Merge branch '2021-08-02-numeric-input-cleanups'
[platform/kernel/u-boot.git] / lib / xxhash.c
1 // SPDX-License-Identifier: (GPL-2.0 or BSD-2-Clause)
2 /*
3  * xxHash - Extremely Fast Hash algorithm
4  * Copyright (C) 2012-2016, Yann Collet.
5  *
6  * You can contact the author at:
7  * - xxHash homepage: http://cyan4973.github.io/xxHash/
8  * - xxHash source repository: https://github.com/Cyan4973/xxHash
9  */
10
11 #include <asm/unaligned.h>
12 #include <linux/errno.h>
13 #include <linux/compiler.h>
14 #include <linux/kernel.h>
15 #include <linux/compat.h>
16 #include <linux/string.h>
17 #include <linux/xxhash.h>
18
19 /*-*************************************
20  * Macros
21  **************************************/
22 #define xxh_rotl32(x, r) ((x << r) | (x >> (32 - r)))
23 #define xxh_rotl64(x, r) ((x << r) | (x >> (64 - r)))
24
25 #ifdef __LITTLE_ENDIAN
26 # define XXH_CPU_LITTLE_ENDIAN 1
27 #else
28 # define XXH_CPU_LITTLE_ENDIAN 0
29 #endif
30
31 /*-*************************************
32  * Constants
33  **************************************/
34 static const uint32_t PRIME32_1 = 2654435761U;
35 static const uint32_t PRIME32_2 = 2246822519U;
36 static const uint32_t PRIME32_3 = 3266489917U;
37 static const uint32_t PRIME32_4 =  668265263U;
38 static const uint32_t PRIME32_5 =  374761393U;
39
40 static const uint64_t PRIME64_1 = 11400714785074694791ULL;
41 static const uint64_t PRIME64_2 = 14029467366897019727ULL;
42 static const uint64_t PRIME64_3 =  1609587929392839161ULL;
43 static const uint64_t PRIME64_4 =  9650029242287828579ULL;
44 static const uint64_t PRIME64_5 =  2870177450012600261ULL;
45
46 /*-**************************
47  *  Utils
48  ***************************/
49 void xxh32_copy_state(struct xxh32_state *dst, const struct xxh32_state *src)
50 {
51         memcpy(dst, src, sizeof(*dst));
52 }
53 EXPORT_SYMBOL(xxh32_copy_state);
54
55 void xxh64_copy_state(struct xxh64_state *dst, const struct xxh64_state *src)
56 {
57         memcpy(dst, src, sizeof(*dst));
58 }
59 EXPORT_SYMBOL(xxh64_copy_state);
60
61 /*-***************************
62  * Simple Hash Functions
63  ****************************/
64 static uint32_t xxh32_round(uint32_t seed, const uint32_t input)
65 {
66         seed += input * PRIME32_2;
67         seed = xxh_rotl32(seed, 13);
68         seed *= PRIME32_1;
69         return seed;
70 }
71
72 uint32_t xxh32(const void *input, const size_t len, const uint32_t seed)
73 {
74         const uint8_t *p = (const uint8_t *)input;
75         const uint8_t *b_end = p + len;
76         uint32_t h32;
77
78         if (len >= 16) {
79                 const uint8_t *const limit = b_end - 16;
80                 uint32_t v1 = seed + PRIME32_1 + PRIME32_2;
81                 uint32_t v2 = seed + PRIME32_2;
82                 uint32_t v3 = seed + 0;
83                 uint32_t v4 = seed - PRIME32_1;
84
85                 do {
86                         v1 = xxh32_round(v1, get_unaligned_le32(p));
87                         p += 4;
88                         v2 = xxh32_round(v2, get_unaligned_le32(p));
89                         p += 4;
90                         v3 = xxh32_round(v3, get_unaligned_le32(p));
91                         p += 4;
92                         v4 = xxh32_round(v4, get_unaligned_le32(p));
93                         p += 4;
94                 } while (p <= limit);
95
96                 h32 = xxh_rotl32(v1, 1) + xxh_rotl32(v2, 7) +
97                         xxh_rotl32(v3, 12) + xxh_rotl32(v4, 18);
98         } else {
99                 h32 = seed + PRIME32_5;
100         }
101
102         h32 += (uint32_t)len;
103
104         while (p + 4 <= b_end) {
105                 h32 += get_unaligned_le32(p) * PRIME32_3;
106                 h32 = xxh_rotl32(h32, 17) * PRIME32_4;
107                 p += 4;
108         }
109
110         while (p < b_end) {
111                 h32 += (*p) * PRIME32_5;
112                 h32 = xxh_rotl32(h32, 11) * PRIME32_1;
113                 p++;
114         }
115
116         h32 ^= h32 >> 15;
117         h32 *= PRIME32_2;
118         h32 ^= h32 >> 13;
119         h32 *= PRIME32_3;
120         h32 ^= h32 >> 16;
121
122         return h32;
123 }
124 EXPORT_SYMBOL(xxh32);
125
126 static uint64_t xxh64_round(uint64_t acc, const uint64_t input)
127 {
128         acc += input * PRIME64_2;
129         acc = xxh_rotl64(acc, 31);
130         acc *= PRIME64_1;
131         return acc;
132 }
133
134 static uint64_t xxh64_merge_round(uint64_t acc, uint64_t val)
135 {
136         val = xxh64_round(0, val);
137         acc ^= val;
138         acc = acc * PRIME64_1 + PRIME64_4;
139         return acc;
140 }
141
142 uint64_t xxh64(const void *input, const size_t len, const uint64_t seed)
143 {
144         const uint8_t *p = (const uint8_t *)input;
145         const uint8_t *const b_end = p + len;
146         uint64_t h64;
147
148         if (len >= 32) {
149                 const uint8_t *const limit = b_end - 32;
150                 uint64_t v1 = seed + PRIME64_1 + PRIME64_2;
151                 uint64_t v2 = seed + PRIME64_2;
152                 uint64_t v3 = seed + 0;
153                 uint64_t v4 = seed - PRIME64_1;
154
155                 do {
156                         v1 = xxh64_round(v1, get_unaligned_le64(p));
157                         p += 8;
158                         v2 = xxh64_round(v2, get_unaligned_le64(p));
159                         p += 8;
160                         v3 = xxh64_round(v3, get_unaligned_le64(p));
161                         p += 8;
162                         v4 = xxh64_round(v4, get_unaligned_le64(p));
163                         p += 8;
164                 } while (p <= limit);
165
166                 h64 = xxh_rotl64(v1, 1) + xxh_rotl64(v2, 7) +
167                         xxh_rotl64(v3, 12) + xxh_rotl64(v4, 18);
168                 h64 = xxh64_merge_round(h64, v1);
169                 h64 = xxh64_merge_round(h64, v2);
170                 h64 = xxh64_merge_round(h64, v3);
171                 h64 = xxh64_merge_round(h64, v4);
172
173         } else {
174                 h64  = seed + PRIME64_5;
175         }
176
177         h64 += (uint64_t)len;
178
179         while (p + 8 <= b_end) {
180                 const uint64_t k1 = xxh64_round(0, get_unaligned_le64(p));
181
182                 h64 ^= k1;
183                 h64 = xxh_rotl64(h64, 27) * PRIME64_1 + PRIME64_4;
184                 p += 8;
185         }
186
187         if (p + 4 <= b_end) {
188                 h64 ^= (uint64_t)(get_unaligned_le32(p)) * PRIME64_1;
189                 h64 = xxh_rotl64(h64, 23) * PRIME64_2 + PRIME64_3;
190                 p += 4;
191         }
192
193         while (p < b_end) {
194                 h64 ^= (*p) * PRIME64_5;
195                 h64 = xxh_rotl64(h64, 11) * PRIME64_1;
196                 p++;
197         }
198
199         h64 ^= h64 >> 33;
200         h64 *= PRIME64_2;
201         h64 ^= h64 >> 29;
202         h64 *= PRIME64_3;
203         h64 ^= h64 >> 32;
204
205         return h64;
206 }
207 EXPORT_SYMBOL(xxh64);
208
209 /*-**************************************************
210  * Advanced Hash Functions
211  ***************************************************/
212 void xxh32_reset(struct xxh32_state *statePtr, const uint32_t seed)
213 {
214         /* use a local state for memcpy() to avoid strict-aliasing warnings */
215         struct xxh32_state state;
216
217         memset(&state, 0, sizeof(state));
218         state.v1 = seed + PRIME32_1 + PRIME32_2;
219         state.v2 = seed + PRIME32_2;
220         state.v3 = seed + 0;
221         state.v4 = seed - PRIME32_1;
222         memcpy(statePtr, &state, sizeof(state));
223 }
224 EXPORT_SYMBOL(xxh32_reset);
225
226 void xxh64_reset(struct xxh64_state *statePtr, const uint64_t seed)
227 {
228         /* use a local state for memcpy() to avoid strict-aliasing warnings */
229         struct xxh64_state state;
230
231         memset(&state, 0, sizeof(state));
232         state.v1 = seed + PRIME64_1 + PRIME64_2;
233         state.v2 = seed + PRIME64_2;
234         state.v3 = seed + 0;
235         state.v4 = seed - PRIME64_1;
236         memcpy(statePtr, &state, sizeof(state));
237 }
238 EXPORT_SYMBOL(xxh64_reset);
239
240 int xxh32_update(struct xxh32_state *state, const void *input, const size_t len)
241 {
242         const uint8_t *p = (const uint8_t *)input;
243         const uint8_t *const b_end = p + len;
244
245         if (input == NULL)
246                 return -EINVAL;
247
248         state->total_len_32 += (uint32_t)len;
249         state->large_len |= (len >= 16) | (state->total_len_32 >= 16);
250
251         if (state->memsize + len < 16) { /* fill in tmp buffer */
252                 memcpy((uint8_t *)(state->mem32) + state->memsize, input, len);
253                 state->memsize += (uint32_t)len;
254                 return 0;
255         }
256
257         if (state->memsize) { /* some data left from previous update */
258                 const uint32_t *p32 = state->mem32;
259
260                 memcpy((uint8_t *)(state->mem32) + state->memsize, input,
261                         16 - state->memsize);
262
263                 state->v1 = xxh32_round(state->v1, get_unaligned_le32(p32));
264                 p32++;
265                 state->v2 = xxh32_round(state->v2, get_unaligned_le32(p32));
266                 p32++;
267                 state->v3 = xxh32_round(state->v3, get_unaligned_le32(p32));
268                 p32++;
269                 state->v4 = xxh32_round(state->v4, get_unaligned_le32(p32));
270                 p32++;
271
272                 p += 16-state->memsize;
273                 state->memsize = 0;
274         }
275
276         if (p <= b_end - 16) {
277                 const uint8_t *const limit = b_end - 16;
278                 uint32_t v1 = state->v1;
279                 uint32_t v2 = state->v2;
280                 uint32_t v3 = state->v3;
281                 uint32_t v4 = state->v4;
282
283                 do {
284                         v1 = xxh32_round(v1, get_unaligned_le32(p));
285                         p += 4;
286                         v2 = xxh32_round(v2, get_unaligned_le32(p));
287                         p += 4;
288                         v3 = xxh32_round(v3, get_unaligned_le32(p));
289                         p += 4;
290                         v4 = xxh32_round(v4, get_unaligned_le32(p));
291                         p += 4;
292                 } while (p <= limit);
293
294                 state->v1 = v1;
295                 state->v2 = v2;
296                 state->v3 = v3;
297                 state->v4 = v4;
298         }
299
300         if (p < b_end) {
301                 memcpy(state->mem32, p, (size_t)(b_end-p));
302                 state->memsize = (uint32_t)(b_end-p);
303         }
304
305         return 0;
306 }
307 EXPORT_SYMBOL(xxh32_update);
308
309 uint32_t xxh32_digest(const struct xxh32_state *state)
310 {
311         const uint8_t *p = (const uint8_t *)state->mem32;
312         const uint8_t *const b_end = (const uint8_t *)(state->mem32) +
313                 state->memsize;
314         uint32_t h32;
315
316         if (state->large_len) {
317                 h32 = xxh_rotl32(state->v1, 1) + xxh_rotl32(state->v2, 7) +
318                         xxh_rotl32(state->v3, 12) + xxh_rotl32(state->v4, 18);
319         } else {
320                 h32 = state->v3 /* == seed */ + PRIME32_5;
321         }
322
323         h32 += state->total_len_32;
324
325         while (p + 4 <= b_end) {
326                 h32 += get_unaligned_le32(p) * PRIME32_3;
327                 h32 = xxh_rotl32(h32, 17) * PRIME32_4;
328                 p += 4;
329         }
330
331         while (p < b_end) {
332                 h32 += (*p) * PRIME32_5;
333                 h32 = xxh_rotl32(h32, 11) * PRIME32_1;
334                 p++;
335         }
336
337         h32 ^= h32 >> 15;
338         h32 *= PRIME32_2;
339         h32 ^= h32 >> 13;
340         h32 *= PRIME32_3;
341         h32 ^= h32 >> 16;
342
343         return h32;
344 }
345 EXPORT_SYMBOL(xxh32_digest);
346
347 int xxh64_update(struct xxh64_state *state, const void *input, const size_t len)
348 {
349         const uint8_t *p = (const uint8_t *)input;
350         const uint8_t *const b_end = p + len;
351
352         if (input == NULL)
353                 return -EINVAL;
354
355         state->total_len += len;
356
357         if (state->memsize + len < 32) { /* fill in tmp buffer */
358                 memcpy(((uint8_t *)state->mem64) + state->memsize, input, len);
359                 state->memsize += (uint32_t)len;
360                 return 0;
361         }
362
363         if (state->memsize) { /* tmp buffer is full */
364                 uint64_t *p64 = state->mem64;
365
366                 memcpy(((uint8_t *)p64) + state->memsize, input,
367                         32 - state->memsize);
368
369                 state->v1 = xxh64_round(state->v1, get_unaligned_le64(p64));
370                 p64++;
371                 state->v2 = xxh64_round(state->v2, get_unaligned_le64(p64));
372                 p64++;
373                 state->v3 = xxh64_round(state->v3, get_unaligned_le64(p64));
374                 p64++;
375                 state->v4 = xxh64_round(state->v4, get_unaligned_le64(p64));
376
377                 p += 32 - state->memsize;
378                 state->memsize = 0;
379         }
380
381         if (p + 32 <= b_end) {
382                 const uint8_t *const limit = b_end - 32;
383                 uint64_t v1 = state->v1;
384                 uint64_t v2 = state->v2;
385                 uint64_t v3 = state->v3;
386                 uint64_t v4 = state->v4;
387
388                 do {
389                         v1 = xxh64_round(v1, get_unaligned_le64(p));
390                         p += 8;
391                         v2 = xxh64_round(v2, get_unaligned_le64(p));
392                         p += 8;
393                         v3 = xxh64_round(v3, get_unaligned_le64(p));
394                         p += 8;
395                         v4 = xxh64_round(v4, get_unaligned_le64(p));
396                         p += 8;
397                 } while (p <= limit);
398
399                 state->v1 = v1;
400                 state->v2 = v2;
401                 state->v3 = v3;
402                 state->v4 = v4;
403         }
404
405         if (p < b_end) {
406                 memcpy(state->mem64, p, (size_t)(b_end-p));
407                 state->memsize = (uint32_t)(b_end - p);
408         }
409
410         return 0;
411 }
412 EXPORT_SYMBOL(xxh64_update);
413
414 uint64_t xxh64_digest(const struct xxh64_state *state)
415 {
416         const uint8_t *p = (const uint8_t *)state->mem64;
417         const uint8_t *const b_end = (const uint8_t *)state->mem64 +
418                 state->memsize;
419         uint64_t h64;
420
421         if (state->total_len >= 32) {
422                 const uint64_t v1 = state->v1;
423                 const uint64_t v2 = state->v2;
424                 const uint64_t v3 = state->v3;
425                 const uint64_t v4 = state->v4;
426
427                 h64 = xxh_rotl64(v1, 1) + xxh_rotl64(v2, 7) +
428                         xxh_rotl64(v3, 12) + xxh_rotl64(v4, 18);
429                 h64 = xxh64_merge_round(h64, v1);
430                 h64 = xxh64_merge_round(h64, v2);
431                 h64 = xxh64_merge_round(h64, v3);
432                 h64 = xxh64_merge_round(h64, v4);
433         } else {
434                 h64  = state->v3 + PRIME64_5;
435         }
436
437         h64 += (uint64_t)state->total_len;
438
439         while (p + 8 <= b_end) {
440                 const uint64_t k1 = xxh64_round(0, get_unaligned_le64(p));
441
442                 h64 ^= k1;
443                 h64 = xxh_rotl64(h64, 27) * PRIME64_1 + PRIME64_4;
444                 p += 8;
445         }
446
447         if (p + 4 <= b_end) {
448                 h64 ^= (uint64_t)(get_unaligned_le32(p)) * PRIME64_1;
449                 h64 = xxh_rotl64(h64, 23) * PRIME64_2 + PRIME64_3;
450                 p += 4;
451         }
452
453         while (p < b_end) {
454                 h64 ^= (*p) * PRIME64_5;
455                 h64 = xxh_rotl64(h64, 11) * PRIME64_1;
456                 p++;
457         }
458
459         h64 ^= h64 >> 33;
460         h64 *= PRIME64_2;
461         h64 ^= h64 >> 29;
462         h64 *= PRIME64_3;
463         h64 ^= h64 >> 32;
464
465         return h64;
466 }
467 EXPORT_SYMBOL(xxh64_digest);