2 * Dynamic DMA mapping support.
4 * This implementation is a fallback for platforms that do not support
5 * I/O TLBs (aka DMA address translation hardware).
6 * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com>
7 * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com>
8 * Copyright (C) 2000, 2003 Hewlett-Packard Co
9 * David Mosberger-Tang <davidm@hpl.hp.com>
11 * 03/05/07 davidm Switch from PCI-DMA to generic device DMA API.
12 * 00/12/13 davidm Rename to swiotlb.c and add mark_clean() to avoid
13 * unnecessary i-cache flushing.
14 * 04/07/.. ak Better overflow handling. Assorted fixes.
15 * 05/09/10 linville Add support for syncing ranges, support syncing for
16 * DMA_BIDIRECTIONAL mappings, miscellaneous cleanup.
17 * 08/12/11 beckyb Add highmem support
20 #include <linux/cache.h>
21 #include <linux/dma-direct.h>
23 #include <linux/export.h>
24 #include <linux/spinlock.h>
25 #include <linux/string.h>
26 #include <linux/swiotlb.h>
27 #include <linux/pfn.h>
28 #include <linux/types.h>
29 #include <linux/ctype.h>
30 #include <linux/highmem.h>
31 #include <linux/gfp.h>
32 #include <linux/scatterlist.h>
33 #include <linux/mem_encrypt.h>
34 #include <linux/set_memory.h>
39 #include <linux/init.h>
40 #include <linux/bootmem.h>
41 #include <linux/iommu-helper.h>
43 #define CREATE_TRACE_POINTS
44 #include <trace/events/swiotlb.h>
46 #define OFFSET(val,align) ((unsigned long) \
47 ( (val) & ( (align) - 1)))
49 #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
52 * Minimum IO TLB size to bother booting with. Systems with mainly
53 * 64bit capable cards will only lightly use the swiotlb. If we can't
54 * allocate a contiguous 1MB, we're probably in trouble anyway.
56 #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
58 enum swiotlb_force swiotlb_force;
61 * Used to do a quick range check in swiotlb_tbl_unmap_single and
62 * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
65 static phys_addr_t io_tlb_start, io_tlb_end;
68 * The number of IO TLB blocks (in groups of 64) between io_tlb_start and
69 * io_tlb_end. This is command line adjustable via setup_io_tlb_npages.
71 static unsigned long io_tlb_nslabs;
74 * When the IOMMU overflows we return a fallback buffer. This sets the size.
76 static unsigned long io_tlb_overflow = 32*1024;
78 static phys_addr_t io_tlb_overflow_buffer;
81 * This is a free list describing the number of free entries available from
84 static unsigned int *io_tlb_list;
85 static unsigned int io_tlb_index;
88 * Max segment that we can provide which (if pages are contingous) will
89 * not be bounced (unless SWIOTLB_FORCE is set).
91 unsigned int max_segment;
94 * We need to save away the original address corresponding to a mapped entry
95 * for the sync operations.
97 #define INVALID_PHYS_ADDR (~(phys_addr_t)0)
98 static phys_addr_t *io_tlb_orig_addr;
101 * Protect the above data structures in the map and unmap calls
103 static DEFINE_SPINLOCK(io_tlb_lock);
105 static int late_alloc;
108 setup_io_tlb_npages(char *str)
111 io_tlb_nslabs = simple_strtoul(str, &str, 0);
112 /* avoid tail segment of size < IO_TLB_SEGSIZE */
113 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
117 if (!strcmp(str, "force")) {
118 swiotlb_force = SWIOTLB_FORCE;
119 } else if (!strcmp(str, "noforce")) {
120 swiotlb_force = SWIOTLB_NO_FORCE;
126 early_param("swiotlb", setup_io_tlb_npages);
127 /* make io_tlb_overflow tunable too? */
129 unsigned long swiotlb_nr_tbl(void)
131 return io_tlb_nslabs;
133 EXPORT_SYMBOL_GPL(swiotlb_nr_tbl);
135 unsigned int swiotlb_max_segment(void)
139 EXPORT_SYMBOL_GPL(swiotlb_max_segment);
141 void swiotlb_set_max_segment(unsigned int val)
143 if (swiotlb_force == SWIOTLB_FORCE)
146 max_segment = rounddown(val, PAGE_SIZE);
149 /* default to 64MB */
150 #define IO_TLB_DEFAULT_SIZE (64UL<<20)
151 unsigned long swiotlb_size_or_default(void)
155 size = io_tlb_nslabs << IO_TLB_SHIFT;
157 return size ? size : (IO_TLB_DEFAULT_SIZE);
160 static bool no_iotlb_memory;
162 void swiotlb_print_info(void)
164 unsigned long bytes = io_tlb_nslabs << IO_TLB_SHIFT;
165 unsigned char *vstart, *vend;
167 if (no_iotlb_memory) {
168 pr_warn("software IO TLB: No low mem\n");
172 vstart = phys_to_virt(io_tlb_start);
173 vend = phys_to_virt(io_tlb_end);
175 printk(KERN_INFO "software IO TLB [mem %#010llx-%#010llx] (%luMB) mapped at [%p-%p]\n",
176 (unsigned long long)io_tlb_start,
177 (unsigned long long)io_tlb_end,
178 bytes >> 20, vstart, vend - 1);
182 * Early SWIOTLB allocation may be too early to allow an architecture to
183 * perform the desired operations. This function allows the architecture to
184 * call SWIOTLB when the operations are possible. It needs to be called
185 * before the SWIOTLB memory is used.
187 void __init swiotlb_update_mem_attributes(void)
192 if (no_iotlb_memory || late_alloc)
195 vaddr = phys_to_virt(io_tlb_start);
196 bytes = PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT);
197 set_memory_decrypted((unsigned long)vaddr, bytes >> PAGE_SHIFT);
198 memset(vaddr, 0, bytes);
200 vaddr = phys_to_virt(io_tlb_overflow_buffer);
201 bytes = PAGE_ALIGN(io_tlb_overflow);
202 set_memory_decrypted((unsigned long)vaddr, bytes >> PAGE_SHIFT);
203 memset(vaddr, 0, bytes);
206 int __init swiotlb_init_with_tbl(char *tlb, unsigned long nslabs, int verbose)
208 void *v_overflow_buffer;
209 unsigned long i, bytes;
211 bytes = nslabs << IO_TLB_SHIFT;
213 io_tlb_nslabs = nslabs;
214 io_tlb_start = __pa(tlb);
215 io_tlb_end = io_tlb_start + bytes;
218 * Get the overflow emergency buffer
220 v_overflow_buffer = memblock_virt_alloc_low_nopanic(
221 PAGE_ALIGN(io_tlb_overflow),
223 if (!v_overflow_buffer)
226 io_tlb_overflow_buffer = __pa(v_overflow_buffer);
229 * Allocate and initialize the free list array. This array is used
230 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
231 * between io_tlb_start and io_tlb_end.
233 io_tlb_list = memblock_virt_alloc(
234 PAGE_ALIGN(io_tlb_nslabs * sizeof(int)),
236 io_tlb_orig_addr = memblock_virt_alloc(
237 PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t)),
239 for (i = 0; i < io_tlb_nslabs; i++) {
240 io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
241 io_tlb_orig_addr[i] = INVALID_PHYS_ADDR;
246 swiotlb_print_info();
248 swiotlb_set_max_segment(io_tlb_nslabs << IO_TLB_SHIFT);
253 * Statically reserve bounce buffer space and initialize bounce buffer data
254 * structures for the software IO TLB used to implement the DMA API.
257 swiotlb_init(int verbose)
259 size_t default_size = IO_TLB_DEFAULT_SIZE;
260 unsigned char *vstart;
263 if (!io_tlb_nslabs) {
264 io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
265 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
268 bytes = io_tlb_nslabs << IO_TLB_SHIFT;
270 /* Get IO TLB memory from the low pages */
271 vstart = memblock_virt_alloc_low_nopanic(PAGE_ALIGN(bytes), PAGE_SIZE);
272 if (vstart && !swiotlb_init_with_tbl(vstart, io_tlb_nslabs, verbose))
276 memblock_free_early(io_tlb_start,
277 PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT));
278 pr_warn("Cannot allocate SWIOTLB buffer");
279 no_iotlb_memory = true;
283 * Systems with larger DMA zones (those that don't support ISA) can
284 * initialize the swiotlb later using the slab allocator if needed.
285 * This should be just like above, but with some error catching.
288 swiotlb_late_init_with_default_size(size_t default_size)
290 unsigned long bytes, req_nslabs = io_tlb_nslabs;
291 unsigned char *vstart = NULL;
295 if (!io_tlb_nslabs) {
296 io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
297 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
301 * Get IO TLB memory from the low pages
303 order = get_order(io_tlb_nslabs << IO_TLB_SHIFT);
304 io_tlb_nslabs = SLABS_PER_PAGE << order;
305 bytes = io_tlb_nslabs << IO_TLB_SHIFT;
307 while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
308 vstart = (void *)__get_free_pages(GFP_DMA | __GFP_NOWARN,
316 io_tlb_nslabs = req_nslabs;
319 if (order != get_order(bytes)) {
320 printk(KERN_WARNING "Warning: only able to allocate %ld MB "
321 "for software IO TLB\n", (PAGE_SIZE << order) >> 20);
322 io_tlb_nslabs = SLABS_PER_PAGE << order;
324 rc = swiotlb_late_init_with_tbl(vstart, io_tlb_nslabs);
326 free_pages((unsigned long)vstart, order);
332 swiotlb_late_init_with_tbl(char *tlb, unsigned long nslabs)
334 unsigned long i, bytes;
335 unsigned char *v_overflow_buffer;
337 bytes = nslabs << IO_TLB_SHIFT;
339 io_tlb_nslabs = nslabs;
340 io_tlb_start = virt_to_phys(tlb);
341 io_tlb_end = io_tlb_start + bytes;
343 set_memory_decrypted((unsigned long)tlb, bytes >> PAGE_SHIFT);
344 memset(tlb, 0, bytes);
347 * Get the overflow emergency buffer
349 v_overflow_buffer = (void *)__get_free_pages(GFP_DMA,
350 get_order(io_tlb_overflow));
351 if (!v_overflow_buffer)
354 set_memory_decrypted((unsigned long)v_overflow_buffer,
355 io_tlb_overflow >> PAGE_SHIFT);
356 memset(v_overflow_buffer, 0, io_tlb_overflow);
357 io_tlb_overflow_buffer = virt_to_phys(v_overflow_buffer);
360 * Allocate and initialize the free list array. This array is used
361 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
362 * between io_tlb_start and io_tlb_end.
364 io_tlb_list = (unsigned int *)__get_free_pages(GFP_KERNEL,
365 get_order(io_tlb_nslabs * sizeof(int)));
369 io_tlb_orig_addr = (phys_addr_t *)
370 __get_free_pages(GFP_KERNEL,
371 get_order(io_tlb_nslabs *
372 sizeof(phys_addr_t)));
373 if (!io_tlb_orig_addr)
376 for (i = 0; i < io_tlb_nslabs; i++) {
377 io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
378 io_tlb_orig_addr[i] = INVALID_PHYS_ADDR;
382 swiotlb_print_info();
386 swiotlb_set_max_segment(io_tlb_nslabs << IO_TLB_SHIFT);
391 free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
395 free_pages((unsigned long)v_overflow_buffer,
396 get_order(io_tlb_overflow));
397 io_tlb_overflow_buffer = 0;
406 void __init swiotlb_exit(void)
408 if (!io_tlb_orig_addr)
412 free_pages((unsigned long)phys_to_virt(io_tlb_overflow_buffer),
413 get_order(io_tlb_overflow));
414 free_pages((unsigned long)io_tlb_orig_addr,
415 get_order(io_tlb_nslabs * sizeof(phys_addr_t)));
416 free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
418 free_pages((unsigned long)phys_to_virt(io_tlb_start),
419 get_order(io_tlb_nslabs << IO_TLB_SHIFT));
421 memblock_free_late(io_tlb_overflow_buffer,
422 PAGE_ALIGN(io_tlb_overflow));
423 memblock_free_late(__pa(io_tlb_orig_addr),
424 PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t)));
425 memblock_free_late(__pa(io_tlb_list),
426 PAGE_ALIGN(io_tlb_nslabs * sizeof(int)));
427 memblock_free_late(io_tlb_start,
428 PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT));
434 int is_swiotlb_buffer(phys_addr_t paddr)
436 return paddr >= io_tlb_start && paddr < io_tlb_end;
440 * Bounce: copy the swiotlb buffer back to the original dma location
442 static void swiotlb_bounce(phys_addr_t orig_addr, phys_addr_t tlb_addr,
443 size_t size, enum dma_data_direction dir)
445 unsigned long pfn = PFN_DOWN(orig_addr);
446 unsigned char *vaddr = phys_to_virt(tlb_addr);
448 if (PageHighMem(pfn_to_page(pfn))) {
449 /* The buffer does not have a mapping. Map it in and copy */
450 unsigned int offset = orig_addr & ~PAGE_MASK;
456 sz = min_t(size_t, PAGE_SIZE - offset, size);
458 local_irq_save(flags);
459 buffer = kmap_atomic(pfn_to_page(pfn));
460 if (dir == DMA_TO_DEVICE)
461 memcpy(vaddr, buffer + offset, sz);
463 memcpy(buffer + offset, vaddr, sz);
464 kunmap_atomic(buffer);
465 local_irq_restore(flags);
472 } else if (dir == DMA_TO_DEVICE) {
473 memcpy(vaddr, phys_to_virt(orig_addr), size);
475 memcpy(phys_to_virt(orig_addr), vaddr, size);
479 phys_addr_t swiotlb_tbl_map_single(struct device *hwdev,
480 dma_addr_t tbl_dma_addr,
481 phys_addr_t orig_addr, size_t size,
482 enum dma_data_direction dir,
486 phys_addr_t tlb_addr;
487 unsigned int nslots, stride, index, wrap;
490 unsigned long offset_slots;
491 unsigned long max_slots;
494 panic("Can not allocate SWIOTLB buffer earlier and can't now provide you with the DMA bounce buffer");
496 if (mem_encrypt_active())
497 pr_warn_once("%s is active and system is using DMA bounce buffers\n",
498 sme_active() ? "SME" : "SEV");
500 mask = dma_get_seg_boundary(hwdev);
502 tbl_dma_addr &= mask;
504 offset_slots = ALIGN(tbl_dma_addr, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
507 * Carefully handle integer overflow which can occur when mask == ~0UL.
510 ? ALIGN(mask + 1, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT
511 : 1UL << (BITS_PER_LONG - IO_TLB_SHIFT);
514 * For mappings greater than or equal to a page, we limit the stride
515 * (and hence alignment) to a page size.
517 nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
518 if (size >= PAGE_SIZE)
519 stride = (1 << (PAGE_SHIFT - IO_TLB_SHIFT));
526 * Find suitable number of IO TLB entries size that will fit this
527 * request and allocate a buffer from that IO TLB pool.
529 spin_lock_irqsave(&io_tlb_lock, flags);
530 index = ALIGN(io_tlb_index, stride);
531 if (index >= io_tlb_nslabs)
536 while (iommu_is_span_boundary(index, nslots, offset_slots,
539 if (index >= io_tlb_nslabs)
546 * If we find a slot that indicates we have 'nslots' number of
547 * contiguous buffers, we allocate the buffers from that slot
548 * and mark the entries as '0' indicating unavailable.
550 if (io_tlb_list[index] >= nslots) {
553 for (i = index; i < (int) (index + nslots); i++)
555 for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE - 1) && io_tlb_list[i]; i--)
556 io_tlb_list[i] = ++count;
557 tlb_addr = io_tlb_start + (index << IO_TLB_SHIFT);
560 * Update the indices to avoid searching in the next
563 io_tlb_index = ((index + nslots) < io_tlb_nslabs
564 ? (index + nslots) : 0);
569 if (index >= io_tlb_nslabs)
571 } while (index != wrap);
574 spin_unlock_irqrestore(&io_tlb_lock, flags);
575 if (!(attrs & DMA_ATTR_NO_WARN) && printk_ratelimit())
576 dev_warn(hwdev, "swiotlb buffer is full (sz: %zd bytes)\n", size);
577 return SWIOTLB_MAP_ERROR;
579 spin_unlock_irqrestore(&io_tlb_lock, flags);
582 * Save away the mapping from the original address to the DMA address.
583 * This is needed when we sync the memory. Then we sync the buffer if
586 for (i = 0; i < nslots; i++)
587 io_tlb_orig_addr[index+i] = orig_addr + (i << IO_TLB_SHIFT);
588 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
589 (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL))
590 swiotlb_bounce(orig_addr, tlb_addr, size, DMA_TO_DEVICE);
596 * Allocates bounce buffer and returns its kernel virtual address.
600 map_single(struct device *hwdev, phys_addr_t phys, size_t size,
601 enum dma_data_direction dir, unsigned long attrs)
603 dma_addr_t start_dma_addr;
605 if (swiotlb_force == SWIOTLB_NO_FORCE) {
606 dev_warn_ratelimited(hwdev, "Cannot do DMA to address %pa\n",
608 return SWIOTLB_MAP_ERROR;
611 start_dma_addr = __phys_to_dma(hwdev, io_tlb_start);
612 return swiotlb_tbl_map_single(hwdev, start_dma_addr, phys, size,
617 * dma_addr is the kernel virtual address of the bounce buffer to unmap.
619 void swiotlb_tbl_unmap_single(struct device *hwdev, phys_addr_t tlb_addr,
620 size_t size, enum dma_data_direction dir,
624 int i, count, nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
625 int index = (tlb_addr - io_tlb_start) >> IO_TLB_SHIFT;
626 phys_addr_t orig_addr = io_tlb_orig_addr[index];
629 * First, sync the memory before unmapping the entry
631 if (orig_addr != INVALID_PHYS_ADDR &&
632 !(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
633 ((dir == DMA_FROM_DEVICE) || (dir == DMA_BIDIRECTIONAL)))
634 swiotlb_bounce(orig_addr, tlb_addr, size, DMA_FROM_DEVICE);
637 * Return the buffer to the free list by setting the corresponding
638 * entries to indicate the number of contiguous entries available.
639 * While returning the entries to the free list, we merge the entries
640 * with slots below and above the pool being returned.
642 spin_lock_irqsave(&io_tlb_lock, flags);
644 count = ((index + nslots) < ALIGN(index + 1, IO_TLB_SEGSIZE) ?
645 io_tlb_list[index + nslots] : 0);
647 * Step 1: return the slots to the free list, merging the
648 * slots with superceeding slots
650 for (i = index + nslots - 1; i >= index; i--) {
651 io_tlb_list[i] = ++count;
652 io_tlb_orig_addr[i] = INVALID_PHYS_ADDR;
655 * Step 2: merge the returned slots with the preceding slots,
656 * if available (non zero)
658 for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE -1) && io_tlb_list[i]; i--)
659 io_tlb_list[i] = ++count;
661 spin_unlock_irqrestore(&io_tlb_lock, flags);
664 void swiotlb_tbl_sync_single(struct device *hwdev, phys_addr_t tlb_addr,
665 size_t size, enum dma_data_direction dir,
666 enum dma_sync_target target)
668 int index = (tlb_addr - io_tlb_start) >> IO_TLB_SHIFT;
669 phys_addr_t orig_addr = io_tlb_orig_addr[index];
671 if (orig_addr == INVALID_PHYS_ADDR)
673 orig_addr += (unsigned long)tlb_addr & ((1 << IO_TLB_SHIFT) - 1);
677 if (likely(dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL))
678 swiotlb_bounce(orig_addr, tlb_addr,
679 size, DMA_FROM_DEVICE);
681 BUG_ON(dir != DMA_TO_DEVICE);
683 case SYNC_FOR_DEVICE:
684 if (likely(dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL))
685 swiotlb_bounce(orig_addr, tlb_addr,
686 size, DMA_TO_DEVICE);
688 BUG_ON(dir != DMA_FROM_DEVICE);
695 #ifdef CONFIG_DMA_DIRECT_OPS
696 static inline bool dma_coherent_ok(struct device *dev, dma_addr_t addr,
699 u64 mask = DMA_BIT_MASK(32);
701 if (dev && dev->coherent_dma_mask)
702 mask = dev->coherent_dma_mask;
703 return addr + size - 1 <= mask;
707 swiotlb_alloc_buffer(struct device *dev, size_t size, dma_addr_t *dma_handle,
710 phys_addr_t phys_addr;
712 if (swiotlb_force == SWIOTLB_NO_FORCE)
715 phys_addr = swiotlb_tbl_map_single(dev,
716 __phys_to_dma(dev, io_tlb_start),
717 0, size, DMA_FROM_DEVICE, 0);
718 if (phys_addr == SWIOTLB_MAP_ERROR)
721 *dma_handle = __phys_to_dma(dev, phys_addr);
722 if (dma_coherent_ok(dev, *dma_handle, size))
725 memset(phys_to_virt(phys_addr), 0, size);
726 return phys_to_virt(phys_addr);
729 dev_warn(dev, "hwdev DMA mask = 0x%016Lx, dev_addr = 0x%016Lx\n",
730 (unsigned long long)(dev ? dev->coherent_dma_mask : 0),
731 (unsigned long long)*dma_handle);
734 * DMA_TO_DEVICE to avoid memcpy in unmap_single.
735 * DMA_ATTR_SKIP_CPU_SYNC is optional.
737 swiotlb_tbl_unmap_single(dev, phys_addr, size, DMA_TO_DEVICE,
738 DMA_ATTR_SKIP_CPU_SYNC);
740 if ((attrs & DMA_ATTR_NO_WARN) && printk_ratelimit()) {
742 "swiotlb: coherent allocation failed, size=%zu\n",
749 static bool swiotlb_free_buffer(struct device *dev, size_t size,
752 phys_addr_t phys_addr = dma_to_phys(dev, dma_addr);
754 WARN_ON_ONCE(irqs_disabled());
756 if (!is_swiotlb_buffer(phys_addr))
760 * DMA_TO_DEVICE to avoid memcpy in swiotlb_tbl_unmap_single.
761 * DMA_ATTR_SKIP_CPU_SYNC is optional.
763 swiotlb_tbl_unmap_single(dev, phys_addr, size, DMA_TO_DEVICE,
764 DMA_ATTR_SKIP_CPU_SYNC);
770 swiotlb_full(struct device *dev, size_t size, enum dma_data_direction dir,
773 if (swiotlb_force == SWIOTLB_NO_FORCE)
777 * Ran out of IOMMU space for this operation. This is very bad.
778 * Unfortunately the drivers cannot handle this operation properly.
779 * unless they check for dma_mapping_error (most don't)
780 * When the mapping is small enough return a static buffer to limit
781 * the damage, or panic when the transfer is too big.
783 dev_err_ratelimited(dev, "DMA: Out of SW-IOMMU space for %zu bytes\n",
786 if (size <= io_tlb_overflow || !do_panic)
789 if (dir == DMA_BIDIRECTIONAL)
790 panic("DMA: Random memory could be DMA accessed\n");
791 if (dir == DMA_FROM_DEVICE)
792 panic("DMA: Random memory could be DMA written\n");
793 if (dir == DMA_TO_DEVICE)
794 panic("DMA: Random memory could be DMA read\n");
798 * Map a single buffer of the indicated size for DMA in streaming mode. The
799 * physical address to use is returned.
801 * Once the device is given the dma address, the device owns this memory until
802 * either swiotlb_unmap_page or swiotlb_dma_sync_single is performed.
804 dma_addr_t swiotlb_map_page(struct device *dev, struct page *page,
805 unsigned long offset, size_t size,
806 enum dma_data_direction dir,
809 phys_addr_t map, phys = page_to_phys(page) + offset;
810 dma_addr_t dev_addr = phys_to_dma(dev, phys);
812 BUG_ON(dir == DMA_NONE);
814 * If the address happens to be in the device's DMA window,
815 * we can safely return the device addr and not worry about bounce
818 if (dma_capable(dev, dev_addr, size) && swiotlb_force != SWIOTLB_FORCE)
821 trace_swiotlb_bounced(dev, dev_addr, size, swiotlb_force);
823 /* Oh well, have to allocate and map a bounce buffer. */
824 map = map_single(dev, phys, size, dir, attrs);
825 if (map == SWIOTLB_MAP_ERROR) {
826 swiotlb_full(dev, size, dir, 1);
827 return __phys_to_dma(dev, io_tlb_overflow_buffer);
830 dev_addr = __phys_to_dma(dev, map);
832 /* Ensure that the address returned is DMA'ble */
833 if (dma_capable(dev, dev_addr, size))
836 attrs |= DMA_ATTR_SKIP_CPU_SYNC;
837 swiotlb_tbl_unmap_single(dev, map, size, dir, attrs);
839 return __phys_to_dma(dev, io_tlb_overflow_buffer);
843 * Unmap a single streaming mode DMA translation. The dma_addr and size must
844 * match what was provided for in a previous swiotlb_map_page call. All
845 * other usages are undefined.
847 * After this call, reads by the cpu to the buffer are guaranteed to see
848 * whatever the device wrote there.
850 static void unmap_single(struct device *hwdev, dma_addr_t dev_addr,
851 size_t size, enum dma_data_direction dir,
854 phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
856 BUG_ON(dir == DMA_NONE);
858 if (is_swiotlb_buffer(paddr)) {
859 swiotlb_tbl_unmap_single(hwdev, paddr, size, dir, attrs);
863 if (dir != DMA_FROM_DEVICE)
867 * phys_to_virt doesn't work with hihgmem page but we could
868 * call dma_mark_clean() with hihgmem page here. However, we
869 * are fine since dma_mark_clean() is null on POWERPC. We can
870 * make dma_mark_clean() take a physical address if necessary.
872 dma_mark_clean(phys_to_virt(paddr), size);
875 void swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
876 size_t size, enum dma_data_direction dir,
879 unmap_single(hwdev, dev_addr, size, dir, attrs);
883 * Make physical memory consistent for a single streaming mode DMA translation
886 * If you perform a swiotlb_map_page() but wish to interrogate the buffer
887 * using the cpu, yet do not wish to teardown the dma mapping, you must
888 * call this function before doing so. At the next point you give the dma
889 * address back to the card, you must first perform a
890 * swiotlb_dma_sync_for_device, and then the device again owns the buffer
893 swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
894 size_t size, enum dma_data_direction dir,
895 enum dma_sync_target target)
897 phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
899 BUG_ON(dir == DMA_NONE);
901 if (is_swiotlb_buffer(paddr)) {
902 swiotlb_tbl_sync_single(hwdev, paddr, size, dir, target);
906 if (dir != DMA_FROM_DEVICE)
909 dma_mark_clean(phys_to_virt(paddr), size);
913 swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
914 size_t size, enum dma_data_direction dir)
916 swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU);
920 swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
921 size_t size, enum dma_data_direction dir)
923 swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE);
927 * Map a set of buffers described by scatterlist in streaming mode for DMA.
928 * This is the scatter-gather version of the above swiotlb_map_page
929 * interface. Here the scatter gather list elements are each tagged with the
930 * appropriate dma address and length. They are obtained via
931 * sg_dma_{address,length}(SG).
933 * NOTE: An implementation may be able to use a smaller number of
934 * DMA address/length pairs than there are SG table elements.
935 * (for example via virtual mapping capabilities)
936 * The routine returns the number of addr/length pairs actually
937 * used, at most nents.
939 * Device ownership issues as mentioned above for swiotlb_map_page are the
943 swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl, int nelems,
944 enum dma_data_direction dir, unsigned long attrs)
946 struct scatterlist *sg;
949 BUG_ON(dir == DMA_NONE);
951 for_each_sg(sgl, sg, nelems, i) {
952 phys_addr_t paddr = sg_phys(sg);
953 dma_addr_t dev_addr = phys_to_dma(hwdev, paddr);
955 if (swiotlb_force == SWIOTLB_FORCE ||
956 !dma_capable(hwdev, dev_addr, sg->length)) {
957 phys_addr_t map = map_single(hwdev, sg_phys(sg),
958 sg->length, dir, attrs);
959 if (map == SWIOTLB_MAP_ERROR) {
960 /* Don't panic here, we expect map_sg users
961 to do proper error handling. */
962 swiotlb_full(hwdev, sg->length, dir, 0);
963 attrs |= DMA_ATTR_SKIP_CPU_SYNC;
964 swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir,
969 sg->dma_address = __phys_to_dma(hwdev, map);
971 sg->dma_address = dev_addr;
972 sg_dma_len(sg) = sg->length;
978 * Unmap a set of streaming mode DMA translations. Again, cpu read rules
979 * concerning calls here are the same as for swiotlb_unmap_page() above.
982 swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
983 int nelems, enum dma_data_direction dir,
986 struct scatterlist *sg;
989 BUG_ON(dir == DMA_NONE);
991 for_each_sg(sgl, sg, nelems, i)
992 unmap_single(hwdev, sg->dma_address, sg_dma_len(sg), dir,
997 * Make physical memory consistent for a set of streaming mode DMA translations
1000 * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
1004 swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl,
1005 int nelems, enum dma_data_direction dir,
1006 enum dma_sync_target target)
1008 struct scatterlist *sg;
1011 for_each_sg(sgl, sg, nelems, i)
1012 swiotlb_sync_single(hwdev, sg->dma_address,
1013 sg_dma_len(sg), dir, target);
1017 swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
1018 int nelems, enum dma_data_direction dir)
1020 swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU);
1024 swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
1025 int nelems, enum dma_data_direction dir)
1027 swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
1031 swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
1033 return (dma_addr == __phys_to_dma(hwdev, io_tlb_overflow_buffer));
1037 * Return whether the given device DMA address mask can be supported
1038 * properly. For example, if your device can only drive the low 24-bits
1039 * during bus mastering, then you would pass 0x00ffffff as the mask to
1043 swiotlb_dma_supported(struct device *hwdev, u64 mask)
1045 return __phys_to_dma(hwdev, io_tlb_end - 1) <= mask;
1048 #ifdef CONFIG_DMA_DIRECT_OPS
1049 void *swiotlb_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle,
1050 gfp_t gfp, unsigned long attrs)
1054 /* temporary workaround: */
1055 if (gfp & __GFP_NOWARN)
1056 attrs |= DMA_ATTR_NO_WARN;
1059 * Don't print a warning when the first allocation attempt fails.
1060 * swiotlb_alloc_coherent() will print a warning when the DMA memory
1061 * allocation ultimately failed.
1063 gfp |= __GFP_NOWARN;
1065 vaddr = dma_direct_alloc(dev, size, dma_handle, gfp, attrs);
1067 vaddr = swiotlb_alloc_buffer(dev, size, dma_handle, attrs);
1071 void swiotlb_free(struct device *dev, size_t size, void *vaddr,
1072 dma_addr_t dma_addr, unsigned long attrs)
1074 if (!swiotlb_free_buffer(dev, size, dma_addr))
1075 dma_direct_free(dev, size, vaddr, dma_addr, attrs);
1078 const struct dma_map_ops swiotlb_dma_ops = {
1079 .mapping_error = swiotlb_dma_mapping_error,
1080 .alloc = swiotlb_alloc,
1081 .free = swiotlb_free,
1082 .sync_single_for_cpu = swiotlb_sync_single_for_cpu,
1083 .sync_single_for_device = swiotlb_sync_single_for_device,
1084 .sync_sg_for_cpu = swiotlb_sync_sg_for_cpu,
1085 .sync_sg_for_device = swiotlb_sync_sg_for_device,
1086 .map_sg = swiotlb_map_sg_attrs,
1087 .unmap_sg = swiotlb_unmap_sg_attrs,
1088 .map_page = swiotlb_map_page,
1089 .unmap_page = swiotlb_unmap_page,
1090 .dma_supported = swiotlb_dma_supported,
1092 #endif /* CONFIG_DMA_DIRECT_OPS */