spi: rpc-if: switch to use devm_spi_alloc_host()
[platform/kernel/linux-starfive.git] / lib / radix-tree.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2001 Momchil Velikov
4  * Portions Copyright (C) 2001 Christoph Hellwig
5  * Copyright (C) 2005 SGI, Christoph Lameter
6  * Copyright (C) 2006 Nick Piggin
7  * Copyright (C) 2012 Konstantin Khlebnikov
8  * Copyright (C) 2016 Intel, Matthew Wilcox
9  * Copyright (C) 2016 Intel, Ross Zwisler
10  */
11
12 #include <linux/bitmap.h>
13 #include <linux/bitops.h>
14 #include <linux/bug.h>
15 #include <linux/cpu.h>
16 #include <linux/errno.h>
17 #include <linux/export.h>
18 #include <linux/idr.h>
19 #include <linux/init.h>
20 #include <linux/kernel.h>
21 #include <linux/kmemleak.h>
22 #include <linux/percpu.h>
23 #include <linux/preempt.h>              /* in_interrupt() */
24 #include <linux/radix-tree.h>
25 #include <linux/rcupdate.h>
26 #include <linux/slab.h>
27 #include <linux/string.h>
28 #include <linux/xarray.h>
29
30 #include "radix-tree.h"
31
32 /*
33  * Radix tree node cache.
34  */
35 struct kmem_cache *radix_tree_node_cachep;
36
37 /*
38  * The radix tree is variable-height, so an insert operation not only has
39  * to build the branch to its corresponding item, it also has to build the
40  * branch to existing items if the size has to be increased (by
41  * radix_tree_extend).
42  *
43  * The worst case is a zero height tree with just a single item at index 0,
44  * and then inserting an item at index ULONG_MAX. This requires 2 new branches
45  * of RADIX_TREE_MAX_PATH size to be created, with only the root node shared.
46  * Hence:
47  */
48 #define RADIX_TREE_PRELOAD_SIZE (RADIX_TREE_MAX_PATH * 2 - 1)
49
50 /*
51  * The IDR does not have to be as high as the radix tree since it uses
52  * signed integers, not unsigned longs.
53  */
54 #define IDR_INDEX_BITS          (8 /* CHAR_BIT */ * sizeof(int) - 1)
55 #define IDR_MAX_PATH            (DIV_ROUND_UP(IDR_INDEX_BITS, \
56                                                 RADIX_TREE_MAP_SHIFT))
57 #define IDR_PRELOAD_SIZE        (IDR_MAX_PATH * 2 - 1)
58
59 /*
60  * Per-cpu pool of preloaded nodes
61  */
62 DEFINE_PER_CPU(struct radix_tree_preload, radix_tree_preloads) = {
63         .lock = INIT_LOCAL_LOCK(lock),
64 };
65 EXPORT_PER_CPU_SYMBOL_GPL(radix_tree_preloads);
66
67 static inline struct radix_tree_node *entry_to_node(void *ptr)
68 {
69         return (void *)((unsigned long)ptr & ~RADIX_TREE_INTERNAL_NODE);
70 }
71
72 static inline void *node_to_entry(void *ptr)
73 {
74         return (void *)((unsigned long)ptr | RADIX_TREE_INTERNAL_NODE);
75 }
76
77 #define RADIX_TREE_RETRY        XA_RETRY_ENTRY
78
79 static inline unsigned long
80 get_slot_offset(const struct radix_tree_node *parent, void __rcu **slot)
81 {
82         return parent ? slot - parent->slots : 0;
83 }
84
85 static unsigned int radix_tree_descend(const struct radix_tree_node *parent,
86                         struct radix_tree_node **nodep, unsigned long index)
87 {
88         unsigned int offset = (index >> parent->shift) & RADIX_TREE_MAP_MASK;
89         void __rcu **entry = rcu_dereference_raw(parent->slots[offset]);
90
91         *nodep = (void *)entry;
92         return offset;
93 }
94
95 static inline gfp_t root_gfp_mask(const struct radix_tree_root *root)
96 {
97         return root->xa_flags & (__GFP_BITS_MASK & ~GFP_ZONEMASK);
98 }
99
100 static inline void tag_set(struct radix_tree_node *node, unsigned int tag,
101                 int offset)
102 {
103         __set_bit(offset, node->tags[tag]);
104 }
105
106 static inline void tag_clear(struct radix_tree_node *node, unsigned int tag,
107                 int offset)
108 {
109         __clear_bit(offset, node->tags[tag]);
110 }
111
112 static inline int tag_get(const struct radix_tree_node *node, unsigned int tag,
113                 int offset)
114 {
115         return test_bit(offset, node->tags[tag]);
116 }
117
118 static inline void root_tag_set(struct radix_tree_root *root, unsigned tag)
119 {
120         root->xa_flags |= (__force gfp_t)(1 << (tag + ROOT_TAG_SHIFT));
121 }
122
123 static inline void root_tag_clear(struct radix_tree_root *root, unsigned tag)
124 {
125         root->xa_flags &= (__force gfp_t)~(1 << (tag + ROOT_TAG_SHIFT));
126 }
127
128 static inline void root_tag_clear_all(struct radix_tree_root *root)
129 {
130         root->xa_flags &= (__force gfp_t)((1 << ROOT_TAG_SHIFT) - 1);
131 }
132
133 static inline int root_tag_get(const struct radix_tree_root *root, unsigned tag)
134 {
135         return (__force int)root->xa_flags & (1 << (tag + ROOT_TAG_SHIFT));
136 }
137
138 static inline unsigned root_tags_get(const struct radix_tree_root *root)
139 {
140         return (__force unsigned)root->xa_flags >> ROOT_TAG_SHIFT;
141 }
142
143 static inline bool is_idr(const struct radix_tree_root *root)
144 {
145         return !!(root->xa_flags & ROOT_IS_IDR);
146 }
147
148 /*
149  * Returns 1 if any slot in the node has this tag set.
150  * Otherwise returns 0.
151  */
152 static inline int any_tag_set(const struct radix_tree_node *node,
153                                                         unsigned int tag)
154 {
155         unsigned idx;
156         for (idx = 0; idx < RADIX_TREE_TAG_LONGS; idx++) {
157                 if (node->tags[tag][idx])
158                         return 1;
159         }
160         return 0;
161 }
162
163 static inline void all_tag_set(struct radix_tree_node *node, unsigned int tag)
164 {
165         bitmap_fill(node->tags[tag], RADIX_TREE_MAP_SIZE);
166 }
167
168 /**
169  * radix_tree_find_next_bit - find the next set bit in a memory region
170  *
171  * @node: where to begin the search
172  * @tag: the tag index
173  * @offset: the bitnumber to start searching at
174  *
175  * Unrollable variant of find_next_bit() for constant size arrays.
176  * Tail bits starting from size to roundup(size, BITS_PER_LONG) must be zero.
177  * Returns next bit offset, or size if nothing found.
178  */
179 static __always_inline unsigned long
180 radix_tree_find_next_bit(struct radix_tree_node *node, unsigned int tag,
181                          unsigned long offset)
182 {
183         const unsigned long *addr = node->tags[tag];
184
185         if (offset < RADIX_TREE_MAP_SIZE) {
186                 unsigned long tmp;
187
188                 addr += offset / BITS_PER_LONG;
189                 tmp = *addr >> (offset % BITS_PER_LONG);
190                 if (tmp)
191                         return __ffs(tmp) + offset;
192                 offset = (offset + BITS_PER_LONG) & ~(BITS_PER_LONG - 1);
193                 while (offset < RADIX_TREE_MAP_SIZE) {
194                         tmp = *++addr;
195                         if (tmp)
196                                 return __ffs(tmp) + offset;
197                         offset += BITS_PER_LONG;
198                 }
199         }
200         return RADIX_TREE_MAP_SIZE;
201 }
202
203 static unsigned int iter_offset(const struct radix_tree_iter *iter)
204 {
205         return iter->index & RADIX_TREE_MAP_MASK;
206 }
207
208 /*
209  * The maximum index which can be stored in a radix tree
210  */
211 static inline unsigned long shift_maxindex(unsigned int shift)
212 {
213         return (RADIX_TREE_MAP_SIZE << shift) - 1;
214 }
215
216 static inline unsigned long node_maxindex(const struct radix_tree_node *node)
217 {
218         return shift_maxindex(node->shift);
219 }
220
221 static unsigned long next_index(unsigned long index,
222                                 const struct radix_tree_node *node,
223                                 unsigned long offset)
224 {
225         return (index & ~node_maxindex(node)) + (offset << node->shift);
226 }
227
228 /*
229  * This assumes that the caller has performed appropriate preallocation, and
230  * that the caller has pinned this thread of control to the current CPU.
231  */
232 static struct radix_tree_node *
233 radix_tree_node_alloc(gfp_t gfp_mask, struct radix_tree_node *parent,
234                         struct radix_tree_root *root,
235                         unsigned int shift, unsigned int offset,
236                         unsigned int count, unsigned int nr_values)
237 {
238         struct radix_tree_node *ret = NULL;
239
240         /*
241          * Preload code isn't irq safe and it doesn't make sense to use
242          * preloading during an interrupt anyway as all the allocations have
243          * to be atomic. So just do normal allocation when in interrupt.
244          */
245         if (!gfpflags_allow_blocking(gfp_mask) && !in_interrupt()) {
246                 struct radix_tree_preload *rtp;
247
248                 /*
249                  * Even if the caller has preloaded, try to allocate from the
250                  * cache first for the new node to get accounted to the memory
251                  * cgroup.
252                  */
253                 ret = kmem_cache_alloc(radix_tree_node_cachep,
254                                        gfp_mask | __GFP_NOWARN);
255                 if (ret)
256                         goto out;
257
258                 /*
259                  * Provided the caller has preloaded here, we will always
260                  * succeed in getting a node here (and never reach
261                  * kmem_cache_alloc)
262                  */
263                 rtp = this_cpu_ptr(&radix_tree_preloads);
264                 if (rtp->nr) {
265                         ret = rtp->nodes;
266                         rtp->nodes = ret->parent;
267                         rtp->nr--;
268                 }
269                 /*
270                  * Update the allocation stack trace as this is more useful
271                  * for debugging.
272                  */
273                 kmemleak_update_trace(ret);
274                 goto out;
275         }
276         ret = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
277 out:
278         BUG_ON(radix_tree_is_internal_node(ret));
279         if (ret) {
280                 ret->shift = shift;
281                 ret->offset = offset;
282                 ret->count = count;
283                 ret->nr_values = nr_values;
284                 ret->parent = parent;
285                 ret->array = root;
286         }
287         return ret;
288 }
289
290 void radix_tree_node_rcu_free(struct rcu_head *head)
291 {
292         struct radix_tree_node *node =
293                         container_of(head, struct radix_tree_node, rcu_head);
294
295         /*
296          * Must only free zeroed nodes into the slab.  We can be left with
297          * non-NULL entries by radix_tree_free_nodes, so clear the entries
298          * and tags here.
299          */
300         memset(node->slots, 0, sizeof(node->slots));
301         memset(node->tags, 0, sizeof(node->tags));
302         INIT_LIST_HEAD(&node->private_list);
303
304         kmem_cache_free(radix_tree_node_cachep, node);
305 }
306
307 static inline void
308 radix_tree_node_free(struct radix_tree_node *node)
309 {
310         call_rcu(&node->rcu_head, radix_tree_node_rcu_free);
311 }
312
313 /*
314  * Load up this CPU's radix_tree_node buffer with sufficient objects to
315  * ensure that the addition of a single element in the tree cannot fail.  On
316  * success, return zero, with preemption disabled.  On error, return -ENOMEM
317  * with preemption not disabled.
318  *
319  * To make use of this facility, the radix tree must be initialised without
320  * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
321  */
322 static __must_check int __radix_tree_preload(gfp_t gfp_mask, unsigned nr)
323 {
324         struct radix_tree_preload *rtp;
325         struct radix_tree_node *node;
326         int ret = -ENOMEM;
327
328         /*
329          * Nodes preloaded by one cgroup can be used by another cgroup, so
330          * they should never be accounted to any particular memory cgroup.
331          */
332         gfp_mask &= ~__GFP_ACCOUNT;
333
334         local_lock(&radix_tree_preloads.lock);
335         rtp = this_cpu_ptr(&radix_tree_preloads);
336         while (rtp->nr < nr) {
337                 local_unlock(&radix_tree_preloads.lock);
338                 node = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
339                 if (node == NULL)
340                         goto out;
341                 local_lock(&radix_tree_preloads.lock);
342                 rtp = this_cpu_ptr(&radix_tree_preloads);
343                 if (rtp->nr < nr) {
344                         node->parent = rtp->nodes;
345                         rtp->nodes = node;
346                         rtp->nr++;
347                 } else {
348                         kmem_cache_free(radix_tree_node_cachep, node);
349                 }
350         }
351         ret = 0;
352 out:
353         return ret;
354 }
355
356 /*
357  * Load up this CPU's radix_tree_node buffer with sufficient objects to
358  * ensure that the addition of a single element in the tree cannot fail.  On
359  * success, return zero, with preemption disabled.  On error, return -ENOMEM
360  * with preemption not disabled.
361  *
362  * To make use of this facility, the radix tree must be initialised without
363  * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
364  */
365 int radix_tree_preload(gfp_t gfp_mask)
366 {
367         /* Warn on non-sensical use... */
368         WARN_ON_ONCE(!gfpflags_allow_blocking(gfp_mask));
369         return __radix_tree_preload(gfp_mask, RADIX_TREE_PRELOAD_SIZE);
370 }
371 EXPORT_SYMBOL(radix_tree_preload);
372
373 /*
374  * The same as above function, except we don't guarantee preloading happens.
375  * We do it, if we decide it helps. On success, return zero with preemption
376  * disabled. On error, return -ENOMEM with preemption not disabled.
377  */
378 int radix_tree_maybe_preload(gfp_t gfp_mask)
379 {
380         if (gfpflags_allow_blocking(gfp_mask))
381                 return __radix_tree_preload(gfp_mask, RADIX_TREE_PRELOAD_SIZE);
382         /* Preloading doesn't help anything with this gfp mask, skip it */
383         local_lock(&radix_tree_preloads.lock);
384         return 0;
385 }
386 EXPORT_SYMBOL(radix_tree_maybe_preload);
387
388 static unsigned radix_tree_load_root(const struct radix_tree_root *root,
389                 struct radix_tree_node **nodep, unsigned long *maxindex)
390 {
391         struct radix_tree_node *node = rcu_dereference_raw(root->xa_head);
392
393         *nodep = node;
394
395         if (likely(radix_tree_is_internal_node(node))) {
396                 node = entry_to_node(node);
397                 *maxindex = node_maxindex(node);
398                 return node->shift + RADIX_TREE_MAP_SHIFT;
399         }
400
401         *maxindex = 0;
402         return 0;
403 }
404
405 /*
406  *      Extend a radix tree so it can store key @index.
407  */
408 static int radix_tree_extend(struct radix_tree_root *root, gfp_t gfp,
409                                 unsigned long index, unsigned int shift)
410 {
411         void *entry;
412         unsigned int maxshift;
413         int tag;
414
415         /* Figure out what the shift should be.  */
416         maxshift = shift;
417         while (index > shift_maxindex(maxshift))
418                 maxshift += RADIX_TREE_MAP_SHIFT;
419
420         entry = rcu_dereference_raw(root->xa_head);
421         if (!entry && (!is_idr(root) || root_tag_get(root, IDR_FREE)))
422                 goto out;
423
424         do {
425                 struct radix_tree_node *node = radix_tree_node_alloc(gfp, NULL,
426                                                         root, shift, 0, 1, 0);
427                 if (!node)
428                         return -ENOMEM;
429
430                 if (is_idr(root)) {
431                         all_tag_set(node, IDR_FREE);
432                         if (!root_tag_get(root, IDR_FREE)) {
433                                 tag_clear(node, IDR_FREE, 0);
434                                 root_tag_set(root, IDR_FREE);
435                         }
436                 } else {
437                         /* Propagate the aggregated tag info to the new child */
438                         for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
439                                 if (root_tag_get(root, tag))
440                                         tag_set(node, tag, 0);
441                         }
442                 }
443
444                 BUG_ON(shift > BITS_PER_LONG);
445                 if (radix_tree_is_internal_node(entry)) {
446                         entry_to_node(entry)->parent = node;
447                 } else if (xa_is_value(entry)) {
448                         /* Moving a value entry root->xa_head to a node */
449                         node->nr_values = 1;
450                 }
451                 /*
452                  * entry was already in the radix tree, so we do not need
453                  * rcu_assign_pointer here
454                  */
455                 node->slots[0] = (void __rcu *)entry;
456                 entry = node_to_entry(node);
457                 rcu_assign_pointer(root->xa_head, entry);
458                 shift += RADIX_TREE_MAP_SHIFT;
459         } while (shift <= maxshift);
460 out:
461         return maxshift + RADIX_TREE_MAP_SHIFT;
462 }
463
464 /**
465  *      radix_tree_shrink    -    shrink radix tree to minimum height
466  *      @root:          radix tree root
467  */
468 static inline bool radix_tree_shrink(struct radix_tree_root *root)
469 {
470         bool shrunk = false;
471
472         for (;;) {
473                 struct radix_tree_node *node = rcu_dereference_raw(root->xa_head);
474                 struct radix_tree_node *child;
475
476                 if (!radix_tree_is_internal_node(node))
477                         break;
478                 node = entry_to_node(node);
479
480                 /*
481                  * The candidate node has more than one child, or its child
482                  * is not at the leftmost slot, we cannot shrink.
483                  */
484                 if (node->count != 1)
485                         break;
486                 child = rcu_dereference_raw(node->slots[0]);
487                 if (!child)
488                         break;
489
490                 /*
491                  * For an IDR, we must not shrink entry 0 into the root in
492                  * case somebody calls idr_replace() with a pointer that
493                  * appears to be an internal entry
494                  */
495                 if (!node->shift && is_idr(root))
496                         break;
497
498                 if (radix_tree_is_internal_node(child))
499                         entry_to_node(child)->parent = NULL;
500
501                 /*
502                  * We don't need rcu_assign_pointer(), since we are simply
503                  * moving the node from one part of the tree to another: if it
504                  * was safe to dereference the old pointer to it
505                  * (node->slots[0]), it will be safe to dereference the new
506                  * one (root->xa_head) as far as dependent read barriers go.
507                  */
508                 root->xa_head = (void __rcu *)child;
509                 if (is_idr(root) && !tag_get(node, IDR_FREE, 0))
510                         root_tag_clear(root, IDR_FREE);
511
512                 /*
513                  * We have a dilemma here. The node's slot[0] must not be
514                  * NULLed in case there are concurrent lookups expecting to
515                  * find the item. However if this was a bottom-level node,
516                  * then it may be subject to the slot pointer being visible
517                  * to callers dereferencing it. If item corresponding to
518                  * slot[0] is subsequently deleted, these callers would expect
519                  * their slot to become empty sooner or later.
520                  *
521                  * For example, lockless pagecache will look up a slot, deref
522                  * the page pointer, and if the page has 0 refcount it means it
523                  * was concurrently deleted from pagecache so try the deref
524                  * again. Fortunately there is already a requirement for logic
525                  * to retry the entire slot lookup -- the indirect pointer
526                  * problem (replacing direct root node with an indirect pointer
527                  * also results in a stale slot). So tag the slot as indirect
528                  * to force callers to retry.
529                  */
530                 node->count = 0;
531                 if (!radix_tree_is_internal_node(child)) {
532                         node->slots[0] = (void __rcu *)RADIX_TREE_RETRY;
533                 }
534
535                 WARN_ON_ONCE(!list_empty(&node->private_list));
536                 radix_tree_node_free(node);
537                 shrunk = true;
538         }
539
540         return shrunk;
541 }
542
543 static bool delete_node(struct radix_tree_root *root,
544                         struct radix_tree_node *node)
545 {
546         bool deleted = false;
547
548         do {
549                 struct radix_tree_node *parent;
550
551                 if (node->count) {
552                         if (node_to_entry(node) ==
553                                         rcu_dereference_raw(root->xa_head))
554                                 deleted |= radix_tree_shrink(root);
555                         return deleted;
556                 }
557
558                 parent = node->parent;
559                 if (parent) {
560                         parent->slots[node->offset] = NULL;
561                         parent->count--;
562                 } else {
563                         /*
564                          * Shouldn't the tags already have all been cleared
565                          * by the caller?
566                          */
567                         if (!is_idr(root))
568                                 root_tag_clear_all(root);
569                         root->xa_head = NULL;
570                 }
571
572                 WARN_ON_ONCE(!list_empty(&node->private_list));
573                 radix_tree_node_free(node);
574                 deleted = true;
575
576                 node = parent;
577         } while (node);
578
579         return deleted;
580 }
581
582 /**
583  *      __radix_tree_create     -       create a slot in a radix tree
584  *      @root:          radix tree root
585  *      @index:         index key
586  *      @nodep:         returns node
587  *      @slotp:         returns slot
588  *
589  *      Create, if necessary, and return the node and slot for an item
590  *      at position @index in the radix tree @root.
591  *
592  *      Until there is more than one item in the tree, no nodes are
593  *      allocated and @root->xa_head is used as a direct slot instead of
594  *      pointing to a node, in which case *@nodep will be NULL.
595  *
596  *      Returns -ENOMEM, or 0 for success.
597  */
598 static int __radix_tree_create(struct radix_tree_root *root,
599                 unsigned long index, struct radix_tree_node **nodep,
600                 void __rcu ***slotp)
601 {
602         struct radix_tree_node *node = NULL, *child;
603         void __rcu **slot = (void __rcu **)&root->xa_head;
604         unsigned long maxindex;
605         unsigned int shift, offset = 0;
606         unsigned long max = index;
607         gfp_t gfp = root_gfp_mask(root);
608
609         shift = radix_tree_load_root(root, &child, &maxindex);
610
611         /* Make sure the tree is high enough.  */
612         if (max > maxindex) {
613                 int error = radix_tree_extend(root, gfp, max, shift);
614                 if (error < 0)
615                         return error;
616                 shift = error;
617                 child = rcu_dereference_raw(root->xa_head);
618         }
619
620         while (shift > 0) {
621                 shift -= RADIX_TREE_MAP_SHIFT;
622                 if (child == NULL) {
623                         /* Have to add a child node.  */
624                         child = radix_tree_node_alloc(gfp, node, root, shift,
625                                                         offset, 0, 0);
626                         if (!child)
627                                 return -ENOMEM;
628                         rcu_assign_pointer(*slot, node_to_entry(child));
629                         if (node)
630                                 node->count++;
631                 } else if (!radix_tree_is_internal_node(child))
632                         break;
633
634                 /* Go a level down */
635                 node = entry_to_node(child);
636                 offset = radix_tree_descend(node, &child, index);
637                 slot = &node->slots[offset];
638         }
639
640         if (nodep)
641                 *nodep = node;
642         if (slotp)
643                 *slotp = slot;
644         return 0;
645 }
646
647 /*
648  * Free any nodes below this node.  The tree is presumed to not need
649  * shrinking, and any user data in the tree is presumed to not need a
650  * destructor called on it.  If we need to add a destructor, we can
651  * add that functionality later.  Note that we may not clear tags or
652  * slots from the tree as an RCU walker may still have a pointer into
653  * this subtree.  We could replace the entries with RADIX_TREE_RETRY,
654  * but we'll still have to clear those in rcu_free.
655  */
656 static void radix_tree_free_nodes(struct radix_tree_node *node)
657 {
658         unsigned offset = 0;
659         struct radix_tree_node *child = entry_to_node(node);
660
661         for (;;) {
662                 void *entry = rcu_dereference_raw(child->slots[offset]);
663                 if (xa_is_node(entry) && child->shift) {
664                         child = entry_to_node(entry);
665                         offset = 0;
666                         continue;
667                 }
668                 offset++;
669                 while (offset == RADIX_TREE_MAP_SIZE) {
670                         struct radix_tree_node *old = child;
671                         offset = child->offset + 1;
672                         child = child->parent;
673                         WARN_ON_ONCE(!list_empty(&old->private_list));
674                         radix_tree_node_free(old);
675                         if (old == entry_to_node(node))
676                                 return;
677                 }
678         }
679 }
680
681 static inline int insert_entries(struct radix_tree_node *node,
682                 void __rcu **slot, void *item)
683 {
684         if (*slot)
685                 return -EEXIST;
686         rcu_assign_pointer(*slot, item);
687         if (node) {
688                 node->count++;
689                 if (xa_is_value(item))
690                         node->nr_values++;
691         }
692         return 1;
693 }
694
695 /**
696  *      radix_tree_insert    -    insert into a radix tree
697  *      @root:          radix tree root
698  *      @index:         index key
699  *      @item:          item to insert
700  *
701  *      Insert an item into the radix tree at position @index.
702  */
703 int radix_tree_insert(struct radix_tree_root *root, unsigned long index,
704                         void *item)
705 {
706         struct radix_tree_node *node;
707         void __rcu **slot;
708         int error;
709
710         BUG_ON(radix_tree_is_internal_node(item));
711
712         error = __radix_tree_create(root, index, &node, &slot);
713         if (error)
714                 return error;
715
716         error = insert_entries(node, slot, item);
717         if (error < 0)
718                 return error;
719
720         if (node) {
721                 unsigned offset = get_slot_offset(node, slot);
722                 BUG_ON(tag_get(node, 0, offset));
723                 BUG_ON(tag_get(node, 1, offset));
724                 BUG_ON(tag_get(node, 2, offset));
725         } else {
726                 BUG_ON(root_tags_get(root));
727         }
728
729         return 0;
730 }
731 EXPORT_SYMBOL(radix_tree_insert);
732
733 /**
734  *      __radix_tree_lookup     -       lookup an item in a radix tree
735  *      @root:          radix tree root
736  *      @index:         index key
737  *      @nodep:         returns node
738  *      @slotp:         returns slot
739  *
740  *      Lookup and return the item at position @index in the radix
741  *      tree @root.
742  *
743  *      Until there is more than one item in the tree, no nodes are
744  *      allocated and @root->xa_head is used as a direct slot instead of
745  *      pointing to a node, in which case *@nodep will be NULL.
746  */
747 void *__radix_tree_lookup(const struct radix_tree_root *root,
748                           unsigned long index, struct radix_tree_node **nodep,
749                           void __rcu ***slotp)
750 {
751         struct radix_tree_node *node, *parent;
752         unsigned long maxindex;
753         void __rcu **slot;
754
755  restart:
756         parent = NULL;
757         slot = (void __rcu **)&root->xa_head;
758         radix_tree_load_root(root, &node, &maxindex);
759         if (index > maxindex)
760                 return NULL;
761
762         while (radix_tree_is_internal_node(node)) {
763                 unsigned offset;
764
765                 parent = entry_to_node(node);
766                 offset = radix_tree_descend(parent, &node, index);
767                 slot = parent->slots + offset;
768                 if (node == RADIX_TREE_RETRY)
769                         goto restart;
770                 if (parent->shift == 0)
771                         break;
772         }
773
774         if (nodep)
775                 *nodep = parent;
776         if (slotp)
777                 *slotp = slot;
778         return node;
779 }
780
781 /**
782  *      radix_tree_lookup_slot    -    lookup a slot in a radix tree
783  *      @root:          radix tree root
784  *      @index:         index key
785  *
786  *      Returns:  the slot corresponding to the position @index in the
787  *      radix tree @root. This is useful for update-if-exists operations.
788  *
789  *      This function can be called under rcu_read_lock iff the slot is not
790  *      modified by radix_tree_replace_slot, otherwise it must be called
791  *      exclusive from other writers. Any dereference of the slot must be done
792  *      using radix_tree_deref_slot.
793  */
794 void __rcu **radix_tree_lookup_slot(const struct radix_tree_root *root,
795                                 unsigned long index)
796 {
797         void __rcu **slot;
798
799         if (!__radix_tree_lookup(root, index, NULL, &slot))
800                 return NULL;
801         return slot;
802 }
803 EXPORT_SYMBOL(radix_tree_lookup_slot);
804
805 /**
806  *      radix_tree_lookup    -    perform lookup operation on a radix tree
807  *      @root:          radix tree root
808  *      @index:         index key
809  *
810  *      Lookup the item at the position @index in the radix tree @root.
811  *
812  *      This function can be called under rcu_read_lock, however the caller
813  *      must manage lifetimes of leaf nodes (eg. RCU may also be used to free
814  *      them safely). No RCU barriers are required to access or modify the
815  *      returned item, however.
816  */
817 void *radix_tree_lookup(const struct radix_tree_root *root, unsigned long index)
818 {
819         return __radix_tree_lookup(root, index, NULL, NULL);
820 }
821 EXPORT_SYMBOL(radix_tree_lookup);
822
823 static void replace_slot(void __rcu **slot, void *item,
824                 struct radix_tree_node *node, int count, int values)
825 {
826         if (node && (count || values)) {
827                 node->count += count;
828                 node->nr_values += values;
829         }
830
831         rcu_assign_pointer(*slot, item);
832 }
833
834 static bool node_tag_get(const struct radix_tree_root *root,
835                                 const struct radix_tree_node *node,
836                                 unsigned int tag, unsigned int offset)
837 {
838         if (node)
839                 return tag_get(node, tag, offset);
840         return root_tag_get(root, tag);
841 }
842
843 /*
844  * IDR users want to be able to store NULL in the tree, so if the slot isn't
845  * free, don't adjust the count, even if it's transitioning between NULL and
846  * non-NULL.  For the IDA, we mark slots as being IDR_FREE while they still
847  * have empty bits, but it only stores NULL in slots when they're being
848  * deleted.
849  */
850 static int calculate_count(struct radix_tree_root *root,
851                                 struct radix_tree_node *node, void __rcu **slot,
852                                 void *item, void *old)
853 {
854         if (is_idr(root)) {
855                 unsigned offset = get_slot_offset(node, slot);
856                 bool free = node_tag_get(root, node, IDR_FREE, offset);
857                 if (!free)
858                         return 0;
859                 if (!old)
860                         return 1;
861         }
862         return !!item - !!old;
863 }
864
865 /**
866  * __radix_tree_replace         - replace item in a slot
867  * @root:               radix tree root
868  * @node:               pointer to tree node
869  * @slot:               pointer to slot in @node
870  * @item:               new item to store in the slot.
871  *
872  * For use with __radix_tree_lookup().  Caller must hold tree write locked
873  * across slot lookup and replacement.
874  */
875 void __radix_tree_replace(struct radix_tree_root *root,
876                           struct radix_tree_node *node,
877                           void __rcu **slot, void *item)
878 {
879         void *old = rcu_dereference_raw(*slot);
880         int values = !!xa_is_value(item) - !!xa_is_value(old);
881         int count = calculate_count(root, node, slot, item, old);
882
883         /*
884          * This function supports replacing value entries and
885          * deleting entries, but that needs accounting against the
886          * node unless the slot is root->xa_head.
887          */
888         WARN_ON_ONCE(!node && (slot != (void __rcu **)&root->xa_head) &&
889                         (count || values));
890         replace_slot(slot, item, node, count, values);
891
892         if (!node)
893                 return;
894
895         delete_node(root, node);
896 }
897
898 /**
899  * radix_tree_replace_slot      - replace item in a slot
900  * @root:       radix tree root
901  * @slot:       pointer to slot
902  * @item:       new item to store in the slot.
903  *
904  * For use with radix_tree_lookup_slot() and
905  * radix_tree_gang_lookup_tag_slot().  Caller must hold tree write locked
906  * across slot lookup and replacement.
907  *
908  * NOTE: This cannot be used to switch between non-entries (empty slots),
909  * regular entries, and value entries, as that requires accounting
910  * inside the radix tree node. When switching from one type of entry or
911  * deleting, use __radix_tree_lookup() and __radix_tree_replace() or
912  * radix_tree_iter_replace().
913  */
914 void radix_tree_replace_slot(struct radix_tree_root *root,
915                              void __rcu **slot, void *item)
916 {
917         __radix_tree_replace(root, NULL, slot, item);
918 }
919 EXPORT_SYMBOL(radix_tree_replace_slot);
920
921 /**
922  * radix_tree_iter_replace - replace item in a slot
923  * @root:       radix tree root
924  * @iter:       iterator state
925  * @slot:       pointer to slot
926  * @item:       new item to store in the slot.
927  *
928  * For use with radix_tree_for_each_slot().
929  * Caller must hold tree write locked.
930  */
931 void radix_tree_iter_replace(struct radix_tree_root *root,
932                                 const struct radix_tree_iter *iter,
933                                 void __rcu **slot, void *item)
934 {
935         __radix_tree_replace(root, iter->node, slot, item);
936 }
937
938 static void node_tag_set(struct radix_tree_root *root,
939                                 struct radix_tree_node *node,
940                                 unsigned int tag, unsigned int offset)
941 {
942         while (node) {
943                 if (tag_get(node, tag, offset))
944                         return;
945                 tag_set(node, tag, offset);
946                 offset = node->offset;
947                 node = node->parent;
948         }
949
950         if (!root_tag_get(root, tag))
951                 root_tag_set(root, tag);
952 }
953
954 /**
955  *      radix_tree_tag_set - set a tag on a radix tree node
956  *      @root:          radix tree root
957  *      @index:         index key
958  *      @tag:           tag index
959  *
960  *      Set the search tag (which must be < RADIX_TREE_MAX_TAGS)
961  *      corresponding to @index in the radix tree.  From
962  *      the root all the way down to the leaf node.
963  *
964  *      Returns the address of the tagged item.  Setting a tag on a not-present
965  *      item is a bug.
966  */
967 void *radix_tree_tag_set(struct radix_tree_root *root,
968                         unsigned long index, unsigned int tag)
969 {
970         struct radix_tree_node *node, *parent;
971         unsigned long maxindex;
972
973         radix_tree_load_root(root, &node, &maxindex);
974         BUG_ON(index > maxindex);
975
976         while (radix_tree_is_internal_node(node)) {
977                 unsigned offset;
978
979                 parent = entry_to_node(node);
980                 offset = radix_tree_descend(parent, &node, index);
981                 BUG_ON(!node);
982
983                 if (!tag_get(parent, tag, offset))
984                         tag_set(parent, tag, offset);
985         }
986
987         /* set the root's tag bit */
988         if (!root_tag_get(root, tag))
989                 root_tag_set(root, tag);
990
991         return node;
992 }
993 EXPORT_SYMBOL(radix_tree_tag_set);
994
995 static void node_tag_clear(struct radix_tree_root *root,
996                                 struct radix_tree_node *node,
997                                 unsigned int tag, unsigned int offset)
998 {
999         while (node) {
1000                 if (!tag_get(node, tag, offset))
1001                         return;
1002                 tag_clear(node, tag, offset);
1003                 if (any_tag_set(node, tag))
1004                         return;
1005
1006                 offset = node->offset;
1007                 node = node->parent;
1008         }
1009
1010         /* clear the root's tag bit */
1011         if (root_tag_get(root, tag))
1012                 root_tag_clear(root, tag);
1013 }
1014
1015 /**
1016  *      radix_tree_tag_clear - clear a tag on a radix tree node
1017  *      @root:          radix tree root
1018  *      @index:         index key
1019  *      @tag:           tag index
1020  *
1021  *      Clear the search tag (which must be < RADIX_TREE_MAX_TAGS)
1022  *      corresponding to @index in the radix tree.  If this causes
1023  *      the leaf node to have no tags set then clear the tag in the
1024  *      next-to-leaf node, etc.
1025  *
1026  *      Returns the address of the tagged item on success, else NULL.  ie:
1027  *      has the same return value and semantics as radix_tree_lookup().
1028  */
1029 void *radix_tree_tag_clear(struct radix_tree_root *root,
1030                         unsigned long index, unsigned int tag)
1031 {
1032         struct radix_tree_node *node, *parent;
1033         unsigned long maxindex;
1034         int offset = 0;
1035
1036         radix_tree_load_root(root, &node, &maxindex);
1037         if (index > maxindex)
1038                 return NULL;
1039
1040         parent = NULL;
1041
1042         while (radix_tree_is_internal_node(node)) {
1043                 parent = entry_to_node(node);
1044                 offset = radix_tree_descend(parent, &node, index);
1045         }
1046
1047         if (node)
1048                 node_tag_clear(root, parent, tag, offset);
1049
1050         return node;
1051 }
1052 EXPORT_SYMBOL(radix_tree_tag_clear);
1053
1054 /**
1055   * radix_tree_iter_tag_clear - clear a tag on the current iterator entry
1056   * @root: radix tree root
1057   * @iter: iterator state
1058   * @tag: tag to clear
1059   */
1060 void radix_tree_iter_tag_clear(struct radix_tree_root *root,
1061                         const struct radix_tree_iter *iter, unsigned int tag)
1062 {
1063         node_tag_clear(root, iter->node, tag, iter_offset(iter));
1064 }
1065
1066 /**
1067  * radix_tree_tag_get - get a tag on a radix tree node
1068  * @root:               radix tree root
1069  * @index:              index key
1070  * @tag:                tag index (< RADIX_TREE_MAX_TAGS)
1071  *
1072  * Return values:
1073  *
1074  *  0: tag not present or not set
1075  *  1: tag set
1076  *
1077  * Note that the return value of this function may not be relied on, even if
1078  * the RCU lock is held, unless tag modification and node deletion are excluded
1079  * from concurrency.
1080  */
1081 int radix_tree_tag_get(const struct radix_tree_root *root,
1082                         unsigned long index, unsigned int tag)
1083 {
1084         struct radix_tree_node *node, *parent;
1085         unsigned long maxindex;
1086
1087         if (!root_tag_get(root, tag))
1088                 return 0;
1089
1090         radix_tree_load_root(root, &node, &maxindex);
1091         if (index > maxindex)
1092                 return 0;
1093
1094         while (radix_tree_is_internal_node(node)) {
1095                 unsigned offset;
1096
1097                 parent = entry_to_node(node);
1098                 offset = radix_tree_descend(parent, &node, index);
1099
1100                 if (!tag_get(parent, tag, offset))
1101                         return 0;
1102                 if (node == RADIX_TREE_RETRY)
1103                         break;
1104         }
1105
1106         return 1;
1107 }
1108 EXPORT_SYMBOL(radix_tree_tag_get);
1109
1110 /* Construct iter->tags bit-mask from node->tags[tag] array */
1111 static void set_iter_tags(struct radix_tree_iter *iter,
1112                                 struct radix_tree_node *node, unsigned offset,
1113                                 unsigned tag)
1114 {
1115         unsigned tag_long = offset / BITS_PER_LONG;
1116         unsigned tag_bit  = offset % BITS_PER_LONG;
1117
1118         if (!node) {
1119                 iter->tags = 1;
1120                 return;
1121         }
1122
1123         iter->tags = node->tags[tag][tag_long] >> tag_bit;
1124
1125         /* This never happens if RADIX_TREE_TAG_LONGS == 1 */
1126         if (tag_long < RADIX_TREE_TAG_LONGS - 1) {
1127                 /* Pick tags from next element */
1128                 if (tag_bit)
1129                         iter->tags |= node->tags[tag][tag_long + 1] <<
1130                                                 (BITS_PER_LONG - tag_bit);
1131                 /* Clip chunk size, here only BITS_PER_LONG tags */
1132                 iter->next_index = __radix_tree_iter_add(iter, BITS_PER_LONG);
1133         }
1134 }
1135
1136 void __rcu **radix_tree_iter_resume(void __rcu **slot,
1137                                         struct radix_tree_iter *iter)
1138 {
1139         slot++;
1140         iter->index = __radix_tree_iter_add(iter, 1);
1141         iter->next_index = iter->index;
1142         iter->tags = 0;
1143         return NULL;
1144 }
1145 EXPORT_SYMBOL(radix_tree_iter_resume);
1146
1147 /**
1148  * radix_tree_next_chunk - find next chunk of slots for iteration
1149  *
1150  * @root:       radix tree root
1151  * @iter:       iterator state
1152  * @flags:      RADIX_TREE_ITER_* flags and tag index
1153  * Returns:     pointer to chunk first slot, or NULL if iteration is over
1154  */
1155 void __rcu **radix_tree_next_chunk(const struct radix_tree_root *root,
1156                              struct radix_tree_iter *iter, unsigned flags)
1157 {
1158         unsigned tag = flags & RADIX_TREE_ITER_TAG_MASK;
1159         struct radix_tree_node *node, *child;
1160         unsigned long index, offset, maxindex;
1161
1162         if ((flags & RADIX_TREE_ITER_TAGGED) && !root_tag_get(root, tag))
1163                 return NULL;
1164
1165         /*
1166          * Catch next_index overflow after ~0UL. iter->index never overflows
1167          * during iterating; it can be zero only at the beginning.
1168          * And we cannot overflow iter->next_index in a single step,
1169          * because RADIX_TREE_MAP_SHIFT < BITS_PER_LONG.
1170          *
1171          * This condition also used by radix_tree_next_slot() to stop
1172          * contiguous iterating, and forbid switching to the next chunk.
1173          */
1174         index = iter->next_index;
1175         if (!index && iter->index)
1176                 return NULL;
1177
1178  restart:
1179         radix_tree_load_root(root, &child, &maxindex);
1180         if (index > maxindex)
1181                 return NULL;
1182         if (!child)
1183                 return NULL;
1184
1185         if (!radix_tree_is_internal_node(child)) {
1186                 /* Single-slot tree */
1187                 iter->index = index;
1188                 iter->next_index = maxindex + 1;
1189                 iter->tags = 1;
1190                 iter->node = NULL;
1191                 return (void __rcu **)&root->xa_head;
1192         }
1193
1194         do {
1195                 node = entry_to_node(child);
1196                 offset = radix_tree_descend(node, &child, index);
1197
1198                 if ((flags & RADIX_TREE_ITER_TAGGED) ?
1199                                 !tag_get(node, tag, offset) : !child) {
1200                         /* Hole detected */
1201                         if (flags & RADIX_TREE_ITER_CONTIG)
1202                                 return NULL;
1203
1204                         if (flags & RADIX_TREE_ITER_TAGGED)
1205                                 offset = radix_tree_find_next_bit(node, tag,
1206                                                 offset + 1);
1207                         else
1208                                 while (++offset < RADIX_TREE_MAP_SIZE) {
1209                                         void *slot = rcu_dereference_raw(
1210                                                         node->slots[offset]);
1211                                         if (slot)
1212                                                 break;
1213                                 }
1214                         index &= ~node_maxindex(node);
1215                         index += offset << node->shift;
1216                         /* Overflow after ~0UL */
1217                         if (!index)
1218                                 return NULL;
1219                         if (offset == RADIX_TREE_MAP_SIZE)
1220                                 goto restart;
1221                         child = rcu_dereference_raw(node->slots[offset]);
1222                 }
1223
1224                 if (!child)
1225                         goto restart;
1226                 if (child == RADIX_TREE_RETRY)
1227                         break;
1228         } while (node->shift && radix_tree_is_internal_node(child));
1229
1230         /* Update the iterator state */
1231         iter->index = (index &~ node_maxindex(node)) | offset;
1232         iter->next_index = (index | node_maxindex(node)) + 1;
1233         iter->node = node;
1234
1235         if (flags & RADIX_TREE_ITER_TAGGED)
1236                 set_iter_tags(iter, node, offset, tag);
1237
1238         return node->slots + offset;
1239 }
1240 EXPORT_SYMBOL(radix_tree_next_chunk);
1241
1242 /**
1243  *      radix_tree_gang_lookup - perform multiple lookup on a radix tree
1244  *      @root:          radix tree root
1245  *      @results:       where the results of the lookup are placed
1246  *      @first_index:   start the lookup from this key
1247  *      @max_items:     place up to this many items at *results
1248  *
1249  *      Performs an index-ascending scan of the tree for present items.  Places
1250  *      them at *@results and returns the number of items which were placed at
1251  *      *@results.
1252  *
1253  *      The implementation is naive.
1254  *
1255  *      Like radix_tree_lookup, radix_tree_gang_lookup may be called under
1256  *      rcu_read_lock. In this case, rather than the returned results being
1257  *      an atomic snapshot of the tree at a single point in time, the
1258  *      semantics of an RCU protected gang lookup are as though multiple
1259  *      radix_tree_lookups have been issued in individual locks, and results
1260  *      stored in 'results'.
1261  */
1262 unsigned int
1263 radix_tree_gang_lookup(const struct radix_tree_root *root, void **results,
1264                         unsigned long first_index, unsigned int max_items)
1265 {
1266         struct radix_tree_iter iter;
1267         void __rcu **slot;
1268         unsigned int ret = 0;
1269
1270         if (unlikely(!max_items))
1271                 return 0;
1272
1273         radix_tree_for_each_slot(slot, root, &iter, first_index) {
1274                 results[ret] = rcu_dereference_raw(*slot);
1275                 if (!results[ret])
1276                         continue;
1277                 if (radix_tree_is_internal_node(results[ret])) {
1278                         slot = radix_tree_iter_retry(&iter);
1279                         continue;
1280                 }
1281                 if (++ret == max_items)
1282                         break;
1283         }
1284
1285         return ret;
1286 }
1287 EXPORT_SYMBOL(radix_tree_gang_lookup);
1288
1289 /**
1290  *      radix_tree_gang_lookup_tag - perform multiple lookup on a radix tree
1291  *                                   based on a tag
1292  *      @root:          radix tree root
1293  *      @results:       where the results of the lookup are placed
1294  *      @first_index:   start the lookup from this key
1295  *      @max_items:     place up to this many items at *results
1296  *      @tag:           the tag index (< RADIX_TREE_MAX_TAGS)
1297  *
1298  *      Performs an index-ascending scan of the tree for present items which
1299  *      have the tag indexed by @tag set.  Places the items at *@results and
1300  *      returns the number of items which were placed at *@results.
1301  */
1302 unsigned int
1303 radix_tree_gang_lookup_tag(const struct radix_tree_root *root, void **results,
1304                 unsigned long first_index, unsigned int max_items,
1305                 unsigned int tag)
1306 {
1307         struct radix_tree_iter iter;
1308         void __rcu **slot;
1309         unsigned int ret = 0;
1310
1311         if (unlikely(!max_items))
1312                 return 0;
1313
1314         radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
1315                 results[ret] = rcu_dereference_raw(*slot);
1316                 if (!results[ret])
1317                         continue;
1318                 if (radix_tree_is_internal_node(results[ret])) {
1319                         slot = radix_tree_iter_retry(&iter);
1320                         continue;
1321                 }
1322                 if (++ret == max_items)
1323                         break;
1324         }
1325
1326         return ret;
1327 }
1328 EXPORT_SYMBOL(radix_tree_gang_lookup_tag);
1329
1330 /**
1331  *      radix_tree_gang_lookup_tag_slot - perform multiple slot lookup on a
1332  *                                        radix tree based on a tag
1333  *      @root:          radix tree root
1334  *      @results:       where the results of the lookup are placed
1335  *      @first_index:   start the lookup from this key
1336  *      @max_items:     place up to this many items at *results
1337  *      @tag:           the tag index (< RADIX_TREE_MAX_TAGS)
1338  *
1339  *      Performs an index-ascending scan of the tree for present items which
1340  *      have the tag indexed by @tag set.  Places the slots at *@results and
1341  *      returns the number of slots which were placed at *@results.
1342  */
1343 unsigned int
1344 radix_tree_gang_lookup_tag_slot(const struct radix_tree_root *root,
1345                 void __rcu ***results, unsigned long first_index,
1346                 unsigned int max_items, unsigned int tag)
1347 {
1348         struct radix_tree_iter iter;
1349         void __rcu **slot;
1350         unsigned int ret = 0;
1351
1352         if (unlikely(!max_items))
1353                 return 0;
1354
1355         radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
1356                 results[ret] = slot;
1357                 if (++ret == max_items)
1358                         break;
1359         }
1360
1361         return ret;
1362 }
1363 EXPORT_SYMBOL(radix_tree_gang_lookup_tag_slot);
1364
1365 static bool __radix_tree_delete(struct radix_tree_root *root,
1366                                 struct radix_tree_node *node, void __rcu **slot)
1367 {
1368         void *old = rcu_dereference_raw(*slot);
1369         int values = xa_is_value(old) ? -1 : 0;
1370         unsigned offset = get_slot_offset(node, slot);
1371         int tag;
1372
1373         if (is_idr(root))
1374                 node_tag_set(root, node, IDR_FREE, offset);
1375         else
1376                 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1377                         node_tag_clear(root, node, tag, offset);
1378
1379         replace_slot(slot, NULL, node, -1, values);
1380         return node && delete_node(root, node);
1381 }
1382
1383 /**
1384  * radix_tree_iter_delete - delete the entry at this iterator position
1385  * @root: radix tree root
1386  * @iter: iterator state
1387  * @slot: pointer to slot
1388  *
1389  * Delete the entry at the position currently pointed to by the iterator.
1390  * This may result in the current node being freed; if it is, the iterator
1391  * is advanced so that it will not reference the freed memory.  This
1392  * function may be called without any locking if there are no other threads
1393  * which can access this tree.
1394  */
1395 void radix_tree_iter_delete(struct radix_tree_root *root,
1396                                 struct radix_tree_iter *iter, void __rcu **slot)
1397 {
1398         if (__radix_tree_delete(root, iter->node, slot))
1399                 iter->index = iter->next_index;
1400 }
1401 EXPORT_SYMBOL(radix_tree_iter_delete);
1402
1403 /**
1404  * radix_tree_delete_item - delete an item from a radix tree
1405  * @root: radix tree root
1406  * @index: index key
1407  * @item: expected item
1408  *
1409  * Remove @item at @index from the radix tree rooted at @root.
1410  *
1411  * Return: the deleted entry, or %NULL if it was not present
1412  * or the entry at the given @index was not @item.
1413  */
1414 void *radix_tree_delete_item(struct radix_tree_root *root,
1415                              unsigned long index, void *item)
1416 {
1417         struct radix_tree_node *node = NULL;
1418         void __rcu **slot = NULL;
1419         void *entry;
1420
1421         entry = __radix_tree_lookup(root, index, &node, &slot);
1422         if (!slot)
1423                 return NULL;
1424         if (!entry && (!is_idr(root) || node_tag_get(root, node, IDR_FREE,
1425                                                 get_slot_offset(node, slot))))
1426                 return NULL;
1427
1428         if (item && entry != item)
1429                 return NULL;
1430
1431         __radix_tree_delete(root, node, slot);
1432
1433         return entry;
1434 }
1435 EXPORT_SYMBOL(radix_tree_delete_item);
1436
1437 /**
1438  * radix_tree_delete - delete an entry from a radix tree
1439  * @root: radix tree root
1440  * @index: index key
1441  *
1442  * Remove the entry at @index from the radix tree rooted at @root.
1443  *
1444  * Return: The deleted entry, or %NULL if it was not present.
1445  */
1446 void *radix_tree_delete(struct radix_tree_root *root, unsigned long index)
1447 {
1448         return radix_tree_delete_item(root, index, NULL);
1449 }
1450 EXPORT_SYMBOL(radix_tree_delete);
1451
1452 /**
1453  *      radix_tree_tagged - test whether any items in the tree are tagged
1454  *      @root:          radix tree root
1455  *      @tag:           tag to test
1456  */
1457 int radix_tree_tagged(const struct radix_tree_root *root, unsigned int tag)
1458 {
1459         return root_tag_get(root, tag);
1460 }
1461 EXPORT_SYMBOL(radix_tree_tagged);
1462
1463 /**
1464  * idr_preload - preload for idr_alloc()
1465  * @gfp_mask: allocation mask to use for preloading
1466  *
1467  * Preallocate memory to use for the next call to idr_alloc().  This function
1468  * returns with preemption disabled.  It will be enabled by idr_preload_end().
1469  */
1470 void idr_preload(gfp_t gfp_mask)
1471 {
1472         if (__radix_tree_preload(gfp_mask, IDR_PRELOAD_SIZE))
1473                 local_lock(&radix_tree_preloads.lock);
1474 }
1475 EXPORT_SYMBOL(idr_preload);
1476
1477 void __rcu **idr_get_free(struct radix_tree_root *root,
1478                               struct radix_tree_iter *iter, gfp_t gfp,
1479                               unsigned long max)
1480 {
1481         struct radix_tree_node *node = NULL, *child;
1482         void __rcu **slot = (void __rcu **)&root->xa_head;
1483         unsigned long maxindex, start = iter->next_index;
1484         unsigned int shift, offset = 0;
1485
1486  grow:
1487         shift = radix_tree_load_root(root, &child, &maxindex);
1488         if (!radix_tree_tagged(root, IDR_FREE))
1489                 start = max(start, maxindex + 1);
1490         if (start > max)
1491                 return ERR_PTR(-ENOSPC);
1492
1493         if (start > maxindex) {
1494                 int error = radix_tree_extend(root, gfp, start, shift);
1495                 if (error < 0)
1496                         return ERR_PTR(error);
1497                 shift = error;
1498                 child = rcu_dereference_raw(root->xa_head);
1499         }
1500         if (start == 0 && shift == 0)
1501                 shift = RADIX_TREE_MAP_SHIFT;
1502
1503         while (shift) {
1504                 shift -= RADIX_TREE_MAP_SHIFT;
1505                 if (child == NULL) {
1506                         /* Have to add a child node.  */
1507                         child = radix_tree_node_alloc(gfp, node, root, shift,
1508                                                         offset, 0, 0);
1509                         if (!child)
1510                                 return ERR_PTR(-ENOMEM);
1511                         all_tag_set(child, IDR_FREE);
1512                         rcu_assign_pointer(*slot, node_to_entry(child));
1513                         if (node)
1514                                 node->count++;
1515                 } else if (!radix_tree_is_internal_node(child))
1516                         break;
1517
1518                 node = entry_to_node(child);
1519                 offset = radix_tree_descend(node, &child, start);
1520                 if (!tag_get(node, IDR_FREE, offset)) {
1521                         offset = radix_tree_find_next_bit(node, IDR_FREE,
1522                                                         offset + 1);
1523                         start = next_index(start, node, offset);
1524                         if (start > max || start == 0)
1525                                 return ERR_PTR(-ENOSPC);
1526                         while (offset == RADIX_TREE_MAP_SIZE) {
1527                                 offset = node->offset + 1;
1528                                 node = node->parent;
1529                                 if (!node)
1530                                         goto grow;
1531                                 shift = node->shift;
1532                         }
1533                         child = rcu_dereference_raw(node->slots[offset]);
1534                 }
1535                 slot = &node->slots[offset];
1536         }
1537
1538         iter->index = start;
1539         if (node)
1540                 iter->next_index = 1 + min(max, (start | node_maxindex(node)));
1541         else
1542                 iter->next_index = 1;
1543         iter->node = node;
1544         set_iter_tags(iter, node, offset, IDR_FREE);
1545
1546         return slot;
1547 }
1548
1549 /**
1550  * idr_destroy - release all internal memory from an IDR
1551  * @idr: idr handle
1552  *
1553  * After this function is called, the IDR is empty, and may be reused or
1554  * the data structure containing it may be freed.
1555  *
1556  * A typical clean-up sequence for objects stored in an idr tree will use
1557  * idr_for_each() to free all objects, if necessary, then idr_destroy() to
1558  * free the memory used to keep track of those objects.
1559  */
1560 void idr_destroy(struct idr *idr)
1561 {
1562         struct radix_tree_node *node = rcu_dereference_raw(idr->idr_rt.xa_head);
1563         if (radix_tree_is_internal_node(node))
1564                 radix_tree_free_nodes(node);
1565         idr->idr_rt.xa_head = NULL;
1566         root_tag_set(&idr->idr_rt, IDR_FREE);
1567 }
1568 EXPORT_SYMBOL(idr_destroy);
1569
1570 static void
1571 radix_tree_node_ctor(void *arg)
1572 {
1573         struct radix_tree_node *node = arg;
1574
1575         memset(node, 0, sizeof(*node));
1576         INIT_LIST_HEAD(&node->private_list);
1577 }
1578
1579 static int radix_tree_cpu_dead(unsigned int cpu)
1580 {
1581         struct radix_tree_preload *rtp;
1582         struct radix_tree_node *node;
1583
1584         /* Free per-cpu pool of preloaded nodes */
1585         rtp = &per_cpu(radix_tree_preloads, cpu);
1586         while (rtp->nr) {
1587                 node = rtp->nodes;
1588                 rtp->nodes = node->parent;
1589                 kmem_cache_free(radix_tree_node_cachep, node);
1590                 rtp->nr--;
1591         }
1592         return 0;
1593 }
1594
1595 void __init radix_tree_init(void)
1596 {
1597         int ret;
1598
1599         BUILD_BUG_ON(RADIX_TREE_MAX_TAGS + __GFP_BITS_SHIFT > 32);
1600         BUILD_BUG_ON(ROOT_IS_IDR & ~GFP_ZONEMASK);
1601         BUILD_BUG_ON(XA_CHUNK_SIZE > 255);
1602         radix_tree_node_cachep = kmem_cache_create("radix_tree_node",
1603                         sizeof(struct radix_tree_node), 0,
1604                         SLAB_PANIC | SLAB_RECLAIM_ACCOUNT,
1605                         radix_tree_node_ctor);
1606         ret = cpuhp_setup_state_nocalls(CPUHP_RADIX_DEAD, "lib/radix:dead",
1607                                         NULL, radix_tree_cpu_dead);
1608         WARN_ON(ret < 0);
1609 }