arm: juno: Enable PCI
[platform/kernel/u-boot.git] / lib / md5.c
1 /*
2  * This file was transplanted with slight modifications from Linux sources
3  * (fs/cifs/md5.c) into U-Boot by Bartlomiej Sieka <tur@semihalf.com>.
4  */
5
6 /*
7  * This code implements the MD5 message-digest algorithm.
8  * The algorithm is due to Ron Rivest.  This code was
9  * written by Colin Plumb in 1993, no copyright is claimed.
10  * This code is in the public domain; do with it what you wish.
11  *
12  * Equivalent code is available from RSA Data Security, Inc.
13  * This code has been tested against that, and is equivalent,
14  * except that you don't need to include two pages of legalese
15  * with every copy.
16  *
17  * To compute the message digest of a chunk of bytes, declare an
18  * MD5Context structure, pass it to MD5Init, call MD5Update as
19  * needed on buffers full of bytes, and then call MD5Final, which
20  * will fill a supplied 16-byte array with the digest.
21  */
22
23 /* This code slightly modified to fit into Samba by
24    abartlet@samba.org Jun 2001
25    and to fit the cifs vfs by
26    Steve French sfrench@us.ibm.com */
27
28 #include "compiler.h"
29
30 #ifndef USE_HOSTCC
31 #include <common.h>
32 #include <watchdog.h>
33 #endif /* USE_HOSTCC */
34 #include <u-boot/md5.h>
35
36 static void
37 MD5Transform(__u32 buf[4], __u32 const in[16]);
38
39 /*
40  * Note: this code is harmless on little-endian machines.
41  */
42 static void
43 byteReverse(unsigned char *buf, unsigned longs)
44 {
45         __u32 t;
46         do {
47                 t = (__u32) ((unsigned) buf[3] << 8 | buf[2]) << 16 |
48                     ((unsigned) buf[1] << 8 | buf[0]);
49                 *(__u32 *) buf = t;
50                 buf += 4;
51         } while (--longs);
52 }
53
54 /*
55  * Start MD5 accumulation.  Set bit count to 0 and buffer to mysterious
56  * initialization constants.
57  */
58 static void
59 MD5Init(struct MD5Context *ctx)
60 {
61         ctx->buf[0] = 0x67452301;
62         ctx->buf[1] = 0xefcdab89;
63         ctx->buf[2] = 0x98badcfe;
64         ctx->buf[3] = 0x10325476;
65
66         ctx->bits[0] = 0;
67         ctx->bits[1] = 0;
68 }
69
70 /*
71  * Update context to reflect the concatenation of another buffer full
72  * of bytes.
73  */
74 static void
75 MD5Update(struct MD5Context *ctx, unsigned char const *buf, unsigned len)
76 {
77         register __u32 t;
78
79         /* Update bitcount */
80
81         t = ctx->bits[0];
82         if ((ctx->bits[0] = t + ((__u32) len << 3)) < t)
83                 ctx->bits[1]++; /* Carry from low to high */
84         ctx->bits[1] += len >> 29;
85
86         t = (t >> 3) & 0x3f;    /* Bytes already in shsInfo->data */
87
88         /* Handle any leading odd-sized chunks */
89
90         if (t) {
91                 unsigned char *p = (unsigned char *) ctx->in + t;
92
93                 t = 64 - t;
94                 if (len < t) {
95                         memmove(p, buf, len);
96                         return;
97                 }
98                 memmove(p, buf, t);
99                 byteReverse(ctx->in, 16);
100                 MD5Transform(ctx->buf, (__u32 *) ctx->in);
101                 buf += t;
102                 len -= t;
103         }
104         /* Process data in 64-byte chunks */
105
106         while (len >= 64) {
107                 memmove(ctx->in, buf, 64);
108                 byteReverse(ctx->in, 16);
109                 MD5Transform(ctx->buf, (__u32 *) ctx->in);
110                 buf += 64;
111                 len -= 64;
112         }
113
114         /* Handle any remaining bytes of data. */
115
116         memmove(ctx->in, buf, len);
117 }
118
119 /*
120  * Final wrapup - pad to 64-byte boundary with the bit pattern
121  * 1 0* (64-bit count of bits processed, MSB-first)
122  */
123 static void
124 MD5Final(unsigned char digest[16], struct MD5Context *ctx)
125 {
126         unsigned int count;
127         unsigned char *p;
128
129         /* Compute number of bytes mod 64 */
130         count = (ctx->bits[0] >> 3) & 0x3F;
131
132         /* Set the first char of padding to 0x80.  This is safe since there is
133            always at least one byte free */
134         p = ctx->in + count;
135         *p++ = 0x80;
136
137         /* Bytes of padding needed to make 64 bytes */
138         count = 64 - 1 - count;
139
140         /* Pad out to 56 mod 64 */
141         if (count < 8) {
142                 /* Two lots of padding:  Pad the first block to 64 bytes */
143                 memset(p, 0, count);
144                 byteReverse(ctx->in, 16);
145                 MD5Transform(ctx->buf, (__u32 *) ctx->in);
146
147                 /* Now fill the next block with 56 bytes */
148                 memset(ctx->in, 0, 56);
149         } else {
150                 /* Pad block to 56 bytes */
151                 memset(p, 0, count - 8);
152         }
153         byteReverse(ctx->in, 14);
154
155         /* Append length in bits and transform */
156         ctx->in32[14] = ctx->bits[0];
157         ctx->in32[15] = ctx->bits[1];
158
159         MD5Transform(ctx->buf, (__u32 *) ctx->in);
160         byteReverse((unsigned char *) ctx->buf, 4);
161         memmove(digest, ctx->buf, 16);
162         memset(ctx, 0, sizeof(*ctx));   /* In case it's sensitive */
163 }
164
165 /* The four core functions - F1 is optimized somewhat */
166
167 /* #define F1(x, y, z) (x & y | ~x & z) */
168 #define F1(x, y, z) (z ^ (x & (y ^ z)))
169 #define F2(x, y, z) F1(z, x, y)
170 #define F3(x, y, z) (x ^ y ^ z)
171 #define F4(x, y, z) (y ^ (x | ~z))
172
173 /* This is the central step in the MD5 algorithm. */
174 #define MD5STEP(f, w, x, y, z, data, s) \
175         ( w += f(x, y, z) + data,  w = w<<s | w>>(32-s),  w += x )
176
177 /*
178  * The core of the MD5 algorithm, this alters an existing MD5 hash to
179  * reflect the addition of 16 longwords of new data.  MD5Update blocks
180  * the data and converts bytes into longwords for this routine.
181  */
182 static void
183 MD5Transform(__u32 buf[4], __u32 const in[16])
184 {
185         register __u32 a, b, c, d;
186
187         a = buf[0];
188         b = buf[1];
189         c = buf[2];
190         d = buf[3];
191
192         MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478, 7);
193         MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756, 12);
194         MD5STEP(F1, c, d, a, b, in[2] + 0x242070db, 17);
195         MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceee, 22);
196         MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0faf, 7);
197         MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62a, 12);
198         MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613, 17);
199         MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501, 22);
200         MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8, 7);
201         MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7af, 12);
202         MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17);
203         MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22);
204         MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7);
205         MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12);
206         MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17);
207         MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22);
208
209         MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562, 5);
210         MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340, 9);
211         MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14);
212         MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20);
213         MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105d, 5);
214         MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9);
215         MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14);
216         MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20);
217         MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6, 5);
218         MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9);
219         MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87, 14);
220         MD5STEP(F2, b, c, d, a, in[8] + 0x455a14ed, 20);
221         MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5);
222         MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8, 9);
223         MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9, 14);
224         MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20);
225
226         MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942, 4);
227         MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681, 11);
228         MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16);
229         MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23);
230         MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44, 4);
231         MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9, 11);
232         MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60, 16);
233         MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23);
234         MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4);
235         MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127fa, 11);
236         MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085, 16);
237         MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05, 23);
238         MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039, 4);
239         MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11);
240         MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16);
241         MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665, 23);
242
243         MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244, 6);
244         MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97, 10);
245         MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15);
246         MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039, 21);
247         MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6);
248         MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92, 10);
249         MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15);
250         MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1, 21);
251         MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4f, 6);
252         MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10);
253         MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314, 15);
254         MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21);
255         MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82, 6);
256         MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10);
257         MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15);
258         MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391, 21);
259
260         buf[0] += a;
261         buf[1] += b;
262         buf[2] += c;
263         buf[3] += d;
264 }
265
266 /*
267  * Calculate and store in 'output' the MD5 digest of 'len' bytes at
268  * 'input'. 'output' must have enough space to hold 16 bytes.
269  */
270 void
271 md5 (unsigned char *input, int len, unsigned char output[16])
272 {
273         struct MD5Context context;
274
275         MD5Init(&context);
276         MD5Update(&context, input, len);
277         MD5Final(output, &context);
278 }
279
280
281 /*
282  * Calculate and store in 'output' the MD5 digest of 'len' bytes at 'input'.
283  * 'output' must have enough space to hold 16 bytes. If 'chunk' Trigger the
284  * watchdog every 'chunk_sz' bytes of input processed.
285  */
286 void
287 md5_wd (unsigned char *input, int len, unsigned char output[16],
288         unsigned int chunk_sz)
289 {
290         struct MD5Context context;
291 #if defined(CONFIG_HW_WATCHDOG) || defined(CONFIG_WATCHDOG)
292         unsigned char *end, *curr;
293         int chunk;
294 #endif
295
296         MD5Init(&context);
297
298 #if defined(CONFIG_HW_WATCHDOG) || defined(CONFIG_WATCHDOG)
299         curr = input;
300         end = input + len;
301         while (curr < end) {
302                 chunk = end - curr;
303                 if (chunk > chunk_sz)
304                         chunk = chunk_sz;
305                 MD5Update(&context, curr, chunk);
306                 curr += chunk;
307                 WATCHDOG_RESET ();
308         }
309 #else
310         MD5Update(&context, input, len);
311 #endif
312
313         MD5Final(output, &context);
314 }