Merge tag 'gvt-next-2017-12-14' of https://github.com/intel/gvt-linux into drm-intel...
[platform/kernel/linux-starfive.git] / lib / sha1.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * SHA1 routine optimized to do word accesses rather than byte accesses,
4  * and to avoid unnecessary copies into the context array.
5  *
6  * This was based on the git SHA1 implementation.
7  */
8
9 #include <linux/kernel.h>
10 #include <linux/export.h>
11 #include <linux/bitops.h>
12 #include <linux/cryptohash.h>
13 #include <asm/unaligned.h>
14
15 /*
16  * If you have 32 registers or more, the compiler can (and should)
17  * try to change the array[] accesses into registers. However, on
18  * machines with less than ~25 registers, that won't really work,
19  * and at least gcc will make an unholy mess of it.
20  *
21  * So to avoid that mess which just slows things down, we force
22  * the stores to memory to actually happen (we might be better off
23  * with a 'W(t)=(val);asm("":"+m" (W(t))' there instead, as
24  * suggested by Artur Skawina - that will also make gcc unable to
25  * try to do the silly "optimize away loads" part because it won't
26  * see what the value will be).
27  *
28  * Ben Herrenschmidt reports that on PPC, the C version comes close
29  * to the optimized asm with this (ie on PPC you don't want that
30  * 'volatile', since there are lots of registers).
31  *
32  * On ARM we get the best code generation by forcing a full memory barrier
33  * between each SHA_ROUND, otherwise gcc happily get wild with spilling and
34  * the stack frame size simply explode and performance goes down the drain.
35  */
36
37 #ifdef CONFIG_X86
38   #define setW(x, val) (*(volatile __u32 *)&W(x) = (val))
39 #elif defined(CONFIG_ARM)
40   #define setW(x, val) do { W(x) = (val); __asm__("":::"memory"); } while (0)
41 #else
42   #define setW(x, val) (W(x) = (val))
43 #endif
44
45 /* This "rolls" over the 512-bit array */
46 #define W(x) (array[(x)&15])
47
48 /*
49  * Where do we get the source from? The first 16 iterations get it from
50  * the input data, the next mix it from the 512-bit array.
51  */
52 #define SHA_SRC(t) get_unaligned_be32((__u32 *)data + t)
53 #define SHA_MIX(t) rol32(W(t+13) ^ W(t+8) ^ W(t+2) ^ W(t), 1)
54
55 #define SHA_ROUND(t, input, fn, constant, A, B, C, D, E) do { \
56         __u32 TEMP = input(t); setW(t, TEMP); \
57         E += TEMP + rol32(A,5) + (fn) + (constant); \
58         B = ror32(B, 2); } while (0)
59
60 #define T_0_15(t, A, B, C, D, E)  SHA_ROUND(t, SHA_SRC, (((C^D)&B)^D) , 0x5a827999, A, B, C, D, E )
61 #define T_16_19(t, A, B, C, D, E) SHA_ROUND(t, SHA_MIX, (((C^D)&B)^D) , 0x5a827999, A, B, C, D, E )
62 #define T_20_39(t, A, B, C, D, E) SHA_ROUND(t, SHA_MIX, (B^C^D) , 0x6ed9eba1, A, B, C, D, E )
63 #define T_40_59(t, A, B, C, D, E) SHA_ROUND(t, SHA_MIX, ((B&C)+(D&(B^C))) , 0x8f1bbcdc, A, B, C, D, E )
64 #define T_60_79(t, A, B, C, D, E) SHA_ROUND(t, SHA_MIX, (B^C^D) ,  0xca62c1d6, A, B, C, D, E )
65
66 /**
67  * sha_transform - single block SHA1 transform
68  *
69  * @digest: 160 bit digest to update
70  * @data:   512 bits of data to hash
71  * @array:  16 words of workspace (see note)
72  *
73  * This function generates a SHA1 digest for a single 512-bit block.
74  * Be warned, it does not handle padding and message digest, do not
75  * confuse it with the full FIPS 180-1 digest algorithm for variable
76  * length messages.
77  *
78  * Note: If the hash is security sensitive, the caller should be sure
79  * to clear the workspace. This is left to the caller to avoid
80  * unnecessary clears between chained hashing operations.
81  */
82 void sha_transform(__u32 *digest, const char *data, __u32 *array)
83 {
84         __u32 A, B, C, D, E;
85
86         A = digest[0];
87         B = digest[1];
88         C = digest[2];
89         D = digest[3];
90         E = digest[4];
91
92         /* Round 1 - iterations 0-16 take their input from 'data' */
93         T_0_15( 0, A, B, C, D, E);
94         T_0_15( 1, E, A, B, C, D);
95         T_0_15( 2, D, E, A, B, C);
96         T_0_15( 3, C, D, E, A, B);
97         T_0_15( 4, B, C, D, E, A);
98         T_0_15( 5, A, B, C, D, E);
99         T_0_15( 6, E, A, B, C, D);
100         T_0_15( 7, D, E, A, B, C);
101         T_0_15( 8, C, D, E, A, B);
102         T_0_15( 9, B, C, D, E, A);
103         T_0_15(10, A, B, C, D, E);
104         T_0_15(11, E, A, B, C, D);
105         T_0_15(12, D, E, A, B, C);
106         T_0_15(13, C, D, E, A, B);
107         T_0_15(14, B, C, D, E, A);
108         T_0_15(15, A, B, C, D, E);
109
110         /* Round 1 - tail. Input from 512-bit mixing array */
111         T_16_19(16, E, A, B, C, D);
112         T_16_19(17, D, E, A, B, C);
113         T_16_19(18, C, D, E, A, B);
114         T_16_19(19, B, C, D, E, A);
115
116         /* Round 2 */
117         T_20_39(20, A, B, C, D, E);
118         T_20_39(21, E, A, B, C, D);
119         T_20_39(22, D, E, A, B, C);
120         T_20_39(23, C, D, E, A, B);
121         T_20_39(24, B, C, D, E, A);
122         T_20_39(25, A, B, C, D, E);
123         T_20_39(26, E, A, B, C, D);
124         T_20_39(27, D, E, A, B, C);
125         T_20_39(28, C, D, E, A, B);
126         T_20_39(29, B, C, D, E, A);
127         T_20_39(30, A, B, C, D, E);
128         T_20_39(31, E, A, B, C, D);
129         T_20_39(32, D, E, A, B, C);
130         T_20_39(33, C, D, E, A, B);
131         T_20_39(34, B, C, D, E, A);
132         T_20_39(35, A, B, C, D, E);
133         T_20_39(36, E, A, B, C, D);
134         T_20_39(37, D, E, A, B, C);
135         T_20_39(38, C, D, E, A, B);
136         T_20_39(39, B, C, D, E, A);
137
138         /* Round 3 */
139         T_40_59(40, A, B, C, D, E);
140         T_40_59(41, E, A, B, C, D);
141         T_40_59(42, D, E, A, B, C);
142         T_40_59(43, C, D, E, A, B);
143         T_40_59(44, B, C, D, E, A);
144         T_40_59(45, A, B, C, D, E);
145         T_40_59(46, E, A, B, C, D);
146         T_40_59(47, D, E, A, B, C);
147         T_40_59(48, C, D, E, A, B);
148         T_40_59(49, B, C, D, E, A);
149         T_40_59(50, A, B, C, D, E);
150         T_40_59(51, E, A, B, C, D);
151         T_40_59(52, D, E, A, B, C);
152         T_40_59(53, C, D, E, A, B);
153         T_40_59(54, B, C, D, E, A);
154         T_40_59(55, A, B, C, D, E);
155         T_40_59(56, E, A, B, C, D);
156         T_40_59(57, D, E, A, B, C);
157         T_40_59(58, C, D, E, A, B);
158         T_40_59(59, B, C, D, E, A);
159
160         /* Round 4 */
161         T_60_79(60, A, B, C, D, E);
162         T_60_79(61, E, A, B, C, D);
163         T_60_79(62, D, E, A, B, C);
164         T_60_79(63, C, D, E, A, B);
165         T_60_79(64, B, C, D, E, A);
166         T_60_79(65, A, B, C, D, E);
167         T_60_79(66, E, A, B, C, D);
168         T_60_79(67, D, E, A, B, C);
169         T_60_79(68, C, D, E, A, B);
170         T_60_79(69, B, C, D, E, A);
171         T_60_79(70, A, B, C, D, E);
172         T_60_79(71, E, A, B, C, D);
173         T_60_79(72, D, E, A, B, C);
174         T_60_79(73, C, D, E, A, B);
175         T_60_79(74, B, C, D, E, A);
176         T_60_79(75, A, B, C, D, E);
177         T_60_79(76, E, A, B, C, D);
178         T_60_79(77, D, E, A, B, C);
179         T_60_79(78, C, D, E, A, B);
180         T_60_79(79, B, C, D, E, A);
181
182         digest[0] += A;
183         digest[1] += B;
184         digest[2] += C;
185         digest[3] += D;
186         digest[4] += E;
187 }
188 EXPORT_SYMBOL(sha_transform);
189
190 /**
191  * sha_init - initialize the vectors for a SHA1 digest
192  * @buf: vector to initialize
193  */
194 void sha_init(__u32 *buf)
195 {
196         buf[0] = 0x67452301;
197         buf[1] = 0xefcdab89;
198         buf[2] = 0x98badcfe;
199         buf[3] = 0x10325476;
200         buf[4] = 0xc3d2e1f0;
201 }
202 EXPORT_SYMBOL(sha_init);