btrfs: don't create inline extents in fallback_to_cow
[platform/kernel/linux-starfive.git] / lib / test_hmm.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * This is a module to test the HMM (Heterogeneous Memory Management)
4  * mirror and zone device private memory migration APIs of the kernel.
5  * Userspace programs can register with the driver to mirror their own address
6  * space and can use the device to read/write any valid virtual address.
7  */
8 #include <linux/init.h>
9 #include <linux/fs.h>
10 #include <linux/mm.h>
11 #include <linux/module.h>
12 #include <linux/kernel.h>
13 #include <linux/cdev.h>
14 #include <linux/device.h>
15 #include <linux/memremap.h>
16 #include <linux/mutex.h>
17 #include <linux/rwsem.h>
18 #include <linux/sched.h>
19 #include <linux/slab.h>
20 #include <linux/highmem.h>
21 #include <linux/delay.h>
22 #include <linux/pagemap.h>
23 #include <linux/hmm.h>
24 #include <linux/vmalloc.h>
25 #include <linux/swap.h>
26 #include <linux/swapops.h>
27 #include <linux/sched/mm.h>
28 #include <linux/platform_device.h>
29 #include <linux/rmap.h>
30 #include <linux/mmu_notifier.h>
31 #include <linux/migrate.h>
32
33 #include "test_hmm_uapi.h"
34
35 #define DMIRROR_NDEVICES                4
36 #define DMIRROR_RANGE_FAULT_TIMEOUT     1000
37 #define DEVMEM_CHUNK_SIZE               (256 * 1024 * 1024U)
38 #define DEVMEM_CHUNKS_RESERVE           16
39
40 /*
41  * For device_private pages, dpage is just a dummy struct page
42  * representing a piece of device memory. dmirror_devmem_alloc_page
43  * allocates a real system memory page as backing storage to fake a
44  * real device. zone_device_data points to that backing page. But
45  * for device_coherent memory, the struct page represents real
46  * physical CPU-accessible memory that we can use directly.
47  */
48 #define BACKING_PAGE(page) (is_device_private_page((page)) ? \
49                            (page)->zone_device_data : (page))
50
51 static unsigned long spm_addr_dev0;
52 module_param(spm_addr_dev0, long, 0644);
53 MODULE_PARM_DESC(spm_addr_dev0,
54                 "Specify start address for SPM (special purpose memory) used for device 0. By setting this Coherent device type will be used. Make sure spm_addr_dev1 is set too. Minimum SPM size should be DEVMEM_CHUNK_SIZE.");
55
56 static unsigned long spm_addr_dev1;
57 module_param(spm_addr_dev1, long, 0644);
58 MODULE_PARM_DESC(spm_addr_dev1,
59                 "Specify start address for SPM (special purpose memory) used for device 1. By setting this Coherent device type will be used. Make sure spm_addr_dev0 is set too. Minimum SPM size should be DEVMEM_CHUNK_SIZE.");
60
61 static const struct dev_pagemap_ops dmirror_devmem_ops;
62 static const struct mmu_interval_notifier_ops dmirror_min_ops;
63 static dev_t dmirror_dev;
64
65 struct dmirror_device;
66
67 struct dmirror_bounce {
68         void                    *ptr;
69         unsigned long           size;
70         unsigned long           addr;
71         unsigned long           cpages;
72 };
73
74 #define DPT_XA_TAG_ATOMIC 1UL
75 #define DPT_XA_TAG_WRITE 3UL
76
77 /*
78  * Data structure to track address ranges and register for mmu interval
79  * notifier updates.
80  */
81 struct dmirror_interval {
82         struct mmu_interval_notifier    notifier;
83         struct dmirror                  *dmirror;
84 };
85
86 /*
87  * Data attached to the open device file.
88  * Note that it might be shared after a fork().
89  */
90 struct dmirror {
91         struct dmirror_device           *mdevice;
92         struct xarray                   pt;
93         struct mmu_interval_notifier    notifier;
94         struct mutex                    mutex;
95 };
96
97 /*
98  * ZONE_DEVICE pages for migration and simulating device memory.
99  */
100 struct dmirror_chunk {
101         struct dev_pagemap      pagemap;
102         struct dmirror_device   *mdevice;
103         bool remove;
104 };
105
106 /*
107  * Per device data.
108  */
109 struct dmirror_device {
110         struct cdev             cdevice;
111         unsigned int            zone_device_type;
112         struct device           device;
113
114         unsigned int            devmem_capacity;
115         unsigned int            devmem_count;
116         struct dmirror_chunk    **devmem_chunks;
117         struct mutex            devmem_lock;    /* protects the above */
118
119         unsigned long           calloc;
120         unsigned long           cfree;
121         struct page             *free_pages;
122         spinlock_t              lock;           /* protects the above */
123 };
124
125 static struct dmirror_device dmirror_devices[DMIRROR_NDEVICES];
126
127 static int dmirror_bounce_init(struct dmirror_bounce *bounce,
128                                unsigned long addr,
129                                unsigned long size)
130 {
131         bounce->addr = addr;
132         bounce->size = size;
133         bounce->cpages = 0;
134         bounce->ptr = vmalloc(size);
135         if (!bounce->ptr)
136                 return -ENOMEM;
137         return 0;
138 }
139
140 static bool dmirror_is_private_zone(struct dmirror_device *mdevice)
141 {
142         return (mdevice->zone_device_type ==
143                 HMM_DMIRROR_MEMORY_DEVICE_PRIVATE) ? true : false;
144 }
145
146 static enum migrate_vma_direction
147 dmirror_select_device(struct dmirror *dmirror)
148 {
149         return (dmirror->mdevice->zone_device_type ==
150                 HMM_DMIRROR_MEMORY_DEVICE_PRIVATE) ?
151                 MIGRATE_VMA_SELECT_DEVICE_PRIVATE :
152                 MIGRATE_VMA_SELECT_DEVICE_COHERENT;
153 }
154
155 static void dmirror_bounce_fini(struct dmirror_bounce *bounce)
156 {
157         vfree(bounce->ptr);
158 }
159
160 static int dmirror_fops_open(struct inode *inode, struct file *filp)
161 {
162         struct cdev *cdev = inode->i_cdev;
163         struct dmirror *dmirror;
164         int ret;
165
166         /* Mirror this process address space */
167         dmirror = kzalloc(sizeof(*dmirror), GFP_KERNEL);
168         if (dmirror == NULL)
169                 return -ENOMEM;
170
171         dmirror->mdevice = container_of(cdev, struct dmirror_device, cdevice);
172         mutex_init(&dmirror->mutex);
173         xa_init(&dmirror->pt);
174
175         ret = mmu_interval_notifier_insert(&dmirror->notifier, current->mm,
176                                 0, ULONG_MAX & PAGE_MASK, &dmirror_min_ops);
177         if (ret) {
178                 kfree(dmirror);
179                 return ret;
180         }
181
182         filp->private_data = dmirror;
183         return 0;
184 }
185
186 static int dmirror_fops_release(struct inode *inode, struct file *filp)
187 {
188         struct dmirror *dmirror = filp->private_data;
189
190         mmu_interval_notifier_remove(&dmirror->notifier);
191         xa_destroy(&dmirror->pt);
192         kfree(dmirror);
193         return 0;
194 }
195
196 static struct dmirror_chunk *dmirror_page_to_chunk(struct page *page)
197 {
198         return container_of(page->pgmap, struct dmirror_chunk, pagemap);
199 }
200
201 static struct dmirror_device *dmirror_page_to_device(struct page *page)
202
203 {
204         return dmirror_page_to_chunk(page)->mdevice;
205 }
206
207 static int dmirror_do_fault(struct dmirror *dmirror, struct hmm_range *range)
208 {
209         unsigned long *pfns = range->hmm_pfns;
210         unsigned long pfn;
211
212         for (pfn = (range->start >> PAGE_SHIFT);
213              pfn < (range->end >> PAGE_SHIFT);
214              pfn++, pfns++) {
215                 struct page *page;
216                 void *entry;
217
218                 /*
219                  * Since we asked for hmm_range_fault() to populate pages,
220                  * it shouldn't return an error entry on success.
221                  */
222                 WARN_ON(*pfns & HMM_PFN_ERROR);
223                 WARN_ON(!(*pfns & HMM_PFN_VALID));
224
225                 page = hmm_pfn_to_page(*pfns);
226                 WARN_ON(!page);
227
228                 entry = page;
229                 if (*pfns & HMM_PFN_WRITE)
230                         entry = xa_tag_pointer(entry, DPT_XA_TAG_WRITE);
231                 else if (WARN_ON(range->default_flags & HMM_PFN_WRITE))
232                         return -EFAULT;
233                 entry = xa_store(&dmirror->pt, pfn, entry, GFP_ATOMIC);
234                 if (xa_is_err(entry))
235                         return xa_err(entry);
236         }
237
238         return 0;
239 }
240
241 static void dmirror_do_update(struct dmirror *dmirror, unsigned long start,
242                               unsigned long end)
243 {
244         unsigned long pfn;
245         void *entry;
246
247         /*
248          * The XArray doesn't hold references to pages since it relies on
249          * the mmu notifier to clear page pointers when they become stale.
250          * Therefore, it is OK to just clear the entry.
251          */
252         xa_for_each_range(&dmirror->pt, pfn, entry, start >> PAGE_SHIFT,
253                           end >> PAGE_SHIFT)
254                 xa_erase(&dmirror->pt, pfn);
255 }
256
257 static bool dmirror_interval_invalidate(struct mmu_interval_notifier *mni,
258                                 const struct mmu_notifier_range *range,
259                                 unsigned long cur_seq)
260 {
261         struct dmirror *dmirror = container_of(mni, struct dmirror, notifier);
262
263         /*
264          * Ignore invalidation callbacks for device private pages since
265          * the invalidation is handled as part of the migration process.
266          */
267         if (range->event == MMU_NOTIFY_MIGRATE &&
268             range->owner == dmirror->mdevice)
269                 return true;
270
271         if (mmu_notifier_range_blockable(range))
272                 mutex_lock(&dmirror->mutex);
273         else if (!mutex_trylock(&dmirror->mutex))
274                 return false;
275
276         mmu_interval_set_seq(mni, cur_seq);
277         dmirror_do_update(dmirror, range->start, range->end);
278
279         mutex_unlock(&dmirror->mutex);
280         return true;
281 }
282
283 static const struct mmu_interval_notifier_ops dmirror_min_ops = {
284         .invalidate = dmirror_interval_invalidate,
285 };
286
287 static int dmirror_range_fault(struct dmirror *dmirror,
288                                 struct hmm_range *range)
289 {
290         struct mm_struct *mm = dmirror->notifier.mm;
291         unsigned long timeout =
292                 jiffies + msecs_to_jiffies(HMM_RANGE_DEFAULT_TIMEOUT);
293         int ret;
294
295         while (true) {
296                 if (time_after(jiffies, timeout)) {
297                         ret = -EBUSY;
298                         goto out;
299                 }
300
301                 range->notifier_seq = mmu_interval_read_begin(range->notifier);
302                 mmap_read_lock(mm);
303                 ret = hmm_range_fault(range);
304                 mmap_read_unlock(mm);
305                 if (ret) {
306                         if (ret == -EBUSY)
307                                 continue;
308                         goto out;
309                 }
310
311                 mutex_lock(&dmirror->mutex);
312                 if (mmu_interval_read_retry(range->notifier,
313                                             range->notifier_seq)) {
314                         mutex_unlock(&dmirror->mutex);
315                         continue;
316                 }
317                 break;
318         }
319
320         ret = dmirror_do_fault(dmirror, range);
321
322         mutex_unlock(&dmirror->mutex);
323 out:
324         return ret;
325 }
326
327 static int dmirror_fault(struct dmirror *dmirror, unsigned long start,
328                          unsigned long end, bool write)
329 {
330         struct mm_struct *mm = dmirror->notifier.mm;
331         unsigned long addr;
332         unsigned long pfns[64];
333         struct hmm_range range = {
334                 .notifier = &dmirror->notifier,
335                 .hmm_pfns = pfns,
336                 .pfn_flags_mask = 0,
337                 .default_flags =
338                         HMM_PFN_REQ_FAULT | (write ? HMM_PFN_REQ_WRITE : 0),
339                 .dev_private_owner = dmirror->mdevice,
340         };
341         int ret = 0;
342
343         /* Since the mm is for the mirrored process, get a reference first. */
344         if (!mmget_not_zero(mm))
345                 return 0;
346
347         for (addr = start; addr < end; addr = range.end) {
348                 range.start = addr;
349                 range.end = min(addr + (ARRAY_SIZE(pfns) << PAGE_SHIFT), end);
350
351                 ret = dmirror_range_fault(dmirror, &range);
352                 if (ret)
353                         break;
354         }
355
356         mmput(mm);
357         return ret;
358 }
359
360 static int dmirror_do_read(struct dmirror *dmirror, unsigned long start,
361                            unsigned long end, struct dmirror_bounce *bounce)
362 {
363         unsigned long pfn;
364         void *ptr;
365
366         ptr = bounce->ptr + ((start - bounce->addr) & PAGE_MASK);
367
368         for (pfn = start >> PAGE_SHIFT; pfn < (end >> PAGE_SHIFT); pfn++) {
369                 void *entry;
370                 struct page *page;
371                 void *tmp;
372
373                 entry = xa_load(&dmirror->pt, pfn);
374                 page = xa_untag_pointer(entry);
375                 if (!page)
376                         return -ENOENT;
377
378                 tmp = kmap(page);
379                 memcpy(ptr, tmp, PAGE_SIZE);
380                 kunmap(page);
381
382                 ptr += PAGE_SIZE;
383                 bounce->cpages++;
384         }
385
386         return 0;
387 }
388
389 static int dmirror_read(struct dmirror *dmirror, struct hmm_dmirror_cmd *cmd)
390 {
391         struct dmirror_bounce bounce;
392         unsigned long start, end;
393         unsigned long size = cmd->npages << PAGE_SHIFT;
394         int ret;
395
396         start = cmd->addr;
397         end = start + size;
398         if (end < start)
399                 return -EINVAL;
400
401         ret = dmirror_bounce_init(&bounce, start, size);
402         if (ret)
403                 return ret;
404
405         while (1) {
406                 mutex_lock(&dmirror->mutex);
407                 ret = dmirror_do_read(dmirror, start, end, &bounce);
408                 mutex_unlock(&dmirror->mutex);
409                 if (ret != -ENOENT)
410                         break;
411
412                 start = cmd->addr + (bounce.cpages << PAGE_SHIFT);
413                 ret = dmirror_fault(dmirror, start, end, false);
414                 if (ret)
415                         break;
416                 cmd->faults++;
417         }
418
419         if (ret == 0) {
420                 if (copy_to_user(u64_to_user_ptr(cmd->ptr), bounce.ptr,
421                                  bounce.size))
422                         ret = -EFAULT;
423         }
424         cmd->cpages = bounce.cpages;
425         dmirror_bounce_fini(&bounce);
426         return ret;
427 }
428
429 static int dmirror_do_write(struct dmirror *dmirror, unsigned long start,
430                             unsigned long end, struct dmirror_bounce *bounce)
431 {
432         unsigned long pfn;
433         void *ptr;
434
435         ptr = bounce->ptr + ((start - bounce->addr) & PAGE_MASK);
436
437         for (pfn = start >> PAGE_SHIFT; pfn < (end >> PAGE_SHIFT); pfn++) {
438                 void *entry;
439                 struct page *page;
440                 void *tmp;
441
442                 entry = xa_load(&dmirror->pt, pfn);
443                 page = xa_untag_pointer(entry);
444                 if (!page || xa_pointer_tag(entry) != DPT_XA_TAG_WRITE)
445                         return -ENOENT;
446
447                 tmp = kmap(page);
448                 memcpy(tmp, ptr, PAGE_SIZE);
449                 kunmap(page);
450
451                 ptr += PAGE_SIZE;
452                 bounce->cpages++;
453         }
454
455         return 0;
456 }
457
458 static int dmirror_write(struct dmirror *dmirror, struct hmm_dmirror_cmd *cmd)
459 {
460         struct dmirror_bounce bounce;
461         unsigned long start, end;
462         unsigned long size = cmd->npages << PAGE_SHIFT;
463         int ret;
464
465         start = cmd->addr;
466         end = start + size;
467         if (end < start)
468                 return -EINVAL;
469
470         ret = dmirror_bounce_init(&bounce, start, size);
471         if (ret)
472                 return ret;
473         if (copy_from_user(bounce.ptr, u64_to_user_ptr(cmd->ptr),
474                            bounce.size)) {
475                 ret = -EFAULT;
476                 goto fini;
477         }
478
479         while (1) {
480                 mutex_lock(&dmirror->mutex);
481                 ret = dmirror_do_write(dmirror, start, end, &bounce);
482                 mutex_unlock(&dmirror->mutex);
483                 if (ret != -ENOENT)
484                         break;
485
486                 start = cmd->addr + (bounce.cpages << PAGE_SHIFT);
487                 ret = dmirror_fault(dmirror, start, end, true);
488                 if (ret)
489                         break;
490                 cmd->faults++;
491         }
492
493 fini:
494         cmd->cpages = bounce.cpages;
495         dmirror_bounce_fini(&bounce);
496         return ret;
497 }
498
499 static int dmirror_allocate_chunk(struct dmirror_device *mdevice,
500                                    struct page **ppage)
501 {
502         struct dmirror_chunk *devmem;
503         struct resource *res = NULL;
504         unsigned long pfn;
505         unsigned long pfn_first;
506         unsigned long pfn_last;
507         void *ptr;
508         int ret = -ENOMEM;
509
510         devmem = kzalloc(sizeof(*devmem), GFP_KERNEL);
511         if (!devmem)
512                 return ret;
513
514         switch (mdevice->zone_device_type) {
515         case HMM_DMIRROR_MEMORY_DEVICE_PRIVATE:
516                 res = request_free_mem_region(&iomem_resource, DEVMEM_CHUNK_SIZE,
517                                               "hmm_dmirror");
518                 if (IS_ERR_OR_NULL(res))
519                         goto err_devmem;
520                 devmem->pagemap.range.start = res->start;
521                 devmem->pagemap.range.end = res->end;
522                 devmem->pagemap.type = MEMORY_DEVICE_PRIVATE;
523                 break;
524         case HMM_DMIRROR_MEMORY_DEVICE_COHERENT:
525                 devmem->pagemap.range.start = (MINOR(mdevice->cdevice.dev) - 2) ?
526                                                         spm_addr_dev0 :
527                                                         spm_addr_dev1;
528                 devmem->pagemap.range.end = devmem->pagemap.range.start +
529                                             DEVMEM_CHUNK_SIZE - 1;
530                 devmem->pagemap.type = MEMORY_DEVICE_COHERENT;
531                 break;
532         default:
533                 ret = -EINVAL;
534                 goto err_devmem;
535         }
536
537         devmem->pagemap.nr_range = 1;
538         devmem->pagemap.ops = &dmirror_devmem_ops;
539         devmem->pagemap.owner = mdevice;
540
541         mutex_lock(&mdevice->devmem_lock);
542
543         if (mdevice->devmem_count == mdevice->devmem_capacity) {
544                 struct dmirror_chunk **new_chunks;
545                 unsigned int new_capacity;
546
547                 new_capacity = mdevice->devmem_capacity +
548                                 DEVMEM_CHUNKS_RESERVE;
549                 new_chunks = krealloc(mdevice->devmem_chunks,
550                                 sizeof(new_chunks[0]) * new_capacity,
551                                 GFP_KERNEL);
552                 if (!new_chunks)
553                         goto err_release;
554                 mdevice->devmem_capacity = new_capacity;
555                 mdevice->devmem_chunks = new_chunks;
556         }
557         ptr = memremap_pages(&devmem->pagemap, numa_node_id());
558         if (IS_ERR_OR_NULL(ptr)) {
559                 if (ptr)
560                         ret = PTR_ERR(ptr);
561                 else
562                         ret = -EFAULT;
563                 goto err_release;
564         }
565
566         devmem->mdevice = mdevice;
567         pfn_first = devmem->pagemap.range.start >> PAGE_SHIFT;
568         pfn_last = pfn_first + (range_len(&devmem->pagemap.range) >> PAGE_SHIFT);
569         mdevice->devmem_chunks[mdevice->devmem_count++] = devmem;
570
571         mutex_unlock(&mdevice->devmem_lock);
572
573         pr_info("added new %u MB chunk (total %u chunks, %u MB) PFNs [0x%lx 0x%lx)\n",
574                 DEVMEM_CHUNK_SIZE / (1024 * 1024),
575                 mdevice->devmem_count,
576                 mdevice->devmem_count * (DEVMEM_CHUNK_SIZE / (1024 * 1024)),
577                 pfn_first, pfn_last);
578
579         spin_lock(&mdevice->lock);
580         for (pfn = pfn_first; pfn < pfn_last; pfn++) {
581                 struct page *page = pfn_to_page(pfn);
582
583                 page->zone_device_data = mdevice->free_pages;
584                 mdevice->free_pages = page;
585         }
586         if (ppage) {
587                 *ppage = mdevice->free_pages;
588                 mdevice->free_pages = (*ppage)->zone_device_data;
589                 mdevice->calloc++;
590         }
591         spin_unlock(&mdevice->lock);
592
593         return 0;
594
595 err_release:
596         mutex_unlock(&mdevice->devmem_lock);
597         if (res && devmem->pagemap.type == MEMORY_DEVICE_PRIVATE)
598                 release_mem_region(devmem->pagemap.range.start,
599                                    range_len(&devmem->pagemap.range));
600 err_devmem:
601         kfree(devmem);
602
603         return ret;
604 }
605
606 static struct page *dmirror_devmem_alloc_page(struct dmirror_device *mdevice)
607 {
608         struct page *dpage = NULL;
609         struct page *rpage = NULL;
610
611         /*
612          * For ZONE_DEVICE private type, this is a fake device so we allocate
613          * real system memory to store our device memory.
614          * For ZONE_DEVICE coherent type we use the actual dpage to store the
615          * data and ignore rpage.
616          */
617         if (dmirror_is_private_zone(mdevice)) {
618                 rpage = alloc_page(GFP_HIGHUSER);
619                 if (!rpage)
620                         return NULL;
621         }
622         spin_lock(&mdevice->lock);
623
624         if (mdevice->free_pages) {
625                 dpage = mdevice->free_pages;
626                 mdevice->free_pages = dpage->zone_device_data;
627                 mdevice->calloc++;
628                 spin_unlock(&mdevice->lock);
629         } else {
630                 spin_unlock(&mdevice->lock);
631                 if (dmirror_allocate_chunk(mdevice, &dpage))
632                         goto error;
633         }
634
635         zone_device_page_init(dpage);
636         dpage->zone_device_data = rpage;
637         return dpage;
638
639 error:
640         if (rpage)
641                 __free_page(rpage);
642         return NULL;
643 }
644
645 static void dmirror_migrate_alloc_and_copy(struct migrate_vma *args,
646                                            struct dmirror *dmirror)
647 {
648         struct dmirror_device *mdevice = dmirror->mdevice;
649         const unsigned long *src = args->src;
650         unsigned long *dst = args->dst;
651         unsigned long addr;
652
653         for (addr = args->start; addr < args->end; addr += PAGE_SIZE,
654                                                    src++, dst++) {
655                 struct page *spage;
656                 struct page *dpage;
657                 struct page *rpage;
658
659                 if (!(*src & MIGRATE_PFN_MIGRATE))
660                         continue;
661
662                 /*
663                  * Note that spage might be NULL which is OK since it is an
664                  * unallocated pte_none() or read-only zero page.
665                  */
666                 spage = migrate_pfn_to_page(*src);
667                 if (WARN(spage && is_zone_device_page(spage),
668                      "page already in device spage pfn: 0x%lx\n",
669                      page_to_pfn(spage)))
670                         continue;
671
672                 dpage = dmirror_devmem_alloc_page(mdevice);
673                 if (!dpage)
674                         continue;
675
676                 rpage = BACKING_PAGE(dpage);
677                 if (spage)
678                         copy_highpage(rpage, spage);
679                 else
680                         clear_highpage(rpage);
681
682                 /*
683                  * Normally, a device would use the page->zone_device_data to
684                  * point to the mirror but here we use it to hold the page for
685                  * the simulated device memory and that page holds the pointer
686                  * to the mirror.
687                  */
688                 rpage->zone_device_data = dmirror;
689
690                 pr_debug("migrating from sys to dev pfn src: 0x%lx pfn dst: 0x%lx\n",
691                          page_to_pfn(spage), page_to_pfn(dpage));
692                 *dst = migrate_pfn(page_to_pfn(dpage));
693                 if ((*src & MIGRATE_PFN_WRITE) ||
694                     (!spage && args->vma->vm_flags & VM_WRITE))
695                         *dst |= MIGRATE_PFN_WRITE;
696         }
697 }
698
699 static int dmirror_check_atomic(struct dmirror *dmirror, unsigned long start,
700                              unsigned long end)
701 {
702         unsigned long pfn;
703
704         for (pfn = start >> PAGE_SHIFT; pfn < (end >> PAGE_SHIFT); pfn++) {
705                 void *entry;
706
707                 entry = xa_load(&dmirror->pt, pfn);
708                 if (xa_pointer_tag(entry) == DPT_XA_TAG_ATOMIC)
709                         return -EPERM;
710         }
711
712         return 0;
713 }
714
715 static int dmirror_atomic_map(unsigned long start, unsigned long end,
716                               struct page **pages, struct dmirror *dmirror)
717 {
718         unsigned long pfn, mapped = 0;
719         int i;
720
721         /* Map the migrated pages into the device's page tables. */
722         mutex_lock(&dmirror->mutex);
723
724         for (i = 0, pfn = start >> PAGE_SHIFT; pfn < (end >> PAGE_SHIFT); pfn++, i++) {
725                 void *entry;
726
727                 if (!pages[i])
728                         continue;
729
730                 entry = pages[i];
731                 entry = xa_tag_pointer(entry, DPT_XA_TAG_ATOMIC);
732                 entry = xa_store(&dmirror->pt, pfn, entry, GFP_ATOMIC);
733                 if (xa_is_err(entry)) {
734                         mutex_unlock(&dmirror->mutex);
735                         return xa_err(entry);
736                 }
737
738                 mapped++;
739         }
740
741         mutex_unlock(&dmirror->mutex);
742         return mapped;
743 }
744
745 static int dmirror_migrate_finalize_and_map(struct migrate_vma *args,
746                                             struct dmirror *dmirror)
747 {
748         unsigned long start = args->start;
749         unsigned long end = args->end;
750         const unsigned long *src = args->src;
751         const unsigned long *dst = args->dst;
752         unsigned long pfn;
753
754         /* Map the migrated pages into the device's page tables. */
755         mutex_lock(&dmirror->mutex);
756
757         for (pfn = start >> PAGE_SHIFT; pfn < (end >> PAGE_SHIFT); pfn++,
758                                                                 src++, dst++) {
759                 struct page *dpage;
760                 void *entry;
761
762                 if (!(*src & MIGRATE_PFN_MIGRATE))
763                         continue;
764
765                 dpage = migrate_pfn_to_page(*dst);
766                 if (!dpage)
767                         continue;
768
769                 entry = BACKING_PAGE(dpage);
770                 if (*dst & MIGRATE_PFN_WRITE)
771                         entry = xa_tag_pointer(entry, DPT_XA_TAG_WRITE);
772                 entry = xa_store(&dmirror->pt, pfn, entry, GFP_ATOMIC);
773                 if (xa_is_err(entry)) {
774                         mutex_unlock(&dmirror->mutex);
775                         return xa_err(entry);
776                 }
777         }
778
779         mutex_unlock(&dmirror->mutex);
780         return 0;
781 }
782
783 static int dmirror_exclusive(struct dmirror *dmirror,
784                              struct hmm_dmirror_cmd *cmd)
785 {
786         unsigned long start, end, addr;
787         unsigned long size = cmd->npages << PAGE_SHIFT;
788         struct mm_struct *mm = dmirror->notifier.mm;
789         struct page *pages[64];
790         struct dmirror_bounce bounce;
791         unsigned long next;
792         int ret;
793
794         start = cmd->addr;
795         end = start + size;
796         if (end < start)
797                 return -EINVAL;
798
799         /* Since the mm is for the mirrored process, get a reference first. */
800         if (!mmget_not_zero(mm))
801                 return -EINVAL;
802
803         mmap_read_lock(mm);
804         for (addr = start; addr < end; addr = next) {
805                 unsigned long mapped = 0;
806                 int i;
807
808                 if (end < addr + (ARRAY_SIZE(pages) << PAGE_SHIFT))
809                         next = end;
810                 else
811                         next = addr + (ARRAY_SIZE(pages) << PAGE_SHIFT);
812
813                 ret = make_device_exclusive_range(mm, addr, next, pages, NULL);
814                 /*
815                  * Do dmirror_atomic_map() iff all pages are marked for
816                  * exclusive access to avoid accessing uninitialized
817                  * fields of pages.
818                  */
819                 if (ret == (next - addr) >> PAGE_SHIFT)
820                         mapped = dmirror_atomic_map(addr, next, pages, dmirror);
821                 for (i = 0; i < ret; i++) {
822                         if (pages[i]) {
823                                 unlock_page(pages[i]);
824                                 put_page(pages[i]);
825                         }
826                 }
827
828                 if (addr + (mapped << PAGE_SHIFT) < next) {
829                         mmap_read_unlock(mm);
830                         mmput(mm);
831                         return -EBUSY;
832                 }
833         }
834         mmap_read_unlock(mm);
835         mmput(mm);
836
837         /* Return the migrated data for verification. */
838         ret = dmirror_bounce_init(&bounce, start, size);
839         if (ret)
840                 return ret;
841         mutex_lock(&dmirror->mutex);
842         ret = dmirror_do_read(dmirror, start, end, &bounce);
843         mutex_unlock(&dmirror->mutex);
844         if (ret == 0) {
845                 if (copy_to_user(u64_to_user_ptr(cmd->ptr), bounce.ptr,
846                                  bounce.size))
847                         ret = -EFAULT;
848         }
849
850         cmd->cpages = bounce.cpages;
851         dmirror_bounce_fini(&bounce);
852         return ret;
853 }
854
855 static vm_fault_t dmirror_devmem_fault_alloc_and_copy(struct migrate_vma *args,
856                                                       struct dmirror *dmirror)
857 {
858         const unsigned long *src = args->src;
859         unsigned long *dst = args->dst;
860         unsigned long start = args->start;
861         unsigned long end = args->end;
862         unsigned long addr;
863
864         for (addr = start; addr < end; addr += PAGE_SIZE,
865                                        src++, dst++) {
866                 struct page *dpage, *spage;
867
868                 spage = migrate_pfn_to_page(*src);
869                 if (!spage || !(*src & MIGRATE_PFN_MIGRATE))
870                         continue;
871
872                 if (WARN_ON(!is_device_private_page(spage) &&
873                             !is_device_coherent_page(spage)))
874                         continue;
875                 spage = BACKING_PAGE(spage);
876                 dpage = alloc_page_vma(GFP_HIGHUSER_MOVABLE, args->vma, addr);
877                 if (!dpage)
878                         continue;
879                 pr_debug("migrating from dev to sys pfn src: 0x%lx pfn dst: 0x%lx\n",
880                          page_to_pfn(spage), page_to_pfn(dpage));
881
882                 lock_page(dpage);
883                 xa_erase(&dmirror->pt, addr >> PAGE_SHIFT);
884                 copy_highpage(dpage, spage);
885                 *dst = migrate_pfn(page_to_pfn(dpage));
886                 if (*src & MIGRATE_PFN_WRITE)
887                         *dst |= MIGRATE_PFN_WRITE;
888         }
889         return 0;
890 }
891
892 static unsigned long
893 dmirror_successful_migrated_pages(struct migrate_vma *migrate)
894 {
895         unsigned long cpages = 0;
896         unsigned long i;
897
898         for (i = 0; i < migrate->npages; i++) {
899                 if (migrate->src[i] & MIGRATE_PFN_VALID &&
900                     migrate->src[i] & MIGRATE_PFN_MIGRATE)
901                         cpages++;
902         }
903         return cpages;
904 }
905
906 static int dmirror_migrate_to_system(struct dmirror *dmirror,
907                                      struct hmm_dmirror_cmd *cmd)
908 {
909         unsigned long start, end, addr;
910         unsigned long size = cmd->npages << PAGE_SHIFT;
911         struct mm_struct *mm = dmirror->notifier.mm;
912         struct vm_area_struct *vma;
913         unsigned long src_pfns[64] = { 0 };
914         unsigned long dst_pfns[64] = { 0 };
915         struct migrate_vma args = { 0 };
916         unsigned long next;
917         int ret;
918
919         start = cmd->addr;
920         end = start + size;
921         if (end < start)
922                 return -EINVAL;
923
924         /* Since the mm is for the mirrored process, get a reference first. */
925         if (!mmget_not_zero(mm))
926                 return -EINVAL;
927
928         cmd->cpages = 0;
929         mmap_read_lock(mm);
930         for (addr = start; addr < end; addr = next) {
931                 vma = vma_lookup(mm, addr);
932                 if (!vma || !(vma->vm_flags & VM_READ)) {
933                         ret = -EINVAL;
934                         goto out;
935                 }
936                 next = min(end, addr + (ARRAY_SIZE(src_pfns) << PAGE_SHIFT));
937                 if (next > vma->vm_end)
938                         next = vma->vm_end;
939
940                 args.vma = vma;
941                 args.src = src_pfns;
942                 args.dst = dst_pfns;
943                 args.start = addr;
944                 args.end = next;
945                 args.pgmap_owner = dmirror->mdevice;
946                 args.flags = dmirror_select_device(dmirror);
947
948                 ret = migrate_vma_setup(&args);
949                 if (ret)
950                         goto out;
951
952                 pr_debug("Migrating from device mem to sys mem\n");
953                 dmirror_devmem_fault_alloc_and_copy(&args, dmirror);
954
955                 migrate_vma_pages(&args);
956                 cmd->cpages += dmirror_successful_migrated_pages(&args);
957                 migrate_vma_finalize(&args);
958         }
959 out:
960         mmap_read_unlock(mm);
961         mmput(mm);
962
963         return ret;
964 }
965
966 static int dmirror_migrate_to_device(struct dmirror *dmirror,
967                                 struct hmm_dmirror_cmd *cmd)
968 {
969         unsigned long start, end, addr;
970         unsigned long size = cmd->npages << PAGE_SHIFT;
971         struct mm_struct *mm = dmirror->notifier.mm;
972         struct vm_area_struct *vma;
973         unsigned long src_pfns[64] = { 0 };
974         unsigned long dst_pfns[64] = { 0 };
975         struct dmirror_bounce bounce;
976         struct migrate_vma args = { 0 };
977         unsigned long next;
978         int ret;
979
980         start = cmd->addr;
981         end = start + size;
982         if (end < start)
983                 return -EINVAL;
984
985         /* Since the mm is for the mirrored process, get a reference first. */
986         if (!mmget_not_zero(mm))
987                 return -EINVAL;
988
989         mmap_read_lock(mm);
990         for (addr = start; addr < end; addr = next) {
991                 vma = vma_lookup(mm, addr);
992                 if (!vma || !(vma->vm_flags & VM_READ)) {
993                         ret = -EINVAL;
994                         goto out;
995                 }
996                 next = min(end, addr + (ARRAY_SIZE(src_pfns) << PAGE_SHIFT));
997                 if (next > vma->vm_end)
998                         next = vma->vm_end;
999
1000                 args.vma = vma;
1001                 args.src = src_pfns;
1002                 args.dst = dst_pfns;
1003                 args.start = addr;
1004                 args.end = next;
1005                 args.pgmap_owner = dmirror->mdevice;
1006                 args.flags = MIGRATE_VMA_SELECT_SYSTEM;
1007                 ret = migrate_vma_setup(&args);
1008                 if (ret)
1009                         goto out;
1010
1011                 pr_debug("Migrating from sys mem to device mem\n");
1012                 dmirror_migrate_alloc_and_copy(&args, dmirror);
1013                 migrate_vma_pages(&args);
1014                 dmirror_migrate_finalize_and_map(&args, dmirror);
1015                 migrate_vma_finalize(&args);
1016         }
1017         mmap_read_unlock(mm);
1018         mmput(mm);
1019
1020         /*
1021          * Return the migrated data for verification.
1022          * Only for pages in device zone
1023          */
1024         ret = dmirror_bounce_init(&bounce, start, size);
1025         if (ret)
1026                 return ret;
1027         mutex_lock(&dmirror->mutex);
1028         ret = dmirror_do_read(dmirror, start, end, &bounce);
1029         mutex_unlock(&dmirror->mutex);
1030         if (ret == 0) {
1031                 if (copy_to_user(u64_to_user_ptr(cmd->ptr), bounce.ptr,
1032                                  bounce.size))
1033                         ret = -EFAULT;
1034         }
1035         cmd->cpages = bounce.cpages;
1036         dmirror_bounce_fini(&bounce);
1037         return ret;
1038
1039 out:
1040         mmap_read_unlock(mm);
1041         mmput(mm);
1042         return ret;
1043 }
1044
1045 static void dmirror_mkentry(struct dmirror *dmirror, struct hmm_range *range,
1046                             unsigned char *perm, unsigned long entry)
1047 {
1048         struct page *page;
1049
1050         if (entry & HMM_PFN_ERROR) {
1051                 *perm = HMM_DMIRROR_PROT_ERROR;
1052                 return;
1053         }
1054         if (!(entry & HMM_PFN_VALID)) {
1055                 *perm = HMM_DMIRROR_PROT_NONE;
1056                 return;
1057         }
1058
1059         page = hmm_pfn_to_page(entry);
1060         if (is_device_private_page(page)) {
1061                 /* Is the page migrated to this device or some other? */
1062                 if (dmirror->mdevice == dmirror_page_to_device(page))
1063                         *perm = HMM_DMIRROR_PROT_DEV_PRIVATE_LOCAL;
1064                 else
1065                         *perm = HMM_DMIRROR_PROT_DEV_PRIVATE_REMOTE;
1066         } else if (is_device_coherent_page(page)) {
1067                 /* Is the page migrated to this device or some other? */
1068                 if (dmirror->mdevice == dmirror_page_to_device(page))
1069                         *perm = HMM_DMIRROR_PROT_DEV_COHERENT_LOCAL;
1070                 else
1071                         *perm = HMM_DMIRROR_PROT_DEV_COHERENT_REMOTE;
1072         } else if (is_zero_pfn(page_to_pfn(page)))
1073                 *perm = HMM_DMIRROR_PROT_ZERO;
1074         else
1075                 *perm = HMM_DMIRROR_PROT_NONE;
1076         if (entry & HMM_PFN_WRITE)
1077                 *perm |= HMM_DMIRROR_PROT_WRITE;
1078         else
1079                 *perm |= HMM_DMIRROR_PROT_READ;
1080         if (hmm_pfn_to_map_order(entry) + PAGE_SHIFT == PMD_SHIFT)
1081                 *perm |= HMM_DMIRROR_PROT_PMD;
1082         else if (hmm_pfn_to_map_order(entry) + PAGE_SHIFT == PUD_SHIFT)
1083                 *perm |= HMM_DMIRROR_PROT_PUD;
1084 }
1085
1086 static bool dmirror_snapshot_invalidate(struct mmu_interval_notifier *mni,
1087                                 const struct mmu_notifier_range *range,
1088                                 unsigned long cur_seq)
1089 {
1090         struct dmirror_interval *dmi =
1091                 container_of(mni, struct dmirror_interval, notifier);
1092         struct dmirror *dmirror = dmi->dmirror;
1093
1094         if (mmu_notifier_range_blockable(range))
1095                 mutex_lock(&dmirror->mutex);
1096         else if (!mutex_trylock(&dmirror->mutex))
1097                 return false;
1098
1099         /*
1100          * Snapshots only need to set the sequence number since any
1101          * invalidation in the interval invalidates the whole snapshot.
1102          */
1103         mmu_interval_set_seq(mni, cur_seq);
1104
1105         mutex_unlock(&dmirror->mutex);
1106         return true;
1107 }
1108
1109 static const struct mmu_interval_notifier_ops dmirror_mrn_ops = {
1110         .invalidate = dmirror_snapshot_invalidate,
1111 };
1112
1113 static int dmirror_range_snapshot(struct dmirror *dmirror,
1114                                   struct hmm_range *range,
1115                                   unsigned char *perm)
1116 {
1117         struct mm_struct *mm = dmirror->notifier.mm;
1118         struct dmirror_interval notifier;
1119         unsigned long timeout =
1120                 jiffies + msecs_to_jiffies(HMM_RANGE_DEFAULT_TIMEOUT);
1121         unsigned long i;
1122         unsigned long n;
1123         int ret = 0;
1124
1125         notifier.dmirror = dmirror;
1126         range->notifier = &notifier.notifier;
1127
1128         ret = mmu_interval_notifier_insert(range->notifier, mm,
1129                         range->start, range->end - range->start,
1130                         &dmirror_mrn_ops);
1131         if (ret)
1132                 return ret;
1133
1134         while (true) {
1135                 if (time_after(jiffies, timeout)) {
1136                         ret = -EBUSY;
1137                         goto out;
1138                 }
1139
1140                 range->notifier_seq = mmu_interval_read_begin(range->notifier);
1141
1142                 mmap_read_lock(mm);
1143                 ret = hmm_range_fault(range);
1144                 mmap_read_unlock(mm);
1145                 if (ret) {
1146                         if (ret == -EBUSY)
1147                                 continue;
1148                         goto out;
1149                 }
1150
1151                 mutex_lock(&dmirror->mutex);
1152                 if (mmu_interval_read_retry(range->notifier,
1153                                             range->notifier_seq)) {
1154                         mutex_unlock(&dmirror->mutex);
1155                         continue;
1156                 }
1157                 break;
1158         }
1159
1160         n = (range->end - range->start) >> PAGE_SHIFT;
1161         for (i = 0; i < n; i++)
1162                 dmirror_mkentry(dmirror, range, perm + i, range->hmm_pfns[i]);
1163
1164         mutex_unlock(&dmirror->mutex);
1165 out:
1166         mmu_interval_notifier_remove(range->notifier);
1167         return ret;
1168 }
1169
1170 static int dmirror_snapshot(struct dmirror *dmirror,
1171                             struct hmm_dmirror_cmd *cmd)
1172 {
1173         struct mm_struct *mm = dmirror->notifier.mm;
1174         unsigned long start, end;
1175         unsigned long size = cmd->npages << PAGE_SHIFT;
1176         unsigned long addr;
1177         unsigned long next;
1178         unsigned long pfns[64];
1179         unsigned char perm[64];
1180         char __user *uptr;
1181         struct hmm_range range = {
1182                 .hmm_pfns = pfns,
1183                 .dev_private_owner = dmirror->mdevice,
1184         };
1185         int ret = 0;
1186
1187         start = cmd->addr;
1188         end = start + size;
1189         if (end < start)
1190                 return -EINVAL;
1191
1192         /* Since the mm is for the mirrored process, get a reference first. */
1193         if (!mmget_not_zero(mm))
1194                 return -EINVAL;
1195
1196         /*
1197          * Register a temporary notifier to detect invalidations even if it
1198          * overlaps with other mmu_interval_notifiers.
1199          */
1200         uptr = u64_to_user_ptr(cmd->ptr);
1201         for (addr = start; addr < end; addr = next) {
1202                 unsigned long n;
1203
1204                 next = min(addr + (ARRAY_SIZE(pfns) << PAGE_SHIFT), end);
1205                 range.start = addr;
1206                 range.end = next;
1207
1208                 ret = dmirror_range_snapshot(dmirror, &range, perm);
1209                 if (ret)
1210                         break;
1211
1212                 n = (range.end - range.start) >> PAGE_SHIFT;
1213                 if (copy_to_user(uptr, perm, n)) {
1214                         ret = -EFAULT;
1215                         break;
1216                 }
1217
1218                 cmd->cpages += n;
1219                 uptr += n;
1220         }
1221         mmput(mm);
1222
1223         return ret;
1224 }
1225
1226 static void dmirror_device_evict_chunk(struct dmirror_chunk *chunk)
1227 {
1228         unsigned long start_pfn = chunk->pagemap.range.start >> PAGE_SHIFT;
1229         unsigned long end_pfn = chunk->pagemap.range.end >> PAGE_SHIFT;
1230         unsigned long npages = end_pfn - start_pfn + 1;
1231         unsigned long i;
1232         unsigned long *src_pfns;
1233         unsigned long *dst_pfns;
1234
1235         src_pfns = kcalloc(npages, sizeof(*src_pfns), GFP_KERNEL);
1236         dst_pfns = kcalloc(npages, sizeof(*dst_pfns), GFP_KERNEL);
1237
1238         migrate_device_range(src_pfns, start_pfn, npages);
1239         for (i = 0; i < npages; i++) {
1240                 struct page *dpage, *spage;
1241
1242                 spage = migrate_pfn_to_page(src_pfns[i]);
1243                 if (!spage || !(src_pfns[i] & MIGRATE_PFN_MIGRATE))
1244                         continue;
1245
1246                 if (WARN_ON(!is_device_private_page(spage) &&
1247                             !is_device_coherent_page(spage)))
1248                         continue;
1249                 spage = BACKING_PAGE(spage);
1250                 dpage = alloc_page(GFP_HIGHUSER_MOVABLE | __GFP_NOFAIL);
1251                 lock_page(dpage);
1252                 copy_highpage(dpage, spage);
1253                 dst_pfns[i] = migrate_pfn(page_to_pfn(dpage));
1254                 if (src_pfns[i] & MIGRATE_PFN_WRITE)
1255                         dst_pfns[i] |= MIGRATE_PFN_WRITE;
1256         }
1257         migrate_device_pages(src_pfns, dst_pfns, npages);
1258         migrate_device_finalize(src_pfns, dst_pfns, npages);
1259         kfree(src_pfns);
1260         kfree(dst_pfns);
1261 }
1262
1263 /* Removes free pages from the free list so they can't be re-allocated */
1264 static void dmirror_remove_free_pages(struct dmirror_chunk *devmem)
1265 {
1266         struct dmirror_device *mdevice = devmem->mdevice;
1267         struct page *page;
1268
1269         for (page = mdevice->free_pages; page; page = page->zone_device_data)
1270                 if (dmirror_page_to_chunk(page) == devmem)
1271                         mdevice->free_pages = page->zone_device_data;
1272 }
1273
1274 static void dmirror_device_remove_chunks(struct dmirror_device *mdevice)
1275 {
1276         unsigned int i;
1277
1278         mutex_lock(&mdevice->devmem_lock);
1279         if (mdevice->devmem_chunks) {
1280                 for (i = 0; i < mdevice->devmem_count; i++) {
1281                         struct dmirror_chunk *devmem =
1282                                 mdevice->devmem_chunks[i];
1283
1284                         spin_lock(&mdevice->lock);
1285                         devmem->remove = true;
1286                         dmirror_remove_free_pages(devmem);
1287                         spin_unlock(&mdevice->lock);
1288
1289                         dmirror_device_evict_chunk(devmem);
1290                         memunmap_pages(&devmem->pagemap);
1291                         if (devmem->pagemap.type == MEMORY_DEVICE_PRIVATE)
1292                                 release_mem_region(devmem->pagemap.range.start,
1293                                                    range_len(&devmem->pagemap.range));
1294                         kfree(devmem);
1295                 }
1296                 mdevice->devmem_count = 0;
1297                 mdevice->devmem_capacity = 0;
1298                 mdevice->free_pages = NULL;
1299                 kfree(mdevice->devmem_chunks);
1300                 mdevice->devmem_chunks = NULL;
1301         }
1302         mutex_unlock(&mdevice->devmem_lock);
1303 }
1304
1305 static long dmirror_fops_unlocked_ioctl(struct file *filp,
1306                                         unsigned int command,
1307                                         unsigned long arg)
1308 {
1309         void __user *uarg = (void __user *)arg;
1310         struct hmm_dmirror_cmd cmd;
1311         struct dmirror *dmirror;
1312         int ret;
1313
1314         dmirror = filp->private_data;
1315         if (!dmirror)
1316                 return -EINVAL;
1317
1318         if (copy_from_user(&cmd, uarg, sizeof(cmd)))
1319                 return -EFAULT;
1320
1321         if (cmd.addr & ~PAGE_MASK)
1322                 return -EINVAL;
1323         if (cmd.addr >= (cmd.addr + (cmd.npages << PAGE_SHIFT)))
1324                 return -EINVAL;
1325
1326         cmd.cpages = 0;
1327         cmd.faults = 0;
1328
1329         switch (command) {
1330         case HMM_DMIRROR_READ:
1331                 ret = dmirror_read(dmirror, &cmd);
1332                 break;
1333
1334         case HMM_DMIRROR_WRITE:
1335                 ret = dmirror_write(dmirror, &cmd);
1336                 break;
1337
1338         case HMM_DMIRROR_MIGRATE_TO_DEV:
1339                 ret = dmirror_migrate_to_device(dmirror, &cmd);
1340                 break;
1341
1342         case HMM_DMIRROR_MIGRATE_TO_SYS:
1343                 ret = dmirror_migrate_to_system(dmirror, &cmd);
1344                 break;
1345
1346         case HMM_DMIRROR_EXCLUSIVE:
1347                 ret = dmirror_exclusive(dmirror, &cmd);
1348                 break;
1349
1350         case HMM_DMIRROR_CHECK_EXCLUSIVE:
1351                 ret = dmirror_check_atomic(dmirror, cmd.addr,
1352                                         cmd.addr + (cmd.npages << PAGE_SHIFT));
1353                 break;
1354
1355         case HMM_DMIRROR_SNAPSHOT:
1356                 ret = dmirror_snapshot(dmirror, &cmd);
1357                 break;
1358
1359         case HMM_DMIRROR_RELEASE:
1360                 dmirror_device_remove_chunks(dmirror->mdevice);
1361                 ret = 0;
1362                 break;
1363
1364         default:
1365                 return -EINVAL;
1366         }
1367         if (ret)
1368                 return ret;
1369
1370         if (copy_to_user(uarg, &cmd, sizeof(cmd)))
1371                 return -EFAULT;
1372
1373         return 0;
1374 }
1375
1376 static int dmirror_fops_mmap(struct file *file, struct vm_area_struct *vma)
1377 {
1378         unsigned long addr;
1379
1380         for (addr = vma->vm_start; addr < vma->vm_end; addr += PAGE_SIZE) {
1381                 struct page *page;
1382                 int ret;
1383
1384                 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
1385                 if (!page)
1386                         return -ENOMEM;
1387
1388                 ret = vm_insert_page(vma, addr, page);
1389                 if (ret) {
1390                         __free_page(page);
1391                         return ret;
1392                 }
1393                 put_page(page);
1394         }
1395
1396         return 0;
1397 }
1398
1399 static const struct file_operations dmirror_fops = {
1400         .open           = dmirror_fops_open,
1401         .release        = dmirror_fops_release,
1402         .mmap           = dmirror_fops_mmap,
1403         .unlocked_ioctl = dmirror_fops_unlocked_ioctl,
1404         .llseek         = default_llseek,
1405         .owner          = THIS_MODULE,
1406 };
1407
1408 static void dmirror_devmem_free(struct page *page)
1409 {
1410         struct page *rpage = BACKING_PAGE(page);
1411         struct dmirror_device *mdevice;
1412
1413         if (rpage != page)
1414                 __free_page(rpage);
1415
1416         mdevice = dmirror_page_to_device(page);
1417         spin_lock(&mdevice->lock);
1418
1419         /* Return page to our allocator if not freeing the chunk */
1420         if (!dmirror_page_to_chunk(page)->remove) {
1421                 mdevice->cfree++;
1422                 page->zone_device_data = mdevice->free_pages;
1423                 mdevice->free_pages = page;
1424         }
1425         spin_unlock(&mdevice->lock);
1426 }
1427
1428 static vm_fault_t dmirror_devmem_fault(struct vm_fault *vmf)
1429 {
1430         struct migrate_vma args = { 0 };
1431         unsigned long src_pfns = 0;
1432         unsigned long dst_pfns = 0;
1433         struct page *rpage;
1434         struct dmirror *dmirror;
1435         vm_fault_t ret;
1436
1437         /*
1438          * Normally, a device would use the page->zone_device_data to point to
1439          * the mirror but here we use it to hold the page for the simulated
1440          * device memory and that page holds the pointer to the mirror.
1441          */
1442         rpage = vmf->page->zone_device_data;
1443         dmirror = rpage->zone_device_data;
1444
1445         /* FIXME demonstrate how we can adjust migrate range */
1446         args.vma = vmf->vma;
1447         args.start = vmf->address;
1448         args.end = args.start + PAGE_SIZE;
1449         args.src = &src_pfns;
1450         args.dst = &dst_pfns;
1451         args.pgmap_owner = dmirror->mdevice;
1452         args.flags = dmirror_select_device(dmirror);
1453         args.fault_page = vmf->page;
1454
1455         if (migrate_vma_setup(&args))
1456                 return VM_FAULT_SIGBUS;
1457
1458         ret = dmirror_devmem_fault_alloc_and_copy(&args, dmirror);
1459         if (ret)
1460                 return ret;
1461         migrate_vma_pages(&args);
1462         /*
1463          * No device finalize step is needed since
1464          * dmirror_devmem_fault_alloc_and_copy() will have already
1465          * invalidated the device page table.
1466          */
1467         migrate_vma_finalize(&args);
1468         return 0;
1469 }
1470
1471 static const struct dev_pagemap_ops dmirror_devmem_ops = {
1472         .page_free      = dmirror_devmem_free,
1473         .migrate_to_ram = dmirror_devmem_fault,
1474 };
1475
1476 static int dmirror_device_init(struct dmirror_device *mdevice, int id)
1477 {
1478         dev_t dev;
1479         int ret;
1480
1481         dev = MKDEV(MAJOR(dmirror_dev), id);
1482         mutex_init(&mdevice->devmem_lock);
1483         spin_lock_init(&mdevice->lock);
1484
1485         cdev_init(&mdevice->cdevice, &dmirror_fops);
1486         mdevice->cdevice.owner = THIS_MODULE;
1487         device_initialize(&mdevice->device);
1488         mdevice->device.devt = dev;
1489
1490         ret = dev_set_name(&mdevice->device, "hmm_dmirror%u", id);
1491         if (ret)
1492                 return ret;
1493
1494         ret = cdev_device_add(&mdevice->cdevice, &mdevice->device);
1495         if (ret)
1496                 return ret;
1497
1498         /* Build a list of free ZONE_DEVICE struct pages */
1499         return dmirror_allocate_chunk(mdevice, NULL);
1500 }
1501
1502 static void dmirror_device_remove(struct dmirror_device *mdevice)
1503 {
1504         dmirror_device_remove_chunks(mdevice);
1505         cdev_device_del(&mdevice->cdevice, &mdevice->device);
1506 }
1507
1508 static int __init hmm_dmirror_init(void)
1509 {
1510         int ret;
1511         int id = 0;
1512         int ndevices = 0;
1513
1514         ret = alloc_chrdev_region(&dmirror_dev, 0, DMIRROR_NDEVICES,
1515                                   "HMM_DMIRROR");
1516         if (ret)
1517                 goto err_unreg;
1518
1519         memset(dmirror_devices, 0, DMIRROR_NDEVICES * sizeof(dmirror_devices[0]));
1520         dmirror_devices[ndevices++].zone_device_type =
1521                                 HMM_DMIRROR_MEMORY_DEVICE_PRIVATE;
1522         dmirror_devices[ndevices++].zone_device_type =
1523                                 HMM_DMIRROR_MEMORY_DEVICE_PRIVATE;
1524         if (spm_addr_dev0 && spm_addr_dev1) {
1525                 dmirror_devices[ndevices++].zone_device_type =
1526                                         HMM_DMIRROR_MEMORY_DEVICE_COHERENT;
1527                 dmirror_devices[ndevices++].zone_device_type =
1528                                         HMM_DMIRROR_MEMORY_DEVICE_COHERENT;
1529         }
1530         for (id = 0; id < ndevices; id++) {
1531                 ret = dmirror_device_init(dmirror_devices + id, id);
1532                 if (ret)
1533                         goto err_chrdev;
1534         }
1535
1536         pr_info("HMM test module loaded. This is only for testing HMM.\n");
1537         return 0;
1538
1539 err_chrdev:
1540         while (--id >= 0)
1541                 dmirror_device_remove(dmirror_devices + id);
1542         unregister_chrdev_region(dmirror_dev, DMIRROR_NDEVICES);
1543 err_unreg:
1544         return ret;
1545 }
1546
1547 static void __exit hmm_dmirror_exit(void)
1548 {
1549         int id;
1550
1551         for (id = 0; id < DMIRROR_NDEVICES; id++)
1552                 if (dmirror_devices[id].zone_device_type)
1553                         dmirror_device_remove(dmirror_devices + id);
1554         unregister_chrdev_region(dmirror_dev, DMIRROR_NDEVICES);
1555 }
1556
1557 module_init(hmm_dmirror_init);
1558 module_exit(hmm_dmirror_exit);
1559 MODULE_LICENSE("GPL");