1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2003 Bernardo Innocenti <bernie@develer.com>
5 * Based on former do_div() implementation from asm-parisc/div64.h:
6 * Copyright (C) 1999 Hewlett-Packard Co
7 * Copyright (C) 1999 David Mosberger-Tang <davidm@hpl.hp.com>
10 * Generic C version of 64bit/32bit division and modulo, with
11 * 64bit result and 32bit remainder.
13 * The fast case for (n>>32 == 0) is handled inline by do_div().
15 * Code generated for this function might be very inefficient
16 * for some CPUs. __div64_32() can be overridden by linking arch-specific
17 * assembly versions such as arch/ppc/lib/div64.S and arch/sh/lib/div64.S
18 * or by defining a preprocessor macro in arch/include/asm/div64.h.
21 #include <linux/bitops.h>
22 #include <linux/export.h>
23 #include <linux/math.h>
24 #include <linux/math64.h>
25 #include <linux/log2.h>
27 /* Not needed on 64bit architectures */
28 #if BITS_PER_LONG == 32
31 uint32_t __attribute__((weak)) __div64_32(uint64_t *n, uint32_t base)
36 uint32_t high = rem >> 32;
38 /* Reduce the thing a bit first */
42 res = (uint64_t) high << 32;
43 rem -= (uint64_t) (high*base) << 32;
46 while ((int64_t)b > 0 && b < rem) {
63 EXPORT_SYMBOL(__div64_32);
67 s64 div_s64_rem(s64 dividend, s32 divisor, s32 *remainder)
72 quotient = div_u64_rem(-dividend, abs(divisor), (u32 *)remainder);
73 *remainder = -*remainder;
77 quotient = div_u64_rem(dividend, abs(divisor), (u32 *)remainder);
83 EXPORT_SYMBOL(div_s64_rem);
87 * div64_u64_rem - unsigned 64bit divide with 64bit divisor and remainder
88 * @dividend: 64bit dividend
89 * @divisor: 64bit divisor
90 * @remainder: 64bit remainder
92 * This implementation is a comparable to algorithm used by div64_u64.
93 * But this operation, which includes math for calculating the remainder,
94 * is kept distinct to avoid slowing down the div64_u64 operation on 32bit
98 u64 div64_u64_rem(u64 dividend, u64 divisor, u64 *remainder)
100 u32 high = divisor >> 32;
105 quot = div_u64_rem(dividend, divisor, &rem32);
109 quot = div_u64(dividend >> n, divisor >> n);
114 *remainder = dividend - quot * divisor;
115 if (*remainder >= divisor) {
117 *remainder -= divisor;
123 EXPORT_SYMBOL(div64_u64_rem);
127 * div64_u64 - unsigned 64bit divide with 64bit divisor
128 * @dividend: 64bit dividend
129 * @divisor: 64bit divisor
131 * This implementation is a modified version of the algorithm proposed
132 * by the book 'Hacker's Delight'. The original source and full proof
133 * can be found here and is available for use without restriction.
135 * 'http://www.hackersdelight.org/hdcodetxt/divDouble.c.txt'
138 u64 div64_u64(u64 dividend, u64 divisor)
140 u32 high = divisor >> 32;
144 quot = div_u64(dividend, divisor);
147 quot = div_u64(dividend >> n, divisor >> n);
151 if ((dividend - quot * divisor) >= divisor)
157 EXPORT_SYMBOL(div64_u64);
161 s64 div64_s64(s64 dividend, s64 divisor)
165 quot = div64_u64(abs(dividend), abs(divisor));
166 t = (dividend ^ divisor) >> 63;
168 return (quot ^ t) - t;
170 EXPORT_SYMBOL(div64_s64);
173 #endif /* BITS_PER_LONG == 32 */
176 * Iterative div/mod for use when dividend is not expected to be much
177 * bigger than divisor.
179 u32 iter_div_u64_rem(u64 dividend, u32 divisor, u64 *remainder)
181 return __iter_div_u64_rem(dividend, divisor, remainder);
183 EXPORT_SYMBOL(iter_div_u64_rem);
185 #ifndef mul_u64_u64_div_u64
186 u64 mul_u64_u64_div_u64(u64 a, u64 b, u64 c)
188 u64 res = 0, div, rem;
191 /* can a * b overflow ? */
192 if (ilog2(a) + ilog2(b) > 62) {
194 * (b * a) / c is equal to
199 * if nothing overflows. Can the 1st multiplication
200 * overflow? Yes, but we do not care: this can only
201 * happen if the end result can't fit in u64 anyway.
203 * So the code below does
208 div = div64_u64_rem(b, c, &rem);
212 shift = ilog2(a) + ilog2(b) - 62;
222 return res + div64_u64(a * b, c);
224 EXPORT_SYMBOL(mul_u64_u64_div_u64);