Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/hid/hid
[platform/kernel/linux-rpi.git] / lib / reed_solomon / decode_rs.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Generic Reed Solomon encoder / decoder library
4  *
5  * Copyright 2002, Phil Karn, KA9Q
6  * May be used under the terms of the GNU General Public License (GPL)
7  *
8  * Adaption to the kernel by Thomas Gleixner (tglx@linutronix.de)
9  *
10  * Generic data width independent code which is included by the wrappers.
11  */
12 {
13         struct rs_codec *rs = rsc->codec;
14         int deg_lambda, el, deg_omega;
15         int i, j, r, k, pad;
16         int nn = rs->nn;
17         int nroots = rs->nroots;
18         int fcr = rs->fcr;
19         int prim = rs->prim;
20         int iprim = rs->iprim;
21         uint16_t *alpha_to = rs->alpha_to;
22         uint16_t *index_of = rs->index_of;
23         uint16_t u, q, tmp, num1, num2, den, discr_r, syn_error;
24         int count = 0;
25         int num_corrected;
26         uint16_t msk = (uint16_t) rs->nn;
27
28         /*
29          * The decoder buffers are in the rs control struct. They are
30          * arrays sized [nroots + 1]
31          */
32         uint16_t *lambda = rsc->buffers + RS_DECODE_LAMBDA * (nroots + 1);
33         uint16_t *syn = rsc->buffers + RS_DECODE_SYN * (nroots + 1);
34         uint16_t *b = rsc->buffers + RS_DECODE_B * (nroots + 1);
35         uint16_t *t = rsc->buffers + RS_DECODE_T * (nroots + 1);
36         uint16_t *omega = rsc->buffers + RS_DECODE_OMEGA * (nroots + 1);
37         uint16_t *root = rsc->buffers + RS_DECODE_ROOT * (nroots + 1);
38         uint16_t *reg = rsc->buffers + RS_DECODE_REG * (nroots + 1);
39         uint16_t *loc = rsc->buffers + RS_DECODE_LOC * (nroots + 1);
40
41         /* Check length parameter for validity */
42         pad = nn - nroots - len;
43         BUG_ON(pad < 0 || pad >= nn - nroots);
44
45         /* Does the caller provide the syndrome ? */
46         if (s != NULL) {
47                 for (i = 0; i < nroots; i++) {
48                         /* The syndrome is in index form,
49                          * so nn represents zero
50                          */
51                         if (s[i] != nn)
52                                 goto decode;
53                 }
54
55                 /* syndrome is zero, no errors to correct  */
56                 return 0;
57         }
58
59         /* form the syndromes; i.e., evaluate data(x) at roots of
60          * g(x) */
61         for (i = 0; i < nroots; i++)
62                 syn[i] = (((uint16_t) data[0]) ^ invmsk) & msk;
63
64         for (j = 1; j < len; j++) {
65                 for (i = 0; i < nroots; i++) {
66                         if (syn[i] == 0) {
67                                 syn[i] = (((uint16_t) data[j]) ^
68                                           invmsk) & msk;
69                         } else {
70                                 syn[i] = ((((uint16_t) data[j]) ^
71                                            invmsk) & msk) ^
72                                         alpha_to[rs_modnn(rs, index_of[syn[i]] +
73                                                        (fcr + i) * prim)];
74                         }
75                 }
76         }
77
78         for (j = 0; j < nroots; j++) {
79                 for (i = 0; i < nroots; i++) {
80                         if (syn[i] == 0) {
81                                 syn[i] = ((uint16_t) par[j]) & msk;
82                         } else {
83                                 syn[i] = (((uint16_t) par[j]) & msk) ^
84                                         alpha_to[rs_modnn(rs, index_of[syn[i]] +
85                                                        (fcr+i)*prim)];
86                         }
87                 }
88         }
89         s = syn;
90
91         /* Convert syndromes to index form, checking for nonzero condition */
92         syn_error = 0;
93         for (i = 0; i < nroots; i++) {
94                 syn_error |= s[i];
95                 s[i] = index_of[s[i]];
96         }
97
98         if (!syn_error) {
99                 /* if syndrome is zero, data[] is a codeword and there are no
100                  * errors to correct. So return data[] unmodified
101                  */
102                 return 0;
103         }
104
105  decode:
106         memset(&lambda[1], 0, nroots * sizeof(lambda[0]));
107         lambda[0] = 1;
108
109         if (no_eras > 0) {
110                 /* Init lambda to be the erasure locator polynomial */
111                 lambda[1] = alpha_to[rs_modnn(rs,
112                                         prim * (nn - 1 - (eras_pos[0] + pad)))];
113                 for (i = 1; i < no_eras; i++) {
114                         u = rs_modnn(rs, prim * (nn - 1 - (eras_pos[i] + pad)));
115                         for (j = i + 1; j > 0; j--) {
116                                 tmp = index_of[lambda[j - 1]];
117                                 if (tmp != nn) {
118                                         lambda[j] ^=
119                                                 alpha_to[rs_modnn(rs, u + tmp)];
120                                 }
121                         }
122                 }
123         }
124
125         for (i = 0; i < nroots + 1; i++)
126                 b[i] = index_of[lambda[i]];
127
128         /*
129          * Begin Berlekamp-Massey algorithm to determine error+erasure
130          * locator polynomial
131          */
132         r = no_eras;
133         el = no_eras;
134         while (++r <= nroots) { /* r is the step number */
135                 /* Compute discrepancy at the r-th step in poly-form */
136                 discr_r = 0;
137                 for (i = 0; i < r; i++) {
138                         if ((lambda[i] != 0) && (s[r - i - 1] != nn)) {
139                                 discr_r ^=
140                                         alpha_to[rs_modnn(rs,
141                                                           index_of[lambda[i]] +
142                                                           s[r - i - 1])];
143                         }
144                 }
145                 discr_r = index_of[discr_r];    /* Index form */
146                 if (discr_r == nn) {
147                         /* 2 lines below: B(x) <-- x*B(x) */
148                         memmove (&b[1], b, nroots * sizeof (b[0]));
149                         b[0] = nn;
150                 } else {
151                         /* 7 lines below: T(x) <-- lambda(x)-discr_r*x*b(x) */
152                         t[0] = lambda[0];
153                         for (i = 0; i < nroots; i++) {
154                                 if (b[i] != nn) {
155                                         t[i + 1] = lambda[i + 1] ^
156                                                 alpha_to[rs_modnn(rs, discr_r +
157                                                                   b[i])];
158                                 } else
159                                         t[i + 1] = lambda[i + 1];
160                         }
161                         if (2 * el <= r + no_eras - 1) {
162                                 el = r + no_eras - el;
163                                 /*
164                                  * 2 lines below: B(x) <-- inv(discr_r) *
165                                  * lambda(x)
166                                  */
167                                 for (i = 0; i <= nroots; i++) {
168                                         b[i] = (lambda[i] == 0) ? nn :
169                                                 rs_modnn(rs, index_of[lambda[i]]
170                                                          - discr_r + nn);
171                                 }
172                         } else {
173                                 /* 2 lines below: B(x) <-- x*B(x) */
174                                 memmove(&b[1], b, nroots * sizeof(b[0]));
175                                 b[0] = nn;
176                         }
177                         memcpy(lambda, t, (nroots + 1) * sizeof(t[0]));
178                 }
179         }
180
181         /* Convert lambda to index form and compute deg(lambda(x)) */
182         deg_lambda = 0;
183         for (i = 0; i < nroots + 1; i++) {
184                 lambda[i] = index_of[lambda[i]];
185                 if (lambda[i] != nn)
186                         deg_lambda = i;
187         }
188
189         if (deg_lambda == 0) {
190                 /*
191                  * deg(lambda) is zero even though the syndrome is non-zero
192                  * => uncorrectable error detected
193                  */
194                 return -EBADMSG;
195         }
196
197         /* Find roots of error+erasure locator polynomial by Chien search */
198         memcpy(&reg[1], &lambda[1], nroots * sizeof(reg[0]));
199         count = 0;              /* Number of roots of lambda(x) */
200         for (i = 1, k = iprim - 1; i <= nn; i++, k = rs_modnn(rs, k + iprim)) {
201                 q = 1;          /* lambda[0] is always 0 */
202                 for (j = deg_lambda; j > 0; j--) {
203                         if (reg[j] != nn) {
204                                 reg[j] = rs_modnn(rs, reg[j] + j);
205                                 q ^= alpha_to[reg[j]];
206                         }
207                 }
208                 if (q != 0)
209                         continue;       /* Not a root */
210
211                 if (k < pad) {
212                         /* Impossible error location. Uncorrectable error. */
213                         return -EBADMSG;
214                 }
215
216                 /* store root (index-form) and error location number */
217                 root[count] = i;
218                 loc[count] = k;
219                 /* If we've already found max possible roots,
220                  * abort the search to save time
221                  */
222                 if (++count == deg_lambda)
223                         break;
224         }
225         if (deg_lambda != count) {
226                 /*
227                  * deg(lambda) unequal to number of roots => uncorrectable
228                  * error detected
229                  */
230                 return -EBADMSG;
231         }
232         /*
233          * Compute err+eras evaluator poly omega(x) = s(x)*lambda(x) (modulo
234          * x**nroots). in index form. Also find deg(omega).
235          */
236         deg_omega = deg_lambda - 1;
237         for (i = 0; i <= deg_omega; i++) {
238                 tmp = 0;
239                 for (j = i; j >= 0; j--) {
240                         if ((s[i - j] != nn) && (lambda[j] != nn))
241                                 tmp ^=
242                                     alpha_to[rs_modnn(rs, s[i - j] + lambda[j])];
243                 }
244                 omega[i] = index_of[tmp];
245         }
246
247         /*
248          * Compute error values in poly-form. num1 = omega(inv(X(l))), num2 =
249          * inv(X(l))**(fcr-1) and den = lambda_pr(inv(X(l))) all in poly-form
250          * Note: we reuse the buffer for b to store the correction pattern
251          */
252         num_corrected = 0;
253         for (j = count - 1; j >= 0; j--) {
254                 num1 = 0;
255                 for (i = deg_omega; i >= 0; i--) {
256                         if (omega[i] != nn)
257                                 num1 ^= alpha_to[rs_modnn(rs, omega[i] +
258                                                         i * root[j])];
259                 }
260
261                 if (num1 == 0) {
262                         /* Nothing to correct at this position */
263                         b[j] = 0;
264                         continue;
265                 }
266
267                 num2 = alpha_to[rs_modnn(rs, root[j] * (fcr - 1) + nn)];
268                 den = 0;
269
270                 /* lambda[i+1] for i even is the formal derivative
271                  * lambda_pr of lambda[i] */
272                 for (i = min(deg_lambda, nroots - 1) & ~1; i >= 0; i -= 2) {
273                         if (lambda[i + 1] != nn) {
274                                 den ^= alpha_to[rs_modnn(rs, lambda[i + 1] +
275                                                        i * root[j])];
276                         }
277                 }
278
279                 b[j] = alpha_to[rs_modnn(rs, index_of[num1] +
280                                                index_of[num2] +
281                                                nn - index_of[den])];
282                 num_corrected++;
283         }
284
285         /*
286          * We compute the syndrome of the 'error' and check that it matches
287          * the syndrome of the received word
288          */
289         for (i = 0; i < nroots; i++) {
290                 tmp = 0;
291                 for (j = 0; j < count; j++) {
292                         if (b[j] == 0)
293                                 continue;
294
295                         k = (fcr + i) * prim * (nn-loc[j]-1);
296                         tmp ^= alpha_to[rs_modnn(rs, index_of[b[j]] + k)];
297                 }
298
299                 if (tmp != alpha_to[s[i]])
300                         return -EBADMSG;
301         }
302
303         /*
304          * Store the error correction pattern, if a
305          * correction buffer is available
306          */
307         if (corr && eras_pos) {
308                 j = 0;
309                 for (i = 0; i < count; i++) {
310                         if (b[i]) {
311                                 corr[j] = b[i];
312                                 eras_pos[j++] = loc[i] - pad;
313                         }
314                 }
315         } else if (data && par) {
316                 /* Apply error to data and parity */
317                 for (i = 0; i < count; i++) {
318                         if (loc[i] < (nn - nroots))
319                                 data[loc[i] - pad] ^= b[i];
320                         else
321                                 par[loc[i] - pad - len] ^= b[i];
322                 }
323         }
324
325         return  num_corrected;
326 }