media: media.h: remove __NEED_MEDIA_LEGACY_API
[platform/kernel/linux-rpi.git] / lib / stackdepot.c
1 /*
2  * Generic stack depot for storing stack traces.
3  *
4  * Some debugging tools need to save stack traces of certain events which can
5  * be later presented to the user. For example, KASAN needs to safe alloc and
6  * free stacks for each object, but storing two stack traces per object
7  * requires too much memory (e.g. SLUB_DEBUG needs 256 bytes per object for
8  * that).
9  *
10  * Instead, stack depot maintains a hashtable of unique stacktraces. Since alloc
11  * and free stacks repeat a lot, we save about 100x space.
12  * Stacks are never removed from depot, so we store them contiguously one after
13  * another in a contiguos memory allocation.
14  *
15  * Author: Alexander Potapenko <glider@google.com>
16  * Copyright (C) 2016 Google, Inc.
17  *
18  * Based on code by Dmitry Chernenkov.
19  *
20  * This program is free software; you can redistribute it and/or
21  * modify it under the terms of the GNU General Public License
22  * version 2 as published by the Free Software Foundation.
23  *
24  * This program is distributed in the hope that it will be useful, but
25  * WITHOUT ANY WARRANTY; without even the implied warranty of
26  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
27  * General Public License for more details.
28  *
29  */
30
31 #include <linux/gfp.h>
32 #include <linux/jhash.h>
33 #include <linux/kernel.h>
34 #include <linux/mm.h>
35 #include <linux/percpu.h>
36 #include <linux/printk.h>
37 #include <linux/slab.h>
38 #include <linux/stacktrace.h>
39 #include <linux/stackdepot.h>
40 #include <linux/string.h>
41 #include <linux/types.h>
42
43 #define DEPOT_STACK_BITS (sizeof(depot_stack_handle_t) * 8)
44
45 #define STACK_ALLOC_NULL_PROTECTION_BITS 1
46 #define STACK_ALLOC_ORDER 2 /* 'Slab' size order for stack depot, 4 pages */
47 #define STACK_ALLOC_SIZE (1LL << (PAGE_SHIFT + STACK_ALLOC_ORDER))
48 #define STACK_ALLOC_ALIGN 4
49 #define STACK_ALLOC_OFFSET_BITS (STACK_ALLOC_ORDER + PAGE_SHIFT - \
50                                         STACK_ALLOC_ALIGN)
51 #define STACK_ALLOC_INDEX_BITS (DEPOT_STACK_BITS - \
52                 STACK_ALLOC_NULL_PROTECTION_BITS - STACK_ALLOC_OFFSET_BITS)
53 #define STACK_ALLOC_SLABS_CAP 8192
54 #define STACK_ALLOC_MAX_SLABS \
55         (((1LL << (STACK_ALLOC_INDEX_BITS)) < STACK_ALLOC_SLABS_CAP) ? \
56          (1LL << (STACK_ALLOC_INDEX_BITS)) : STACK_ALLOC_SLABS_CAP)
57
58 /* The compact structure to store the reference to stacks. */
59 union handle_parts {
60         depot_stack_handle_t handle;
61         struct {
62                 u32 slabindex : STACK_ALLOC_INDEX_BITS;
63                 u32 offset : STACK_ALLOC_OFFSET_BITS;
64                 u32 valid : STACK_ALLOC_NULL_PROTECTION_BITS;
65         };
66 };
67
68 struct stack_record {
69         struct stack_record *next;      /* Link in the hashtable */
70         u32 hash;                       /* Hash in the hastable */
71         u32 size;                       /* Number of frames in the stack */
72         union handle_parts handle;
73         unsigned long entries[1];       /* Variable-sized array of entries. */
74 };
75
76 static void *stack_slabs[STACK_ALLOC_MAX_SLABS];
77
78 static int depot_index;
79 static int next_slab_inited;
80 static size_t depot_offset;
81 static DEFINE_SPINLOCK(depot_lock);
82
83 static bool init_stack_slab(void **prealloc)
84 {
85         if (!*prealloc)
86                 return false;
87         /*
88          * This smp_load_acquire() pairs with smp_store_release() to
89          * |next_slab_inited| below and in depot_alloc_stack().
90          */
91         if (smp_load_acquire(&next_slab_inited))
92                 return true;
93         if (stack_slabs[depot_index] == NULL) {
94                 stack_slabs[depot_index] = *prealloc;
95         } else {
96                 stack_slabs[depot_index + 1] = *prealloc;
97                 /*
98                  * This smp_store_release pairs with smp_load_acquire() from
99                  * |next_slab_inited| above and in depot_save_stack().
100                  */
101                 smp_store_release(&next_slab_inited, 1);
102         }
103         *prealloc = NULL;
104         return true;
105 }
106
107 /* Allocation of a new stack in raw storage */
108 static struct stack_record *depot_alloc_stack(unsigned long *entries, int size,
109                 u32 hash, void **prealloc, gfp_t alloc_flags)
110 {
111         int required_size = offsetof(struct stack_record, entries) +
112                 sizeof(unsigned long) * size;
113         struct stack_record *stack;
114
115         required_size = ALIGN(required_size, 1 << STACK_ALLOC_ALIGN);
116
117         if (unlikely(depot_offset + required_size > STACK_ALLOC_SIZE)) {
118                 if (unlikely(depot_index + 1 >= STACK_ALLOC_MAX_SLABS)) {
119                         WARN_ONCE(1, "Stack depot reached limit capacity");
120                         return NULL;
121                 }
122                 depot_index++;
123                 depot_offset = 0;
124                 /*
125                  * smp_store_release() here pairs with smp_load_acquire() from
126                  * |next_slab_inited| in depot_save_stack() and
127                  * init_stack_slab().
128                  */
129                 if (depot_index + 1 < STACK_ALLOC_MAX_SLABS)
130                         smp_store_release(&next_slab_inited, 0);
131         }
132         init_stack_slab(prealloc);
133         if (stack_slabs[depot_index] == NULL)
134                 return NULL;
135
136         stack = stack_slabs[depot_index] + depot_offset;
137
138         stack->hash = hash;
139         stack->size = size;
140         stack->handle.slabindex = depot_index;
141         stack->handle.offset = depot_offset >> STACK_ALLOC_ALIGN;
142         stack->handle.valid = 1;
143         memcpy(stack->entries, entries, size * sizeof(unsigned long));
144         depot_offset += required_size;
145
146         return stack;
147 }
148
149 #define STACK_HASH_ORDER 20
150 #define STACK_HASH_SIZE (1L << STACK_HASH_ORDER)
151 #define STACK_HASH_MASK (STACK_HASH_SIZE - 1)
152 #define STACK_HASH_SEED 0x9747b28c
153
154 static struct stack_record *stack_table[STACK_HASH_SIZE] = {
155         [0 ...  STACK_HASH_SIZE - 1] = NULL
156 };
157
158 /* Calculate hash for a stack */
159 static inline u32 hash_stack(unsigned long *entries, unsigned int size)
160 {
161         return jhash2((u32 *)entries,
162                                size * sizeof(unsigned long) / sizeof(u32),
163                                STACK_HASH_SEED);
164 }
165
166 /* Use our own, non-instrumented version of memcmp().
167  *
168  * We actually don't care about the order, just the equality.
169  */
170 static inline
171 int stackdepot_memcmp(const unsigned long *u1, const unsigned long *u2,
172                         unsigned int n)
173 {
174         for ( ; n-- ; u1++, u2++) {
175                 if (*u1 != *u2)
176                         return 1;
177         }
178         return 0;
179 }
180
181 /* Find a stack that is equal to the one stored in entries in the hash */
182 static inline struct stack_record *find_stack(struct stack_record *bucket,
183                                              unsigned long *entries, int size,
184                                              u32 hash)
185 {
186         struct stack_record *found;
187
188         for (found = bucket; found; found = found->next) {
189                 if (found->hash == hash &&
190                     found->size == size &&
191                     !stackdepot_memcmp(entries, found->entries, size))
192                         return found;
193         }
194         return NULL;
195 }
196
197 void depot_fetch_stack(depot_stack_handle_t handle, struct stack_trace *trace)
198 {
199         union handle_parts parts = { .handle = handle };
200         void *slab = stack_slabs[parts.slabindex];
201         size_t offset = parts.offset << STACK_ALLOC_ALIGN;
202         struct stack_record *stack = slab + offset;
203
204         trace->nr_entries = trace->max_entries = stack->size;
205         trace->entries = stack->entries;
206         trace->skip = 0;
207 }
208 EXPORT_SYMBOL_GPL(depot_fetch_stack);
209
210 /**
211  * depot_save_stack - save stack in a stack depot.
212  * @trace - the stacktrace to save.
213  * @alloc_flags - flags for allocating additional memory if required.
214  *
215  * Returns the handle of the stack struct stored in depot.
216  */
217 depot_stack_handle_t depot_save_stack(struct stack_trace *trace,
218                                     gfp_t alloc_flags)
219 {
220         u32 hash;
221         depot_stack_handle_t retval = 0;
222         struct stack_record *found = NULL, **bucket;
223         unsigned long flags;
224         struct page *page = NULL;
225         void *prealloc = NULL;
226
227         if (unlikely(trace->nr_entries == 0))
228                 goto fast_exit;
229
230         hash = hash_stack(trace->entries, trace->nr_entries);
231         bucket = &stack_table[hash & STACK_HASH_MASK];
232
233         /*
234          * Fast path: look the stack trace up without locking.
235          * The smp_load_acquire() here pairs with smp_store_release() to
236          * |bucket| below.
237          */
238         found = find_stack(smp_load_acquire(bucket), trace->entries,
239                            trace->nr_entries, hash);
240         if (found)
241                 goto exit;
242
243         /*
244          * Check if the current or the next stack slab need to be initialized.
245          * If so, allocate the memory - we won't be able to do that under the
246          * lock.
247          *
248          * The smp_load_acquire() here pairs with smp_store_release() to
249          * |next_slab_inited| in depot_alloc_stack() and init_stack_slab().
250          */
251         if (unlikely(!smp_load_acquire(&next_slab_inited))) {
252                 /*
253                  * Zero out zone modifiers, as we don't have specific zone
254                  * requirements. Keep the flags related to allocation in atomic
255                  * contexts and I/O.
256                  */
257                 alloc_flags &= ~GFP_ZONEMASK;
258                 alloc_flags &= (GFP_ATOMIC | GFP_KERNEL);
259                 alloc_flags |= __GFP_NOWARN;
260                 page = alloc_pages(alloc_flags, STACK_ALLOC_ORDER);
261                 if (page)
262                         prealloc = page_address(page);
263         }
264
265         spin_lock_irqsave(&depot_lock, flags);
266
267         found = find_stack(*bucket, trace->entries, trace->nr_entries, hash);
268         if (!found) {
269                 struct stack_record *new =
270                         depot_alloc_stack(trace->entries, trace->nr_entries,
271                                           hash, &prealloc, alloc_flags);
272                 if (new) {
273                         new->next = *bucket;
274                         /*
275                          * This smp_store_release() pairs with
276                          * smp_load_acquire() from |bucket| above.
277                          */
278                         smp_store_release(bucket, new);
279                         found = new;
280                 }
281         } else if (prealloc) {
282                 /*
283                  * We didn't need to store this stack trace, but let's keep
284                  * the preallocated memory for the future.
285                  */
286                 WARN_ON(!init_stack_slab(&prealloc));
287         }
288
289         spin_unlock_irqrestore(&depot_lock, flags);
290 exit:
291         if (prealloc) {
292                 /* Nobody used this memory, ok to free it. */
293                 free_pages((unsigned long)prealloc, STACK_ALLOC_ORDER);
294         }
295         if (found)
296                 retval = found->handle.handle;
297 fast_exit:
298         return retval;
299 }
300 EXPORT_SYMBOL_GPL(depot_save_stack);