1 // SPDX-License-Identifier: GPL-2.0
3 * Test cases for SL[AOU]B/page initialization at alloc/free time.
5 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/init.h>
8 #include <linux/kernel.h>
10 #include <linux/module.h>
11 #include <linux/slab.h>
12 #include <linux/string.h>
13 #include <linux/vmalloc.h>
15 #define GARBAGE_INT (0x09A7BA9E)
16 #define GARBAGE_BYTE (0x9E)
18 #define REPORT_FAILURES_IN_FN() \
21 pr_info("%s failed %d out of %d times\n", \
22 __func__, failures, num_tests); \
24 pr_info("all %d tests in %s passed\n", \
25 num_tests, __func__); \
28 /* Calculate the number of uninitialized bytes in the buffer. */
29 static int __init count_nonzero_bytes(void *ptr, size_t size)
32 unsigned char *p = (unsigned char *)ptr;
34 for (i = 0; i < size; i++)
40 /* Fill a buffer with garbage, skipping |skip| first bytes. */
41 static void __init fill_with_garbage_skip(void *ptr, int size, size_t skip)
43 unsigned int *p = (unsigned int *)((char *)ptr + skip);
49 while (size >= sizeof(*p)) {
55 memset(&p[i], GARBAGE_BYTE, size);
58 static void __init fill_with_garbage(void *ptr, size_t size)
60 fill_with_garbage_skip(ptr, size, 0);
63 static int __init do_alloc_pages_order(int order, int *total_failures)
67 size_t size = PAGE_SIZE << order;
69 page = alloc_pages(GFP_KERNEL, order);
70 buf = page_address(page);
71 fill_with_garbage(buf, size);
72 __free_pages(page, order);
74 page = alloc_pages(GFP_KERNEL, order);
75 buf = page_address(page);
76 if (count_nonzero_bytes(buf, size))
78 fill_with_garbage(buf, size);
79 __free_pages(page, order);
83 /* Test the page allocator by calling alloc_pages with different orders. */
84 static int __init test_pages(int *total_failures)
86 int failures = 0, num_tests = 0;
89 for (i = 0; i < 10; i++)
90 num_tests += do_alloc_pages_order(i, &failures);
92 REPORT_FAILURES_IN_FN();
93 *total_failures += failures;
97 /* Test kmalloc() with given parameters. */
98 static int __init do_kmalloc_size(size_t size, int *total_failures)
102 buf = kmalloc(size, GFP_KERNEL);
103 fill_with_garbage(buf, size);
106 buf = kmalloc(size, GFP_KERNEL);
107 if (count_nonzero_bytes(buf, size))
109 fill_with_garbage(buf, size);
114 /* Test vmalloc() with given parameters. */
115 static int __init do_vmalloc_size(size_t size, int *total_failures)
120 fill_with_garbage(buf, size);
124 if (count_nonzero_bytes(buf, size))
126 fill_with_garbage(buf, size);
131 /* Test kmalloc()/vmalloc() by allocating objects of different sizes. */
132 static int __init test_kvmalloc(int *total_failures)
134 int failures = 0, num_tests = 0;
137 for (i = 0; i < 20; i++) {
139 num_tests += do_kmalloc_size(size, &failures);
140 num_tests += do_vmalloc_size(size, &failures);
143 REPORT_FAILURES_IN_FN();
144 *total_failures += failures;
148 #define CTOR_BYTES (sizeof(unsigned int))
149 #define CTOR_PATTERN (0x41414141)
150 /* Initialize the first 4 bytes of the object. */
151 static void test_ctor(void *obj)
153 *(unsigned int *)obj = CTOR_PATTERN;
157 * Check the invariants for the buffer allocated from a slab cache.
158 * If the cache has a test constructor, the first 4 bytes of the object must
159 * always remain equal to CTOR_PATTERN.
160 * If the cache isn't an RCU-typesafe one, or if the allocation is done with
161 * __GFP_ZERO, then the object contents must be zeroed after allocation.
162 * If the cache is an RCU-typesafe one, the object contents must never be
163 * zeroed after the first use. This is checked by memcmp() in
164 * do_kmem_cache_size().
166 static bool __init check_buf(void *buf, int size, bool want_ctor,
167 bool want_rcu, bool want_zero)
172 bytes = count_nonzero_bytes(buf, size);
173 WARN_ON(want_ctor && want_zero);
177 if (*(unsigned int *)buf != CTOR_PATTERN)
187 * Test kmem_cache with given parameters:
188 * want_ctor - use a constructor;
189 * want_rcu - use SLAB_TYPESAFE_BY_RCU;
190 * want_zero - use __GFP_ZERO.
192 static int __init do_kmem_cache_size(size_t size, bool want_ctor,
193 bool want_rcu, bool want_zero,
196 struct kmem_cache *c;
199 gfp_t alloc_mask = GFP_KERNEL | (want_zero ? __GFP_ZERO : 0);
200 void *buf, *buf_copy;
202 c = kmem_cache_create("test_cache", size, 1,
203 want_rcu ? SLAB_TYPESAFE_BY_RCU : 0,
204 want_ctor ? test_ctor : NULL);
205 for (iter = 0; iter < 10; iter++) {
206 buf = kmem_cache_alloc(c, alloc_mask);
207 /* Check that buf is zeroed, if it must be. */
208 fail = check_buf(buf, size, want_ctor, want_rcu, want_zero);
209 fill_with_garbage_skip(buf, size, want_ctor ? CTOR_BYTES : 0);
212 kmem_cache_free(c, buf);
217 * If this is an RCU cache, use a critical section to ensure we
218 * can touch objects after they're freed.
222 * Copy the buffer to check that it's not wiped on
225 buf_copy = kmalloc(size, GFP_ATOMIC);
227 memcpy(buf_copy, buf, size);
229 kmem_cache_free(c, buf);
231 * Check that |buf| is intact after kmem_cache_free().
232 * |want_zero| is false, because we wrote garbage to
233 * the buffer already.
235 fail |= check_buf(buf, size, want_ctor, want_rcu,
238 fail |= (bool)memcmp(buf, buf_copy, size);
243 kmem_cache_destroy(c);
245 *total_failures += fail;
250 * Check that the data written to an RCU-allocated object survives
253 static int __init do_kmem_cache_rcu_persistent(int size, int *total_failures)
255 struct kmem_cache *c;
256 void *buf, *buf_contents, *saved_ptr;
258 int i, iter, maxiter = 1024;
261 c = kmem_cache_create("test_cache", size, size, SLAB_TYPESAFE_BY_RCU,
263 buf = kmem_cache_alloc(c, GFP_KERNEL);
265 fill_with_garbage(buf, size);
266 buf_contents = kmalloc(size, GFP_KERNEL);
269 used_objects = kmalloc_array(maxiter, sizeof(void *), GFP_KERNEL);
274 memcpy(buf_contents, buf, size);
275 kmem_cache_free(c, buf);
277 * Run for a fixed number of iterations. If we never hit saved_ptr,
278 * assume the test passes.
280 for (iter = 0; iter < maxiter; iter++) {
281 buf = kmem_cache_alloc(c, GFP_KERNEL);
282 used_objects[iter] = buf;
283 if (buf == saved_ptr) {
284 fail = memcmp(buf_contents, buf, size);
285 for (i = 0; i <= iter; i++)
286 kmem_cache_free(c, used_objects[i]);
292 kmem_cache_destroy(c);
296 *total_failures += fail;
300 static int __init do_kmem_cache_size_bulk(int size, int *total_failures)
302 struct kmem_cache *c;
303 int i, iter, maxiter = 1024;
308 c = kmem_cache_create("test_cache", size, size, 0, NULL);
309 for (iter = 0; (iter < maxiter) && !fail; iter++) {
310 num = kmem_cache_alloc_bulk(c, GFP_KERNEL, ARRAY_SIZE(objects),
312 for (i = 0; i < num; i++) {
313 bytes = count_nonzero_bytes(objects[i], size);
316 fill_with_garbage(objects[i], size);
320 kmem_cache_free_bulk(c, num, objects);
322 *total_failures += fail;
327 * Test kmem_cache allocation by creating caches of different sizes, with and
328 * without constructors, with and without SLAB_TYPESAFE_BY_RCU.
330 static int __init test_kmemcache(int *total_failures)
332 int failures = 0, num_tests = 0;
334 bool ctor, rcu, zero;
336 for (i = 0; i < 10; i++) {
338 for (flags = 0; flags < 8; flags++) {
344 num_tests += do_kmem_cache_size(size, ctor, rcu, zero,
347 num_tests += do_kmem_cache_size_bulk(size, &failures);
349 REPORT_FAILURES_IN_FN();
350 *total_failures += failures;
354 /* Test the behavior of SLAB_TYPESAFE_BY_RCU caches of different sizes. */
355 static int __init test_rcu_persistent(int *total_failures)
357 int failures = 0, num_tests = 0;
360 for (i = 0; i < 10; i++) {
362 num_tests += do_kmem_cache_rcu_persistent(size, &failures);
364 REPORT_FAILURES_IN_FN();
365 *total_failures += failures;
370 * Run the tests. Each test function returns the number of executed tests and
371 * updates |failures| with the number of failed tests.
373 static int __init test_meminit_init(void)
375 int failures = 0, num_tests = 0;
377 num_tests += test_pages(&failures);
378 num_tests += test_kvmalloc(&failures);
379 num_tests += test_kmemcache(&failures);
380 num_tests += test_rcu_persistent(&failures);
383 pr_info("all %d tests passed!\n", num_tests);
385 pr_info("failures: %d out of %d\n", failures, num_tests);
387 return failures ? -EINVAL : 0;
389 module_init(test_meminit_init);
391 MODULE_LICENSE("GPL");