Imported Upstream version 6.1
[platform/upstream/ffmpeg.git] / libavcodec / cinepakenc.c
1 /*
2  * Cinepak encoder (c) 2011 Tomas Härdin
3  * http://titan.codemill.se/~tomhar/cinepakenc.patch
4  *
5  * Fixes and improvements, vintage decoders compatibility
6  *  (c) 2013, 2014 Rl, Aetey Global Technologies AB
7  *
8  * Permission is hereby granted, free of charge, to any person obtaining a
9  * copy of this software and associated documentation files (the "Software"),
10  * to deal in the Software without restriction, including without limitation
11  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
12  * and/or sell copies of the Software, and to permit persons to whom the
13  * Software is furnished to do so, subject to the following conditions:
14  *
15  * The above copyright notice and this permission notice shall be included
16  * in all copies or substantial portions of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
22  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
23  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
24  * OTHER DEALINGS IN THE SOFTWARE.
25  */
26
27 /*
28  * TODO:
29  * - optimize: color space conversion (move conversion to libswscale), ...
30  * MAYBE:
31  * - "optimally" split the frame into several non-regular areas
32  *   using a separate codebook pair for each area and approximating
33  *   the area by several rectangular strips (generally not full width ones)
34  *   (use quadtree splitting? a simple fixed-granularity grid?)
35  */
36
37 #include <string.h>
38
39 #include "libavutil/avassert.h"
40 #include "libavutil/common.h"
41 #include "libavutil/internal.h"
42 #include "libavutil/intreadwrite.h"
43 #include "libavutil/lfg.h"
44 #include "libavutil/opt.h"
45
46 #include "avcodec.h"
47 #include "codec_internal.h"
48 #include "elbg.h"
49 #include "encode.h"
50
51 #define CVID_HEADER_SIZE 10
52 #define STRIP_HEADER_SIZE 12
53 #define CHUNK_HEADER_SIZE 4
54
55 #define MB_SIZE 4           //4x4 MBs
56 #define MB_AREA (MB_SIZE * MB_SIZE)
57
58 #define VECTOR_MAX     6    // six or four entries per vector depending on format
59 #define CODEBOOK_MAX 256    // size of a codebook
60
61 #define MAX_STRIPS  32      // Note: having fewer choices regarding the number of strips speeds up encoding (obviously)
62 #define MIN_STRIPS   1      // Note: having more strips speeds up encoding the frame (this is less obvious)
63 // MAX_STRIPS limits the maximum quality you can reach
64 //            when you want high quality on high resolutions,
65 // MIN_STRIPS limits the minimum efficiently encodable bit rate
66 //            on low resolutions
67 // the numbers are only used for brute force optimization for the first frame,
68 // for the following frames they are adaptively readjusted
69 // NOTE the decoder in ffmpeg has its own arbitrary limitation on the number
70 // of strips, currently 32
71
72 typedef enum CinepakMode {
73     MODE_V1_ONLY = 0,
74     MODE_V1_V4,
75     MODE_MC,
76
77     MODE_COUNT,
78 } CinepakMode;
79
80 typedef enum mb_encoding {
81     ENC_V1,
82     ENC_V4,
83     ENC_SKIP,
84
85     ENC_UNCERTAIN
86 } mb_encoding;
87
88 typedef struct mb_info {
89     int v1_vector;              // index into v1 codebook
90     int v1_error;               // error when using V1 encoding
91     int v4_vector[4];           // indices into v4 codebook
92     int v4_error;               // error when using V4 encoding
93     int skip_error;             // error when block is skipped (aka copied from last frame)
94     mb_encoding best_encoding;  // last result from calculate_mode_score()
95 } mb_info;
96
97 typedef struct strip_info {
98     int v1_codebook[CODEBOOK_MAX * VECTOR_MAX];
99     int v4_codebook[CODEBOOK_MAX * VECTOR_MAX];
100     int v1_size;
101     int v4_size;
102     CinepakMode mode;
103 } strip_info;
104
105 typedef struct CinepakEncContext {
106     const AVClass *class;
107     AVCodecContext *avctx;
108     unsigned char *pict_bufs[4], *strip_buf, *frame_buf;
109     AVFrame *last_frame;
110     AVFrame *best_frame;
111     AVFrame *scratch_frame;
112     AVFrame *input_frame;
113     enum AVPixelFormat pix_fmt;
114     int w, h;
115     int frame_buf_size;
116     int curframe;
117     AVLFG randctx;
118     uint64_t lambda;
119     int *codebook_input;
120     int *codebook_closest;
121     mb_info *mb;                // MB RD state
122     int min_strips;             // the current limit
123     int max_strips;             // the current limit
124     // options
125     int max_extra_cb_iterations;
126     int skip_empty_cb;
127     int min_min_strips;
128     int max_max_strips;
129     int strip_number_delta_range;
130     struct ELBGContext *elbg;
131 } CinepakEncContext;
132
133 #define OFFSET(x) offsetof(CinepakEncContext, x)
134 #define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM
135 static const AVOption options[] = {
136     { "max_extra_cb_iterations", "Max extra codebook recalculation passes, more is better and slower",
137       OFFSET(max_extra_cb_iterations),  AV_OPT_TYPE_INT, { .i64 =          2 },          0, INT_MAX,                 VE },
138     { "skip_empty_cb",           "Avoid wasting bytes, ignore vintage MacOS decoder",
139       OFFSET(skip_empty_cb),            AV_OPT_TYPE_BOOL, { .i64 =         0 },          0, 1,                       VE },
140     { "max_strips",              "Limit strips/frame, vintage compatible is 1..3, otherwise the more the better",
141       OFFSET(max_max_strips),           AV_OPT_TYPE_INT, { .i64 =          3 }, MIN_STRIPS, MAX_STRIPS,              VE },
142     { "min_strips",              "Enforce min strips/frame, more is worse and faster, must be <= max_strips",
143       OFFSET(min_min_strips),           AV_OPT_TYPE_INT, { .i64 = MIN_STRIPS }, MIN_STRIPS, MAX_STRIPS,              VE },
144     { "strip_number_adaptivity", "How fast the strip number adapts, more is slightly better, much slower",
145       OFFSET(strip_number_delta_range), AV_OPT_TYPE_INT, { .i64 =          0 },          0, MAX_STRIPS - MIN_STRIPS, VE },
146     { NULL },
147 };
148
149 static const AVClass cinepak_class = {
150     .class_name = "cinepak",
151     .item_name  = av_default_item_name,
152     .option     = options,
153     .version    = LIBAVUTIL_VERSION_INT,
154 };
155
156 static av_cold int cinepak_encode_init(AVCodecContext *avctx)
157 {
158     CinepakEncContext *s = avctx->priv_data;
159     int x, mb_count, strip_buf_size, frame_buf_size;
160
161     if (avctx->width & 3 || avctx->height & 3) {
162         av_log(avctx, AV_LOG_ERROR, "width and height must be multiples of four (got %ix%i)\n",
163                avctx->width, avctx->height);
164         return AVERROR(EINVAL);
165     }
166
167     if (s->min_min_strips > s->max_max_strips) {
168         av_log(avctx, AV_LOG_ERROR, "minimum number of strips must not exceed maximum (got %i and %i)\n",
169                s->min_min_strips, s->max_max_strips);
170         return AVERROR(EINVAL);
171     }
172
173     if (!(s->last_frame = av_frame_alloc()))
174         return AVERROR(ENOMEM);
175     if (!(s->best_frame = av_frame_alloc()))
176         return AVERROR(ENOMEM);
177     if (!(s->scratch_frame = av_frame_alloc()))
178         return AVERROR(ENOMEM);
179     if (avctx->pix_fmt == AV_PIX_FMT_RGB24)
180         if (!(s->input_frame = av_frame_alloc()))
181             return AVERROR(ENOMEM);
182
183     if (!(s->codebook_input = av_malloc_array((avctx->pix_fmt == AV_PIX_FMT_RGB24 ? 6 : 4) * (avctx->width * avctx->height) >> 2, sizeof(*s->codebook_input))))
184         return AVERROR(ENOMEM);
185
186     if (!(s->codebook_closest = av_malloc_array((avctx->width * avctx->height) >> 2, sizeof(*s->codebook_closest))))
187         return AVERROR(ENOMEM);
188
189     for (x = 0; x < (avctx->pix_fmt == AV_PIX_FMT_RGB24 ? 4 : 3); x++)
190         if (!(s->pict_bufs[x] = av_malloc((avctx->pix_fmt == AV_PIX_FMT_RGB24 ? 6 : 4) * (avctx->width * avctx->height) >> 2)))
191             return AVERROR(ENOMEM);
192
193     mb_count = avctx->width * avctx->height / MB_AREA;
194
195     // the largest possible chunk is 0x31 with all MBs encoded in V4 mode
196     // and full codebooks being replaced in INTER mode,
197     // which is 34 bits per MB
198     // and 2*256 extra flag bits per strip
199     strip_buf_size = STRIP_HEADER_SIZE + 3 * CHUNK_HEADER_SIZE + 2 * VECTOR_MAX * CODEBOOK_MAX + 4 * (mb_count + (mb_count + 15) / 16) + (2 * CODEBOOK_MAX) / 8;
200
201     frame_buf_size = CVID_HEADER_SIZE + s->max_max_strips * strip_buf_size;
202
203     if (!(s->strip_buf = av_malloc(strip_buf_size)))
204         return AVERROR(ENOMEM);
205
206     if (!(s->frame_buf = av_malloc(frame_buf_size)))
207         return AVERROR(ENOMEM);
208
209     if (!(s->mb = av_malloc_array(mb_count, sizeof(mb_info))))
210         return AVERROR(ENOMEM);
211
212     av_lfg_init(&s->randctx, 1);
213     s->avctx          = avctx;
214     s->w              = avctx->width;
215     s->h              = avctx->height;
216     s->frame_buf_size = frame_buf_size;
217     s->curframe       = 0;
218     s->pix_fmt        = avctx->pix_fmt;
219
220     // set up AVFrames
221     s->last_frame->data[0]        = s->pict_bufs[0];
222     s->last_frame->linesize[0]    = s->w;
223     s->best_frame->data[0]        = s->pict_bufs[1];
224     s->best_frame->linesize[0]    = s->w;
225     s->scratch_frame->data[0]     = s->pict_bufs[2];
226     s->scratch_frame->linesize[0] = s->w;
227
228     if (s->pix_fmt == AV_PIX_FMT_RGB24) {
229         s->last_frame->data[1]     = s->last_frame->data[0] +   s->w * s->h;
230         s->last_frame->data[2]     = s->last_frame->data[1] + ((s->w * s->h) >> 2);
231         s->last_frame->linesize[1] =
232         s->last_frame->linesize[2] = s->w >> 1;
233
234         s->best_frame->data[1]     = s->best_frame->data[0] +   s->w * s->h;
235         s->best_frame->data[2]     = s->best_frame->data[1] + ((s->w * s->h) >> 2);
236         s->best_frame->linesize[1] =
237         s->best_frame->linesize[2] = s->w >> 1;
238
239         s->scratch_frame->data[1]     = s->scratch_frame->data[0] +   s->w * s->h;
240         s->scratch_frame->data[2]     = s->scratch_frame->data[1] + ((s->w * s->h) >> 2);
241         s->scratch_frame->linesize[1] =
242         s->scratch_frame->linesize[2] = s->w >> 1;
243
244         s->input_frame->data[0]     = s->pict_bufs[3];
245         s->input_frame->linesize[0] = s->w;
246         s->input_frame->data[1]     = s->input_frame->data[0] +   s->w * s->h;
247         s->input_frame->data[2]     = s->input_frame->data[1] + ((s->w * s->h) >> 2);
248         s->input_frame->linesize[1] =
249         s->input_frame->linesize[2] = s->w >> 1;
250     }
251
252     s->min_strips = s->min_min_strips;
253     s->max_strips = s->max_max_strips;
254
255     return 0;
256 }
257
258 static int64_t calculate_mode_score(CinepakEncContext *s, int h,
259                                     strip_info *info, int report,
260                                     int *training_set_v1_shrunk,
261                                     int *training_set_v4_shrunk)
262 {
263     // score = FF_LAMBDA_SCALE * error + lambda * bits
264     int x;
265     int entry_size = s->pix_fmt == AV_PIX_FMT_RGB24 ? 6 : 4;
266     int mb_count   = s->w * h / MB_AREA;
267     mb_info *mb;
268     int64_t score1, score2, score3;
269     int64_t ret = s->lambda * ((info->v1_size ? CHUNK_HEADER_SIZE + info->v1_size * entry_size : 0) +
270                                (info->v4_size ? CHUNK_HEADER_SIZE + info->v4_size * entry_size : 0) +
271                                CHUNK_HEADER_SIZE) << 3;
272
273     switch (info->mode) {
274     case MODE_V1_ONLY:
275         // one byte per MB
276         ret += s->lambda * 8 * mb_count;
277
278         // while calculating we assume all blocks are ENC_V1
279         for (x = 0; x < mb_count; x++) {
280             mb   = &s->mb[x];
281             ret += FF_LAMBDA_SCALE * mb->v1_error;
282             // this function is never called for report in MODE_V1_ONLY
283             // if (!report)
284             mb->best_encoding = ENC_V1;
285         }
286
287         break;
288     case MODE_V1_V4:
289         // 9 or 33 bits per MB
290         if (report) {
291             // no moves between the corresponding training sets are allowed
292             *training_set_v1_shrunk = *training_set_v4_shrunk = 0;
293             for (x = 0; x < mb_count; x++) {
294                 int mberr;
295                 mb = &s->mb[x];
296                 if (mb->best_encoding == ENC_V1)
297                     score1 = s->lambda * 9 + FF_LAMBDA_SCALE * (mberr = mb->v1_error);
298                 else
299                     score1 = s->lambda * 33 + FF_LAMBDA_SCALE * (mberr = mb->v4_error);
300                 ret += score1;
301             }
302         } else { // find best mode per block
303             for (x = 0; x < mb_count; x++) {
304                 mb     = &s->mb[x];
305                 score1 = s->lambda * 9 + FF_LAMBDA_SCALE * mb->v1_error;
306                 score2 = s->lambda * 33 + FF_LAMBDA_SCALE * mb->v4_error;
307
308                 if (score1 <= score2) {
309                     ret += score1;
310                     mb->best_encoding = ENC_V1;
311                 } else {
312                     ret += score2;
313                     mb->best_encoding = ENC_V4;
314                 }
315             }
316         }
317
318         break;
319     case MODE_MC:
320         // 1, 10 or 34 bits per MB
321         if (report) {
322             int v1_shrunk = 0, v4_shrunk = 0;
323             for (x = 0; x < mb_count; x++) {
324                 mb = &s->mb[x];
325                 // it is OK to move blocks to ENC_SKIP here
326                 // but not to any codebook encoding!
327                 score1 = s->lambda * 1 + FF_LAMBDA_SCALE * mb->skip_error;
328                 if (mb->best_encoding == ENC_SKIP) {
329                     ret += score1;
330                 } else if (mb->best_encoding == ENC_V1) {
331                     if ((score2 = s->lambda * 10 + FF_LAMBDA_SCALE * mb->v1_error) >= score1) {
332                         mb->best_encoding = ENC_SKIP;
333                         ++v1_shrunk;
334                         ret += score1;
335                     } else {
336                         ret += score2;
337                     }
338                 } else {
339                     if ((score3 = s->lambda * 34 + FF_LAMBDA_SCALE * mb->v4_error) >= score1) {
340                         mb->best_encoding = ENC_SKIP;
341                         ++v4_shrunk;
342                         ret += score1;
343                     } else {
344                         ret += score3;
345                     }
346                 }
347             }
348             *training_set_v1_shrunk = v1_shrunk;
349             *training_set_v4_shrunk = v4_shrunk;
350         } else { // find best mode per block
351             for (x = 0; x < mb_count; x++) {
352                 mb     = &s->mb[x];
353                 score1 = s->lambda * 1 + FF_LAMBDA_SCALE * mb->skip_error;
354                 score2 = s->lambda * 10 + FF_LAMBDA_SCALE * mb->v1_error;
355                 score3 = s->lambda * 34 + FF_LAMBDA_SCALE * mb->v4_error;
356
357                 if (score1 <= score2 && score1 <= score3) {
358                     ret += score1;
359                     mb->best_encoding = ENC_SKIP;
360                 } else if (score2 <= score3) {
361                     ret += score2;
362                     mb->best_encoding = ENC_V1;
363                 } else {
364                     ret += score3;
365                     mb->best_encoding = ENC_V4;
366                 }
367             }
368         }
369
370         break;
371     }
372
373     return ret;
374 }
375
376 static int write_chunk_header(unsigned char *buf, int chunk_type, int chunk_size)
377 {
378     buf[0] = chunk_type;
379     AV_WB24(&buf[1], chunk_size + CHUNK_HEADER_SIZE);
380     return CHUNK_HEADER_SIZE;
381 }
382
383 static int encode_codebook(CinepakEncContext *s, int *codebook, int size,
384                            int chunk_type_yuv, int chunk_type_gray,
385                            unsigned char *buf)
386 {
387     int x, y, ret, entry_size = s->pix_fmt == AV_PIX_FMT_RGB24 ? 6 : 4;
388     int incremental_codebook_replacement_mode = 0; // hardcoded here,
389     // the compiler should notice that this is a constant -- rl
390
391     ret = write_chunk_header(buf,
392                              s->pix_fmt == AV_PIX_FMT_RGB24 ?
393                              chunk_type_yuv  + (incremental_codebook_replacement_mode ? 1 : 0) :
394                              chunk_type_gray + (incremental_codebook_replacement_mode ? 1 : 0),
395                              entry_size * size +
396                              (incremental_codebook_replacement_mode ? (size + 31) / 32 * 4 : 0));
397
398     // we do codebook encoding according to the "intra" mode
399     // but we keep the "dead" code for reference in case we will want
400     // to use incremental codebook updates (which actually would give us
401     // "kind of" motion compensation, especially in 1 strip/frame case) -- rl
402     // (of course, the code will be not useful as-is)
403     if (incremental_codebook_replacement_mode) {
404         int flags = 0;
405         int flagsind;
406         for (x = 0; x < size; x++) {
407             if (flags == 0) {
408                 flagsind = ret;
409                 ret     += 4;
410                 flags    = 0x80000000;
411             } else
412                 flags = ((flags >> 1) | 0x80000000);
413             for (y = 0; y < entry_size; y++)
414                 buf[ret++] = codebook[y + x * entry_size] ^ (y >= 4 ? 0x80 : 0);
415             if ((flags & 0xffffffff) == 0xffffffff) {
416                 AV_WB32(&buf[flagsind], flags);
417                 flags = 0;
418             }
419         }
420         if (flags)
421             AV_WB32(&buf[flagsind], flags);
422     } else
423         for (x = 0; x < size; x++)
424             for (y = 0; y < entry_size; y++)
425                 buf[ret++] = codebook[y + x * entry_size] ^ (y >= 4 ? 0x80 : 0);
426
427     return ret;
428 }
429
430 // sets out to the sub picture starting at (x,y) in in
431 static void get_sub_picture(CinepakEncContext *s, int x, int y,
432                             uint8_t *const in_data[4], const int in_linesize[4],
433                             uint8_t *out_data[4], int out_linesize[4])
434 {
435     out_data[0]     = in_data[0] + x + y * in_linesize[0];
436     out_linesize[0] = in_linesize[0];
437
438     if (s->pix_fmt == AV_PIX_FMT_RGB24) {
439         out_data[1]     = in_data[1] + (x >> 1) + (y >> 1) * in_linesize[1];
440         out_linesize[1] = in_linesize[1];
441
442         out_data[2]     = in_data[2] + (x >> 1) + (y >> 1) * in_linesize[2];
443         out_linesize[2] = in_linesize[2];
444     }
445 }
446
447 // decodes the V1 vector in mb into the 4x4 MB pointed to by data
448 static void decode_v1_vector(CinepakEncContext *s, uint8_t *data[4],
449                              int linesize[4], int v1_vector, strip_info *info)
450 {
451     int entry_size = s->pix_fmt == AV_PIX_FMT_RGB24 ? 6 : 4;
452
453     data[0][0] =
454     data[0][1] =
455     data[0][    linesize[0]] =
456     data[0][1 + linesize[0]] = info->v1_codebook[v1_vector * entry_size];
457
458     data[0][2] =
459     data[0][3] =
460     data[0][2 + linesize[0]] =
461     data[0][3 + linesize[0]] = info->v1_codebook[v1_vector * entry_size + 1];
462
463     data[0][    2 * linesize[0]] =
464     data[0][1 + 2 * linesize[0]] =
465     data[0][    3 * linesize[0]] =
466     data[0][1 + 3 * linesize[0]] = info->v1_codebook[v1_vector * entry_size + 2];
467
468     data[0][2 + 2 * linesize[0]] =
469     data[0][3 + 2 * linesize[0]] =
470     data[0][2 + 3 * linesize[0]] =
471     data[0][3 + 3 * linesize[0]] = info->v1_codebook[v1_vector * entry_size + 3];
472
473     if (s->pix_fmt == AV_PIX_FMT_RGB24) {
474         data[1][0] =
475         data[1][1] =
476         data[1][    linesize[1]] =
477         data[1][1 + linesize[1]] = info->v1_codebook[v1_vector * entry_size + 4];
478
479         data[2][0] =
480         data[2][1] =
481         data[2][    linesize[2]] =
482         data[2][1 + linesize[2]] = info->v1_codebook[v1_vector * entry_size + 5];
483     }
484 }
485
486 // decodes the V4 vectors in mb into the 4x4 MB pointed to by data
487 static void decode_v4_vector(CinepakEncContext *s, uint8_t *data[4],
488                              int linesize[4], int *v4_vector, strip_info *info)
489 {
490     int i, x, y, entry_size = s->pix_fmt == AV_PIX_FMT_RGB24 ? 6 : 4;
491
492     for (i = y = 0; y < 4; y += 2) {
493         for (x = 0; x < 4; x += 2, i++) {
494             data[0][x     +  y      * linesize[0]] = info->v4_codebook[v4_vector[i] * entry_size];
495             data[0][x + 1 +  y      * linesize[0]] = info->v4_codebook[v4_vector[i] * entry_size + 1];
496             data[0][x     + (y + 1) * linesize[0]] = info->v4_codebook[v4_vector[i] * entry_size + 2];
497             data[0][x + 1 + (y + 1) * linesize[0]] = info->v4_codebook[v4_vector[i] * entry_size + 3];
498
499             if (s->pix_fmt == AV_PIX_FMT_RGB24) {
500                 data[1][(x >> 1) + (y >> 1) * linesize[1]] = info->v4_codebook[v4_vector[i] * entry_size + 4];
501                 data[2][(x >> 1) + (y >> 1) * linesize[2]] = info->v4_codebook[v4_vector[i] * entry_size + 5];
502             }
503         }
504     }
505 }
506
507 static void copy_mb(CinepakEncContext *s,
508                     uint8_t *a_data[4], int a_linesize[4],
509                     uint8_t *b_data[4], int b_linesize[4])
510 {
511     int y, p;
512
513     for (y = 0; y < MB_SIZE; y++)
514         memcpy(a_data[0] + y * a_linesize[0], b_data[0] + y * b_linesize[0],
515                MB_SIZE);
516
517     if (s->pix_fmt == AV_PIX_FMT_RGB24) {
518         for (p = 1; p <= 2; p++)
519             for (y = 0; y < MB_SIZE / 2; y++)
520                 memcpy(a_data[p] + y * a_linesize[p],
521                        b_data[p] + y * b_linesize[p],
522                        MB_SIZE / 2);
523     }
524 }
525
526 static int encode_mode(CinepakEncContext *s, int h,
527                        uint8_t *scratch_data[4], int scratch_linesize[4],
528                        uint8_t *last_data[4], int last_linesize[4],
529                        strip_info *info, unsigned char *buf)
530 {
531     int x, y, z, bits, temp_size, header_ofs, ret = 0, mb_count = s->w * h / MB_AREA;
532     int needs_extra_bit, should_write_temp;
533     uint32_t flags;
534     unsigned char temp[64]; // 32/2 = 16 V4 blocks at 4 B each -> 64 B
535     mb_info *mb;
536     uint8_t *sub_scratch_data[4] = { 0 }, *sub_last_data[4] = { 0 };
537     int sub_scratch_linesize[4] = { 0 }, sub_last_linesize[4] = { 0 };
538
539     // encode codebooks
540     ////// MacOS vintage decoder compatibility dictates the presence of
541     ////// the codebook chunk even when the codebook is empty - pretty dumb...
542     ////// and also the certain order of the codebook chunks -- rl
543     if (info->v4_size || !s->skip_empty_cb)
544         ret += encode_codebook(s, info->v4_codebook, info->v4_size, 0x20, 0x24, buf + ret);
545
546     if (info->v1_size || !s->skip_empty_cb)
547         ret += encode_codebook(s, info->v1_codebook, info->v1_size, 0x22, 0x26, buf + ret);
548
549     // update scratch picture
550     for (z = y = 0; y < h; y += MB_SIZE)
551         for (x = 0; x < s->w; x += MB_SIZE, z++) {
552             mb = &s->mb[z];
553
554             get_sub_picture(s, x, y, scratch_data, scratch_linesize,
555                             sub_scratch_data, sub_scratch_linesize);
556
557             if (info->mode == MODE_MC && mb->best_encoding == ENC_SKIP) {
558                 get_sub_picture(s, x, y, last_data, last_linesize,
559                                 sub_last_data, sub_last_linesize);
560                 copy_mb(s, sub_scratch_data, sub_scratch_linesize,
561                         sub_last_data, sub_last_linesize);
562             } else if (info->mode == MODE_V1_ONLY || mb->best_encoding == ENC_V1)
563                 decode_v1_vector(s, sub_scratch_data, sub_scratch_linesize,
564                                  mb->v1_vector, info);
565             else
566                 decode_v4_vector(s, sub_scratch_data, sub_scratch_linesize,
567                                  mb->v4_vector, info);
568         }
569
570     switch (info->mode) {
571     case MODE_V1_ONLY:
572         ret += write_chunk_header(buf + ret, 0x32, mb_count);
573
574         for (x = 0; x < mb_count; x++)
575             buf[ret++] = s->mb[x].v1_vector;
576
577         break;
578     case MODE_V1_V4:
579         // remember header position
580         header_ofs = ret;
581         ret       += CHUNK_HEADER_SIZE;
582
583         for (x = 0; x < mb_count; x += 32) {
584             flags = 0;
585             for (y = x; y < FFMIN(x + 32, mb_count); y++)
586                 if (s->mb[y].best_encoding == ENC_V4)
587                     flags |= 1U << (31 - y + x);
588
589             AV_WB32(&buf[ret], flags);
590             ret += 4;
591
592             for (y = x; y < FFMIN(x + 32, mb_count); y++) {
593                 mb = &s->mb[y];
594
595                 if (mb->best_encoding == ENC_V1)
596                     buf[ret++] = mb->v1_vector;
597                 else
598                     for (z = 0; z < 4; z++)
599                         buf[ret++] = mb->v4_vector[z];
600             }
601         }
602
603         write_chunk_header(buf + header_ofs, 0x30, ret - header_ofs - CHUNK_HEADER_SIZE);
604
605         break;
606     case MODE_MC:
607         // remember header position
608         header_ofs = ret;
609         ret       += CHUNK_HEADER_SIZE;
610         flags      = bits = temp_size = 0;
611
612         for (x = 0; x < mb_count; x++) {
613             mb                = &s->mb[x];
614             flags            |= (uint32_t)(mb->best_encoding != ENC_SKIP) << (31 - bits++);
615             needs_extra_bit   = 0;
616             should_write_temp = 0;
617
618             if (mb->best_encoding != ENC_SKIP) {
619                 if (bits < 32)
620                     flags |= (uint32_t)(mb->best_encoding == ENC_V4) << (31 - bits++);
621                 else
622                     needs_extra_bit = 1;
623             }
624
625             if (bits == 32) {
626                 AV_WB32(&buf[ret], flags);
627                 ret  += 4;
628                 flags = bits = 0;
629
630                 if (mb->best_encoding == ENC_SKIP || needs_extra_bit) {
631                     memcpy(&buf[ret], temp, temp_size);
632                     ret      += temp_size;
633                     temp_size = 0;
634                 } else
635                     should_write_temp = 1;
636             }
637
638             if (needs_extra_bit) {
639                 flags = (uint32_t)(mb->best_encoding == ENC_V4) << 31;
640                 bits  = 1;
641             }
642
643             if (mb->best_encoding == ENC_V1)
644                 temp[temp_size++] = mb->v1_vector;
645             else if (mb->best_encoding == ENC_V4)
646                 for (z = 0; z < 4; z++)
647                     temp[temp_size++] = mb->v4_vector[z];
648
649             if (should_write_temp) {
650                 memcpy(&buf[ret], temp, temp_size);
651                 ret      += temp_size;
652                 temp_size = 0;
653             }
654         }
655
656         if (bits > 0) {
657             AV_WB32(&buf[ret], flags);
658             ret += 4;
659             memcpy(&buf[ret], temp, temp_size);
660             ret += temp_size;
661         }
662
663         write_chunk_header(buf + header_ofs, 0x31, ret - header_ofs - CHUNK_HEADER_SIZE);
664
665         break;
666     }
667
668     return ret;
669 }
670
671 // computes distortion of 4x4 MB in b compared to a
672 static int compute_mb_distortion(CinepakEncContext *s,
673                                  uint8_t *a_data[4], int a_linesize[4],
674                                  uint8_t *b_data[4], int b_linesize[4])
675 {
676     int x, y, p, d, ret = 0;
677
678     for (y = 0; y < MB_SIZE; y++)
679         for (x = 0; x < MB_SIZE; x++) {
680             d = a_data[0][x + y * a_linesize[0]] - b_data[0][x + y * b_linesize[0]];
681             ret += d * d;
682         }
683
684     if (s->pix_fmt == AV_PIX_FMT_RGB24) {
685         for (p = 1; p <= 2; p++) {
686             for (y = 0; y < MB_SIZE / 2; y++)
687                 for (x = 0; x < MB_SIZE / 2; x++) {
688                     d = a_data[p][x + y * a_linesize[p]] - b_data[p][x + y * b_linesize[p]];
689                     ret += d * d;
690                 }
691         }
692     }
693
694     return ret;
695 }
696
697 // return the possibly adjusted size of the codebook
698 #define CERTAIN(x) ((x) != ENC_UNCERTAIN)
699 static int quantize(CinepakEncContext *s, int h, uint8_t *data[4],
700                     int linesize[4], int v1mode, strip_info *info,
701                     mb_encoding encoding)
702 {
703     int x, y, i, j, k, x2, y2, x3, y3, plane, shift, mbn;
704     int entry_size      = s->pix_fmt == AV_PIX_FMT_RGB24 ? 6 : 4;
705     int *codebook       = v1mode ? info->v1_codebook : info->v4_codebook;
706     int size            = v1mode ? info->v1_size : info->v4_size;
707     uint8_t vq_pict_buf[(MB_AREA * 3) / 2];
708     uint8_t     *sub_data[4],     *vq_data[4];
709     int      sub_linesize[4],  vq_linesize[4];
710     int ret;
711
712     for (mbn = i = y = 0; y < h; y += MB_SIZE) {
713         for (x = 0; x < s->w; x += MB_SIZE, ++mbn) {
714             int *base;
715
716             if (CERTAIN(encoding)) {
717                 // use for the training only the blocks known to be to be encoded [sic:-]
718                 if (s->mb[mbn].best_encoding != encoding)
719                     continue;
720             }
721
722             base = s->codebook_input + i * entry_size;
723             if (v1mode) {
724                 // subsample
725                 for (j = y2 = 0; y2 < entry_size; y2 += 2)
726                     for (x2 = 0; x2 < 4; x2 += 2, j++) {
727                         plane   = y2 < 4 ? 0 : 1 + (x2 >> 1);
728                         shift   = y2 < 4 ? 0 : 1;
729                         x3      = shift ? 0 : x2;
730                         y3      = shift ? 0 : y2;
731                         base[j] = (data[plane][((x + x3) >> shift) +      ((y + y3) >> shift)      * linesize[plane]] +
732                                    data[plane][((x + x3) >> shift) + 1 +  ((y + y3) >> shift)      * linesize[plane]] +
733                                    data[plane][((x + x3) >> shift) +     (((y + y3) >> shift) + 1) * linesize[plane]] +
734                                    data[plane][((x + x3) >> shift) + 1 + (((y + y3) >> shift) + 1) * linesize[plane]]) >> 2;
735                     }
736             } else {
737                 // copy
738                 for (j = y2 = 0; y2 < MB_SIZE; y2 += 2) {
739                     for (x2 = 0; x2 < MB_SIZE; x2 += 2)
740                         for (k = 0; k < entry_size; k++, j++) {
741                             plane = k >= 4 ? k - 3 : 0;
742
743                             if (k >= 4) {
744                                 x3 = (x + x2) >> 1;
745                                 y3 = (y + y2) >> 1;
746                             } else {
747                                 x3 = x + x2 + (k & 1);
748                                 y3 = y + y2 + (k >> 1);
749                             }
750
751                             base[j] = data[plane][x3 + y3 * linesize[plane]];
752                         }
753                 }
754             }
755             i += v1mode ? 1 : 4;
756         }
757     }
758
759     if (i == 0) // empty training set, nothing to do
760         return 0;
761     if (i < size)
762         size = i;
763
764     ret = avpriv_elbg_do(&s->elbg, s->codebook_input, entry_size, i, codebook,
765                          size, 1, s->codebook_closest, &s->randctx, 0);
766     if (ret < 0)
767         return ret;
768
769     // set up vq_data, which contains a single MB
770     vq_data[0]     = vq_pict_buf;
771     vq_linesize[0] = MB_SIZE;
772     vq_data[1]     = &vq_pict_buf[MB_AREA];
773     vq_data[2]     = vq_data[1] + (MB_AREA >> 2);
774     vq_linesize[1] =
775     vq_linesize[2] = MB_SIZE >> 1;
776
777     // copy indices
778     for (i = j = y = 0; y < h; y += MB_SIZE)
779         for (x = 0; x < s->w; x += MB_SIZE, j++) {
780             mb_info *mb = &s->mb[j];
781             // skip uninteresting blocks if we know their preferred encoding
782             if (CERTAIN(encoding) && mb->best_encoding != encoding)
783                 continue;
784
785             // point sub_data to current MB
786             get_sub_picture(s, x, y, data, linesize, sub_data, sub_linesize);
787
788             if (v1mode) {
789                 mb->v1_vector = s->codebook_closest[i];
790
791                 // fill in vq_data with V1 data
792                 decode_v1_vector(s, vq_data, vq_linesize, mb->v1_vector, info);
793
794                 mb->v1_error = compute_mb_distortion(s, sub_data, sub_linesize,
795                                                      vq_data, vq_linesize);
796             } else {
797                 for (k = 0; k < 4; k++)
798                     mb->v4_vector[k] = s->codebook_closest[i + k];
799
800                 // fill in vq_data with V4 data
801                 decode_v4_vector(s, vq_data, vq_linesize, mb->v4_vector, info);
802
803                 mb->v4_error = compute_mb_distortion(s, sub_data, sub_linesize,
804                                                      vq_data, vq_linesize);
805             }
806             i += v1mode ? 1 : 4;
807         }
808     // check that we did it right in the beginning of the function
809     av_assert0(i >= size); // training set is no smaller than the codebook
810
811     return size;
812 }
813
814 static void calculate_skip_errors(CinepakEncContext *s, int h,
815                                   uint8_t *last_data[4], int last_linesize[4],
816                                   uint8_t *data[4], int linesize[4],
817                                   strip_info *info)
818 {
819     int x, y, i;
820     uint8_t *sub_last_data    [4], *sub_pict_data    [4];
821     int      sub_last_linesize[4],  sub_pict_linesize[4];
822
823     for (i = y = 0; y < h; y += MB_SIZE)
824         for (x = 0; x < s->w; x += MB_SIZE, i++) {
825             get_sub_picture(s, x, y, last_data, last_linesize,
826                             sub_last_data, sub_last_linesize);
827             get_sub_picture(s, x, y, data, linesize,
828                             sub_pict_data, sub_pict_linesize);
829
830             s->mb[i].skip_error =
831                 compute_mb_distortion(s,
832                                       sub_last_data, sub_last_linesize,
833                                       sub_pict_data, sub_pict_linesize);
834         }
835 }
836
837 static void write_strip_keyframe(unsigned char *buf, int keyframe)
838 {
839     // actually we are exclusively using intra strip coding (how much can we win
840     // otherwise? how to choose which part of a codebook to update?),
841     // keyframes are different only because we disallow ENC_SKIP on them -- rl
842     // (besides, the logic here used to be inverted: )
843     //    buf[0] = keyframe ? 0x11: 0x10;
844     buf[0] = keyframe ? 0x10 : 0x11;
845 }
846
847 static void write_strip_header(CinepakEncContext *s, int y, int h, int keyframe,
848                                unsigned char *buf, int strip_size)
849 {
850     write_strip_keyframe(buf, keyframe);
851     AV_WB24(&buf[1], strip_size + STRIP_HEADER_SIZE);
852     // AV_WB16(&buf[4], y); /* using absolute y values works -- rl */
853     AV_WB16(&buf[4], 0); /* using relative values works as well -- rl */
854     AV_WB16(&buf[6], 0);
855     // AV_WB16(&buf[8], y + h); /* using absolute y values works -- rl */
856     AV_WB16(&buf[8], h); /* using relative values works as well -- rl */
857     AV_WB16(&buf[10], s->w);
858 }
859
860 static int rd_strip(CinepakEncContext *s, int y, int h, int keyframe,
861                     uint8_t *last_data[4], int last_linesize[4],
862                     uint8_t *data[4], int linesize[4],
863                     uint8_t *scratch_data[4], int scratch_linesize[4],
864                     unsigned char *buf, int64_t *best_score, int *no_skip)
865 {
866     int64_t score = 0;
867     int best_size = 0;
868     strip_info info;
869     // for codebook optimization:
870     int v1enough, v1_size, v4enough, v4_size;
871     int new_v1_size, new_v4_size;
872     int v1shrunk, v4shrunk;
873
874     if (!keyframe)
875         calculate_skip_errors(s, h, last_data, last_linesize, data, linesize,
876                               &info);
877
878     // try some powers of 4 for the size of the codebooks
879     // constraint the v4 codebook to be no bigger than v1 one,
880     // (and no less than v1_size/4)
881     // thus making v1 preferable and possibly losing small details? should be ok
882 #define SMALLEST_CODEBOOK 1
883     for (v1enough = 0, v1_size = SMALLEST_CODEBOOK; v1_size <= CODEBOOK_MAX && !v1enough; v1_size <<= 2) {
884         for (v4enough = 0, v4_size = 0; v4_size <= v1_size && !v4enough; v4_size = v4_size ? v4_size << 2 : v1_size >= SMALLEST_CODEBOOK << 2 ? v1_size >> 2 : SMALLEST_CODEBOOK) {
885             CinepakMode mode;
886             // try all modes
887             for (mode = 0; mode < MODE_COUNT; mode++) {
888                 // don't allow MODE_MC in intra frames
889                 if (keyframe && mode == MODE_MC)
890                     continue;
891
892                 if (mode == MODE_V1_ONLY) {
893                     info.v1_size = v1_size;
894                     // the size may shrink even before optimizations if the input is short:
895                     if ((new_v1_size = quantize(s, h, data, linesize, 1,
896                                                 &info, ENC_UNCERTAIN)) < 0)
897                         return new_v1_size;
898                     info.v1_size = new_v1_size;
899                     if (info.v1_size < v1_size)
900                         // too few eligible blocks, no sense in trying bigger sizes
901                         v1enough = 1;
902
903                     info.v4_size = 0;
904                 } else { // mode != MODE_V1_ONLY
905                     // if v4 codebook is empty then only allow V1-only mode
906                     if (!v4_size)
907                         continue;
908
909                     if (mode == MODE_V1_V4) {
910                         info.v4_size = v4_size;
911                         new_v4_size = quantize(s, h, data, linesize, 0,
912                                                &info, ENC_UNCERTAIN);
913                         if (new_v4_size < 0)
914                             return new_v4_size;
915                         info.v4_size = new_v4_size;
916                         if (info.v4_size < v4_size)
917                             // too few eligible blocks, no sense in trying bigger sizes
918                             v4enough = 1;
919                     }
920                 }
921
922                 info.mode = mode;
923                 // choose the best encoding per block, based on current experience
924                 score = calculate_mode_score(s, h, &info, 0,
925                                              &v1shrunk, &v4shrunk);
926
927                 if (mode != MODE_V1_ONLY) {
928                     int extra_iterations_limit = s->max_extra_cb_iterations;
929                     // recompute the codebooks, omitting the extra blocks
930                     // we assume we _may_ come here with more blocks to encode than before
931                     info.v1_size = v1_size;
932                     new_v1_size = quantize(s, h, data, linesize, 1, &info, ENC_V1);
933                     if (new_v1_size < 0)
934                         return new_v1_size;
935                     if (new_v1_size < info.v1_size)
936                         info.v1_size = new_v1_size;
937                     // we assume we _may_ come here with more blocks to encode than before
938                     info.v4_size = v4_size;
939                     new_v4_size = quantize(s, h, data, linesize, 0, &info, ENC_V4);
940                     if (new_v4_size < 0)
941                         return new_v4_size;
942                     if (new_v4_size < info.v4_size)
943                         info.v4_size = new_v4_size;
944                     // calculate the resulting score
945                     // (do not move blocks to codebook encodings now, as some blocks may have
946                     // got bigger errors despite a smaller training set - but we do not
947                     // ever grow the training sets back)
948                     for (;;) {
949                         score = calculate_mode_score(s, h, &info, 1,
950                                                      &v1shrunk, &v4shrunk);
951                         // do we have a reason to reiterate? if so, have we reached the limit?
952                         if ((!v1shrunk && !v4shrunk) || !extra_iterations_limit--)
953                             break;
954                         // recompute the codebooks, omitting the extra blocks
955                         if (v1shrunk) {
956                             info.v1_size = v1_size;
957                             new_v1_size = quantize(s, h, data, linesize, 1, &info, ENC_V1);
958                             if (new_v1_size < 0)
959                                 return new_v1_size;
960                             if (new_v1_size < info.v1_size)
961                                 info.v1_size = new_v1_size;
962                         }
963                         if (v4shrunk) {
964                             info.v4_size = v4_size;
965                             new_v4_size = quantize(s, h, data, linesize, 0, &info, ENC_V4);
966                             if (new_v4_size < 0)
967                                 return new_v4_size;
968                             if (new_v4_size < info.v4_size)
969                                 info.v4_size = new_v4_size;
970                         }
971                     }
972                 }
973
974                 if (best_size == 0 || score < *best_score) {
975                     *best_score = score;
976                     best_size = encode_mode(s, h,
977                                             scratch_data, scratch_linesize,
978                                             last_data, last_linesize, &info,
979                                             s->strip_buf + STRIP_HEADER_SIZE);
980                     // in theory we could have MODE_MC without ENC_SKIP,
981                     // but MODE_V1_V4 will always be more efficient
982                     *no_skip = info.mode != MODE_MC;
983
984                     write_strip_header(s, y, h, keyframe, s->strip_buf, best_size);
985                 }
986             }
987         }
988     }
989
990     best_size += STRIP_HEADER_SIZE;
991     memcpy(buf, s->strip_buf, best_size);
992
993     return best_size;
994 }
995
996 static int write_cvid_header(CinepakEncContext *s, unsigned char *buf,
997                              int num_strips, int data_size, int isakeyframe)
998 {
999     buf[0] = isakeyframe ? 0 : 1;
1000     AV_WB24(&buf[1], data_size + CVID_HEADER_SIZE);
1001     AV_WB16(&buf[4], s->w);
1002     AV_WB16(&buf[6], s->h);
1003     AV_WB16(&buf[8], num_strips);
1004
1005     return CVID_HEADER_SIZE;
1006 }
1007
1008 static int rd_frame(CinepakEncContext *s, const AVFrame *frame,
1009                     int isakeyframe, unsigned char *buf, int buf_size, int *got_keyframe)
1010 {
1011     int num_strips, strip, i, y, nexty, size, temp_size, best_size;
1012     uint8_t *last_data    [4], *data    [4], *scratch_data    [4];
1013     int      last_linesize[4],  linesize[4],  scratch_linesize[4];
1014     int64_t best_score = 0, score, score_temp;
1015     int best_nstrips, best_strip_offsets[MAX_STRIPS];
1016
1017     if (s->pix_fmt == AV_PIX_FMT_RGB24) {
1018         int x;
1019         // build a copy of the given frame in the correct colorspace
1020         for (y = 0; y < s->h; y += 2)
1021             for (x = 0; x < s->w; x += 2) {
1022                 const uint8_t *ir[2];
1023                 int32_t r, g, b, rr, gg, bb;
1024                 ir[0] = frame->data[0] + x * 3 + y * frame->linesize[0];
1025                 ir[1] = ir[0] + frame->linesize[0];
1026                 get_sub_picture(s, x, y,
1027                                 s->input_frame->data, s->input_frame->linesize,
1028                                 scratch_data, scratch_linesize);
1029                 r = g = b = 0;
1030                 for (i = 0; i < 4; ++i) {
1031                     int i1, i2;
1032                     i1 = (i & 1);
1033                     i2 = (i >= 2);
1034                     rr = ir[i2][i1 * 3 + 0];
1035                     gg = ir[i2][i1 * 3 + 1];
1036                     bb = ir[i2][i1 * 3 + 2];
1037                     r += rr;
1038                     g += gg;
1039                     b += bb;
1040                     // using fixed point arithmetic for portable repeatability, scaling by 2^23
1041                     // "Y"
1042                     // rr = 0.2857 * rr + 0.5714 * gg + 0.1429 * bb;
1043                     rr = (2396625 * rr + 4793251 * gg + 1198732 * bb) >> 23;
1044                     if (rr < 0)
1045                         rr = 0;
1046                     else if (rr > 255)
1047                         rr = 255;
1048                     scratch_data[0][i1 + i2 * scratch_linesize[0]] = rr;
1049                 }
1050                 // let us scale down as late as possible
1051                 //                r /= 4; g /= 4; b /= 4;
1052                 // "U"
1053                 // rr = -0.1429 * r - 0.2857 * g + 0.4286 * b;
1054                 rr = (-299683 * r - 599156 * g + 898839 * b) >> 23;
1055                 if (rr < -128)
1056                     rr = -128;
1057                 else if (rr > 127)
1058                     rr = 127;
1059                 scratch_data[1][0] = rr + 128; // quantize needs unsigned
1060                 // "V"
1061                 // rr = 0.3571 * r - 0.2857 * g - 0.0714 * b;
1062                 rr = (748893 * r - 599156 * g - 149737 * b) >> 23;
1063                 if (rr < -128)
1064                     rr = -128;
1065                 else if (rr > 127)
1066                     rr = 127;
1067                 scratch_data[2][0] = rr + 128; // quantize needs unsigned
1068             }
1069     }
1070
1071     // would be nice but quite certainly incompatible with vintage players:
1072     // support encoding zero strips (meaning skip the whole frame)
1073     for (num_strips = s->min_strips; num_strips <= s->max_strips && num_strips <= s->h / MB_SIZE; num_strips++) {
1074         int strip_offsets[MAX_STRIPS];
1075         int all_no_skip = 1;
1076         score = 0;
1077         size  = 0;
1078
1079         for (y = 0, strip = 1; y < s->h; strip++, y = nexty) {
1080             int strip_height, no_skip;
1081
1082             strip_offsets[strip-1] = size + CVID_HEADER_SIZE;
1083             nexty = strip * s->h / num_strips; // <= s->h
1084             // make nexty the next multiple of 4 if not already there
1085             if (nexty & 3)
1086                 nexty += 4 - (nexty & 3);
1087
1088             strip_height = nexty - y;
1089             if (strip_height <= 0) { // can this ever happen?
1090                 av_log(s->avctx, AV_LOG_INFO, "skipping zero height strip %i of %i\n", strip, num_strips);
1091                 continue;
1092             }
1093
1094             if (s->pix_fmt == AV_PIX_FMT_RGB24)
1095                 get_sub_picture(s, 0, y,
1096                                 s->input_frame->data, s->input_frame->linesize,
1097                                 data, linesize);
1098             else
1099                 get_sub_picture(s, 0, y,
1100                                 frame->data, frame->linesize,
1101                                 data, linesize);
1102             get_sub_picture(s, 0, y,
1103                             s->last_frame->data, s->last_frame->linesize,
1104                             last_data, last_linesize);
1105             get_sub_picture(s, 0, y,
1106                             s->scratch_frame->data, s->scratch_frame->linesize,
1107                             scratch_data, scratch_linesize);
1108
1109             if ((temp_size = rd_strip(s, y, strip_height, isakeyframe,
1110                                       last_data, last_linesize, data, linesize,
1111                                       scratch_data, scratch_linesize,
1112                                       s->frame_buf + strip_offsets[strip-1],
1113                                       &score_temp, &no_skip)) < 0)
1114                 return temp_size;
1115
1116             score += score_temp;
1117             size += temp_size;
1118             all_no_skip &= no_skip;
1119         }
1120
1121         if (best_score == 0 || score < best_score) {
1122             best_score = score;
1123             best_size = size + write_cvid_header(s, s->frame_buf, num_strips, size, all_no_skip);
1124
1125             FFSWAP(AVFrame *, s->best_frame, s->scratch_frame);
1126             memcpy(buf, s->frame_buf, best_size);
1127             best_nstrips = num_strips;
1128             *got_keyframe = all_no_skip; // no skip MBs in any strip -> keyframe
1129             memcpy(best_strip_offsets, strip_offsets, sizeof(strip_offsets));
1130         }
1131         // avoid trying too many strip numbers without a real reason
1132         // (this makes the processing of the very first frame faster)
1133         if (num_strips - best_nstrips > 4)
1134             break;
1135     }
1136
1137     // update strip headers
1138     for (i = 0; i < best_nstrips; i++) {
1139         write_strip_keyframe(s->frame_buf + best_strip_offsets[i], *got_keyframe);
1140     }
1141
1142     // let the number of strips slowly adapt to the changes in the contents,
1143     // compared to full bruteforcing every time this will occasionally lead
1144     // to some r/d performance loss but makes encoding up to several times faster
1145     if (!s->strip_number_delta_range) {
1146         if (best_nstrips == s->max_strips) { // let us try to step up
1147             s->max_strips = best_nstrips + 1;
1148             if (s->max_strips >= s->max_max_strips)
1149                 s->max_strips = s->max_max_strips;
1150         } else { // try to step down
1151             s->max_strips = best_nstrips;
1152         }
1153         s->min_strips = s->max_strips - 1;
1154         if (s->min_strips < s->min_min_strips)
1155             s->min_strips = s->min_min_strips;
1156     } else {
1157         s->max_strips = best_nstrips + s->strip_number_delta_range;
1158         if (s->max_strips >= s->max_max_strips)
1159             s->max_strips = s->max_max_strips;
1160         s->min_strips = best_nstrips - s->strip_number_delta_range;
1161         if (s->min_strips < s->min_min_strips)
1162             s->min_strips = s->min_min_strips;
1163     }
1164
1165     return best_size;
1166 }
1167
1168 static int cinepak_encode_frame(AVCodecContext *avctx, AVPacket *pkt,
1169                                 const AVFrame *frame, int *got_packet)
1170 {
1171     CinepakEncContext *s = avctx->priv_data;
1172     int ret, got_keyframe;
1173
1174     s->lambda = frame->quality ? frame->quality - 1 : 2 * FF_LAMBDA_SCALE;
1175
1176     if ((ret = ff_alloc_packet(avctx, pkt, s->frame_buf_size)) < 0)
1177         return ret;
1178     ret       = rd_frame(s, frame, (s->curframe == 0), pkt->data, s->frame_buf_size, &got_keyframe);
1179     pkt->size = ret;
1180     if (got_keyframe) {
1181         pkt->flags |= AV_PKT_FLAG_KEY;
1182         s->curframe = 0;
1183     }
1184     *got_packet = 1;
1185
1186     FFSWAP(AVFrame *, s->last_frame, s->best_frame);
1187
1188     if (++s->curframe >= avctx->gop_size)
1189         s->curframe = 0;
1190
1191     return 0;
1192 }
1193
1194 static av_cold int cinepak_encode_end(AVCodecContext *avctx)
1195 {
1196     CinepakEncContext *s = avctx->priv_data;
1197     int x;
1198
1199     avpriv_elbg_free(&s->elbg);
1200     av_frame_free(&s->last_frame);
1201     av_frame_free(&s->best_frame);
1202     av_frame_free(&s->scratch_frame);
1203     if (avctx->pix_fmt == AV_PIX_FMT_RGB24)
1204         av_frame_free(&s->input_frame);
1205     av_freep(&s->codebook_input);
1206     av_freep(&s->codebook_closest);
1207     av_freep(&s->strip_buf);
1208     av_freep(&s->frame_buf);
1209     av_freep(&s->mb);
1210
1211     for (x = 0; x < (avctx->pix_fmt == AV_PIX_FMT_RGB24 ? 4 : 3); x++)
1212         av_freep(&s->pict_bufs[x]);
1213
1214     return 0;
1215 }
1216
1217 const FFCodec ff_cinepak_encoder = {
1218     .p.name         = "cinepak",
1219     CODEC_LONG_NAME("Cinepak"),
1220     .p.type         = AVMEDIA_TYPE_VIDEO,
1221     .p.id           = AV_CODEC_ID_CINEPAK,
1222     .p.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_ENCODER_REORDERED_OPAQUE,
1223     .priv_data_size = sizeof(CinepakEncContext),
1224     .init           = cinepak_encode_init,
1225     FF_CODEC_ENCODE_CB(cinepak_encode_frame),
1226     .close          = cinepak_encode_end,
1227     .p.pix_fmts     = (const enum AVPixelFormat[]) { AV_PIX_FMT_RGB24, AV_PIX_FMT_GRAY8, AV_PIX_FMT_NONE },
1228     .p.priv_class   = &cinepak_class,
1229     .caps_internal  = FF_CODEC_CAP_INIT_CLEANUP,
1230 };