1 // SPDX-License-Identifier: GPL-2.0+
3 * Copyright (c) 2013, Google Inc.
10 #include <asm/byteorder.h>
11 #include <linux/errno.h>
12 #include <asm/types.h>
13 #include <asm/unaligned.h>
17 #include <fdt_support.h>
19 #include <u-boot/rsa.h>
20 #include <u-boot/rsa-mod-exp.h>
22 #define UINT64_MULT32(v, multby) (((uint64_t)(v)) * ((uint32_t)(multby)))
24 #define get_unaligned_be32(a) fdt32_to_cpu(*(uint32_t *)a)
25 #define put_unaligned_be32(a, b) (*(uint32_t *)(b) = cpu_to_fdt32(a))
27 /* Default public exponent for backward compatibility */
28 #define RSA_DEFAULT_PUBEXP 65537
31 * subtract_modulus() - subtract modulus from the given value
33 * @key: Key containing modulus to subtract
34 * @num: Number to subtract modulus from, as little endian word array
36 static void subtract_modulus(const struct rsa_public_key *key, uint32_t num[])
41 for (i = 0; i < key->len; i++) {
42 acc += (uint64_t)num[i] - key->modulus[i];
43 num[i] = (uint32_t)acc;
49 * greater_equal_modulus() - check if a value is >= modulus
51 * @key: Key containing modulus to check
52 * @num: Number to check against modulus, as little endian word array
53 * @return 0 if num < modulus, 1 if num >= modulus
55 static int greater_equal_modulus(const struct rsa_public_key *key,
60 for (i = (int)key->len - 1; i >= 0; i--) {
61 if (num[i] < key->modulus[i])
63 if (num[i] > key->modulus[i])
71 * montgomery_mul_add_step() - Perform montgomery multiply-add step
73 * Operation: montgomery result[] += a * b[] / n0inv % modulus
76 * @result: Place to put result, as little endian word array
78 * @b: Multiplicand, as little endian word array
80 static void montgomery_mul_add_step(const struct rsa_public_key *key,
81 uint32_t result[], const uint32_t a, const uint32_t b[])
83 uint64_t acc_a, acc_b;
87 acc_a = (uint64_t)a * b[0] + result[0];
88 d0 = (uint32_t)acc_a * key->n0inv;
89 acc_b = (uint64_t)d0 * key->modulus[0] + (uint32_t)acc_a;
90 for (i = 1; i < key->len; i++) {
91 acc_a = (acc_a >> 32) + (uint64_t)a * b[i] + result[i];
92 acc_b = (acc_b >> 32) + (uint64_t)d0 * key->modulus[i] +
94 result[i - 1] = (uint32_t)acc_b;
97 acc_a = (acc_a >> 32) + (acc_b >> 32);
99 result[i - 1] = (uint32_t)acc_a;
102 subtract_modulus(key, result);
106 * montgomery_mul() - Perform montgomery mutitply
108 * Operation: montgomery result[] = a[] * b[] / n0inv % modulus
111 * @result: Place to put result, as little endian word array
112 * @a: Multiplier, as little endian word array
113 * @b: Multiplicand, as little endian word array
115 static void montgomery_mul(const struct rsa_public_key *key,
116 uint32_t result[], uint32_t a[], const uint32_t b[])
120 for (i = 0; i < key->len; ++i)
122 for (i = 0; i < key->len; ++i)
123 montgomery_mul_add_step(key, result, a[i], b);
127 * num_pub_exponent_bits() - Number of bits in the public exponent
130 * @num_bits: Storage for the number of public exponent bits
132 static int num_public_exponent_bits(const struct rsa_public_key *key,
137 const uint max_bits = (sizeof(exponent) * 8);
139 exponent = key->exponent;
143 *num_bits = exponent_bits;
147 for (exponent_bits = 1; exponent_bits < max_bits + 1; ++exponent_bits)
148 if (!(exponent >>= 1)) {
149 *num_bits = exponent_bits;
157 * is_public_exponent_bit_set() - Check if a bit in the public exponent is set
160 * @pos: The bit position to check
162 static int is_public_exponent_bit_set(const struct rsa_public_key *key,
165 return key->exponent & (1ULL << pos);
169 * pow_mod() - in-place public exponentiation
172 * @inout: Big-endian word array containing value and result
174 static int pow_mod(const struct rsa_public_key *key, uint32_t *inout)
176 uint32_t *result, *ptr;
180 /* Sanity check for stack size - key->len is in 32-bit words */
181 if (key->len > RSA_MAX_KEY_BITS / 32) {
182 debug("RSA key words %u exceeds maximum %d\n", key->len,
183 RSA_MAX_KEY_BITS / 32);
187 uint32_t val[key->len], acc[key->len], tmp[key->len];
188 uint32_t a_scaled[key->len];
189 result = tmp; /* Re-use location. */
191 /* Convert from big endian byte array to little endian word array. */
192 for (i = 0, ptr = inout + key->len - 1; i < key->len; i++, ptr--)
193 val[i] = get_unaligned_be32(ptr);
195 if (0 != num_public_exponent_bits(key, &k))
199 debug("Public exponent is too short (%d bits, minimum 2)\n",
204 if (!is_public_exponent_bit_set(key, 0)) {
205 debug("LSB of RSA public exponent must be set.\n");
209 /* the bit at e[k-1] is 1 by definition, so start with: C := M */
210 montgomery_mul(key, acc, val, key->rr); /* acc = a * RR / R mod n */
211 /* retain scaled version for intermediate use */
212 memcpy(a_scaled, acc, key->len * sizeof(a_scaled[0]));
214 for (j = k - 2; j > 0; --j) {
215 montgomery_mul(key, tmp, acc, acc); /* tmp = acc^2 / R mod n */
217 if (is_public_exponent_bit_set(key, j)) {
218 /* acc = tmp * val / R mod n */
219 montgomery_mul(key, acc, tmp, a_scaled);
221 /* e[j] == 0, copy tmp back to acc for next operation */
222 memcpy(acc, tmp, key->len * sizeof(acc[0]));
226 /* the bit at e[0] is always 1 */
227 montgomery_mul(key, tmp, acc, acc); /* tmp = acc^2 / R mod n */
228 montgomery_mul(key, acc, tmp, val); /* acc = tmp * a / R mod M */
229 memcpy(result, acc, key->len * sizeof(result[0]));
231 /* Make sure result < mod; result is at most 1x mod too large. */
232 if (greater_equal_modulus(key, result))
233 subtract_modulus(key, result);
235 /* Convert to bigendian byte array */
236 for (i = key->len - 1, ptr = inout; (int)i >= 0; i--, ptr++)
237 put_unaligned_be32(result[i], ptr);
241 static void rsa_convert_big_endian(uint32_t *dst, const uint32_t *src, int len)
245 for (i = 0; i < len; i++)
246 dst[i] = fdt32_to_cpu(src[len - 1 - i]);
249 int rsa_mod_exp_sw(const uint8_t *sig, uint32_t sig_len,
250 struct key_prop *prop, uint8_t *out)
252 struct rsa_public_key key;
256 debug("%s: Skipping invalid prop", __func__);
259 key.n0inv = prop->n0inv;
260 key.len = prop->num_bits;
262 if (!prop->public_exponent)
263 key.exponent = RSA_DEFAULT_PUBEXP;
266 fdt64_to_cpu(*((uint64_t *)(prop->public_exponent)));
268 if (!key.len || !prop->modulus || !prop->rr) {
269 debug("%s: Missing RSA key info", __func__);
273 /* Sanity check for stack size */
274 if (key.len > RSA_MAX_KEY_BITS || key.len < RSA_MIN_KEY_BITS) {
275 debug("RSA key bits %u outside allowed range %d..%d\n",
276 key.len, RSA_MIN_KEY_BITS, RSA_MAX_KEY_BITS);
279 key.len /= sizeof(uint32_t) * 8;
280 uint32_t key1[key.len], key2[key.len];
284 rsa_convert_big_endian(key.modulus, (uint32_t *)prop->modulus, key.len);
285 rsa_convert_big_endian(key.rr, (uint32_t *)prop->rr, key.len);
286 if (!key.modulus || !key.rr) {
287 debug("%s: Out of memory", __func__);
291 uint32_t buf[sig_len / sizeof(uint32_t)];
293 memcpy(buf, sig, sig_len);
295 ret = pow_mod(&key, buf);
299 memcpy(out, buf, sig_len);
304 #if defined(CONFIG_CMD_ZYNQ_RSA)
306 * zynq_pow_mod - in-place public exponentiation
309 * @inout: Big-endian word array containing value and result
310 * @return 0 on successful calculation, otherwise failure error code
312 * FIXME: Use pow_mod() instead of zynq_pow_mod()
313 * pow_mod calculation required for zynq is bit different from
314 * pw_mod above here, hence defined zynq specific routine.
316 int zynq_pow_mod(u32 *keyptr, u32 *inout)
320 struct rsa_public_key *key;
321 u32 val[RSA2048_BYTES], acc[RSA2048_BYTES], tmp[RSA2048_BYTES];
323 key = (struct rsa_public_key *)keyptr;
325 /* Sanity check for stack size - key->len is in 32-bit words */
326 if (key->len > RSA_MAX_KEY_BITS / 32) {
327 debug("RSA key words %u exceeds maximum %d\n", key->len,
328 RSA_MAX_KEY_BITS / 32);
332 result = tmp; /* Re-use location. */
334 for (i = 0, ptr = inout; i < key->len; i++, ptr++)
337 montgomery_mul(key, acc, val, key->rr); /* axx = a * RR / R mod M */
338 for (i = 0; i < 16; i += 2) {
339 montgomery_mul(key, tmp, acc, acc); /* tmp = acc^2 / R mod M */
340 montgomery_mul(key, acc, tmp, tmp); /* acc = tmp^2 / R mod M */
342 montgomery_mul(key, result, acc, val); /* result = XX * a / R mod M */
344 /* Make sure result < mod; result is at most 1x mod too large. */
345 if (greater_equal_modulus(key, result))
346 subtract_modulus(key, result);
348 for (i = 0, ptr = inout; i < key->len; i++, ptr++)