this_unit=this_unit+1; output this_unit */
4188 /* leave outer_loop; end */
4189 /* Compare lengths of numbers (mantissae): */
4190 /* If same then tops2=msu2pair -- {units 1&2 of var2} */
4191 /* else tops2=msu2plus -- {0, unit 1 of var2} */
4192 /* tops1=first_unit_of_Var1*10**DECDPUN +second_unit_of_var1 */
4193 /* mult=tops1/tops2 -- Good and safe guess at divisor */
4194 /* if mult=0 then mult=1 */
4195 /* this_unit=this_unit+mult */
4197 /* end inner_loop */
4198 /* if have\=0 | this_unit\=0 then do */
4199 /* output this_unit */
4200 /* have=have+1; end */
4203 /* end outer_loop */
4204 /* exp=exp+1 -- set the proper exponent */
4205 /* if have=0 then generate answer=0 */
4206 /* Return (Result is defined by Var1) */
4208 /* ------------------------------------------------------------------ */
4209 /* Two working buffers are needed during the division; one (digits+ */
4210 /* 1) to accumulate the result, and the other (up to 2*digits+1) for */
4211 /* long subtractions. These are acc and var1 respectively. */
4212 /* var1 is a copy of the lhs coefficient, var2 is the rhs coefficient.*/
4213 /* The static buffers may be larger than might be expected to allow */
4214 /* for calls from higher-level funtions (notable exp). */
4215 /* ------------------------------------------------------------------ */
4216 static decNumber * decDivideOp(decNumber *res,
4217 const decNumber *lhs, const decNumber *rhs,
4218 decContext *set, Flag op, uInt *status) {
4220 decNumber *alloclhs=NULL; /* non-NULL if rounded lhs allocated */
4221 decNumber *allocrhs=NULL; /* .., rhs */
4223 Unit accbuff[SD2U(DECBUFFER+DECDPUN+10)]; /* local buffer */
4224 Unit *acc=accbuff; /* -> accumulator array for result */
4225 Unit *allocacc=NULL; /* -> allocated buffer, iff allocated */
4226 Unit *accnext; /* -> where next digit will go */
4227 Int acclength; /* length of acc needed [Units] */
4228 Int accunits; /* count of units accumulated */
4229 Int accdigits; /* count of digits accumulated */
4231 Unit varbuff[SD2U(DECBUFFER*2+DECDPUN)]; /* buffer for var1 */
4232 Unit *var1=varbuff; /* -> var1 array for long subtraction */
4233 Unit *varalloc=NULL; /* -> allocated buffer, iff used */
4234 Unit *msu1; /* -> msu of var1 */
4236 const Unit *var2; /* -> var2 array */
4237 const Unit *msu2; /* -> msu of var2 */
4238 Int msu2plus; /* msu2 plus one [does not vary] */
4239 eInt msu2pair; /* msu2 pair plus one [does not vary] */
4241 Int var1units, var2units; /* actual lengths */
4242 Int var2ulen; /* logical length (units) */
4243 Int var1initpad=0; /* var1 initial padding (digits) */
4244 Int maxdigits; /* longest LHS or required acc length */
4245 Int mult; /* multiplier for subtraction */
4246 Unit thisunit; /* current unit being accumulated */
4247 Int residue; /* for rounding */
4248 Int reqdigits=set->digits; /* requested DIGITS */
4249 Int exponent; /* working exponent */
4250 Int maxexponent=0; /* DIVIDE maximum exponent if unrounded */
4251 uByte bits; /* working sign */
4252 Unit *target; /* work */
4253 const Unit *source; /* .. */
4254 uInt const *pow; /* .. */
4255 Int shift, cut; /* .. */
4257 Int dropped; /* work */
4261 if (decCheckOperands(res, lhs, rhs, set)) return res;
4264 do { /* protect allocated storage */
4266 if (!set->extended) {
4267 /* reduce operands and set lostDigits status, as needed */
4268 if (lhs->digits>reqdigits) {
4269 alloclhs=decRoundOperand(lhs, set, status);
4270 if (alloclhs==NULL) break;
4273 if (rhs->digits>reqdigits) {
4274 allocrhs=decRoundOperand(rhs, set, status);
4275 if (allocrhs==NULL) break;
4280 /* [following code does not require input rounding] */
4282 bits=(lhs->bits^rhs->bits)&DECNEG; /* assumed sign for divisions */
4284 /* handle infinities and NaNs */
4285 if (SPECIALARGS) { /* a special bit set */
4286 if (SPECIALARGS & (DECSNAN | DECNAN)) { /* one or two NaNs */
4287 decNaNs(res, lhs, rhs, set, status);
4290 /* one or two infinities */
4291 if (decNumberIsInfinite(lhs)) { /* LHS (dividend) is infinite */
4292 if (decNumberIsInfinite(rhs) || /* two infinities are invalid .. */
4293 op & (REMAINDER | REMNEAR)) { /* as is remainder of infinity */
4294 *status|=DEC_Invalid_operation;
4297 /* [Note that infinity/0 raises no exceptions] */
4299 res->bits=bits|DECINF; /* set +/- infinity */
4302 else { /* RHS (divisor) is infinite */
4304 if (op&(REMAINDER|REMNEAR)) {
4305 /* result is [finished clone of] lhs */
4306 decCopyFit(res, lhs, set, &residue, status);
4308 else { /* a division */
4310 res->bits=bits; /* set +/- zero */
4311 /* for DIVIDEINT the exponent is always 0. For DIVIDE, result */
4312 /* is a 0 with infinitely negative exponent, clamped to minimum */
4314 res->exponent=set->emin-set->digits+1;
4315 *status|=DEC_Clamped;
4318 decFinish(res, set, &residue, status);
4323 /* handle 0 rhs (x/0) */
4324 if (ISZERO(rhs)) { /* x/0 is always exceptional */
4326 decNumberZero(res); /* [after lhs test] */
4327 *status|=DEC_Division_undefined;/* 0/0 will become NaN */
4331 if (op&(REMAINDER|REMNEAR)) *status|=DEC_Invalid_operation;
4333 *status|=DEC_Division_by_zero; /* x/0 */
4334 res->bits=bits|DECINF; /* .. is +/- Infinity */
4339 /* handle 0 lhs (0/x) */
4340 if (ISZERO(lhs)) { /* 0/x [x!=0] */
4342 if (!set->extended) decNumberZero(res);
4347 exponent=lhs->exponent-rhs->exponent; /* ideal exponent */
4348 decNumberCopy(res, lhs); /* [zeros always fit] */
4349 res->bits=bits; /* sign as computed */
4350 res->exponent=exponent; /* exponent, too */
4351 decFinalize(res, set, &residue, status); /* check exponent */
4353 else if (op&DIVIDEINT) {
4354 decNumberZero(res); /* integer 0 */
4355 res->bits=bits; /* sign as computed */
4357 else { /* a remainder */
4358 exponent=rhs->exponent; /* [save in case overwrite] */
4359 decNumberCopy(res, lhs); /* [zeros always fit] */
4360 if (exponent<res->exponent) res->exponent=exponent; /* use lower */
4367 /* Precalculate exponent. This starts off adjusted (and hence fits */
4368 /* in 31 bits) and becomes the usual unadjusted exponent as the */
4369 /* division proceeds. The order of evaluation is important, here, */
4370 /* to avoid wrap. */
4371 exponent=(lhs->exponent+lhs->digits)-(rhs->exponent+rhs->digits);
4373 /* If the working exponent is -ve, then some quick exits are */
4374 /* possible because the quotient is known to be <1 */
4375 /* [for REMNEAR, it needs to be < -1, as -0.5 could need work] */
4376 if (exponent<0 && !(op==DIVIDE)) {
4378 decNumberZero(res); /* integer part is 0 */
4382 res->bits=bits; /* set +/- zero */
4384 /* fastpath remainders so long as the lhs has the smaller */
4385 /* (or equal) exponent */
4386 if (lhs->exponent<=rhs->exponent) {
4387 if (op&REMAINDER || exponent<-1) {
4388 /* It is REMAINDER or safe REMNEAR; result is [finished */
4389 /* clone of] lhs (r = x - 0*y) */
4391 decCopyFit(res, lhs, set, &residue, status);
4392 decFinish(res, set, &residue, status);
4395 /* [unsafe REMNEAR drops through] */
4399 /* Long (slow) division is needed; roll up the sleeves... */
4401 /* The accumulator will hold the quotient of the division. */
4402 /* If it needs to be too long for stack storage, then allocate. */
4403 acclength=D2U(reqdigits+DECDPUN); /* in Units */
4404 if (acclength*sizeof(Unit)>sizeof(accbuff)) {
4405 /* printf("malloc dvacc %ld units\n", acclength); */
4406 allocacc=(Unit *)malloc(acclength*sizeof(Unit));
4407 if (allocacc==NULL) { /* hopeless -- abandon */
4408 *status|=DEC_Insufficient_storage;
4410 acc=allocacc; /* use the allocated space */
4413 /* var1 is the padded LHS ready for subtractions. */
4414 /* If it needs to be too long for stack storage, then allocate. */
4415 /* The maximum units needed for var1 (long subtraction) is: */
4417 /* (rhs->digits+reqdigits-1) -- to allow full slide to right */
4418 /* or (lhs->digits) -- to allow for long lhs */
4419 /* whichever is larger */
4420 /* +1 -- for rounding of slide to right */
4421 /* +1 -- for leading 0s */
4422 /* +1 -- for pre-adjust if a remainder or DIVIDEINT */
4423 /* [Note: unused units do not participate in decUnitAddSub data] */
4424 maxdigits=rhs->digits+reqdigits-1;
4425 if (lhs->digits>maxdigits) maxdigits=lhs->digits;
4426 var1units=D2U(maxdigits)+2;
4427 /* allocate a guard unit above msu1 for REMAINDERNEAR */
4428 if (!(op&DIVIDE)) var1units++;
4429 if ((var1units+1)*sizeof(Unit)>sizeof(varbuff)) {
4430 /* printf("malloc dvvar %ld units\n", var1units+1); */
4431 varalloc=(Unit *)malloc((var1units+1)*sizeof(Unit));
4432 if (varalloc==NULL) { /* hopeless -- abandon */
4433 *status|=DEC_Insufficient_storage;
4435 var1=varalloc; /* use the allocated space */
4438 /* Extend the lhs and rhs to full long subtraction length. The lhs */
4439 /* is truly extended into the var1 buffer, with 0 padding, so a */
4440 /* subtract in place is always possible. The rhs (var2) has */
4441 /* virtual padding (implemented by decUnitAddSub). */
4442 /* One guard unit was allocated above msu1 for rem=rem+rem in */
4443 /* REMAINDERNEAR. */
4444 msu1=var1+var1units-1; /* msu of var1 */
4445 source=lhs->lsu+D2U(lhs->digits)-1; /* msu of input array */
4446 for (target=msu1; source>=lhs->lsu; source--, target--) *target=*source;
4447 for (; target>=var1; target--) *target=0;
4449 /* rhs (var2) is left-aligned with var1 at the start */
4450 var2ulen=var1units; /* rhs logical length (units) */
4451 var2units=D2U(rhs->digits); /* rhs actual length (units) */
4452 var2=rhs->lsu; /* -> rhs array */
4453 msu2=var2+var2units-1; /* -> msu of var2 [never changes] */
4454 /* now set up the variables which will be used for estimating the */
4455 /* multiplication factor. If these variables are not exact, add */
4456 /* 1 to make sure that the multiplier is never overestimated. */
4457 msu2plus=*msu2; /* it's value .. */
4458 if (var2units>1) msu2plus++; /* .. +1 if any more */
4459 msu2pair=(eInt)*msu2*(DECDPUNMAX+1);/* top two pair .. */
4460 if (var2units>1) { /* .. [else treat 2nd as 0] */
4461 msu2pair+=*(msu2-1); /* .. */
4462 if (var2units>2) msu2pair++; /* .. +1 if any more */
4465 /* The calculation is working in units, which may have leading zeros, */
4466 /* but the exponent was calculated on the assumption that they are */
4467 /* both left-aligned. Adjust the exponent to compensate: add the */
4468 /* number of leading zeros in var1 msu and subtract those in var2 msu. */
4469 /* [This is actually done by counting the digits and negating, as */
4470 /* lead1=DECDPUN-digits1, and similarly for lead2.] */
4471 for (pow=&powers[1]; *msu1>=*pow; pow++) exponent--;
4472 for (pow=&powers[1]; *msu2>=*pow; pow++) exponent++;
4474 /* Now, if doing an integer divide or remainder, ensure that */
4475 /* the result will be Unit-aligned. To do this, shift the var1 */
4476 /* accumulator towards least if need be. (It's much easier to */
4477 /* do this now than to reassemble the residue afterwards, if */
4478 /* doing a remainder.) Also ensure the exponent is not negative. */
4481 /* save the initial 'false' padding of var1, in digits */
4482 var1initpad=(var1units-D2U(lhs->digits))*DECDPUN;
4483 /* Determine the shift to do. */
4484 if (exponent<0) cut=-exponent;
4485 else cut=DECDPUN-exponent%DECDPUN;
4486 decShiftToLeast(var1, var1units, cut);
4487 exponent+=cut; /* maintain numerical value */
4488 var1initpad-=cut; /* .. and reduce padding */
4489 /* clean any most-significant units which were just emptied */
4490 for (u=msu1; cut>=DECDPUN; cut-=DECDPUN, u--) *u=0;
4492 else { /* is DIVIDE */
4493 maxexponent=lhs->exponent-rhs->exponent; /* save */
4494 /* optimization: if the first iteration will just produce 0, */
4495 /* preadjust to skip it [valid for DIVIDE only] */
4497 var2ulen--; /* shift down */
4498 exponent-=DECDPUN; /* update the exponent */
4502 /* ---- start the long-division loops ------------------------------ */
4503 accunits=0; /* no units accumulated yet */
4504 accdigits=0; /* .. or digits */
4505 accnext=acc+acclength-1; /* -> msu of acc [NB: allows digits+1] */
4506 for (;;) { /* outer forever loop */
4507 thisunit=0; /* current unit assumed 0 */
4508 /* find the next unit */
4509 for (;;) { /* inner forever loop */
4510 /* strip leading zero units [from either pre-adjust or from */
4511 /* subtract last time around]. Leave at least one unit. */
4512 for (; *msu1==0 && msu1>var1; msu1--) var1units--;
4514 if (var1units<var2ulen) break; /* var1 too low for subtract */
4515 if (var1units==var2ulen) { /* unit-by-unit compare needed */
4516 /* compare the two numbers, from msu */
4517 const Unit *pv1, *pv2;
4518 Unit v2; /* units to compare */
4519 pv2=msu2; /* -> msu */
4520 for (pv1=msu1; ; pv1--, pv2--) {
4521 /* v1=*pv1 -- always OK */
4522 v2=0; /* assume in padding */
4523 if (pv2>=var2) v2=*pv2; /* in range */
4524 if (*pv1!=v2) break; /* no longer the same */
4525 if (pv1==var1) break; /* done; leave pv1 as is */
4527 /* here when all inspected or a difference seen */
4528 if (*pv1<v2) break; /* var1 too low to subtract */
4529 if (*pv1==v2) { /* var1 == var2 */
4530 /* reach here if var1 and var2 are identical; subtraction */
4531 /* would increase digit by one, and the residue will be 0 so */
4532 /* the calculation is done; leave the loop with residue=0. */
4533 thisunit++; /* as though subtracted */
4534 *var1=0; /* set var1 to 0 */
4535 var1units=1; /* .. */
4536 break; /* from inner */
4537 } /* var1 == var2 */
4538 /* *pv1>v2. Prepare for real subtraction; the lengths are equal */
4539 /* Estimate the multiplier (there's always a msu1-1)... */
4540 /* Bring in two units of var2 to provide a good estimate. */
4541 mult=(Int)(((eInt)*msu1*(DECDPUNMAX+1)+*(msu1-1))/msu2pair);
4542 } /* lengths the same */
4543 else { /* var1units > var2ulen, so subtraction is safe */
4544 /* The var2 msu is one unit towards the lsu of the var1 msu, */
4545 /* so only one unit for var2 can be used. */
4546 mult=(Int)(((eInt)*msu1*(DECDPUNMAX+1)+*(msu1-1))/msu2plus);
4548 if (mult==0) mult=1; /* must always be at least 1 */
4549 /* subtraction needed; var1 is > var2 */
4550 thisunit=(Unit)(thisunit+mult); /* accumulate */
4551 /* subtract var1-var2, into var1; only the overlap needs */
4552 /* processing, as this is an in-place calculation */
4553 shift=var2ulen-var2units;
4555 decDumpAr('1', &var1[shift], var1units-shift);
4556 decDumpAr('2', var2, var2units);
4557 printf("m=%ld\n", -mult);
4559 decUnitAddSub(&var1[shift], var1units-shift,
4561 &var1[shift], -mult);
4563 decDumpAr('#', &var1[shift], var1units-shift);
4565 /* var1 now probably has leading zeros; these are removed at the */
4566 /* top of the inner loop. */
4569 /* The next unit has been calculated in full; unless it's a */
4570 /* leading zero, add to acc */
4571 if (accunits!=0 || thisunit!=0) { /* is first or non-zero */
4572 *accnext=thisunit; /* store in accumulator */
4573 /* account exactly for the new digits */
4575 accdigits++; /* at least one */
4576 for (pow=&powers[1]; thisunit>=*pow; pow++) accdigits++;
4578 else accdigits+=DECDPUN;
4579 accunits++; /* update count */
4580 accnext--; /* ready for next */
4581 if (accdigits>reqdigits) break; /* have enough digits */
4584 /* if the residue is zero, the operation is done (unless divide */
4585 /* or divideInteger and still not enough digits yet) */
4586 if (*var1==0 && var1units==1) { /* residue is 0 */
4587 if (op&(REMAINDER|REMNEAR)) break;
4588 if ((op&DIVIDE) && (exponent<=maxexponent)) break;
4589 /* [drop through if divideInteger] */
4591 /* also done enough if calculating remainder or integer */
4592 /* divide and just did the last ('units') unit */
4593 if (exponent==0 && !(op&DIVIDE)) break;
4595 /* to get here, var1 is less than var2, so divide var2 by the per- */
4596 /* Unit power of ten and go for the next digit */
4597 var2ulen--; /* shift down */
4598 exponent-=DECDPUN; /* update the exponent */
4601 /* ---- division is complete --------------------------------------- */
4602 /* here: acc has at least reqdigits+1 of good results (or fewer */
4603 /* if early stop), starting at accnext+1 (its lsu) */
4604 /* var1 has any residue at the stopping point */
4605 /* accunits is the number of digits collected in acc */
4606 if (accunits==0) { /* acc is 0 */
4607 accunits=1; /* show have a unit .. */
4608 accdigits=1; /* .. */
4609 *accnext=0; /* .. whose value is 0 */
4611 else accnext++; /* back to last placed */
4612 /* accnext now -> lowest unit of result */
4614 residue=0; /* assume no residue */
4616 /* record the presence of any residue, for rounding */
4617 if (*var1!=0 || var1units>1) residue=1;
4618 else { /* no residue */
4619 /* Had an exact division; clean up spurious trailing 0s. */
4620 /* There will be at most DECDPUN-1, from the final multiply, */
4621 /* and then only if the result is non-0 (and even) and the */
4622 /* exponent is 'loose'. */
4625 if (!(lsu&0x01) && (lsu!=0)) {
4626 /* count the trailing zeros */
4628 for (;; drop++) { /* [will terminate because lsu!=0] */
4629 if (exponent>=maxexponent) break; /* don't chop real 0s */
4631 if ((lsu-QUOT10(lsu, drop+1)
4632 *powers[drop+1])!=0) break; /* found non-0 digit */
4634 if (lsu%powers[drop+1]!=0) break; /* found non-0 digit */
4639 accunits=decShiftToLeast(accnext, accunits, drop);
4640 accdigits=decGetDigits(accnext, accunits);
4641 accunits=D2U(accdigits);
4642 /* [exponent was adjusted in the loop] */
4644 } /* neither odd nor 0 */
4646 } /* exact divide */
4648 else /* op!=DIVIDE */ {
4649 /* check for coefficient overflow */
4650 if (accdigits+exponent>reqdigits) {
4651 *status|=DEC_Division_impossible;
4654 if (op & (REMAINDER|REMNEAR)) {
4655 /* [Here, the exponent will be 0, because var1 was adjusted */
4656 /* appropriately.] */
4657 Int postshift; /* work */
4658 Flag wasodd=0; /* integer was odd */
4659 Unit *quotlsu; /* for save */
4660 Int quotdigits; /* .. */
4662 bits=lhs->bits; /* remainder sign is always as lhs */
4664 /* Fastpath when residue is truly 0 is worthwhile [and */
4665 /* simplifies the code below] */
4666 if (*var1==0 && var1units==1) { /* residue is 0 */
4667 Int exp=lhs->exponent; /* save min(exponents) */
4668 if (rhs->exponent<exp) exp=rhs->exponent;
4669 decNumberZero(res); /* 0 coefficient */
4673 res->exponent=exp; /* .. with proper exponent */
4674 res->bits=(uByte)(bits&DECNEG); /* [cleaned] */
4675 decFinish(res, set, &residue, status); /* might clamp */
4678 /* note if the quotient was odd */
4679 if (*accnext & 0x01) wasodd=1; /* acc is odd */
4680 quotlsu=accnext; /* save in case need to reinspect */
4681 quotdigits=accdigits; /* .. */
4683 /* treat the residue, in var1, as the value to return, via acc */
4684 /* calculate the unused zero digits. This is the smaller of: */
4685 /* var1 initial padding (saved above) */
4686 /* var2 residual padding, which happens to be given by: */
4687 postshift=var1initpad+exponent-lhs->exponent+rhs->exponent;
4688 /* [the 'exponent' term accounts for the shifts during divide] */
4689 if (var1initpad<postshift) postshift=var1initpad;
4691 /* shift var1 the requested amount, and adjust its digits */
4692 var1units=decShiftToLeast(var1, var1units, postshift);
4694 accdigits=decGetDigits(var1, var1units);
4695 accunits=D2U(accdigits);
4697 exponent=lhs->exponent; /* exponent is smaller of lhs & rhs */
4698 if (rhs->exponent<exponent) exponent=rhs->exponent;
4700 /* Now correct the result if doing remainderNear; if it */
4701 /* (looking just at coefficients) is > rhs/2, or == rhs/2 and */
4702 /* the integer was odd then the result should be rem-rhs. */
4704 Int compare, tarunits; /* work */
4706 /* calculate remainder*2 into the var1 buffer (which has */
4707 /* 'headroom' of an extra unit and hence enough space) */
4708 /* [a dedicated 'double' loop would be faster, here] */
4709 tarunits=decUnitAddSub(accnext, accunits, accnext, accunits,
4711 /* decDumpAr('r', accnext, tarunits); */
4713 /* Here, accnext (var1) holds tarunits Units with twice the */
4714 /* remainder's coefficient, which must now be compared to the */
4715 /* RHS. The remainder's exponent may be smaller than the RHS's. */
4716 compare=decUnitCompare(accnext, tarunits, rhs->lsu, D2U(rhs->digits),
4717 rhs->exponent-exponent);
4718 if (compare==BADINT) { /* deep trouble */
4719 *status|=DEC_Insufficient_storage;
4722 /* now restore the remainder by dividing by two; the lsu */
4723 /* is known to be even. */
4724 for (up=accnext; up<accnext+tarunits; up++) {
4725 Int half; /* half to add to lower unit */
4727 *up/=2; /* [shift] */
4728 if (!half) continue;
4729 *(up-1)+=(DECDPUNMAX+1)/2;
4731 /* [accunits still describes the original remainder length] */
4733 if (compare>0 || (compare==0 && wasodd)) { /* adjustment needed */
4734 Int exp, expunits, exprem; /* work */
4735 /* This is effectively causing round-up of the quotient, */
4736 /* so if it was the rare case where it was full and all */
4737 /* nines, it would overflow and hence division-impossible */
4738 /* should be raised */
4739 Flag allnines=0; /* 1 if quotient all nines */
4740 if (quotdigits==reqdigits) { /* could be borderline */
4741 for (up=quotlsu; ; up++) {
4742 if (quotdigits>DECDPUN) {
4743 if (*up!=DECDPUNMAX) break;/* non-nines */
4745 else { /* this is the last Unit */
4746 if (*up==powers[quotdigits]-1) allnines=1;
4749 quotdigits-=DECDPUN; /* checked those digits */
4751 } /* borderline check */
4753 *status|=DEC_Division_impossible;
4756 /* rem-rhs is needed; the sign will invert. Again, var1 */
4757 /* can safely be used for the working Units array. */
4758 exp=rhs->exponent-exponent; /* RHS padding needed */
4759 /* Calculate units and remainder from exponent. */
4760 expunits=exp/DECDPUN;
4762 /* subtract [A+B*(-m)]; the result will always be negative */
4763 accunits=-decUnitAddSub(accnext, accunits,
4764 rhs->lsu, D2U(rhs->digits),
4765 expunits, accnext, -(Int)powers[exprem]);
4766 accdigits=decGetDigits(accnext, accunits); /* count digits exactly */
4767 accunits=D2U(accdigits); /* and recalculate the units for copy */
4768 /* [exponent is as for original remainder] */
4769 bits^=DECNEG; /* flip the sign */
4772 } /* REMAINDER or REMNEAR */
4775 /* Set exponent and bits */
4776 res->exponent=exponent;
4777 res->bits=(uByte)(bits&DECNEG); /* [cleaned] */
4779 /* Now the coefficient. */
4780 decSetCoeff(res, set, accnext, accdigits, &residue, status);
4782 decFinish(res, set, &residue, status); /* final cleanup */
4785 /* If a divide then strip trailing zeros if subset [after round] */
4786 if (!set->extended && (op==DIVIDE)) decTrim(res, set, 0, 1, &dropped);
4788 } while(0); /* end protected */
4790 if (varalloc!=NULL) free(varalloc); /* drop any storage used */
4791 if (allocacc!=NULL) free(allocacc); /* .. */
4793 if (allocrhs!=NULL) free(allocrhs); /* .. */
4794 if (alloclhs!=NULL) free(alloclhs); /* .. */
4799 /* ------------------------------------------------------------------ */
4800 /* decMultiplyOp -- multiplication operation */
4802 /* This routine performs the multiplication C=A x B. */
4804 /* res is C, the result. C may be A and/or B (e.g., X=X*X) */
4807 /* set is the context */
4808 /* status is the usual accumulator */
4810 /* C must have space for set->digits digits. */
4812 /* ------------------------------------------------------------------ */
4813 /* 'Classic' multiplication is used rather than Karatsuba, as the */
4814 /* latter would give only a minor improvement for the short numbers */
4815 /* expected to be handled most (and uses much more memory). */
4817 /* There are two major paths here: the general-purpose ('old code') */
4818 /* path which handles all DECDPUN values, and a fastpath version */
4819 /* which is used if 64-bit ints are available, DECDPUN<=4, and more */
4820 /* than two calls to decUnitAddSub would be made. */
4822 /* The fastpath version lumps units together into 8-digit or 9-digit */
4823 /* chunks, and also uses a lazy carry strategy to minimise expensive */
4824 /* 64-bit divisions. The chunks are then broken apart again into */
4825 /* units for continuing processing. Despite this overhead, the */
4826 /* fastpath can speed up some 16-digit operations by 10x (and much */
4827 /* more for higher-precision calculations). */
4829 /* A buffer always has to be used for the accumulator; in the */
4830 /* fastpath, buffers are also always needed for the chunked copies of */
4831 /* of the operand coefficients. */
4832 /* Static buffers are larger than needed just for multiply, to allow */
4833 /* for calls from other operations (notably exp). */
4834 /* ------------------------------------------------------------------ */
4835 #define FASTMUL (DECUSE64 && DECDPUN<5)
4836 static decNumber * decMultiplyOp(decNumber *res, const decNumber *lhs,
4837 const decNumber *rhs, decContext *set,
4839 Int accunits; /* Units of accumulator in use */
4840 Int exponent; /* work */
4841 Int residue=0; /* rounding residue */
4842 uByte bits; /* result sign */
4843 Unit *acc; /* -> accumulator Unit array */
4844 Int needbytes; /* size calculator */
4845 void *allocacc=NULL; /* -> allocated accumulator, iff allocated */
4846 Unit accbuff[SD2U(DECBUFFER*4+1)]; /* buffer (+1 for DECBUFFER==0, */
4847 /* *4 for calls from other operations) */
4848 const Unit *mer, *mermsup; /* work */
4849 Int madlength; /* Units in multiplicand */
4850 Int shift; /* Units to shift multiplicand by */
4853 /* if DECDPUN is 1 or 3 work in base 10**9, otherwise */
4854 /* (DECDPUN is 2 or 4) then work in base 10**8 */
4855 #if DECDPUN & 1 /* odd */
4856 #define FASTBASE 1000000000 /* base */
4857 #define FASTDIGS 9 /* digits in base */
4858 #define FASTLAZY 18 /* carry resolution point [1->18] */
4860 #define FASTBASE 100000000
4862 #define FASTLAZY 1844 /* carry resolution point [1->1844] */
4864 /* three buffers are used, two for chunked copies of the operands */
4865 /* (base 10**8 or base 10**9) and one base 2**64 accumulator with */
4866 /* lazy carry evaluation */
4867 uInt zlhibuff[(DECBUFFER*2+1)/8+1]; /* buffer (+1 for DECBUFFER==0) */
4868 uInt *zlhi=zlhibuff; /* -> lhs array */
4869 uInt *alloclhi=NULL; /* -> allocated buffer, iff allocated */
4870 uInt zrhibuff[(DECBUFFER*2+1)/8+1]; /* buffer (+1 for DECBUFFER==0) */
4871 uInt *zrhi=zrhibuff; /* -> rhs array */
4872 uInt *allocrhi=NULL; /* -> allocated buffer, iff allocated */
4873 uLong zaccbuff[(DECBUFFER*2+1)/4+2]; /* buffer (+1 for DECBUFFER==0) */
4874 /* [allocacc is shared for both paths, as only one will run] */
4875 uLong *zacc=zaccbuff; /* -> accumulator array for exact result */
4877 Int zoff; /* accumulator offset */
4879 uInt *lip, *rip; /* item pointers */
4880 uInt *lmsi, *rmsi; /* most significant items */
4881 Int ilhs, irhs, iacc; /* item counts in the arrays */
4882 Int lazy; /* lazy carry counter */
4883 uLong lcarry; /* uLong carry */
4884 uInt carry; /* carry (NB not uLong) */
4885 Int count; /* work */
4886 const Unit *cup; /* .. */
4893 decNumber *alloclhs=NULL; /* -> allocated buffer, iff allocated */
4894 decNumber *allocrhs=NULL; /* -> allocated buffer, iff allocated */
4898 if (decCheckOperands(res, lhs, rhs, set)) return res;
4901 /* precalculate result sign */
4902 bits=(uByte)((lhs->bits^rhs->bits)&DECNEG);
4904 /* handle infinities and NaNs */
4905 if (SPECIALARGS) { /* a special bit set */
4906 if (SPECIALARGS & (DECSNAN | DECNAN)) { /* one or two NaNs */
4907 decNaNs(res, lhs, rhs, set, status);
4909 /* one or two infinities; Infinity * 0 is invalid */
4910 if (((lhs->bits & DECINF)==0 && ISZERO(lhs))
4911 ||((rhs->bits & DECINF)==0 && ISZERO(rhs))) {
4912 *status|=DEC_Invalid_operation;
4915 res->bits=bits|DECINF; /* infinity */
4918 /* For best speed, as in DMSRCN [the original Rexx numerics */
4919 /* module], use the shorter number as the multiplier (rhs) and */
4920 /* the longer as the multiplicand (lhs) to minimise the number of */
4921 /* adds (partial products) */
4922 if (lhs->digits<rhs->digits) { /* swap... */
4923 const decNumber *hold=lhs;
4928 do { /* protect allocated storage */
4930 if (!set->extended) {
4931 /* reduce operands and set lostDigits status, as needed */
4932 if (lhs->digits>set->digits) {
4933 alloclhs=decRoundOperand(lhs, set, status);
4934 if (alloclhs==NULL) break;
4937 if (rhs->digits>set->digits) {
4938 allocrhs=decRoundOperand(rhs, set, status);
4939 if (allocrhs==NULL) break;
4944 /* [following code does not require input rounding] */
4946 #if FASTMUL /* fastpath can be used */
4947 /* use the fast path if there are enough digits in the shorter */
4948 /* operand to make the setup and takedown worthwhile */
4949 #define NEEDTWO (DECDPUN*2) /* within two decUnitAddSub calls */
4950 if (rhs->digits>NEEDTWO) { /* use fastpath... */
4951 /* calculate the number of elements in each array */
4952 ilhs=(lhs->digits+FASTDIGS-1)/FASTDIGS; /* [ceiling] */
4953 irhs=(rhs->digits+FASTDIGS-1)/FASTDIGS; /* .. */
4956 /* allocate buffers if required, as usual */
4957 needbytes=ilhs*sizeof(uInt);
4958 if (needbytes>(Int)sizeof(zlhibuff)) {
4959 alloclhi=(uInt *)malloc(needbytes);
4961 needbytes=irhs*sizeof(uInt);
4962 if (needbytes>(Int)sizeof(zrhibuff)) {
4963 allocrhi=(uInt *)malloc(needbytes);
4966 /* Allocating the accumulator space needs a special case when */
4967 /* DECDPUN=1 because when converting the accumulator to Units */
4968 /* after the multiplication each 8-byte item becomes 9 1-byte */
4969 /* units. Therefore iacc extra bytes are needed at the front */
4970 /* (rounded up to a multiple of 8 bytes), and the uLong */
4971 /* accumulator starts offset the appropriate number of units */
4972 /* to the right to avoid overwrite during the unchunking. */
4973 needbytes=iacc*sizeof(uLong);
4975 zoff=(iacc+7)/8; /* items to offset by */
4978 if (needbytes>(Int)sizeof(zaccbuff)) {
4979 allocacc=(uLong *)malloc(needbytes);
4980 zacc=(uLong *)allocacc;}
4981 if (zlhi==NULL||zrhi==NULL||zacc==NULL) {
4982 *status|=DEC_Insufficient_storage;
4985 acc=(Unit *)zacc; /* -> target Unit array */
4987 zacc+=zoff; /* start uLong accumulator to right */
4990 /* assemble the chunked copies of the left and right sides */
4991 for (count=lhs->digits, cup=lhs->lsu, lip=zlhi; count>0; lip++)
4992 for (p=0, *lip=0; p<FASTDIGS && count>0;
4993 p+=DECDPUN, cup++, count-=DECDPUN)
4994 *lip+=*cup*powers[p];
4995 lmsi=lip-1; /* save -> msi */
4996 for (count=rhs->digits, cup=rhs->lsu, rip=zrhi; count>0; rip++)
4997 for (p=0, *rip=0; p<FASTDIGS && count>0;
4998 p+=DECDPUN, cup++, count-=DECDPUN)
4999 *rip+=*cup*powers[p];
5000 rmsi=rip-1; /* save -> msi */
5002 /* zero the accumulator */
5003 for (lp=zacc; lp<zacc+iacc; lp++) *lp=0;
5005 /* Start the multiplication */
5006 /* Resolving carries can dominate the cost of accumulating the */
5007 /* partial products, so this is only done when necessary. */
5008 /* Each uLong item in the accumulator can hold values up to */
5009 /* 2**64-1, and each partial product can be as large as */
5010 /* (10**FASTDIGS-1)**2. When FASTDIGS=9, this can be added to */
5011 /* itself 18.4 times in a uLong without overflowing, so during */
5012 /* the main calculation resolution is carried out every 18th */
5013 /* add -- every 162 digits. Similarly, when FASTDIGS=8, the */
5014 /* partial products can be added to themselves 1844.6 times in */
5015 /* a uLong without overflowing, so intermediate carry */
5016 /* resolution occurs only every 14752 digits. Hence for common */
5017 /* short numbers usually only the one final carry resolution */
5019 /* (The count is set via FASTLAZY to simplify experiments to */
5020 /* measure the value of this approach: a 35% improvement on a */
5021 /* [34x34] multiply.) */
5022 lazy=FASTLAZY; /* carry delay count */
5023 for (rip=zrhi; rip<=rmsi; rip++) { /* over each item in rhs */
5024 lp=zacc+(rip-zrhi); /* where to add the lhs */
5025 for (lip=zlhi; lip<=lmsi; lip++, lp++) { /* over each item in lhs */
5026 *lp+=(uLong)(*lip)*(*rip); /* [this should in-line] */
5029 if (lazy>0 && rip!=rmsi) continue;
5030 lazy=FASTLAZY; /* reset delay count */
5031 /* spin up the accumulator resolving overflows */
5032 for (lp=zacc; lp<zacc+iacc; lp++) {
5033 if (*lp<FASTBASE) continue; /* it fits */
5034 lcarry=*lp/FASTBASE; /* top part [slow divide] */
5035 /* lcarry can exceed 2**32-1, so check again; this check */
5036 /* and occasional extra divide (slow) is well worth it, as */
5037 /* it allows FASTLAZY to be increased to 18 rather than 4 */
5038 /* in the FASTDIGS=9 case */
5039 if (lcarry<FASTBASE) carry=(uInt)lcarry; /* [usual] */
5040 else { /* two-place carry [fairly rare] */
5041 uInt carry2=(uInt)(lcarry/FASTBASE); /* top top part */
5042 *(lp+2)+=carry2; /* add to item+2 */
5043 *lp-=((uLong)FASTBASE*FASTBASE*carry2); /* [slow] */
5044 carry=(uInt)(lcarry-((uLong)FASTBASE*carry2)); /* [inline] */
5046 *(lp+1)+=carry; /* add to item above [inline] */
5047 *lp-=((uLong)FASTBASE*carry); /* [inline] */
5048 } /* carry resolution */
5051 /* The multiplication is complete; time to convert back into */
5052 /* units. This can be done in-place in the accumulator and in */
5053 /* 32-bit operations, because carries were resolved after the */
5054 /* final add. This needs N-1 divides and multiplies for */
5055 /* each item in the accumulator (which will become up to N */
5056 /* units, where 2<=N<=9). */
5057 for (lp=zacc, up=acc; lp<zacc+iacc; lp++) {
5058 uInt item=(uInt)*lp; /* decapitate to uInt */
5059 for (p=0; p<FASTDIGS-DECDPUN; p+=DECDPUN, up++) {
5060 uInt part=item/(DECDPUNMAX+1);
5061 *up=(Unit)(item-(part*(DECDPUNMAX+1)));
5064 *up=(Unit)item; up++; /* [final needs no division] */
5066 accunits=up-acc; /* count of units */
5068 else { /* here to use units directly, without chunking ['old code'] */
5071 /* if accumulator will be too long for local storage, then allocate */
5072 acc=accbuff; /* -> assume buffer for accumulator */
5073 needbytes=(D2U(lhs->digits)+D2U(rhs->digits))*sizeof(Unit);
5074 if (needbytes>(Int)sizeof(accbuff)) {
5075 allocacc=(Unit *)malloc(needbytes);
5076 if (allocacc==NULL) {*status|=DEC_Insufficient_storage; break;}
5077 acc=(Unit *)allocacc; /* use the allocated space */
5080 /* Now the main long multiplication loop */
5081 /* Unlike the equivalent in the IBM Java implementation, there */
5082 /* is no advantage in calculating from msu to lsu. So, do it */
5083 /* by the book, as it were. */
5084 /* Each iteration calculates ACC=ACC+MULTAND*MULT */
5085 accunits=1; /* accumulator starts at '0' */
5086 *acc=0; /* .. (lsu=0) */
5087 shift=0; /* no multiplicand shift at first */
5088 madlength=D2U(lhs->digits); /* this won't change */
5089 mermsup=rhs->lsu+D2U(rhs->digits); /* -> msu+1 of multiplier */
5091 for (mer=rhs->lsu; mer<mermsup; mer++) {
5092 /* Here, *mer is the next Unit in the multiplier to use */
5093 /* If non-zero [optimization] add it... */
5094 if (*mer!=0) accunits=decUnitAddSub(&acc[shift], accunits-shift,
5095 lhs->lsu, madlength, 0,
5098 else { /* extend acc with a 0; it will be used shortly */
5099 *(acc+accunits)=0; /* [this avoids length of <=0 later] */
5102 /* multiply multiplicand by 10**DECDPUN for next Unit to left */
5103 shift++; /* add this for 'logical length' */
5106 } /* unchunked units */
5108 /* common end-path */
5110 decDumpAr('*', acc, accunits); /* Show exact result */
5113 /* acc now contains the exact result of the multiplication, */
5114 /* possibly with a leading zero unit; build the decNumber from */
5115 /* it, noting if any residue */
5116 res->bits=bits; /* set sign */
5117 res->digits=decGetDigits(acc, accunits); /* count digits exactly */
5119 /* There can be a 31-bit wrap in calculating the exponent. */
5120 /* This can only happen if both input exponents are negative and */
5121 /* both their magnitudes are large. If there was a wrap, set a */
5122 /* safe very negative exponent, from which decFinalize() will */
5123 /* raise a hard underflow shortly. */
5124 exponent=lhs->exponent+rhs->exponent; /* calculate exponent */
5125 if (lhs->exponent<0 && rhs->exponent<0 && exponent>0)
5126 exponent=-2*DECNUMMAXE; /* force underflow */
5127 res->exponent=exponent; /* OK to overwrite now */
5130 /* Set the coefficient. If any rounding, residue records */
5131 decSetCoeff(res, set, acc, res->digits, &residue, status);
5132 decFinish(res, set, &residue, status); /* final cleanup */
5133 } while(0); /* end protected */
5135 if (allocacc!=NULL) free(allocacc); /* drop any storage used */
5137 if (allocrhs!=NULL) free(allocrhs); /* .. */
5138 if (alloclhs!=NULL) free(alloclhs); /* .. */
5141 if (allocrhi!=NULL) free(allocrhi); /* .. */
5142 if (alloclhi!=NULL) free(alloclhi); /* .. */
5145 } /* decMultiplyOp */
5147 /* ------------------------------------------------------------------ */
5148 /* decExpOp -- effect exponentiation */
5150 /* This computes C = exp(A) */
5152 /* res is C, the result. C may be A */
5154 /* set is the context; note that rounding mode has no effect */
5156 /* C must have space for set->digits digits. status is updated but */
5161 /* digits, emax, and -emin in the context must be less than */
5162 /* 2*DEC_MAX_MATH (1999998), and the rhs must be within these */
5163 /* bounds or a zero. This is an internal routine, so these */
5164 /* restrictions are contractual and not enforced. */
5166 /* A finite result is rounded using DEC_ROUND_HALF_EVEN; it will */
5167 /* almost always be correctly rounded, but may be up to 1 ulp in */
5168 /* error in rare cases. */
5170 /* Finite results will always be full precision and Inexact, except */
5171 /* when A is a zero or -Infinity (giving 1 or 0 respectively). */
5172 /* ------------------------------------------------------------------ */
5173 /* This approach used here is similar to the algorithm described in */
5175 /* Variable Precision Exponential Function, T. E. Hull and */
5176 /* A. Abrham, ACM Transactions on Mathematical Software, Vol 12 #2, */
5177 /* pp79-91, ACM, June 1986. */
5179 /* with the main difference being that the iterations in the series */
5180 /* evaluation are terminated dynamically (which does not require the */
5181 /* extra variable-precision variables which are expensive in this */
5184 /* The error analysis in Hull & Abrham's paper applies except for the */
5185 /* round-off error accumulation during the series evaluation. This */
5186 /* code does not precalculate the number of iterations and so cannot */
5187 /* use Horner's scheme. Instead, the accumulation is done at double- */
5188 /* precision, which ensures that the additions of the terms are exact */
5189 /* and do not accumulate round-off (and any round-off errors in the */
5190 /* terms themselves move 'to the right' faster than they can */
5191 /* accumulate). This code also extends the calculation by allowing, */
5192 /* in the spirit of other decNumber operators, the input to be more */
5193 /* precise than the result (the precision used is based on the more */
5194 /* precise of the input or requested result). */
5196 /* Implementation notes: */
5198 /* 1. This is separated out as decExpOp so it can be called from */
5199 /* other Mathematical functions (notably Ln) with a wider range */
5200 /* than normal. In particular, it can handle the slightly wider */
5201 /* (double) range needed by Ln (which has to be able to calculate */
5202 /* exp(-x) where x can be the tiniest number (Ntiny). */
5204 /* 2. Normalizing x to be <=0.1 (instead of <=1) reduces loop */
5205 /* iterations by appoximately a third with additional (although */
5206 /* diminishing) returns as the range is reduced to even smaller */
5207 /* fractions. However, h (the power of 10 used to correct the */
5208 /* result at the end, see below) must be kept <=8 as otherwise */
5209 /* the final result cannot be computed. Hence the leverage is a */
5210 /* sliding value (8-h), where potentially the range is reduced */
5211 /* more for smaller values. */
5213 /* The leverage that can be applied in this way is severely */
5214 /* limited by the cost of the raise-to-the power at the end, */
5215 /* which dominates when the number of iterations is small (less */
5216 /* than ten) or when rhs is short. As an example, the adjustment */
5217 /* x**10,000,000 needs 31 multiplications, all but one full-width. */
5219 /* 3. The restrictions (especially precision) could be raised with */
5220 /* care, but the full decNumber range seems very hard within the */
5221 /* 32-bit limits. */
5223 /* 4. The working precisions for the static buffers are twice the */
5224 /* obvious size to allow for calls from decNumberPower. */
5225 /* ------------------------------------------------------------------ */
5226 decNumber * decExpOp(decNumber *res, const decNumber *rhs,
5227 decContext *set, uInt *status) {
5228 uInt ignore=0; /* working status */
5229 Int h; /* adjusted exponent for 0.xxxx */
5230 Int p; /* working precision */
5231 Int residue; /* rounding residue */
5232 uInt needbytes; /* for space calculations */
5233 const decNumber *x=rhs; /* (may point to safe copy later) */
5234 decContext aset, tset, dset; /* working contexts */
5235 Int comp; /* work */
5237 /* the argument is often copied to normalize it, so (unusually) it */
5238 /* is treated like other buffers, using DECBUFFER, +1 in case */
5239 /* DECBUFFER is 0 */
5240 decNumber bufr[D2N(DECBUFFER*2+1)];
5241 decNumber *allocrhs=NULL; /* non-NULL if rhs buffer allocated */
5243 /* the working precision will be no more than set->digits+8+1 */
5244 /* so for on-stack buffers DECBUFFER+9 is used, +1 in case DECBUFFER */
5245 /* is 0 (and twice that for the accumulator) */
5247 /* buffer for t, term (working precision plus) */
5248 decNumber buft[D2N(DECBUFFER*2+9+1)];
5249 decNumber *allocbuft=NULL; /* -> allocated buft, iff allocated */
5250 decNumber *t=buft; /* term */
5251 /* buffer for a, accumulator (working precision * 2), at least 9 */
5252 decNumber bufa[D2N(DECBUFFER*4+18+1)];
5253 decNumber *allocbufa=NULL; /* -> allocated bufa, iff allocated */
5254 decNumber *a=bufa; /* accumulator */
5255 /* decNumber for the divisor term; this needs at most 9 digits */
5256 /* and so can be fixed size [16 so can use standard context] */
5257 decNumber bufd[D2N(16)];
5258 decNumber *d=bufd; /* divisor */
5259 decNumber numone; /* constant 1 */
5262 Int iterations=0; /* for later sanity check */
5263 if (decCheckOperands(res, DECUNUSED, rhs, set)) return res;
5266 do { /* protect allocated storage */
5267 if (SPECIALARG) { /* handle infinities and NaNs */
5268 if (decNumberIsInfinite(rhs)) { /* an infinity */
5269 if (decNumberIsNegative(rhs)) /* -Infinity -> +0 */
5271 else decNumberCopy(res, rhs); /* +Infinity -> self */
5273 else decNaNs(res, rhs, NULL, set, status); /* a NaN */
5276 if (ISZERO(rhs)) { /* zeros -> exact 1 */
5277 decNumberZero(res); /* make clean 1 */
5278 *res->lsu=1; /* .. */
5279 break;} /* [no status to set] */
5281 /* e**x when 0 < x < 0.66 is < 1+3x/2, hence can fast-path */
5282 /* positive and negative tiny cases which will result in inexact */
5283 /* 1. This also allows the later add-accumulate to always be */
5284 /* exact (because its length will never be more than twice the */
5285 /* working precision). */
5286 /* The comparator (tiny) needs just one digit, so use the */
5287 /* decNumber d for it (reused as the divisor, etc., below); its */
5288 /* exponent is such that if x is positive it will have */
5289 /* set->digits-1 zeros between the decimal point and the digit, */
5290 /* which is 4, and if x is negative one more zero there as the */
5291 /* more precise result will be of the form 0.9999999 rather than */
5292 /* 1.0000001. Hence, tiny will be 0.0000004 if digits=7 and x>0 */
5293 /* or 0.00000004 if digits=7 and x<0. If RHS not larger than */
5294 /* this then the result will be 1.000000 */
5295 decNumberZero(d); /* clean */
5296 *d->lsu=4; /* set 4 .. */
5297 d->exponent=-set->digits; /* * 10**(-d) */
5298 if (decNumberIsNegative(rhs)) d->exponent--; /* negative case */
5299 comp=decCompare(d, rhs, 1); /* signless compare */
5301 *status|=DEC_Insufficient_storage;
5303 if (comp>=0) { /* rhs < d */
5304 Int shift=set->digits-1;
5305 decNumberZero(res); /* set 1 */
5306 *res->lsu=1; /* .. */
5307 res->digits=decShiftToMost(res->lsu, 1, shift);
5308 res->exponent=-shift; /* make 1.0000... */
5309 *status|=DEC_Inexact | DEC_Rounded; /* .. inexactly */
5312 /* set up the context to be used for calculating a, as this is */
5313 /* used on both paths below */
5314 decContextDefault(&aset, DEC_INIT_DECIMAL64);
5315 /* accumulator bounds are as requested (could underflow) */
5316 aset.emax=set->emax; /* usual bounds */
5317 aset.emin=set->emin; /* .. */
5318 aset.clamp=0; /* and no concrete format */
5320 /* calculate the adjusted (Hull & Abrham) exponent (where the */
5321 /* decimal point is just to the left of the coefficient msd) */
5322 h=rhs->exponent+rhs->digits;
5323 /* if h>8 then 10**h cannot be calculated safely; however, when */
5324 /* h=8 then exp(|rhs|) will be at least exp(1E+7) which is at */
5325 /* least 6.59E+4342944, so (due to the restriction on Emax/Emin) */
5326 /* overflow (or underflow to 0) is guaranteed -- so this case can */
5327 /* be handled by simply forcing the appropriate excess */
5328 if (h>8) { /* overflow/underflow */
5329 /* set up here so Power call below will over or underflow to */
5330 /* zero; set accumulator to either 2 or 0.02 */
5331 /* [stack buffer for a is always big enough for this] */
5333 *a->lsu=2; /* not 1 but < exp(1) */
5334 if (decNumberIsNegative(rhs)) a->exponent=-2; /* make 0.02 */
5335 h=8; /* clamp so 10**h computable */
5336 p=9; /* set a working precision */
5339 Int maxlever=(rhs->digits>8?1:0);
5340 /* [could/should increase this for precisions >40 or so, too] */
5342 /* if h is 8, cannot normalize to a lower upper limit because */
5343 /* the final result will not be computable (see notes above), */
5344 /* but leverage can be applied whenever h is less than 8. */
5345 /* Apply as much as possible, up to a MAXLEVER digits, which */
5346 /* sets the tradeoff against the cost of the later a**(10**h). */
5347 /* As h is increased, the working precision below also */
5348 /* increases to compensate for the "constant digits at the */
5349 /* front" effect. */
5350 Int lever=MINI(8-h, maxlever); /* leverage attainable */
5351 Int use=-rhs->digits-lever; /* exponent to use for RHS */
5352 h+=lever; /* apply leverage selected */
5353 if (h<0) { /* clamp */
5354 use+=h; /* [may end up subnormal] */
5357 /* Take a copy of RHS if it needs normalization (true whenever x>=1) */
5358 if (rhs->exponent!=use) {
5359 decNumber *newrhs=bufr; /* assume will fit on stack */
5360 needbytes=sizeof(decNumber)+(D2U(rhs->digits)-1)*sizeof(Unit);
5361 if (needbytes>sizeof(bufr)) { /* need malloc space */
5362 allocrhs=(decNumber *)malloc(needbytes);
5363 if (allocrhs==NULL) { /* hopeless -- abandon */
5364 *status|=DEC_Insufficient_storage;
5366 newrhs=allocrhs; /* use the allocated space */
5368 decNumberCopy(newrhs, rhs); /* copy to safe space */
5369 newrhs->exponent=use; /* normalize; now <1 */
5370 x=newrhs; /* ready for use */
5371 /* decNumberShow(x); */
5374 /* Now use the usual power series to evaluate exp(x). The */
5375 /* series starts as 1 + x + x^2/2 ... so prime ready for the */
5376 /* third term by setting the term variable t=x, the accumulator */
5377 /* a=1, and the divisor d=2. */
5379 /* First determine the working precision. From Hull & Abrham */
5380 /* this is set->digits+h+2. However, if x is 'over-precise' we */
5381 /* need to allow for all its digits to potentially participate */
5382 /* (consider an x where all the excess digits are 9s) so in */
5383 /* this case use x->digits+h+2 */
5384 p=MAXI(x->digits, set->digits)+h+2; /* [h<=8] */
5386 /* a and t are variable precision, and depend on p, so space */
5387 /* must be allocated for them if necessary */
5389 /* the accumulator needs to be able to hold 2p digits so that */
5390 /* the additions on the second and subsequent iterations are */
5391 /* sufficiently exact. */
5392 needbytes=sizeof(decNumber)+(D2U(p*2)-1)*sizeof(Unit);
5393 if (needbytes>sizeof(bufa)) { /* need malloc space */
5394 allocbufa=(decNumber *)malloc(needbytes);
5395 if (allocbufa==NULL) { /* hopeless -- abandon */
5396 *status|=DEC_Insufficient_storage;
5398 a=allocbufa; /* use the allocated space */
5400 /* the term needs to be able to hold p digits (which is */
5401 /* guaranteed to be larger than x->digits, so the initial copy */
5402 /* is safe); it may also be used for the raise-to-power */
5403 /* calculation below, which needs an extra two digits */
5404 needbytes=sizeof(decNumber)+(D2U(p+2)-1)*sizeof(Unit);
5405 if (needbytes>sizeof(buft)) { /* need malloc space */
5406 allocbuft=(decNumber *)malloc(needbytes);
5407 if (allocbuft==NULL) { /* hopeless -- abandon */
5408 *status|=DEC_Insufficient_storage;
5410 t=allocbuft; /* use the allocated space */
5413 decNumberCopy(t, x); /* term=x */
5414 decNumberZero(a); *a->lsu=1; /* accumulator=1 */
5415 decNumberZero(d); *d->lsu=2; /* divisor=2 */
5416 decNumberZero(&numone); *numone.lsu=1; /* constant 1 for increment */
5418 /* set up the contexts for calculating a, t, and d */
5419 decContextDefault(&tset, DEC_INIT_DECIMAL64);
5421 /* accumulator bounds are set above, set precision now */
5422 aset.digits=p*2; /* double */
5423 /* term bounds avoid any underflow or overflow */
5425 tset.emin=DEC_MIN_EMIN; /* [emax is plenty] */
5426 /* [dset.digits=16, etc., are sufficient] */
5428 /* finally ready to roll */
5433 /* only the status from the accumulation is interesting */
5434 /* [but it should remain unchanged after first add] */
5435 decAddOp(a, a, t, &aset, 0, status); /* a=a+t */
5436 decMultiplyOp(t, t, x, &tset, &ignore); /* t=t*x */
5437 decDivideOp(t, t, d, &tset, DIVIDE, &ignore); /* t=t/d */
5438 /* the iteration ends when the term cannot affect the result, */
5439 /* if rounded to p digits, which is when its value is smaller */
5440 /* than the accumulator by p+1 digits. There must also be */
5441 /* full precision in a. */
5442 if (((a->digits+a->exponent)>=(t->digits+t->exponent+p+1))
5443 && (a->digits>=p)) break;
5444 decAddOp(d, d, &numone, &dset, 0, &ignore); /* d=d+1 */
5448 /* just a sanity check; comment out test to show always */
5450 printf("Exp iterations=%ld, status=%08lx, p=%ld, d=%ld\n",
5451 (LI)iterations, (LI)*status, (LI)p, (LI)x->digits);
5455 /* apply postconditioning: a=a**(10**h) -- this is calculated */
5456 /* at a slightly higher precision than Hull & Abrham suggest */
5458 Int seenbit=0; /* set once a 1-bit is seen */
5459 Int i; /* counter */
5460 Int n=powers[h]; /* always positive */
5461 aset.digits=p+2; /* sufficient precision */
5462 /* avoid the overhead and many extra digits of decNumberPower */
5463 /* as all that is needed is the short 'multipliers' loop; here */
5464 /* accumulate the answer into t */
5465 decNumberZero(t); *t->lsu=1; /* acc=1 */
5466 for (i=1;;i++){ /* for each bit [top bit ignored] */
5467 /* abandon if have had overflow or terminal underflow */
5468 if (*status & (DEC_Overflow|DEC_Underflow)) { /* interesting? */
5469 if (*status&DEC_Overflow || ISZERO(t)) break;}
5470 n=n<<1; /* move next bit to testable position */
5471 if (n<0) { /* top bit is set */
5472 seenbit=1; /* OK, have a significant bit */
5473 decMultiplyOp(t, t, a, &aset, status); /* acc=acc*x */
5475 if (i==31) break; /* that was the last bit */
5476 if (!seenbit) continue; /* no need to square 1 */
5477 decMultiplyOp(t, t, t, &aset, status); /* acc=acc*acc [square] */
5478 } /*i*/ /* 32 bits */
5479 /* decNumberShow(t); */
5480 a=t; /* and carry on using t instead of a */
5483 /* Copy and round the result to res */
5484 residue=1; /* indicate dirt to right .. */
5485 if (ISZERO(a)) residue=0; /* .. unless underflowed to 0 */
5486 aset.digits=set->digits; /* [use default rounding] */
5487 decCopyFit(res, a, &aset, &residue, status); /* copy & shorten */
5488 decFinish(res, set, &residue, status); /* cleanup/set flags */
5489 } while(0); /* end protected */
5491 if (allocrhs !=NULL) free(allocrhs); /* drop any storage used */
5492 if (allocbufa!=NULL) free(allocbufa); /* .. */
5493 if (allocbuft!=NULL) free(allocbuft); /* .. */
5494 /* [status is handled by caller] */
5498 /* ------------------------------------------------------------------ */
5499 /* Initial-estimate natural logarithm table */
5501 /* LNnn -- 90-entry 16-bit table for values from .10 through .99. */
5502 /* The result is a 4-digit encode of the coefficient (c=the */
5503 /* top 14 bits encoding 0-9999) and a 2-digit encode of the */
5504 /* exponent (e=the bottom 2 bits encoding 0-3) */
5506 /* The resulting value is given by: */
5508 /* v = -c * 10**(-e-3) */
5510 /* where e and c are extracted from entry k = LNnn[x-10] */
5511 /* where x is truncated (NB) into the range 10 through 99, */
5512 /* and then c = k>>2 and e = k&3. */
5513 /* ------------------------------------------------------------------ */
5514 const uShort LNnn[90]={9016, 8652, 8316, 8008, 7724, 7456, 7208,
5515 6972, 6748, 6540, 6340, 6148, 5968, 5792, 5628, 5464, 5312,
5516 5164, 5020, 4884, 4748, 4620, 4496, 4376, 4256, 4144, 4032,
5517 39233, 38181, 37157, 36157, 35181, 34229, 33297, 32389, 31501, 30629,
5518 29777, 28945, 28129, 27329, 26545, 25777, 25021, 24281, 23553, 22837,
5519 22137, 21445, 20769, 20101, 19445, 18801, 18165, 17541, 16925, 16321,
5520 15721, 15133, 14553, 13985, 13421, 12865, 12317, 11777, 11241, 10717,
5521 10197, 9685, 9177, 8677, 8185, 7697, 7213, 6737, 6269, 5801,
5522 5341, 4889, 4437, 39930, 35534, 31186, 26886, 22630, 18418, 14254,
5523 10130, 6046, 20055};
5525 /* ------------------------------------------------------------------ */
5526 /* decLnOp -- effect natural logarithm */
5528 /* This computes C = ln(A) */
5530 /* res is C, the result. C may be A */
5532 /* set is the context; note that rounding mode has no effect */
5534 /* C must have space for set->digits digits. */
5536 /* Notable cases: */
5537 /* A<0 -> Invalid */
5538 /* A=0 -> -Infinity (Exact) */
5539 /* A=+Infinity -> +Infinity (Exact) */
5540 /* A=1 exactly -> 0 (Exact) */
5542 /* Restrictions (as for Exp): */
5544 /* digits, emax, and -emin in the context must be less than */
5545 /* DEC_MAX_MATH+11 (1000010), and the rhs must be within these */
5546 /* bounds or a zero. This is an internal routine, so these */
5547 /* restrictions are contractual and not enforced. */
5549 /* A finite result is rounded using DEC_ROUND_HALF_EVEN; it will */
5550 /* almost always be correctly rounded, but may be up to 1 ulp in */
5551 /* error in rare cases. */
5552 /* ------------------------------------------------------------------ */
5553 /* The result is calculated using Newton's method, with each */
5554 /* iteration calculating a' = a + x * exp(-a) - 1. See, for example, */
5555 /* Epperson 1989. */
5557 /* The iteration ends when the adjustment x*exp(-a)-1 is tiny enough. */
5558 /* This has to be calculated at the sum of the precision of x and the */
5559 /* working precision. */
5561 /* Implementation notes: */
5563 /* 1. This is separated out as decLnOp so it can be called from */
5564 /* other Mathematical functions (e.g., Log 10) with a wider range */
5565 /* than normal. In particular, it can handle the slightly wider */
5566 /* (+9+2) range needed by a power function. */
5568 /* 2. The speed of this function is about 10x slower than exp, as */
5569 /* it typically needs 4-6 iterations for short numbers, and the */
5570 /* extra precision needed adds a squaring effect, twice. */
5572 /* 3. Fastpaths are included for ln(10) and ln(2), up to length 40, */
5573 /* as these are common requests. ln(10) is used by log10(x). */
5575 /* 4. An iteration might be saved by widening the LNnn table, and */
5576 /* would certainly save at least one if it were made ten times */
5577 /* bigger, too (for truncated fractions 0.100 through 0.999). */
5578 /* However, for most practical evaluations, at least four or five */
5579 /* iterations will be neede -- so this would only speed up by */
5580 /* 20-25% and that probably does not justify increasing the table */
5583 /* 5. The static buffers are larger than might be expected to allow */
5584 /* for calls from decNumberPower. */
5585 /* ------------------------------------------------------------------ */
5586 decNumber * decLnOp(decNumber *res, const decNumber *rhs,
5587 decContext *set, uInt *status) {
5588 uInt ignore=0; /* working status accumulator */
5589 uInt needbytes; /* for space calculations */
5590 Int residue; /* rounding residue */
5591 Int r; /* rhs=f*10**r [see below] */
5592 Int p; /* working precision */
5593 Int pp; /* precision for iteration */
5596 /* buffers for a (accumulator, typically precision+2) and b */
5597 /* (adjustment calculator, same size) */
5598 decNumber bufa[D2N(DECBUFFER+12)];
5599 decNumber *allocbufa=NULL; /* -> allocated bufa, iff allocated */
5600 decNumber *a=bufa; /* accumulator/work */
5601 decNumber bufb[D2N(DECBUFFER*2+2)];
5602 decNumber *allocbufb=NULL; /* -> allocated bufa, iff allocated */
5603 decNumber *b=bufb; /* adjustment/work */
5605 decNumber numone; /* constant 1 */
5606 decNumber cmp; /* work */
5607 decContext aset, bset; /* working contexts */
5610 Int iterations=0; /* for later sanity check */
5611 if (decCheckOperands(res, DECUNUSED, rhs, set)) return res;
5614 do { /* protect allocated storage */
5615 if (SPECIALARG) { /* handle infinities and NaNs */
5616 if (decNumberIsInfinite(rhs)) { /* an infinity */
5617 if (decNumberIsNegative(rhs)) /* -Infinity -> error */
5618 *status|=DEC_Invalid_operation;
5619 else decNumberCopy(res, rhs); /* +Infinity -> self */
5621 else decNaNs(res, rhs, NULL, set, status); /* a NaN */
5624 if (ISZERO(rhs)) { /* +/- zeros -> -Infinity */
5625 decNumberZero(res); /* make clean */
5626 res->bits=DECINF|DECNEG; /* set - infinity */
5627 break;} /* [no status to set] */
5629 /* Non-zero negatives are bad... */
5630 if (decNumberIsNegative(rhs)) { /* -x -> error */
5631 *status|=DEC_Invalid_operation;
5634 /* Here, rhs is positive, finite, and in range */
5636 /* lookaside fastpath code for ln(2) and ln(10) at common lengths */
5637 if (rhs->exponent==0 && set->digits<=40) {
5639 if (rhs->lsu[0]==0 && rhs->lsu[1]==1 && rhs->digits==2) { /* ln(10) */
5641 if (rhs->lsu[0]==10 && rhs->digits==2) { /* ln(10) */
5643 aset=*set; aset.round=DEC_ROUND_HALF_EVEN;
5644 #define LN10 "2.302585092994045684017991454684364207601"
5645 decNumberFromString(res, LN10, &aset);
5646 *status|=(DEC_Inexact | DEC_Rounded); /* is inexact */
5648 if (rhs->lsu[0]==2 && rhs->digits==1) { /* ln(2) */
5649 aset=*set; aset.round=DEC_ROUND_HALF_EVEN;
5650 #define LN2 "0.6931471805599453094172321214581765680755"
5651 decNumberFromString(res, LN2, &aset);
5652 *status|=(DEC_Inexact | DEC_Rounded);
5654 } /* integer and short */
5656 /* Determine the working precision. This is normally the */
5657 /* requested precision + 2, with a minimum of 9. However, if */
5658 /* the rhs is 'over-precise' then allow for all its digits to */
5659 /* potentially participate (consider an rhs where all the excess */
5660 /* digits are 9s) so in this case use rhs->digits+2. */
5661 p=MAXI(rhs->digits, MAXI(set->digits, 7))+2;
5663 /* Allocate space for the accumulator and the high-precision */
5664 /* adjustment calculator, if necessary. The accumulator must */
5665 /* be able to hold p digits, and the adjustment up to */
5666 /* rhs->digits+p digits. They are also made big enough for 16 */
5667 /* digits so that they can be used for calculating the initial */
5669 needbytes=sizeof(decNumber)+(D2U(MAXI(p,16))-1)*sizeof(Unit);
5670 if (needbytes>sizeof(bufa)) { /* need malloc space */
5671 allocbufa=(decNumber *)malloc(needbytes);
5672 if (allocbufa==NULL) { /* hopeless -- abandon */
5673 *status|=DEC_Insufficient_storage;
5675 a=allocbufa; /* use the allocated space */
5678 needbytes=sizeof(decNumber)+(D2U(MAXI(pp,16))-1)*sizeof(Unit);
5679 if (needbytes>sizeof(bufb)) { /* need malloc space */
5680 allocbufb=(decNumber *)malloc(needbytes);
5681 if (allocbufb==NULL) { /* hopeless -- abandon */
5682 *status|=DEC_Insufficient_storage;
5684 b=allocbufb; /* use the allocated space */
5687 /* Prepare an initial estimate in acc. Calculate this by */
5688 /* considering the coefficient of x to be a normalized fraction, */
5689 /* f, with the decimal point at far left and multiplied by */
5690 /* 10**r. Then, rhs=f*10**r and 0.1<=f<1, and */
5691 /* ln(x) = ln(f) + ln(10)*r */
5692 /* Get the initial estimate for ln(f) from a small lookup */
5693 /* table (see above) indexed by the first two digits of f, */
5696 decContextDefault(&aset, DEC_INIT_DECIMAL64); /* 16-digit extended */
5697 r=rhs->exponent+rhs->digits; /* 'normalised' exponent */
5698 decNumberFromInt32(a, r); /* a=r */
5699 decNumberFromInt32(b, 2302585); /* b=ln(10) (2.302585) */
5700 b->exponent=-6; /* .. */
5701 decMultiplyOp(a, a, b, &aset, &ignore); /* a=a*b */
5702 /* now get top two digits of rhs into b by simple truncate and */
5703 /* force to integer */
5704 residue=0; /* (no residue) */
5705 aset.digits=2; aset.round=DEC_ROUND_DOWN;
5706 decCopyFit(b, rhs, &aset, &residue, &ignore); /* copy & shorten */
5707 b->exponent=0; /* make integer */
5708 t=decGetInt(b); /* [cannot fail] */
5709 if (t<10) t=X10(t); /* adjust single-digit b */
5710 t=LNnn[t-10]; /* look up ln(b) */
5711 decNumberFromInt32(b, t>>2); /* b=ln(b) coefficient */
5712 b->exponent=-(t&3)-3; /* set exponent */
5713 b->bits=DECNEG; /* ln(0.10)->ln(0.99) always -ve */
5714 aset.digits=16; aset.round=DEC_ROUND_HALF_EVEN; /* restore */
5715 decAddOp(a, a, b, &aset, 0, &ignore); /* acc=a+b */
5716 /* the initial estimate is now in a, with up to 4 digits correct. */
5717 /* When rhs is at or near Nmax the estimate will be low, so we */
5718 /* will approach it from below, avoiding overflow when calling exp. */
5720 decNumberZero(&numone); *numone.lsu=1; /* constant 1 for adjustment */
5722 /* accumulator bounds are as requested (could underflow, but */
5723 /* cannot overflow) */
5724 aset.emax=set->emax;
5725 aset.emin=set->emin;
5726 aset.clamp=0; /* no concrete format */
5727 /* set up a context to be used for the multiply and subtract */
5729 bset.emax=DEC_MAX_MATH*2; /* use double bounds for the */
5730 bset.emin=-DEC_MAX_MATH*2; /* adjustment calculation */
5731 /* [see decExpOp call below] */
5732 /* for each iteration double the number of digits to calculate, */
5733 /* up to a maximum of p */
5734 pp=9; /* initial precision */
5735 /* [initially 9 as then the sequence starts 7+2, 16+2, and */
5736 /* 34+2, which is ideal for standard-sized numbers] */
5737 aset.digits=pp; /* working context */
5738 bset.digits=pp+rhs->digits; /* wider context */
5739 for (;;) { /* iterate */
5742 if (iterations>24) break; /* consider 9 * 2**24 */
5744 /* calculate the adjustment (exp(-a)*x-1) into b. This is a */
5745 /* catastrophic subtraction but it really is the difference */
5746 /* from 1 that is of interest. */
5747 /* Use the internal entry point to Exp as it allows the double */
5748 /* range for calculating exp(-a) when a is the tiniest subnormal. */
5749 a->bits^=DECNEG; /* make -a */
5750 decExpOp(b, a, &bset, &ignore); /* b=exp(-a) */
5751 a->bits^=DECNEG; /* restore sign of a */
5752 /* now multiply by rhs and subtract 1, at the wider precision */
5753 decMultiplyOp(b, b, rhs, &bset, &ignore); /* b=b*rhs */
5754 decAddOp(b, b, &numone, &bset, DECNEG, &ignore); /* b=b-1 */
5756 /* the iteration ends when the adjustment cannot affect the */
5757 /* result by >=0.5 ulp (at the requested digits), which */
5758 /* is when its value is smaller than the accumulator by */
5759 /* set->digits+1 digits (or it is zero) -- this is a looser */
5760 /* requirement than for Exp because all that happens to the */
5761 /* accumulator after this is the final rounding (but note that */
5762 /* there must also be full precision in a, or a=0). */
5764 if (decNumberIsZero(b) ||
5765 (a->digits+a->exponent)>=(b->digits+b->exponent+set->digits+1)) {
5766 if (a->digits==p) break;
5767 if (decNumberIsZero(a)) {
5768 decCompareOp(&cmp, rhs, &numone, &aset, COMPARE, &ignore); /* rhs=1 ? */
5769 if (cmp.lsu[0]==0) a->exponent=0; /* yes, exact 0 */
5770 else *status|=(DEC_Inexact | DEC_Rounded); /* no, inexact */
5773 /* force padding if adjustment has gone to 0 before full length */
5774 if (decNumberIsZero(b)) b->exponent=a->exponent-p;
5777 /* not done yet ... */
5778 decAddOp(a, a, b, &aset, 0, &ignore); /* a=a+b for next estimate */
5779 if (pp==p) continue; /* precision is at maximum */
5780 /* lengthen the next calculation */
5781 pp=pp*2; /* double precision */
5782 if (pp>p) pp=p; /* clamp to maximum */
5783 aset.digits=pp; /* working context */
5784 bset.digits=pp+rhs->digits; /* wider context */
5785 } /* Newton's iteration */
5788 /* just a sanity check; remove the test to show always */
5790 printf("Ln iterations=%ld, status=%08lx, p=%ld, d=%ld\n",
5791 (LI)iterations, (LI)*status, (LI)p, (LI)rhs->digits);
5794 /* Copy and round the result to res */
5795 residue=1; /* indicate dirt to right */
5796 if (ISZERO(a)) residue=0; /* .. unless underflowed to 0 */
5797 aset.digits=set->digits; /* [use default rounding] */
5798 decCopyFit(res, a, &aset, &residue, status); /* copy & shorten */
5799 decFinish(res, set, &residue, status); /* cleanup/set flags */
5800 } while(0); /* end protected */
5802 if (allocbufa!=NULL) free(allocbufa); /* drop any storage used */
5803 if (allocbufb!=NULL) free(allocbufb); /* .. */
5804 /* [status is handled by caller] */
5808 /* ------------------------------------------------------------------ */
5809 /* decQuantizeOp -- force exponent to requested value */
5811 /* This computes C = op(A, B), where op adjusts the coefficient */
5812 /* of C (by rounding or shifting) such that the exponent (-scale) */
5813 /* of C has the value B or matches the exponent of B. */
5814 /* The numerical value of C will equal A, except for the effects of */
5815 /* any rounding that occurred. */
5817 /* res is C, the result. C may be A or B */
5818 /* lhs is A, the number to adjust */
5819 /* rhs is B, the requested exponent */
5820 /* set is the context */
5821 /* quant is 1 for quantize or 0 for rescale */
5822 /* status is the status accumulator (this can be called without */
5823 /* risk of control loss) */
5825 /* C must have space for set->digits digits. */
5827 /* Unless there is an error or the result is infinite, the exponent */
5828 /* after the operation is guaranteed to be that requested. */
5829 /* ------------------------------------------------------------------ */
5830 static decNumber * decQuantizeOp(decNumber *res, const decNumber *lhs,
5831 const decNumber *rhs, decContext *set,
5832 Flag quant, uInt *status) {
5834 decNumber *alloclhs=NULL; /* non-NULL if rounded lhs allocated */
5835 decNumber *allocrhs=NULL; /* .., rhs */
5837 const decNumber *inrhs=rhs; /* save original rhs */
5838 Int reqdigits=set->digits; /* requested DIGITS */
5839 Int reqexp; /* requested exponent [-scale] */
5840 Int residue=0; /* rounding residue */
5841 Int etiny=set->emin-(reqdigits-1);
5844 if (decCheckOperands(res, lhs, rhs, set)) return res;
5847 do { /* protect allocated storage */
5849 if (!set->extended) {
5850 /* reduce operands and set lostDigits status, as needed */
5851 if (lhs->digits>reqdigits) {
5852 alloclhs=decRoundOperand(lhs, set, status);
5853 if (alloclhs==NULL) break;
5856 if (rhs->digits>reqdigits) { /* [this only checks lostDigits] */
5857 allocrhs=decRoundOperand(rhs, set, status);
5858 if (allocrhs==NULL) break;
5863 /* [following code does not require input rounding] */
5865 /* Handle special values */
5867 /* NaNs get usual processing */
5868 if (SPECIALARGS & (DECSNAN | DECNAN))
5869 decNaNs(res, lhs, rhs, set, status);
5870 /* one infinity but not both is bad */
5871 else if ((lhs->bits ^ rhs->bits) & DECINF)
5872 *status|=DEC_Invalid_operation;
5873 /* both infinity: return lhs */
5874 else decNumberCopy(res, lhs); /* [nop if in place] */
5878 /* set requested exponent */
5879 if (quant) reqexp=inrhs->exponent; /* quantize -- match exponents */
5880 else { /* rescale -- use value of rhs */
5881 /* Original rhs must be an integer that fits and is in range, */
5882 /* which could be from -1999999997 to +999999999, thanks to */
5884 reqexp=decGetInt(inrhs); /* [cannot fail] */
5888 if (!set->extended) etiny=set->emin; /* no subnormals */
5891 if (reqexp==BADINT /* bad (rescale only) or .. */
5892 || reqexp==BIGODD || reqexp==BIGEVEN /* very big (ditto) or .. */
5893 || (reqexp<etiny) /* < lowest */
5894 || (reqexp>set->emax)) { /* > emax */
5895 *status|=DEC_Invalid_operation;
5898 /* the RHS has been processed, so it can be overwritten now if necessary */
5899 if (ISZERO(lhs)) { /* zero coefficient unchanged */
5900 decNumberCopy(res, lhs); /* [nop if in place] */
5901 res->exponent=reqexp; /* .. just set exponent */
5903 if (!set->extended) res->bits=0; /* subset specification; no -0 */
5906 else { /* non-zero lhs */
5907 Int adjust=reqexp-lhs->exponent; /* digit adjustment needed */
5908 /* if adjusted coefficient will definitely not fit, give up now */
5909 if ((lhs->digits-adjust)>reqdigits) {
5910 *status|=DEC_Invalid_operation;
5914 if (adjust>0) { /* increasing exponent */
5915 /* this will decrease the length of the coefficient by adjust */
5916 /* digits, and must round as it does so */
5917 decContext workset; /* work */
5918 workset=*set; /* clone rounding, etc. */
5919 workset.digits=lhs->digits-adjust; /* set requested length */
5920 /* [note that the latter can be <1, here] */
5921 decCopyFit(res, lhs, &workset, &residue, status); /* fit to result */
5922 decApplyRound(res, &workset, residue, status); /* .. and round */
5923 residue=0; /* [used] */
5924 /* If just rounded a 999s case, exponent will be off by one; */
5925 /* adjust back (after checking space), if so. */
5926 if (res->exponent>reqexp) {
5927 /* re-check needed, e.g., for quantize(0.9999, 0.001) under */
5928 /* set->digits==3 */
5929 if (res->digits==reqdigits) { /* cannot shift by 1 */
5930 *status&=~(DEC_Inexact | DEC_Rounded); /* [clean these] */
5931 *status|=DEC_Invalid_operation;
5934 res->digits=decShiftToMost(res->lsu, res->digits, 1); /* shift */
5935 res->exponent--; /* (re)adjust the exponent. */
5938 if (ISZERO(res) && !set->extended) res->bits=0; /* subset; no -0 */
5941 else /* adjust<=0 */ { /* decreasing or = exponent */
5942 /* this will increase the length of the coefficient by -adjust */
5943 /* digits, by adding zero or more trailing zeros; this is */
5944 /* already checked for fit, above */
5945 decNumberCopy(res, lhs); /* [it will fit] */
5946 /* if padding needed (adjust<0), add it now... */
5948 res->digits=decShiftToMost(res->lsu, res->digits, -adjust);
5949 res->exponent+=adjust; /* adjust the exponent */
5954 /* Check for overflow [do not use Finalize in this case, as an */
5955 /* overflow here is a "don't fit" situation] */
5956 if (res->exponent>set->emax-res->digits+1) { /* too big */
5957 *status|=DEC_Invalid_operation;
5961 decFinalize(res, set, &residue, status); /* set subnormal flags */
5962 *status&=~DEC_Underflow; /* suppress Underflow [as per 754] */
5964 } while(0); /* end protected */
5967 if (allocrhs!=NULL) free(allocrhs); /* drop any storage used */
5968 if (alloclhs!=NULL) free(alloclhs); /* .. */
5971 } /* decQuantizeOp */
5973 /* ------------------------------------------------------------------ */
5974 /* decCompareOp -- compare, min, or max two Numbers */
5976 /* This computes C = A ? B and carries out one of four operations: */
5977 /* COMPARE -- returns the signum (as a number) giving the */
5978 /* result of a comparison unless one or both */
5979 /* operands is a NaN (in which case a NaN results) */
5980 /* COMPSIG -- as COMPARE except that a quiet NaN raises */
5981 /* Invalid operation. */
5982 /* COMPMAX -- returns the larger of the operands, using the */
5983 /* 754 maxnum operation */
5984 /* COMPMAXMAG -- ditto, comparing absolute values */
5985 /* COMPMIN -- the 754 minnum operation */
5986 /* COMPMINMAG -- ditto, comparing absolute values */
5987 /* COMTOTAL -- returns the signum (as a number) giving the */
5988 /* result of a comparison using 754 total ordering */
5990 /* res is C, the result. C may be A and/or B (e.g., X=X?X) */
5993 /* set is the context */
5994 /* op is the operation flag */
5995 /* status is the usual accumulator */
5997 /* C must have space for one digit for COMPARE or set->digits for */
5998 /* COMPMAX, COMPMIN, COMPMAXMAG, or COMPMINMAG. */
5999 /* ------------------------------------------------------------------ */
6000 /* The emphasis here is on speed for common cases, and avoiding */
6001 /* coefficient comparison if possible. */
6002 /* ------------------------------------------------------------------ */
6003 decNumber * decCompareOp(decNumber *res, const decNumber *lhs,
6004 const decNumber *rhs, decContext *set,
6005 Flag op, uInt *status) {
6007 decNumber *alloclhs=NULL; /* non-NULL if rounded lhs allocated */
6008 decNumber *allocrhs=NULL; /* .., rhs */
6010 Int result=0; /* default result value */
6011 uByte merged; /* work */
6014 if (decCheckOperands(res, lhs, rhs, set)) return res;
6017 do { /* protect allocated storage */
6019 if (!set->extended) {
6020 /* reduce operands and set lostDigits status, as needed */
6021 if (lhs->digits>set->digits) {
6022 alloclhs=decRoundOperand(lhs, set, status);
6023 if (alloclhs==NULL) {result=BADINT; break;}
6026 if (rhs->digits>set->digits) {
6027 allocrhs=decRoundOperand(rhs, set, status);
6028 if (allocrhs==NULL) {result=BADINT; break;}
6033 /* [following code does not require input rounding] */
6035 /* If total ordering then handle differing signs 'up front' */
6036 if (op==COMPTOTAL) { /* total ordering */
6037 if (decNumberIsNegative(lhs) & !decNumberIsNegative(rhs)) {
6041 if (!decNumberIsNegative(lhs) & decNumberIsNegative(rhs)) {
6047 /* handle NaNs specially; let infinities drop through */
6048 /* This assumes sNaN (even just one) leads to NaN. */
6049 merged=(lhs->bits | rhs->bits) & (DECSNAN | DECNAN);
6050 if (merged) { /* a NaN bit set */
6051 if (op==COMPARE); /* result will be NaN */
6052 else if (op==COMPSIG) /* treat qNaN as sNaN */
6053 *status|=DEC_Invalid_operation | DEC_sNaN;
6054 else if (op==COMPTOTAL) { /* total ordering, always finite */
6055 /* signs are known to be the same; compute the ordering here */
6056 /* as if the signs are both positive, then invert for negatives */
6057 if (!decNumberIsNaN(lhs)) result=-1;
6058 else if (!decNumberIsNaN(rhs)) result=+1;
6059 /* here if both NaNs */
6060 else if (decNumberIsSNaN(lhs) && decNumberIsQNaN(rhs)) result=-1;
6061 else if (decNumberIsQNaN(lhs) && decNumberIsSNaN(rhs)) result=+1;
6062 else { /* both NaN or both sNaN */
6063 /* now it just depends on the payload */
6064 result=decUnitCompare(lhs->lsu, D2U(lhs->digits),
6065 rhs->lsu, D2U(rhs->digits), 0);
6066 /* [Error not possible, as these are 'aligned'] */
6067 } /* both same NaNs */
6068 if (decNumberIsNegative(lhs)) result=-result;
6072 else if (merged & DECSNAN); /* sNaN -> qNaN */
6073 else { /* here if MIN or MAX and one or two quiet NaNs */
6074 /* min or max -- 754 rules ignore single NaN */
6075 if (!decNumberIsNaN(lhs) || !decNumberIsNaN(rhs)) {
6076 /* just one NaN; force choice to be the non-NaN operand */
6078 if (lhs->bits & DECNAN) result=-1; /* pick rhs */
6079 else result=+1; /* pick lhs */
6083 op=COMPNAN; /* use special path */
6084 decNaNs(res, lhs, rhs, set, status); /* propagate NaN */
6088 if (op==COMPMAXMAG || op==COMPMINMAG) result=decCompare(lhs, rhs, 1);
6089 else result=decCompare(lhs, rhs, 0); /* sign matters */
6090 } while(0); /* end protected */
6092 if (result==BADINT) *status|=DEC_Insufficient_storage; /* rare */
6094 if (op==COMPARE || op==COMPSIG ||op==COMPTOTAL) { /* returning signum */
6095 if (op==COMPTOTAL && result==0) {
6096 /* operands are numerically equal or same NaN (and same sign, */
6097 /* tested first); if identical, leave result 0 */
6098 if (lhs->exponent!=rhs->exponent) {
6099 if (lhs->exponent<rhs->exponent) result=-1;
6101 if (decNumberIsNegative(lhs)) result=-result;
6103 } /* total-order by exponent */
6104 decNumberZero(res); /* [always a valid result] */
6105 if (result!=0) { /* must be -1 or +1 */
6107 if (result<0) res->bits=DECNEG;
6110 else if (op==COMPNAN); /* special, drop through */
6111 else { /* MAX or MIN, non-NaN result */
6112 Int residue=0; /* rounding accumulator */
6113 /* choose the operand for the result */
6114 const decNumber *choice;
6115 if (result==0) { /* operands are numerically equal */
6116 /* choose according to sign then exponent (see 754) */
6117 uByte slhs=(lhs->bits & DECNEG);
6118 uByte srhs=(rhs->bits & DECNEG);
6120 if (!set->extended) { /* subset: force left-hand */
6126 if (slhs!=srhs) { /* signs differ */
6127 if (slhs) result=-1; /* rhs is max */
6128 else result=+1; /* lhs is max */
6130 else if (slhs && srhs) { /* both negative */
6131 if (lhs->exponent<rhs->exponent) result=+1;
6133 /* [if equal, use lhs, technically identical] */
6135 else { /* both positive */
6136 if (lhs->exponent>rhs->exponent) result=+1;
6140 } /* numerically equal */
6141 /* here result will be non-0; reverse if looking for MIN */
6142 if (op==COMPMIN || op==COMPMINMAG) result=-result;
6143 choice=(result>0 ? lhs : rhs); /* choose */
6144 /* copy chosen to result, rounding if need be */
6145 decCopyFit(res, choice, set, &residue, status);
6146 decFinish(res, set, &residue, status);
6150 if (allocrhs!=NULL) free(allocrhs); /* free any storage used */
6151 if (alloclhs!=NULL) free(alloclhs); /* .. */
6154 } /* decCompareOp */
6156 /* ------------------------------------------------------------------ */
6157 /* decCompare -- compare two decNumbers by numerical value */
6159 /* This routine compares A ? B without altering them. */
6161 /* Arg1 is A, a decNumber which is not a NaN */
6162 /* Arg2 is B, a decNumber which is not a NaN */
6163 /* Arg3 is 1 for a sign-independent compare, 0 otherwise */
6165 /* returns -1, 0, or 1 for A<B, A==B, or A>B, or BADINT if failure */
6166 /* (the only possible failure is an allocation error) */
6167 /* ------------------------------------------------------------------ */
6168 static Int decCompare(const decNumber *lhs, const decNumber *rhs,
6170 Int result; /* result value */
6171 Int sigr; /* rhs signum */
6172 Int compare; /* work */
6174 result=1; /* assume signum(lhs) */
6175 if (ISZERO(lhs)) result=0;
6177 if (ISZERO(rhs)) return result; /* LHS wins or both 0 */
6178 /* RHS is non-zero */
6179 if (result==0) return -1; /* LHS is 0; RHS wins */
6180 /* [here, both non-zero, result=1] */
6182 else { /* signs matter */
6183 if (result && decNumberIsNegative(lhs)) result=-1;
6184 sigr=1; /* compute signum(rhs) */
6185 if (ISZERO(rhs)) sigr=0;
6186 else if (decNumberIsNegative(rhs)) sigr=-1;
6187 if (result > sigr) return +1; /* L > R, return 1 */
6188 if (result < sigr) return -1; /* L < R, return -1 */
6189 if (result==0) return 0; /* both 0 */
6192 /* signums are the same; both are non-zero */
6193 if ((lhs->bits | rhs->bits) & DECINF) { /* one or more infinities */
6194 if (decNumberIsInfinite(rhs)) {
6195 if (decNumberIsInfinite(lhs)) result=0;/* both infinite */
6196 else result=-result; /* only rhs infinite */
6200 /* must compare the coefficients, allowing for exponents */
6201 if (lhs->exponent>rhs->exponent) { /* LHS exponent larger */
6202 /* swap sides, and sign */
6203 const decNumber *temp=lhs;
6208 compare=decUnitCompare(lhs->lsu, D2U(lhs->digits),
6209 rhs->lsu, D2U(rhs->digits),
6210 rhs->exponent-lhs->exponent);
6211 if (compare!=BADINT) compare*=result; /* comparison succeeded */
6215 /* ------------------------------------------------------------------ */
6216 /* decUnitCompare -- compare two >=0 integers in Unit arrays */
6218 /* This routine compares A ? B*10**E where A and B are unit arrays */
6219 /* A is a plain integer */
6220 /* B has an exponent of E (which must be non-negative) */
6222 /* Arg1 is A first Unit (lsu) */
6223 /* Arg2 is A length in Units */
6224 /* Arg3 is B first Unit (lsu) */
6225 /* Arg4 is B length in Units */
6226 /* Arg5 is E (0 if the units are aligned) */
6228 /* returns -1, 0, or 1 for A<B, A==B, or A>B, or BADINT if failure */
6229 /* (the only possible failure is an allocation error, which can */
6230 /* only occur if E!=0) */
6231 /* ------------------------------------------------------------------ */
6232 static Int decUnitCompare(const Unit *a, Int alength,
6233 const Unit *b, Int blength, Int exp) {
6234 Unit *acc; /* accumulator for result */
6235 Unit accbuff[SD2U(DECBUFFER*2+1)]; /* local buffer */
6236 Unit *allocacc=NULL; /* -> allocated acc buffer, iff allocated */
6237 Int accunits, need; /* units in use or needed for acc */
6238 const Unit *l, *r, *u; /* work */
6239 Int expunits, exprem, result; /* .. */
6241 if (exp==0) { /* aligned; fastpath */
6242 if (alength>blength) return 1;
6243 if (alength<blength) return -1;
6244 /* same number of units in both -- need unit-by-unit compare */
6247 for (;l>=a; l--, r--) {
6248 if (*l>*r) return 1;
6249 if (*l<*r) return -1;
6251 return 0; /* all units match */
6254 /* Unaligned. If one is >1 unit longer than the other, padded */
6255 /* approximately, then can return easily */
6256 if (alength>blength+(Int)D2U(exp)) return 1;
6257 if (alength+1<blength+(Int)D2U(exp)) return -1;
6259 /* Need to do a real subtract. For this, a result buffer is needed */
6260 /* even though only the sign is of interest. Its length needs */
6261 /* to be the larger of alength and padded blength, +2 */
6262 need=blength+D2U(exp); /* maximum real length of B */
6263 if (need<alength) need=alength;
6265 acc=accbuff; /* assume use local buffer */
6266 if (need*sizeof(Unit)>sizeof(accbuff)) {
6267 allocacc=(Unit *)malloc(need*sizeof(Unit));
6268 if (allocacc==NULL) return BADINT; /* hopeless -- abandon */
6271 /* Calculate units and remainder from exponent. */
6272 expunits=exp/DECDPUN;
6274 /* subtract [A+B*(-m)] */
6275 accunits=decUnitAddSub(a, alength, b, blength, expunits, acc,
6276 -(Int)powers[exprem]);
6277 /* [UnitAddSub result may have leading zeros, even on zero] */
6278 if (accunits<0) result=-1; /* negative result */
6279 else { /* non-negative result */
6280 /* check units of the result before freeing any storage */
6281 for (u=acc; u<acc+accunits-1 && *u==0;) u++;
6282 result=(*u==0 ? 0 : +1);
6284 /* clean up and return the result */
6285 if (allocacc!=NULL) free(allocacc); /* drop any storage used */
6287 } /* decUnitCompare */
6289 /* ------------------------------------------------------------------ */
6290 /* decUnitAddSub -- add or subtract two >=0 integers in Unit arrays */
6292 /* This routine performs the calculation: */
6296 /* Where M is in the range -DECDPUNMAX through +DECDPUNMAX. */
6298 /* A may be shorter or longer than B. */
6300 /* Leading zeros are not removed after a calculation. The result is */
6301 /* either the same length as the longer of A and B (adding any */
6302 /* shift), or one Unit longer than that (if a Unit carry occurred). */
6304 /* A and B content are not altered unless C is also A or B. */
6305 /* C may be the same array as A or B, but only if no zero padding is */
6306 /* requested (that is, C may be B only if bshift==0). */
6307 /* C is filled from the lsu; only those units necessary to complete */
6308 /* the calculation are referenced. */
6310 /* Arg1 is A first Unit (lsu) */
6311 /* Arg2 is A length in Units */
6312 /* Arg3 is B first Unit (lsu) */
6313 /* Arg4 is B length in Units */
6314 /* Arg5 is B shift in Units (>=0; pads with 0 units if positive) */
6315 /* Arg6 is C first Unit (lsu) */
6316 /* Arg7 is M, the multiplier */
6318 /* returns the count of Units written to C, which will be non-zero */
6319 /* and negated if the result is negative. That is, the sign of the */
6320 /* returned Int is the sign of the result (positive for zero) and */
6321 /* the absolute value of the Int is the count of Units. */
6323 /* It is the caller's responsibility to make sure that C size is */
6324 /* safe, allowing space if necessary for a one-Unit carry. */
6326 /* This routine is severely performance-critical; *any* change here */
6327 /* must be measured (timed) to assure no performance degradation. */
6328 /* In particular, trickery here tends to be counter-productive, as */
6329 /* increased complexity of code hurts register optimizations on */
6330 /* register-poor architectures. Avoiding divisions is nearly */
6331 /* always a Good Idea, however. */
6333 /* Special thanks to Rick McGuire (IBM Cambridge, MA) and Dave Clark */
6334 /* (IBM Warwick, UK) for some of the ideas used in this routine. */
6335 /* ------------------------------------------------------------------ */
6336 static Int decUnitAddSub(const Unit *a, Int alength,
6337 const Unit *b, Int blength, Int bshift,
6339 const Unit *alsu=a; /* A lsu [need to remember it] */
6340 Unit *clsu=c; /* C ditto */
6341 Unit *minC; /* low water mark for C */
6342 Unit *maxC; /* high water mark for C */
6343 eInt carry=0; /* carry integer (could be Long) */
6345 #if DECDPUN<=4 /* myriadal, millenary, etc. */
6346 Int est; /* estimated quotient */
6350 if (alength<1 || blength<1)
6351 printf("decUnitAddSub: alen blen m %ld %ld [%ld]\n", alength, blength, m);
6354 maxC=c+alength; /* A is usually the longer */
6355 minC=c+blength; /* .. and B the shorter */
6356 if (bshift!=0) { /* B is shifted; low As copy across */
6358 /* if in place [common], skip copy unless there's a gap [rare] */
6359 if (a==c && bshift<=alength) {
6363 else for (; c<clsu+bshift; a++, c++) { /* copy needed */
6364 if (a<alsu+alength) *c=*a;
6368 if (minC>maxC) { /* swap */
6374 /* For speed, do the addition as two loops; the first where both A */
6375 /* and B contribute, and the second (if necessary) where only one or */
6376 /* other of the numbers contribute. */
6377 /* Carry handling is the same (i.e., duplicated) in each case. */
6378 for (; c<minC; c++) {
6381 carry+=((eInt)*b)*m; /* [special-casing m=1/-1 */
6382 b++; /* here is not a win] */
6383 /* here carry is new Unit of digits; it could be +ve or -ve */
6384 if ((ueInt)carry<=DECDPUNMAX) { /* fastpath 0-DECDPUNMAX */
6389 #if DECDPUN==4 /* use divide-by-multiply */
6391 est=(((ueInt)carry>>11)*53687)>>18;
6392 *c=(Unit)(carry-est*(DECDPUNMAX+1)); /* remainder */
6393 carry=est; /* likely quotient [89%] */
6394 if (*c<DECDPUNMAX+1) continue; /* estimate was correct */
6400 carry=carry+(eInt)(DECDPUNMAX+1)*(DECDPUNMAX+1); /* make positive */
6401 est=(((ueInt)carry>>11)*53687)>>18;
6402 *c=(Unit)(carry-est*(DECDPUNMAX+1));
6403 carry=est-(DECDPUNMAX+1); /* correctly negative */
6404 if (*c<DECDPUNMAX+1) continue; /* was OK */
6409 est=(((ueInt)carry>>3)*16777)>>21;
6410 *c=(Unit)(carry-est*(DECDPUNMAX+1)); /* remainder */
6411 carry=est; /* likely quotient [99%] */
6412 if (*c<DECDPUNMAX+1) continue; /* estimate was correct */
6418 carry=carry+(eInt)(DECDPUNMAX+1)*(DECDPUNMAX+1); /* make positive */
6419 est=(((ueInt)carry>>3)*16777)>>21;
6420 *c=(Unit)(carry-est*(DECDPUNMAX+1));
6421 carry=est-(DECDPUNMAX+1); /* correctly negative */
6422 if (*c<DECDPUNMAX+1) continue; /* was OK */
6426 /* Can use QUOT10 as carry <= 4 digits */
6428 est=QUOT10(carry, DECDPUN);
6429 *c=(Unit)(carry-est*(DECDPUNMAX+1)); /* remainder */
6430 carry=est; /* quotient */
6434 carry=carry+(eInt)(DECDPUNMAX+1)*(DECDPUNMAX+1); /* make positive */
6435 est=QUOT10(carry, DECDPUN);
6436 *c=(Unit)(carry-est*(DECDPUNMAX+1));
6437 carry=est-(DECDPUNMAX+1); /* correctly negative */
6439 /* remainder operator is undefined if negative, so must test */
6440 if ((ueInt)carry<(DECDPUNMAX+1)*2) { /* fastpath carry +1 */
6441 *c=(Unit)(carry-(DECDPUNMAX+1)); /* [helps additions] */
6446 *c=(Unit)(carry%(DECDPUNMAX+1));
6447 carry=carry/(DECDPUNMAX+1);
6451 carry=carry+(eInt)(DECDPUNMAX+1)*(DECDPUNMAX+1); /* make positive */
6452 *c=(Unit)(carry%(DECDPUNMAX+1));
6453 carry=carry/(DECDPUNMAX+1)-(DECDPUNMAX+1);
6457 /* now may have one or other to complete */
6458 /* [pretest to avoid loop setup/shutdown] */
6459 if (c<maxC) for (; c<maxC; c++) {
6460 if (a<alsu+alength) { /* still in A */
6464 else { /* inside B */
6465 carry+=((eInt)*b)*m;
6468 /* here carry is new Unit of digits; it could be +ve or -ve and */
6469 /* magnitude up to DECDPUNMAX squared */
6470 if ((ueInt)carry<=DECDPUNMAX) { /* fastpath 0-DECDPUNMAX */
6475 /* result for this unit is negative or >DECDPUNMAX */
6476 #if DECDPUN==4 /* use divide-by-multiply */
6478 est=(((ueInt)carry>>11)*53687)>>18;
6479 *c=(Unit)(carry-est*(DECDPUNMAX+1)); /* remainder */
6480 carry=est; /* likely quotient [79.7%] */
6481 if (*c<DECDPUNMAX+1) continue; /* estimate was correct */
6487 carry=carry+(eInt)(DECDPUNMAX+1)*(DECDPUNMAX+1); /* make positive */
6488 est=(((ueInt)carry>>11)*53687)>>18;
6489 *c=(Unit)(carry-est*(DECDPUNMAX+1));
6490 carry=est-(DECDPUNMAX+1); /* correctly negative */
6491 if (*c<DECDPUNMAX+1) continue; /* was OK */
6496 est=(((ueInt)carry>>3)*16777)>>21;
6497 *c=(Unit)(carry-est*(DECDPUNMAX+1)); /* remainder */
6498 carry=est; /* likely quotient [99%] */
6499 if (*c<DECDPUNMAX+1) continue; /* estimate was correct */
6505 carry=carry+(eInt)(DECDPUNMAX+1)*(DECDPUNMAX+1); /* make positive */
6506 est=(((ueInt)carry>>3)*16777)>>21;
6507 *c=(Unit)(carry-est*(DECDPUNMAX+1));
6508 carry=est-(DECDPUNMAX+1); /* correctly negative */
6509 if (*c<DECDPUNMAX+1) continue; /* was OK */
6514 est=QUOT10(carry, DECDPUN);
6515 *c=(Unit)(carry-est*(DECDPUNMAX+1)); /* remainder */
6516 carry=est; /* quotient */
6520 carry=carry+(eInt)(DECDPUNMAX+1)*(DECDPUNMAX+1); /* make positive */
6521 est=QUOT10(carry, DECDPUN);
6522 *c=(Unit)(carry-est*(DECDPUNMAX+1));
6523 carry=est-(DECDPUNMAX+1); /* correctly negative */
6525 if ((ueInt)carry<(DECDPUNMAX+1)*2){ /* fastpath carry 1 */
6526 *c=(Unit)(carry-(DECDPUNMAX+1));
6530 /* remainder operator is undefined if negative, so must test */
6532 *c=(Unit)(carry%(DECDPUNMAX+1));
6533 carry=carry/(DECDPUNMAX+1);
6537 carry=carry+(eInt)(DECDPUNMAX+1)*(DECDPUNMAX+1); /* make positive */
6538 *c=(Unit)(carry%(DECDPUNMAX+1));
6539 carry=carry/(DECDPUNMAX+1)-(DECDPUNMAX+1);
6543 /* OK, all A and B processed; might still have carry or borrow */
6544 /* return number of Units in the result, negated if a borrow */
6545 if (carry==0) return c-clsu; /* no carry, so no more to do */
6546 if (carry>0) { /* positive carry */
6547 *c=(Unit)carry; /* place as new unit */
6551 /* -ve carry: it's a borrow; complement needed */
6552 add=1; /* temporary carry... */
6553 for (c=clsu; c<maxC; c++) {
6554 add=DECDPUNMAX+add-*c;
6555 if (add<=DECDPUNMAX) {
6564 /* add an extra unit iff it would be non-zero */
6566 printf("UAS borrow: add %ld, carry %ld\n", add, carry);
6568 if ((add-carry-1)!=0) {
6569 *c=(Unit)(add-carry-1);
6570 c++; /* interesting, include it */
6572 return clsu-c; /* -ve result indicates borrowed */
6573 } /* decUnitAddSub */
6575 /* ------------------------------------------------------------------ */
6576 /* decTrim -- trim trailing zeros or normalize */
6578 /* dn is the number to trim or normalize */
6579 /* set is the context to use to check for clamp */
6580 /* all is 1 to remove all trailing zeros, 0 for just fraction ones */
6581 /* noclamp is 1 to unconditional (unclamped) trim */
6582 /* dropped returns the number of discarded trailing zeros */
6585 /* If clamp is set in the context then the number of zeros trimmed */
6586 /* may be limited if the exponent is high. */
6587 /* All fields are updated as required. This is a utility operation, */
6588 /* so special values are unchanged and no error is possible. */
6589 /* ------------------------------------------------------------------ */
6590 static decNumber * decTrim(decNumber *dn, decContext *set, Flag all,
6591 Flag noclamp, Int *dropped) {
6592 Int d, exp; /* work */
6594 Unit *up; /* -> current Unit */
6597 if (decCheckOperands(dn, DECUNUSED, DECUNUSED, DECUNCONT)) return dn;
6600 *dropped=0; /* assume no zeros dropped */
6601 if ((dn->bits & DECSPECIAL) /* fast exit if special .. */
6602 || (*dn->lsu & 0x01)) return dn; /* .. or odd */
6603 if (ISZERO(dn)) { /* .. or 0 */
6604 dn->exponent=0; /* (sign is preserved) */
6608 /* have a finite number which is even */
6610 cut=1; /* digit (1-DECDPUN) in Unit */
6611 up=dn->lsu; /* -> current Unit */
6612 for (d=0; d<dn->digits-1; d++) { /* [don't strip the final digit] */
6613 /* slice by powers */
6615 uInt quot=QUOT10(*up, cut);
6616 if ((*up-quot*powers[cut])!=0) break; /* found non-0 digit */
6618 if (*up%powers[cut]!=0) break; /* found non-0 digit */
6620 /* have a trailing 0 */
6621 if (!all) { /* trimming */
6622 /* [if exp>0 then all trailing 0s are significant for trim] */
6623 if (exp<=0) { /* if digit might be significant */
6624 if (exp==0) break; /* then quit */
6625 exp++; /* next digit might be significant */
6628 cut++; /* next power */
6629 if (cut>DECDPUN) { /* need new Unit */
6634 if (d==0) return dn; /* none to drop */
6636 /* may need to limit drop if clamping */
6637 if (set->clamp && !noclamp) {
6638 Int maxd=set->emax-set->digits+1-dn->exponent;
6639 if (maxd<=0) return dn; /* nothing possible */
6643 /* effect the drop */
6644 decShiftToLeast(dn->lsu, D2U(dn->digits), d);
6645 dn->exponent+=d; /* maintain numerical value */
6646 dn->digits-=d; /* new length */
6647 *dropped=d; /* report the count */
6651 /* ------------------------------------------------------------------ */
6652 /* decReverse -- reverse a Unit array in place */
6654 /* ulo is the start of the array */
6655 /* uhi is the end of the array (highest Unit to include) */
6657 /* The units ulo through uhi are reversed in place (if the number */
6658 /* of units is odd, the middle one is untouched). Note that the */
6659 /* digit(s) in each unit are unaffected. */
6660 /* ------------------------------------------------------------------ */
6661 static void decReverse(Unit *ulo, Unit *uhi) {
6663 for (; ulo<uhi; ulo++, uhi--) {
6671 /* ------------------------------------------------------------------ */
6672 /* decShiftToMost -- shift digits in array towards most significant */
6674 /* uar is the array */
6675 /* digits is the count of digits in use in the array */
6676 /* shift is the number of zeros to pad with (least significant); */
6677 /* it must be zero or positive */
6679 /* returns the new length of the integer in the array, in digits */
6681 /* No overflow is permitted (that is, the uar array must be known to */
6682 /* be large enough to hold the result, after shifting). */
6683 /* ------------------------------------------------------------------ */
6684 static Int decShiftToMost(Unit *uar, Int digits, Int shift) {
6685 Unit *target, *source, *first; /* work */
6686 Int cut; /* odd 0's to add */
6687 uInt next; /* work */
6689 if (shift==0) return digits; /* [fastpath] nothing to do */
6690 if ((digits+shift)<=DECDPUN) { /* [fastpath] single-unit case */
6691 *uar=(Unit)(*uar*powers[shift]);
6692 return digits+shift;
6695 next=0; /* all paths */
6696 source=uar+D2U(digits)-1; /* where msu comes from */
6697 target=source+D2U(shift); /* where upper part of first cut goes */
6698 cut=DECDPUN-MSUDIGITS(shift); /* where to slice */
6699 if (cut==0) { /* unit-boundary case */
6700 for (; source>=uar; source--, target--) *target=*source;
6703 first=uar+D2U(digits+shift)-1; /* where msu of source will end up */
6704 for (; source>=uar; source--, target--) {
6705 /* split the source Unit and accumulate remainder for next */
6707 uInt quot=QUOT10(*source, cut);
6708 uInt rem=*source-quot*powers[cut];
6711 uInt rem=*source%powers[cut];
6712 next+=*source/powers[cut];
6714 if (target<=first) *target=(Unit)next; /* write to target iff valid */
6715 next=rem*powers[DECDPUN-cut]; /* save remainder for next Unit */
6719 /* propagate any partial unit to one below and clear the rest */
6720 for (; target>=uar; target--) {
6724 return digits+shift;
6725 } /* decShiftToMost */
6727 /* ------------------------------------------------------------------ */
6728 /* decShiftToLeast -- shift digits in array towards least significant */
6730 /* uar is the array */
6731 /* units is length of the array, in units */
6732 /* shift is the number of digits to remove from the lsu end; it */
6733 /* must be zero or positive and <= than units*DECDPUN. */
6735 /* returns the new length of the integer in the array, in units */
6737 /* Removed digits are discarded (lost). Units not required to hold */
6738 /* the final result are unchanged. */
6739 /* ------------------------------------------------------------------ */
6740 static Int decShiftToLeast(Unit *uar, Int units, Int shift) {
6741 Unit *target, *up; /* work */
6742 Int cut, count; /* work */
6743 Int quot, rem; /* for division */
6745 if (shift==0) return units; /* [fastpath] nothing to do */
6746 if (shift==units*DECDPUN) { /* [fastpath] little to do */
6747 *uar=0; /* all digits cleared gives zero */
6748 return 1; /* leaves just the one */
6751 target=uar; /* both paths */
6752 cut=MSUDIGITS(shift);
6753 if (cut==DECDPUN) { /* unit-boundary case; easy */
6755 for (; up<uar+units; target++, up++) *target=*up;
6760 up=uar+D2U(shift-cut); /* source; correct to whole Units */
6761 count=units*DECDPUN-shift; /* the maximum new length */
6763 quot=QUOT10(*up, cut);
6765 quot=*up/powers[cut];
6767 for (; ; target++) {
6769 count-=(DECDPUN-cut);
6770 if (count<=0) break;
6774 quot=QUOT10(quot, cut);
6775 rem=*up-quot*powers[cut];
6777 rem=quot%powers[cut];
6778 quot=quot/powers[cut];
6780 *target=(Unit)(*target+rem*powers[DECDPUN-cut]);
6782 if (count<=0) break;
6784 return target-uar+1;
6785 } /* decShiftToLeast */
6788 /* ------------------------------------------------------------------ */
6789 /* decRoundOperand -- round an operand [used for subset only] */
6791 /* dn is the number to round (dn->digits is > set->digits) */
6792 /* set is the relevant context */
6793 /* status is the status accumulator */
6795 /* returns an allocated decNumber with the rounded result. */
6797 /* lostDigits and other status may be set by this. */
6799 /* Since the input is an operand, it must not be modified. */
6800 /* Instead, return an allocated decNumber, rounded as required. */
6801 /* It is the caller's responsibility to free the allocated storage. */
6803 /* If no storage is available then the result cannot be used, so NULL */
6805 /* ------------------------------------------------------------------ */
6806 static decNumber *decRoundOperand(const decNumber *dn, decContext *set,
6808 decNumber *res; /* result structure */
6809 uInt newstatus=0; /* status from round */
6810 Int residue=0; /* rounding accumulator */
6812 /* Allocate storage for the returned decNumber, big enough for the */
6813 /* length specified by the context */
6814 res=(decNumber *)malloc(sizeof(decNumber)
6815 +(D2U(set->digits)-1)*sizeof(Unit));
6817 *status|=DEC_Insufficient_storage;
6820 decCopyFit(res, dn, set, &residue, &newstatus);
6821 decApplyRound(res, set, residue, &newstatus);
6823 /* If that set Inexact then "lost digits" is raised... */
6824 if (newstatus & DEC_Inexact) newstatus|=DEC_Lost_digits;
6827 } /* decRoundOperand */
6830 /* ------------------------------------------------------------------ */
6831 /* decCopyFit -- copy a number, truncating the coefficient if needed */
6833 /* dest is the target decNumber */
6834 /* src is the source decNumber */
6835 /* set is the context [used for length (digits) and rounding mode] */
6836 /* residue is the residue accumulator */
6837 /* status contains the current status to be updated */
6839 /* (dest==src is allowed and will be a no-op if fits) */
6840 /* All fields are updated as required. */
6841 /* ------------------------------------------------------------------ */
6842 static void decCopyFit(decNumber *dest, const decNumber *src,
6843 decContext *set, Int *residue, uInt *status) {
6844 dest->bits=src->bits;
6845 dest->exponent=src->exponent;
6846 decSetCoeff(dest, set, src->lsu, src->digits, residue, status);
6849 /* ------------------------------------------------------------------ */
6850 /* decSetCoeff -- set the coefficient of a number */
6852 /* dn is the number whose coefficient array is to be set. */
6853 /* It must have space for set->digits digits */
6854 /* set is the context [for size] */
6855 /* lsu -> lsu of the source coefficient [may be dn->lsu] */
6856 /* len is digits in the source coefficient [may be dn->digits] */
6857 /* residue is the residue accumulator. This has values as in */
6858 /* decApplyRound, and will be unchanged unless the */
6859 /* target size is less than len. In this case, the */
6860 /* coefficient is truncated and the residue is updated to */
6861 /* reflect the previous residue and the dropped digits. */
6862 /* status is the status accumulator, as usual */
6864 /* The coefficient may already be in the number, or it can be an */
6865 /* external intermediate array. If it is in the number, lsu must == */
6866 /* dn->lsu and len must == dn->digits. */
6868 /* Note that the coefficient length (len) may be < set->digits, and */
6869 /* in this case this merely copies the coefficient (or is a no-op */
6870 /* if dn->lsu==lsu). */
6872 /* Note also that (only internally, from decQuantizeOp and */
6873 /* decSetSubnormal) the value of set->digits may be less than one, */
6874 /* indicating a round to left. This routine handles that case */
6875 /* correctly; caller ensures space. */
6877 /* dn->digits, dn->lsu (and as required), and dn->exponent are */
6878 /* updated as necessary. dn->bits (sign) is unchanged. */
6880 /* DEC_Rounded status is set if any digits are discarded. */
6881 /* DEC_Inexact status is set if any non-zero digits are discarded, or */
6882 /* incoming residue was non-0 (implies rounded) */
6883 /* ------------------------------------------------------------------ */
6884 /* mapping array: maps 0-9 to canonical residues, so that a residue */
6885 /* can be adjusted in the range [-1, +1] and achieve correct rounding */
6886 /* 0 1 2 3 4 5 6 7 8 9 */
6887 static const uByte resmap[10]={0, 3, 3, 3, 3, 5, 7, 7, 7, 7};
6888 static void decSetCoeff(decNumber *dn, decContext *set, const Unit *lsu,
6889 Int len, Int *residue, uInt *status) {
6890 Int discard; /* number of digits to discard */
6891 uInt cut; /* cut point in Unit */
6892 const Unit *up; /* work */
6893 Unit *target; /* .. */
6899 discard=len-set->digits; /* digits to discard */
6900 if (discard<=0) { /* no digits are being discarded */
6901 if (dn->lsu!=lsu) { /* copy needed */
6902 /* copy the coefficient array to the result number; no shift needed */
6903 count=len; /* avoids D2U */
6905 for (target=dn->lsu; count>0; target++, up++, count-=DECDPUN)
6907 dn->digits=len; /* set the new length */
6909 /* dn->exponent and residue are unchanged, record any inexactitude */
6910 if (*residue!=0) *status|=(DEC_Inexact | DEC_Rounded);
6914 /* some digits must be discarded ... */
6915 dn->exponent+=discard; /* maintain numerical value */
6916 *status|=DEC_Rounded; /* accumulate Rounded status */
6917 if (*residue>1) *residue=1; /* previous residue now to right, so reduce */
6919 if (discard>len) { /* everything, +1, is being discarded */
6920 /* guard digit is 0 */
6921 /* residue is all the number [NB could be all 0s] */
6922 if (*residue<=0) { /* not already positive */
6923 count=len; /* avoids D2U */
6924 for (up=lsu; count>0; up++, count-=DECDPUN) if (*up!=0) { /* found non-0 */
6926 break; /* no need to check any others */
6929 if (*residue!=0) *status|=DEC_Inexact; /* record inexactitude */
6930 *dn->lsu=0; /* coefficient will now be 0 */
6931 dn->digits=1; /* .. */
6933 } /* total discard */
6935 /* partial discard [most common case] */
6936 /* here, at least the first (most significant) discarded digit exists */
6938 /* spin up the number, noting residue during the spin, until get to */
6939 /* the Unit with the first discarded digit. When reach it, extract */
6940 /* it and remember its position */
6942 for (up=lsu;; up++) {
6944 if (count>=discard) break; /* full ones all checked */
6945 if (*up!=0) *residue=1;
6948 /* here up -> Unit with first discarded digit */
6949 cut=discard-(count-DECDPUN)-1;
6950 if (cut==DECDPUN-1) { /* unit-boundary case (fast) */
6951 Unit half=(Unit)powers[DECDPUN]>>1;
6952 /* set residue directly */
6954 if (*up>half) *residue=7;
6955 else *residue+=5; /* add sticky bit */
6958 if (*up!=0) *residue=3; /* [else is 0, leave as sticky bit] */
6960 if (set->digits<=0) { /* special for Quantize/Subnormal :-( */
6961 *dn->lsu=0; /* .. result is 0 */
6962 dn->digits=1; /* .. */
6964 else { /* shift to least */
6965 count=set->digits; /* now digits to end up with */
6966 dn->digits=count; /* set the new length */
6967 up++; /* move to next */
6968 /* on unit boundary, so shift-down copy loop is simple */
6969 for (target=dn->lsu; count>0; target++, up++, count-=DECDPUN)
6972 } /* unit-boundary case */
6974 else { /* discard digit is in low digit(s), and not top digit */
6975 uInt discard1; /* first discarded digit */
6976 uInt quot, rem; /* for divisions */
6977 if (cut==0) quot=*up; /* is at bottom of unit */
6978 else /* cut>0 */ { /* it's not at bottom of unit */
6980 quot=QUOT10(*up, cut);
6981 rem=*up-quot*powers[cut];
6983 rem=*up%powers[cut];
6984 quot=*up/powers[cut];
6986 if (rem!=0) *residue=1;
6988 /* discard digit is now at bottom of quot */
6990 temp=(quot*6554)>>16; /* fast /10 */
6991 /* Vowels algorithm here not a win (9 instructions) */
6992 discard1=quot-X10(temp);
6998 /* here, discard1 is the guard digit, and residue is everything */
6999 /* else [use mapping array to accumulate residue safely] */
7000 *residue+=resmap[discard1];
7001 cut++; /* update cut */
7002 /* here: up -> Unit of the array with bottom digit */
7003 /* cut is the division point for each Unit */
7004 /* quot holds the uncut high-order digits for the current unit */
7005 if (set->digits<=0) { /* special for Quantize/Subnormal :-( */
7006 *dn->lsu=0; /* .. result is 0 */
7007 dn->digits=1; /* .. */
7009 else { /* shift to least needed */
7010 count=set->digits; /* now digits to end up with */
7011 dn->digits=count; /* set the new length */
7012 /* shift-copy the coefficient array to the result number */
7013 for (target=dn->lsu; ; target++) {
7015 count-=(DECDPUN-cut);
7016 if (count<=0) break;
7020 quot=QUOT10(quot, cut);
7021 rem=*up-quot*powers[cut];
7023 rem=quot%powers[cut];
7024 quot=quot/powers[cut];
7026 *target=(Unit)(*target+rem*powers[DECDPUN-cut]);
7028 if (count<=0) break;
7029 } /* shift-copy loop */
7030 } /* shift to least */
7031 } /* not unit boundary */
7033 if (*residue!=0) *status|=DEC_Inexact; /* record inexactitude */
7037 /* ------------------------------------------------------------------ */
7038 /* decApplyRound -- apply pending rounding to a number */
7040 /* dn is the number, with space for set->digits digits */
7041 /* set is the context [for size and rounding mode] */
7042 /* residue indicates pending rounding, being any accumulated */
7043 /* guard and sticky information. It may be: */
7044 /* 6-9: rounding digit is >5 */
7045 /* 5: rounding digit is exactly half-way */
7046 /* 1-4: rounding digit is <5 and >0 */
7047 /* 0: the coefficient is exact */
7048 /* -1: as 1, but the hidden digits are subtractive, that */
7049 /* is, of the opposite sign to dn. In this case the */
7050 /* coefficient must be non-0. This case occurs when */
7051 /* subtracting a small number (which can be reduced to */
7052 /* a sticky bit); see decAddOp. */
7053 /* status is the status accumulator, as usual */
7055 /* This routine applies rounding while keeping the length of the */
7056 /* coefficient constant. The exponent and status are unchanged */
7059 /* -- the coefficient was increased and is all nines (in which */
7060 /* case Overflow could occur, and is handled directly here so */
7061 /* the caller does not need to re-test for overflow) */
7063 /* -- the coefficient was decreased and becomes all nines (in which */
7064 /* case Underflow could occur, and is also handled directly). */
7066 /* All fields in dn are updated as required. */
7068 /* ------------------------------------------------------------------ */
7069 static void decApplyRound(decNumber *dn, decContext *set, Int residue,
7071 Int bump; /* 1 if coefficient needs to be incremented */
7072 /* -1 if coefficient needs to be decremented */
7074 if (residue==0) return; /* nothing to apply */
7076 bump=0; /* assume a smooth ride */
7078 /* now decide whether, and how, to round, depending on mode */
7079 switch (set->round) {
7080 case DEC_ROUND_05UP: { /* round zero or five up (for reround) */
7081 /* This is the same as DEC_ROUND_DOWN unless there is a */
7082 /* positive residue and the lsd of dn is 0 or 5, in which case */
7083 /* it is bumped; when residue is <0, the number is therefore */
7084 /* bumped down unless the final digit was 1 or 6 (in which */
7085 /* case it is bumped down and then up -- a no-op) */
7086 Int lsd5=*dn->lsu%5; /* get lsd and quintate */
7087 if (residue<0 && lsd5!=1) bump=-1;
7088 else if (residue>0 && lsd5==0) bump=1;
7089 /* [bump==1 could be applied directly; use common path for clarity] */
7092 case DEC_ROUND_DOWN: {
7093 /* no change, except if negative residue */
7094 if (residue<0) bump=-1;
7097 case DEC_ROUND_HALF_DOWN: {
7098 if (residue>5) bump=1;
7101 case DEC_ROUND_HALF_EVEN: {
7102 if (residue>5) bump=1; /* >0.5 goes up */
7103 else if (residue==5) { /* exactly 0.5000... */
7104 /* 0.5 goes up iff [new] lsd is odd */
7105 if (*dn->lsu & 0x01) bump=1;
7109 case DEC_ROUND_HALF_UP: {
7110 if (residue>=5) bump=1;
7113 case DEC_ROUND_UP: {
7114 if (residue>0) bump=1;
7117 case DEC_ROUND_CEILING: {
7118 /* same as _UP for positive numbers, and as _DOWN for negatives */
7119 /* [negative residue cannot occur on 0] */
7120 if (decNumberIsNegative(dn)) {
7121 if (residue<0) bump=-1;
7124 if (residue>0) bump=1;
7128 case DEC_ROUND_FLOOR: {
7129 /* same as _UP for negative numbers, and as _DOWN for positive */
7130 /* [negative residue cannot occur on 0] */
7131 if (!decNumberIsNegative(dn)) {
7132 if (residue<0) bump=-1;
7135 if (residue>0) bump=1;
7139 default: { /* e.g., DEC_ROUND_MAX */
7140 *status|=DEC_Invalid_context;
7141 #if DECTRACE || (DECCHECK && DECVERB)
7142 printf("Unknown rounding mode: %d\n", set->round);
7147 /* now bump the number, up or down, if need be */
7148 if (bump==0) return; /* no action required */
7150 /* Simply use decUnitAddSub unless bumping up and the number is */
7151 /* all nines. In this special case set to 100... explicitly */
7152 /* and adjust the exponent by one (as otherwise could overflow */
7154 /* Similarly handle all-nines result if bumping down. */
7156 Unit *up; /* work */
7157 uInt count=dn->digits; /* digits to be checked */
7158 for (up=dn->lsu; ; up++) {
7159 if (count<=DECDPUN) {
7160 /* this is the last Unit (the msu) */
7161 if (*up!=powers[count]-1) break; /* not still 9s */
7162 /* here if it, too, is all nines */
7163 *up=(Unit)powers[count-1]; /* here 999 -> 100 etc. */
7164 for (up=up-1; up>=dn->lsu; up--) *up=0; /* others all to 0 */
7165 dn->exponent++; /* and bump exponent */
7166 /* [which, very rarely, could cause Overflow...] */
7167 if ((dn->exponent+dn->digits)>set->emax+1) {
7168 decSetOverflow(dn, set, status);
7172 /* a full unit to check, with more to come */
7173 if (*up!=DECDPUNMAX) break; /* not still 9s */
7178 /* here checking for a pre-bump of 1000... (leading 1, all */
7179 /* other digits zero) */
7180 Unit *up, *sup; /* work */
7181 uInt count=dn->digits; /* digits to be checked */
7182 for (up=dn->lsu; ; up++) {
7183 if (count<=DECDPUN) {
7184 /* this is the last Unit (the msu) */
7185 if (*up!=powers[count-1]) break; /* not 100.. */
7186 /* here if have the 1000... case */
7187 sup=up; /* save msu pointer */
7188 *up=(Unit)powers[count]-1; /* here 100 in msu -> 999 */
7189 /* others all to all-nines, too */
7190 for (up=up-1; up>=dn->lsu; up--) *up=(Unit)powers[DECDPUN]-1;
7191 dn->exponent--; /* and bump exponent */
7193 /* iff the number was at the subnormal boundary (exponent=etiny) */
7194 /* then the exponent is now out of range, so it will in fact get */
7195 /* clamped to etiny and the final 9 dropped. */
7196 /* printf(">> emin=%d exp=%d sdig=%d\n", set->emin, */
7197 /* dn->exponent, set->digits); */
7198 if (dn->exponent+1==set->emin-set->digits+1) {
7199 if (count==1 && dn->digits==1) *sup=0; /* here 9 -> 0[.9] */
7201 *sup=(Unit)powers[count-1]-1; /* here 999.. in msu -> 99.. */
7205 *status|=DEC_Underflow | DEC_Subnormal | DEC_Inexact | DEC_Rounded;
7210 /* a full unit to check, with more to come */
7211 if (*up!=0) break; /* not still 0s */
7217 /* Actual bump needed. Do it. */
7218 decUnitAddSub(dn->lsu, D2U(dn->digits), uarrone, 1, 0, dn->lsu, bump);
7219 } /* decApplyRound */
7222 /* ------------------------------------------------------------------ */
7223 /* decFinish -- finish processing a number */
7225 /* dn is the number */
7226 /* set is the context */
7227 /* residue is the rounding accumulator (as in decApplyRound) */
7228 /* status is the accumulator */
7230 /* This finishes off the current number by: */
7231 /* 1. If not extended: */
7232 /* a. Converting a zero result to clean '0' */
7233 /* b. Reducing positive exponents to 0, if would fit in digits */
7234 /* 2. Checking for overflow and subnormals (always) */
7235 /* Note this is just Finalize when no subset arithmetic. */
7236 /* All fields are updated as required. */
7237 /* ------------------------------------------------------------------ */
7238 static void decFinish(decNumber *dn, decContext *set, Int *residue,
7240 if (!set->extended) {
7241 if ISZERO(dn) { /* value is zero */
7242 dn->exponent=0; /* clean exponent .. */
7243 dn->bits=0; /* .. and sign */
7244 return; /* no error possible */
7246 if (dn->exponent>=0) { /* non-negative exponent */
7247 /* >0; reduce to integer if possible */
7248 if (set->digits >= (dn->exponent+dn->digits)) {
7249 dn->digits=decShiftToMost(dn->lsu, dn->digits, dn->exponent);
7255 decFinalize(dn, set, residue, status);
7259 /* ------------------------------------------------------------------ */
7260 /* decFinalize -- final check, clamp, and round of a number */
7262 /* dn is the number */
7263 /* set is the context */
7264 /* residue is the rounding accumulator (as in decApplyRound) */
7265 /* status is the status accumulator */
7267 /* This finishes off the current number by checking for subnormal */
7268 /* results, applying any pending rounding, checking for overflow, */
7269 /* and applying any clamping. */
7270 /* Underflow and overflow conditions are raised as appropriate. */
7271 /* All fields are updated as required. */
7272 /* ------------------------------------------------------------------ */
7273 static void decFinalize(decNumber *dn, decContext *set, Int *residue,
7275 Int shift; /* shift needed if clamping */
7276 Int tinyexp=set->emin-dn->digits+1; /* precalculate subnormal boundary */
7278 /* Must be careful, here, when checking the exponent as the */
7279 /* adjusted exponent could overflow 31 bits [because it may already */
7280 /* be up to twice the expected]. */
7282 /* First test for subnormal. This must be done before any final */
7283 /* round as the result could be rounded to Nmin or 0. */
7284 if (dn->exponent<=tinyexp) { /* prefilter */
7287 /* A very nasty case here is dn == Nmin and residue<0 */
7288 if (dn->exponent<tinyexp) {
7289 /* Go handle subnormals; this will apply round if needed. */
7290 decSetSubnormal(dn, set, residue, status);
7293 /* Equals case: only subnormal if dn=Nmin and negative residue */
7294 decNumberZero(&nmin);
7296 nmin.exponent=set->emin;
7297 comp=decCompare(dn, &nmin, 1); /* (signless compare) */
7298 if (comp==BADINT) { /* oops */
7299 *status|=DEC_Insufficient_storage; /* abandon... */
7302 if (*residue<0 && comp==0) { /* neg residue and dn==Nmin */
7303 decApplyRound(dn, set, *residue, status); /* might force down */
7304 decSetSubnormal(dn, set, residue, status);
7309 /* now apply any pending round (this could raise overflow). */
7310 if (*residue!=0) decApplyRound(dn, set, *residue, status);
7312 /* Check for overflow [redundant in the 'rare' case] or clamp */
7313 if (dn->exponent<=set->emax-set->digits+1) return; /* neither needed */
7316 /* here when might have an overflow or clamp to do */
7317 if (dn->exponent>set->emax-dn->digits+1) { /* too big */
7318 decSetOverflow(dn, set, status);
7321 /* here when the result is normal but in clamp range */
7322 if (!set->clamp) return;
7324 /* here when need to apply the IEEE exponent clamp (fold-down) */
7325 shift=dn->exponent-(set->emax-set->digits+1);
7327 /* shift coefficient (if non-zero) */
7329 dn->digits=decShiftToMost(dn->lsu, dn->digits, shift);
7331 dn->exponent-=shift; /* adjust the exponent to match */
7332 *status|=DEC_Clamped; /* and record the dirty deed */
7336 /* ------------------------------------------------------------------ */
7337 /* decSetOverflow -- set number to proper overflow value */
7339 /* dn is the number (used for sign [only] and result) */
7340 /* set is the context [used for the rounding mode, etc.] */
7341 /* status contains the current status to be updated */
7343 /* This sets the sign of a number and sets its value to either */
7344 /* Infinity or the maximum finite value, depending on the sign of */
7345 /* dn and the rounding mode, following IEEE 754 rules. */
7346 /* ------------------------------------------------------------------ */
7347 static void decSetOverflow(decNumber *dn, decContext *set, uInt *status) {
7348 Flag needmax=0; /* result is maximum finite value */
7349 uByte sign=dn->bits&DECNEG; /* clean and save sign bit */
7351 if (ISZERO(dn)) { /* zero does not overflow magnitude */
7352 Int emax=set->emax; /* limit value */
7353 if (set->clamp) emax-=set->digits-1; /* lower if clamping */
7354 if (dn->exponent>emax) { /* clamp required */
7356 *status|=DEC_Clamped;
7362 switch (set->round) {
7363 case DEC_ROUND_DOWN: {
7364 needmax=1; /* never Infinity */
7366 case DEC_ROUND_05UP: {
7367 needmax=1; /* never Infinity */
7369 case DEC_ROUND_CEILING: {
7370 if (sign) needmax=1; /* Infinity if non-negative */
7372 case DEC_ROUND_FLOOR: {
7373 if (!sign) needmax=1; /* Infinity if negative */
7375 default: break; /* Infinity in all other cases */
7378 decSetMaxValue(dn, set);
7379 dn->bits=sign; /* set sign */
7381 else dn->bits=sign|DECINF; /* Value is +/-Infinity */
7382 *status|=DEC_Overflow | DEC_Inexact | DEC_Rounded;
7383 } /* decSetOverflow */
7385 /* ------------------------------------------------------------------ */
7386 /* decSetMaxValue -- set number to +Nmax (maximum normal value) */
7388 /* dn is the number to set */
7389 /* set is the context [used for digits and emax] */
7391 /* This sets the number to the maximum positive value. */
7392 /* ------------------------------------------------------------------ */
7393 static void decSetMaxValue(decNumber *dn, decContext *set) {
7394 Unit *up; /* work */
7395 Int count=set->digits; /* nines to add */
7397 /* fill in all nines to set maximum value */
7398 for (up=dn->lsu; ; up++) {
7399 if (count>DECDPUN) *up=DECDPUNMAX; /* unit full o'nines */
7400 else { /* this is the msu */
7401 *up=(Unit)(powers[count]-1);
7404 count-=DECDPUN; /* filled those digits */
7406 dn->bits=0; /* + sign */
7407 dn->exponent=set->emax-set->digits+1;
7408 } /* decSetMaxValue */
7410 /* ------------------------------------------------------------------ */
7411 /* decSetSubnormal -- process value whose exponent is <Emin */
7413 /* dn is the number (used as input as well as output; it may have */
7414 /* an allowed subnormal value, which may need to be rounded) */
7415 /* set is the context [used for the rounding mode] */
7416 /* residue is any pending residue */
7417 /* status contains the current status to be updated */
7419 /* If subset mode, set result to zero and set Underflow flags. */
7421 /* Value may be zero with a low exponent; this does not set Subnormal */
7422 /* but the exponent will be clamped to Etiny. */
7424 /* Otherwise ensure exponent is not out of range, and round as */
7425 /* necessary. Underflow is set if the result is Inexact. */
7426 /* ------------------------------------------------------------------ */
7427 static void decSetSubnormal(decNumber *dn, decContext *set, Int *residue,
7429 decContext workset; /* work */
7430 Int etiny, adjust; /* .. */
7433 /* simple set to zero and 'hard underflow' for subset */
7434 if (!set->extended) {
7436 /* always full overflow */
7437 *status|=DEC_Underflow | DEC_Subnormal | DEC_Inexact | DEC_Rounded;
7442 /* Full arithmetic -- allow subnormals, rounded to minimum exponent */
7443 /* (Etiny) if needed */
7444 etiny=set->emin-(set->digits-1); /* smallest allowed exponent */
7446 if ISZERO(dn) { /* value is zero */
7447 /* residue can never be non-zero here */
7450 printf("++ Subnormal 0 residue %ld\n", (LI)*residue);
7451 *status|=DEC_Invalid_operation;
7454 if (dn->exponent<etiny) { /* clamp required */
7456 *status|=DEC_Clamped;
7461 *status|=DEC_Subnormal; /* have a non-zero subnormal */
7462 adjust=etiny-dn->exponent; /* calculate digits to remove */
7463 if (adjust<=0) { /* not out of range; unrounded */
7464 /* residue can never be non-zero here, except in the Nmin-residue */
7465 /* case (which is a subnormal result), so can take fast-path here */
7466 /* it may already be inexact (from setting the coefficient) */
7467 if (*status&DEC_Inexact) *status|=DEC_Underflow;
7471 /* adjust>0, so need to rescale the result so exponent becomes Etiny */
7472 /* [this code is similar to that in rescale] */
7473 workset=*set; /* clone rounding, etc. */
7474 workset.digits=dn->digits-adjust; /* set requested length */
7475 workset.emin-=adjust; /* and adjust emin to match */
7476 /* [note that the latter can be <1, here, similar to Rescale case] */
7477 decSetCoeff(dn, &workset, dn->lsu, dn->digits, residue, status);
7478 decApplyRound(dn, &workset, *residue, status);
7480 /* Use 754 default rule: Underflow is set iff Inexact */
7481 /* [independent of whether trapped] */
7482 if (*status&DEC_Inexact) *status|=DEC_Underflow;
7484 /* if rounded up a 999s case, exponent will be off by one; adjust */
7485 /* back if so [it will fit, because it was shortened earlier] */
7486 if (dn->exponent>etiny) {
7487 dn->digits=decShiftToMost(dn->lsu, dn->digits, 1);
7488 dn->exponent--; /* (re)adjust the exponent. */
7491 /* if rounded to zero, it is by definition clamped... */
7492 if (ISZERO(dn)) *status|=DEC_Clamped;
7493 } /* decSetSubnormal */
7495 /* ------------------------------------------------------------------ */
7496 /* decCheckMath - check entry conditions for a math function */
7498 /* This checks the context and the operand */
7500 /* rhs is the operand to check */
7501 /* set is the context to check */
7502 /* status is unchanged if both are good */
7504 /* returns non-zero if status is changed, 0 otherwise */
7506 /* Restrictions enforced: */
7508 /* digits, emax, and -emin in the context must be less than */
7509 /* DEC_MAX_MATH (999999), and A must be within these bounds if */
7510 /* non-zero. Invalid_operation is set in the status if a */
7511 /* restriction is violated. */
7512 /* ------------------------------------------------------------------ */
7513 static uInt decCheckMath(const decNumber *rhs, decContext *set,
7515 uInt save=*status; /* record */
7516 if (set->digits>DEC_MAX_MATH
7517 || set->emax>DEC_MAX_MATH
7518 || -set->emin>DEC_MAX_MATH) *status|=DEC_Invalid_context;
7519 else if ((rhs->digits>DEC_MAX_MATH
7520 || rhs->exponent+rhs->digits>DEC_MAX_MATH+1
7521 || rhs->exponent+rhs->digits<2*(1-DEC_MAX_MATH))
7522 && !ISZERO(rhs)) *status|=DEC_Invalid_operation;
7523 return (*status!=save);
7524 } /* decCheckMath */
7526 /* ------------------------------------------------------------------ */
7527 /* decGetInt -- get integer from a number */
7529 /* dn is the number [which will not be altered] */
7531 /* returns one of: */
7532 /* BADINT if there is a non-zero fraction */
7533 /* the converted integer */
7534 /* BIGEVEN if the integer is even and magnitude > 2*10**9 */
7535 /* BIGODD if the integer is odd and magnitude > 2*10**9 */
7537 /* This checks and gets a whole number from the input decNumber. */
7538 /* The sign can be determined from dn by the caller when BIGEVEN or */
7539 /* BIGODD is returned. */
7540 /* ------------------------------------------------------------------ */
7541 static Int decGetInt(const decNumber *dn) {
7542 Int theInt; /* result accumulator */
7543 const Unit *up; /* work */
7544 Int got; /* digits (real or not) processed */
7545 Int ilength=dn->digits+dn->exponent; /* integral length */
7546 Flag neg=decNumberIsNegative(dn); /* 1 if -ve */
7548 /* The number must be an integer that fits in 10 digits */
7549 /* Assert, here, that 10 is enough for any rescale Etiny */
7550 #if DEC_MAX_EMAX > 999999999
7551 #error GetInt may need updating [for Emax]
7553 #if DEC_MIN_EMIN < -999999999
7554 #error GetInt may need updating [for Emin]
7556 if (ISZERO(dn)) return 0; /* zeros are OK, with any exponent */
7558 up=dn->lsu; /* ready for lsu */
7559 theInt=0; /* ready to accumulate */
7560 if (dn->exponent>=0) { /* relatively easy */
7561 /* no fractional part [usual]; allow for positive exponent */
7564 else { /* -ve exponent; some fractional part to check and discard */
7565 Int count=-dn->exponent; /* digits to discard */
7566 /* spin up whole units until reach the Unit with the unit digit */
7567 for (; count>=DECDPUN; up++) {
7568 if (*up!=0) return BADINT; /* non-zero Unit to discard */
7571 if (count==0) got=0; /* [a multiple of DECDPUN] */
7572 else { /* [not multiple of DECDPUN] */
7574 /* slice off fraction digits and check for non-zero */
7576 theInt=QUOT10(*up, count);
7577 rem=*up-theInt*powers[count];
7579 rem=*up%powers[count]; /* slice off discards */
7580 theInt=*up/powers[count];
7582 if (rem!=0) return BADINT; /* non-zero fraction */
7584 got=DECDPUN-count; /* number of digits so far */
7585 up++; /* ready for next */
7588 /* now it's known there's no fractional part */
7590 /* tricky code now, to accumulate up to 9.3 digits */
7591 if (got==0) {theInt=*up; got+=DECDPUN; up++;} /* ensure lsu is there */
7595 /* collect any remaining unit(s) */
7596 for (; got<ilength; up++) {
7597 theInt+=*up*powers[got];
7600 if (ilength==10) { /* need to check for wrap */
7601 if (theInt/(Int)powers[got-DECDPUN]!=(Int)*(up-1)) ilength=11;
7602 /* [that test also disallows the BADINT result case] */
7603 else if (neg && theInt>1999999997) ilength=11;
7604 else if (!neg && theInt>999999999) ilength=11;
7605 if (ilength==11) theInt=save; /* restore correct low bit */
7609 if (ilength>10) { /* too big */
7610 if (theInt&1) return BIGODD; /* bottom bit 1 */
7611 return BIGEVEN; /* bottom bit 0 */
7614 if (neg) theInt=-theInt; /* apply sign */
7618 /* ------------------------------------------------------------------ */
7619 /* decDecap -- decapitate the coefficient of a number */
7621 /* dn is the number to be decapitated */
7622 /* drop is the number of digits to be removed from the left of dn; */
7623 /* this must be <= dn->digits (if equal, the coefficient is */
7626 /* Returns dn; dn->digits will be <= the initial digits less drop */
7627 /* (after removing drop digits there may be leading zero digits */
7628 /* which will also be removed). Only dn->lsu and dn->digits change. */
7629 /* ------------------------------------------------------------------ */
7630 static decNumber *decDecap(decNumber *dn, Int drop) {
7631 Unit *msu; /* -> target cut point */
7633 if (drop>=dn->digits) { /* losing the whole thing */
7635 if (drop>dn->digits)
7636 printf("decDecap called with drop>digits [%ld>%ld]\n",
7637 (LI)drop, (LI)dn->digits);
7643 msu=dn->lsu+D2U(dn->digits-drop)-1; /* -> likely msu */
7644 cut=MSUDIGITS(dn->digits-drop); /* digits to be in use in msu */
7645 if (cut!=DECDPUN) *msu%=powers[cut]; /* clear left digits */
7646 /* that may have left leading zero digits, so do a proper count... */
7647 dn->digits=decGetDigits(dn->lsu, msu-dn->lsu+1);
7651 /* ------------------------------------------------------------------ */
7652 /* decBiStr -- compare string with pairwise options */
7654 /* targ is the string to compare */
7655 /* str1 is one of the strings to compare against (length may be 0) */
7656 /* str2 is the other; it must be the same length as str1 */
7658 /* returns 1 if strings compare equal, (that is, it is the same */
7659 /* length as str1 and str2, and each character of targ is in either */
7660 /* str1 or str2 in the corresponding position), or 0 otherwise */
7662 /* This is used for generic caseless compare, including the awkward */
7663 /* case of the Turkish dotted and dotless Is. Use as (for example): */
7664 /* if (decBiStr(test, "mike", "MIKE")) ... */
7665 /* ------------------------------------------------------------------ */
7666 static Flag decBiStr(const char *targ, const char *str1, const char *str2) {
7667 for (;;targ++, str1++, str2++) {
7668 if (*targ!=*str1 && *targ!=*str2) return 0;
7669 /* *targ has a match in one (or both, if terminator) */
7670 if (*targ=='\0') break;
7675 /* ------------------------------------------------------------------ */
7676 /* decNaNs -- handle NaN operand or operands */
7678 /* res is the result number */
7679 /* lhs is the first operand */
7680 /* rhs is the second operand, or NULL if none */
7681 /* context is used to limit payload length */
7682 /* status contains the current status */
7683 /* returns res in case convenient */
7685 /* Called when one or both operands is a NaN, and propagates the */
7686 /* appropriate result to res. When an sNaN is found, it is changed */
7687 /* to a qNaN and Invalid operation is set. */
7688 /* ------------------------------------------------------------------ */
7689 static decNumber * decNaNs(decNumber *res, const decNumber *lhs,
7690 const decNumber *rhs, decContext *set,
7692 /* This decision tree ends up with LHS being the source pointer, */
7693 /* and status updated if need be */
7694 if (lhs->bits & DECSNAN)
7695 *status|=DEC_Invalid_operation | DEC_sNaN;
7696 else if (rhs==NULL);
7697 else if (rhs->bits & DECSNAN) {
7699 *status|=DEC_Invalid_operation | DEC_sNaN;
7701 else if (lhs->bits & DECNAN);
7704 /* propagate the payload */
7705 if (lhs->digits<=set->digits) decNumberCopy(res, lhs); /* easy */
7706 else { /* too long */
7709 /* copy safe number of units, then decapitate */
7710 res->bits=lhs->bits; /* need sign etc. */
7711 uresp1=res->lsu+D2U(set->digits);
7712 for (ur=res->lsu, ul=lhs->lsu; ur<uresp1; ur++, ul++) *ur=*ul;
7713 res->digits=D2U(set->digits)*DECDPUN;
7714 /* maybe still too long */
7715 if (res->digits>set->digits) decDecap(res, res->digits-set->digits);
7718 res->bits&=~DECSNAN; /* convert any sNaN to NaN, while */
7719 res->bits|=DECNAN; /* .. preserving sign */
7720 res->exponent=0; /* clean exponent */
7721 /* [coefficient was copied/decapitated] */
7725 /* ------------------------------------------------------------------ */
7726 /* decStatus -- apply non-zero status */
7728 /* dn is the number to set if error */
7729 /* status contains the current status (not yet in context) */
7730 /* set is the context */
7732 /* If the status is an error status, the number is set to a NaN, */
7733 /* unless the error was an overflow, divide-by-zero, or underflow, */
7734 /* in which case the number will have already been set. */
7736 /* The context status is then updated with the new status. Note that */
7737 /* this may raise a signal, so control may never return from this */
7738 /* routine (hence resources must be recovered before it is called). */
7739 /* ------------------------------------------------------------------ */
7740 static void decStatus(decNumber *dn, uInt status, decContext *set) {
7741 if (status & DEC_NaNs) { /* error status -> NaN */
7742 /* if cause was an sNaN, clear and propagate [NaN is already set up] */
7743 if (status & DEC_sNaN) status&=~DEC_sNaN;
7745 decNumberZero(dn); /* other error: clean throughout */
7746 dn->bits=DECNAN; /* and make a quiet NaN */
7749 decContextSetStatus(set, status); /* [may not return] */
7753 /* ------------------------------------------------------------------ */
7754 /* decGetDigits -- count digits in a Units array */
7756 /* uar is the Unit array holding the number (this is often an */
7757 /* accumulator of some sort) */
7758 /* len is the length of the array in units [>=1] */
7760 /* returns the number of (significant) digits in the array */
7762 /* All leading zeros are excluded, except the last if the array has */
7763 /* only zero Units. */
7764 /* ------------------------------------------------------------------ */
7765 /* This may be called twice during some operations. */
7766 static Int decGetDigits(Unit *uar, Int len) {
7767 Unit *up=uar+(len-1); /* -> msu */
7768 Int digits=(len-1)*DECDPUN+1; /* possible digits excluding msu */
7770 uInt const *pow; /* work */
7772 /* (at least 1 in final msu) */
7774 if (len<1) printf("decGetDigits called with len<1 [%ld]\n", (LI)len);
7777 for (; up>=uar; up--) {
7778 if (*up==0) { /* unit is all 0s */
7779 if (digits==1) break; /* a zero has one digit */
7780 digits-=DECDPUN; /* adjust for 0 unit */
7782 /* found the first (most significant) non-zero Unit */
7783 #if DECDPUN>1 /* not done yet */
7784 if (*up<10) break; /* is 1-9 */
7786 #if DECDPUN>2 /* not done yet */
7787 if (*up<100) break; /* is 10-99 */
7789 #if DECDPUN>3 /* not done yet */
7790 if (*up<1000) break; /* is 100-999 */
7792 #if DECDPUN>4 /* count the rest ... */
7793 for (pow=&powers[4]; *up>=*pow; pow++) digits++;
7801 } /* decGetDigits */
7803 #if DECTRACE | DECCHECK
7804 /* ------------------------------------------------------------------ */
7805 /* decNumberShow -- display a number [debug aid] */
7806 /* dn is the number to show */
7808 /* Shows: sign, exponent, coefficient (msu first), digits */
7809 /* or: sign, special-value */
7810 /* ------------------------------------------------------------------ */
7811 /* this is public so other modules can use it */
7812 void decNumberShow(const decNumber *dn) {
7813 const Unit *up; /* work */
7816 char isign='+'; /* main sign */
7820 if (decNumberIsNegative(dn)) isign='-';
7821 printf(" >> %c ", isign);
7822 if (dn->bits&DECSPECIAL) { /* Is a special value */
7823 if (decNumberIsInfinite(dn)) printf("Infinity");
7825 if (dn->bits&DECSNAN) printf("sNaN"); /* signalling NaN */
7828 /* if coefficient and exponent are 0, no more to do */
7829 if (dn->exponent==0 && dn->digits==1 && *dn->lsu==0) {
7832 /* drop through to report other information */
7836 /* now carefully display the coefficient */
7837 up=dn->lsu+D2U(dn->digits)-1; /* msu */
7838 printf("%ld", (LI)*up);
7839 for (up=up-1; up>=dn->lsu; up--) {
7842 for (cut=DECDPUN-1; cut>=0; cut--) {
7845 printf("%ld", (LI)d);
7848 if (dn->exponent!=0) {
7850 if (dn->exponent<0) esign='-';
7851 printf(" E%c%ld", esign, (LI)abs(dn->exponent));
7853 printf(" [%ld]\n", (LI)dn->digits);
7854 } /* decNumberShow */
7857 #if DECTRACE || DECCHECK
7858 /* ------------------------------------------------------------------ */
7859 /* decDumpAr -- display a unit array [debug/check aid] */
7860 /* name is a single-character tag name */
7861 /* ar is the array to display */
7862 /* len is the length of the array in Units */
7863 /* ------------------------------------------------------------------ */
7864 static void decDumpAr(char name, const Unit *ar, Int len) {
7886 printf(" :%c: ", name);
7887 for (i=len-1; i>=0; i--) {
7888 if (i==len-1) printf("%ld ", (LI)ar[i]);
7889 else printf(spec, ar[i]);
7896 /* ------------------------------------------------------------------ */
7897 /* decCheckOperands -- check operand(s) to a routine */
7898 /* res is the result structure (not checked; it will be set to */
7899 /* quiet NaN if error found (and it is not NULL)) */
7900 /* lhs is the first operand (may be DECUNRESU) */
7901 /* rhs is the second (may be DECUNUSED) */
7902 /* set is the context (may be DECUNCONT) */
7903 /* returns 0 if both operands, and the context are clean, or 1 */
7904 /* otherwise (in which case the context will show an error, */
7905 /* unless NULL). Note that res is not cleaned; caller should */
7906 /* handle this so res=NULL case is safe. */
7907 /* The caller is expected to abandon immediately if 1 is returned. */
7908 /* ------------------------------------------------------------------ */
7909 static Flag decCheckOperands(decNumber *res, const decNumber *lhs,
7910 const decNumber *rhs, decContext *set) {
7912 if (set==NULL) { /* oops; hopeless */
7913 #if DECTRACE || DECVERB
7914 printf("Reference to context is NULL.\n");
7918 else if (set!=DECUNCONT
7919 && (set->digits<1 || set->round>=DEC_ROUND_MAX)) {
7921 #if DECTRACE || DECVERB
7922 printf("Bad context [digits=%ld round=%ld].\n",
7923 (LI)set->digits, (LI)set->round);
7930 /* this one not DECVERB as standard tests include NULL */
7931 printf("Reference to result is NULL.\n");
7934 if (!bad && lhs!=DECUNUSED) bad=(decCheckNumber(lhs));
7935 if (!bad && rhs!=DECUNUSED) bad=(decCheckNumber(rhs));
7938 if (set!=DECUNCONT) decContextSetStatus(set, DEC_Invalid_operation);
7939 if (res!=DECUNRESU && res!=NULL) {
7941 res->bits=DECNAN; /* qNaN */
7945 } /* decCheckOperands */
7947 /* ------------------------------------------------------------------ */
7948 /* decCheckNumber -- check a number */
7949 /* dn is the number to check */
7950 /* returns 0 if the number is clean, or 1 otherwise */
7952 /* The number is considered valid if it could be a result from some */
7953 /* operation in some valid context. */
7954 /* ------------------------------------------------------------------ */
7955 static Flag decCheckNumber(const decNumber *dn) {
7956 const Unit *up; /* work */
7957 uInt maxuint; /* .. */
7958 Int ae, d, digits; /* .. */
7959 Int emin, emax; /* .. */
7961 if (dn==NULL) { /* hopeless */
7963 /* this one not DECVERB as standard tests include NULL */
7964 printf("Reference to decNumber is NULL.\n");
7968 /* check special values */
7969 if (dn->bits & DECSPECIAL) {
7970 if (dn->exponent!=0) {
7971 #if DECTRACE || DECVERB
7972 printf("Exponent %ld (not 0) for a special value [%02x].\n",
7973 (LI)dn->exponent, dn->bits);
7977 /* 2003.09.08: NaNs may now have coefficients, so next tests Inf only */
7978 if (decNumberIsInfinite(dn)) {
7979 if (dn->digits!=1) {
7980 #if DECTRACE || DECVERB
7981 printf("Digits %ld (not 1) for an infinity.\n", (LI)dn->digits);
7985 #if DECTRACE || DECVERB
7986 printf("LSU %ld (not 0) for an infinity.\n", (LI)*dn->lsu);
7988 decDumpAr('I', dn->lsu, D2U(dn->digits));
7991 /* 2002.12.26: negative NaNs can now appear through proposed IEEE */
7992 /* concrete formats (decimal64, etc.). */
7996 /* check the coefficient */
7997 if (dn->digits<1 || dn->digits>DECNUMMAXP) {
7998 #if DECTRACE || DECVERB
7999 printf("Digits %ld in number.\n", (LI)dn->digits);
8005 for (up=dn->lsu; d>0; up++) {
8006 if (d>DECDPUN) maxuint=DECDPUNMAX;
8007 else { /* reached the msu */
8008 maxuint=powers[d]-1;
8009 if (dn->digits>1 && *up<powers[d-1]) {
8010 #if DECTRACE || DECVERB
8011 printf("Leading 0 in number.\n");
8017 #if DECTRACE || DECVERB
8018 printf("Bad Unit [%08lx] in %ld-digit number at offset %ld [maxuint %ld].\n",
8019 (LI)*up, (LI)dn->digits, (LI)(up-dn->lsu), (LI)maxuint);
8025 /* check the exponent. Note that input operands can have exponents */
8026 /* which are out of the set->emin/set->emax and set->digits range */
8027 /* (just as they can have more digits than set->digits). */
8028 ae=dn->exponent+dn->digits-1; /* adjusted exponent */
8032 if (ae<emin-(digits-1)) {
8033 #if DECTRACE || DECVERB
8034 printf("Adjusted exponent underflow [%ld].\n", (LI)ae);
8039 #if DECTRACE || DECVERB
8040 printf("Adjusted exponent overflow [%ld].\n", (LI)ae);
8045 return 0; /* it's OK */
8046 } /* decCheckNumber */
8048 /* ------------------------------------------------------------------ */
8049 /* decCheckInexact -- check a normal finite inexact result has digits */
8050 /* dn is the number to check */
8051 /* set is the context (for status and precision) */
8052 /* sets Invalid operation, etc., if some digits are missing */
8053 /* [this check is not made for DECSUBSET compilation or when */
8054 /* subnormal is not set] */
8055 /* ------------------------------------------------------------------ */
8056 static void decCheckInexact(const decNumber *dn, decContext *set) {
8057 #if !DECSUBSET && DECEXTFLAG
8058 if ((set->status & (DEC_Inexact|DEC_Subnormal))==DEC_Inexact
8059 && (set->digits!=dn->digits) && !(dn->bits & DECSPECIAL)) {
8060 #if DECTRACE || DECVERB
8061 printf("Insufficient digits [%ld] on normal Inexact result.\n",
8065 decContextSetStatus(set, DEC_Invalid_operation);
8068 /* next is a noop for quiet compiler */
8069 if (dn!=NULL && dn->digits==0) set->status|=DEC_Invalid_operation;
8072 } /* decCheckInexact */
8078 /* ------------------------------------------------------------------ */
8079 /* decMalloc -- accountable allocation routine */
8080 /* n is the number of bytes to allocate */
8082 /* Semantics is the same as the stdlib malloc routine, but bytes */
8083 /* allocated are accounted for globally, and corruption fences are */
8084 /* added before and after the 'actual' storage. */
8085 /* ------------------------------------------------------------------ */
8086 /* This routine allocates storage with an extra twelve bytes; 8 are */
8087 /* at the start and hold: */
8088 /* 0-3 the original length requested */
8089 /* 4-7 buffer corruption detection fence (DECFENCE, x4) */
8090 /* The 4 bytes at the end also hold a corruption fence (DECFENCE, x4) */
8091 /* ------------------------------------------------------------------ */
8092 static void *decMalloc(size_t n) {
8093 uInt size=n+12; /* true size */
8094 void *alloc; /* -> allocated storage */
8095 uByte *b, *b0; /* work */
8096 uInt uiwork; /* for macros */
8098 alloc=malloc(size); /* -> allocated storage */
8099 if (alloc==NULL) return NULL; /* out of strorage */
8100 b0=(uByte *)alloc; /* as bytes */
8101 decAllocBytes+=n; /* account for storage */
8102 UBFROMUI(alloc, n); /* save n */
8103 /* printf(" alloc ++ dAB: %ld (%ld)\n", (LI)decAllocBytes, (LI)n); */
8104 for (b=b0+4; b<b0+8; b++) *b=DECFENCE;
8105 for (b=b0+n+8; b<b0+n+12; b++) *b=DECFENCE;
8106 return b0+8; /* -> play area */
8109 /* ------------------------------------------------------------------ */
8110 /* decFree -- accountable free routine */
8111 /* alloc is the storage to free */
8113 /* Semantics is the same as the stdlib malloc routine, except that */
8114 /* the global storage accounting is updated and the fences are */
8115 /* checked to ensure that no routine has written 'out of bounds'. */
8116 /* ------------------------------------------------------------------ */
8117 /* This routine first checks that the fences have not been corrupted. */
8118 /* It then frees the storage using the 'truw' storage address (that */
8119 /* is, offset by 8). */
8120 /* ------------------------------------------------------------------ */
8121 static void decFree(void *alloc) {
8122 uInt n; /* original length */
8123 uByte *b, *b0; /* work */
8124 uInt uiwork; /* for macros */
8126 if (alloc==NULL) return; /* allowed; it's a nop */
8127 b0=(uByte *)alloc; /* as bytes */
8128 b0-=8; /* -> true start of storage */
8129 n=UBTOUI(b0); /* lift length */
8130 for (b=b0+4; b<b0+8; b++) if (*b!=DECFENCE)
8131 printf("=== Corrupt byte [%02x] at offset %d from %ld ===\n", *b,
8133 for (b=b0+n+8; b<b0+n+12; b++) if (*b!=DECFENCE)
8134 printf("=== Corrupt byte [%02x] at offset +%d from %ld, n=%ld ===\n", *b,
8135 b-b0-8, (LI)b0, (LI)n);
8136 free(b0); /* drop the storage */
8137 decAllocBytes-=n; /* account for storage */
8138 /* printf(" free -- dAB: %d (%d)\n", decAllocBytes, -n); */
8140 #define malloc(a) decMalloc(a)
8141 #define free(a) decFree(a)