1 // SPDX-License-Identifier: GPL-2.0+
3 * Maple Tree implementation
4 * Copyright (c) 2018-2022 Oracle Corporation
5 * Authors: Liam R. Howlett <Liam.Howlett@oracle.com>
6 * Matthew Wilcox <willy@infradead.org>
10 * DOC: Interesting implementation details of the Maple Tree
12 * Each node type has a number of slots for entries and a number of slots for
13 * pivots. In the case of dense nodes, the pivots are implied by the position
14 * and are simply the slot index + the minimum of the node.
16 * In regular B-Tree terms, pivots are called keys. The term pivot is used to
17 * indicate that the tree is specifying ranges, Pivots may appear in the
18 * subtree with an entry attached to the value where as keys are unique to a
19 * specific position of a B-tree. Pivot values are inclusive of the slot with
23 * The following illustrates the layout of a range64 nodes slots and pivots.
26 * Slots -> | 0 | 1 | 2 | ... | 12 | 13 | 14 | 15 |
28 * │ │ │ │ │ │ │ │ └─ Implied maximum
29 * │ │ │ │ │ │ │ └─ Pivot 14
30 * │ │ │ │ │ │ └─ Pivot 13
31 * │ │ │ │ │ └─ Pivot 12
39 * Internal (non-leaf) nodes contain pointers to other nodes.
40 * Leaf nodes contain entries.
42 * The location of interest is often referred to as an offset. All offsets have
43 * a slot, but the last offset has an implied pivot from the node above (or
44 * UINT_MAX for the root node.
46 * Ranges complicate certain write activities. When modifying any of
47 * the B-tree variants, it is known that one entry will either be added or
48 * deleted. When modifying the Maple Tree, one store operation may overwrite
49 * the entire data set, or one half of the tree, or the middle half of the tree.
54 #include <linux/maple_tree.h>
55 #include <linux/xarray.h>
56 #include <linux/types.h>
57 #include <linux/export.h>
58 #include <linux/slab.h>
59 #include <linux/limits.h>
60 #include <asm/barrier.h>
62 #define CREATE_TRACE_POINTS
63 #include <trace/events/maple_tree.h>
65 #define MA_ROOT_PARENT 1
69 * * MA_STATE_BULK - Bulk insert mode
70 * * MA_STATE_REBALANCE - Indicate a rebalance during bulk insert
71 * * MA_STATE_PREALLOC - Preallocated nodes, WARN_ON allocation
73 #define MA_STATE_BULK 1
74 #define MA_STATE_REBALANCE 2
75 #define MA_STATE_PREALLOC 4
77 #define ma_parent_ptr(x) ((struct maple_pnode *)(x))
78 #define ma_mnode_ptr(x) ((struct maple_node *)(x))
79 #define ma_enode_ptr(x) ((struct maple_enode *)(x))
80 static struct kmem_cache *maple_node_cache;
82 #ifdef CONFIG_DEBUG_MAPLE_TREE
83 static const unsigned long mt_max[] = {
84 [maple_dense] = MAPLE_NODE_SLOTS,
85 [maple_leaf_64] = ULONG_MAX,
86 [maple_range_64] = ULONG_MAX,
87 [maple_arange_64] = ULONG_MAX,
89 #define mt_node_max(x) mt_max[mte_node_type(x)]
92 static const unsigned char mt_slots[] = {
93 [maple_dense] = MAPLE_NODE_SLOTS,
94 [maple_leaf_64] = MAPLE_RANGE64_SLOTS,
95 [maple_range_64] = MAPLE_RANGE64_SLOTS,
96 [maple_arange_64] = MAPLE_ARANGE64_SLOTS,
98 #define mt_slot_count(x) mt_slots[mte_node_type(x)]
100 static const unsigned char mt_pivots[] = {
102 [maple_leaf_64] = MAPLE_RANGE64_SLOTS - 1,
103 [maple_range_64] = MAPLE_RANGE64_SLOTS - 1,
104 [maple_arange_64] = MAPLE_ARANGE64_SLOTS - 1,
106 #define mt_pivot_count(x) mt_pivots[mte_node_type(x)]
108 static const unsigned char mt_min_slots[] = {
109 [maple_dense] = MAPLE_NODE_SLOTS / 2,
110 [maple_leaf_64] = (MAPLE_RANGE64_SLOTS / 2) - 2,
111 [maple_range_64] = (MAPLE_RANGE64_SLOTS / 2) - 2,
112 [maple_arange_64] = (MAPLE_ARANGE64_SLOTS / 2) - 1,
114 #define mt_min_slot_count(x) mt_min_slots[mte_node_type(x)]
116 #define MAPLE_BIG_NODE_SLOTS (MAPLE_RANGE64_SLOTS * 2 + 2)
117 #define MAPLE_BIG_NODE_GAPS (MAPLE_ARANGE64_SLOTS * 2 + 1)
119 struct maple_big_node {
120 struct maple_pnode *parent;
121 unsigned long pivot[MAPLE_BIG_NODE_SLOTS - 1];
123 struct maple_enode *slot[MAPLE_BIG_NODE_SLOTS];
125 unsigned long padding[MAPLE_BIG_NODE_GAPS];
126 unsigned long gap[MAPLE_BIG_NODE_GAPS];
130 enum maple_type type;
134 * The maple_subtree_state is used to build a tree to replace a segment of an
135 * existing tree in a more atomic way. Any walkers of the older tree will hit a
136 * dead node and restart on updates.
138 struct maple_subtree_state {
139 struct ma_state *orig_l; /* Original left side of subtree */
140 struct ma_state *orig_r; /* Original right side of subtree */
141 struct ma_state *l; /* New left side of subtree */
142 struct ma_state *m; /* New middle of subtree (rare) */
143 struct ma_state *r; /* New right side of subtree */
144 struct ma_topiary *free; /* nodes to be freed */
145 struct ma_topiary *destroy; /* Nodes to be destroyed (walked and freed) */
146 struct maple_big_node *bn;
150 static inline struct maple_node *mt_alloc_one(gfp_t gfp)
152 return kmem_cache_alloc(maple_node_cache, gfp | __GFP_ZERO);
155 static inline int mt_alloc_bulk(gfp_t gfp, size_t size, void **nodes)
157 return kmem_cache_alloc_bulk(maple_node_cache, gfp | __GFP_ZERO, size,
161 static inline void mt_free_bulk(size_t size, void __rcu **nodes)
163 kmem_cache_free_bulk(maple_node_cache, size, (void **)nodes);
166 static void mt_free_rcu(struct rcu_head *head)
168 struct maple_node *node = container_of(head, struct maple_node, rcu);
170 kmem_cache_free(maple_node_cache, node);
174 * ma_free_rcu() - Use rcu callback to free a maple node
175 * @node: The node to free
177 * The maple tree uses the parent pointer to indicate this node is no longer in
178 * use and will be freed.
180 static void ma_free_rcu(struct maple_node *node)
182 node->parent = ma_parent_ptr(node);
183 call_rcu(&node->rcu, mt_free_rcu);
187 static void mas_set_height(struct ma_state *mas)
189 unsigned int new_flags = mas->tree->ma_flags;
191 new_flags &= ~MT_FLAGS_HEIGHT_MASK;
192 BUG_ON(mas->depth > MAPLE_HEIGHT_MAX);
193 new_flags |= mas->depth << MT_FLAGS_HEIGHT_OFFSET;
194 mas->tree->ma_flags = new_flags;
197 static unsigned int mas_mt_height(struct ma_state *mas)
199 return mt_height(mas->tree);
202 static inline enum maple_type mte_node_type(const struct maple_enode *entry)
204 return ((unsigned long)entry >> MAPLE_NODE_TYPE_SHIFT) &
205 MAPLE_NODE_TYPE_MASK;
208 static inline bool ma_is_dense(const enum maple_type type)
210 return type < maple_leaf_64;
213 static inline bool ma_is_leaf(const enum maple_type type)
215 return type < maple_range_64;
218 static inline bool mte_is_leaf(const struct maple_enode *entry)
220 return ma_is_leaf(mte_node_type(entry));
224 * We also reserve values with the bottom two bits set to '10' which are
227 static inline bool mt_is_reserved(const void *entry)
229 return ((unsigned long)entry < MAPLE_RESERVED_RANGE) &&
230 xa_is_internal(entry);
233 static inline void mas_set_err(struct ma_state *mas, long err)
235 mas->node = MA_ERROR(err);
238 static inline bool mas_is_ptr(struct ma_state *mas)
240 return mas->node == MAS_ROOT;
243 static inline bool mas_is_start(struct ma_state *mas)
245 return mas->node == MAS_START;
248 bool mas_is_err(struct ma_state *mas)
250 return xa_is_err(mas->node);
253 static inline bool mas_searchable(struct ma_state *mas)
255 if (mas_is_none(mas))
264 static inline struct maple_node *mte_to_node(const struct maple_enode *entry)
266 return (struct maple_node *)((unsigned long)entry & ~MAPLE_NODE_MASK);
270 * mte_to_mat() - Convert a maple encoded node to a maple topiary node.
271 * @entry: The maple encoded node
273 * Return: a maple topiary pointer
275 static inline struct maple_topiary *mte_to_mat(const struct maple_enode *entry)
277 return (struct maple_topiary *)
278 ((unsigned long)entry & ~MAPLE_NODE_MASK);
282 * mas_mn() - Get the maple state node.
283 * @mas: The maple state
285 * Return: the maple node (not encoded - bare pointer).
287 static inline struct maple_node *mas_mn(const struct ma_state *mas)
289 return mte_to_node(mas->node);
293 * mte_set_node_dead() - Set a maple encoded node as dead.
294 * @mn: The maple encoded node.
296 static inline void mte_set_node_dead(struct maple_enode *mn)
298 mte_to_node(mn)->parent = ma_parent_ptr(mte_to_node(mn));
299 smp_wmb(); /* Needed for RCU */
302 /* Bit 1 indicates the root is a node */
303 #define MAPLE_ROOT_NODE 0x02
304 /* maple_type stored bit 3-6 */
305 #define MAPLE_ENODE_TYPE_SHIFT 0x03
306 /* Bit 2 means a NULL somewhere below */
307 #define MAPLE_ENODE_NULL 0x04
309 static inline struct maple_enode *mt_mk_node(const struct maple_node *node,
310 enum maple_type type)
312 return (void *)((unsigned long)node |
313 (type << MAPLE_ENODE_TYPE_SHIFT) | MAPLE_ENODE_NULL);
316 static inline void *mte_mk_root(const struct maple_enode *node)
318 return (void *)((unsigned long)node | MAPLE_ROOT_NODE);
321 static inline void *mte_safe_root(const struct maple_enode *node)
323 return (void *)((unsigned long)node & ~MAPLE_ROOT_NODE);
326 static inline void mte_set_full(const struct maple_enode *node)
328 node = (void *)((unsigned long)node & ~MAPLE_ENODE_NULL);
331 static inline void mte_clear_full(const struct maple_enode *node)
333 node = (void *)((unsigned long)node | MAPLE_ENODE_NULL);
336 static inline bool ma_is_root(struct maple_node *node)
338 return ((unsigned long)node->parent & MA_ROOT_PARENT);
341 static inline bool mte_is_root(const struct maple_enode *node)
343 return ma_is_root(mte_to_node(node));
346 static inline bool mas_is_root_limits(const struct ma_state *mas)
348 return !mas->min && mas->max == ULONG_MAX;
351 static inline bool mt_is_alloc(struct maple_tree *mt)
353 return (mt->ma_flags & MT_FLAGS_ALLOC_RANGE);
358 * Excluding root, the parent pointer is 256B aligned like all other tree nodes.
359 * When storing a 32 or 64 bit values, the offset can fit into 5 bits. The 16
360 * bit values need an extra bit to store the offset. This extra bit comes from
361 * a reuse of the last bit in the node type. This is possible by using bit 1 to
362 * indicate if bit 2 is part of the type or the slot.
366 * 0x?00 = 16 bit nodes
367 * 0x010 = 32 bit nodes
368 * 0x110 = 64 bit nodes
370 * Slot size and alignment
372 * 0b?00 : 16 bit values, type in 0-1, slot in 2-7
373 * 0b010 : 32 bit values, type in 0-2, slot in 3-7
374 * 0b110 : 64 bit values, type in 0-2, slot in 3-7
377 #define MAPLE_PARENT_ROOT 0x01
379 #define MAPLE_PARENT_SLOT_SHIFT 0x03
380 #define MAPLE_PARENT_SLOT_MASK 0xF8
382 #define MAPLE_PARENT_16B_SLOT_SHIFT 0x02
383 #define MAPLE_PARENT_16B_SLOT_MASK 0xFC
385 #define MAPLE_PARENT_RANGE64 0x06
386 #define MAPLE_PARENT_RANGE32 0x04
387 #define MAPLE_PARENT_NOT_RANGE16 0x02
390 * mte_parent_shift() - Get the parent shift for the slot storage.
391 * @parent: The parent pointer cast as an unsigned long
392 * Return: The shift into that pointer to the star to of the slot
394 static inline unsigned long mte_parent_shift(unsigned long parent)
396 /* Note bit 1 == 0 means 16B */
397 if (likely(parent & MAPLE_PARENT_NOT_RANGE16))
398 return MAPLE_PARENT_SLOT_SHIFT;
400 return MAPLE_PARENT_16B_SLOT_SHIFT;
404 * mte_parent_slot_mask() - Get the slot mask for the parent.
405 * @parent: The parent pointer cast as an unsigned long.
406 * Return: The slot mask for that parent.
408 static inline unsigned long mte_parent_slot_mask(unsigned long parent)
410 /* Note bit 1 == 0 means 16B */
411 if (likely(parent & MAPLE_PARENT_NOT_RANGE16))
412 return MAPLE_PARENT_SLOT_MASK;
414 return MAPLE_PARENT_16B_SLOT_MASK;
418 * mas_parent_enum() - Return the maple_type of the parent from the stored
420 * @mas: The maple state
421 * @node: The maple_enode to extract the parent's enum
422 * Return: The node->parent maple_type
425 enum maple_type mte_parent_enum(struct maple_enode *p_enode,
426 struct maple_tree *mt)
428 unsigned long p_type;
430 p_type = (unsigned long)p_enode;
431 if (p_type & MAPLE_PARENT_ROOT)
432 return 0; /* Validated in the caller. */
434 p_type &= MAPLE_NODE_MASK;
435 p_type = p_type & ~(MAPLE_PARENT_ROOT | mte_parent_slot_mask(p_type));
438 case MAPLE_PARENT_RANGE64: /* or MAPLE_PARENT_ARANGE64 */
440 return maple_arange_64;
441 return maple_range_64;
448 enum maple_type mas_parent_enum(struct ma_state *mas, struct maple_enode *enode)
450 return mte_parent_enum(ma_enode_ptr(mte_to_node(enode)->parent), mas->tree);
454 * mte_set_parent() - Set the parent node and encode the slot
455 * @enode: The encoded maple node.
456 * @parent: The encoded maple node that is the parent of @enode.
457 * @slot: The slot that @enode resides in @parent.
459 * Slot number is encoded in the enode->parent bit 3-6 or 2-6, depending on the
463 void mte_set_parent(struct maple_enode *enode, const struct maple_enode *parent,
466 unsigned long val = (unsigned long) parent;
469 enum maple_type p_type = mte_node_type(parent);
471 BUG_ON(p_type == maple_dense);
472 BUG_ON(p_type == maple_leaf_64);
476 case maple_arange_64:
477 shift = MAPLE_PARENT_SLOT_SHIFT;
478 type = MAPLE_PARENT_RANGE64;
487 val &= ~MAPLE_NODE_MASK; /* Clear all node metadata in parent */
488 val |= (slot << shift) | type;
489 mte_to_node(enode)->parent = ma_parent_ptr(val);
493 * mte_parent_slot() - get the parent slot of @enode.
494 * @enode: The encoded maple node.
496 * Return: The slot in the parent node where @enode resides.
498 static inline unsigned int mte_parent_slot(const struct maple_enode *enode)
500 unsigned long val = (unsigned long) mte_to_node(enode)->parent;
507 * Okay to use MAPLE_PARENT_16B_SLOT_MASK as the last bit will be lost
508 * by shift if the parent shift is MAPLE_PARENT_SLOT_SHIFT
510 return (val & MAPLE_PARENT_16B_SLOT_MASK) >> mte_parent_shift(val);
514 * mte_parent() - Get the parent of @node.
515 * @node: The encoded maple node.
517 * Return: The parent maple node.
519 static inline struct maple_node *mte_parent(const struct maple_enode *enode)
521 return (void *)((unsigned long)
522 (mte_to_node(enode)->parent) & ~MAPLE_NODE_MASK);
526 * ma_dead_node() - check if the @enode is dead.
527 * @enode: The encoded maple node
529 * Return: true if dead, false otherwise.
531 static inline bool ma_dead_node(const struct maple_node *node)
533 struct maple_node *parent = (void *)((unsigned long)
534 node->parent & ~MAPLE_NODE_MASK);
536 return (parent == node);
539 * mte_dead_node() - check if the @enode is dead.
540 * @enode: The encoded maple node
542 * Return: true if dead, false otherwise.
544 static inline bool mte_dead_node(const struct maple_enode *enode)
546 struct maple_node *parent, *node;
548 node = mte_to_node(enode);
549 parent = mte_parent(enode);
550 return (parent == node);
554 * mas_allocated() - Get the number of nodes allocated in a maple state.
555 * @mas: The maple state
557 * The ma_state alloc member is overloaded to hold a pointer to the first
558 * allocated node or to the number of requested nodes to allocate. If bit 0 is
559 * set, then the alloc contains the number of requested nodes. If there is an
560 * allocated node, then the total allocated nodes is in that node.
562 * Return: The total number of nodes allocated
564 static inline unsigned long mas_allocated(const struct ma_state *mas)
566 if (!mas->alloc || ((unsigned long)mas->alloc & 0x1))
569 return mas->alloc->total;
573 * mas_set_alloc_req() - Set the requested number of allocations.
574 * @mas: the maple state
575 * @count: the number of allocations.
577 * The requested number of allocations is either in the first allocated node,
578 * located in @mas->alloc->request_count, or directly in @mas->alloc if there is
579 * no allocated node. Set the request either in the node or do the necessary
580 * encoding to store in @mas->alloc directly.
582 static inline void mas_set_alloc_req(struct ma_state *mas, unsigned long count)
584 if (!mas->alloc || ((unsigned long)mas->alloc & 0x1)) {
588 mas->alloc = (struct maple_alloc *)(((count) << 1U) | 1U);
592 mas->alloc->request_count = count;
596 * mas_alloc_req() - get the requested number of allocations.
597 * @mas: The maple state
599 * The alloc count is either stored directly in @mas, or in
600 * @mas->alloc->request_count if there is at least one node allocated. Decode
601 * the request count if it's stored directly in @mas->alloc.
603 * Return: The allocation request count.
605 static inline unsigned int mas_alloc_req(const struct ma_state *mas)
607 if ((unsigned long)mas->alloc & 0x1)
608 return (unsigned long)(mas->alloc) >> 1;
610 return mas->alloc->request_count;
615 * ma_pivots() - Get a pointer to the maple node pivots.
616 * @node - the maple node
617 * @type - the node type
619 * Return: A pointer to the maple node pivots
621 static inline unsigned long *ma_pivots(struct maple_node *node,
622 enum maple_type type)
625 case maple_arange_64:
626 return node->ma64.pivot;
629 return node->mr64.pivot;
637 * ma_gaps() - Get a pointer to the maple node gaps.
638 * @node - the maple node
639 * @type - the node type
641 * Return: A pointer to the maple node gaps
643 static inline unsigned long *ma_gaps(struct maple_node *node,
644 enum maple_type type)
647 case maple_arange_64:
648 return node->ma64.gap;
658 * mte_pivot() - Get the pivot at @piv of the maple encoded node.
659 * @mn: The maple encoded node.
662 * Return: the pivot at @piv of @mn.
664 static inline unsigned long mte_pivot(const struct maple_enode *mn,
667 struct maple_node *node = mte_to_node(mn);
669 if (piv >= mt_pivots[piv]) {
673 switch (mte_node_type(mn)) {
674 case maple_arange_64:
675 return node->ma64.pivot[piv];
678 return node->mr64.pivot[piv];
686 * mas_safe_pivot() - get the pivot at @piv or mas->max.
687 * @mas: The maple state
688 * @pivots: The pointer to the maple node pivots
689 * @piv: The pivot to fetch
690 * @type: The maple node type
692 * Return: The pivot at @piv within the limit of the @pivots array, @mas->max
695 static inline unsigned long
696 mas_safe_pivot(const struct ma_state *mas, unsigned long *pivots,
697 unsigned char piv, enum maple_type type)
699 if (piv >= mt_pivots[type])
706 * mas_safe_min() - Return the minimum for a given offset.
707 * @mas: The maple state
708 * @pivots: The pointer to the maple node pivots
709 * @offset: The offset into the pivot array
711 * Return: The minimum range value that is contained in @offset.
713 static inline unsigned long
714 mas_safe_min(struct ma_state *mas, unsigned long *pivots, unsigned char offset)
717 return pivots[offset - 1] + 1;
723 * mas_logical_pivot() - Get the logical pivot of a given offset.
724 * @mas: The maple state
725 * @pivots: The pointer to the maple node pivots
726 * @offset: The offset into the pivot array
727 * @type: The maple node type
729 * When there is no value at a pivot (beyond the end of the data), then the
730 * pivot is actually @mas->max.
732 * Return: the logical pivot of a given @offset.
734 static inline unsigned long
735 mas_logical_pivot(struct ma_state *mas, unsigned long *pivots,
736 unsigned char offset, enum maple_type type)
738 unsigned long lpiv = mas_safe_pivot(mas, pivots, offset, type);
750 * mte_set_pivot() - Set a pivot to a value in an encoded maple node.
751 * @mn: The encoded maple node
752 * @piv: The pivot offset
753 * @val: The value of the pivot
755 static inline void mte_set_pivot(struct maple_enode *mn, unsigned char piv,
758 struct maple_node *node = mte_to_node(mn);
759 enum maple_type type = mte_node_type(mn);
761 BUG_ON(piv >= mt_pivots[type]);
766 node->mr64.pivot[piv] = val;
768 case maple_arange_64:
769 node->ma64.pivot[piv] = val;
778 * ma_slots() - Get a pointer to the maple node slots.
779 * @mn: The maple node
780 * @mt: The maple node type
782 * Return: A pointer to the maple node slots
784 static inline void __rcu **ma_slots(struct maple_node *mn, enum maple_type mt)
788 case maple_arange_64:
789 return mn->ma64.slot;
792 return mn->mr64.slot;
798 static inline bool mt_locked(const struct maple_tree *mt)
800 return mt_external_lock(mt) ? mt_lock_is_held(mt) :
801 lockdep_is_held(&mt->ma_lock);
804 static inline void *mt_slot(const struct maple_tree *mt,
805 void __rcu **slots, unsigned char offset)
807 return rcu_dereference_check(slots[offset], mt_locked(mt));
811 * mas_slot_locked() - Get the slot value when holding the maple tree lock.
812 * @mas: The maple state
813 * @slots: The pointer to the slots
814 * @offset: The offset into the slots array to fetch
816 * Return: The entry stored in @slots at the @offset.
818 static inline void *mas_slot_locked(struct ma_state *mas, void __rcu **slots,
819 unsigned char offset)
821 return rcu_dereference_protected(slots[offset], mt_locked(mas->tree));
825 * mas_slot() - Get the slot value when not holding the maple tree lock.
826 * @mas: The maple state
827 * @slots: The pointer to the slots
828 * @offset: The offset into the slots array to fetch
830 * Return: The entry stored in @slots at the @offset
832 static inline void *mas_slot(struct ma_state *mas, void __rcu **slots,
833 unsigned char offset)
835 return mt_slot(mas->tree, slots, offset);
839 * mas_root() - Get the maple tree root.
840 * @mas: The maple state.
842 * Return: The pointer to the root of the tree
844 static inline void *mas_root(struct ma_state *mas)
846 return rcu_dereference_check(mas->tree->ma_root, mt_locked(mas->tree));
849 static inline void *mt_root_locked(struct maple_tree *mt)
851 return rcu_dereference_protected(mt->ma_root, mt_locked(mt));
855 * mas_root_locked() - Get the maple tree root when holding the maple tree lock.
856 * @mas: The maple state.
858 * Return: The pointer to the root of the tree
860 static inline void *mas_root_locked(struct ma_state *mas)
862 return mt_root_locked(mas->tree);
865 static inline struct maple_metadata *ma_meta(struct maple_node *mn,
869 case maple_arange_64:
870 return &mn->ma64.meta;
872 return &mn->mr64.meta;
877 * ma_set_meta() - Set the metadata information of a node.
878 * @mn: The maple node
879 * @mt: The maple node type
880 * @offset: The offset of the highest sub-gap in this node.
881 * @end: The end of the data in this node.
883 static inline void ma_set_meta(struct maple_node *mn, enum maple_type mt,
884 unsigned char offset, unsigned char end)
886 struct maple_metadata *meta = ma_meta(mn, mt);
893 * ma_meta_end() - Get the data end of a node from the metadata
894 * @mn: The maple node
895 * @mt: The maple node type
897 static inline unsigned char ma_meta_end(struct maple_node *mn,
900 struct maple_metadata *meta = ma_meta(mn, mt);
906 * ma_meta_gap() - Get the largest gap location of a node from the metadata
907 * @mn: The maple node
908 * @mt: The maple node type
910 static inline unsigned char ma_meta_gap(struct maple_node *mn,
913 BUG_ON(mt != maple_arange_64);
915 return mn->ma64.meta.gap;
919 * ma_set_meta_gap() - Set the largest gap location in a nodes metadata
920 * @mn: The maple node
921 * @mn: The maple node type
922 * @offset: The location of the largest gap.
924 static inline void ma_set_meta_gap(struct maple_node *mn, enum maple_type mt,
925 unsigned char offset)
928 struct maple_metadata *meta = ma_meta(mn, mt);
934 * mat_add() - Add a @dead_enode to the ma_topiary of a list of dead nodes.
935 * @mat - the ma_topiary, a linked list of dead nodes.
936 * @dead_enode - the node to be marked as dead and added to the tail of the list
938 * Add the @dead_enode to the linked list in @mat.
940 static inline void mat_add(struct ma_topiary *mat,
941 struct maple_enode *dead_enode)
943 mte_set_node_dead(dead_enode);
944 mte_to_mat(dead_enode)->next = NULL;
946 mat->tail = mat->head = dead_enode;
950 mte_to_mat(mat->tail)->next = dead_enode;
951 mat->tail = dead_enode;
954 static void mte_destroy_walk(struct maple_enode *, struct maple_tree *);
955 static inline void mas_free(struct ma_state *mas, struct maple_enode *used);
958 * mas_mat_free() - Free all nodes in a dead list.
959 * @mas - the maple state
960 * @mat - the ma_topiary linked list of dead nodes to free.
962 * Free walk a dead list.
964 static void mas_mat_free(struct ma_state *mas, struct ma_topiary *mat)
966 struct maple_enode *next;
969 next = mte_to_mat(mat->head)->next;
970 mas_free(mas, mat->head);
976 * mas_mat_destroy() - Free all nodes and subtrees in a dead list.
977 * @mas - the maple state
978 * @mat - the ma_topiary linked list of dead nodes to free.
980 * Destroy walk a dead list.
982 static void mas_mat_destroy(struct ma_state *mas, struct ma_topiary *mat)
984 struct maple_enode *next;
987 next = mte_to_mat(mat->head)->next;
988 mte_destroy_walk(mat->head, mat->mtree);
993 * mas_descend() - Descend into the slot stored in the ma_state.
994 * @mas - the maple state.
996 * Note: Not RCU safe, only use in write side or debug code.
998 static inline void mas_descend(struct ma_state *mas)
1000 enum maple_type type;
1001 unsigned long *pivots;
1002 struct maple_node *node;
1006 type = mte_node_type(mas->node);
1007 pivots = ma_pivots(node, type);
1008 slots = ma_slots(node, type);
1011 mas->min = pivots[mas->offset - 1] + 1;
1012 mas->max = mas_safe_pivot(mas, pivots, mas->offset, type);
1013 mas->node = mas_slot(mas, slots, mas->offset);
1017 * mte_set_gap() - Set a maple node gap.
1018 * @mn: The encoded maple node
1019 * @gap: The offset of the gap to set
1020 * @val: The gap value
1022 static inline void mte_set_gap(const struct maple_enode *mn,
1023 unsigned char gap, unsigned long val)
1025 switch (mte_node_type(mn)) {
1028 case maple_arange_64:
1029 mte_to_node(mn)->ma64.gap[gap] = val;
1035 * mas_ascend() - Walk up a level of the tree.
1036 * @mas: The maple state
1038 * Sets the @mas->max and @mas->min to the correct values when walking up. This
1039 * may cause several levels of walking up to find the correct min and max.
1040 * May find a dead node which will cause a premature return.
1041 * Return: 1 on dead node, 0 otherwise
1043 static int mas_ascend(struct ma_state *mas)
1045 struct maple_enode *p_enode; /* parent enode. */
1046 struct maple_enode *a_enode; /* ancestor enode. */
1047 struct maple_node *a_node; /* ancestor node. */
1048 struct maple_node *p_node; /* parent node. */
1049 unsigned char a_slot;
1050 enum maple_type a_type;
1051 unsigned long min, max;
1052 unsigned long *pivots;
1053 unsigned char offset;
1054 bool set_max = false, set_min = false;
1056 a_node = mas_mn(mas);
1057 if (ma_is_root(a_node)) {
1062 p_node = mte_parent(mas->node);
1063 if (unlikely(a_node == p_node))
1065 a_type = mas_parent_enum(mas, mas->node);
1066 offset = mte_parent_slot(mas->node);
1067 a_enode = mt_mk_node(p_node, a_type);
1069 /* Check to make sure all parent information is still accurate */
1070 if (p_node != mte_parent(mas->node))
1073 mas->node = a_enode;
1074 mas->offset = offset;
1076 if (mte_is_root(a_enode)) {
1077 mas->max = ULONG_MAX;
1086 a_type = mas_parent_enum(mas, p_enode);
1087 a_node = mte_parent(p_enode);
1088 a_slot = mte_parent_slot(p_enode);
1089 pivots = ma_pivots(a_node, a_type);
1090 a_enode = mt_mk_node(a_node, a_type);
1092 if (!set_min && a_slot) {
1094 min = pivots[a_slot - 1] + 1;
1097 if (!set_max && a_slot < mt_pivots[a_type]) {
1099 max = pivots[a_slot];
1102 if (unlikely(ma_dead_node(a_node)))
1105 if (unlikely(ma_is_root(a_node)))
1108 } while (!set_min || !set_max);
1116 * mas_pop_node() - Get a previously allocated maple node from the maple state.
1117 * @mas: The maple state
1119 * Return: A pointer to a maple node.
1121 static inline struct maple_node *mas_pop_node(struct ma_state *mas)
1123 struct maple_alloc *ret, *node = mas->alloc;
1124 unsigned long total = mas_allocated(mas);
1126 /* nothing or a request pending. */
1127 if (unlikely(!total))
1131 /* single allocation in this ma_state */
1137 if (!node->node_count) {
1138 /* Single allocation in this node. */
1139 mas->alloc = node->slot[0];
1140 node->slot[0] = NULL;
1141 mas->alloc->total = node->total - 1;
1147 ret = node->slot[node->node_count];
1148 node->slot[node->node_count--] = NULL;
1153 ret->node_count = 0;
1154 if (ret->request_count) {
1155 mas_set_alloc_req(mas, ret->request_count + 1);
1156 ret->request_count = 0;
1158 return (struct maple_node *)ret;
1162 * mas_push_node() - Push a node back on the maple state allocation.
1163 * @mas: The maple state
1164 * @used: The used maple node
1166 * Stores the maple node back into @mas->alloc for reuse. Updates allocated and
1167 * requested node count as necessary.
1169 static inline void mas_push_node(struct ma_state *mas, struct maple_node *used)
1171 struct maple_alloc *reuse = (struct maple_alloc *)used;
1172 struct maple_alloc *head = mas->alloc;
1173 unsigned long count;
1174 unsigned int requested = mas_alloc_req(mas);
1176 memset(reuse, 0, sizeof(*reuse));
1177 count = mas_allocated(mas);
1179 if (count && (head->node_count < MAPLE_ALLOC_SLOTS - 1)) {
1182 head->slot[head->node_count] = reuse;
1188 if ((head) && !((unsigned long)head & 0x1)) {
1189 head->request_count = 0;
1190 reuse->slot[0] = head;
1191 reuse->total += head->total;
1197 mas_set_alloc_req(mas, requested - 1);
1201 * mas_alloc_nodes() - Allocate nodes into a maple state
1202 * @mas: The maple state
1203 * @gfp: The GFP Flags
1205 static inline void mas_alloc_nodes(struct ma_state *mas, gfp_t gfp)
1207 struct maple_alloc *node;
1208 unsigned long allocated = mas_allocated(mas);
1209 unsigned long success = allocated;
1210 unsigned int requested = mas_alloc_req(mas);
1212 void **slots = NULL;
1213 unsigned int max_req = 0;
1218 mas_set_alloc_req(mas, 0);
1219 if (mas->mas_flags & MA_STATE_PREALLOC) {
1222 WARN_ON(!allocated);
1225 if (!allocated || mas->alloc->node_count == MAPLE_ALLOC_SLOTS - 1) {
1226 node = (struct maple_alloc *)mt_alloc_one(gfp);
1231 node->slot[0] = mas->alloc;
1240 max_req = MAPLE_ALLOC_SLOTS;
1241 if (node->slot[0]) {
1242 unsigned int offset = node->node_count + 1;
1244 slots = (void **)&node->slot[offset];
1247 slots = (void **)&node->slot;
1250 max_req = min(requested, max_req);
1251 count = mt_alloc_bulk(gfp, max_req, slots);
1255 node->node_count += count;
1257 if (slots == (void **)&node->slot)
1261 node = node->slot[0];
1264 mas->alloc->total = success;
1268 /* Clean up potential freed allocations on bulk failure */
1269 memset(slots, 0, max_req * sizeof(unsigned long));
1271 mas_set_alloc_req(mas, requested);
1272 if (mas->alloc && !(((unsigned long)mas->alloc & 0x1)))
1273 mas->alloc->total = success;
1274 mas_set_err(mas, -ENOMEM);
1280 * mas_free() - Free an encoded maple node
1281 * @mas: The maple state
1282 * @used: The encoded maple node to free.
1284 * Uses rcu free if necessary, pushes @used back on the maple state allocations
1287 static inline void mas_free(struct ma_state *mas, struct maple_enode *used)
1289 struct maple_node *tmp = mte_to_node(used);
1291 if (mt_in_rcu(mas->tree))
1294 mas_push_node(mas, tmp);
1298 * mas_node_count() - Check if enough nodes are allocated and request more if
1299 * there is not enough nodes.
1300 * @mas: The maple state
1301 * @count: The number of nodes needed
1302 * @gfp: the gfp flags
1304 static void mas_node_count_gfp(struct ma_state *mas, int count, gfp_t gfp)
1306 unsigned long allocated = mas_allocated(mas);
1308 if (allocated < count) {
1309 mas_set_alloc_req(mas, count - allocated);
1310 mas_alloc_nodes(mas, gfp);
1315 * mas_node_count() - Check if enough nodes are allocated and request more if
1316 * there is not enough nodes.
1317 * @mas: The maple state
1318 * @count: The number of nodes needed
1320 * Note: Uses GFP_NOWAIT | __GFP_NOWARN for gfp flags.
1322 static void mas_node_count(struct ma_state *mas, int count)
1324 return mas_node_count_gfp(mas, count, GFP_NOWAIT | __GFP_NOWARN);
1328 * mas_start() - Sets up maple state for operations.
1329 * @mas: The maple state.
1331 * If mas->node == MAS_START, then set the min, max, depth, and offset to
1335 * - If mas->node is an error or not MAS_START, return NULL.
1336 * - If it's an empty tree: NULL & mas->node == MAS_NONE
1337 * - If it's a single entry: The entry & mas->node == MAS_ROOT
1338 * - If it's a tree: NULL & mas->node == safe root node.
1340 static inline struct maple_enode *mas_start(struct ma_state *mas)
1342 if (likely(mas_is_start(mas))) {
1343 struct maple_enode *root;
1345 mas->node = MAS_NONE;
1347 mas->max = ULONG_MAX;
1351 root = mas_root(mas);
1352 /* Tree with nodes */
1353 if (likely(xa_is_node(root))) {
1355 mas->node = mte_safe_root(root);
1360 if (unlikely(!root)) {
1361 mas->offset = MAPLE_NODE_SLOTS;
1365 /* Single entry tree */
1366 mas->node = MAS_ROOT;
1367 mas->offset = MAPLE_NODE_SLOTS;
1369 /* Single entry tree. */
1380 * ma_data_end() - Find the end of the data in a node.
1381 * @node: The maple node
1382 * @type: The maple node type
1383 * @pivots: The array of pivots in the node
1384 * @max: The maximum value in the node
1386 * Uses metadata to find the end of the data when possible.
1387 * Return: The zero indexed last slot with data (may be null).
1389 static inline unsigned char ma_data_end(struct maple_node *node,
1390 enum maple_type type,
1391 unsigned long *pivots,
1394 unsigned char offset;
1396 if (type == maple_arange_64)
1397 return ma_meta_end(node, type);
1399 offset = mt_pivots[type] - 1;
1400 if (likely(!pivots[offset]))
1401 return ma_meta_end(node, type);
1403 if (likely(pivots[offset] == max))
1406 return mt_pivots[type];
1410 * mas_data_end() - Find the end of the data (slot).
1411 * @mas: the maple state
1413 * This method is optimized to check the metadata of a node if the node type
1414 * supports data end metadata.
1416 * Return: The zero indexed last slot with data (may be null).
1418 static inline unsigned char mas_data_end(struct ma_state *mas)
1420 enum maple_type type;
1421 struct maple_node *node;
1422 unsigned char offset;
1423 unsigned long *pivots;
1425 type = mte_node_type(mas->node);
1427 if (type == maple_arange_64)
1428 return ma_meta_end(node, type);
1430 pivots = ma_pivots(node, type);
1431 offset = mt_pivots[type] - 1;
1432 if (likely(!pivots[offset]))
1433 return ma_meta_end(node, type);
1435 if (likely(pivots[offset] == mas->max))
1438 return mt_pivots[type];
1442 * mas_leaf_max_gap() - Returns the largest gap in a leaf node
1443 * @mas - the maple state
1445 * Return: The maximum gap in the leaf.
1447 static unsigned long mas_leaf_max_gap(struct ma_state *mas)
1450 unsigned long pstart, gap, max_gap;
1451 struct maple_node *mn;
1452 unsigned long *pivots;
1455 unsigned char max_piv;
1457 mt = mte_node_type(mas->node);
1459 slots = ma_slots(mn, mt);
1461 if (unlikely(ma_is_dense(mt))) {
1463 for (i = 0; i < mt_slots[mt]; i++) {
1478 * Check the first implied pivot optimizes the loop below and slot 1 may
1479 * be skipped if there is a gap in slot 0.
1481 pivots = ma_pivots(mn, mt);
1482 if (likely(!slots[0])) {
1483 max_gap = pivots[0] - mas->min + 1;
1489 /* reduce max_piv as the special case is checked before the loop */
1490 max_piv = ma_data_end(mn, mt, pivots, mas->max) - 1;
1492 * Check end implied pivot which can only be a gap on the right most
1495 if (unlikely(mas->max == ULONG_MAX) && !slots[max_piv + 1]) {
1496 gap = ULONG_MAX - pivots[max_piv];
1501 for (; i <= max_piv; i++) {
1502 /* data == no gap. */
1503 if (likely(slots[i]))
1506 pstart = pivots[i - 1];
1507 gap = pivots[i] - pstart;
1511 /* There cannot be two gaps in a row. */
1518 * ma_max_gap() - Get the maximum gap in a maple node (non-leaf)
1519 * @node: The maple node
1520 * @gaps: The pointer to the gaps
1521 * @mt: The maple node type
1522 * @*off: Pointer to store the offset location of the gap.
1524 * Uses the metadata data end to scan backwards across set gaps.
1526 * Return: The maximum gap value
1528 static inline unsigned long
1529 ma_max_gap(struct maple_node *node, unsigned long *gaps, enum maple_type mt,
1532 unsigned char offset, i;
1533 unsigned long max_gap = 0;
1535 i = offset = ma_meta_end(node, mt);
1537 if (gaps[i] > max_gap) {
1548 * mas_max_gap() - find the largest gap in a non-leaf node and set the slot.
1549 * @mas: The maple state.
1551 * If the metadata gap is set to MAPLE_ARANGE64_META_MAX, there is no gap.
1553 * Return: The gap value.
1555 static inline unsigned long mas_max_gap(struct ma_state *mas)
1557 unsigned long *gaps;
1558 unsigned char offset;
1560 struct maple_node *node;
1562 mt = mte_node_type(mas->node);
1564 return mas_leaf_max_gap(mas);
1567 offset = ma_meta_gap(node, mt);
1568 if (offset == MAPLE_ARANGE64_META_MAX)
1571 gaps = ma_gaps(node, mt);
1572 return gaps[offset];
1576 * mas_parent_gap() - Set the parent gap and any gaps above, as needed
1577 * @mas: The maple state
1578 * @offset: The gap offset in the parent to set
1579 * @new: The new gap value.
1581 * Set the parent gap then continue to set the gap upwards, using the metadata
1582 * of the parent to see if it is necessary to check the node above.
1584 static inline void mas_parent_gap(struct ma_state *mas, unsigned char offset,
1587 unsigned long meta_gap = 0;
1588 struct maple_node *pnode;
1589 struct maple_enode *penode;
1590 unsigned long *pgaps;
1591 unsigned char meta_offset;
1592 enum maple_type pmt;
1594 pnode = mte_parent(mas->node);
1595 pmt = mas_parent_enum(mas, mas->node);
1596 penode = mt_mk_node(pnode, pmt);
1597 pgaps = ma_gaps(pnode, pmt);
1600 meta_offset = ma_meta_gap(pnode, pmt);
1601 if (meta_offset == MAPLE_ARANGE64_META_MAX)
1604 meta_gap = pgaps[meta_offset];
1606 pgaps[offset] = new;
1608 if (meta_gap == new)
1611 if (offset != meta_offset) {
1615 ma_set_meta_gap(pnode, pmt, offset);
1616 } else if (new < meta_gap) {
1618 new = ma_max_gap(pnode, pgaps, pmt, &meta_offset);
1619 ma_set_meta_gap(pnode, pmt, meta_offset);
1622 if (ma_is_root(pnode))
1625 /* Go to the parent node. */
1626 pnode = mte_parent(penode);
1627 pmt = mas_parent_enum(mas, penode);
1628 pgaps = ma_gaps(pnode, pmt);
1629 offset = mte_parent_slot(penode);
1630 penode = mt_mk_node(pnode, pmt);
1635 * mas_update_gap() - Update a nodes gaps and propagate up if necessary.
1636 * @mas - the maple state.
1638 static inline void mas_update_gap(struct ma_state *mas)
1640 unsigned char pslot;
1641 unsigned long p_gap;
1642 unsigned long max_gap;
1644 if (!mt_is_alloc(mas->tree))
1647 if (mte_is_root(mas->node))
1650 max_gap = mas_max_gap(mas);
1652 pslot = mte_parent_slot(mas->node);
1653 p_gap = ma_gaps(mte_parent(mas->node),
1654 mas_parent_enum(mas, mas->node))[pslot];
1656 if (p_gap != max_gap)
1657 mas_parent_gap(mas, pslot, max_gap);
1661 * mas_adopt_children() - Set the parent pointer of all nodes in @parent to
1662 * @parent with the slot encoded.
1663 * @mas - the maple state (for the tree)
1664 * @parent - the maple encoded node containing the children.
1666 static inline void mas_adopt_children(struct ma_state *mas,
1667 struct maple_enode *parent)
1669 enum maple_type type = mte_node_type(parent);
1670 struct maple_node *node = mas_mn(mas);
1671 void __rcu **slots = ma_slots(node, type);
1672 unsigned long *pivots = ma_pivots(node, type);
1673 struct maple_enode *child;
1674 unsigned char offset;
1676 offset = ma_data_end(node, type, pivots, mas->max);
1678 child = mas_slot_locked(mas, slots, offset);
1679 mte_set_parent(child, parent, offset);
1684 * mas_replace() - Replace a maple node in the tree with mas->node. Uses the
1685 * parent encoding to locate the maple node in the tree.
1686 * @mas - the ma_state to use for operations.
1687 * @advanced - boolean to adopt the child nodes and free the old node (false) or
1688 * leave the node (true) and handle the adoption and free elsewhere.
1690 static inline void mas_replace(struct ma_state *mas, bool advanced)
1691 __must_hold(mas->tree->lock)
1693 struct maple_node *mn = mas_mn(mas);
1694 struct maple_enode *old_enode;
1695 unsigned char offset = 0;
1696 void __rcu **slots = NULL;
1698 if (ma_is_root(mn)) {
1699 old_enode = mas_root_locked(mas);
1701 offset = mte_parent_slot(mas->node);
1702 slots = ma_slots(mte_parent(mas->node),
1703 mas_parent_enum(mas, mas->node));
1704 old_enode = mas_slot_locked(mas, slots, offset);
1707 if (!advanced && !mte_is_leaf(mas->node))
1708 mas_adopt_children(mas, mas->node);
1710 if (mte_is_root(mas->node)) {
1711 mn->parent = ma_parent_ptr(
1712 ((unsigned long)mas->tree | MA_ROOT_PARENT));
1713 rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
1714 mas_set_height(mas);
1716 rcu_assign_pointer(slots[offset], mas->node);
1720 mas_free(mas, old_enode);
1724 * mas_new_child() - Find the new child of a node.
1725 * @mas: the maple state
1726 * @child: the maple state to store the child.
1728 static inline bool mas_new_child(struct ma_state *mas, struct ma_state *child)
1729 __must_hold(mas->tree->lock)
1732 unsigned char offset;
1734 unsigned long *pivots;
1735 struct maple_enode *entry;
1736 struct maple_node *node;
1739 mt = mte_node_type(mas->node);
1741 slots = ma_slots(node, mt);
1742 pivots = ma_pivots(node, mt);
1743 end = ma_data_end(node, mt, pivots, mas->max);
1744 for (offset = mas->offset; offset <= end; offset++) {
1745 entry = mas_slot_locked(mas, slots, offset);
1746 if (mte_parent(entry) == node) {
1748 mas->offset = offset + 1;
1749 child->offset = offset;
1759 * mab_shift_right() - Shift the data in mab right. Note, does not clean out the
1760 * old data or set b_node->b_end.
1761 * @b_node: the maple_big_node
1762 * @shift: the shift count
1764 static inline void mab_shift_right(struct maple_big_node *b_node,
1765 unsigned char shift)
1767 unsigned long size = b_node->b_end * sizeof(unsigned long);
1769 memmove(b_node->pivot + shift, b_node->pivot, size);
1770 memmove(b_node->slot + shift, b_node->slot, size);
1771 if (b_node->type == maple_arange_64)
1772 memmove(b_node->gap + shift, b_node->gap, size);
1776 * mab_middle_node() - Check if a middle node is needed (unlikely)
1777 * @b_node: the maple_big_node that contains the data.
1778 * @size: the amount of data in the b_node
1779 * @split: the potential split location
1780 * @slot_count: the size that can be stored in a single node being considered.
1782 * Return: true if a middle node is required.
1784 static inline bool mab_middle_node(struct maple_big_node *b_node, int split,
1785 unsigned char slot_count)
1787 unsigned char size = b_node->b_end;
1789 if (size >= 2 * slot_count)
1792 if (!b_node->slot[split] && (size >= 2 * slot_count - 1))
1799 * mab_no_null_split() - ensure the split doesn't fall on a NULL
1800 * @b_node: the maple_big_node with the data
1801 * @split: the suggested split location
1802 * @slot_count: the number of slots in the node being considered.
1804 * Return: the split location.
1806 static inline int mab_no_null_split(struct maple_big_node *b_node,
1807 unsigned char split, unsigned char slot_count)
1809 if (!b_node->slot[split]) {
1811 * If the split is less than the max slot && the right side will
1812 * still be sufficient, then increment the split on NULL.
1814 if ((split < slot_count - 1) &&
1815 (b_node->b_end - split) > (mt_min_slots[b_node->type]))
1824 * mab_calc_split() - Calculate the split location and if there needs to be two
1826 * @bn: The maple_big_node with the data
1827 * @mid_split: The second split, if required. 0 otherwise.
1829 * Return: The first split location. The middle split is set in @mid_split.
1831 static inline int mab_calc_split(struct ma_state *mas,
1832 struct maple_big_node *bn, unsigned char *mid_split, unsigned long min)
1834 unsigned char b_end = bn->b_end;
1835 int split = b_end / 2; /* Assume equal split. */
1836 unsigned char slot_min, slot_count = mt_slots[bn->type];
1839 * To support gap tracking, all NULL entries are kept together and a node cannot
1840 * end on a NULL entry, with the exception of the left-most leaf. The
1841 * limitation means that the split of a node must be checked for this condition
1842 * and be able to put more data in one direction or the other.
1844 if (unlikely((mas->mas_flags & MA_STATE_BULK))) {
1846 split = b_end - mt_min_slots[bn->type];
1848 if (!ma_is_leaf(bn->type))
1851 mas->mas_flags |= MA_STATE_REBALANCE;
1852 if (!bn->slot[split])
1858 * Although extremely rare, it is possible to enter what is known as the 3-way
1859 * split scenario. The 3-way split comes about by means of a store of a range
1860 * that overwrites the end and beginning of two full nodes. The result is a set
1861 * of entries that cannot be stored in 2 nodes. Sometimes, these two nodes can
1862 * also be located in different parent nodes which are also full. This can
1863 * carry upwards all the way to the root in the worst case.
1865 if (unlikely(mab_middle_node(bn, split, slot_count))) {
1867 *mid_split = split * 2;
1869 slot_min = mt_min_slots[bn->type];
1873 * Avoid having a range less than the slot count unless it
1874 * causes one node to be deficient.
1875 * NOTE: mt_min_slots is 1 based, b_end and split are zero.
1877 while (((bn->pivot[split] - min) < slot_count - 1) &&
1878 (split < slot_count - 1) && (b_end - split > slot_min))
1882 /* Avoid ending a node on a NULL entry */
1883 split = mab_no_null_split(bn, split, slot_count);
1887 *mid_split = mab_no_null_split(bn, *mid_split, slot_count);
1893 * mas_mab_cp() - Copy data from a maple state inclusively to a maple_big_node
1894 * and set @b_node->b_end to the next free slot.
1895 * @mas: The maple state
1896 * @mas_start: The starting slot to copy
1897 * @mas_end: The end slot to copy (inclusively)
1898 * @b_node: The maple_big_node to place the data
1899 * @mab_start: The starting location in maple_big_node to store the data.
1901 static inline void mas_mab_cp(struct ma_state *mas, unsigned char mas_start,
1902 unsigned char mas_end, struct maple_big_node *b_node,
1903 unsigned char mab_start)
1906 struct maple_node *node;
1908 unsigned long *pivots, *gaps;
1909 int i = mas_start, j = mab_start;
1910 unsigned char piv_end;
1913 mt = mte_node_type(mas->node);
1914 pivots = ma_pivots(node, mt);
1916 b_node->pivot[j] = pivots[i++];
1917 if (unlikely(i > mas_end))
1922 piv_end = min(mas_end, mt_pivots[mt]);
1923 for (; i < piv_end; i++, j++) {
1924 b_node->pivot[j] = pivots[i];
1925 if (unlikely(!b_node->pivot[j]))
1928 if (unlikely(mas->max == b_node->pivot[j]))
1932 if (likely(i <= mas_end))
1933 b_node->pivot[j] = mas_safe_pivot(mas, pivots, i, mt);
1936 b_node->b_end = ++j;
1938 slots = ma_slots(node, mt);
1939 memcpy(b_node->slot + mab_start, slots + mas_start, sizeof(void *) * j);
1940 if (!ma_is_leaf(mt) && mt_is_alloc(mas->tree)) {
1941 gaps = ma_gaps(node, mt);
1942 memcpy(b_node->gap + mab_start, gaps + mas_start,
1943 sizeof(unsigned long) * j);
1948 * mas_leaf_set_meta() - Set the metadata of a leaf if possible.
1949 * @mas: The maple state
1950 * @node: The maple node
1951 * @pivots: pointer to the maple node pivots
1952 * @mt: The maple type
1953 * @end: The assumed end
1955 * Note, end may be incremented within this function but not modified at the
1956 * source. This is fine since the metadata is the last thing to be stored in a
1957 * node during a write.
1959 static inline void mas_leaf_set_meta(struct ma_state *mas,
1960 struct maple_node *node, unsigned long *pivots,
1961 enum maple_type mt, unsigned char end)
1963 /* There is no room for metadata already */
1964 if (mt_pivots[mt] <= end)
1967 if (pivots[end] && pivots[end] < mas->max)
1970 if (end < mt_slots[mt] - 1)
1971 ma_set_meta(node, mt, 0, end);
1975 * mab_mas_cp() - Copy data from maple_big_node to a maple encoded node.
1976 * @b_node: the maple_big_node that has the data
1977 * @mab_start: the start location in @b_node.
1978 * @mab_end: The end location in @b_node (inclusively)
1979 * @mas: The maple state with the maple encoded node.
1981 static inline void mab_mas_cp(struct maple_big_node *b_node,
1982 unsigned char mab_start, unsigned char mab_end,
1983 struct ma_state *mas, bool new_max)
1986 enum maple_type mt = mte_node_type(mas->node);
1987 struct maple_node *node = mte_to_node(mas->node);
1988 void __rcu **slots = ma_slots(node, mt);
1989 unsigned long *pivots = ma_pivots(node, mt);
1990 unsigned long *gaps = NULL;
1993 if (mab_end - mab_start > mt_pivots[mt])
1996 if (!pivots[mt_pivots[mt] - 1])
1997 slots[mt_pivots[mt]] = NULL;
2001 pivots[j++] = b_node->pivot[i++];
2002 } while (i <= mab_end && likely(b_node->pivot[i]));
2004 memcpy(slots, b_node->slot + mab_start,
2005 sizeof(void *) * (i - mab_start));
2008 mas->max = b_node->pivot[i - 1];
2011 if (likely(!ma_is_leaf(mt) && mt_is_alloc(mas->tree))) {
2012 unsigned long max_gap = 0;
2013 unsigned char offset = 15;
2015 gaps = ma_gaps(node, mt);
2017 gaps[--j] = b_node->gap[--i];
2018 if (gaps[j] > max_gap) {
2024 ma_set_meta(node, mt, offset, end);
2026 mas_leaf_set_meta(mas, node, pivots, mt, end);
2031 * mas_descend_adopt() - Descend through a sub-tree and adopt children.
2032 * @mas: the maple state with the maple encoded node of the sub-tree.
2034 * Descend through a sub-tree and adopt children who do not have the correct
2035 * parents set. Follow the parents which have the correct parents as they are
2036 * the new entries which need to be followed to find other incorrectly set
2039 static inline void mas_descend_adopt(struct ma_state *mas)
2041 struct ma_state list[3], next[3];
2045 * At each level there may be up to 3 correct parent pointers which indicates
2046 * the new nodes which need to be walked to find any new nodes at a lower level.
2049 for (i = 0; i < 3; i++) {
2056 while (!mte_is_leaf(list[0].node)) {
2058 for (i = 0; i < 3; i++) {
2059 if (mas_is_none(&list[i]))
2062 if (i && list[i-1].node == list[i].node)
2065 while ((n < 3) && (mas_new_child(&list[i], &next[n])))
2068 mas_adopt_children(&list[i], list[i].node);
2072 next[n++].node = MAS_NONE;
2074 /* descend by setting the list to the children */
2075 for (i = 0; i < 3; i++)
2081 * mas_bulk_rebalance() - Rebalance the end of a tree after a bulk insert.
2082 * @mas: The maple state
2083 * @end: The maple node end
2084 * @mt: The maple node type
2086 static inline void mas_bulk_rebalance(struct ma_state *mas, unsigned char end,
2089 if (!(mas->mas_flags & MA_STATE_BULK))
2092 if (mte_is_root(mas->node))
2095 if (end > mt_min_slots[mt]) {
2096 mas->mas_flags &= ~MA_STATE_REBALANCE;
2102 * mas_store_b_node() - Store an @entry into the b_node while also copying the
2103 * data from a maple encoded node.
2104 * @wr_mas: the maple write state
2105 * @b_node: the maple_big_node to fill with data
2106 * @offset_end: the offset to end copying
2108 * Return: The actual end of the data stored in @b_node
2110 static inline void mas_store_b_node(struct ma_wr_state *wr_mas,
2111 struct maple_big_node *b_node, unsigned char offset_end)
2114 unsigned char b_end;
2115 /* Possible underflow of piv will wrap back to 0 before use. */
2117 struct ma_state *mas = wr_mas->mas;
2119 b_node->type = wr_mas->type;
2123 /* Copy start data up to insert. */
2124 mas_mab_cp(mas, 0, slot - 1, b_node, 0);
2125 b_end = b_node->b_end;
2126 piv = b_node->pivot[b_end - 1];
2130 if (piv + 1 < mas->index) {
2131 /* Handle range starting after old range */
2132 b_node->slot[b_end] = wr_mas->content;
2133 if (!wr_mas->content)
2134 b_node->gap[b_end] = mas->index - 1 - piv;
2135 b_node->pivot[b_end++] = mas->index - 1;
2138 /* Store the new entry. */
2139 mas->offset = b_end;
2140 b_node->slot[b_end] = wr_mas->entry;
2141 b_node->pivot[b_end] = mas->last;
2144 if (mas->last >= mas->max)
2147 /* Handle new range ending before old range ends */
2148 piv = mas_logical_pivot(mas, wr_mas->pivots, offset_end, wr_mas->type);
2149 if (piv > mas->last) {
2150 if (piv == ULONG_MAX)
2151 mas_bulk_rebalance(mas, b_node->b_end, wr_mas->type);
2153 if (offset_end != slot)
2154 wr_mas->content = mas_slot_locked(mas, wr_mas->slots,
2157 b_node->slot[++b_end] = wr_mas->content;
2158 if (!wr_mas->content)
2159 b_node->gap[b_end] = piv - mas->last + 1;
2160 b_node->pivot[b_end] = piv;
2163 slot = offset_end + 1;
2164 if (slot > wr_mas->node_end)
2167 /* Copy end data to the end of the node. */
2168 mas_mab_cp(mas, slot, wr_mas->node_end + 1, b_node, ++b_end);
2173 b_node->b_end = b_end;
2177 * mas_prev_sibling() - Find the previous node with the same parent.
2178 * @mas: the maple state
2180 * Return: True if there is a previous sibling, false otherwise.
2182 static inline bool mas_prev_sibling(struct ma_state *mas)
2184 unsigned int p_slot = mte_parent_slot(mas->node);
2186 if (mte_is_root(mas->node))
2193 mas->offset = p_slot - 1;
2199 * mas_next_sibling() - Find the next node with the same parent.
2200 * @mas: the maple state
2202 * Return: true if there is a next sibling, false otherwise.
2204 static inline bool mas_next_sibling(struct ma_state *mas)
2206 MA_STATE(parent, mas->tree, mas->index, mas->last);
2208 if (mte_is_root(mas->node))
2212 mas_ascend(&parent);
2213 parent.offset = mte_parent_slot(mas->node) + 1;
2214 if (parent.offset > mas_data_end(&parent))
2223 * mte_node_or_node() - Return the encoded node or MAS_NONE.
2224 * @enode: The encoded maple node.
2226 * Shorthand to avoid setting %NULLs in the tree or maple_subtree_state.
2228 * Return: @enode or MAS_NONE
2230 static inline struct maple_enode *mte_node_or_none(struct maple_enode *enode)
2235 return ma_enode_ptr(MAS_NONE);
2239 * mas_wr_node_walk() - Find the correct offset for the index in the @mas.
2240 * @wr_mas: The maple write state
2242 * Uses mas_slot_locked() and does not need to worry about dead nodes.
2244 static inline void mas_wr_node_walk(struct ma_wr_state *wr_mas)
2246 struct ma_state *mas = wr_mas->mas;
2247 unsigned char count;
2248 unsigned char offset;
2249 unsigned long index, min, max;
2251 if (unlikely(ma_is_dense(wr_mas->type))) {
2252 wr_mas->r_max = wr_mas->r_min = mas->index;
2253 mas->offset = mas->index = mas->min;
2257 wr_mas->node = mas_mn(wr_mas->mas);
2258 wr_mas->pivots = ma_pivots(wr_mas->node, wr_mas->type);
2259 count = wr_mas->node_end = ma_data_end(wr_mas->node, wr_mas->type,
2260 wr_mas->pivots, mas->max);
2261 offset = mas->offset;
2262 min = mas_safe_min(mas, wr_mas->pivots, offset);
2263 if (unlikely(offset == count))
2266 max = wr_mas->pivots[offset];
2268 if (unlikely(index <= max))
2271 if (unlikely(!max && offset))
2275 while (++offset < count) {
2276 max = wr_mas->pivots[offset];
2279 else if (unlikely(!max))
2288 wr_mas->r_max = max;
2289 wr_mas->r_min = min;
2290 wr_mas->offset_end = mas->offset = offset;
2294 * mas_topiary_range() - Add a range of slots to the topiary.
2295 * @mas: The maple state
2296 * @destroy: The topiary to add the slots (usually destroy)
2297 * @start: The starting slot inclusively
2298 * @end: The end slot inclusively
2300 static inline void mas_topiary_range(struct ma_state *mas,
2301 struct ma_topiary *destroy, unsigned char start, unsigned char end)
2304 unsigned char offset;
2306 MT_BUG_ON(mas->tree, mte_is_leaf(mas->node));
2307 slots = ma_slots(mas_mn(mas), mte_node_type(mas->node));
2308 for (offset = start; offset <= end; offset++) {
2309 struct maple_enode *enode = mas_slot_locked(mas, slots, offset);
2311 if (mte_dead_node(enode))
2314 mat_add(destroy, enode);
2319 * mast_topiary() - Add the portions of the tree to the removal list; either to
2320 * be freed or discarded (destroy walk).
2321 * @mast: The maple_subtree_state.
2323 static inline void mast_topiary(struct maple_subtree_state *mast)
2325 MA_WR_STATE(wr_mas, mast->orig_l, NULL);
2326 unsigned char r_start, r_end;
2327 unsigned char l_start, l_end;
2328 void __rcu **l_slots, **r_slots;
2330 wr_mas.type = mte_node_type(mast->orig_l->node);
2331 mast->orig_l->index = mast->orig_l->last;
2332 mas_wr_node_walk(&wr_mas);
2333 l_start = mast->orig_l->offset + 1;
2334 l_end = mas_data_end(mast->orig_l);
2336 r_end = mast->orig_r->offset;
2341 l_slots = ma_slots(mas_mn(mast->orig_l),
2342 mte_node_type(mast->orig_l->node));
2344 r_slots = ma_slots(mas_mn(mast->orig_r),
2345 mte_node_type(mast->orig_r->node));
2347 if ((l_start < l_end) &&
2348 mte_dead_node(mas_slot_locked(mast->orig_l, l_slots, l_start))) {
2352 if (mte_dead_node(mas_slot_locked(mast->orig_r, r_slots, r_end))) {
2357 if ((l_start > r_end) && (mast->orig_l->node == mast->orig_r->node))
2360 /* At the node where left and right sides meet, add the parts between */
2361 if (mast->orig_l->node == mast->orig_r->node) {
2362 return mas_topiary_range(mast->orig_l, mast->destroy,
2366 /* mast->orig_r is different and consumed. */
2367 if (mte_is_leaf(mast->orig_r->node))
2370 if (mte_dead_node(mas_slot_locked(mast->orig_l, l_slots, l_end)))
2374 if (l_start <= l_end)
2375 mas_topiary_range(mast->orig_l, mast->destroy, l_start, l_end);
2377 if (mte_dead_node(mas_slot_locked(mast->orig_r, r_slots, r_start)))
2380 if (r_start <= r_end)
2381 mas_topiary_range(mast->orig_r, mast->destroy, 0, r_end);
2385 * mast_rebalance_next() - Rebalance against the next node
2386 * @mast: The maple subtree state
2387 * @old_r: The encoded maple node to the right (next node).
2389 static inline void mast_rebalance_next(struct maple_subtree_state *mast)
2391 unsigned char b_end = mast->bn->b_end;
2393 mas_mab_cp(mast->orig_r, 0, mt_slot_count(mast->orig_r->node),
2395 mast->orig_r->last = mast->orig_r->max;
2399 * mast_rebalance_prev() - Rebalance against the previous node
2400 * @mast: The maple subtree state
2401 * @old_l: The encoded maple node to the left (previous node)
2403 static inline void mast_rebalance_prev(struct maple_subtree_state *mast)
2405 unsigned char end = mas_data_end(mast->orig_l) + 1;
2406 unsigned char b_end = mast->bn->b_end;
2408 mab_shift_right(mast->bn, end);
2409 mas_mab_cp(mast->orig_l, 0, end - 1, mast->bn, 0);
2410 mast->l->min = mast->orig_l->min;
2411 mast->orig_l->index = mast->orig_l->min;
2412 mast->bn->b_end = end + b_end;
2413 mast->l->offset += end;
2417 * mast_spanning_rebalance() - Rebalance nodes with nearest neighbour favouring
2418 * the node to the right. Checking the nodes to the right then the left at each
2419 * level upwards until root is reached. Free and destroy as needed.
2420 * Data is copied into the @mast->bn.
2421 * @mast: The maple_subtree_state.
2424 bool mast_spanning_rebalance(struct maple_subtree_state *mast)
2426 struct ma_state r_tmp = *mast->orig_r;
2427 struct ma_state l_tmp = *mast->orig_l;
2428 struct maple_enode *ancestor = NULL;
2429 unsigned char start, end;
2430 unsigned char depth = 0;
2432 r_tmp = *mast->orig_r;
2433 l_tmp = *mast->orig_l;
2435 mas_ascend(mast->orig_r);
2436 mas_ascend(mast->orig_l);
2439 (mast->orig_r->node == mast->orig_l->node)) {
2440 ancestor = mast->orig_r->node;
2441 end = mast->orig_r->offset - 1;
2442 start = mast->orig_l->offset + 1;
2445 if (mast->orig_r->offset < mas_data_end(mast->orig_r)) {
2447 ancestor = mast->orig_r->node;
2451 mast->orig_r->offset++;
2453 mas_descend(mast->orig_r);
2454 mast->orig_r->offset = 0;
2458 mast_rebalance_next(mast);
2460 unsigned char l_off = 0;
2461 struct maple_enode *child = r_tmp.node;
2464 if (ancestor == r_tmp.node)
2470 if (l_off < r_tmp.offset)
2471 mas_topiary_range(&r_tmp, mast->destroy,
2472 l_off, r_tmp.offset);
2474 if (l_tmp.node != child)
2475 mat_add(mast->free, child);
2477 } while (r_tmp.node != ancestor);
2479 *mast->orig_l = l_tmp;
2482 } else if (mast->orig_l->offset != 0) {
2484 ancestor = mast->orig_l->node;
2485 end = mas_data_end(mast->orig_l);
2488 mast->orig_l->offset--;
2490 mas_descend(mast->orig_l);
2491 mast->orig_l->offset =
2492 mas_data_end(mast->orig_l);
2496 mast_rebalance_prev(mast);
2498 unsigned char r_off;
2499 struct maple_enode *child = l_tmp.node;
2502 if (ancestor == l_tmp.node)
2505 r_off = mas_data_end(&l_tmp);
2507 if (l_tmp.offset < r_off)
2510 if (l_tmp.offset < r_off)
2511 mas_topiary_range(&l_tmp, mast->destroy,
2512 l_tmp.offset, r_off);
2514 if (r_tmp.node != child)
2515 mat_add(mast->free, child);
2517 } while (l_tmp.node != ancestor);
2519 *mast->orig_r = r_tmp;
2522 } while (!mte_is_root(mast->orig_r->node));
2524 *mast->orig_r = r_tmp;
2525 *mast->orig_l = l_tmp;
2530 * mast_ascend_free() - Add current original maple state nodes to the free list
2532 * @mast: the maple subtree state.
2534 * Ascend the original left and right sides and add the previous nodes to the
2535 * free list. Set the slots to point to the correct location in the new nodes.
2538 mast_ascend_free(struct maple_subtree_state *mast)
2540 MA_WR_STATE(wr_mas, mast->orig_r, NULL);
2541 struct maple_enode *left = mast->orig_l->node;
2542 struct maple_enode *right = mast->orig_r->node;
2544 mas_ascend(mast->orig_l);
2545 mas_ascend(mast->orig_r);
2546 mat_add(mast->free, left);
2549 mat_add(mast->free, right);
2551 mast->orig_r->offset = 0;
2552 mast->orig_r->index = mast->r->max;
2553 /* last should be larger than or equal to index */
2554 if (mast->orig_r->last < mast->orig_r->index)
2555 mast->orig_r->last = mast->orig_r->index;
2557 * The node may not contain the value so set slot to ensure all
2558 * of the nodes contents are freed or destroyed.
2560 wr_mas.type = mte_node_type(mast->orig_r->node);
2561 mas_wr_node_walk(&wr_mas);
2562 /* Set up the left side of things */
2563 mast->orig_l->offset = 0;
2564 mast->orig_l->index = mast->l->min;
2565 wr_mas.mas = mast->orig_l;
2566 wr_mas.type = mte_node_type(mast->orig_l->node);
2567 mas_wr_node_walk(&wr_mas);
2569 mast->bn->type = wr_mas.type;
2573 * mas_new_ma_node() - Create and return a new maple node. Helper function.
2574 * @mas: the maple state with the allocations.
2575 * @b_node: the maple_big_node with the type encoding.
2577 * Use the node type from the maple_big_node to allocate a new node from the
2578 * ma_state. This function exists mainly for code readability.
2580 * Return: A new maple encoded node
2582 static inline struct maple_enode
2583 *mas_new_ma_node(struct ma_state *mas, struct maple_big_node *b_node)
2585 return mt_mk_node(ma_mnode_ptr(mas_pop_node(mas)), b_node->type);
2589 * mas_mab_to_node() - Set up right and middle nodes
2591 * @mas: the maple state that contains the allocations.
2592 * @b_node: the node which contains the data.
2593 * @left: The pointer which will have the left node
2594 * @right: The pointer which may have the right node
2595 * @middle: the pointer which may have the middle node (rare)
2596 * @mid_split: the split location for the middle node
2598 * Return: the split of left.
2600 static inline unsigned char mas_mab_to_node(struct ma_state *mas,
2601 struct maple_big_node *b_node, struct maple_enode **left,
2602 struct maple_enode **right, struct maple_enode **middle,
2603 unsigned char *mid_split, unsigned long min)
2605 unsigned char split = 0;
2606 unsigned char slot_count = mt_slots[b_node->type];
2608 *left = mas_new_ma_node(mas, b_node);
2613 if (b_node->b_end < slot_count) {
2614 split = b_node->b_end;
2616 split = mab_calc_split(mas, b_node, mid_split, min);
2617 *right = mas_new_ma_node(mas, b_node);
2621 *middle = mas_new_ma_node(mas, b_node);
2628 * mab_set_b_end() - Add entry to b_node at b_node->b_end and increment the end
2630 * @b_node - the big node to add the entry
2631 * @mas - the maple state to get the pivot (mas->max)
2632 * @entry - the entry to add, if NULL nothing happens.
2634 static inline void mab_set_b_end(struct maple_big_node *b_node,
2635 struct ma_state *mas,
2641 b_node->slot[b_node->b_end] = entry;
2642 if (mt_is_alloc(mas->tree))
2643 b_node->gap[b_node->b_end] = mas_max_gap(mas);
2644 b_node->pivot[b_node->b_end++] = mas->max;
2648 * mas_set_split_parent() - combine_then_separate helper function. Sets the parent
2649 * of @mas->node to either @left or @right, depending on @slot and @split
2651 * @mas - the maple state with the node that needs a parent
2652 * @left - possible parent 1
2653 * @right - possible parent 2
2654 * @slot - the slot the mas->node was placed
2655 * @split - the split location between @left and @right
2657 static inline void mas_set_split_parent(struct ma_state *mas,
2658 struct maple_enode *left,
2659 struct maple_enode *right,
2660 unsigned char *slot, unsigned char split)
2662 if (mas_is_none(mas))
2665 if ((*slot) <= split)
2666 mte_set_parent(mas->node, left, *slot);
2668 mte_set_parent(mas->node, right, (*slot) - split - 1);
2674 * mte_mid_split_check() - Check if the next node passes the mid-split
2675 * @**l: Pointer to left encoded maple node.
2676 * @**m: Pointer to middle encoded maple node.
2677 * @**r: Pointer to right encoded maple node.
2679 * @*split: The split location.
2680 * @mid_split: The middle split.
2682 static inline void mte_mid_split_check(struct maple_enode **l,
2683 struct maple_enode **r,
2684 struct maple_enode *right,
2686 unsigned char *split,
2687 unsigned char mid_split)
2692 if (slot < mid_split)
2701 * mast_set_split_parents() - Helper function to set three nodes parents. Slot
2702 * is taken from @mast->l.
2703 * @mast - the maple subtree state
2704 * @left - the left node
2705 * @right - the right node
2706 * @split - the split location.
2708 static inline void mast_set_split_parents(struct maple_subtree_state *mast,
2709 struct maple_enode *left,
2710 struct maple_enode *middle,
2711 struct maple_enode *right,
2712 unsigned char split,
2713 unsigned char mid_split)
2716 struct maple_enode *l = left;
2717 struct maple_enode *r = right;
2719 if (mas_is_none(mast->l))
2725 slot = mast->l->offset;
2727 mte_mid_split_check(&l, &r, right, slot, &split, mid_split);
2728 mas_set_split_parent(mast->l, l, r, &slot, split);
2730 mte_mid_split_check(&l, &r, right, slot, &split, mid_split);
2731 mas_set_split_parent(mast->m, l, r, &slot, split);
2733 mte_mid_split_check(&l, &r, right, slot, &split, mid_split);
2734 mas_set_split_parent(mast->r, l, r, &slot, split);
2738 * mas_wmb_replace() - Write memory barrier and replace
2739 * @mas: The maple state
2740 * @free: the maple topiary list of nodes to free
2741 * @destroy: The maple topiary list of nodes to destroy (walk and free)
2743 * Updates gap as necessary.
2745 static inline void mas_wmb_replace(struct ma_state *mas,
2746 struct ma_topiary *free,
2747 struct ma_topiary *destroy)
2749 /* All nodes must see old data as dead prior to replacing that data */
2750 smp_wmb(); /* Needed for RCU */
2752 /* Insert the new data in the tree */
2753 mas_replace(mas, true);
2755 if (!mte_is_leaf(mas->node))
2756 mas_descend_adopt(mas);
2758 mas_mat_free(mas, free);
2761 mas_mat_destroy(mas, destroy);
2763 if (mte_is_leaf(mas->node))
2766 mas_update_gap(mas);
2770 * mast_new_root() - Set a new tree root during subtree creation
2771 * @mast: The maple subtree state
2772 * @mas: The maple state
2774 static inline void mast_new_root(struct maple_subtree_state *mast,
2775 struct ma_state *mas)
2777 mas_mn(mast->l)->parent =
2778 ma_parent_ptr(((unsigned long)mas->tree | MA_ROOT_PARENT));
2779 if (!mte_dead_node(mast->orig_l->node) &&
2780 !mte_is_root(mast->orig_l->node)) {
2782 mast_ascend_free(mast);
2784 } while (!mte_is_root(mast->orig_l->node));
2786 if ((mast->orig_l->node != mas->node) &&
2787 (mast->l->depth > mas_mt_height(mas))) {
2788 mat_add(mast->free, mas->node);
2793 * mast_cp_to_nodes() - Copy data out to nodes.
2794 * @mast: The maple subtree state
2795 * @left: The left encoded maple node
2796 * @middle: The middle encoded maple node
2797 * @right: The right encoded maple node
2798 * @split: The location to split between left and (middle ? middle : right)
2799 * @mid_split: The location to split between middle and right.
2801 static inline void mast_cp_to_nodes(struct maple_subtree_state *mast,
2802 struct maple_enode *left, struct maple_enode *middle,
2803 struct maple_enode *right, unsigned char split, unsigned char mid_split)
2805 bool new_lmax = true;
2807 mast->l->node = mte_node_or_none(left);
2808 mast->m->node = mte_node_or_none(middle);
2809 mast->r->node = mte_node_or_none(right);
2811 mast->l->min = mast->orig_l->min;
2812 if (split == mast->bn->b_end) {
2813 mast->l->max = mast->orig_r->max;
2817 mab_mas_cp(mast->bn, 0, split, mast->l, new_lmax);
2820 mab_mas_cp(mast->bn, 1 + split, mid_split, mast->m, true);
2821 mast->m->min = mast->bn->pivot[split] + 1;
2825 mast->r->max = mast->orig_r->max;
2827 mab_mas_cp(mast->bn, 1 + split, mast->bn->b_end, mast->r, false);
2828 mast->r->min = mast->bn->pivot[split] + 1;
2833 * mast_combine_cp_left - Copy in the original left side of the tree into the
2834 * combined data set in the maple subtree state big node.
2835 * @mast: The maple subtree state
2837 static inline void mast_combine_cp_left(struct maple_subtree_state *mast)
2839 unsigned char l_slot = mast->orig_l->offset;
2844 mas_mab_cp(mast->orig_l, 0, l_slot - 1, mast->bn, 0);
2848 * mast_combine_cp_right: Copy in the original right side of the tree into the
2849 * combined data set in the maple subtree state big node.
2850 * @mast: The maple subtree state
2852 static inline void mast_combine_cp_right(struct maple_subtree_state *mast)
2854 if (mast->bn->pivot[mast->bn->b_end - 1] >= mast->orig_r->max)
2857 mas_mab_cp(mast->orig_r, mast->orig_r->offset + 1,
2858 mt_slot_count(mast->orig_r->node), mast->bn,
2860 mast->orig_r->last = mast->orig_r->max;
2864 * mast_sufficient: Check if the maple subtree state has enough data in the big
2865 * node to create at least one sufficient node
2866 * @mast: the maple subtree state
2868 static inline bool mast_sufficient(struct maple_subtree_state *mast)
2870 if (mast->bn->b_end > mt_min_slot_count(mast->orig_l->node))
2877 * mast_overflow: Check if there is too much data in the subtree state for a
2879 * @mast: The maple subtree state
2881 static inline bool mast_overflow(struct maple_subtree_state *mast)
2883 if (mast->bn->b_end >= mt_slot_count(mast->orig_l->node))
2889 static inline void *mtree_range_walk(struct ma_state *mas)
2891 unsigned long *pivots;
2892 unsigned char offset;
2893 struct maple_node *node;
2894 struct maple_enode *next, *last;
2895 enum maple_type type;
2898 unsigned long max, min;
2899 unsigned long prev_max, prev_min;
2907 node = mte_to_node(next);
2908 type = mte_node_type(next);
2909 pivots = ma_pivots(node, type);
2910 end = ma_data_end(node, type, pivots, max);
2911 if (unlikely(ma_dead_node(node)))
2914 if (pivots[offset] >= mas->index) {
2917 max = pivots[offset];
2923 } while ((offset < end) && (pivots[offset] < mas->index));
2926 min = pivots[offset - 1] + 1;
2928 if (likely(offset < end && pivots[offset]))
2929 max = pivots[offset];
2932 slots = ma_slots(node, type);
2933 next = mt_slot(mas->tree, slots, offset);
2934 if (unlikely(ma_dead_node(node)))
2936 } while (!ma_is_leaf(type));
2938 mas->offset = offset;
2941 mas->min = prev_min;
2942 mas->max = prev_max;
2944 return (void *) next;
2952 * mas_spanning_rebalance() - Rebalance across two nodes which may not be peers.
2953 * @mas: The starting maple state
2954 * @mast: The maple_subtree_state, keeps track of 4 maple states.
2955 * @count: The estimated count of iterations needed.
2957 * Follow the tree upwards from @l_mas and @r_mas for @count, or until the root
2958 * is hit. First @b_node is split into two entries which are inserted into the
2959 * next iteration of the loop. @b_node is returned populated with the final
2960 * iteration. @mas is used to obtain allocations. orig_l_mas keeps track of the
2961 * nodes that will remain active by using orig_l_mas->index and orig_l_mas->last
2962 * to account of what has been copied into the new sub-tree. The update of
2963 * orig_l_mas->last is used in mas_consume to find the slots that will need to
2964 * be either freed or destroyed. orig_l_mas->depth keeps track of the height of
2965 * the new sub-tree in case the sub-tree becomes the full tree.
2967 * Return: the number of elements in b_node during the last loop.
2969 static int mas_spanning_rebalance(struct ma_state *mas,
2970 struct maple_subtree_state *mast, unsigned char count)
2972 unsigned char split, mid_split;
2973 unsigned char slot = 0;
2974 struct maple_enode *left = NULL, *middle = NULL, *right = NULL;
2976 MA_STATE(l_mas, mas->tree, mas->index, mas->index);
2977 MA_STATE(r_mas, mas->tree, mas->index, mas->last);
2978 MA_STATE(m_mas, mas->tree, mas->index, mas->index);
2979 MA_TOPIARY(free, mas->tree);
2980 MA_TOPIARY(destroy, mas->tree);
2983 * The tree needs to be rebalanced and leaves need to be kept at the same level.
2984 * Rebalancing is done by use of the ``struct maple_topiary``.
2990 mast->destroy = &destroy;
2991 l_mas.node = r_mas.node = m_mas.node = MAS_NONE;
2993 /* Check if this is not root and has sufficient data. */
2994 if (((mast->orig_l->min != 0) || (mast->orig_r->max != ULONG_MAX)) &&
2995 unlikely(mast->bn->b_end <= mt_min_slots[mast->bn->type]))
2996 mast_spanning_rebalance(mast);
2998 mast->orig_l->depth = 0;
3001 * Each level of the tree is examined and balanced, pushing data to the left or
3002 * right, or rebalancing against left or right nodes is employed to avoid
3003 * rippling up the tree to limit the amount of churn. Once a new sub-section of
3004 * the tree is created, there may be a mix of new and old nodes. The old nodes
3005 * will have the incorrect parent pointers and currently be in two trees: the
3006 * original tree and the partially new tree. To remedy the parent pointers in
3007 * the old tree, the new data is swapped into the active tree and a walk down
3008 * the tree is performed and the parent pointers are updated.
3009 * See mas_descend_adopt() for more information..
3013 mast->bn->type = mte_node_type(mast->orig_l->node);
3014 split = mas_mab_to_node(mas, mast->bn, &left, &right, &middle,
3015 &mid_split, mast->orig_l->min);
3016 mast_set_split_parents(mast, left, middle, right, split,
3018 mast_cp_to_nodes(mast, left, middle, right, split, mid_split);
3021 * Copy data from next level in the tree to mast->bn from next
3024 memset(mast->bn, 0, sizeof(struct maple_big_node));
3025 mast->bn->type = mte_node_type(left);
3026 mast->orig_l->depth++;
3028 /* Root already stored in l->node. */
3029 if (mas_is_root_limits(mast->l))
3032 mast_ascend_free(mast);
3033 mast_combine_cp_left(mast);
3034 l_mas.offset = mast->bn->b_end;
3035 mab_set_b_end(mast->bn, &l_mas, left);
3036 mab_set_b_end(mast->bn, &m_mas, middle);
3037 mab_set_b_end(mast->bn, &r_mas, right);
3039 /* Copy anything necessary out of the right node. */
3040 mast_combine_cp_right(mast);
3042 mast->orig_l->last = mast->orig_l->max;
3044 if (mast_sufficient(mast))
3047 if (mast_overflow(mast))
3050 /* May be a new root stored in mast->bn */
3051 if (mas_is_root_limits(mast->orig_l))
3054 mast_spanning_rebalance(mast);
3056 /* rebalancing from other nodes may require another loop. */
3061 l_mas.node = mt_mk_node(ma_mnode_ptr(mas_pop_node(mas)),
3062 mte_node_type(mast->orig_l->node));
3063 mast->orig_l->depth++;
3064 mab_mas_cp(mast->bn, 0, mt_slots[mast->bn->type] - 1, &l_mas, true);
3065 mte_set_parent(left, l_mas.node, slot);
3067 mte_set_parent(middle, l_mas.node, ++slot);
3070 mte_set_parent(right, l_mas.node, ++slot);
3072 if (mas_is_root_limits(mast->l)) {
3074 mast_new_root(mast, mas);
3076 mas_mn(&l_mas)->parent = mas_mn(mast->orig_l)->parent;
3079 if (!mte_dead_node(mast->orig_l->node))
3080 mat_add(&free, mast->orig_l->node);
3082 mas->depth = mast->orig_l->depth;
3083 *mast->orig_l = l_mas;
3084 mte_set_node_dead(mas->node);
3086 /* Set up mas for insertion. */
3087 mast->orig_l->depth = mas->depth;
3088 mast->orig_l->alloc = mas->alloc;
3089 *mas = *mast->orig_l;
3090 mas_wmb_replace(mas, &free, &destroy);
3091 mtree_range_walk(mas);
3092 return mast->bn->b_end;
3096 * mas_rebalance() - Rebalance a given node.
3097 * @mas: The maple state
3098 * @b_node: The big maple node.
3100 * Rebalance two nodes into a single node or two new nodes that are sufficient.
3101 * Continue upwards until tree is sufficient.
3103 * Return: the number of elements in b_node during the last loop.
3105 static inline int mas_rebalance(struct ma_state *mas,
3106 struct maple_big_node *b_node)
3108 char empty_count = mas_mt_height(mas);
3109 struct maple_subtree_state mast;
3110 unsigned char shift, b_end = ++b_node->b_end;
3112 MA_STATE(l_mas, mas->tree, mas->index, mas->last);
3113 MA_STATE(r_mas, mas->tree, mas->index, mas->last);
3115 trace_ma_op(__func__, mas);
3118 * Rebalancing occurs if a node is insufficient. Data is rebalanced
3119 * against the node to the right if it exists, otherwise the node to the
3120 * left of this node is rebalanced against this node. If rebalancing
3121 * causes just one node to be produced instead of two, then the parent
3122 * is also examined and rebalanced if it is insufficient. Every level
3123 * tries to combine the data in the same way. If one node contains the
3124 * entire range of the tree, then that node is used as a new root node.
3126 mas_node_count(mas, 1 + empty_count * 3);
3127 if (mas_is_err(mas))
3130 mast.orig_l = &l_mas;
3131 mast.orig_r = &r_mas;
3133 mast.bn->type = mte_node_type(mas->node);
3135 l_mas = r_mas = *mas;
3137 if (mas_next_sibling(&r_mas)) {
3138 mas_mab_cp(&r_mas, 0, mt_slot_count(r_mas.node), b_node, b_end);
3139 r_mas.last = r_mas.index = r_mas.max;
3141 mas_prev_sibling(&l_mas);
3142 shift = mas_data_end(&l_mas) + 1;
3143 mab_shift_right(b_node, shift);
3144 mas->offset += shift;
3145 mas_mab_cp(&l_mas, 0, shift - 1, b_node, 0);
3146 b_node->b_end = shift + b_end;
3147 l_mas.index = l_mas.last = l_mas.min;
3150 return mas_spanning_rebalance(mas, &mast, empty_count);
3154 * mas_destroy_rebalance() - Rebalance left-most node while destroying the maple
3156 * @mas: The maple state
3157 * @end: The end of the left-most node.
3159 * During a mass-insert event (such as forking), it may be necessary to
3160 * rebalance the left-most node when it is not sufficient.
3162 static inline void mas_destroy_rebalance(struct ma_state *mas, unsigned char end)
3164 enum maple_type mt = mte_node_type(mas->node);
3165 struct maple_node reuse, *newnode, *parent, *new_left, *left, *node;
3166 struct maple_enode *eparent;
3167 unsigned char offset, tmp, split = mt_slots[mt] / 2;
3168 void __rcu **l_slots, **slots;
3169 unsigned long *l_pivs, *pivs, gap;
3170 bool in_rcu = mt_in_rcu(mas->tree);
3172 MA_STATE(l_mas, mas->tree, mas->index, mas->last);
3175 mas_prev_sibling(&l_mas);
3179 /* Allocate for both left and right as well as parent. */
3180 mas_node_count(mas, 3);
3181 if (mas_is_err(mas))
3184 newnode = mas_pop_node(mas);
3190 newnode->parent = node->parent;
3191 slots = ma_slots(newnode, mt);
3192 pivs = ma_pivots(newnode, mt);
3193 left = mas_mn(&l_mas);
3194 l_slots = ma_slots(left, mt);
3195 l_pivs = ma_pivots(left, mt);
3196 if (!l_slots[split])
3198 tmp = mas_data_end(&l_mas) - split;
3200 memcpy(slots, l_slots + split + 1, sizeof(void *) * tmp);
3201 memcpy(pivs, l_pivs + split + 1, sizeof(unsigned long) * tmp);
3202 pivs[tmp] = l_mas.max;
3203 memcpy(slots + tmp, ma_slots(node, mt), sizeof(void *) * end);
3204 memcpy(pivs + tmp, ma_pivots(node, mt), sizeof(unsigned long) * end);
3206 l_mas.max = l_pivs[split];
3207 mas->min = l_mas.max + 1;
3208 eparent = mt_mk_node(mte_parent(l_mas.node),
3209 mas_parent_enum(&l_mas, l_mas.node));
3212 unsigned char max_p = mt_pivots[mt];
3213 unsigned char max_s = mt_slots[mt];
3216 memset(pivs + tmp, 0,
3217 sizeof(unsigned long *) * (max_p - tmp));
3219 if (tmp < mt_slots[mt])
3220 memset(slots + tmp, 0, sizeof(void *) * (max_s - tmp));
3222 memcpy(node, newnode, sizeof(struct maple_node));
3223 ma_set_meta(node, mt, 0, tmp - 1);
3224 mte_set_pivot(eparent, mte_parent_slot(l_mas.node),
3227 /* Remove data from l_pivs. */
3229 memset(l_pivs + tmp, 0, sizeof(unsigned long) * (max_p - tmp));
3230 memset(l_slots + tmp, 0, sizeof(void *) * (max_s - tmp));
3231 ma_set_meta(left, mt, 0, split);
3236 /* RCU requires replacing both l_mas, mas, and parent. */
3237 mas->node = mt_mk_node(newnode, mt);
3238 ma_set_meta(newnode, mt, 0, tmp);
3240 new_left = mas_pop_node(mas);
3241 new_left->parent = left->parent;
3242 mt = mte_node_type(l_mas.node);
3243 slots = ma_slots(new_left, mt);
3244 pivs = ma_pivots(new_left, mt);
3245 memcpy(slots, l_slots, sizeof(void *) * split);
3246 memcpy(pivs, l_pivs, sizeof(unsigned long) * split);
3247 ma_set_meta(new_left, mt, 0, split);
3248 l_mas.node = mt_mk_node(new_left, mt);
3250 /* replace parent. */
3251 offset = mte_parent_slot(mas->node);
3252 mt = mas_parent_enum(&l_mas, l_mas.node);
3253 parent = mas_pop_node(mas);
3254 slots = ma_slots(parent, mt);
3255 pivs = ma_pivots(parent, mt);
3256 memcpy(parent, mte_to_node(eparent), sizeof(struct maple_node));
3257 rcu_assign_pointer(slots[offset], mas->node);
3258 rcu_assign_pointer(slots[offset - 1], l_mas.node);
3259 pivs[offset - 1] = l_mas.max;
3260 eparent = mt_mk_node(parent, mt);
3262 gap = mas_leaf_max_gap(mas);
3263 mte_set_gap(eparent, mte_parent_slot(mas->node), gap);
3264 gap = mas_leaf_max_gap(&l_mas);
3265 mte_set_gap(eparent, mte_parent_slot(l_mas.node), gap);
3269 mas_replace(mas, false);
3271 mas_update_gap(mas);
3275 * mas_split_final_node() - Split the final node in a subtree operation.
3276 * @mast: the maple subtree state
3277 * @mas: The maple state
3278 * @height: The height of the tree in case it's a new root.
3280 static inline bool mas_split_final_node(struct maple_subtree_state *mast,
3281 struct ma_state *mas, int height)
3283 struct maple_enode *ancestor;
3285 if (mte_is_root(mas->node)) {
3286 if (mt_is_alloc(mas->tree))
3287 mast->bn->type = maple_arange_64;
3289 mast->bn->type = maple_range_64;
3290 mas->depth = height;
3293 * Only a single node is used here, could be root.
3294 * The Big_node data should just fit in a single node.
3296 ancestor = mas_new_ma_node(mas, mast->bn);
3297 mte_set_parent(mast->l->node, ancestor, mast->l->offset);
3298 mte_set_parent(mast->r->node, ancestor, mast->r->offset);
3299 mte_to_node(ancestor)->parent = mas_mn(mas)->parent;
3301 mast->l->node = ancestor;
3302 mab_mas_cp(mast->bn, 0, mt_slots[mast->bn->type] - 1, mast->l, true);
3303 mas->offset = mast->bn->b_end - 1;
3308 * mast_fill_bnode() - Copy data into the big node in the subtree state
3309 * @mast: The maple subtree state
3310 * @mas: the maple state
3311 * @skip: The number of entries to skip for new nodes insertion.
3313 static inline void mast_fill_bnode(struct maple_subtree_state *mast,
3314 struct ma_state *mas,
3318 struct maple_enode *old = mas->node;
3319 unsigned char split;
3321 memset(mast->bn->gap, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->gap));
3322 memset(mast->bn->slot, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->slot));
3323 memset(mast->bn->pivot, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->pivot));
3324 mast->bn->b_end = 0;
3326 if (mte_is_root(mas->node)) {
3330 mat_add(mast->free, old);
3331 mas->offset = mte_parent_slot(mas->node);
3334 if (cp && mast->l->offset)
3335 mas_mab_cp(mas, 0, mast->l->offset - 1, mast->bn, 0);
3337 split = mast->bn->b_end;
3338 mab_set_b_end(mast->bn, mast->l, mast->l->node);
3339 mast->r->offset = mast->bn->b_end;
3340 mab_set_b_end(mast->bn, mast->r, mast->r->node);
3341 if (mast->bn->pivot[mast->bn->b_end - 1] == mas->max)
3345 mas_mab_cp(mas, split + skip, mt_slot_count(mas->node) - 1,
3346 mast->bn, mast->bn->b_end);
3349 mast->bn->type = mte_node_type(mas->node);
3353 * mast_split_data() - Split the data in the subtree state big node into regular
3355 * @mast: The maple subtree state
3356 * @mas: The maple state
3357 * @split: The location to split the big node
3359 static inline void mast_split_data(struct maple_subtree_state *mast,
3360 struct ma_state *mas, unsigned char split)
3362 unsigned char p_slot;
3364 mab_mas_cp(mast->bn, 0, split, mast->l, true);
3365 mte_set_pivot(mast->r->node, 0, mast->r->max);
3366 mab_mas_cp(mast->bn, split + 1, mast->bn->b_end, mast->r, false);
3367 mast->l->offset = mte_parent_slot(mas->node);
3368 mast->l->max = mast->bn->pivot[split];
3369 mast->r->min = mast->l->max + 1;
3370 if (mte_is_leaf(mas->node))
3373 p_slot = mast->orig_l->offset;
3374 mas_set_split_parent(mast->orig_l, mast->l->node, mast->r->node,
3376 mas_set_split_parent(mast->orig_r, mast->l->node, mast->r->node,
3381 * mas_push_data() - Instead of splitting a node, it is beneficial to push the
3382 * data to the right or left node if there is room.
3383 * @mas: The maple state
3384 * @height: The current height of the maple state
3385 * @mast: The maple subtree state
3386 * @left: Push left or not.
3388 * Keeping the height of the tree low means faster lookups.
3390 * Return: True if pushed, false otherwise.
3392 static inline bool mas_push_data(struct ma_state *mas, int height,
3393 struct maple_subtree_state *mast, bool left)
3395 unsigned char slot_total = mast->bn->b_end;
3396 unsigned char end, space, split;
3398 MA_STATE(tmp_mas, mas->tree, mas->index, mas->last);
3400 tmp_mas.depth = mast->l->depth;
3402 if (left && !mas_prev_sibling(&tmp_mas))
3404 else if (!left && !mas_next_sibling(&tmp_mas))
3407 end = mas_data_end(&tmp_mas);
3409 space = 2 * mt_slot_count(mas->node) - 2;
3410 /* -2 instead of -1 to ensure there isn't a triple split */
3411 if (ma_is_leaf(mast->bn->type))
3414 if (mas->max == ULONG_MAX)
3417 if (slot_total >= space)
3420 /* Get the data; Fill mast->bn */
3423 mab_shift_right(mast->bn, end + 1);
3424 mas_mab_cp(&tmp_mas, 0, end, mast->bn, 0);
3425 mast->bn->b_end = slot_total + 1;
3427 mas_mab_cp(&tmp_mas, 0, end, mast->bn, mast->bn->b_end);
3430 /* Configure mast for splitting of mast->bn */
3431 split = mt_slots[mast->bn->type] - 2;
3433 /* Switch mas to prev node */
3434 mat_add(mast->free, mas->node);
3436 /* Start using mast->l for the left side. */
3437 tmp_mas.node = mast->l->node;
3440 mat_add(mast->free, tmp_mas.node);
3441 tmp_mas.node = mast->r->node;
3443 split = slot_total - split;
3445 split = mab_no_null_split(mast->bn, split, mt_slots[mast->bn->type]);
3446 /* Update parent slot for split calculation. */
3448 mast->orig_l->offset += end + 1;
3450 mast_split_data(mast, mas, split);
3451 mast_fill_bnode(mast, mas, 2);
3452 mas_split_final_node(mast, mas, height + 1);
3457 * mas_split() - Split data that is too big for one node into two.
3458 * @mas: The maple state
3459 * @b_node: The maple big node
3460 * Return: 1 on success, 0 on failure.
3462 static int mas_split(struct ma_state *mas, struct maple_big_node *b_node)
3465 struct maple_subtree_state mast;
3467 unsigned char mid_split, split = 0;
3470 * Splitting is handled differently from any other B-tree; the Maple
3471 * Tree splits upwards. Splitting up means that the split operation
3472 * occurs when the walk of the tree hits the leaves and not on the way
3473 * down. The reason for splitting up is that it is impossible to know
3474 * how much space will be needed until the leaf is (or leaves are)
3475 * reached. Since overwriting data is allowed and a range could
3476 * overwrite more than one range or result in changing one entry into 3
3477 * entries, it is impossible to know if a split is required until the
3480 * Splitting is a balancing act between keeping allocations to a minimum
3481 * and avoiding a 'jitter' event where a tree is expanded to make room
3482 * for an entry followed by a contraction when the entry is removed. To
3483 * accomplish the balance, there are empty slots remaining in both left
3484 * and right nodes after a split.
3486 MA_STATE(l_mas, mas->tree, mas->index, mas->last);
3487 MA_STATE(r_mas, mas->tree, mas->index, mas->last);
3488 MA_STATE(prev_l_mas, mas->tree, mas->index, mas->last);
3489 MA_STATE(prev_r_mas, mas->tree, mas->index, mas->last);
3490 MA_TOPIARY(mat, mas->tree);
3492 trace_ma_op(__func__, mas);
3493 mas->depth = mas_mt_height(mas);
3494 /* Allocation failures will happen early. */
3495 mas_node_count(mas, 1 + mas->depth * 2);
3496 if (mas_is_err(mas))
3501 mast.orig_l = &prev_l_mas;
3502 mast.orig_r = &prev_r_mas;
3506 while (height++ <= mas->depth) {
3507 if (mt_slots[b_node->type] > b_node->b_end) {
3508 mas_split_final_node(&mast, mas, height);
3512 l_mas = r_mas = *mas;
3513 l_mas.node = mas_new_ma_node(mas, b_node);
3514 r_mas.node = mas_new_ma_node(mas, b_node);
3516 * Another way that 'jitter' is avoided is to terminate a split up early if the
3517 * left or right node has space to spare. This is referred to as "pushing left"
3518 * or "pushing right" and is similar to the B* tree, except the nodes left or
3519 * right can rarely be reused due to RCU, but the ripple upwards is halted which
3520 * is a significant savings.
3522 /* Try to push left. */
3523 if (mas_push_data(mas, height, &mast, true))
3526 /* Try to push right. */
3527 if (mas_push_data(mas, height, &mast, false))
3530 split = mab_calc_split(mas, b_node, &mid_split, prev_l_mas.min);
3531 mast_split_data(&mast, mas, split);
3533 * Usually correct, mab_mas_cp in the above call overwrites
3536 mast.r->max = mas->max;
3537 mast_fill_bnode(&mast, mas, 1);
3538 prev_l_mas = *mast.l;
3539 prev_r_mas = *mast.r;
3542 /* Set the original node as dead */
3543 mat_add(mast.free, mas->node);
3544 mas->node = l_mas.node;
3545 mas_wmb_replace(mas, mast.free, NULL);
3546 mtree_range_walk(mas);
3551 * mas_reuse_node() - Reuse the node to store the data.
3552 * @wr_mas: The maple write state
3553 * @bn: The maple big node
3554 * @end: The end of the data.
3556 * Will always return false in RCU mode.
3558 * Return: True if node was reused, false otherwise.
3560 static inline bool mas_reuse_node(struct ma_wr_state *wr_mas,
3561 struct maple_big_node *bn, unsigned char end)
3563 /* Need to be rcu safe. */
3564 if (mt_in_rcu(wr_mas->mas->tree))
3567 if (end > bn->b_end) {
3568 int clear = mt_slots[wr_mas->type] - bn->b_end;
3570 memset(wr_mas->slots + bn->b_end, 0, sizeof(void *) * clear--);
3571 memset(wr_mas->pivots + bn->b_end, 0, sizeof(void *) * clear);
3573 mab_mas_cp(bn, 0, bn->b_end, wr_mas->mas, false);
3578 * mas_commit_b_node() - Commit the big node into the tree.
3579 * @wr_mas: The maple write state
3580 * @b_node: The maple big node
3581 * @end: The end of the data.
3583 static inline int mas_commit_b_node(struct ma_wr_state *wr_mas,
3584 struct maple_big_node *b_node, unsigned char end)
3586 struct maple_node *node;
3587 unsigned char b_end = b_node->b_end;
3588 enum maple_type b_type = b_node->type;
3590 if ((b_end < mt_min_slots[b_type]) &&
3591 (!mte_is_root(wr_mas->mas->node)) &&
3592 (mas_mt_height(wr_mas->mas) > 1))
3593 return mas_rebalance(wr_mas->mas, b_node);
3595 if (b_end >= mt_slots[b_type])
3596 return mas_split(wr_mas->mas, b_node);
3598 if (mas_reuse_node(wr_mas, b_node, end))
3601 mas_node_count(wr_mas->mas, 1);
3602 if (mas_is_err(wr_mas->mas))
3605 node = mas_pop_node(wr_mas->mas);
3606 node->parent = mas_mn(wr_mas->mas)->parent;
3607 wr_mas->mas->node = mt_mk_node(node, b_type);
3608 mab_mas_cp(b_node, 0, b_end, wr_mas->mas, false);
3609 mas_replace(wr_mas->mas, false);
3611 mas_update_gap(wr_mas->mas);
3616 * mas_root_expand() - Expand a root to a node
3617 * @mas: The maple state
3618 * @entry: The entry to store into the tree
3620 static inline int mas_root_expand(struct ma_state *mas, void *entry)
3622 void *contents = mas_root_locked(mas);
3623 enum maple_type type = maple_leaf_64;
3624 struct maple_node *node;
3626 unsigned long *pivots;
3629 mas_node_count(mas, 1);
3630 if (unlikely(mas_is_err(mas)))
3633 node = mas_pop_node(mas);
3634 pivots = ma_pivots(node, type);
3635 slots = ma_slots(node, type);
3636 node->parent = ma_parent_ptr(
3637 ((unsigned long)mas->tree | MA_ROOT_PARENT));
3638 mas->node = mt_mk_node(node, type);
3642 rcu_assign_pointer(slots[slot], contents);
3643 if (likely(mas->index > 1))
3646 pivots[slot++] = mas->index - 1;
3649 rcu_assign_pointer(slots[slot], entry);
3651 pivots[slot] = mas->last;
3652 if (mas->last != ULONG_MAX)
3655 mas_set_height(mas);
3657 /* swap the new root into the tree */
3658 rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
3659 ma_set_meta(node, maple_leaf_64, 0, slot);
3663 static inline void mas_store_root(struct ma_state *mas, void *entry)
3665 if (likely((mas->last != 0) || (mas->index != 0)))
3666 mas_root_expand(mas, entry);
3667 else if (((unsigned long) (entry) & 3) == 2)
3668 mas_root_expand(mas, entry);
3670 rcu_assign_pointer(mas->tree->ma_root, entry);
3671 mas->node = MAS_START;
3676 * mas_is_span_wr() - Check if the write needs to be treated as a write that
3678 * @mas: The maple state
3679 * @piv: The pivot value being written
3680 * @type: The maple node type
3681 * @entry: The data to write
3683 * Spanning writes are writes that start in one node and end in another OR if
3684 * the write of a %NULL will cause the node to end with a %NULL.
3686 * Return: True if this is a spanning write, false otherwise.
3688 static bool mas_is_span_wr(struct ma_wr_state *wr_mas)
3691 unsigned long last = wr_mas->mas->last;
3692 unsigned long piv = wr_mas->r_max;
3693 enum maple_type type = wr_mas->type;
3694 void *entry = wr_mas->entry;
3696 /* Contained in this pivot */
3700 max = wr_mas->mas->max;
3701 if (unlikely(ma_is_leaf(type))) {
3702 /* Fits in the node, but may span slots. */
3706 /* Writes to the end of the node but not null. */
3707 if ((last == max) && entry)
3711 * Writing ULONG_MAX is not a spanning write regardless of the
3712 * value being written as long as the range fits in the node.
3714 if ((last == ULONG_MAX) && (last == max))
3716 } else if (piv == last) {
3720 /* Detect spanning store wr walk */
3721 if (last == ULONG_MAX)
3725 trace_ma_write(__func__, wr_mas->mas, piv, entry);
3730 static inline void mas_wr_walk_descend(struct ma_wr_state *wr_mas)
3732 wr_mas->type = mte_node_type(wr_mas->mas->node);
3733 mas_wr_node_walk(wr_mas);
3734 wr_mas->slots = ma_slots(wr_mas->node, wr_mas->type);
3737 static inline void mas_wr_walk_traverse(struct ma_wr_state *wr_mas)
3739 wr_mas->mas->max = wr_mas->r_max;
3740 wr_mas->mas->min = wr_mas->r_min;
3741 wr_mas->mas->node = wr_mas->content;
3742 wr_mas->mas->offset = 0;
3743 wr_mas->mas->depth++;
3746 * mas_wr_walk() - Walk the tree for a write.
3747 * @wr_mas: The maple write state
3749 * Uses mas_slot_locked() and does not need to worry about dead nodes.
3751 * Return: True if it's contained in a node, false on spanning write.
3753 static bool mas_wr_walk(struct ma_wr_state *wr_mas)
3755 struct ma_state *mas = wr_mas->mas;
3758 mas_wr_walk_descend(wr_mas);
3759 if (unlikely(mas_is_span_wr(wr_mas)))
3762 wr_mas->content = mas_slot_locked(mas, wr_mas->slots,
3764 if (ma_is_leaf(wr_mas->type))
3767 mas_wr_walk_traverse(wr_mas);
3773 static bool mas_wr_walk_index(struct ma_wr_state *wr_mas)
3775 struct ma_state *mas = wr_mas->mas;
3778 mas_wr_walk_descend(wr_mas);
3779 wr_mas->content = mas_slot_locked(mas, wr_mas->slots,
3781 if (ma_is_leaf(wr_mas->type))
3783 mas_wr_walk_traverse(wr_mas);
3789 * mas_extend_spanning_null() - Extend a store of a %NULL to include surrounding %NULLs.
3790 * @l_wr_mas: The left maple write state
3791 * @r_wr_mas: The right maple write state
3793 static inline void mas_extend_spanning_null(struct ma_wr_state *l_wr_mas,
3794 struct ma_wr_state *r_wr_mas)
3796 struct ma_state *r_mas = r_wr_mas->mas;
3797 struct ma_state *l_mas = l_wr_mas->mas;
3798 unsigned char l_slot;
3800 l_slot = l_mas->offset;
3801 if (!l_wr_mas->content)
3802 l_mas->index = l_wr_mas->r_min;
3804 if ((l_mas->index == l_wr_mas->r_min) &&
3806 !mas_slot_locked(l_mas, l_wr_mas->slots, l_slot - 1))) {
3808 l_mas->index = l_wr_mas->pivots[l_slot - 2] + 1;
3810 l_mas->index = l_mas->min;
3812 l_mas->offset = l_slot - 1;
3815 if (!r_wr_mas->content) {
3816 if (r_mas->last < r_wr_mas->r_max)
3817 r_mas->last = r_wr_mas->r_max;
3819 } else if ((r_mas->last == r_wr_mas->r_max) &&
3820 (r_mas->last < r_mas->max) &&
3821 !mas_slot_locked(r_mas, r_wr_mas->slots, r_mas->offset + 1)) {
3822 r_mas->last = mas_safe_pivot(r_mas, r_wr_mas->pivots,
3823 r_wr_mas->type, r_mas->offset + 1);
3828 static inline void *mas_state_walk(struct ma_state *mas)
3832 entry = mas_start(mas);
3833 if (mas_is_none(mas))
3836 if (mas_is_ptr(mas))
3839 return mtree_range_walk(mas);
3843 * mtree_lookup_walk() - Internal quick lookup that does not keep maple state up
3846 * @mas: The maple state.
3848 * Note: Leaves mas in undesirable state.
3849 * Return: The entry for @mas->index or %NULL on dead node.
3851 static inline void *mtree_lookup_walk(struct ma_state *mas)
3853 unsigned long *pivots;
3854 unsigned char offset;
3855 struct maple_node *node;
3856 struct maple_enode *next;
3857 enum maple_type type;
3866 node = mte_to_node(next);
3867 type = mte_node_type(next);
3868 pivots = ma_pivots(node, type);
3869 end = ma_data_end(node, type, pivots, max);
3870 if (unlikely(ma_dead_node(node)))
3873 if (pivots[offset] >= mas->index)
3878 } while ((offset < end) && (pivots[offset] < mas->index));
3880 if (likely(offset > end))
3881 max = pivots[offset];
3884 slots = ma_slots(node, type);
3885 next = mt_slot(mas->tree, slots, offset);
3886 if (unlikely(ma_dead_node(node)))
3888 } while (!ma_is_leaf(type));
3890 return (void *) next;
3898 * mas_new_root() - Create a new root node that only contains the entry passed
3900 * @mas: The maple state
3901 * @entry: The entry to store.
3903 * Only valid when the index == 0 and the last == ULONG_MAX
3905 * Return 0 on error, 1 on success.
3907 static inline int mas_new_root(struct ma_state *mas, void *entry)
3909 struct maple_enode *root = mas_root_locked(mas);
3910 enum maple_type type = maple_leaf_64;
3911 struct maple_node *node;
3913 unsigned long *pivots;
3915 if (!entry && !mas->index && mas->last == ULONG_MAX) {
3917 mas_set_height(mas);
3918 rcu_assign_pointer(mas->tree->ma_root, entry);
3919 mas->node = MAS_START;
3923 mas_node_count(mas, 1);
3924 if (mas_is_err(mas))
3927 node = mas_pop_node(mas);
3928 pivots = ma_pivots(node, type);
3929 slots = ma_slots(node, type);
3930 node->parent = ma_parent_ptr(
3931 ((unsigned long)mas->tree | MA_ROOT_PARENT));
3932 mas->node = mt_mk_node(node, type);
3933 rcu_assign_pointer(slots[0], entry);
3934 pivots[0] = mas->last;
3936 mas_set_height(mas);
3937 rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
3940 if (xa_is_node(root))
3941 mte_destroy_walk(root, mas->tree);
3946 * mas_wr_spanning_store() - Create a subtree with the store operation completed
3947 * and new nodes where necessary, then place the sub-tree in the actual tree.
3948 * Note that mas is expected to point to the node which caused the store to
3950 * @wr_mas: The maple write state
3952 * Return: 0 on error, positive on success.
3954 static inline int mas_wr_spanning_store(struct ma_wr_state *wr_mas)
3956 struct maple_subtree_state mast;
3957 struct maple_big_node b_node;
3958 struct ma_state *mas;
3959 unsigned char height;
3961 /* Left and Right side of spanning store */
3962 MA_STATE(l_mas, NULL, 0, 0);
3963 MA_STATE(r_mas, NULL, 0, 0);
3965 MA_WR_STATE(r_wr_mas, &r_mas, wr_mas->entry);
3966 MA_WR_STATE(l_wr_mas, &l_mas, wr_mas->entry);
3969 * A store operation that spans multiple nodes is called a spanning
3970 * store and is handled early in the store call stack by the function
3971 * mas_is_span_wr(). When a spanning store is identified, the maple
3972 * state is duplicated. The first maple state walks the left tree path
3973 * to ``index``, the duplicate walks the right tree path to ``last``.
3974 * The data in the two nodes are combined into a single node, two nodes,
3975 * or possibly three nodes (see the 3-way split above). A ``NULL``
3976 * written to the last entry of a node is considered a spanning store as
3977 * a rebalance is required for the operation to complete and an overflow
3978 * of data may happen.
3981 trace_ma_op(__func__, mas);
3983 if (unlikely(!mas->index && mas->last == ULONG_MAX))
3984 return mas_new_root(mas, wr_mas->entry);
3986 * Node rebalancing may occur due to this store, so there may be three new
3987 * entries per level plus a new root.
3989 height = mas_mt_height(mas);
3990 mas_node_count(mas, 1 + height * 3);
3991 if (mas_is_err(mas))
3995 * Set up right side. Need to get to the next offset after the spanning
3996 * store to ensure it's not NULL and to combine both the next node and
3997 * the node with the start together.
4000 /* Avoid overflow, walk to next slot in the tree. */
4004 r_mas.index = r_mas.last;
4005 mas_wr_walk_index(&r_wr_mas);
4006 r_mas.last = r_mas.index = mas->last;
4008 /* Set up left side. */
4010 mas_wr_walk_index(&l_wr_mas);
4012 if (!wr_mas->entry) {
4013 mas_extend_spanning_null(&l_wr_mas, &r_wr_mas);
4014 mas->offset = l_mas.offset;
4015 mas->index = l_mas.index;
4016 mas->last = l_mas.last = r_mas.last;
4019 /* expanding NULLs may make this cover the entire range */
4020 if (!l_mas.index && r_mas.last == ULONG_MAX) {
4021 mas_set_range(mas, 0, ULONG_MAX);
4022 return mas_new_root(mas, wr_mas->entry);
4025 memset(&b_node, 0, sizeof(struct maple_big_node));
4026 /* Copy l_mas and store the value in b_node. */
4027 mas_store_b_node(&l_wr_mas, &b_node, l_wr_mas.node_end);
4028 /* Copy r_mas into b_node. */
4029 if (r_mas.offset <= r_wr_mas.node_end)
4030 mas_mab_cp(&r_mas, r_mas.offset, r_wr_mas.node_end,
4031 &b_node, b_node.b_end + 1);
4035 /* Stop spanning searches by searching for just index. */
4036 l_mas.index = l_mas.last = mas->index;
4039 mast.orig_l = &l_mas;
4040 mast.orig_r = &r_mas;
4041 /* Combine l_mas and r_mas and split them up evenly again. */
4042 return mas_spanning_rebalance(mas, &mast, height + 1);
4046 * mas_wr_node_store() - Attempt to store the value in a node
4047 * @wr_mas: The maple write state
4049 * Attempts to reuse the node, but may allocate.
4051 * Return: True if stored, false otherwise
4053 static inline bool mas_wr_node_store(struct ma_wr_state *wr_mas)
4055 struct ma_state *mas = wr_mas->mas;
4056 void __rcu **dst_slots;
4057 unsigned long *dst_pivots;
4058 unsigned char dst_offset;
4059 unsigned char new_end = wr_mas->node_end;
4060 unsigned char offset;
4061 unsigned char node_slots = mt_slots[wr_mas->type];
4062 struct maple_node reuse, *newnode;
4063 unsigned char copy_size, max_piv = mt_pivots[wr_mas->type];
4064 bool in_rcu = mt_in_rcu(mas->tree);
4066 offset = mas->offset;
4067 if (mas->last == wr_mas->r_max) {
4068 /* runs right to the end of the node */
4069 if (mas->last == mas->max)
4071 /* don't copy this offset */
4072 wr_mas->offset_end++;
4073 } else if (mas->last < wr_mas->r_max) {
4074 /* new range ends in this range */
4075 if (unlikely(wr_mas->r_max == ULONG_MAX))
4076 mas_bulk_rebalance(mas, wr_mas->node_end, wr_mas->type);
4080 if (wr_mas->end_piv == mas->last)
4081 wr_mas->offset_end++;
4083 new_end -= wr_mas->offset_end - offset - 1;
4086 /* new range starts within a range */
4087 if (wr_mas->r_min < mas->index)
4090 /* Not enough room */
4091 if (new_end >= node_slots)
4094 /* Not enough data. */
4095 if (!mte_is_root(mas->node) && (new_end <= mt_min_slots[wr_mas->type]) &&
4096 !(mas->mas_flags & MA_STATE_BULK))
4101 mas_node_count(mas, 1);
4102 if (mas_is_err(mas))
4105 newnode = mas_pop_node(mas);
4107 memset(&reuse, 0, sizeof(struct maple_node));
4111 newnode->parent = mas_mn(mas)->parent;
4112 dst_pivots = ma_pivots(newnode, wr_mas->type);
4113 dst_slots = ma_slots(newnode, wr_mas->type);
4114 /* Copy from start to insert point */
4115 memcpy(dst_pivots, wr_mas->pivots, sizeof(unsigned long) * (offset + 1));
4116 memcpy(dst_slots, wr_mas->slots, sizeof(void *) * (offset + 1));
4117 dst_offset = offset;
4119 /* Handle insert of new range starting after old range */
4120 if (wr_mas->r_min < mas->index) {
4122 rcu_assign_pointer(dst_slots[dst_offset], wr_mas->content);
4123 dst_pivots[dst_offset++] = mas->index - 1;
4126 /* Store the new entry and range end. */
4127 if (dst_offset < max_piv)
4128 dst_pivots[dst_offset] = mas->last;
4129 mas->offset = dst_offset;
4130 rcu_assign_pointer(dst_slots[dst_offset], wr_mas->entry);
4133 * this range wrote to the end of the node or it overwrote the rest of
4136 if (wr_mas->offset_end > wr_mas->node_end || mas->last >= mas->max) {
4137 new_end = dst_offset;
4142 /* Copy to the end of node if necessary. */
4143 copy_size = wr_mas->node_end - wr_mas->offset_end + 1;
4144 memcpy(dst_slots + dst_offset, wr_mas->slots + wr_mas->offset_end,
4145 sizeof(void *) * copy_size);
4146 if (dst_offset < max_piv) {
4147 if (copy_size > max_piv - dst_offset)
4148 copy_size = max_piv - dst_offset;
4150 memcpy(dst_pivots + dst_offset,
4151 wr_mas->pivots + wr_mas->offset_end,
4152 sizeof(unsigned long) * copy_size);
4155 if ((wr_mas->node_end == node_slots - 1) && (new_end < node_slots - 1))
4156 dst_pivots[new_end] = mas->max;
4159 mas_leaf_set_meta(mas, newnode, dst_pivots, maple_leaf_64, new_end);
4161 mas->node = mt_mk_node(newnode, wr_mas->type);
4162 mas_replace(mas, false);
4164 memcpy(wr_mas->node, newnode, sizeof(struct maple_node));
4166 trace_ma_write(__func__, mas, 0, wr_mas->entry);
4167 mas_update_gap(mas);
4172 * mas_wr_slot_store: Attempt to store a value in a slot.
4173 * @wr_mas: the maple write state
4175 * Return: True if stored, false otherwise
4177 static inline bool mas_wr_slot_store(struct ma_wr_state *wr_mas)
4179 struct ma_state *mas = wr_mas->mas;
4180 unsigned long lmax; /* Logical max. */
4181 unsigned char offset = mas->offset;
4183 if ((wr_mas->r_max > mas->last) && ((wr_mas->r_min != mas->index) ||
4184 (offset != wr_mas->node_end)))
4187 if (offset == wr_mas->node_end - 1)
4190 lmax = wr_mas->pivots[offset + 1];
4192 /* going to overwrite too many slots. */
4193 if (lmax < mas->last)
4196 if (wr_mas->r_min == mas->index) {
4197 /* overwriting two or more ranges with one. */
4198 if (lmax == mas->last)
4201 /* Overwriting all of offset and a portion of offset + 1. */
4202 rcu_assign_pointer(wr_mas->slots[offset], wr_mas->entry);
4203 wr_mas->pivots[offset] = mas->last;
4207 /* Doesn't end on the next range end. */
4208 if (lmax != mas->last)
4211 /* Overwriting a portion of offset and all of offset + 1 */
4212 if ((offset + 1 < mt_pivots[wr_mas->type]) &&
4213 (wr_mas->entry || wr_mas->pivots[offset + 1]))
4214 wr_mas->pivots[offset + 1] = mas->last;
4216 rcu_assign_pointer(wr_mas->slots[offset + 1], wr_mas->entry);
4217 wr_mas->pivots[offset] = mas->index - 1;
4218 mas->offset++; /* Keep mas accurate. */
4221 trace_ma_write(__func__, mas, 0, wr_mas->entry);
4222 mas_update_gap(mas);
4226 static inline void mas_wr_end_piv(struct ma_wr_state *wr_mas)
4228 while ((wr_mas->mas->last > wr_mas->end_piv) &&
4229 (wr_mas->offset_end < wr_mas->node_end))
4230 wr_mas->end_piv = wr_mas->pivots[++wr_mas->offset_end];
4232 if (wr_mas->mas->last > wr_mas->end_piv)
4233 wr_mas->end_piv = wr_mas->mas->max;
4236 static inline void mas_wr_extend_null(struct ma_wr_state *wr_mas)
4238 struct ma_state *mas = wr_mas->mas;
4240 if (mas->last < wr_mas->end_piv && !wr_mas->slots[wr_mas->offset_end])
4241 mas->last = wr_mas->end_piv;
4243 /* Check next slot(s) if we are overwriting the end */
4244 if ((mas->last == wr_mas->end_piv) &&
4245 (wr_mas->node_end != wr_mas->offset_end) &&
4246 !wr_mas->slots[wr_mas->offset_end + 1]) {
4247 wr_mas->offset_end++;
4248 if (wr_mas->offset_end == wr_mas->node_end)
4249 mas->last = mas->max;
4251 mas->last = wr_mas->pivots[wr_mas->offset_end];
4252 wr_mas->end_piv = mas->last;
4255 if (!wr_mas->content) {
4256 /* If this one is null, the next and prev are not */
4257 mas->index = wr_mas->r_min;
4259 /* Check prev slot if we are overwriting the start */
4260 if (mas->index == wr_mas->r_min && mas->offset &&
4261 !wr_mas->slots[mas->offset - 1]) {
4263 wr_mas->r_min = mas->index =
4264 mas_safe_min(mas, wr_mas->pivots, mas->offset);
4265 wr_mas->r_max = wr_mas->pivots[mas->offset];
4270 static inline bool mas_wr_append(struct ma_wr_state *wr_mas)
4272 unsigned char end = wr_mas->node_end;
4273 unsigned char new_end = end + 1;
4274 struct ma_state *mas = wr_mas->mas;
4275 unsigned char node_pivots = mt_pivots[wr_mas->type];
4277 if ((mas->index != wr_mas->r_min) && (mas->last == wr_mas->r_max)) {
4278 if (new_end < node_pivots)
4279 wr_mas->pivots[new_end] = wr_mas->pivots[end];
4281 if (new_end < node_pivots)
4282 ma_set_meta(wr_mas->node, maple_leaf_64, 0, new_end);
4284 rcu_assign_pointer(wr_mas->slots[new_end], wr_mas->entry);
4285 mas->offset = new_end;
4286 wr_mas->pivots[end] = mas->index - 1;
4291 if ((mas->index == wr_mas->r_min) && (mas->last < wr_mas->r_max)) {
4292 if (new_end < node_pivots)
4293 wr_mas->pivots[new_end] = wr_mas->pivots[end];
4295 rcu_assign_pointer(wr_mas->slots[new_end], wr_mas->content);
4296 if (new_end < node_pivots)
4297 ma_set_meta(wr_mas->node, maple_leaf_64, 0, new_end);
4299 wr_mas->pivots[end] = mas->last;
4300 rcu_assign_pointer(wr_mas->slots[end], wr_mas->entry);
4308 * mas_wr_bnode() - Slow path for a modification.
4309 * @wr_mas: The write maple state
4311 * This is where split, rebalance end up.
4313 static void mas_wr_bnode(struct ma_wr_state *wr_mas)
4315 struct maple_big_node b_node;
4317 trace_ma_write(__func__, wr_mas->mas, 0, wr_mas->entry);
4318 memset(&b_node, 0, sizeof(struct maple_big_node));
4319 mas_store_b_node(wr_mas, &b_node, wr_mas->offset_end);
4320 mas_commit_b_node(wr_mas, &b_node, wr_mas->node_end);
4323 static inline void mas_wr_modify(struct ma_wr_state *wr_mas)
4325 unsigned char node_slots;
4326 unsigned char node_size;
4327 struct ma_state *mas = wr_mas->mas;
4329 /* Direct replacement */
4330 if (wr_mas->r_min == mas->index && wr_mas->r_max == mas->last) {
4331 rcu_assign_pointer(wr_mas->slots[mas->offset], wr_mas->entry);
4332 if (!!wr_mas->entry ^ !!wr_mas->content)
4333 mas_update_gap(mas);
4337 /* Attempt to append */
4338 node_slots = mt_slots[wr_mas->type];
4339 node_size = wr_mas->node_end - wr_mas->offset_end + mas->offset + 2;
4340 if (mas->max == ULONG_MAX)
4343 /* slot and node store will not fit, go to the slow path */
4344 if (unlikely(node_size >= node_slots))
4347 if (wr_mas->entry && (wr_mas->node_end < node_slots - 1) &&
4348 (mas->offset == wr_mas->node_end) && mas_wr_append(wr_mas)) {
4349 if (!wr_mas->content || !wr_mas->entry)
4350 mas_update_gap(mas);
4354 if ((wr_mas->offset_end - mas->offset <= 1) && mas_wr_slot_store(wr_mas))
4356 else if (mas_wr_node_store(wr_mas))
4359 if (mas_is_err(mas))
4363 mas_wr_bnode(wr_mas);
4367 * mas_wr_store_entry() - Internal call to store a value
4368 * @mas: The maple state
4369 * @entry: The entry to store.
4371 * Return: The contents that was stored at the index.
4373 static inline void *mas_wr_store_entry(struct ma_wr_state *wr_mas)
4375 struct ma_state *mas = wr_mas->mas;
4377 wr_mas->content = mas_start(mas);
4378 if (mas_is_none(mas) || mas_is_ptr(mas)) {
4379 mas_store_root(mas, wr_mas->entry);
4380 return wr_mas->content;
4383 if (unlikely(!mas_wr_walk(wr_mas))) {
4384 mas_wr_spanning_store(wr_mas);
4385 return wr_mas->content;
4388 /* At this point, we are at the leaf node that needs to be altered. */
4389 wr_mas->end_piv = wr_mas->r_max;
4390 mas_wr_end_piv(wr_mas);
4393 mas_wr_extend_null(wr_mas);
4395 /* New root for a single pointer */
4396 if (unlikely(!mas->index && mas->last == ULONG_MAX)) {
4397 mas_new_root(mas, wr_mas->entry);
4398 return wr_mas->content;
4401 mas_wr_modify(wr_mas);
4402 return wr_mas->content;
4406 * mas_insert() - Internal call to insert a value
4407 * @mas: The maple state
4408 * @entry: The entry to store
4410 * Return: %NULL or the contents that already exists at the requested index
4411 * otherwise. The maple state needs to be checked for error conditions.
4413 static inline void *mas_insert(struct ma_state *mas, void *entry)
4415 MA_WR_STATE(wr_mas, mas, entry);
4418 * Inserting a new range inserts either 0, 1, or 2 pivots within the
4419 * tree. If the insert fits exactly into an existing gap with a value
4420 * of NULL, then the slot only needs to be written with the new value.
4421 * If the range being inserted is adjacent to another range, then only a
4422 * single pivot needs to be inserted (as well as writing the entry). If
4423 * the new range is within a gap but does not touch any other ranges,
4424 * then two pivots need to be inserted: the start - 1, and the end. As
4425 * usual, the entry must be written. Most operations require a new node
4426 * to be allocated and replace an existing node to ensure RCU safety,
4427 * when in RCU mode. The exception to requiring a newly allocated node
4428 * is when inserting at the end of a node (appending). When done
4429 * carefully, appending can reuse the node in place.
4431 wr_mas.content = mas_start(mas);
4435 if (mas_is_none(mas) || mas_is_ptr(mas)) {
4436 mas_store_root(mas, entry);
4440 /* spanning writes always overwrite something */
4441 if (!mas_wr_walk(&wr_mas))
4444 /* At this point, we are at the leaf node that needs to be altered. */
4445 wr_mas.offset_end = mas->offset;
4446 wr_mas.end_piv = wr_mas.r_max;
4448 if (wr_mas.content || (mas->last > wr_mas.r_max))
4454 mas_wr_modify(&wr_mas);
4455 return wr_mas.content;
4458 mas_set_err(mas, -EEXIST);
4459 return wr_mas.content;
4464 * mas_prev_node() - Find the prev non-null entry at the same level in the
4465 * tree. The prev value will be mas->node[mas->offset] or MAS_NONE.
4466 * @mas: The maple state
4467 * @min: The lower limit to search
4469 * The prev node value will be mas->node[mas->offset] or MAS_NONE.
4470 * Return: 1 if the node is dead, 0 otherwise.
4472 static inline int mas_prev_node(struct ma_state *mas, unsigned long min)
4477 struct maple_node *node;
4478 struct maple_enode *enode;
4479 unsigned long *pivots;
4481 if (mas_is_none(mas))
4487 if (ma_is_root(node))
4491 if (unlikely(mas_ascend(mas)))
4493 offset = mas->offset;
4498 mt = mte_node_type(mas->node);
4500 slots = ma_slots(node, mt);
4501 pivots = ma_pivots(node, mt);
4502 mas->max = pivots[offset];
4504 mas->min = pivots[offset - 1] + 1;
4505 if (unlikely(ma_dead_node(node)))
4513 enode = mas_slot(mas, slots, offset);
4514 if (unlikely(ma_dead_node(node)))
4518 mt = mte_node_type(mas->node);
4520 slots = ma_slots(node, mt);
4521 pivots = ma_pivots(node, mt);
4522 offset = ma_data_end(node, mt, pivots, mas->max);
4524 mas->min = pivots[offset - 1] + 1;
4526 if (offset < mt_pivots[mt])
4527 mas->max = pivots[offset];
4533 mas->node = mas_slot(mas, slots, offset);
4534 if (unlikely(ma_dead_node(node)))
4537 mas->offset = mas_data_end(mas);
4538 if (unlikely(mte_dead_node(mas->node)))
4544 mas->offset = offset;
4546 mas->min = pivots[offset - 1] + 1;
4548 if (unlikely(ma_dead_node(node)))
4551 mas->node = MAS_NONE;
4556 * mas_next_node() - Get the next node at the same level in the tree.
4557 * @mas: The maple state
4558 * @max: The maximum pivot value to check.
4560 * The next value will be mas->node[mas->offset] or MAS_NONE.
4561 * Return: 1 on dead node, 0 otherwise.
4563 static inline int mas_next_node(struct ma_state *mas, struct maple_node *node,
4566 unsigned long min, pivot;
4567 unsigned long *pivots;
4568 struct maple_enode *enode;
4570 unsigned char offset;
4574 if (mas->max >= max)
4579 if (ma_is_root(node))
4586 if (unlikely(mas_ascend(mas)))
4589 offset = mas->offset;
4592 mt = mte_node_type(mas->node);
4593 pivots = ma_pivots(node, mt);
4594 } while (unlikely(offset == ma_data_end(node, mt, pivots, mas->max)));
4596 slots = ma_slots(node, mt);
4597 pivot = mas_safe_pivot(mas, pivots, ++offset, mt);
4598 while (unlikely(level > 1)) {
4599 /* Descend, if necessary */
4600 enode = mas_slot(mas, slots, offset);
4601 if (unlikely(ma_dead_node(node)))
4607 mt = mte_node_type(mas->node);
4608 slots = ma_slots(node, mt);
4609 pivots = ma_pivots(node, mt);
4614 enode = mas_slot(mas, slots, offset);
4615 if (unlikely(ma_dead_node(node)))
4624 if (unlikely(ma_dead_node(node)))
4627 mas->node = MAS_NONE;
4632 * mas_next_nentry() - Get the next node entry
4633 * @mas: The maple state
4634 * @max: The maximum value to check
4635 * @*range_start: Pointer to store the start of the range.
4637 * Sets @mas->offset to the offset of the next node entry, @mas->last to the
4638 * pivot of the entry.
4640 * Return: The next entry, %NULL otherwise
4642 static inline void *mas_next_nentry(struct ma_state *mas,
4643 struct maple_node *node, unsigned long max, enum maple_type type)
4645 unsigned char count;
4646 unsigned long pivot;
4647 unsigned long *pivots;
4651 if (mas->last == mas->max) {
4652 mas->index = mas->max;
4656 pivots = ma_pivots(node, type);
4657 slots = ma_slots(node, type);
4658 mas->index = mas_safe_min(mas, pivots, mas->offset);
4659 if (ma_dead_node(node))
4662 if (mas->index > max)
4665 count = ma_data_end(node, type, pivots, mas->max);
4666 if (mas->offset > count)
4669 while (mas->offset < count) {
4670 pivot = pivots[mas->offset];
4671 entry = mas_slot(mas, slots, mas->offset);
4672 if (ma_dead_node(node))
4681 mas->index = pivot + 1;
4685 if (mas->index > mas->max) {
4686 mas->index = mas->last;
4690 pivot = mas_safe_pivot(mas, pivots, mas->offset, type);
4691 entry = mas_slot(mas, slots, mas->offset);
4692 if (ma_dead_node(node))
4706 static inline void mas_rewalk(struct ma_state *mas, unsigned long index)
4710 mas_set(mas, index);
4711 mas_state_walk(mas);
4712 if (mas_is_start(mas))
4720 * mas_next_entry() - Internal function to get the next entry.
4721 * @mas: The maple state
4722 * @limit: The maximum range start.
4724 * Set the @mas->node to the next entry and the range_start to
4725 * the beginning value for the entry. Does not check beyond @limit.
4726 * Sets @mas->index and @mas->last to the limit if it is hit.
4727 * Restarts on dead nodes.
4729 * Return: the next entry or %NULL.
4731 static inline void *mas_next_entry(struct ma_state *mas, unsigned long limit)
4734 struct maple_enode *prev_node;
4735 struct maple_node *node;
4736 unsigned char offset;
4742 offset = mas->offset;
4743 prev_node = mas->node;
4745 mt = mte_node_type(mas->node);
4747 if (unlikely(mas->offset >= mt_slots[mt])) {
4748 mas->offset = mt_slots[mt] - 1;
4752 while (!mas_is_none(mas)) {
4753 entry = mas_next_nentry(mas, node, limit, mt);
4754 if (unlikely(ma_dead_node(node))) {
4755 mas_rewalk(mas, last);
4762 if (unlikely((mas->index > limit)))
4766 prev_node = mas->node;
4767 offset = mas->offset;
4768 if (unlikely(mas_next_node(mas, node, limit))) {
4769 mas_rewalk(mas, last);
4774 mt = mte_node_type(mas->node);
4777 mas->index = mas->last = limit;
4778 mas->offset = offset;
4779 mas->node = prev_node;
4784 * mas_prev_nentry() - Get the previous node entry.
4785 * @mas: The maple state.
4786 * @limit: The lower limit to check for a value.
4788 * Return: the entry, %NULL otherwise.
4790 static inline void *mas_prev_nentry(struct ma_state *mas, unsigned long limit,
4791 unsigned long index)
4793 unsigned long pivot, min;
4794 unsigned char offset;
4795 struct maple_node *mn;
4797 unsigned long *pivots;
4806 mt = mte_node_type(mas->node);
4807 offset = mas->offset - 1;
4808 if (offset >= mt_slots[mt])
4809 offset = mt_slots[mt] - 1;
4811 slots = ma_slots(mn, mt);
4812 pivots = ma_pivots(mn, mt);
4813 if (offset == mt_pivots[mt])
4816 pivot = pivots[offset];
4818 if (unlikely(ma_dead_node(mn))) {
4819 mas_rewalk(mas, index);
4823 while (offset && ((!mas_slot(mas, slots, offset) && pivot >= limit) ||
4825 pivot = pivots[--offset];
4827 min = mas_safe_min(mas, pivots, offset);
4828 entry = mas_slot(mas, slots, offset);
4829 if (unlikely(ma_dead_node(mn))) {
4830 mas_rewalk(mas, index);
4834 if (likely(entry)) {
4835 mas->offset = offset;
4842 static inline void *mas_prev_entry(struct ma_state *mas, unsigned long min)
4847 while (likely(!mas_is_none(mas))) {
4848 entry = mas_prev_nentry(mas, min, mas->index);
4849 if (unlikely(mas->last < min))
4855 if (unlikely(mas_prev_node(mas, min))) {
4856 mas_rewalk(mas, mas->index);
4865 mas->index = mas->last = min;
4870 * mas_rev_awalk() - Internal function. Reverse allocation walk. Find the
4871 * highest gap address of a given size in a given node and descend.
4872 * @mas: The maple state
4873 * @size: The needed size.
4875 * Return: True if found in a leaf, false otherwise.
4878 static bool mas_rev_awalk(struct ma_state *mas, unsigned long size)
4880 enum maple_type type = mte_node_type(mas->node);
4881 struct maple_node *node = mas_mn(mas);
4882 unsigned long *pivots, *gaps;
4884 unsigned long gap = 0;
4885 unsigned long max, min, index;
4886 unsigned char offset;
4888 if (unlikely(mas_is_err(mas)))
4891 if (ma_is_dense(type)) {
4893 mas->offset = (unsigned char)(mas->index - mas->min);
4897 pivots = ma_pivots(node, type);
4898 slots = ma_slots(node, type);
4899 gaps = ma_gaps(node, type);
4900 offset = mas->offset;
4901 min = mas_safe_min(mas, pivots, offset);
4902 /* Skip out of bounds. */
4903 while (mas->last < min)
4904 min = mas_safe_min(mas, pivots, --offset);
4906 max = mas_safe_pivot(mas, pivots, offset, type);
4908 while (index <= max) {
4912 else if (!mas_slot(mas, slots, offset))
4913 gap = max - min + 1;
4916 if ((size <= gap) && (size <= mas->last - min + 1))
4920 /* Skip the next slot, it cannot be a gap. */
4925 max = pivots[offset];
4926 min = mas_safe_min(mas, pivots, offset);
4936 min = mas_safe_min(mas, pivots, offset);
4939 if (unlikely(index > max)) {
4940 mas_set_err(mas, -EBUSY);
4944 if (unlikely(ma_is_leaf(type))) {
4945 mas->offset = offset;
4947 mas->max = min + gap - 1;
4951 /* descend, only happens under lock. */
4952 mas->node = mas_slot(mas, slots, offset);
4955 mas->offset = mas_data_end(mas);
4959 if (mte_is_root(mas->node))
4960 mas_set_err(mas, -EBUSY);
4965 static inline bool mas_anode_descend(struct ma_state *mas, unsigned long size)
4967 enum maple_type type = mte_node_type(mas->node);
4968 unsigned long pivot, min, gap = 0;
4969 unsigned char offset;
4970 unsigned long *gaps;
4971 unsigned long *pivots = ma_pivots(mas_mn(mas), type);
4972 void __rcu **slots = ma_slots(mas_mn(mas), type);
4975 if (ma_is_dense(type)) {
4976 mas->offset = (unsigned char)(mas->index - mas->min);
4980 gaps = ma_gaps(mte_to_node(mas->node), type);
4981 offset = mas->offset;
4982 min = mas_safe_min(mas, pivots, offset);
4983 for (; offset < mt_slots[type]; offset++) {
4984 pivot = mas_safe_pivot(mas, pivots, offset, type);
4985 if (offset && !pivot)
4988 /* Not within lower bounds */
4989 if (mas->index > pivot)
4994 else if (!mas_slot(mas, slots, offset))
4995 gap = min(pivot, mas->last) - max(mas->index, min) + 1;
5000 if (ma_is_leaf(type)) {
5004 if (mas->index <= pivot) {
5005 mas->node = mas_slot(mas, slots, offset);
5014 if (mas->last <= pivot) {
5015 mas_set_err(mas, -EBUSY);
5020 if (mte_is_root(mas->node))
5023 mas->offset = offset;
5028 * mas_walk() - Search for @mas->index in the tree.
5029 * @mas: The maple state.
5031 * mas->index and mas->last will be set to the range if there is a value. If
5032 * mas->node is MAS_NONE, reset to MAS_START.
5034 * Return: the entry at the location or %NULL.
5036 void *mas_walk(struct ma_state *mas)
5041 entry = mas_state_walk(mas);
5042 if (mas_is_start(mas))
5045 if (mas_is_ptr(mas)) {
5050 mas->last = ULONG_MAX;
5055 if (mas_is_none(mas)) {
5057 mas->last = ULONG_MAX;
5062 EXPORT_SYMBOL_GPL(mas_walk);
5064 static inline bool mas_rewind_node(struct ma_state *mas)
5069 if (mte_is_root(mas->node)) {
5079 mas->offset = --slot;
5084 * mas_skip_node() - Internal function. Skip over a node.
5085 * @mas: The maple state.
5087 * Return: true if there is another node, false otherwise.
5089 static inline bool mas_skip_node(struct ma_state *mas)
5091 unsigned char slot, slot_count;
5092 unsigned long *pivots;
5095 mt = mte_node_type(mas->node);
5096 slot_count = mt_slots[mt] - 1;
5098 if (mte_is_root(mas->node)) {
5100 if (slot > slot_count) {
5101 mas_set_err(mas, -EBUSY);
5107 mt = mte_node_type(mas->node);
5108 slot_count = mt_slots[mt] - 1;
5110 } while (slot > slot_count);
5112 mas->offset = ++slot;
5113 pivots = ma_pivots(mas_mn(mas), mt);
5115 mas->min = pivots[slot - 1] + 1;
5117 if (slot <= slot_count)
5118 mas->max = pivots[slot];
5124 * mas_awalk() - Allocation walk. Search from low address to high, for a gap of
5126 * @mas: The maple state
5127 * @size: The size of the gap required
5129 * Search between @mas->index and @mas->last for a gap of @size.
5131 static inline void mas_awalk(struct ma_state *mas, unsigned long size)
5133 struct maple_enode *last = NULL;
5136 * There are 4 options:
5137 * go to child (descend)
5138 * go back to parent (ascend)
5139 * no gap found. (return, slot == MAPLE_NODE_SLOTS)
5140 * found the gap. (return, slot != MAPLE_NODE_SLOTS)
5142 while (!mas_is_err(mas) && !mas_anode_descend(mas, size)) {
5143 if (last == mas->node)
5151 * mas_fill_gap() - Fill a located gap with @entry.
5152 * @mas: The maple state
5153 * @entry: The value to store
5154 * @slot: The offset into the node to store the @entry
5155 * @size: The size of the entry
5156 * @index: The start location
5158 static inline void mas_fill_gap(struct ma_state *mas, void *entry,
5159 unsigned char slot, unsigned long size, unsigned long *index)
5161 MA_WR_STATE(wr_mas, mas, entry);
5162 unsigned char pslot = mte_parent_slot(mas->node);
5163 struct maple_enode *mn = mas->node;
5164 unsigned long *pivots;
5165 enum maple_type ptype;
5167 * mas->index is the start address for the search
5168 * which may no longer be needed.
5169 * mas->last is the end address for the search
5172 *index = mas->index;
5173 mas->last = mas->index + size - 1;
5176 * It is possible that using mas->max and mas->min to correctly
5177 * calculate the index and last will cause an issue in the gap
5178 * calculation, so fix the ma_state here
5181 ptype = mte_node_type(mas->node);
5182 pivots = ma_pivots(mas_mn(mas), ptype);
5183 mas->max = mas_safe_pivot(mas, pivots, pslot, ptype);
5184 mas->min = mas_safe_min(mas, pivots, pslot);
5187 mas_wr_store_entry(&wr_mas);
5191 * mas_sparse_area() - Internal function. Return upper or lower limit when
5192 * searching for a gap in an empty tree.
5193 * @mas: The maple state
5194 * @min: the minimum range
5195 * @max: The maximum range
5196 * @size: The size of the gap
5197 * @fwd: Searching forward or back
5199 static inline void mas_sparse_area(struct ma_state *mas, unsigned long min,
5200 unsigned long max, unsigned long size, bool fwd)
5202 unsigned long start = 0;
5204 if (!unlikely(mas_is_none(mas)))
5213 mas->last = start + size - 1;
5221 * mas_empty_area() - Get the lowest address within the range that is
5222 * sufficient for the size requested.
5223 * @mas: The maple state
5224 * @min: The lowest value of the range
5225 * @max: The highest value of the range
5226 * @size: The size needed
5228 int mas_empty_area(struct ma_state *mas, unsigned long min,
5229 unsigned long max, unsigned long size)
5231 unsigned char offset;
5232 unsigned long *pivots;
5235 if (mas_is_start(mas))
5237 else if (mas->offset >= 2)
5239 else if (!mas_skip_node(mas))
5243 if (mas_is_none(mas) || mas_is_ptr(mas)) {
5244 mas_sparse_area(mas, min, max, size, true);
5248 /* The start of the window can only be within these values */
5251 mas_awalk(mas, size);
5253 if (unlikely(mas_is_err(mas)))
5254 return xa_err(mas->node);
5256 offset = mas->offset;
5257 if (unlikely(offset == MAPLE_NODE_SLOTS))
5260 mt = mte_node_type(mas->node);
5261 pivots = ma_pivots(mas_mn(mas), mt);
5263 mas->min = pivots[offset - 1] + 1;
5265 if (offset < mt_pivots[mt])
5266 mas->max = pivots[offset];
5268 if (mas->index < mas->min)
5269 mas->index = mas->min;
5271 mas->last = mas->index + size - 1;
5274 EXPORT_SYMBOL_GPL(mas_empty_area);
5277 * mas_empty_area_rev() - Get the highest address within the range that is
5278 * sufficient for the size requested.
5279 * @mas: The maple state
5280 * @min: The lowest value of the range
5281 * @max: The highest value of the range
5282 * @size: The size needed
5284 int mas_empty_area_rev(struct ma_state *mas, unsigned long min,
5285 unsigned long max, unsigned long size)
5287 struct maple_enode *last = mas->node;
5289 if (mas_is_start(mas)) {
5291 mas->offset = mas_data_end(mas);
5292 } else if (mas->offset >= 2) {
5294 } else if (!mas_rewind_node(mas)) {
5299 if (mas_is_none(mas) || mas_is_ptr(mas)) {
5300 mas_sparse_area(mas, min, max, size, false);
5304 /* The start of the window can only be within these values. */
5308 while (!mas_rev_awalk(mas, size)) {
5309 if (last == mas->node) {
5310 if (!mas_rewind_node(mas))
5317 if (mas_is_err(mas))
5318 return xa_err(mas->node);
5320 if (unlikely(mas->offset == MAPLE_NODE_SLOTS))
5324 * mas_rev_awalk() has set mas->min and mas->max to the gap values. If
5325 * the maximum is outside the window we are searching, then use the last
5326 * location in the search.
5327 * mas->max and mas->min is the range of the gap.
5328 * mas->index and mas->last are currently set to the search range.
5331 /* Trim the upper limit to the max. */
5332 if (mas->max <= mas->last)
5333 mas->last = mas->max;
5335 mas->index = mas->last - size + 1;
5338 EXPORT_SYMBOL_GPL(mas_empty_area_rev);
5340 static inline int mas_alloc(struct ma_state *mas, void *entry,
5341 unsigned long size, unsigned long *index)
5346 if (mas_is_none(mas) || mas_is_ptr(mas)) {
5347 mas_root_expand(mas, entry);
5348 if (mas_is_err(mas))
5349 return xa_err(mas->node);
5352 return mte_pivot(mas->node, 0);
5353 return mte_pivot(mas->node, 1);
5356 /* Must be walking a tree. */
5357 mas_awalk(mas, size);
5358 if (mas_is_err(mas))
5359 return xa_err(mas->node);
5361 if (mas->offset == MAPLE_NODE_SLOTS)
5365 * At this point, mas->node points to the right node and we have an
5366 * offset that has a sufficient gap.
5370 min = mte_pivot(mas->node, mas->offset - 1) + 1;
5372 if (mas->index < min)
5375 mas_fill_gap(mas, entry, mas->offset, size, index);
5382 static inline int mas_rev_alloc(struct ma_state *mas, unsigned long min,
5383 unsigned long max, void *entry,
5384 unsigned long size, unsigned long *index)
5388 ret = mas_empty_area_rev(mas, min, max, size);
5392 if (mas_is_err(mas))
5393 return xa_err(mas->node);
5395 if (mas->offset == MAPLE_NODE_SLOTS)
5398 mas_fill_gap(mas, entry, mas->offset, size, index);
5406 * mas_dead_leaves() - Mark all leaves of a node as dead.
5407 * @mas: The maple state
5408 * @slots: Pointer to the slot array
5410 * Must hold the write lock.
5412 * Return: The number of leaves marked as dead.
5415 unsigned char mas_dead_leaves(struct ma_state *mas, void __rcu **slots)
5417 struct maple_node *node;
5418 enum maple_type type;
5422 for (offset = 0; offset < mt_slot_count(mas->node); offset++) {
5423 entry = mas_slot_locked(mas, slots, offset);
5424 type = mte_node_type(entry);
5425 node = mte_to_node(entry);
5426 /* Use both node and type to catch LE & BE metadata */
5430 mte_set_node_dead(entry);
5431 smp_wmb(); /* Needed for RCU */
5433 rcu_assign_pointer(slots[offset], node);
5439 static void __rcu **mas_dead_walk(struct ma_state *mas, unsigned char offset)
5441 struct maple_node *node, *next;
5442 void __rcu **slots = NULL;
5446 mas->node = ma_enode_ptr(next);
5448 slots = ma_slots(node, node->type);
5449 next = mas_slot_locked(mas, slots, offset);
5451 } while (!ma_is_leaf(next->type));
5456 static void mt_free_walk(struct rcu_head *head)
5459 struct maple_node *node, *start;
5460 struct maple_tree mt;
5461 unsigned char offset;
5462 enum maple_type type;
5463 MA_STATE(mas, &mt, 0, 0);
5465 node = container_of(head, struct maple_node, rcu);
5467 if (ma_is_leaf(node->type))
5470 mt_init_flags(&mt, node->ma_flags);
5473 mas.node = mt_mk_node(node, node->type);
5474 slots = mas_dead_walk(&mas, 0);
5475 node = mas_mn(&mas);
5477 mt_free_bulk(node->slot_len, slots);
5478 offset = node->parent_slot + 1;
5479 mas.node = node->piv_parent;
5480 if (mas_mn(&mas) == node)
5481 goto start_slots_free;
5483 type = mte_node_type(mas.node);
5484 slots = ma_slots(mte_to_node(mas.node), type);
5485 if ((offset < mt_slots[type]) && (slots[offset]))
5486 slots = mas_dead_walk(&mas, offset);
5488 node = mas_mn(&mas);
5489 } while ((node != start) || (node->slot_len < offset));
5491 slots = ma_slots(node, node->type);
5492 mt_free_bulk(node->slot_len, slots);
5497 mt_free_rcu(&node->rcu);
5500 static inline void __rcu **mas_destroy_descend(struct ma_state *mas,
5501 struct maple_enode *prev, unsigned char offset)
5503 struct maple_node *node;
5504 struct maple_enode *next = mas->node;
5505 void __rcu **slots = NULL;
5510 slots = ma_slots(node, mte_node_type(mas->node));
5511 next = mas_slot_locked(mas, slots, 0);
5512 if ((mte_dead_node(next)))
5513 next = mas_slot_locked(mas, slots, 1);
5515 mte_set_node_dead(mas->node);
5516 node->type = mte_node_type(mas->node);
5517 node->piv_parent = prev;
5518 node->parent_slot = offset;
5521 } while (!mte_is_leaf(next));
5526 static void mt_destroy_walk(struct maple_enode *enode, unsigned char ma_flags,
5530 struct maple_node *node = mte_to_node(enode);
5531 struct maple_enode *start;
5532 struct maple_tree mt;
5534 MA_STATE(mas, &mt, 0, 0);
5536 if (mte_is_leaf(enode))
5539 mt_init_flags(&mt, ma_flags);
5542 mas.node = start = enode;
5543 slots = mas_destroy_descend(&mas, start, 0);
5544 node = mas_mn(&mas);
5546 enum maple_type type;
5547 unsigned char offset;
5548 struct maple_enode *parent, *tmp;
5550 node->slot_len = mas_dead_leaves(&mas, slots);
5552 mt_free_bulk(node->slot_len, slots);
5553 offset = node->parent_slot + 1;
5554 mas.node = node->piv_parent;
5555 if (mas_mn(&mas) == node)
5556 goto start_slots_free;
5558 type = mte_node_type(mas.node);
5559 slots = ma_slots(mte_to_node(mas.node), type);
5560 if (offset >= mt_slots[type])
5563 tmp = mas_slot_locked(&mas, slots, offset);
5564 if (mte_node_type(tmp) && mte_to_node(tmp)) {
5567 slots = mas_destroy_descend(&mas, parent, offset);
5570 node = mas_mn(&mas);
5571 } while (start != mas.node);
5573 node = mas_mn(&mas);
5574 node->slot_len = mas_dead_leaves(&mas, slots);
5576 mt_free_bulk(node->slot_len, slots);
5583 mt_free_rcu(&node->rcu);
5587 * mte_destroy_walk() - Free a tree or sub-tree.
5588 * @enode - the encoded maple node (maple_enode) to start
5589 * @mn - the tree to free - needed for node types.
5591 * Must hold the write lock.
5593 static inline void mte_destroy_walk(struct maple_enode *enode,
5594 struct maple_tree *mt)
5596 struct maple_node *node = mte_to_node(enode);
5598 if (mt_in_rcu(mt)) {
5599 mt_destroy_walk(enode, mt->ma_flags, false);
5600 call_rcu(&node->rcu, mt_free_walk);
5602 mt_destroy_walk(enode, mt->ma_flags, true);
5606 static void mas_wr_store_setup(struct ma_wr_state *wr_mas)
5608 if (!mas_is_start(wr_mas->mas)) {
5609 if (mas_is_none(wr_mas->mas)) {
5610 mas_reset(wr_mas->mas);
5612 wr_mas->r_max = wr_mas->mas->max;
5613 wr_mas->type = mte_node_type(wr_mas->mas->node);
5614 if (mas_is_span_wr(wr_mas))
5615 mas_reset(wr_mas->mas);
5624 * mas_store() - Store an @entry.
5625 * @mas: The maple state.
5626 * @entry: The entry to store.
5628 * The @mas->index and @mas->last is used to set the range for the @entry.
5629 * Note: The @mas should have pre-allocated entries to ensure there is memory to
5630 * store the entry. Please see mas_expected_entries()/mas_destroy() for more details.
5632 * Return: the first entry between mas->index and mas->last or %NULL.
5634 void *mas_store(struct ma_state *mas, void *entry)
5636 MA_WR_STATE(wr_mas, mas, entry);
5638 trace_ma_write(__func__, mas, 0, entry);
5639 #ifdef CONFIG_DEBUG_MAPLE_TREE
5640 if (mas->index > mas->last)
5641 pr_err("Error %lu > %lu %p\n", mas->index, mas->last, entry);
5642 MT_BUG_ON(mas->tree, mas->index > mas->last);
5643 if (mas->index > mas->last) {
5644 mas_set_err(mas, -EINVAL);
5651 * Storing is the same operation as insert with the added caveat that it
5652 * can overwrite entries. Although this seems simple enough, one may
5653 * want to examine what happens if a single store operation was to
5654 * overwrite multiple entries within a self-balancing B-Tree.
5656 mas_wr_store_setup(&wr_mas);
5657 mas_wr_store_entry(&wr_mas);
5658 return wr_mas.content;
5660 EXPORT_SYMBOL_GPL(mas_store);
5663 * mas_store_gfp() - Store a value into the tree.
5664 * @mas: The maple state
5665 * @entry: The entry to store
5666 * @gfp: The GFP_FLAGS to use for allocations if necessary.
5668 * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
5671 int mas_store_gfp(struct ma_state *mas, void *entry, gfp_t gfp)
5673 MA_WR_STATE(wr_mas, mas, entry);
5675 mas_wr_store_setup(&wr_mas);
5676 trace_ma_write(__func__, mas, 0, entry);
5678 mas_wr_store_entry(&wr_mas);
5679 if (unlikely(mas_nomem(mas, gfp)))
5682 if (unlikely(mas_is_err(mas)))
5683 return xa_err(mas->node);
5687 EXPORT_SYMBOL_GPL(mas_store_gfp);
5690 * mas_store_prealloc() - Store a value into the tree using memory
5691 * preallocated in the maple state.
5692 * @mas: The maple state
5693 * @entry: The entry to store.
5695 void mas_store_prealloc(struct ma_state *mas, void *entry)
5697 MA_WR_STATE(wr_mas, mas, entry);
5699 mas_wr_store_setup(&wr_mas);
5700 trace_ma_write(__func__, mas, 0, entry);
5701 mas_wr_store_entry(&wr_mas);
5702 BUG_ON(mas_is_err(mas));
5705 EXPORT_SYMBOL_GPL(mas_store_prealloc);
5708 * mas_preallocate() - Preallocate enough nodes for a store operation
5709 * @mas: The maple state
5710 * @entry: The entry that will be stored
5711 * @gfp: The GFP_FLAGS to use for allocations.
5713 * Return: 0 on success, -ENOMEM if memory could not be allocated.
5715 int mas_preallocate(struct ma_state *mas, void *entry, gfp_t gfp)
5719 mas_node_count_gfp(mas, 1 + mas_mt_height(mas) * 3, gfp);
5720 mas->mas_flags |= MA_STATE_PREALLOC;
5721 if (likely(!mas_is_err(mas)))
5724 mas_set_alloc_req(mas, 0);
5725 ret = xa_err(mas->node);
5733 * mas_destroy() - destroy a maple state.
5734 * @mas: The maple state
5736 * Upon completion, check the left-most node and rebalance against the node to
5737 * the right if necessary. Frees any allocated nodes associated with this maple
5740 void mas_destroy(struct ma_state *mas)
5742 struct maple_alloc *node;
5745 * When using mas_for_each() to insert an expected number of elements,
5746 * it is possible that the number inserted is less than the expected
5747 * number. To fix an invalid final node, a check is performed here to
5748 * rebalance the previous node with the final node.
5750 if (mas->mas_flags & MA_STATE_REBALANCE) {
5753 if (mas_is_start(mas))
5756 mtree_range_walk(mas);
5757 end = mas_data_end(mas) + 1;
5758 if (end < mt_min_slot_count(mas->node) - 1)
5759 mas_destroy_rebalance(mas, end);
5761 mas->mas_flags &= ~MA_STATE_REBALANCE;
5763 mas->mas_flags &= ~(MA_STATE_BULK|MA_STATE_PREALLOC);
5765 while (mas->alloc && !((unsigned long)mas->alloc & 0x1)) {
5767 mas->alloc = node->slot[0];
5768 if (node->node_count > 0)
5769 mt_free_bulk(node->node_count,
5770 (void __rcu **)&node->slot[1]);
5771 kmem_cache_free(maple_node_cache, node);
5775 EXPORT_SYMBOL_GPL(mas_destroy);
5778 * mas_expected_entries() - Set the expected number of entries that will be inserted.
5779 * @mas: The maple state
5780 * @nr_entries: The number of expected entries.
5782 * This will attempt to pre-allocate enough nodes to store the expected number
5783 * of entries. The allocations will occur using the bulk allocator interface
5784 * for speed. Please call mas_destroy() on the @mas after inserting the entries
5785 * to ensure any unused nodes are freed.
5787 * Return: 0 on success, -ENOMEM if memory could not be allocated.
5789 int mas_expected_entries(struct ma_state *mas, unsigned long nr_entries)
5791 int nonleaf_cap = MAPLE_ARANGE64_SLOTS - 2;
5792 struct maple_enode *enode = mas->node;
5797 * Sometimes it is necessary to duplicate a tree to a new tree, such as
5798 * forking a process and duplicating the VMAs from one tree to a new
5799 * tree. When such a situation arises, it is known that the new tree is
5800 * not going to be used until the entire tree is populated. For
5801 * performance reasons, it is best to use a bulk load with RCU disabled.
5802 * This allows for optimistic splitting that favours the left and reuse
5803 * of nodes during the operation.
5806 /* Optimize splitting for bulk insert in-order */
5807 mas->mas_flags |= MA_STATE_BULK;
5810 * Avoid overflow, assume a gap between each entry and a trailing null.
5811 * If this is wrong, it just means allocation can happen during
5812 * insertion of entries.
5814 nr_nodes = max(nr_entries, nr_entries * 2 + 1);
5815 if (!mt_is_alloc(mas->tree))
5816 nonleaf_cap = MAPLE_RANGE64_SLOTS - 2;
5818 /* Leaves; reduce slots to keep space for expansion */
5819 nr_nodes = DIV_ROUND_UP(nr_nodes, MAPLE_RANGE64_SLOTS - 2);
5820 /* Internal nodes */
5821 nr_nodes += DIV_ROUND_UP(nr_nodes, nonleaf_cap);
5822 /* Add working room for split (2 nodes) + new parents */
5823 mas_node_count(mas, nr_nodes + 3);
5825 /* Detect if allocations run out */
5826 mas->mas_flags |= MA_STATE_PREALLOC;
5828 if (!mas_is_err(mas))
5831 ret = xa_err(mas->node);
5837 EXPORT_SYMBOL_GPL(mas_expected_entries);
5840 * mas_next() - Get the next entry.
5841 * @mas: The maple state
5842 * @max: The maximum index to check.
5844 * Returns the next entry after @mas->index.
5845 * Must hold rcu_read_lock or the write lock.
5846 * Can return the zero entry.
5848 * Return: The next entry or %NULL
5850 void *mas_next(struct ma_state *mas, unsigned long max)
5852 if (mas_is_none(mas) || mas_is_paused(mas))
5853 mas->node = MAS_START;
5855 if (mas_is_start(mas))
5856 mas_walk(mas); /* Retries on dead nodes handled by mas_walk */
5858 if (mas_is_ptr(mas)) {
5861 mas->last = ULONG_MAX;
5866 if (mas->last == ULONG_MAX)
5869 /* Retries on dead nodes handled by mas_next_entry */
5870 return mas_next_entry(mas, max);
5872 EXPORT_SYMBOL_GPL(mas_next);
5875 * mt_next() - get the next value in the maple tree
5876 * @mt: The maple tree
5877 * @index: The start index
5878 * @max: The maximum index to check
5880 * Return: The entry at @index or higher, or %NULL if nothing is found.
5882 void *mt_next(struct maple_tree *mt, unsigned long index, unsigned long max)
5885 MA_STATE(mas, mt, index, index);
5888 entry = mas_next(&mas, max);
5892 EXPORT_SYMBOL_GPL(mt_next);
5895 * mas_prev() - Get the previous entry
5896 * @mas: The maple state
5897 * @min: The minimum value to check.
5899 * Must hold rcu_read_lock or the write lock.
5900 * Will reset mas to MAS_START if the node is MAS_NONE. Will stop on not
5903 * Return: the previous value or %NULL.
5905 void *mas_prev(struct ma_state *mas, unsigned long min)
5908 /* Nothing comes before 0 */
5913 if (unlikely(mas_is_ptr(mas)))
5916 if (mas_is_none(mas) || mas_is_paused(mas))
5917 mas->node = MAS_START;
5919 if (mas_is_start(mas)) {
5925 if (mas_is_ptr(mas)) {
5931 mas->index = mas->last = 0;
5932 return mas_root_locked(mas);
5934 return mas_prev_entry(mas, min);
5936 EXPORT_SYMBOL_GPL(mas_prev);
5939 * mt_prev() - get the previous value in the maple tree
5940 * @mt: The maple tree
5941 * @index: The start index
5942 * @min: The minimum index to check
5944 * Return: The entry at @index or lower, or %NULL if nothing is found.
5946 void *mt_prev(struct maple_tree *mt, unsigned long index, unsigned long min)
5949 MA_STATE(mas, mt, index, index);
5952 entry = mas_prev(&mas, min);
5956 EXPORT_SYMBOL_GPL(mt_prev);
5959 * mas_pause() - Pause a mas_find/mas_for_each to drop the lock.
5960 * @mas: The maple state to pause
5962 * Some users need to pause a walk and drop the lock they're holding in
5963 * order to yield to a higher priority thread or carry out an operation
5964 * on an entry. Those users should call this function before they drop
5965 * the lock. It resets the @mas to be suitable for the next iteration
5966 * of the loop after the user has reacquired the lock. If most entries
5967 * found during a walk require you to call mas_pause(), the mt_for_each()
5968 * iterator may be more appropriate.
5971 void mas_pause(struct ma_state *mas)
5973 mas->node = MAS_PAUSE;
5975 EXPORT_SYMBOL_GPL(mas_pause);
5978 * mas_find() - On the first call, find the entry at or after mas->index up to
5979 * %max. Otherwise, find the entry after mas->index.
5980 * @mas: The maple state
5981 * @max: The maximum value to check.
5983 * Must hold rcu_read_lock or the write lock.
5984 * If an entry exists, last and index are updated accordingly.
5985 * May set @mas->node to MAS_NONE.
5987 * Return: The entry or %NULL.
5989 void *mas_find(struct ma_state *mas, unsigned long max)
5991 if (unlikely(mas_is_paused(mas))) {
5992 if (unlikely(mas->last == ULONG_MAX)) {
5993 mas->node = MAS_NONE;
5996 mas->node = MAS_START;
5997 mas->index = ++mas->last;
6000 if (unlikely(mas_is_start(mas))) {
6001 /* First run or continue */
6004 if (mas->index > max)
6007 entry = mas_walk(mas);
6012 if (unlikely(!mas_searchable(mas)))
6015 /* Retries on dead nodes handled by mas_next_entry */
6016 return mas_next_entry(mas, max);
6018 EXPORT_SYMBOL_GPL(mas_find);
6021 * mas_find_rev: On the first call, find the first non-null entry at or below
6022 * mas->index down to %min. Otherwise find the first non-null entry below
6023 * mas->index down to %min.
6024 * @mas: The maple state
6025 * @min: The minimum value to check.
6027 * Must hold rcu_read_lock or the write lock.
6028 * If an entry exists, last and index are updated accordingly.
6029 * May set @mas->node to MAS_NONE.
6031 * Return: The entry or %NULL.
6033 void *mas_find_rev(struct ma_state *mas, unsigned long min)
6035 if (unlikely(mas_is_paused(mas))) {
6036 if (unlikely(mas->last == ULONG_MAX)) {
6037 mas->node = MAS_NONE;
6040 mas->node = MAS_START;
6041 mas->last = --mas->index;
6044 if (unlikely(mas_is_start(mas))) {
6045 /* First run or continue */
6048 if (mas->index < min)
6051 entry = mas_walk(mas);
6056 if (unlikely(!mas_searchable(mas)))
6059 if (mas->index < min)
6062 /* Retries on dead nodes handled by mas_next_entry */
6063 return mas_prev_entry(mas, min);
6065 EXPORT_SYMBOL_GPL(mas_find_rev);
6068 * mas_erase() - Find the range in which index resides and erase the entire
6070 * @mas: The maple state
6072 * Must hold the write lock.
6073 * Searches for @mas->index, sets @mas->index and @mas->last to the range and
6074 * erases that range.
6076 * Return: the entry that was erased or %NULL, @mas->index and @mas->last are updated.
6078 void *mas_erase(struct ma_state *mas)
6081 MA_WR_STATE(wr_mas, mas, NULL);
6083 if (mas_is_none(mas) || mas_is_paused(mas))
6084 mas->node = MAS_START;
6086 /* Retry unnecessary when holding the write lock. */
6087 entry = mas_state_walk(mas);
6092 /* Must reset to ensure spanning writes of last slot are detected */
6094 mas_wr_store_setup(&wr_mas);
6095 mas_wr_store_entry(&wr_mas);
6096 if (mas_nomem(mas, GFP_KERNEL))
6101 EXPORT_SYMBOL_GPL(mas_erase);
6104 * mas_nomem() - Check if there was an error allocating and do the allocation
6105 * if necessary If there are allocations, then free them.
6106 * @mas: The maple state
6107 * @gfp: The GFP_FLAGS to use for allocations
6108 * Return: true on allocation, false otherwise.
6110 bool mas_nomem(struct ma_state *mas, gfp_t gfp)
6111 __must_hold(mas->tree->lock)
6113 if (likely(mas->node != MA_ERROR(-ENOMEM))) {
6118 if (gfpflags_allow_blocking(gfp) && !mt_external_lock(mas->tree)) {
6119 mtree_unlock(mas->tree);
6120 mas_alloc_nodes(mas, gfp);
6121 mtree_lock(mas->tree);
6123 mas_alloc_nodes(mas, gfp);
6126 if (!mas_allocated(mas))
6129 mas->node = MAS_START;
6133 void __init maple_tree_init(void)
6135 maple_node_cache = kmem_cache_create("maple_node",
6136 sizeof(struct maple_node), sizeof(struct maple_node),
6141 * mtree_load() - Load a value stored in a maple tree
6142 * @mt: The maple tree
6143 * @index: The index to load
6145 * Return: the entry or %NULL
6147 void *mtree_load(struct maple_tree *mt, unsigned long index)
6149 MA_STATE(mas, mt, index, index);
6152 trace_ma_read(__func__, &mas);
6155 entry = mas_start(&mas);
6156 if (unlikely(mas_is_none(&mas)))
6159 if (unlikely(mas_is_ptr(&mas))) {
6166 entry = mtree_lookup_walk(&mas);
6167 if (!entry && unlikely(mas_is_start(&mas)))
6171 if (xa_is_zero(entry))
6176 EXPORT_SYMBOL(mtree_load);
6179 * mtree_store_range() - Store an entry at a given range.
6180 * @mt: The maple tree
6181 * @index: The start of the range
6182 * @last: The end of the range
6183 * @entry: The entry to store
6184 * @gfp: The GFP_FLAGS to use for allocations
6186 * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
6189 int mtree_store_range(struct maple_tree *mt, unsigned long index,
6190 unsigned long last, void *entry, gfp_t gfp)
6192 MA_STATE(mas, mt, index, last);
6193 MA_WR_STATE(wr_mas, &mas, entry);
6195 trace_ma_write(__func__, &mas, 0, entry);
6196 if (WARN_ON_ONCE(xa_is_advanced(entry)))
6204 mas_wr_store_entry(&wr_mas);
6205 if (mas_nomem(&mas, gfp))
6209 if (mas_is_err(&mas))
6210 return xa_err(mas.node);
6214 EXPORT_SYMBOL(mtree_store_range);
6217 * mtree_store() - Store an entry at a given index.
6218 * @mt: The maple tree
6219 * @index: The index to store the value
6220 * @entry: The entry to store
6221 * @gfp: The GFP_FLAGS to use for allocations
6223 * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
6226 int mtree_store(struct maple_tree *mt, unsigned long index, void *entry,
6229 return mtree_store_range(mt, index, index, entry, gfp);
6231 EXPORT_SYMBOL(mtree_store);
6234 * mtree_insert_range() - Insert an entry at a give range if there is no value.
6235 * @mt: The maple tree
6236 * @first: The start of the range
6237 * @last: The end of the range
6238 * @entry: The entry to store
6239 * @gfp: The GFP_FLAGS to use for allocations.
6241 * Return: 0 on success, -EEXISTS if the range is occupied, -EINVAL on invalid
6242 * request, -ENOMEM if memory could not be allocated.
6244 int mtree_insert_range(struct maple_tree *mt, unsigned long first,
6245 unsigned long last, void *entry, gfp_t gfp)
6247 MA_STATE(ms, mt, first, last);
6249 if (WARN_ON_ONCE(xa_is_advanced(entry)))
6257 mas_insert(&ms, entry);
6258 if (mas_nomem(&ms, gfp))
6262 if (mas_is_err(&ms))
6263 return xa_err(ms.node);
6267 EXPORT_SYMBOL(mtree_insert_range);
6270 * mtree_insert() - Insert an entry at a give index if there is no value.
6271 * @mt: The maple tree
6272 * @index : The index to store the value
6273 * @entry: The entry to store
6274 * @gfp: The FGP_FLAGS to use for allocations.
6276 * Return: 0 on success, -EEXISTS if the range is occupied, -EINVAL on invalid
6277 * request, -ENOMEM if memory could not be allocated.
6279 int mtree_insert(struct maple_tree *mt, unsigned long index, void *entry,
6282 return mtree_insert_range(mt, index, index, entry, gfp);
6284 EXPORT_SYMBOL(mtree_insert);
6286 int mtree_alloc_range(struct maple_tree *mt, unsigned long *startp,
6287 void *entry, unsigned long size, unsigned long min,
6288 unsigned long max, gfp_t gfp)
6292 MA_STATE(mas, mt, min, max - size);
6293 if (!mt_is_alloc(mt))
6296 if (WARN_ON_ONCE(mt_is_reserved(entry)))
6312 mas.last = max - size;
6313 ret = mas_alloc(&mas, entry, size, startp);
6314 if (mas_nomem(&mas, gfp))
6320 EXPORT_SYMBOL(mtree_alloc_range);
6322 int mtree_alloc_rrange(struct maple_tree *mt, unsigned long *startp,
6323 void *entry, unsigned long size, unsigned long min,
6324 unsigned long max, gfp_t gfp)
6328 MA_STATE(mas, mt, min, max - size);
6329 if (!mt_is_alloc(mt))
6332 if (WARN_ON_ONCE(mt_is_reserved(entry)))
6346 ret = mas_rev_alloc(&mas, min, max, entry, size, startp);
6347 if (mas_nomem(&mas, gfp))
6353 EXPORT_SYMBOL(mtree_alloc_rrange);
6356 * mtree_erase() - Find an index and erase the entire range.
6357 * @mt: The maple tree
6358 * @index: The index to erase
6360 * Erasing is the same as a walk to an entry then a store of a NULL to that
6361 * ENTIRE range. In fact, it is implemented as such using the advanced API.
6363 * Return: The entry stored at the @index or %NULL
6365 void *mtree_erase(struct maple_tree *mt, unsigned long index)
6369 MA_STATE(mas, mt, index, index);
6370 trace_ma_op(__func__, &mas);
6373 entry = mas_erase(&mas);
6378 EXPORT_SYMBOL(mtree_erase);
6381 * __mt_destroy() - Walk and free all nodes of a locked maple tree.
6382 * @mt: The maple tree
6384 * Note: Does not handle locking.
6386 void __mt_destroy(struct maple_tree *mt)
6388 void *root = mt_root_locked(mt);
6390 rcu_assign_pointer(mt->ma_root, NULL);
6391 if (xa_is_node(root))
6392 mte_destroy_walk(root, mt);
6396 EXPORT_SYMBOL_GPL(__mt_destroy);
6399 * mtree_destroy() - Destroy a maple tree
6400 * @mt: The maple tree
6402 * Frees all resources used by the tree. Handles locking.
6404 void mtree_destroy(struct maple_tree *mt)
6410 EXPORT_SYMBOL(mtree_destroy);
6413 * mt_find() - Search from the start up until an entry is found.
6414 * @mt: The maple tree
6415 * @index: Pointer which contains the start location of the search
6416 * @max: The maximum value to check
6418 * Handles locking. @index will be incremented to one beyond the range.
6420 * Return: The entry at or after the @index or %NULL
6422 void *mt_find(struct maple_tree *mt, unsigned long *index, unsigned long max)
6424 MA_STATE(mas, mt, *index, *index);
6426 #ifdef CONFIG_DEBUG_MAPLE_TREE
6427 unsigned long copy = *index;
6430 trace_ma_read(__func__, &mas);
6437 entry = mas_state_walk(&mas);
6438 if (mas_is_start(&mas))
6441 if (unlikely(xa_is_zero(entry)))
6447 while (mas_searchable(&mas) && (mas.index < max)) {
6448 entry = mas_next_entry(&mas, max);
6449 if (likely(entry && !xa_is_zero(entry)))
6453 if (unlikely(xa_is_zero(entry)))
6457 if (likely(entry)) {
6458 *index = mas.last + 1;
6459 #ifdef CONFIG_DEBUG_MAPLE_TREE
6460 if ((*index) && (*index) <= copy)
6461 pr_err("index not increased! %lx <= %lx\n",
6463 MT_BUG_ON(mt, (*index) && ((*index) <= copy));
6469 EXPORT_SYMBOL(mt_find);
6472 * mt_find_after() - Search from the start up until an entry is found.
6473 * @mt: The maple tree
6474 * @index: Pointer which contains the start location of the search
6475 * @max: The maximum value to check
6477 * Handles locking, detects wrapping on index == 0
6479 * Return: The entry at or after the @index or %NULL
6481 void *mt_find_after(struct maple_tree *mt, unsigned long *index,
6487 return mt_find(mt, index, max);
6489 EXPORT_SYMBOL(mt_find_after);
6491 #ifdef CONFIG_DEBUG_MAPLE_TREE
6492 atomic_t maple_tree_tests_run;
6493 EXPORT_SYMBOL_GPL(maple_tree_tests_run);
6494 atomic_t maple_tree_tests_passed;
6495 EXPORT_SYMBOL_GPL(maple_tree_tests_passed);
6498 extern void kmem_cache_set_non_kernel(struct kmem_cache *, unsigned int);
6499 void mt_set_non_kernel(unsigned int val)
6501 kmem_cache_set_non_kernel(maple_node_cache, val);
6504 extern unsigned long kmem_cache_get_alloc(struct kmem_cache *);
6505 unsigned long mt_get_alloc_size(void)
6507 return kmem_cache_get_alloc(maple_node_cache);
6510 extern void kmem_cache_zero_nr_tallocated(struct kmem_cache *);
6511 void mt_zero_nr_tallocated(void)
6513 kmem_cache_zero_nr_tallocated(maple_node_cache);
6516 extern unsigned int kmem_cache_nr_tallocated(struct kmem_cache *);
6517 unsigned int mt_nr_tallocated(void)
6519 return kmem_cache_nr_tallocated(maple_node_cache);
6522 extern unsigned int kmem_cache_nr_allocated(struct kmem_cache *);
6523 unsigned int mt_nr_allocated(void)
6525 return kmem_cache_nr_allocated(maple_node_cache);
6529 * mas_dead_node() - Check if the maple state is pointing to a dead node.
6530 * @mas: The maple state
6531 * @index: The index to restore in @mas.
6533 * Used in test code.
6534 * Return: 1 if @mas has been reset to MAS_START, 0 otherwise.
6536 static inline int mas_dead_node(struct ma_state *mas, unsigned long index)
6538 if (unlikely(!mas_searchable(mas) || mas_is_start(mas)))
6541 if (likely(!mte_dead_node(mas->node)))
6544 mas_rewalk(mas, index);
6548 void mt_cache_shrink(void)
6553 * mt_cache_shrink() - For testing, don't use this.
6555 * Certain testcases can trigger an OOM when combined with other memory
6556 * debugging configuration options. This function is used to reduce the
6557 * possibility of an out of memory even due to kmem_cache objects remaining
6558 * around for longer than usual.
6560 void mt_cache_shrink(void)
6562 kmem_cache_shrink(maple_node_cache);
6565 EXPORT_SYMBOL_GPL(mt_cache_shrink);
6567 #endif /* not defined __KERNEL__ */
6569 * mas_get_slot() - Get the entry in the maple state node stored at @offset.
6570 * @mas: The maple state
6571 * @offset: The offset into the slot array to fetch.
6573 * Return: The entry stored at @offset.
6575 static inline struct maple_enode *mas_get_slot(struct ma_state *mas,
6576 unsigned char offset)
6578 return mas_slot(mas, ma_slots(mas_mn(mas), mte_node_type(mas->node)),
6584 * mas_first_entry() - Go the first leaf and find the first entry.
6585 * @mas: the maple state.
6586 * @limit: the maximum index to check.
6587 * @*r_start: Pointer to set to the range start.
6589 * Sets mas->offset to the offset of the entry, r_start to the range minimum.
6591 * Return: The first entry or MAS_NONE.
6593 static inline void *mas_first_entry(struct ma_state *mas, struct maple_node *mn,
6594 unsigned long limit, enum maple_type mt)
6598 unsigned long *pivots;
6602 mas->index = mas->min;
6603 if (mas->index > limit)
6608 while (likely(!ma_is_leaf(mt))) {
6609 MT_BUG_ON(mas->tree, mte_dead_node(mas->node));
6610 slots = ma_slots(mn, mt);
6611 pivots = ma_pivots(mn, mt);
6613 entry = mas_slot(mas, slots, 0);
6614 if (unlikely(ma_dead_node(mn)))
6618 mt = mte_node_type(mas->node);
6620 MT_BUG_ON(mas->tree, mte_dead_node(mas->node));
6623 slots = ma_slots(mn, mt);
6624 entry = mas_slot(mas, slots, 0);
6625 if (unlikely(ma_dead_node(mn)))
6628 /* Slot 0 or 1 must be set */
6629 if (mas->index > limit)
6635 pivots = ma_pivots(mn, mt);
6636 mas->index = pivots[0] + 1;
6638 entry = mas_slot(mas, slots, 1);
6639 if (unlikely(ma_dead_node(mn)))
6642 if (mas->index > limit)
6649 if (likely(!ma_dead_node(mn)))
6650 mas->node = MAS_NONE;
6654 /* Depth first search, post-order */
6655 static void mas_dfs_postorder(struct ma_state *mas, unsigned long max)
6658 struct maple_enode *p = MAS_NONE, *mn = mas->node;
6659 unsigned long p_min, p_max;
6661 mas_next_node(mas, mas_mn(mas), max);
6662 if (!mas_is_none(mas))
6665 if (mte_is_root(mn))
6670 while (mas->node != MAS_NONE) {
6674 mas_prev_node(mas, 0);
6685 /* Tree validations */
6686 static void mt_dump_node(const struct maple_tree *mt, void *entry,
6687 unsigned long min, unsigned long max, unsigned int depth);
6688 static void mt_dump_range(unsigned long min, unsigned long max,
6691 static const char spaces[] = " ";
6694 pr_info("%.*s%lu: ", depth * 2, spaces, min);
6696 pr_info("%.*s%lu-%lu: ", depth * 2, spaces, min, max);
6699 static void mt_dump_entry(void *entry, unsigned long min, unsigned long max,
6702 mt_dump_range(min, max, depth);
6704 if (xa_is_value(entry))
6705 pr_cont("value %ld (0x%lx) [%p]\n", xa_to_value(entry),
6706 xa_to_value(entry), entry);
6707 else if (xa_is_zero(entry))
6708 pr_cont("zero (%ld)\n", xa_to_internal(entry));
6709 else if (mt_is_reserved(entry))
6710 pr_cont("UNKNOWN ENTRY (%p)\n", entry);
6712 pr_cont("%p\n", entry);
6715 static void mt_dump_range64(const struct maple_tree *mt, void *entry,
6716 unsigned long min, unsigned long max, unsigned int depth)
6718 struct maple_range_64 *node = &mte_to_node(entry)->mr64;
6719 bool leaf = mte_is_leaf(entry);
6720 unsigned long first = min;
6723 pr_cont(" contents: ");
6724 for (i = 0; i < MAPLE_RANGE64_SLOTS - 1; i++)
6725 pr_cont("%p %lu ", node->slot[i], node->pivot[i]);
6726 pr_cont("%p\n", node->slot[i]);
6727 for (i = 0; i < MAPLE_RANGE64_SLOTS; i++) {
6728 unsigned long last = max;
6730 if (i < (MAPLE_RANGE64_SLOTS - 1))
6731 last = node->pivot[i];
6732 else if (!node->slot[i] && max != mt_max[mte_node_type(entry)])
6734 if (last == 0 && i > 0)
6737 mt_dump_entry(mt_slot(mt, node->slot, i),
6738 first, last, depth + 1);
6739 else if (node->slot[i])
6740 mt_dump_node(mt, mt_slot(mt, node->slot, i),
6741 first, last, depth + 1);
6746 pr_err("node %p last (%lu) > max (%lu) at pivot %d!\n",
6747 node, last, max, i);
6754 static void mt_dump_arange64(const struct maple_tree *mt, void *entry,
6755 unsigned long min, unsigned long max, unsigned int depth)
6757 struct maple_arange_64 *node = &mte_to_node(entry)->ma64;
6758 bool leaf = mte_is_leaf(entry);
6759 unsigned long first = min;
6762 pr_cont(" contents: ");
6763 for (i = 0; i < MAPLE_ARANGE64_SLOTS; i++)
6764 pr_cont("%lu ", node->gap[i]);
6765 pr_cont("| %02X %02X| ", node->meta.end, node->meta.gap);
6766 for (i = 0; i < MAPLE_ARANGE64_SLOTS - 1; i++)
6767 pr_cont("%p %lu ", node->slot[i], node->pivot[i]);
6768 pr_cont("%p\n", node->slot[i]);
6769 for (i = 0; i < MAPLE_ARANGE64_SLOTS; i++) {
6770 unsigned long last = max;
6772 if (i < (MAPLE_ARANGE64_SLOTS - 1))
6773 last = node->pivot[i];
6774 else if (!node->slot[i])
6776 if (last == 0 && i > 0)
6779 mt_dump_entry(mt_slot(mt, node->slot, i),
6780 first, last, depth + 1);
6781 else if (node->slot[i])
6782 mt_dump_node(mt, mt_slot(mt, node->slot, i),
6783 first, last, depth + 1);
6788 pr_err("node %p last (%lu) > max (%lu) at pivot %d!\n",
6789 node, last, max, i);
6796 static void mt_dump_node(const struct maple_tree *mt, void *entry,
6797 unsigned long min, unsigned long max, unsigned int depth)
6799 struct maple_node *node = mte_to_node(entry);
6800 unsigned int type = mte_node_type(entry);
6803 mt_dump_range(min, max, depth);
6805 pr_cont("node %p depth %d type %d parent %p", node, depth, type,
6806 node ? node->parent : NULL);
6810 for (i = 0; i < MAPLE_NODE_SLOTS; i++) {
6812 pr_cont("OUT OF RANGE: ");
6813 mt_dump_entry(mt_slot(mt, node->slot, i),
6814 min + i, min + i, depth);
6818 case maple_range_64:
6819 mt_dump_range64(mt, entry, min, max, depth);
6821 case maple_arange_64:
6822 mt_dump_arange64(mt, entry, min, max, depth);
6826 pr_cont(" UNKNOWN TYPE\n");
6830 void mt_dump(const struct maple_tree *mt)
6832 void *entry = rcu_dereference_check(mt->ma_root, mt_locked(mt));
6834 pr_info("maple_tree(%p) flags %X, height %u root %p\n",
6835 mt, mt->ma_flags, mt_height(mt), entry);
6836 if (!xa_is_node(entry))
6837 mt_dump_entry(entry, 0, 0, 0);
6839 mt_dump_node(mt, entry, 0, mt_max[mte_node_type(entry)], 0);
6841 EXPORT_SYMBOL_GPL(mt_dump);
6844 * Calculate the maximum gap in a node and check if that's what is reported in
6845 * the parent (unless root).
6847 static void mas_validate_gaps(struct ma_state *mas)
6849 struct maple_enode *mte = mas->node;
6850 struct maple_node *p_mn;
6851 unsigned long gap = 0, max_gap = 0;
6852 unsigned long p_end, p_start = mas->min;
6853 unsigned char p_slot;
6854 unsigned long *gaps = NULL;
6855 unsigned long *pivots = ma_pivots(mte_to_node(mte), mte_node_type(mte));
6858 if (ma_is_dense(mte_node_type(mte))) {
6859 for (i = 0; i < mt_slot_count(mte); i++) {
6860 if (mas_get_slot(mas, i)) {
6871 gaps = ma_gaps(mte_to_node(mte), mte_node_type(mte));
6872 for (i = 0; i < mt_slot_count(mte); i++) {
6873 p_end = mas_logical_pivot(mas, pivots, i, mte_node_type(mte));
6876 if (mas_get_slot(mas, i)) {
6881 gap += p_end - p_start + 1;
6883 void *entry = mas_get_slot(mas, i);
6887 if (gap != p_end - p_start + 1) {
6888 pr_err("%p[%u] -> %p %lu != %lu - %lu + 1\n",
6890 mas_get_slot(mas, i), gap,
6894 MT_BUG_ON(mas->tree,
6895 gap != p_end - p_start + 1);
6898 if (gap > p_end - p_start + 1) {
6899 pr_err("%p[%u] %lu >= %lu - %lu + 1 (%lu)\n",
6900 mas_mn(mas), i, gap, p_end, p_start,
6901 p_end - p_start + 1);
6902 MT_BUG_ON(mas->tree,
6903 gap > p_end - p_start + 1);
6911 p_start = p_end + 1;
6912 if (p_end >= mas->max)
6917 if (mte_is_root(mte))
6920 p_slot = mte_parent_slot(mas->node);
6921 p_mn = mte_parent(mte);
6922 MT_BUG_ON(mas->tree, max_gap > mas->max);
6923 if (ma_gaps(p_mn, mas_parent_enum(mas, mte))[p_slot] != max_gap) {
6924 pr_err("gap %p[%u] != %lu\n", p_mn, p_slot, max_gap);
6928 MT_BUG_ON(mas->tree,
6929 ma_gaps(p_mn, mas_parent_enum(mas, mte))[p_slot] != max_gap);
6932 static void mas_validate_parent_slot(struct ma_state *mas)
6934 struct maple_node *parent;
6935 struct maple_enode *node;
6936 enum maple_type p_type = mas_parent_enum(mas, mas->node);
6937 unsigned char p_slot = mte_parent_slot(mas->node);
6941 if (mte_is_root(mas->node))
6944 parent = mte_parent(mas->node);
6945 slots = ma_slots(parent, p_type);
6946 MT_BUG_ON(mas->tree, mas_mn(mas) == parent);
6948 /* Check prev/next parent slot for duplicate node entry */
6950 for (i = 0; i < mt_slots[p_type]; i++) {
6951 node = mas_slot(mas, slots, i);
6953 if (node != mas->node)
6954 pr_err("parent %p[%u] does not have %p\n",
6955 parent, i, mas_mn(mas));
6956 MT_BUG_ON(mas->tree, node != mas->node);
6957 } else if (node == mas->node) {
6958 pr_err("Invalid child %p at parent %p[%u] p_slot %u\n",
6959 mas_mn(mas), parent, i, p_slot);
6960 MT_BUG_ON(mas->tree, node == mas->node);
6965 static void mas_validate_child_slot(struct ma_state *mas)
6967 enum maple_type type = mte_node_type(mas->node);
6968 void __rcu **slots = ma_slots(mte_to_node(mas->node), type);
6969 unsigned long *pivots = ma_pivots(mte_to_node(mas->node), type);
6970 struct maple_enode *child;
6973 if (mte_is_leaf(mas->node))
6976 for (i = 0; i < mt_slots[type]; i++) {
6977 child = mas_slot(mas, slots, i);
6978 if (!pivots[i] || pivots[i] == mas->max)
6984 if (mte_parent_slot(child) != i) {
6985 pr_err("Slot error at %p[%u]: child %p has pslot %u\n",
6986 mas_mn(mas), i, mte_to_node(child),
6987 mte_parent_slot(child));
6988 MT_BUG_ON(mas->tree, 1);
6991 if (mte_parent(child) != mte_to_node(mas->node)) {
6992 pr_err("child %p has parent %p not %p\n",
6993 mte_to_node(child), mte_parent(child),
6994 mte_to_node(mas->node));
6995 MT_BUG_ON(mas->tree, 1);
7001 * Validate all pivots are within mas->min and mas->max.
7003 static void mas_validate_limits(struct ma_state *mas)
7006 unsigned long prev_piv = 0;
7007 enum maple_type type = mte_node_type(mas->node);
7008 void __rcu **slots = ma_slots(mte_to_node(mas->node), type);
7009 unsigned long *pivots = ma_pivots(mas_mn(mas), type);
7011 /* all limits are fine here. */
7012 if (mte_is_root(mas->node))
7015 for (i = 0; i < mt_slots[type]; i++) {
7018 piv = mas_safe_pivot(mas, pivots, i, type);
7020 if (!piv && (i != 0))
7023 if (!mte_is_leaf(mas->node)) {
7024 void *entry = mas_slot(mas, slots, i);
7027 pr_err("%p[%u] cannot be null\n",
7030 MT_BUG_ON(mas->tree, !entry);
7033 if (prev_piv > piv) {
7034 pr_err("%p[%u] piv %lu < prev_piv %lu\n",
7035 mas_mn(mas), i, piv, prev_piv);
7036 MT_BUG_ON(mas->tree, piv < prev_piv);
7039 if (piv < mas->min) {
7040 pr_err("%p[%u] %lu < %lu\n", mas_mn(mas), i,
7042 MT_BUG_ON(mas->tree, piv < mas->min);
7044 if (piv > mas->max) {
7045 pr_err("%p[%u] %lu > %lu\n", mas_mn(mas), i,
7047 MT_BUG_ON(mas->tree, piv > mas->max);
7050 if (piv == mas->max)
7053 for (i += 1; i < mt_slots[type]; i++) {
7054 void *entry = mas_slot(mas, slots, i);
7056 if (entry && (i != mt_slots[type] - 1)) {
7057 pr_err("%p[%u] should not have entry %p\n", mas_mn(mas),
7059 MT_BUG_ON(mas->tree, entry != NULL);
7062 if (i < mt_pivots[type]) {
7063 unsigned long piv = pivots[i];
7068 pr_err("%p[%u] should not have piv %lu\n",
7069 mas_mn(mas), i, piv);
7070 MT_BUG_ON(mas->tree, i < mt_pivots[type] - 1);
7075 static void mt_validate_nulls(struct maple_tree *mt)
7077 void *entry, *last = (void *)1;
7078 unsigned char offset = 0;
7080 MA_STATE(mas, mt, 0, 0);
7083 if (mas_is_none(&mas) || (mas.node == MAS_ROOT))
7086 while (!mte_is_leaf(mas.node))
7089 slots = ma_slots(mte_to_node(mas.node), mte_node_type(mas.node));
7091 entry = mas_slot(&mas, slots, offset);
7092 if (!last && !entry) {
7093 pr_err("Sequential nulls end at %p[%u]\n",
7094 mas_mn(&mas), offset);
7096 MT_BUG_ON(mt, !last && !entry);
7098 if (offset == mas_data_end(&mas)) {
7099 mas_next_node(&mas, mas_mn(&mas), ULONG_MAX);
7100 if (mas_is_none(&mas))
7103 slots = ma_slots(mte_to_node(mas.node),
7104 mte_node_type(mas.node));
7109 } while (!mas_is_none(&mas));
7113 * validate a maple tree by checking:
7114 * 1. The limits (pivots are within mas->min to mas->max)
7115 * 2. The gap is correctly set in the parents
7117 void mt_validate(struct maple_tree *mt)
7121 MA_STATE(mas, mt, 0, 0);
7124 if (!mas_searchable(&mas))
7127 mas_first_entry(&mas, mas_mn(&mas), ULONG_MAX, mte_node_type(mas.node));
7128 while (!mas_is_none(&mas)) {
7129 MT_BUG_ON(mas.tree, mte_dead_node(mas.node));
7130 if (!mte_is_root(mas.node)) {
7131 end = mas_data_end(&mas);
7132 if ((end < mt_min_slot_count(mas.node)) &&
7133 (mas.max != ULONG_MAX)) {
7134 pr_err("Invalid size %u of %p\n", end,
7136 MT_BUG_ON(mas.tree, 1);
7140 mas_validate_parent_slot(&mas);
7141 mas_validate_child_slot(&mas);
7142 mas_validate_limits(&mas);
7143 if (mt_is_alloc(mt))
7144 mas_validate_gaps(&mas);
7145 mas_dfs_postorder(&mas, ULONG_MAX);
7147 mt_validate_nulls(mt);
7152 EXPORT_SYMBOL_GPL(mt_validate);
7154 #endif /* CONFIG_DEBUG_MAPLE_TREE */