1 // SPDX-License-Identifier: GPL-2.0-only
2 #define pr_fmt(fmt) "prime numbers: " fmt
4 #include <linux/module.h>
5 #include <linux/mutex.h>
6 #include <linux/prime_numbers.h>
7 #include <linux/slab.h>
9 #define bitmap_size(nbits) (BITS_TO_LONGS(nbits) * sizeof(unsigned long))
13 unsigned long last, sz;
14 unsigned long primes[];
17 #if BITS_PER_LONG == 64
18 static const struct primes small_primes = {
42 #elif BITS_PER_LONG == 32
43 static const struct primes small_primes = {
61 #error "unhandled BITS_PER_LONG"
64 static DEFINE_MUTEX(lock);
65 static const struct primes __rcu *primes = RCU_INITIALIZER(&small_primes);
67 static unsigned long selftest_max;
69 static bool slow_is_prime_number(unsigned long x)
71 unsigned long y = int_sqrt(x);
82 static unsigned long slow_next_prime_number(unsigned long x)
84 while (x < ULONG_MAX && !slow_is_prime_number(++x))
90 static unsigned long clear_multiples(unsigned long x,
99 m = roundup(start, x);
109 static bool expand_to_next_prime(unsigned long x)
111 const struct primes *p;
115 /* Betrand's Postulate (or Chebyshev's theorem) states that if n > 3,
116 * there is always at least one prime p between n and 2n - 2.
117 * Equivalently, if n > 1, then there is always at least one prime p
118 * such that n < p < 2n.
120 * http://mathworld.wolfram.com/BertrandsPostulate.html
121 * https://en.wikipedia.org/wiki/Bertrand's_postulate
127 sz = round_up(sz, BITS_PER_LONG);
128 new = kmalloc(sizeof(*new) + bitmap_size(sz),
129 GFP_KERNEL | __GFP_NOWARN);
134 p = rcu_dereference_protected(primes, lockdep_is_held(&lock));
140 /* Where memory permits, track the primes using the
141 * Sieve of Eratosthenes. The sieve is to remove all multiples of known
142 * primes from the set, what remains in the set is therefore prime.
144 bitmap_fill(new->primes, sz);
145 bitmap_copy(new->primes, p->primes, p->sz);
146 for (y = 2UL; y < sz; y = find_next_bit(new->primes, sz, y + 1))
147 new->last = clear_multiples(y, new->primes, p->sz, sz);
150 BUG_ON(new->last <= x);
152 rcu_assign_pointer(primes, new);
153 if (p != &small_primes)
154 kfree_rcu((struct primes *)p, rcu);
161 static void free_primes(void)
163 const struct primes *p;
166 p = rcu_dereference_protected(primes, lockdep_is_held(&lock));
167 if (p != &small_primes) {
168 rcu_assign_pointer(primes, &small_primes);
169 kfree_rcu((struct primes *)p, rcu);
175 * next_prime_number - return the next prime number
176 * @x: the starting point for searching to test
178 * A prime number is an integer greater than 1 that is only divisible by
179 * itself and 1. The set of prime numbers is computed using the Sieve of
180 * Eratoshenes (on finding a prime, all multiples of that prime are removed
181 * from the set) enabling a fast lookup of the next prime number larger than
182 * @x. If the sieve fails (memory limitation), the search falls back to using
183 * slow trial-divison, up to the value of ULONG_MAX (which is reported as the
184 * final prime as a sentinel).
186 * Returns: the next prime number larger than @x
188 unsigned long next_prime_number(unsigned long x)
190 const struct primes *p;
193 p = rcu_dereference(primes);
194 while (x >= p->last) {
197 if (!expand_to_next_prime(x))
198 return slow_next_prime_number(x);
201 p = rcu_dereference(primes);
203 x = find_next_bit(p->primes, p->last, x + 1);
208 EXPORT_SYMBOL(next_prime_number);
211 * is_prime_number - test whether the given number is prime
212 * @x: the number to test
214 * A prime number is an integer greater than 1 that is only divisible by
215 * itself and 1. Internally a cache of prime numbers is kept (to speed up
216 * searching for sequential primes, see next_prime_number()), but if the number
217 * falls outside of that cache, its primality is tested using trial-divison.
219 * Returns: true if @x is prime, false for composite numbers.
221 bool is_prime_number(unsigned long x)
223 const struct primes *p;
227 p = rcu_dereference(primes);
231 if (!expand_to_next_prime(x))
232 return slow_is_prime_number(x);
235 p = rcu_dereference(primes);
237 result = test_bit(x, p->primes);
242 EXPORT_SYMBOL(is_prime_number);
244 static void dump_primes(void)
246 const struct primes *p;
249 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
252 p = rcu_dereference(primes);
255 bitmap_print_to_pagebuf(true, buf, p->primes, p->sz);
256 pr_info("primes.{last=%lu, .sz=%lu, .primes[]=...x%lx} = %s\n",
257 p->last, p->sz, p->primes[BITS_TO_LONGS(p->sz) - 1], buf);
264 static int selftest(unsigned long max)
266 unsigned long x, last;
271 for (last = 0, x = 2; x < max; x++) {
272 bool slow = slow_is_prime_number(x);
273 bool fast = is_prime_number(x);
276 pr_err("inconsistent result for is-prime(%lu): slow=%s, fast=%s!\n",
277 x, slow ? "yes" : "no", fast ? "yes" : "no");
284 if (next_prime_number(last) != x) {
285 pr_err("incorrect result for next-prime(%lu): expected %lu, got %lu\n",
286 last, x, next_prime_number(last));
292 pr_info("%s(%lu) passed, last prime was %lu\n", __func__, x, last);
300 static int __init primes_init(void)
302 return selftest(selftest_max);
305 static void __exit primes_exit(void)
310 module_init(primes_init);
311 module_exit(primes_exit);
313 module_param_named(selftest, selftest_max, ulong, 0400);
315 MODULE_AUTHOR("Intel Corporation");
316 MODULE_LICENSE("GPL");