1 /********************************************************************
3 * THIS FILE IS PART OF THE OggVorbis SOFTWARE CODEC SOURCE CODE. *
4 * USE, DISTRIBUTION AND REPRODUCTION OF THIS LIBRARY SOURCE IS *
5 * GOVERNED BY A BSD-STYLE SOURCE LICENSE INCLUDED WITH THIS SOURCE *
6 * IN 'COPYING'. PLEASE READ THESE TERMS BEFORE DISTRIBUTING. *
8 * THE OggVorbis SOURCE CODE IS (C) COPYRIGHT 1994-2002 *
9 * by the XIPHOPHORUS Company http://www.xiph.org/ *
11 ********************************************************************
13 function: linear scale -> dB, Bark and Mel scales
16 ********************************************************************/
25 #define VORBIS_IEEE_FLOAT32 1
26 #ifdef VORBIS_IEEE_FLOAT32
28 static float unitnorm(float x){
29 ogg_uint32_t *ix=(ogg_uint32_t *)&x;
30 *ix=(*ix&0x80000000UL)|(0x3f800000UL);
34 static float FABS(float *x){
35 ogg_uint32_t *ix=(ogg_uint32_t *)x;
40 /* Segher was off (too high) by ~ .3 decibel. Center the conversion correctly. */
41 static float todB(const float *x){
42 return (float)((*(ogg_int32_t *)x)&0x7fffffff) * 7.17711438e-7f -764.6161886f;
45 #define todB_nn(x) todB(x)
49 static float unitnorm(float x){
54 #define FABS(x) fabs(*(x))
56 #define todB(x) (*(x)==0?-400.f:log(*(x)**(x))*4.34294480f)
57 #define todB_nn(x) (*(x)==0.f?-400.f:log(*(x))*8.6858896f)
61 #define fromdB(x) (exp((x)*.11512925f))
63 /* The bark scale equations are approximations, since the original
64 table was somewhat hand rolled. The below are chosen to have the
65 best possible fit to the rolled tables, thus their somewhat odd
66 appearance (these are more accurate and over a longer range than
67 the oft-quoted bark equations found in the texts I have). The
68 approximations are valid from 0 - 30kHz (nyquist) or so.
70 all f in Hz, z in Bark */
72 #define toBARK(n) (13.1f*atan(.00074f*(n))+2.24f*atan((n)*(n)*1.85e-8f)+1e-4f*(n))
73 #define fromBARK(z) (102.f*(z)-2.f*pow(z,2.f)+.4f*pow(z,3.f)+pow(1.46f,z)-1.f)
74 #define toMEL(n) (log(1.f+(n)*.001f)*1442.695f)
75 #define fromMEL(m) (1000.f*exp((m)/1442.695f)-1000.f)
77 /* Frequency to octave. We arbitrarily declare 63.5 Hz to be octave
80 #define toOC(n) (log(n)*1.442695f-5.965784f)
81 #define fromOC(o) (exp(((o)+5.965784f)*.693147f))