Imported Upstream version 3.8
[platform/upstream/diffutils.git] / lib / mktime.c
1 /* Convert a 'struct tm' to a time_t value.
2    Copyright (C) 1993-2021 Free Software Foundation, Inc.
3    This file is part of the GNU C Library.
4    Contributed by Paul Eggert <eggert@twinsun.com>.
5
6    The GNU C Library is free software; you can redistribute it and/or
7    modify it under the terms of the GNU Lesser General Public
8    License as published by the Free Software Foundation; either
9    version 2.1 of the License, or (at your option) any later version.
10
11    The GNU C Library is distributed in the hope that it will be useful,
12    but WITHOUT ANY WARRANTY; without even the implied warranty of
13    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14    Lesser General Public License for more details.
15
16    You should have received a copy of the GNU Lesser General Public
17    License along with the GNU C Library; if not, see
18    <https://www.gnu.org/licenses/>.  */
19
20 /* The following macros influence what gets defined when this file is compiled:
21
22    Macro/expression            Which gnulib module    This compilation unit
23                                                       should define
24
25    _LIBC                       (glibc proper)         mktime
26
27    NEED_MKTIME_WORKING         mktime                 rpl_mktime
28    || NEED_MKTIME_WINDOWS
29
30    NEED_MKTIME_INTERNAL        mktime-internal        mktime_internal
31  */
32
33 #ifndef _LIBC
34 # include <libc-config.h>
35 #endif
36
37 /* Assume that leap seconds are possible, unless told otherwise.
38    If the host has a 'zic' command with a '-L leapsecondfilename' option,
39    then it supports leap seconds; otherwise it probably doesn't.  */
40 #ifndef LEAP_SECONDS_POSSIBLE
41 # define LEAP_SECONDS_POSSIBLE 1
42 #endif
43
44 #include <time.h>
45
46 #include <errno.h>
47 #include <limits.h>
48 #include <stdbool.h>
49 #include <stdlib.h>
50 #include <string.h>
51
52 #include <intprops.h>
53 #include <verify.h>
54
55 #ifndef NEED_MKTIME_INTERNAL
56 # define NEED_MKTIME_INTERNAL 0
57 #endif
58 #ifndef NEED_MKTIME_WINDOWS
59 # define NEED_MKTIME_WINDOWS 0
60 #endif
61 #ifndef NEED_MKTIME_WORKING
62 # define NEED_MKTIME_WORKING 0
63 #endif
64
65 #include "mktime-internal.h"
66
67 #if !defined _LIBC && (NEED_MKTIME_WORKING || NEED_MKTIME_WINDOWS)
68 static void
69 my_tzset (void)
70 {
71 # if NEED_MKTIME_WINDOWS
72   /* Rectify the value of the environment variable TZ.
73      There are four possible kinds of such values:
74        - Traditional US time zone names, e.g. "PST8PDT".  Syntax: see
75          <https://docs.microsoft.com/en-us/cpp/c-runtime-library/reference/tzset>
76        - Time zone names based on geography, that contain one or more
77          slashes, e.g. "Europe/Moscow".
78        - Time zone names based on geography, without slashes, e.g.
79          "Singapore".
80        - Time zone names that contain explicit DST rules.  Syntax: see
81          <https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap08.html#tag_08_03>
82      The Microsoft CRT understands only the first kind.  It produces incorrect
83      results if the value of TZ is of the other kinds.
84      But in a Cygwin environment, /etc/profile.d/tzset.sh sets TZ to a value
85      of the second kind for most geographies, or of the first kind in a few
86      other geographies.  If it is of the second kind, neutralize it.  For the
87      Microsoft CRT, an absent or empty TZ means the time zone that the user
88      has set in the Windows Control Panel.
89      If the value of TZ is of the third or fourth kind -- Cygwin programs
90      understand these syntaxes as well --, it does not matter whether we
91      neutralize it or not, since these values occur only when a Cygwin user
92      has set TZ explicitly; this case is 1. rare and 2. under the user's
93      responsibility.  */
94   const char *tz = getenv ("TZ");
95   if (tz != NULL && strchr (tz, '/') != NULL)
96     _putenv ("TZ=");
97 # else
98   tzset ();
99 # endif
100 }
101 # undef __tzset
102 # define __tzset() my_tzset ()
103 #endif
104
105 #if defined _LIBC || NEED_MKTIME_WORKING || NEED_MKTIME_INTERNAL
106
107 /* A signed type that can represent an integer number of years
108    multiplied by four times the number of seconds in a year.  It is
109    needed when converting a tm_year value times the number of seconds
110    in a year.  The factor of four comes because these products need
111    to be subtracted from each other, and sometimes with an offset
112    added to them, and then with another timestamp added, without
113    worrying about overflow.
114
115    Much of the code uses long_int to represent __time64_t values, to
116    lessen the hassle of dealing with platforms where __time64_t is
117    unsigned, and because long_int should suffice to represent all
118    __time64_t values that mktime can generate even on platforms where
119    __time64_t is wider than the int components of struct tm.  */
120
121 #if INT_MAX <= LONG_MAX / 4 / 366 / 24 / 60 / 60
122 typedef long int long_int;
123 #else
124 typedef long long int long_int;
125 #endif
126 verify (INT_MAX <= TYPE_MAXIMUM (long_int) / 4 / 366 / 24 / 60 / 60);
127
128 /* Shift A right by B bits portably, by dividing A by 2**B and
129    truncating towards minus infinity.  B should be in the range 0 <= B
130    <= LONG_INT_BITS - 2, where LONG_INT_BITS is the number of useful
131    bits in a long_int.  LONG_INT_BITS is at least 32.
132
133    ISO C99 says that A >> B is implementation-defined if A < 0.  Some
134    implementations (e.g., UNICOS 9.0 on a Cray Y-MP EL) don't shift
135    right in the usual way when A < 0, so SHR falls back on division if
136    ordinary A >> B doesn't seem to be the usual signed shift.  */
137
138 static long_int
139 shr (long_int a, int b)
140 {
141   long_int one = 1;
142   return (-one >> 1 == -1
143           ? a >> b
144           : (a + (a < 0)) / (one << b) - (a < 0));
145 }
146
147 /* Bounds for the intersection of __time64_t and long_int.  */
148
149 static long_int const mktime_min
150   = ((TYPE_SIGNED (__time64_t)
151       && TYPE_MINIMUM (__time64_t) < TYPE_MINIMUM (long_int))
152      ? TYPE_MINIMUM (long_int) : TYPE_MINIMUM (__time64_t));
153 static long_int const mktime_max
154   = (TYPE_MAXIMUM (long_int) < TYPE_MAXIMUM (__time64_t)
155      ? TYPE_MAXIMUM (long_int) : TYPE_MAXIMUM (__time64_t));
156
157 #define EPOCH_YEAR 1970
158 #define TM_YEAR_BASE 1900
159 verify (TM_YEAR_BASE % 100 == 0);
160
161 /* Is YEAR + TM_YEAR_BASE a leap year?  */
162 static bool
163 leapyear (long_int year)
164 {
165   /* Don't add YEAR to TM_YEAR_BASE, as that might overflow.
166      Also, work even if YEAR is negative.  */
167   return
168     ((year & 3) == 0
169      && (year % 100 != 0
170          || ((year / 100) & 3) == (- (TM_YEAR_BASE / 100) & 3)));
171 }
172
173 /* How many days come before each month (0-12).  */
174 #ifndef _LIBC
175 static
176 #endif
177 const unsigned short int __mon_yday[2][13] =
178   {
179     /* Normal years.  */
180     { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334, 365 },
181     /* Leap years.  */
182     { 0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335, 366 }
183   };
184
185
186 /* Do the values A and B differ according to the rules for tm_isdst?
187    A and B differ if one is zero and the other positive.  */
188 static bool
189 isdst_differ (int a, int b)
190 {
191   return (!a != !b) && (0 <= a) && (0 <= b);
192 }
193
194 /* Return an integer value measuring (YEAR1-YDAY1 HOUR1:MIN1:SEC1) -
195    (YEAR0-YDAY0 HOUR0:MIN0:SEC0) in seconds, assuming that the clocks
196    were not adjusted between the timestamps.
197
198    The YEAR values uses the same numbering as TP->tm_year.  Values
199    need not be in the usual range.  However, YEAR1 - YEAR0 must not
200    overflow even when multiplied by three times the number of seconds
201    in a year, and likewise for YDAY1 - YDAY0 and three times the
202    number of seconds in a day.  */
203
204 static long_int
205 ydhms_diff (long_int year1, long_int yday1, int hour1, int min1, int sec1,
206             int year0, int yday0, int hour0, int min0, int sec0)
207 {
208   verify (-1 / 2 == 0);
209
210   /* Compute intervening leap days correctly even if year is negative.
211      Take care to avoid integer overflow here.  */
212   int a4 = shr (year1, 2) + shr (TM_YEAR_BASE, 2) - ! (year1 & 3);
213   int b4 = shr (year0, 2) + shr (TM_YEAR_BASE, 2) - ! (year0 & 3);
214   int a100 = (a4 + (a4 < 0)) / 25 - (a4 < 0);
215   int b100 = (b4 + (b4 < 0)) / 25 - (b4 < 0);
216   int a400 = shr (a100, 2);
217   int b400 = shr (b100, 2);
218   int intervening_leap_days = (a4 - b4) - (a100 - b100) + (a400 - b400);
219
220   /* Compute the desired time without overflowing.  */
221   long_int years = year1 - year0;
222   long_int days = 365 * years + yday1 - yday0 + intervening_leap_days;
223   long_int hours = 24 * days + hour1 - hour0;
224   long_int minutes = 60 * hours + min1 - min0;
225   long_int seconds = 60 * minutes + sec1 - sec0;
226   return seconds;
227 }
228
229 /* Return the average of A and B, even if A + B would overflow.
230    Round toward positive infinity.  */
231 static long_int
232 long_int_avg (long_int a, long_int b)
233 {
234   return shr (a, 1) + shr (b, 1) + ((a | b) & 1);
235 }
236
237 /* Return a long_int value corresponding to (YEAR-YDAY HOUR:MIN:SEC)
238    minus *TP seconds, assuming no clock adjustments occurred between
239    the two timestamps.
240
241    YEAR and YDAY must not be so large that multiplying them by three times the
242    number of seconds in a year (or day, respectively) would overflow long_int.
243    *TP should be in the usual range.  */
244 static long_int
245 tm_diff (long_int year, long_int yday, int hour, int min, int sec,
246          struct tm const *tp)
247 {
248   return ydhms_diff (year, yday, hour, min, sec,
249                      tp->tm_year, tp->tm_yday,
250                      tp->tm_hour, tp->tm_min, tp->tm_sec);
251 }
252
253 /* Use CONVERT to convert T to a struct tm value in *TM.  T must be in
254    range for __time64_t.  Return TM if successful, NULL (setting errno) on
255    failure.  */
256 static struct tm *
257 convert_time (struct tm *(*convert) (const __time64_t *, struct tm *),
258               long_int t, struct tm *tm)
259 {
260   __time64_t x = t;
261   return convert (&x, tm);
262 }
263
264 /* Use CONVERT to convert *T to a broken down time in *TP.
265    If *T is out of range for conversion, adjust it so that
266    it is the nearest in-range value and then convert that.
267    A value is in range if it fits in both __time64_t and long_int.
268    Return TP on success, NULL (setting errno) on failure.  */
269 static struct tm *
270 ranged_convert (struct tm *(*convert) (const __time64_t *, struct tm *),
271                 long_int *t, struct tm *tp)
272 {
273   long_int t1 = (*t < mktime_min ? mktime_min
274                  : *t <= mktime_max ? *t : mktime_max);
275   struct tm *r = convert_time (convert, t1, tp);
276   if (r)
277     {
278       *t = t1;
279       return r;
280     }
281   if (errno != EOVERFLOW)
282     return NULL;
283
284   long_int bad = t1;
285   long_int ok = 0;
286   struct tm oktm; oktm.tm_sec = -1;
287
288   /* BAD is a known out-of-range value, and OK is a known in-range one.
289      Use binary search to narrow the range between BAD and OK until
290      they differ by 1.  */
291   while (true)
292     {
293       long_int mid = long_int_avg (ok, bad);
294       if (mid == ok || mid == bad)
295         break;
296       if (convert_time (convert, mid, tp))
297         ok = mid, oktm = *tp;
298       else if (errno != EOVERFLOW)
299         return NULL;
300       else
301         bad = mid;
302     }
303
304   if (oktm.tm_sec < 0)
305     return NULL;
306   *t = ok;
307   *tp = oktm;
308   return tp;
309 }
310
311
312 /* Convert *TP to a __time64_t value, inverting
313    the monotonic and mostly-unit-linear conversion function CONVERT.
314    Use *OFFSET to keep track of a guess at the offset of the result,
315    compared to what the result would be for UTC without leap seconds.
316    If *OFFSET's guess is correct, only one CONVERT call is needed.
317    If successful, set *TP to the canonicalized struct tm;
318    otherwise leave *TP alone, return ((time_t) -1) and set errno.
319    This function is external because it is used also by timegm.c.  */
320 __time64_t
321 __mktime_internal (struct tm *tp,
322                    struct tm *(*convert) (const __time64_t *, struct tm *),
323                    mktime_offset_t *offset)
324 {
325   struct tm tm;
326
327   /* The maximum number of probes (calls to CONVERT) should be enough
328      to handle any combinations of time zone rule changes, solar time,
329      leap seconds, and oscillations around a spring-forward gap.
330      POSIX.1 prohibits leap seconds, but some hosts have them anyway.  */
331   int remaining_probes = 6;
332
333   /* Time requested.  Copy it in case CONVERT modifies *TP; this can
334      occur if TP is localtime's returned value and CONVERT is localtime.  */
335   int sec = tp->tm_sec;
336   int min = tp->tm_min;
337   int hour = tp->tm_hour;
338   int mday = tp->tm_mday;
339   int mon = tp->tm_mon;
340   int year_requested = tp->tm_year;
341   int isdst = tp->tm_isdst;
342
343   /* 1 if the previous probe was DST.  */
344   int dst2 = 0;
345
346   /* Ensure that mon is in range, and set year accordingly.  */
347   int mon_remainder = mon % 12;
348   int negative_mon_remainder = mon_remainder < 0;
349   int mon_years = mon / 12 - negative_mon_remainder;
350   long_int lyear_requested = year_requested;
351   long_int year = lyear_requested + mon_years;
352
353   /* The other values need not be in range:
354      the remaining code handles overflows correctly.  */
355
356   /* Calculate day of year from year, month, and day of month.
357      The result need not be in range.  */
358   int mon_yday = ((__mon_yday[leapyear (year)]
359                    [mon_remainder + 12 * negative_mon_remainder])
360                   - 1);
361   long_int lmday = mday;
362   long_int yday = mon_yday + lmday;
363
364   mktime_offset_t off = *offset;
365   int negative_offset_guess;
366
367   int sec_requested = sec;
368
369   if (LEAP_SECONDS_POSSIBLE)
370     {
371       /* Handle out-of-range seconds specially,
372          since ydhms_diff assumes every minute has 60 seconds.  */
373       if (sec < 0)
374         sec = 0;
375       if (59 < sec)
376         sec = 59;
377     }
378
379   /* Invert CONVERT by probing.  First assume the same offset as last
380      time.  */
381
382   INT_SUBTRACT_WRAPV (0, off, &negative_offset_guess);
383   long_int t0 = ydhms_diff (year, yday, hour, min, sec,
384                             EPOCH_YEAR - TM_YEAR_BASE, 0, 0, 0,
385                             negative_offset_guess);
386   long_int t = t0, t1 = t0, t2 = t0;
387
388   /* Repeatedly use the error to improve the guess.  */
389
390   while (true)
391     {
392       if (! ranged_convert (convert, &t, &tm))
393         return -1;
394       long_int dt = tm_diff (year, yday, hour, min, sec, &tm);
395       if (dt == 0)
396         break;
397
398       if (t == t1 && t != t2
399           && (tm.tm_isdst < 0
400               || (isdst < 0
401                   ? dst2 <= (tm.tm_isdst != 0)
402                   : (isdst != 0) != (tm.tm_isdst != 0))))
403         /* We can't possibly find a match, as we are oscillating
404            between two values.  The requested time probably falls
405            within a spring-forward gap of size DT.  Follow the common
406            practice in this case, which is to return a time that is DT
407            away from the requested time, preferring a time whose
408            tm_isdst differs from the requested value.  (If no tm_isdst
409            was requested and only one of the two values has a nonzero
410            tm_isdst, prefer that value.)  In practice, this is more
411            useful than returning -1.  */
412         goto offset_found;
413
414       remaining_probes--;
415       if (remaining_probes == 0)
416         {
417           __set_errno (EOVERFLOW);
418           return -1;
419         }
420
421       t1 = t2, t2 = t, t += dt, dst2 = tm.tm_isdst != 0;
422     }
423
424   /* We have a match.  Check whether tm.tm_isdst has the requested
425      value, if any.  */
426   if (isdst_differ (isdst, tm.tm_isdst))
427     {
428       /* tm.tm_isdst has the wrong value.  Look for a neighboring
429          time with the right value, and use its UTC offset.
430
431          Heuristic: probe the adjacent timestamps in both directions,
432          looking for the desired isdst.  This should work for all real
433          time zone histories in the tz database.  */
434
435       /* Distance between probes when looking for a DST boundary.  In
436          tzdata2003a, the shortest period of DST is 601200 seconds
437          (e.g., America/Recife starting 2000-10-08 01:00), and the
438          shortest period of non-DST surrounded by DST is 694800
439          seconds (Africa/Tunis starting 1943-04-17 01:00).  Use the
440          minimum of these two values, so we don't miss these short
441          periods when probing.  */
442       int stride = 601200;
443
444       /* The longest period of DST in tzdata2003a is 536454000 seconds
445          (e.g., America/Jujuy starting 1946-10-01 01:00).  The longest
446          period of non-DST is much longer, but it makes no real sense
447          to search for more than a year of non-DST, so use the DST
448          max.  */
449       int duration_max = 536454000;
450
451       /* Search in both directions, so the maximum distance is half
452          the duration; add the stride to avoid off-by-1 problems.  */
453       int delta_bound = duration_max / 2 + stride;
454
455       int delta, direction;
456
457       for (delta = stride; delta < delta_bound; delta += stride)
458         for (direction = -1; direction <= 1; direction += 2)
459           {
460             long_int ot;
461             if (! INT_ADD_WRAPV (t, delta * direction, &ot))
462               {
463                 struct tm otm;
464                 if (! ranged_convert (convert, &ot, &otm))
465                   return -1;
466                 if (! isdst_differ (isdst, otm.tm_isdst))
467                   {
468                     /* We found the desired tm_isdst.
469                        Extrapolate back to the desired time.  */
470                     long_int gt = ot + tm_diff (year, yday, hour, min, sec,
471                                                 &otm);
472                     if (mktime_min <= gt && gt <= mktime_max)
473                       {
474                         if (convert_time (convert, gt, &tm))
475                           {
476                             t = gt;
477                             goto offset_found;
478                           }
479                         if (errno != EOVERFLOW)
480                           return -1;
481                       }
482                   }
483               }
484           }
485
486       __set_errno (EOVERFLOW);
487       return -1;
488     }
489
490  offset_found:
491   /* Set *OFFSET to the low-order bits of T - T0 - NEGATIVE_OFFSET_GUESS.
492      This is just a heuristic to speed up the next mktime call, and
493      correctness is unaffected if integer overflow occurs here.  */
494   INT_SUBTRACT_WRAPV (t, t0, offset);
495   INT_SUBTRACT_WRAPV (*offset, negative_offset_guess, offset);
496
497   if (LEAP_SECONDS_POSSIBLE && sec_requested != tm.tm_sec)
498     {
499       /* Adjust time to reflect the tm_sec requested, not the normalized value.
500          Also, repair any damage from a false match due to a leap second.  */
501       long_int sec_adjustment = sec == 0 && tm.tm_sec == 60;
502       sec_adjustment -= sec;
503       sec_adjustment += sec_requested;
504       if (INT_ADD_WRAPV (t, sec_adjustment, &t)
505           || ! (mktime_min <= t && t <= mktime_max))
506         {
507           __set_errno (EOVERFLOW);
508           return -1;
509         }
510       if (! convert_time (convert, t, &tm))
511         return -1;
512     }
513
514   *tp = tm;
515   return t;
516 }
517
518 #endif /* _LIBC || NEED_MKTIME_WORKING || NEED_MKTIME_INTERNAL */
519
520 #if defined _LIBC || NEED_MKTIME_WORKING || NEED_MKTIME_WINDOWS
521
522 /* Convert *TP to a __time64_t value.  */
523 __time64_t
524 __mktime64 (struct tm *tp)
525 {
526   /* POSIX.1 8.1.1 requires that whenever mktime() is called, the
527      time zone names contained in the external variable 'tzname' shall
528      be set as if the tzset() function had been called.  */
529   __tzset ();
530
531 # if defined _LIBC || NEED_MKTIME_WORKING
532   static mktime_offset_t localtime_offset;
533   return __mktime_internal (tp, __localtime64_r, &localtime_offset);
534 # else
535 #  undef mktime
536   return mktime (tp);
537 # endif
538 }
539 #endif /* _LIBC || NEED_MKTIME_WORKING || NEED_MKTIME_WINDOWS */
540
541 #if defined _LIBC && __TIMESIZE != 64
542
543 libc_hidden_def (__mktime64)
544
545 time_t
546 mktime (struct tm *tp)
547 {
548   struct tm tm = *tp;
549   __time64_t t = __mktime64 (&tm);
550   if (in_time_t_range (t))
551     {
552       *tp = tm;
553       return t;
554     }
555   else
556     {
557       __set_errno (EOVERFLOW);
558       return -1;
559     }
560 }
561
562 #endif
563
564 weak_alias (mktime, timelocal)
565 libc_hidden_def (mktime)
566 libc_hidden_weak (timelocal)