1 // SPDX-License-Identifier: GPL-2.0+
3 * Maple Tree implementation
4 * Copyright (c) 2018-2022 Oracle Corporation
5 * Authors: Liam R. Howlett <Liam.Howlett@oracle.com>
6 * Matthew Wilcox <willy@infradead.org>
10 * DOC: Interesting implementation details of the Maple Tree
12 * Each node type has a number of slots for entries and a number of slots for
13 * pivots. In the case of dense nodes, the pivots are implied by the position
14 * and are simply the slot index + the minimum of the node.
16 * In regular B-Tree terms, pivots are called keys. The term pivot is used to
17 * indicate that the tree is specifying ranges, Pivots may appear in the
18 * subtree with an entry attached to the value where as keys are unique to a
19 * specific position of a B-tree. Pivot values are inclusive of the slot with
23 * The following illustrates the layout of a range64 nodes slots and pivots.
26 * Slots -> | 0 | 1 | 2 | ... | 12 | 13 | 14 | 15 |
28 * │ │ │ │ │ │ │ │ └─ Implied maximum
29 * │ │ │ │ │ │ │ └─ Pivot 14
30 * │ │ │ │ │ │ └─ Pivot 13
31 * │ │ │ │ │ └─ Pivot 12
39 * Internal (non-leaf) nodes contain pointers to other nodes.
40 * Leaf nodes contain entries.
42 * The location of interest is often referred to as an offset. All offsets have
43 * a slot, but the last offset has an implied pivot from the node above (or
44 * UINT_MAX for the root node.
46 * Ranges complicate certain write activities. When modifying any of
47 * the B-tree variants, it is known that one entry will either be added or
48 * deleted. When modifying the Maple Tree, one store operation may overwrite
49 * the entire data set, or one half of the tree, or the middle half of the tree.
54 #include <linux/maple_tree.h>
55 #include <linux/xarray.h>
56 #include <linux/types.h>
57 #include <linux/export.h>
58 #include <linux/slab.h>
59 #include <linux/limits.h>
60 #include <asm/barrier.h>
62 #define CREATE_TRACE_POINTS
63 #include <trace/events/maple_tree.h>
65 #define MA_ROOT_PARENT 1
69 * * MA_STATE_BULK - Bulk insert mode
70 * * MA_STATE_REBALANCE - Indicate a rebalance during bulk insert
71 * * MA_STATE_PREALLOC - Preallocated nodes, WARN_ON allocation
73 #define MA_STATE_BULK 1
74 #define MA_STATE_REBALANCE 2
75 #define MA_STATE_PREALLOC 4
77 #define ma_parent_ptr(x) ((struct maple_pnode *)(x))
78 #define ma_mnode_ptr(x) ((struct maple_node *)(x))
79 #define ma_enode_ptr(x) ((struct maple_enode *)(x))
80 static struct kmem_cache *maple_node_cache;
82 #ifdef CONFIG_DEBUG_MAPLE_TREE
83 static const unsigned long mt_max[] = {
84 [maple_dense] = MAPLE_NODE_SLOTS,
85 [maple_leaf_64] = ULONG_MAX,
86 [maple_range_64] = ULONG_MAX,
87 [maple_arange_64] = ULONG_MAX,
89 #define mt_node_max(x) mt_max[mte_node_type(x)]
92 static const unsigned char mt_slots[] = {
93 [maple_dense] = MAPLE_NODE_SLOTS,
94 [maple_leaf_64] = MAPLE_RANGE64_SLOTS,
95 [maple_range_64] = MAPLE_RANGE64_SLOTS,
96 [maple_arange_64] = MAPLE_ARANGE64_SLOTS,
98 #define mt_slot_count(x) mt_slots[mte_node_type(x)]
100 static const unsigned char mt_pivots[] = {
102 [maple_leaf_64] = MAPLE_RANGE64_SLOTS - 1,
103 [maple_range_64] = MAPLE_RANGE64_SLOTS - 1,
104 [maple_arange_64] = MAPLE_ARANGE64_SLOTS - 1,
106 #define mt_pivot_count(x) mt_pivots[mte_node_type(x)]
108 static const unsigned char mt_min_slots[] = {
109 [maple_dense] = MAPLE_NODE_SLOTS / 2,
110 [maple_leaf_64] = (MAPLE_RANGE64_SLOTS / 2) - 2,
111 [maple_range_64] = (MAPLE_RANGE64_SLOTS / 2) - 2,
112 [maple_arange_64] = (MAPLE_ARANGE64_SLOTS / 2) - 1,
114 #define mt_min_slot_count(x) mt_min_slots[mte_node_type(x)]
116 #define MAPLE_BIG_NODE_SLOTS (MAPLE_RANGE64_SLOTS * 2 + 2)
117 #define MAPLE_BIG_NODE_GAPS (MAPLE_ARANGE64_SLOTS * 2 + 1)
119 struct maple_big_node {
120 struct maple_pnode *parent;
121 unsigned long pivot[MAPLE_BIG_NODE_SLOTS - 1];
123 struct maple_enode *slot[MAPLE_BIG_NODE_SLOTS];
125 unsigned long padding[MAPLE_BIG_NODE_GAPS];
126 unsigned long gap[MAPLE_BIG_NODE_GAPS];
130 enum maple_type type;
134 * The maple_subtree_state is used to build a tree to replace a segment of an
135 * existing tree in a more atomic way. Any walkers of the older tree will hit a
136 * dead node and restart on updates.
138 struct maple_subtree_state {
139 struct ma_state *orig_l; /* Original left side of subtree */
140 struct ma_state *orig_r; /* Original right side of subtree */
141 struct ma_state *l; /* New left side of subtree */
142 struct ma_state *m; /* New middle of subtree (rare) */
143 struct ma_state *r; /* New right side of subtree */
144 struct ma_topiary *free; /* nodes to be freed */
145 struct ma_topiary *destroy; /* Nodes to be destroyed (walked and freed) */
146 struct maple_big_node *bn;
150 static inline struct maple_node *mt_alloc_one(gfp_t gfp)
152 return kmem_cache_alloc(maple_node_cache, gfp);
155 static inline int mt_alloc_bulk(gfp_t gfp, size_t size, void **nodes)
157 return kmem_cache_alloc_bulk(maple_node_cache, gfp, size, nodes);
160 static inline void mt_free_bulk(size_t size, void __rcu **nodes)
162 kmem_cache_free_bulk(maple_node_cache, size, (void **)nodes);
165 static void mt_free_rcu(struct rcu_head *head)
167 struct maple_node *node = container_of(head, struct maple_node, rcu);
169 kmem_cache_free(maple_node_cache, node);
173 * ma_free_rcu() - Use rcu callback to free a maple node
174 * @node: The node to free
176 * The maple tree uses the parent pointer to indicate this node is no longer in
177 * use and will be freed.
179 static void ma_free_rcu(struct maple_node *node)
181 WARN_ON(node->parent != ma_parent_ptr(node));
182 call_rcu(&node->rcu, mt_free_rcu);
186 static void mas_set_height(struct ma_state *mas)
188 unsigned int new_flags = mas->tree->ma_flags;
190 new_flags &= ~MT_FLAGS_HEIGHT_MASK;
191 BUG_ON(mas->depth > MAPLE_HEIGHT_MAX);
192 new_flags |= mas->depth << MT_FLAGS_HEIGHT_OFFSET;
193 mas->tree->ma_flags = new_flags;
196 static unsigned int mas_mt_height(struct ma_state *mas)
198 return mt_height(mas->tree);
201 static inline enum maple_type mte_node_type(const struct maple_enode *entry)
203 return ((unsigned long)entry >> MAPLE_NODE_TYPE_SHIFT) &
204 MAPLE_NODE_TYPE_MASK;
207 static inline bool ma_is_dense(const enum maple_type type)
209 return type < maple_leaf_64;
212 static inline bool ma_is_leaf(const enum maple_type type)
214 return type < maple_range_64;
217 static inline bool mte_is_leaf(const struct maple_enode *entry)
219 return ma_is_leaf(mte_node_type(entry));
223 * We also reserve values with the bottom two bits set to '10' which are
226 static inline bool mt_is_reserved(const void *entry)
228 return ((unsigned long)entry < MAPLE_RESERVED_RANGE) &&
229 xa_is_internal(entry);
232 static inline void mas_set_err(struct ma_state *mas, long err)
234 mas->node = MA_ERROR(err);
237 static inline bool mas_is_ptr(struct ma_state *mas)
239 return mas->node == MAS_ROOT;
242 static inline bool mas_is_start(struct ma_state *mas)
244 return mas->node == MAS_START;
247 bool mas_is_err(struct ma_state *mas)
249 return xa_is_err(mas->node);
252 static inline bool mas_searchable(struct ma_state *mas)
254 if (mas_is_none(mas))
263 static inline struct maple_node *mte_to_node(const struct maple_enode *entry)
265 return (struct maple_node *)((unsigned long)entry & ~MAPLE_NODE_MASK);
269 * mte_to_mat() - Convert a maple encoded node to a maple topiary node.
270 * @entry: The maple encoded node
272 * Return: a maple topiary pointer
274 static inline struct maple_topiary *mte_to_mat(const struct maple_enode *entry)
276 return (struct maple_topiary *)
277 ((unsigned long)entry & ~MAPLE_NODE_MASK);
281 * mas_mn() - Get the maple state node.
282 * @mas: The maple state
284 * Return: the maple node (not encoded - bare pointer).
286 static inline struct maple_node *mas_mn(const struct ma_state *mas)
288 return mte_to_node(mas->node);
292 * mte_set_node_dead() - Set a maple encoded node as dead.
293 * @mn: The maple encoded node.
295 static inline void mte_set_node_dead(struct maple_enode *mn)
297 mte_to_node(mn)->parent = ma_parent_ptr(mte_to_node(mn));
298 smp_wmb(); /* Needed for RCU */
301 /* Bit 1 indicates the root is a node */
302 #define MAPLE_ROOT_NODE 0x02
303 /* maple_type stored bit 3-6 */
304 #define MAPLE_ENODE_TYPE_SHIFT 0x03
305 /* Bit 2 means a NULL somewhere below */
306 #define MAPLE_ENODE_NULL 0x04
308 static inline struct maple_enode *mt_mk_node(const struct maple_node *node,
309 enum maple_type type)
311 return (void *)((unsigned long)node |
312 (type << MAPLE_ENODE_TYPE_SHIFT) | MAPLE_ENODE_NULL);
315 static inline void *mte_mk_root(const struct maple_enode *node)
317 return (void *)((unsigned long)node | MAPLE_ROOT_NODE);
320 static inline void *mte_safe_root(const struct maple_enode *node)
322 return (void *)((unsigned long)node & ~MAPLE_ROOT_NODE);
325 static inline void mte_set_full(const struct maple_enode *node)
327 node = (void *)((unsigned long)node & ~MAPLE_ENODE_NULL);
330 static inline void mte_clear_full(const struct maple_enode *node)
332 node = (void *)((unsigned long)node | MAPLE_ENODE_NULL);
335 static inline bool ma_is_root(struct maple_node *node)
337 return ((unsigned long)node->parent & MA_ROOT_PARENT);
340 static inline bool mte_is_root(const struct maple_enode *node)
342 return ma_is_root(mte_to_node(node));
345 static inline bool mas_is_root_limits(const struct ma_state *mas)
347 return !mas->min && mas->max == ULONG_MAX;
350 static inline bool mt_is_alloc(struct maple_tree *mt)
352 return (mt->ma_flags & MT_FLAGS_ALLOC_RANGE);
357 * Excluding root, the parent pointer is 256B aligned like all other tree nodes.
358 * When storing a 32 or 64 bit values, the offset can fit into 5 bits. The 16
359 * bit values need an extra bit to store the offset. This extra bit comes from
360 * a reuse of the last bit in the node type. This is possible by using bit 1 to
361 * indicate if bit 2 is part of the type or the slot.
365 * 0x?00 = 16 bit nodes
366 * 0x010 = 32 bit nodes
367 * 0x110 = 64 bit nodes
369 * Slot size and alignment
371 * 0b?00 : 16 bit values, type in 0-1, slot in 2-7
372 * 0b010 : 32 bit values, type in 0-2, slot in 3-7
373 * 0b110 : 64 bit values, type in 0-2, slot in 3-7
376 #define MAPLE_PARENT_ROOT 0x01
378 #define MAPLE_PARENT_SLOT_SHIFT 0x03
379 #define MAPLE_PARENT_SLOT_MASK 0xF8
381 #define MAPLE_PARENT_16B_SLOT_SHIFT 0x02
382 #define MAPLE_PARENT_16B_SLOT_MASK 0xFC
384 #define MAPLE_PARENT_RANGE64 0x06
385 #define MAPLE_PARENT_RANGE32 0x04
386 #define MAPLE_PARENT_NOT_RANGE16 0x02
389 * mte_parent_shift() - Get the parent shift for the slot storage.
390 * @parent: The parent pointer cast as an unsigned long
391 * Return: The shift into that pointer to the star to of the slot
393 static inline unsigned long mte_parent_shift(unsigned long parent)
395 /* Note bit 1 == 0 means 16B */
396 if (likely(parent & MAPLE_PARENT_NOT_RANGE16))
397 return MAPLE_PARENT_SLOT_SHIFT;
399 return MAPLE_PARENT_16B_SLOT_SHIFT;
403 * mte_parent_slot_mask() - Get the slot mask for the parent.
404 * @parent: The parent pointer cast as an unsigned long.
405 * Return: The slot mask for that parent.
407 static inline unsigned long mte_parent_slot_mask(unsigned long parent)
409 /* Note bit 1 == 0 means 16B */
410 if (likely(parent & MAPLE_PARENT_NOT_RANGE16))
411 return MAPLE_PARENT_SLOT_MASK;
413 return MAPLE_PARENT_16B_SLOT_MASK;
417 * mas_parent_enum() - Return the maple_type of the parent from the stored
419 * @mas: The maple state
420 * @node: The maple_enode to extract the parent's enum
421 * Return: The node->parent maple_type
424 enum maple_type mte_parent_enum(struct maple_enode *p_enode,
425 struct maple_tree *mt)
427 unsigned long p_type;
429 p_type = (unsigned long)p_enode;
430 if (p_type & MAPLE_PARENT_ROOT)
431 return 0; /* Validated in the caller. */
433 p_type &= MAPLE_NODE_MASK;
434 p_type = p_type & ~(MAPLE_PARENT_ROOT | mte_parent_slot_mask(p_type));
437 case MAPLE_PARENT_RANGE64: /* or MAPLE_PARENT_ARANGE64 */
439 return maple_arange_64;
440 return maple_range_64;
447 enum maple_type mas_parent_enum(struct ma_state *mas, struct maple_enode *enode)
449 return mte_parent_enum(ma_enode_ptr(mte_to_node(enode)->parent), mas->tree);
453 * mte_set_parent() - Set the parent node and encode the slot
454 * @enode: The encoded maple node.
455 * @parent: The encoded maple node that is the parent of @enode.
456 * @slot: The slot that @enode resides in @parent.
458 * Slot number is encoded in the enode->parent bit 3-6 or 2-6, depending on the
462 void mte_set_parent(struct maple_enode *enode, const struct maple_enode *parent,
465 unsigned long val = (unsigned long) parent;
468 enum maple_type p_type = mte_node_type(parent);
470 BUG_ON(p_type == maple_dense);
471 BUG_ON(p_type == maple_leaf_64);
475 case maple_arange_64:
476 shift = MAPLE_PARENT_SLOT_SHIFT;
477 type = MAPLE_PARENT_RANGE64;
486 val &= ~MAPLE_NODE_MASK; /* Clear all node metadata in parent */
487 val |= (slot << shift) | type;
488 mte_to_node(enode)->parent = ma_parent_ptr(val);
492 * mte_parent_slot() - get the parent slot of @enode.
493 * @enode: The encoded maple node.
495 * Return: The slot in the parent node where @enode resides.
497 static inline unsigned int mte_parent_slot(const struct maple_enode *enode)
499 unsigned long val = (unsigned long) mte_to_node(enode)->parent;
506 * Okay to use MAPLE_PARENT_16B_SLOT_MASK as the last bit will be lost
507 * by shift if the parent shift is MAPLE_PARENT_SLOT_SHIFT
509 return (val & MAPLE_PARENT_16B_SLOT_MASK) >> mte_parent_shift(val);
513 * mte_parent() - Get the parent of @node.
514 * @node: The encoded maple node.
516 * Return: The parent maple node.
518 static inline struct maple_node *mte_parent(const struct maple_enode *enode)
520 return (void *)((unsigned long)
521 (mte_to_node(enode)->parent) & ~MAPLE_NODE_MASK);
525 * ma_dead_node() - check if the @enode is dead.
526 * @enode: The encoded maple node
528 * Return: true if dead, false otherwise.
530 static inline bool ma_dead_node(const struct maple_node *node)
532 struct maple_node *parent;
534 /* Do not reorder reads from the node prior to the parent check */
536 parent = (void *)((unsigned long) node->parent & ~MAPLE_NODE_MASK);
537 return (parent == node);
541 * mte_dead_node() - check if the @enode is dead.
542 * @enode: The encoded maple node
544 * Return: true if dead, false otherwise.
546 static inline bool mte_dead_node(const struct maple_enode *enode)
548 struct maple_node *parent, *node;
550 node = mte_to_node(enode);
551 /* Do not reorder reads from the node prior to the parent check */
553 parent = mte_parent(enode);
554 return (parent == node);
558 * mas_allocated() - Get the number of nodes allocated in a maple state.
559 * @mas: The maple state
561 * The ma_state alloc member is overloaded to hold a pointer to the first
562 * allocated node or to the number of requested nodes to allocate. If bit 0 is
563 * set, then the alloc contains the number of requested nodes. If there is an
564 * allocated node, then the total allocated nodes is in that node.
566 * Return: The total number of nodes allocated
568 static inline unsigned long mas_allocated(const struct ma_state *mas)
570 if (!mas->alloc || ((unsigned long)mas->alloc & 0x1))
573 return mas->alloc->total;
577 * mas_set_alloc_req() - Set the requested number of allocations.
578 * @mas: the maple state
579 * @count: the number of allocations.
581 * The requested number of allocations is either in the first allocated node,
582 * located in @mas->alloc->request_count, or directly in @mas->alloc if there is
583 * no allocated node. Set the request either in the node or do the necessary
584 * encoding to store in @mas->alloc directly.
586 static inline void mas_set_alloc_req(struct ma_state *mas, unsigned long count)
588 if (!mas->alloc || ((unsigned long)mas->alloc & 0x1)) {
592 mas->alloc = (struct maple_alloc *)(((count) << 1U) | 1U);
596 mas->alloc->request_count = count;
600 * mas_alloc_req() - get the requested number of allocations.
601 * @mas: The maple state
603 * The alloc count is either stored directly in @mas, or in
604 * @mas->alloc->request_count if there is at least one node allocated. Decode
605 * the request count if it's stored directly in @mas->alloc.
607 * Return: The allocation request count.
609 static inline unsigned int mas_alloc_req(const struct ma_state *mas)
611 if ((unsigned long)mas->alloc & 0x1)
612 return (unsigned long)(mas->alloc) >> 1;
614 return mas->alloc->request_count;
619 * ma_pivots() - Get a pointer to the maple node pivots.
620 * @node - the maple node
621 * @type - the node type
623 * In the event of a dead node, this array may be %NULL
625 * Return: A pointer to the maple node pivots
627 static inline unsigned long *ma_pivots(struct maple_node *node,
628 enum maple_type type)
631 case maple_arange_64:
632 return node->ma64.pivot;
635 return node->mr64.pivot;
643 * ma_gaps() - Get a pointer to the maple node gaps.
644 * @node - the maple node
645 * @type - the node type
647 * Return: A pointer to the maple node gaps
649 static inline unsigned long *ma_gaps(struct maple_node *node,
650 enum maple_type type)
653 case maple_arange_64:
654 return node->ma64.gap;
664 * mte_pivot() - Get the pivot at @piv of the maple encoded node.
665 * @mn: The maple encoded node.
668 * Return: the pivot at @piv of @mn.
670 static inline unsigned long mte_pivot(const struct maple_enode *mn,
673 struct maple_node *node = mte_to_node(mn);
674 enum maple_type type = mte_node_type(mn);
676 if (piv >= mt_pivots[type]) {
681 case maple_arange_64:
682 return node->ma64.pivot[piv];
685 return node->mr64.pivot[piv];
693 * mas_safe_pivot() - get the pivot at @piv or mas->max.
694 * @mas: The maple state
695 * @pivots: The pointer to the maple node pivots
696 * @piv: The pivot to fetch
697 * @type: The maple node type
699 * Return: The pivot at @piv within the limit of the @pivots array, @mas->max
702 static inline unsigned long
703 mas_safe_pivot(const struct ma_state *mas, unsigned long *pivots,
704 unsigned char piv, enum maple_type type)
706 if (piv >= mt_pivots[type])
713 * mas_safe_min() - Return the minimum for a given offset.
714 * @mas: The maple state
715 * @pivots: The pointer to the maple node pivots
716 * @offset: The offset into the pivot array
718 * Return: The minimum range value that is contained in @offset.
720 static inline unsigned long
721 mas_safe_min(struct ma_state *mas, unsigned long *pivots, unsigned char offset)
724 return pivots[offset - 1] + 1;
730 * mas_logical_pivot() - Get the logical pivot of a given offset.
731 * @mas: The maple state
732 * @pivots: The pointer to the maple node pivots
733 * @offset: The offset into the pivot array
734 * @type: The maple node type
736 * When there is no value at a pivot (beyond the end of the data), then the
737 * pivot is actually @mas->max.
739 * Return: the logical pivot of a given @offset.
741 static inline unsigned long
742 mas_logical_pivot(struct ma_state *mas, unsigned long *pivots,
743 unsigned char offset, enum maple_type type)
745 unsigned long lpiv = mas_safe_pivot(mas, pivots, offset, type);
757 * mte_set_pivot() - Set a pivot to a value in an encoded maple node.
758 * @mn: The encoded maple node
759 * @piv: The pivot offset
760 * @val: The value of the pivot
762 static inline void mte_set_pivot(struct maple_enode *mn, unsigned char piv,
765 struct maple_node *node = mte_to_node(mn);
766 enum maple_type type = mte_node_type(mn);
768 BUG_ON(piv >= mt_pivots[type]);
773 node->mr64.pivot[piv] = val;
775 case maple_arange_64:
776 node->ma64.pivot[piv] = val;
785 * ma_slots() - Get a pointer to the maple node slots.
786 * @mn: The maple node
787 * @mt: The maple node type
789 * Return: A pointer to the maple node slots
791 static inline void __rcu **ma_slots(struct maple_node *mn, enum maple_type mt)
795 case maple_arange_64:
796 return mn->ma64.slot;
799 return mn->mr64.slot;
805 static inline bool mt_locked(const struct maple_tree *mt)
807 return mt_external_lock(mt) ? mt_lock_is_held(mt) :
808 lockdep_is_held(&mt->ma_lock);
811 static inline void *mt_slot(const struct maple_tree *mt,
812 void __rcu **slots, unsigned char offset)
814 return rcu_dereference_check(slots[offset], mt_locked(mt));
817 static inline void *mt_slot_locked(struct maple_tree *mt, void __rcu **slots,
818 unsigned char offset)
820 return rcu_dereference_protected(slots[offset], mt_locked(mt));
823 * mas_slot_locked() - Get the slot value when holding the maple tree lock.
824 * @mas: The maple state
825 * @slots: The pointer to the slots
826 * @offset: The offset into the slots array to fetch
828 * Return: The entry stored in @slots at the @offset.
830 static inline void *mas_slot_locked(struct ma_state *mas, void __rcu **slots,
831 unsigned char offset)
833 return mt_slot_locked(mas->tree, slots, offset);
837 * mas_slot() - Get the slot value when not holding the maple tree lock.
838 * @mas: The maple state
839 * @slots: The pointer to the slots
840 * @offset: The offset into the slots array to fetch
842 * Return: The entry stored in @slots at the @offset
844 static inline void *mas_slot(struct ma_state *mas, void __rcu **slots,
845 unsigned char offset)
847 return mt_slot(mas->tree, slots, offset);
851 * mas_root() - Get the maple tree root.
852 * @mas: The maple state.
854 * Return: The pointer to the root of the tree
856 static inline void *mas_root(struct ma_state *mas)
858 return rcu_dereference_check(mas->tree->ma_root, mt_locked(mas->tree));
861 static inline void *mt_root_locked(struct maple_tree *mt)
863 return rcu_dereference_protected(mt->ma_root, mt_locked(mt));
867 * mas_root_locked() - Get the maple tree root when holding the maple tree lock.
868 * @mas: The maple state.
870 * Return: The pointer to the root of the tree
872 static inline void *mas_root_locked(struct ma_state *mas)
874 return mt_root_locked(mas->tree);
877 static inline struct maple_metadata *ma_meta(struct maple_node *mn,
881 case maple_arange_64:
882 return &mn->ma64.meta;
884 return &mn->mr64.meta;
889 * ma_set_meta() - Set the metadata information of a node.
890 * @mn: The maple node
891 * @mt: The maple node type
892 * @offset: The offset of the highest sub-gap in this node.
893 * @end: The end of the data in this node.
895 static inline void ma_set_meta(struct maple_node *mn, enum maple_type mt,
896 unsigned char offset, unsigned char end)
898 struct maple_metadata *meta = ma_meta(mn, mt);
905 * mt_clear_meta() - clear the metadata information of a node, if it exists
906 * @mt: The maple tree
907 * @mn: The maple node
908 * @type: The maple node type
909 * @offset: The offset of the highest sub-gap in this node.
910 * @end: The end of the data in this node.
912 static inline void mt_clear_meta(struct maple_tree *mt, struct maple_node *mn,
913 enum maple_type type)
915 struct maple_metadata *meta;
916 unsigned long *pivots;
922 pivots = mn->mr64.pivot;
923 if (unlikely(pivots[MAPLE_RANGE64_SLOTS - 2])) {
924 slots = mn->mr64.slot;
925 next = mt_slot_locked(mt, slots,
926 MAPLE_RANGE64_SLOTS - 1);
927 if (unlikely((mte_to_node(next) &&
928 mte_node_type(next))))
929 return; /* no metadata, could be node */
932 case maple_arange_64:
933 meta = ma_meta(mn, type);
944 * ma_meta_end() - Get the data end of a node from the metadata
945 * @mn: The maple node
946 * @mt: The maple node type
948 static inline unsigned char ma_meta_end(struct maple_node *mn,
951 struct maple_metadata *meta = ma_meta(mn, mt);
957 * ma_meta_gap() - Get the largest gap location of a node from the metadata
958 * @mn: The maple node
959 * @mt: The maple node type
961 static inline unsigned char ma_meta_gap(struct maple_node *mn,
964 BUG_ON(mt != maple_arange_64);
966 return mn->ma64.meta.gap;
970 * ma_set_meta_gap() - Set the largest gap location in a nodes metadata
971 * @mn: The maple node
972 * @mn: The maple node type
973 * @offset: The location of the largest gap.
975 static inline void ma_set_meta_gap(struct maple_node *mn, enum maple_type mt,
976 unsigned char offset)
979 struct maple_metadata *meta = ma_meta(mn, mt);
985 * mat_add() - Add a @dead_enode to the ma_topiary of a list of dead nodes.
986 * @mat - the ma_topiary, a linked list of dead nodes.
987 * @dead_enode - the node to be marked as dead and added to the tail of the list
989 * Add the @dead_enode to the linked list in @mat.
991 static inline void mat_add(struct ma_topiary *mat,
992 struct maple_enode *dead_enode)
994 mte_set_node_dead(dead_enode);
995 mte_to_mat(dead_enode)->next = NULL;
997 mat->tail = mat->head = dead_enode;
1001 mte_to_mat(mat->tail)->next = dead_enode;
1002 mat->tail = dead_enode;
1005 static void mte_destroy_walk(struct maple_enode *, struct maple_tree *);
1006 static inline void mas_free(struct ma_state *mas, struct maple_enode *used);
1009 * mas_mat_free() - Free all nodes in a dead list.
1010 * @mas - the maple state
1011 * @mat - the ma_topiary linked list of dead nodes to free.
1013 * Free walk a dead list.
1015 static void mas_mat_free(struct ma_state *mas, struct ma_topiary *mat)
1017 struct maple_enode *next;
1020 next = mte_to_mat(mat->head)->next;
1021 mas_free(mas, mat->head);
1027 * mas_mat_destroy() - Free all nodes and subtrees in a dead list.
1028 * @mas - the maple state
1029 * @mat - the ma_topiary linked list of dead nodes to free.
1031 * Destroy walk a dead list.
1033 static void mas_mat_destroy(struct ma_state *mas, struct ma_topiary *mat)
1035 struct maple_enode *next;
1038 next = mte_to_mat(mat->head)->next;
1039 mte_destroy_walk(mat->head, mat->mtree);
1044 * mas_descend() - Descend into the slot stored in the ma_state.
1045 * @mas - the maple state.
1047 * Note: Not RCU safe, only use in write side or debug code.
1049 static inline void mas_descend(struct ma_state *mas)
1051 enum maple_type type;
1052 unsigned long *pivots;
1053 struct maple_node *node;
1057 type = mte_node_type(mas->node);
1058 pivots = ma_pivots(node, type);
1059 slots = ma_slots(node, type);
1062 mas->min = pivots[mas->offset - 1] + 1;
1063 mas->max = mas_safe_pivot(mas, pivots, mas->offset, type);
1064 mas->node = mas_slot(mas, slots, mas->offset);
1068 * mte_set_gap() - Set a maple node gap.
1069 * @mn: The encoded maple node
1070 * @gap: The offset of the gap to set
1071 * @val: The gap value
1073 static inline void mte_set_gap(const struct maple_enode *mn,
1074 unsigned char gap, unsigned long val)
1076 switch (mte_node_type(mn)) {
1079 case maple_arange_64:
1080 mte_to_node(mn)->ma64.gap[gap] = val;
1086 * mas_ascend() - Walk up a level of the tree.
1087 * @mas: The maple state
1089 * Sets the @mas->max and @mas->min to the correct values when walking up. This
1090 * may cause several levels of walking up to find the correct min and max.
1091 * May find a dead node which will cause a premature return.
1092 * Return: 1 on dead node, 0 otherwise
1094 static int mas_ascend(struct ma_state *mas)
1096 struct maple_enode *p_enode; /* parent enode. */
1097 struct maple_enode *a_enode; /* ancestor enode. */
1098 struct maple_node *a_node; /* ancestor node. */
1099 struct maple_node *p_node; /* parent node. */
1100 unsigned char a_slot;
1101 enum maple_type a_type;
1102 unsigned long min, max;
1103 unsigned long *pivots;
1104 unsigned char offset;
1105 bool set_max = false, set_min = false;
1107 a_node = mas_mn(mas);
1108 if (ma_is_root(a_node)) {
1113 p_node = mte_parent(mas->node);
1114 if (unlikely(a_node == p_node))
1116 a_type = mas_parent_enum(mas, mas->node);
1117 offset = mte_parent_slot(mas->node);
1118 a_enode = mt_mk_node(p_node, a_type);
1120 /* Check to make sure all parent information is still accurate */
1121 if (p_node != mte_parent(mas->node))
1124 mas->node = a_enode;
1125 mas->offset = offset;
1127 if (mte_is_root(a_enode)) {
1128 mas->max = ULONG_MAX;
1137 a_type = mas_parent_enum(mas, p_enode);
1138 a_node = mte_parent(p_enode);
1139 a_slot = mte_parent_slot(p_enode);
1140 a_enode = mt_mk_node(a_node, a_type);
1141 pivots = ma_pivots(a_node, a_type);
1143 if (unlikely(ma_dead_node(a_node)))
1146 if (!set_min && a_slot) {
1148 min = pivots[a_slot - 1] + 1;
1151 if (!set_max && a_slot < mt_pivots[a_type]) {
1153 max = pivots[a_slot];
1156 if (unlikely(ma_dead_node(a_node)))
1159 if (unlikely(ma_is_root(a_node)))
1162 } while (!set_min || !set_max);
1170 * mas_pop_node() - Get a previously allocated maple node from the maple state.
1171 * @mas: The maple state
1173 * Return: A pointer to a maple node.
1175 static inline struct maple_node *mas_pop_node(struct ma_state *mas)
1177 struct maple_alloc *ret, *node = mas->alloc;
1178 unsigned long total = mas_allocated(mas);
1179 unsigned int req = mas_alloc_req(mas);
1181 /* nothing or a request pending. */
1182 if (WARN_ON(!total))
1186 /* single allocation in this ma_state */
1192 if (node->node_count == 1) {
1193 /* Single allocation in this node. */
1194 mas->alloc = node->slot[0];
1195 mas->alloc->total = node->total - 1;
1200 ret = node->slot[--node->node_count];
1201 node->slot[node->node_count] = NULL;
1207 mas_set_alloc_req(mas, req);
1210 memset(ret, 0, sizeof(*ret));
1211 return (struct maple_node *)ret;
1215 * mas_push_node() - Push a node back on the maple state allocation.
1216 * @mas: The maple state
1217 * @used: The used maple node
1219 * Stores the maple node back into @mas->alloc for reuse. Updates allocated and
1220 * requested node count as necessary.
1222 static inline void mas_push_node(struct ma_state *mas, struct maple_node *used)
1224 struct maple_alloc *reuse = (struct maple_alloc *)used;
1225 struct maple_alloc *head = mas->alloc;
1226 unsigned long count;
1227 unsigned int requested = mas_alloc_req(mas);
1229 count = mas_allocated(mas);
1231 reuse->request_count = 0;
1232 reuse->node_count = 0;
1233 if (count && (head->node_count < MAPLE_ALLOC_SLOTS)) {
1234 head->slot[head->node_count++] = reuse;
1240 if ((head) && !((unsigned long)head & 0x1)) {
1241 reuse->slot[0] = head;
1242 reuse->node_count = 1;
1243 reuse->total += head->total;
1249 mas_set_alloc_req(mas, requested - 1);
1253 * mas_alloc_nodes() - Allocate nodes into a maple state
1254 * @mas: The maple state
1255 * @gfp: The GFP Flags
1257 static inline void mas_alloc_nodes(struct ma_state *mas, gfp_t gfp)
1259 struct maple_alloc *node;
1260 unsigned long allocated = mas_allocated(mas);
1261 unsigned int requested = mas_alloc_req(mas);
1263 void **slots = NULL;
1264 unsigned int max_req = 0;
1269 mas_set_alloc_req(mas, 0);
1270 if (mas->mas_flags & MA_STATE_PREALLOC) {
1273 WARN_ON(!allocated);
1276 if (!allocated || mas->alloc->node_count == MAPLE_ALLOC_SLOTS) {
1277 node = (struct maple_alloc *)mt_alloc_one(gfp);
1282 node->slot[0] = mas->alloc;
1283 node->node_count = 1;
1285 node->node_count = 0;
1289 node->total = ++allocated;
1294 node->request_count = 0;
1296 max_req = MAPLE_ALLOC_SLOTS - node->node_count;
1297 slots = (void **)&node->slot[node->node_count];
1298 max_req = min(requested, max_req);
1299 count = mt_alloc_bulk(gfp, max_req, slots);
1303 if (node->node_count == 0) {
1304 node->slot[0]->node_count = 0;
1305 node->slot[0]->request_count = 0;
1308 node->node_count += count;
1310 node = node->slot[0];
1313 mas->alloc->total = allocated;
1317 /* Clean up potential freed allocations on bulk failure */
1318 memset(slots, 0, max_req * sizeof(unsigned long));
1320 mas_set_alloc_req(mas, requested);
1321 if (mas->alloc && !(((unsigned long)mas->alloc & 0x1)))
1322 mas->alloc->total = allocated;
1323 mas_set_err(mas, -ENOMEM);
1329 * mas_free() - Free an encoded maple node
1330 * @mas: The maple state
1331 * @used: The encoded maple node to free.
1333 * Uses rcu free if necessary, pushes @used back on the maple state allocations
1336 static inline void mas_free(struct ma_state *mas, struct maple_enode *used)
1338 struct maple_node *tmp = mte_to_node(used);
1340 if (mt_in_rcu(mas->tree))
1343 mas_push_node(mas, tmp);
1347 * mas_node_count() - Check if enough nodes are allocated and request more if
1348 * there is not enough nodes.
1349 * @mas: The maple state
1350 * @count: The number of nodes needed
1351 * @gfp: the gfp flags
1353 static void mas_node_count_gfp(struct ma_state *mas, int count, gfp_t gfp)
1355 unsigned long allocated = mas_allocated(mas);
1357 if (allocated < count) {
1358 mas_set_alloc_req(mas, count - allocated);
1359 mas_alloc_nodes(mas, gfp);
1364 * mas_node_count() - Check if enough nodes are allocated and request more if
1365 * there is not enough nodes.
1366 * @mas: The maple state
1367 * @count: The number of nodes needed
1369 * Note: Uses GFP_NOWAIT | __GFP_NOWARN for gfp flags.
1371 static void mas_node_count(struct ma_state *mas, int count)
1373 return mas_node_count_gfp(mas, count, GFP_NOWAIT | __GFP_NOWARN);
1377 * mas_start() - Sets up maple state for operations.
1378 * @mas: The maple state.
1380 * If mas->node == MAS_START, then set the min, max and depth to
1384 * - If mas->node is an error or not MAS_START, return NULL.
1385 * - If it's an empty tree: NULL & mas->node == MAS_NONE
1386 * - If it's a single entry: The entry & mas->node == MAS_ROOT
1387 * - If it's a tree: NULL & mas->node == safe root node.
1389 static inline struct maple_enode *mas_start(struct ma_state *mas)
1391 if (likely(mas_is_start(mas))) {
1392 struct maple_enode *root;
1395 mas->max = ULONG_MAX;
1399 root = mas_root(mas);
1400 /* Tree with nodes */
1401 if (likely(xa_is_node(root))) {
1403 mas->node = mte_safe_root(root);
1405 if (mte_dead_node(mas->node))
1412 if (unlikely(!root)) {
1413 mas->node = MAS_NONE;
1414 mas->offset = MAPLE_NODE_SLOTS;
1418 /* Single entry tree */
1419 mas->node = MAS_ROOT;
1420 mas->offset = MAPLE_NODE_SLOTS;
1422 /* Single entry tree. */
1433 * ma_data_end() - Find the end of the data in a node.
1434 * @node: The maple node
1435 * @type: The maple node type
1436 * @pivots: The array of pivots in the node
1437 * @max: The maximum value in the node
1439 * Uses metadata to find the end of the data when possible.
1440 * Return: The zero indexed last slot with data (may be null).
1442 static inline unsigned char ma_data_end(struct maple_node *node,
1443 enum maple_type type,
1444 unsigned long *pivots,
1447 unsigned char offset;
1452 if (type == maple_arange_64)
1453 return ma_meta_end(node, type);
1455 offset = mt_pivots[type] - 1;
1456 if (likely(!pivots[offset]))
1457 return ma_meta_end(node, type);
1459 if (likely(pivots[offset] == max))
1462 return mt_pivots[type];
1466 * mas_data_end() - Find the end of the data (slot).
1467 * @mas: the maple state
1469 * This method is optimized to check the metadata of a node if the node type
1470 * supports data end metadata.
1472 * Return: The zero indexed last slot with data (may be null).
1474 static inline unsigned char mas_data_end(struct ma_state *mas)
1476 enum maple_type type;
1477 struct maple_node *node;
1478 unsigned char offset;
1479 unsigned long *pivots;
1481 type = mte_node_type(mas->node);
1483 if (type == maple_arange_64)
1484 return ma_meta_end(node, type);
1486 pivots = ma_pivots(node, type);
1487 if (unlikely(ma_dead_node(node)))
1490 offset = mt_pivots[type] - 1;
1491 if (likely(!pivots[offset]))
1492 return ma_meta_end(node, type);
1494 if (likely(pivots[offset] == mas->max))
1497 return mt_pivots[type];
1501 * mas_leaf_max_gap() - Returns the largest gap in a leaf node
1502 * @mas - the maple state
1504 * Return: The maximum gap in the leaf.
1506 static unsigned long mas_leaf_max_gap(struct ma_state *mas)
1509 unsigned long pstart, gap, max_gap;
1510 struct maple_node *mn;
1511 unsigned long *pivots;
1514 unsigned char max_piv;
1516 mt = mte_node_type(mas->node);
1518 slots = ma_slots(mn, mt);
1520 if (unlikely(ma_is_dense(mt))) {
1522 for (i = 0; i < mt_slots[mt]; i++) {
1537 * Check the first implied pivot optimizes the loop below and slot 1 may
1538 * be skipped if there is a gap in slot 0.
1540 pivots = ma_pivots(mn, mt);
1541 if (likely(!slots[0])) {
1542 max_gap = pivots[0] - mas->min + 1;
1548 /* reduce max_piv as the special case is checked before the loop */
1549 max_piv = ma_data_end(mn, mt, pivots, mas->max) - 1;
1551 * Check end implied pivot which can only be a gap on the right most
1554 if (unlikely(mas->max == ULONG_MAX) && !slots[max_piv + 1]) {
1555 gap = ULONG_MAX - pivots[max_piv];
1560 for (; i <= max_piv; i++) {
1561 /* data == no gap. */
1562 if (likely(slots[i]))
1565 pstart = pivots[i - 1];
1566 gap = pivots[i] - pstart;
1570 /* There cannot be two gaps in a row. */
1577 * ma_max_gap() - Get the maximum gap in a maple node (non-leaf)
1578 * @node: The maple node
1579 * @gaps: The pointer to the gaps
1580 * @mt: The maple node type
1581 * @*off: Pointer to store the offset location of the gap.
1583 * Uses the metadata data end to scan backwards across set gaps.
1585 * Return: The maximum gap value
1587 static inline unsigned long
1588 ma_max_gap(struct maple_node *node, unsigned long *gaps, enum maple_type mt,
1591 unsigned char offset, i;
1592 unsigned long max_gap = 0;
1594 i = offset = ma_meta_end(node, mt);
1596 if (gaps[i] > max_gap) {
1607 * mas_max_gap() - find the largest gap in a non-leaf node and set the slot.
1608 * @mas: The maple state.
1610 * If the metadata gap is set to MAPLE_ARANGE64_META_MAX, there is no gap.
1612 * Return: The gap value.
1614 static inline unsigned long mas_max_gap(struct ma_state *mas)
1616 unsigned long *gaps;
1617 unsigned char offset;
1619 struct maple_node *node;
1621 mt = mte_node_type(mas->node);
1623 return mas_leaf_max_gap(mas);
1626 offset = ma_meta_gap(node, mt);
1627 if (offset == MAPLE_ARANGE64_META_MAX)
1630 gaps = ma_gaps(node, mt);
1631 return gaps[offset];
1635 * mas_parent_gap() - Set the parent gap and any gaps above, as needed
1636 * @mas: The maple state
1637 * @offset: The gap offset in the parent to set
1638 * @new: The new gap value.
1640 * Set the parent gap then continue to set the gap upwards, using the metadata
1641 * of the parent to see if it is necessary to check the node above.
1643 static inline void mas_parent_gap(struct ma_state *mas, unsigned char offset,
1646 unsigned long meta_gap = 0;
1647 struct maple_node *pnode;
1648 struct maple_enode *penode;
1649 unsigned long *pgaps;
1650 unsigned char meta_offset;
1651 enum maple_type pmt;
1653 pnode = mte_parent(mas->node);
1654 pmt = mas_parent_enum(mas, mas->node);
1655 penode = mt_mk_node(pnode, pmt);
1656 pgaps = ma_gaps(pnode, pmt);
1659 meta_offset = ma_meta_gap(pnode, pmt);
1660 if (meta_offset == MAPLE_ARANGE64_META_MAX)
1663 meta_gap = pgaps[meta_offset];
1665 pgaps[offset] = new;
1667 if (meta_gap == new)
1670 if (offset != meta_offset) {
1674 ma_set_meta_gap(pnode, pmt, offset);
1675 } else if (new < meta_gap) {
1677 new = ma_max_gap(pnode, pgaps, pmt, &meta_offset);
1678 ma_set_meta_gap(pnode, pmt, meta_offset);
1681 if (ma_is_root(pnode))
1684 /* Go to the parent node. */
1685 pnode = mte_parent(penode);
1686 pmt = mas_parent_enum(mas, penode);
1687 pgaps = ma_gaps(pnode, pmt);
1688 offset = mte_parent_slot(penode);
1689 penode = mt_mk_node(pnode, pmt);
1694 * mas_update_gap() - Update a nodes gaps and propagate up if necessary.
1695 * @mas - the maple state.
1697 static inline void mas_update_gap(struct ma_state *mas)
1699 unsigned char pslot;
1700 unsigned long p_gap;
1701 unsigned long max_gap;
1703 if (!mt_is_alloc(mas->tree))
1706 if (mte_is_root(mas->node))
1709 max_gap = mas_max_gap(mas);
1711 pslot = mte_parent_slot(mas->node);
1712 p_gap = ma_gaps(mte_parent(mas->node),
1713 mas_parent_enum(mas, mas->node))[pslot];
1715 if (p_gap != max_gap)
1716 mas_parent_gap(mas, pslot, max_gap);
1720 * mas_adopt_children() - Set the parent pointer of all nodes in @parent to
1721 * @parent with the slot encoded.
1722 * @mas - the maple state (for the tree)
1723 * @parent - the maple encoded node containing the children.
1725 static inline void mas_adopt_children(struct ma_state *mas,
1726 struct maple_enode *parent)
1728 enum maple_type type = mte_node_type(parent);
1729 struct maple_node *node = mas_mn(mas);
1730 void __rcu **slots = ma_slots(node, type);
1731 unsigned long *pivots = ma_pivots(node, type);
1732 struct maple_enode *child;
1733 unsigned char offset;
1735 offset = ma_data_end(node, type, pivots, mas->max);
1737 child = mas_slot_locked(mas, slots, offset);
1738 mte_set_parent(child, parent, offset);
1743 * mas_replace() - Replace a maple node in the tree with mas->node. Uses the
1744 * parent encoding to locate the maple node in the tree.
1745 * @mas - the ma_state to use for operations.
1746 * @advanced - boolean to adopt the child nodes and free the old node (false) or
1747 * leave the node (true) and handle the adoption and free elsewhere.
1749 static inline void mas_replace(struct ma_state *mas, bool advanced)
1750 __must_hold(mas->tree->lock)
1752 struct maple_node *mn = mas_mn(mas);
1753 struct maple_enode *old_enode;
1754 unsigned char offset = 0;
1755 void __rcu **slots = NULL;
1757 if (ma_is_root(mn)) {
1758 old_enode = mas_root_locked(mas);
1760 offset = mte_parent_slot(mas->node);
1761 slots = ma_slots(mte_parent(mas->node),
1762 mas_parent_enum(mas, mas->node));
1763 old_enode = mas_slot_locked(mas, slots, offset);
1766 if (!advanced && !mte_is_leaf(mas->node))
1767 mas_adopt_children(mas, mas->node);
1769 if (mte_is_root(mas->node)) {
1770 mn->parent = ma_parent_ptr(
1771 ((unsigned long)mas->tree | MA_ROOT_PARENT));
1772 rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
1773 mas_set_height(mas);
1775 rcu_assign_pointer(slots[offset], mas->node);
1779 mte_set_node_dead(old_enode);
1780 mas_free(mas, old_enode);
1785 * mas_new_child() - Find the new child of a node.
1786 * @mas: the maple state
1787 * @child: the maple state to store the child.
1789 static inline bool mas_new_child(struct ma_state *mas, struct ma_state *child)
1790 __must_hold(mas->tree->lock)
1793 unsigned char offset;
1795 unsigned long *pivots;
1796 struct maple_enode *entry;
1797 struct maple_node *node;
1800 mt = mte_node_type(mas->node);
1802 slots = ma_slots(node, mt);
1803 pivots = ma_pivots(node, mt);
1804 end = ma_data_end(node, mt, pivots, mas->max);
1805 for (offset = mas->offset; offset <= end; offset++) {
1806 entry = mas_slot_locked(mas, slots, offset);
1807 if (mte_parent(entry) == node) {
1809 mas->offset = offset + 1;
1810 child->offset = offset;
1820 * mab_shift_right() - Shift the data in mab right. Note, does not clean out the
1821 * old data or set b_node->b_end.
1822 * @b_node: the maple_big_node
1823 * @shift: the shift count
1825 static inline void mab_shift_right(struct maple_big_node *b_node,
1826 unsigned char shift)
1828 unsigned long size = b_node->b_end * sizeof(unsigned long);
1830 memmove(b_node->pivot + shift, b_node->pivot, size);
1831 memmove(b_node->slot + shift, b_node->slot, size);
1832 if (b_node->type == maple_arange_64)
1833 memmove(b_node->gap + shift, b_node->gap, size);
1837 * mab_middle_node() - Check if a middle node is needed (unlikely)
1838 * @b_node: the maple_big_node that contains the data.
1839 * @size: the amount of data in the b_node
1840 * @split: the potential split location
1841 * @slot_count: the size that can be stored in a single node being considered.
1843 * Return: true if a middle node is required.
1845 static inline bool mab_middle_node(struct maple_big_node *b_node, int split,
1846 unsigned char slot_count)
1848 unsigned char size = b_node->b_end;
1850 if (size >= 2 * slot_count)
1853 if (!b_node->slot[split] && (size >= 2 * slot_count - 1))
1860 * mab_no_null_split() - ensure the split doesn't fall on a NULL
1861 * @b_node: the maple_big_node with the data
1862 * @split: the suggested split location
1863 * @slot_count: the number of slots in the node being considered.
1865 * Return: the split location.
1867 static inline int mab_no_null_split(struct maple_big_node *b_node,
1868 unsigned char split, unsigned char slot_count)
1870 if (!b_node->slot[split]) {
1872 * If the split is less than the max slot && the right side will
1873 * still be sufficient, then increment the split on NULL.
1875 if ((split < slot_count - 1) &&
1876 (b_node->b_end - split) > (mt_min_slots[b_node->type]))
1885 * mab_calc_split() - Calculate the split location and if there needs to be two
1887 * @bn: The maple_big_node with the data
1888 * @mid_split: The second split, if required. 0 otherwise.
1890 * Return: The first split location. The middle split is set in @mid_split.
1892 static inline int mab_calc_split(struct ma_state *mas,
1893 struct maple_big_node *bn, unsigned char *mid_split, unsigned long min)
1895 unsigned char b_end = bn->b_end;
1896 int split = b_end / 2; /* Assume equal split. */
1897 unsigned char slot_min, slot_count = mt_slots[bn->type];
1900 * To support gap tracking, all NULL entries are kept together and a node cannot
1901 * end on a NULL entry, with the exception of the left-most leaf. The
1902 * limitation means that the split of a node must be checked for this condition
1903 * and be able to put more data in one direction or the other.
1905 if (unlikely((mas->mas_flags & MA_STATE_BULK))) {
1907 split = b_end - mt_min_slots[bn->type];
1909 if (!ma_is_leaf(bn->type))
1912 mas->mas_flags |= MA_STATE_REBALANCE;
1913 if (!bn->slot[split])
1919 * Although extremely rare, it is possible to enter what is known as the 3-way
1920 * split scenario. The 3-way split comes about by means of a store of a range
1921 * that overwrites the end and beginning of two full nodes. The result is a set
1922 * of entries that cannot be stored in 2 nodes. Sometimes, these two nodes can
1923 * also be located in different parent nodes which are also full. This can
1924 * carry upwards all the way to the root in the worst case.
1926 if (unlikely(mab_middle_node(bn, split, slot_count))) {
1928 *mid_split = split * 2;
1930 slot_min = mt_min_slots[bn->type];
1934 * Avoid having a range less than the slot count unless it
1935 * causes one node to be deficient.
1936 * NOTE: mt_min_slots is 1 based, b_end and split are zero.
1938 while (((bn->pivot[split] - min) < slot_count - 1) &&
1939 (split < slot_count - 1) && (b_end - split > slot_min))
1943 /* Avoid ending a node on a NULL entry */
1944 split = mab_no_null_split(bn, split, slot_count);
1948 *mid_split = mab_no_null_split(bn, *mid_split, slot_count);
1954 * mas_mab_cp() - Copy data from a maple state inclusively to a maple_big_node
1955 * and set @b_node->b_end to the next free slot.
1956 * @mas: The maple state
1957 * @mas_start: The starting slot to copy
1958 * @mas_end: The end slot to copy (inclusively)
1959 * @b_node: The maple_big_node to place the data
1960 * @mab_start: The starting location in maple_big_node to store the data.
1962 static inline void mas_mab_cp(struct ma_state *mas, unsigned char mas_start,
1963 unsigned char mas_end, struct maple_big_node *b_node,
1964 unsigned char mab_start)
1967 struct maple_node *node;
1969 unsigned long *pivots, *gaps;
1970 int i = mas_start, j = mab_start;
1971 unsigned char piv_end;
1974 mt = mte_node_type(mas->node);
1975 pivots = ma_pivots(node, mt);
1977 b_node->pivot[j] = pivots[i++];
1978 if (unlikely(i > mas_end))
1983 piv_end = min(mas_end, mt_pivots[mt]);
1984 for (; i < piv_end; i++, j++) {
1985 b_node->pivot[j] = pivots[i];
1986 if (unlikely(!b_node->pivot[j]))
1989 if (unlikely(mas->max == b_node->pivot[j]))
1993 if (likely(i <= mas_end))
1994 b_node->pivot[j] = mas_safe_pivot(mas, pivots, i, mt);
1997 b_node->b_end = ++j;
1999 slots = ma_slots(node, mt);
2000 memcpy(b_node->slot + mab_start, slots + mas_start, sizeof(void *) * j);
2001 if (!ma_is_leaf(mt) && mt_is_alloc(mas->tree)) {
2002 gaps = ma_gaps(node, mt);
2003 memcpy(b_node->gap + mab_start, gaps + mas_start,
2004 sizeof(unsigned long) * j);
2009 * mas_leaf_set_meta() - Set the metadata of a leaf if possible.
2010 * @mas: The maple state
2011 * @node: The maple node
2012 * @pivots: pointer to the maple node pivots
2013 * @mt: The maple type
2014 * @end: The assumed end
2016 * Note, end may be incremented within this function but not modified at the
2017 * source. This is fine since the metadata is the last thing to be stored in a
2018 * node during a write.
2020 static inline void mas_leaf_set_meta(struct ma_state *mas,
2021 struct maple_node *node, unsigned long *pivots,
2022 enum maple_type mt, unsigned char end)
2024 /* There is no room for metadata already */
2025 if (mt_pivots[mt] <= end)
2028 if (pivots[end] && pivots[end] < mas->max)
2031 if (end < mt_slots[mt] - 1)
2032 ma_set_meta(node, mt, 0, end);
2036 * mab_mas_cp() - Copy data from maple_big_node to a maple encoded node.
2037 * @b_node: the maple_big_node that has the data
2038 * @mab_start: the start location in @b_node.
2039 * @mab_end: The end location in @b_node (inclusively)
2040 * @mas: The maple state with the maple encoded node.
2042 static inline void mab_mas_cp(struct maple_big_node *b_node,
2043 unsigned char mab_start, unsigned char mab_end,
2044 struct ma_state *mas, bool new_max)
2047 enum maple_type mt = mte_node_type(mas->node);
2048 struct maple_node *node = mte_to_node(mas->node);
2049 void __rcu **slots = ma_slots(node, mt);
2050 unsigned long *pivots = ma_pivots(node, mt);
2051 unsigned long *gaps = NULL;
2054 if (mab_end - mab_start > mt_pivots[mt])
2057 if (!pivots[mt_pivots[mt] - 1])
2058 slots[mt_pivots[mt]] = NULL;
2062 pivots[j++] = b_node->pivot[i++];
2063 } while (i <= mab_end && likely(b_node->pivot[i]));
2065 memcpy(slots, b_node->slot + mab_start,
2066 sizeof(void *) * (i - mab_start));
2069 mas->max = b_node->pivot[i - 1];
2072 if (likely(!ma_is_leaf(mt) && mt_is_alloc(mas->tree))) {
2073 unsigned long max_gap = 0;
2074 unsigned char offset = 15;
2076 gaps = ma_gaps(node, mt);
2078 gaps[--j] = b_node->gap[--i];
2079 if (gaps[j] > max_gap) {
2085 ma_set_meta(node, mt, offset, end);
2087 mas_leaf_set_meta(mas, node, pivots, mt, end);
2092 * mas_descend_adopt() - Descend through a sub-tree and adopt children.
2093 * @mas: the maple state with the maple encoded node of the sub-tree.
2095 * Descend through a sub-tree and adopt children who do not have the correct
2096 * parents set. Follow the parents which have the correct parents as they are
2097 * the new entries which need to be followed to find other incorrectly set
2100 static inline void mas_descend_adopt(struct ma_state *mas)
2102 struct ma_state list[3], next[3];
2106 * At each level there may be up to 3 correct parent pointers which indicates
2107 * the new nodes which need to be walked to find any new nodes at a lower level.
2110 for (i = 0; i < 3; i++) {
2117 while (!mte_is_leaf(list[0].node)) {
2119 for (i = 0; i < 3; i++) {
2120 if (mas_is_none(&list[i]))
2123 if (i && list[i-1].node == list[i].node)
2126 while ((n < 3) && (mas_new_child(&list[i], &next[n])))
2129 mas_adopt_children(&list[i], list[i].node);
2133 next[n++].node = MAS_NONE;
2135 /* descend by setting the list to the children */
2136 for (i = 0; i < 3; i++)
2142 * mas_bulk_rebalance() - Rebalance the end of a tree after a bulk insert.
2143 * @mas: The maple state
2144 * @end: The maple node end
2145 * @mt: The maple node type
2147 static inline void mas_bulk_rebalance(struct ma_state *mas, unsigned char end,
2150 if (!(mas->mas_flags & MA_STATE_BULK))
2153 if (mte_is_root(mas->node))
2156 if (end > mt_min_slots[mt]) {
2157 mas->mas_flags &= ~MA_STATE_REBALANCE;
2163 * mas_store_b_node() - Store an @entry into the b_node while also copying the
2164 * data from a maple encoded node.
2165 * @wr_mas: the maple write state
2166 * @b_node: the maple_big_node to fill with data
2167 * @offset_end: the offset to end copying
2169 * Return: The actual end of the data stored in @b_node
2171 static inline void mas_store_b_node(struct ma_wr_state *wr_mas,
2172 struct maple_big_node *b_node, unsigned char offset_end)
2175 unsigned char b_end;
2176 /* Possible underflow of piv will wrap back to 0 before use. */
2178 struct ma_state *mas = wr_mas->mas;
2180 b_node->type = wr_mas->type;
2184 /* Copy start data up to insert. */
2185 mas_mab_cp(mas, 0, slot - 1, b_node, 0);
2186 b_end = b_node->b_end;
2187 piv = b_node->pivot[b_end - 1];
2191 if (piv + 1 < mas->index) {
2192 /* Handle range starting after old range */
2193 b_node->slot[b_end] = wr_mas->content;
2194 if (!wr_mas->content)
2195 b_node->gap[b_end] = mas->index - 1 - piv;
2196 b_node->pivot[b_end++] = mas->index - 1;
2199 /* Store the new entry. */
2200 mas->offset = b_end;
2201 b_node->slot[b_end] = wr_mas->entry;
2202 b_node->pivot[b_end] = mas->last;
2205 if (mas->last >= mas->max)
2208 /* Handle new range ending before old range ends */
2209 piv = mas_logical_pivot(mas, wr_mas->pivots, offset_end, wr_mas->type);
2210 if (piv > mas->last) {
2211 if (piv == ULONG_MAX)
2212 mas_bulk_rebalance(mas, b_node->b_end, wr_mas->type);
2214 if (offset_end != slot)
2215 wr_mas->content = mas_slot_locked(mas, wr_mas->slots,
2218 b_node->slot[++b_end] = wr_mas->content;
2219 if (!wr_mas->content)
2220 b_node->gap[b_end] = piv - mas->last + 1;
2221 b_node->pivot[b_end] = piv;
2224 slot = offset_end + 1;
2225 if (slot > wr_mas->node_end)
2228 /* Copy end data to the end of the node. */
2229 mas_mab_cp(mas, slot, wr_mas->node_end + 1, b_node, ++b_end);
2234 b_node->b_end = b_end;
2238 * mas_prev_sibling() - Find the previous node with the same parent.
2239 * @mas: the maple state
2241 * Return: True if there is a previous sibling, false otherwise.
2243 static inline bool mas_prev_sibling(struct ma_state *mas)
2245 unsigned int p_slot = mte_parent_slot(mas->node);
2247 if (mte_is_root(mas->node))
2254 mas->offset = p_slot - 1;
2260 * mas_next_sibling() - Find the next node with the same parent.
2261 * @mas: the maple state
2263 * Return: true if there is a next sibling, false otherwise.
2265 static inline bool mas_next_sibling(struct ma_state *mas)
2267 MA_STATE(parent, mas->tree, mas->index, mas->last);
2269 if (mte_is_root(mas->node))
2273 mas_ascend(&parent);
2274 parent.offset = mte_parent_slot(mas->node) + 1;
2275 if (parent.offset > mas_data_end(&parent))
2284 * mte_node_or_node() - Return the encoded node or MAS_NONE.
2285 * @enode: The encoded maple node.
2287 * Shorthand to avoid setting %NULLs in the tree or maple_subtree_state.
2289 * Return: @enode or MAS_NONE
2291 static inline struct maple_enode *mte_node_or_none(struct maple_enode *enode)
2296 return ma_enode_ptr(MAS_NONE);
2300 * mas_wr_node_walk() - Find the correct offset for the index in the @mas.
2301 * @wr_mas: The maple write state
2303 * Uses mas_slot_locked() and does not need to worry about dead nodes.
2305 static inline void mas_wr_node_walk(struct ma_wr_state *wr_mas)
2307 struct ma_state *mas = wr_mas->mas;
2308 unsigned char count;
2309 unsigned char offset;
2310 unsigned long index, min, max;
2312 if (unlikely(ma_is_dense(wr_mas->type))) {
2313 wr_mas->r_max = wr_mas->r_min = mas->index;
2314 mas->offset = mas->index = mas->min;
2318 wr_mas->node = mas_mn(wr_mas->mas);
2319 wr_mas->pivots = ma_pivots(wr_mas->node, wr_mas->type);
2320 count = wr_mas->node_end = ma_data_end(wr_mas->node, wr_mas->type,
2321 wr_mas->pivots, mas->max);
2322 offset = mas->offset;
2323 min = mas_safe_min(mas, wr_mas->pivots, offset);
2324 if (unlikely(offset == count))
2327 max = wr_mas->pivots[offset];
2329 if (unlikely(index <= max))
2332 if (unlikely(!max && offset))
2336 while (++offset < count) {
2337 max = wr_mas->pivots[offset];
2340 else if (unlikely(!max))
2349 wr_mas->r_max = max;
2350 wr_mas->r_min = min;
2351 wr_mas->offset_end = mas->offset = offset;
2355 * mas_topiary_range() - Add a range of slots to the topiary.
2356 * @mas: The maple state
2357 * @destroy: The topiary to add the slots (usually destroy)
2358 * @start: The starting slot inclusively
2359 * @end: The end slot inclusively
2361 static inline void mas_topiary_range(struct ma_state *mas,
2362 struct ma_topiary *destroy, unsigned char start, unsigned char end)
2365 unsigned char offset;
2367 MT_BUG_ON(mas->tree, mte_is_leaf(mas->node));
2368 slots = ma_slots(mas_mn(mas), mte_node_type(mas->node));
2369 for (offset = start; offset <= end; offset++) {
2370 struct maple_enode *enode = mas_slot_locked(mas, slots, offset);
2372 if (mte_dead_node(enode))
2375 mat_add(destroy, enode);
2380 * mast_topiary() - Add the portions of the tree to the removal list; either to
2381 * be freed or discarded (destroy walk).
2382 * @mast: The maple_subtree_state.
2384 static inline void mast_topiary(struct maple_subtree_state *mast)
2386 MA_WR_STATE(wr_mas, mast->orig_l, NULL);
2387 unsigned char r_start, r_end;
2388 unsigned char l_start, l_end;
2389 void __rcu **l_slots, **r_slots;
2391 wr_mas.type = mte_node_type(mast->orig_l->node);
2392 mast->orig_l->index = mast->orig_l->last;
2393 mas_wr_node_walk(&wr_mas);
2394 l_start = mast->orig_l->offset + 1;
2395 l_end = mas_data_end(mast->orig_l);
2397 r_end = mast->orig_r->offset;
2402 l_slots = ma_slots(mas_mn(mast->orig_l),
2403 mte_node_type(mast->orig_l->node));
2405 r_slots = ma_slots(mas_mn(mast->orig_r),
2406 mte_node_type(mast->orig_r->node));
2408 if ((l_start < l_end) &&
2409 mte_dead_node(mas_slot_locked(mast->orig_l, l_slots, l_start))) {
2413 if (mte_dead_node(mas_slot_locked(mast->orig_r, r_slots, r_end))) {
2418 if ((l_start > r_end) && (mast->orig_l->node == mast->orig_r->node))
2421 /* At the node where left and right sides meet, add the parts between */
2422 if (mast->orig_l->node == mast->orig_r->node) {
2423 return mas_topiary_range(mast->orig_l, mast->destroy,
2427 /* mast->orig_r is different and consumed. */
2428 if (mte_is_leaf(mast->orig_r->node))
2431 if (mte_dead_node(mas_slot_locked(mast->orig_l, l_slots, l_end)))
2435 if (l_start <= l_end)
2436 mas_topiary_range(mast->orig_l, mast->destroy, l_start, l_end);
2438 if (mte_dead_node(mas_slot_locked(mast->orig_r, r_slots, r_start)))
2441 if (r_start <= r_end)
2442 mas_topiary_range(mast->orig_r, mast->destroy, 0, r_end);
2446 * mast_rebalance_next() - Rebalance against the next node
2447 * @mast: The maple subtree state
2448 * @old_r: The encoded maple node to the right (next node).
2450 static inline void mast_rebalance_next(struct maple_subtree_state *mast)
2452 unsigned char b_end = mast->bn->b_end;
2454 mas_mab_cp(mast->orig_r, 0, mt_slot_count(mast->orig_r->node),
2456 mast->orig_r->last = mast->orig_r->max;
2460 * mast_rebalance_prev() - Rebalance against the previous node
2461 * @mast: The maple subtree state
2462 * @old_l: The encoded maple node to the left (previous node)
2464 static inline void mast_rebalance_prev(struct maple_subtree_state *mast)
2466 unsigned char end = mas_data_end(mast->orig_l) + 1;
2467 unsigned char b_end = mast->bn->b_end;
2469 mab_shift_right(mast->bn, end);
2470 mas_mab_cp(mast->orig_l, 0, end - 1, mast->bn, 0);
2471 mast->l->min = mast->orig_l->min;
2472 mast->orig_l->index = mast->orig_l->min;
2473 mast->bn->b_end = end + b_end;
2474 mast->l->offset += end;
2478 * mast_spanning_rebalance() - Rebalance nodes with nearest neighbour favouring
2479 * the node to the right. Checking the nodes to the right then the left at each
2480 * level upwards until root is reached. Free and destroy as needed.
2481 * Data is copied into the @mast->bn.
2482 * @mast: The maple_subtree_state.
2485 bool mast_spanning_rebalance(struct maple_subtree_state *mast)
2487 struct ma_state r_tmp = *mast->orig_r;
2488 struct ma_state l_tmp = *mast->orig_l;
2489 struct maple_enode *ancestor = NULL;
2490 unsigned char start, end;
2491 unsigned char depth = 0;
2493 r_tmp = *mast->orig_r;
2494 l_tmp = *mast->orig_l;
2496 mas_ascend(mast->orig_r);
2497 mas_ascend(mast->orig_l);
2500 (mast->orig_r->node == mast->orig_l->node)) {
2501 ancestor = mast->orig_r->node;
2502 end = mast->orig_r->offset - 1;
2503 start = mast->orig_l->offset + 1;
2506 if (mast->orig_r->offset < mas_data_end(mast->orig_r)) {
2508 ancestor = mast->orig_r->node;
2512 mast->orig_r->offset++;
2514 mas_descend(mast->orig_r);
2515 mast->orig_r->offset = 0;
2519 mast_rebalance_next(mast);
2521 unsigned char l_off = 0;
2522 struct maple_enode *child = r_tmp.node;
2525 if (ancestor == r_tmp.node)
2531 if (l_off < r_tmp.offset)
2532 mas_topiary_range(&r_tmp, mast->destroy,
2533 l_off, r_tmp.offset);
2535 if (l_tmp.node != child)
2536 mat_add(mast->free, child);
2538 } while (r_tmp.node != ancestor);
2540 *mast->orig_l = l_tmp;
2543 } else if (mast->orig_l->offset != 0) {
2545 ancestor = mast->orig_l->node;
2546 end = mas_data_end(mast->orig_l);
2549 mast->orig_l->offset--;
2551 mas_descend(mast->orig_l);
2552 mast->orig_l->offset =
2553 mas_data_end(mast->orig_l);
2557 mast_rebalance_prev(mast);
2559 unsigned char r_off;
2560 struct maple_enode *child = l_tmp.node;
2563 if (ancestor == l_tmp.node)
2566 r_off = mas_data_end(&l_tmp);
2568 if (l_tmp.offset < r_off)
2571 if (l_tmp.offset < r_off)
2572 mas_topiary_range(&l_tmp, mast->destroy,
2573 l_tmp.offset, r_off);
2575 if (r_tmp.node != child)
2576 mat_add(mast->free, child);
2578 } while (l_tmp.node != ancestor);
2580 *mast->orig_r = r_tmp;
2583 } while (!mte_is_root(mast->orig_r->node));
2585 *mast->orig_r = r_tmp;
2586 *mast->orig_l = l_tmp;
2591 * mast_ascend_free() - Add current original maple state nodes to the free list
2593 * @mast: the maple subtree state.
2595 * Ascend the original left and right sides and add the previous nodes to the
2596 * free list. Set the slots to point to the correct location in the new nodes.
2599 mast_ascend_free(struct maple_subtree_state *mast)
2601 MA_WR_STATE(wr_mas, mast->orig_r, NULL);
2602 struct maple_enode *left = mast->orig_l->node;
2603 struct maple_enode *right = mast->orig_r->node;
2605 mas_ascend(mast->orig_l);
2606 mas_ascend(mast->orig_r);
2607 mat_add(mast->free, left);
2610 mat_add(mast->free, right);
2612 mast->orig_r->offset = 0;
2613 mast->orig_r->index = mast->r->max;
2614 /* last should be larger than or equal to index */
2615 if (mast->orig_r->last < mast->orig_r->index)
2616 mast->orig_r->last = mast->orig_r->index;
2618 * The node may not contain the value so set slot to ensure all
2619 * of the nodes contents are freed or destroyed.
2621 wr_mas.type = mte_node_type(mast->orig_r->node);
2622 mas_wr_node_walk(&wr_mas);
2623 /* Set up the left side of things */
2624 mast->orig_l->offset = 0;
2625 mast->orig_l->index = mast->l->min;
2626 wr_mas.mas = mast->orig_l;
2627 wr_mas.type = mte_node_type(mast->orig_l->node);
2628 mas_wr_node_walk(&wr_mas);
2630 mast->bn->type = wr_mas.type;
2634 * mas_new_ma_node() - Create and return a new maple node. Helper function.
2635 * @mas: the maple state with the allocations.
2636 * @b_node: the maple_big_node with the type encoding.
2638 * Use the node type from the maple_big_node to allocate a new node from the
2639 * ma_state. This function exists mainly for code readability.
2641 * Return: A new maple encoded node
2643 static inline struct maple_enode
2644 *mas_new_ma_node(struct ma_state *mas, struct maple_big_node *b_node)
2646 return mt_mk_node(ma_mnode_ptr(mas_pop_node(mas)), b_node->type);
2650 * mas_mab_to_node() - Set up right and middle nodes
2652 * @mas: the maple state that contains the allocations.
2653 * @b_node: the node which contains the data.
2654 * @left: The pointer which will have the left node
2655 * @right: The pointer which may have the right node
2656 * @middle: the pointer which may have the middle node (rare)
2657 * @mid_split: the split location for the middle node
2659 * Return: the split of left.
2661 static inline unsigned char mas_mab_to_node(struct ma_state *mas,
2662 struct maple_big_node *b_node, struct maple_enode **left,
2663 struct maple_enode **right, struct maple_enode **middle,
2664 unsigned char *mid_split, unsigned long min)
2666 unsigned char split = 0;
2667 unsigned char slot_count = mt_slots[b_node->type];
2669 *left = mas_new_ma_node(mas, b_node);
2674 if (b_node->b_end < slot_count) {
2675 split = b_node->b_end;
2677 split = mab_calc_split(mas, b_node, mid_split, min);
2678 *right = mas_new_ma_node(mas, b_node);
2682 *middle = mas_new_ma_node(mas, b_node);
2689 * mab_set_b_end() - Add entry to b_node at b_node->b_end and increment the end
2691 * @b_node - the big node to add the entry
2692 * @mas - the maple state to get the pivot (mas->max)
2693 * @entry - the entry to add, if NULL nothing happens.
2695 static inline void mab_set_b_end(struct maple_big_node *b_node,
2696 struct ma_state *mas,
2702 b_node->slot[b_node->b_end] = entry;
2703 if (mt_is_alloc(mas->tree))
2704 b_node->gap[b_node->b_end] = mas_max_gap(mas);
2705 b_node->pivot[b_node->b_end++] = mas->max;
2709 * mas_set_split_parent() - combine_then_separate helper function. Sets the parent
2710 * of @mas->node to either @left or @right, depending on @slot and @split
2712 * @mas - the maple state with the node that needs a parent
2713 * @left - possible parent 1
2714 * @right - possible parent 2
2715 * @slot - the slot the mas->node was placed
2716 * @split - the split location between @left and @right
2718 static inline void mas_set_split_parent(struct ma_state *mas,
2719 struct maple_enode *left,
2720 struct maple_enode *right,
2721 unsigned char *slot, unsigned char split)
2723 if (mas_is_none(mas))
2726 if ((*slot) <= split)
2727 mte_set_parent(mas->node, left, *slot);
2729 mte_set_parent(mas->node, right, (*slot) - split - 1);
2735 * mte_mid_split_check() - Check if the next node passes the mid-split
2736 * @**l: Pointer to left encoded maple node.
2737 * @**m: Pointer to middle encoded maple node.
2738 * @**r: Pointer to right encoded maple node.
2740 * @*split: The split location.
2741 * @mid_split: The middle split.
2743 static inline void mte_mid_split_check(struct maple_enode **l,
2744 struct maple_enode **r,
2745 struct maple_enode *right,
2747 unsigned char *split,
2748 unsigned char mid_split)
2753 if (slot < mid_split)
2762 * mast_set_split_parents() - Helper function to set three nodes parents. Slot
2763 * is taken from @mast->l.
2764 * @mast - the maple subtree state
2765 * @left - the left node
2766 * @right - the right node
2767 * @split - the split location.
2769 static inline void mast_set_split_parents(struct maple_subtree_state *mast,
2770 struct maple_enode *left,
2771 struct maple_enode *middle,
2772 struct maple_enode *right,
2773 unsigned char split,
2774 unsigned char mid_split)
2777 struct maple_enode *l = left;
2778 struct maple_enode *r = right;
2780 if (mas_is_none(mast->l))
2786 slot = mast->l->offset;
2788 mte_mid_split_check(&l, &r, right, slot, &split, mid_split);
2789 mas_set_split_parent(mast->l, l, r, &slot, split);
2791 mte_mid_split_check(&l, &r, right, slot, &split, mid_split);
2792 mas_set_split_parent(mast->m, l, r, &slot, split);
2794 mte_mid_split_check(&l, &r, right, slot, &split, mid_split);
2795 mas_set_split_parent(mast->r, l, r, &slot, split);
2799 * mas_wmb_replace() - Write memory barrier and replace
2800 * @mas: The maple state
2801 * @free: the maple topiary list of nodes to free
2802 * @destroy: The maple topiary list of nodes to destroy (walk and free)
2804 * Updates gap as necessary.
2806 static inline void mas_wmb_replace(struct ma_state *mas,
2807 struct ma_topiary *free,
2808 struct ma_topiary *destroy)
2810 /* All nodes must see old data as dead prior to replacing that data */
2811 smp_wmb(); /* Needed for RCU */
2813 /* Insert the new data in the tree */
2814 mas_replace(mas, true);
2816 if (!mte_is_leaf(mas->node))
2817 mas_descend_adopt(mas);
2819 mas_mat_free(mas, free);
2822 mas_mat_destroy(mas, destroy);
2824 if (mte_is_leaf(mas->node))
2827 mas_update_gap(mas);
2831 * mast_new_root() - Set a new tree root during subtree creation
2832 * @mast: The maple subtree state
2833 * @mas: The maple state
2835 static inline void mast_new_root(struct maple_subtree_state *mast,
2836 struct ma_state *mas)
2838 mas_mn(mast->l)->parent =
2839 ma_parent_ptr(((unsigned long)mas->tree | MA_ROOT_PARENT));
2840 if (!mte_dead_node(mast->orig_l->node) &&
2841 !mte_is_root(mast->orig_l->node)) {
2843 mast_ascend_free(mast);
2845 } while (!mte_is_root(mast->orig_l->node));
2847 if ((mast->orig_l->node != mas->node) &&
2848 (mast->l->depth > mas_mt_height(mas))) {
2849 mat_add(mast->free, mas->node);
2854 * mast_cp_to_nodes() - Copy data out to nodes.
2855 * @mast: The maple subtree state
2856 * @left: The left encoded maple node
2857 * @middle: The middle encoded maple node
2858 * @right: The right encoded maple node
2859 * @split: The location to split between left and (middle ? middle : right)
2860 * @mid_split: The location to split between middle and right.
2862 static inline void mast_cp_to_nodes(struct maple_subtree_state *mast,
2863 struct maple_enode *left, struct maple_enode *middle,
2864 struct maple_enode *right, unsigned char split, unsigned char mid_split)
2866 bool new_lmax = true;
2868 mast->l->node = mte_node_or_none(left);
2869 mast->m->node = mte_node_or_none(middle);
2870 mast->r->node = mte_node_or_none(right);
2872 mast->l->min = mast->orig_l->min;
2873 if (split == mast->bn->b_end) {
2874 mast->l->max = mast->orig_r->max;
2878 mab_mas_cp(mast->bn, 0, split, mast->l, new_lmax);
2881 mab_mas_cp(mast->bn, 1 + split, mid_split, mast->m, true);
2882 mast->m->min = mast->bn->pivot[split] + 1;
2886 mast->r->max = mast->orig_r->max;
2888 mab_mas_cp(mast->bn, 1 + split, mast->bn->b_end, mast->r, false);
2889 mast->r->min = mast->bn->pivot[split] + 1;
2894 * mast_combine_cp_left - Copy in the original left side of the tree into the
2895 * combined data set in the maple subtree state big node.
2896 * @mast: The maple subtree state
2898 static inline void mast_combine_cp_left(struct maple_subtree_state *mast)
2900 unsigned char l_slot = mast->orig_l->offset;
2905 mas_mab_cp(mast->orig_l, 0, l_slot - 1, mast->bn, 0);
2909 * mast_combine_cp_right: Copy in the original right side of the tree into the
2910 * combined data set in the maple subtree state big node.
2911 * @mast: The maple subtree state
2913 static inline void mast_combine_cp_right(struct maple_subtree_state *mast)
2915 if (mast->bn->pivot[mast->bn->b_end - 1] >= mast->orig_r->max)
2918 mas_mab_cp(mast->orig_r, mast->orig_r->offset + 1,
2919 mt_slot_count(mast->orig_r->node), mast->bn,
2921 mast->orig_r->last = mast->orig_r->max;
2925 * mast_sufficient: Check if the maple subtree state has enough data in the big
2926 * node to create at least one sufficient node
2927 * @mast: the maple subtree state
2929 static inline bool mast_sufficient(struct maple_subtree_state *mast)
2931 if (mast->bn->b_end > mt_min_slot_count(mast->orig_l->node))
2938 * mast_overflow: Check if there is too much data in the subtree state for a
2940 * @mast: The maple subtree state
2942 static inline bool mast_overflow(struct maple_subtree_state *mast)
2944 if (mast->bn->b_end >= mt_slot_count(mast->orig_l->node))
2950 static inline void *mtree_range_walk(struct ma_state *mas)
2952 unsigned long *pivots;
2953 unsigned char offset;
2954 struct maple_node *node;
2955 struct maple_enode *next, *last;
2956 enum maple_type type;
2959 unsigned long max, min;
2960 unsigned long prev_max, prev_min;
2968 node = mte_to_node(next);
2969 type = mte_node_type(next);
2970 pivots = ma_pivots(node, type);
2971 end = ma_data_end(node, type, pivots, max);
2972 if (unlikely(ma_dead_node(node)))
2975 if (pivots[offset] >= mas->index) {
2978 max = pivots[offset];
2984 } while ((offset < end) && (pivots[offset] < mas->index));
2987 min = pivots[offset - 1] + 1;
2989 if (likely(offset < end && pivots[offset]))
2990 max = pivots[offset];
2993 slots = ma_slots(node, type);
2994 next = mt_slot(mas->tree, slots, offset);
2995 if (unlikely(ma_dead_node(node)))
2997 } while (!ma_is_leaf(type));
2999 mas->offset = offset;
3002 mas->min = prev_min;
3003 mas->max = prev_max;
3005 return (void *) next;
3013 * mas_spanning_rebalance() - Rebalance across two nodes which may not be peers.
3014 * @mas: The starting maple state
3015 * @mast: The maple_subtree_state, keeps track of 4 maple states.
3016 * @count: The estimated count of iterations needed.
3018 * Follow the tree upwards from @l_mas and @r_mas for @count, or until the root
3019 * is hit. First @b_node is split into two entries which are inserted into the
3020 * next iteration of the loop. @b_node is returned populated with the final
3021 * iteration. @mas is used to obtain allocations. orig_l_mas keeps track of the
3022 * nodes that will remain active by using orig_l_mas->index and orig_l_mas->last
3023 * to account of what has been copied into the new sub-tree. The update of
3024 * orig_l_mas->last is used in mas_consume to find the slots that will need to
3025 * be either freed or destroyed. orig_l_mas->depth keeps track of the height of
3026 * the new sub-tree in case the sub-tree becomes the full tree.
3028 * Return: the number of elements in b_node during the last loop.
3030 static int mas_spanning_rebalance(struct ma_state *mas,
3031 struct maple_subtree_state *mast, unsigned char count)
3033 unsigned char split, mid_split;
3034 unsigned char slot = 0;
3035 struct maple_enode *left = NULL, *middle = NULL, *right = NULL;
3037 MA_STATE(l_mas, mas->tree, mas->index, mas->index);
3038 MA_STATE(r_mas, mas->tree, mas->index, mas->last);
3039 MA_STATE(m_mas, mas->tree, mas->index, mas->index);
3040 MA_TOPIARY(free, mas->tree);
3041 MA_TOPIARY(destroy, mas->tree);
3044 * The tree needs to be rebalanced and leaves need to be kept at the same level.
3045 * Rebalancing is done by use of the ``struct maple_topiary``.
3051 mast->destroy = &destroy;
3052 l_mas.node = r_mas.node = m_mas.node = MAS_NONE;
3054 /* Check if this is not root and has sufficient data. */
3055 if (((mast->orig_l->min != 0) || (mast->orig_r->max != ULONG_MAX)) &&
3056 unlikely(mast->bn->b_end <= mt_min_slots[mast->bn->type]))
3057 mast_spanning_rebalance(mast);
3059 mast->orig_l->depth = 0;
3062 * Each level of the tree is examined and balanced, pushing data to the left or
3063 * right, or rebalancing against left or right nodes is employed to avoid
3064 * rippling up the tree to limit the amount of churn. Once a new sub-section of
3065 * the tree is created, there may be a mix of new and old nodes. The old nodes
3066 * will have the incorrect parent pointers and currently be in two trees: the
3067 * original tree and the partially new tree. To remedy the parent pointers in
3068 * the old tree, the new data is swapped into the active tree and a walk down
3069 * the tree is performed and the parent pointers are updated.
3070 * See mas_descend_adopt() for more information..
3074 mast->bn->type = mte_node_type(mast->orig_l->node);
3075 split = mas_mab_to_node(mas, mast->bn, &left, &right, &middle,
3076 &mid_split, mast->orig_l->min);
3077 mast_set_split_parents(mast, left, middle, right, split,
3079 mast_cp_to_nodes(mast, left, middle, right, split, mid_split);
3082 * Copy data from next level in the tree to mast->bn from next
3085 memset(mast->bn, 0, sizeof(struct maple_big_node));
3086 mast->bn->type = mte_node_type(left);
3087 mast->orig_l->depth++;
3089 /* Root already stored in l->node. */
3090 if (mas_is_root_limits(mast->l))
3093 mast_ascend_free(mast);
3094 mast_combine_cp_left(mast);
3095 l_mas.offset = mast->bn->b_end;
3096 mab_set_b_end(mast->bn, &l_mas, left);
3097 mab_set_b_end(mast->bn, &m_mas, middle);
3098 mab_set_b_end(mast->bn, &r_mas, right);
3100 /* Copy anything necessary out of the right node. */
3101 mast_combine_cp_right(mast);
3103 mast->orig_l->last = mast->orig_l->max;
3105 if (mast_sufficient(mast))
3108 if (mast_overflow(mast))
3111 /* May be a new root stored in mast->bn */
3112 if (mas_is_root_limits(mast->orig_l))
3115 mast_spanning_rebalance(mast);
3117 /* rebalancing from other nodes may require another loop. */
3122 l_mas.node = mt_mk_node(ma_mnode_ptr(mas_pop_node(mas)),
3123 mte_node_type(mast->orig_l->node));
3124 mast->orig_l->depth++;
3125 mab_mas_cp(mast->bn, 0, mt_slots[mast->bn->type] - 1, &l_mas, true);
3126 mte_set_parent(left, l_mas.node, slot);
3128 mte_set_parent(middle, l_mas.node, ++slot);
3131 mte_set_parent(right, l_mas.node, ++slot);
3133 if (mas_is_root_limits(mast->l)) {
3135 mast_new_root(mast, mas);
3137 mas_mn(&l_mas)->parent = mas_mn(mast->orig_l)->parent;
3140 if (!mte_dead_node(mast->orig_l->node))
3141 mat_add(&free, mast->orig_l->node);
3143 mas->depth = mast->orig_l->depth;
3144 *mast->orig_l = l_mas;
3145 mte_set_node_dead(mas->node);
3147 /* Set up mas for insertion. */
3148 mast->orig_l->depth = mas->depth;
3149 mast->orig_l->alloc = mas->alloc;
3150 *mas = *mast->orig_l;
3151 mas_wmb_replace(mas, &free, &destroy);
3152 mtree_range_walk(mas);
3153 return mast->bn->b_end;
3157 * mas_rebalance() - Rebalance a given node.
3158 * @mas: The maple state
3159 * @b_node: The big maple node.
3161 * Rebalance two nodes into a single node or two new nodes that are sufficient.
3162 * Continue upwards until tree is sufficient.
3164 * Return: the number of elements in b_node during the last loop.
3166 static inline int mas_rebalance(struct ma_state *mas,
3167 struct maple_big_node *b_node)
3169 char empty_count = mas_mt_height(mas);
3170 struct maple_subtree_state mast;
3171 unsigned char shift, b_end = ++b_node->b_end;
3173 MA_STATE(l_mas, mas->tree, mas->index, mas->last);
3174 MA_STATE(r_mas, mas->tree, mas->index, mas->last);
3176 trace_ma_op(__func__, mas);
3179 * Rebalancing occurs if a node is insufficient. Data is rebalanced
3180 * against the node to the right if it exists, otherwise the node to the
3181 * left of this node is rebalanced against this node. If rebalancing
3182 * causes just one node to be produced instead of two, then the parent
3183 * is also examined and rebalanced if it is insufficient. Every level
3184 * tries to combine the data in the same way. If one node contains the
3185 * entire range of the tree, then that node is used as a new root node.
3187 mas_node_count(mas, 1 + empty_count * 3);
3188 if (mas_is_err(mas))
3191 mast.orig_l = &l_mas;
3192 mast.orig_r = &r_mas;
3194 mast.bn->type = mte_node_type(mas->node);
3196 l_mas = r_mas = *mas;
3198 if (mas_next_sibling(&r_mas)) {
3199 mas_mab_cp(&r_mas, 0, mt_slot_count(r_mas.node), b_node, b_end);
3200 r_mas.last = r_mas.index = r_mas.max;
3202 mas_prev_sibling(&l_mas);
3203 shift = mas_data_end(&l_mas) + 1;
3204 mab_shift_right(b_node, shift);
3205 mas->offset += shift;
3206 mas_mab_cp(&l_mas, 0, shift - 1, b_node, 0);
3207 b_node->b_end = shift + b_end;
3208 l_mas.index = l_mas.last = l_mas.min;
3211 return mas_spanning_rebalance(mas, &mast, empty_count);
3215 * mas_destroy_rebalance() - Rebalance left-most node while destroying the maple
3217 * @mas: The maple state
3218 * @end: The end of the left-most node.
3220 * During a mass-insert event (such as forking), it may be necessary to
3221 * rebalance the left-most node when it is not sufficient.
3223 static inline void mas_destroy_rebalance(struct ma_state *mas, unsigned char end)
3225 enum maple_type mt = mte_node_type(mas->node);
3226 struct maple_node reuse, *newnode, *parent, *new_left, *left, *node;
3227 struct maple_enode *eparent;
3228 unsigned char offset, tmp, split = mt_slots[mt] / 2;
3229 void __rcu **l_slots, **slots;
3230 unsigned long *l_pivs, *pivs, gap;
3231 bool in_rcu = mt_in_rcu(mas->tree);
3233 MA_STATE(l_mas, mas->tree, mas->index, mas->last);
3236 mas_prev_sibling(&l_mas);
3240 /* Allocate for both left and right as well as parent. */
3241 mas_node_count(mas, 3);
3242 if (mas_is_err(mas))
3245 newnode = mas_pop_node(mas);
3251 newnode->parent = node->parent;
3252 slots = ma_slots(newnode, mt);
3253 pivs = ma_pivots(newnode, mt);
3254 left = mas_mn(&l_mas);
3255 l_slots = ma_slots(left, mt);
3256 l_pivs = ma_pivots(left, mt);
3257 if (!l_slots[split])
3259 tmp = mas_data_end(&l_mas) - split;
3261 memcpy(slots, l_slots + split + 1, sizeof(void *) * tmp);
3262 memcpy(pivs, l_pivs + split + 1, sizeof(unsigned long) * tmp);
3263 pivs[tmp] = l_mas.max;
3264 memcpy(slots + tmp, ma_slots(node, mt), sizeof(void *) * end);
3265 memcpy(pivs + tmp, ma_pivots(node, mt), sizeof(unsigned long) * end);
3267 l_mas.max = l_pivs[split];
3268 mas->min = l_mas.max + 1;
3269 eparent = mt_mk_node(mte_parent(l_mas.node),
3270 mas_parent_enum(&l_mas, l_mas.node));
3273 unsigned char max_p = mt_pivots[mt];
3274 unsigned char max_s = mt_slots[mt];
3277 memset(pivs + tmp, 0,
3278 sizeof(unsigned long *) * (max_p - tmp));
3280 if (tmp < mt_slots[mt])
3281 memset(slots + tmp, 0, sizeof(void *) * (max_s - tmp));
3283 memcpy(node, newnode, sizeof(struct maple_node));
3284 ma_set_meta(node, mt, 0, tmp - 1);
3285 mte_set_pivot(eparent, mte_parent_slot(l_mas.node),
3288 /* Remove data from l_pivs. */
3290 memset(l_pivs + tmp, 0, sizeof(unsigned long) * (max_p - tmp));
3291 memset(l_slots + tmp, 0, sizeof(void *) * (max_s - tmp));
3292 ma_set_meta(left, mt, 0, split);
3297 /* RCU requires replacing both l_mas, mas, and parent. */
3298 mas->node = mt_mk_node(newnode, mt);
3299 ma_set_meta(newnode, mt, 0, tmp);
3301 new_left = mas_pop_node(mas);
3302 new_left->parent = left->parent;
3303 mt = mte_node_type(l_mas.node);
3304 slots = ma_slots(new_left, mt);
3305 pivs = ma_pivots(new_left, mt);
3306 memcpy(slots, l_slots, sizeof(void *) * split);
3307 memcpy(pivs, l_pivs, sizeof(unsigned long) * split);
3308 ma_set_meta(new_left, mt, 0, split);
3309 l_mas.node = mt_mk_node(new_left, mt);
3311 /* replace parent. */
3312 offset = mte_parent_slot(mas->node);
3313 mt = mas_parent_enum(&l_mas, l_mas.node);
3314 parent = mas_pop_node(mas);
3315 slots = ma_slots(parent, mt);
3316 pivs = ma_pivots(parent, mt);
3317 memcpy(parent, mte_to_node(eparent), sizeof(struct maple_node));
3318 rcu_assign_pointer(slots[offset], mas->node);
3319 rcu_assign_pointer(slots[offset - 1], l_mas.node);
3320 pivs[offset - 1] = l_mas.max;
3321 eparent = mt_mk_node(parent, mt);
3323 gap = mas_leaf_max_gap(mas);
3324 mte_set_gap(eparent, mte_parent_slot(mas->node), gap);
3325 gap = mas_leaf_max_gap(&l_mas);
3326 mte_set_gap(eparent, mte_parent_slot(l_mas.node), gap);
3330 mas_replace(mas, false);
3332 mas_update_gap(mas);
3336 * mas_split_final_node() - Split the final node in a subtree operation.
3337 * @mast: the maple subtree state
3338 * @mas: The maple state
3339 * @height: The height of the tree in case it's a new root.
3341 static inline bool mas_split_final_node(struct maple_subtree_state *mast,
3342 struct ma_state *mas, int height)
3344 struct maple_enode *ancestor;
3346 if (mte_is_root(mas->node)) {
3347 if (mt_is_alloc(mas->tree))
3348 mast->bn->type = maple_arange_64;
3350 mast->bn->type = maple_range_64;
3351 mas->depth = height;
3354 * Only a single node is used here, could be root.
3355 * The Big_node data should just fit in a single node.
3357 ancestor = mas_new_ma_node(mas, mast->bn);
3358 mte_set_parent(mast->l->node, ancestor, mast->l->offset);
3359 mte_set_parent(mast->r->node, ancestor, mast->r->offset);
3360 mte_to_node(ancestor)->parent = mas_mn(mas)->parent;
3362 mast->l->node = ancestor;
3363 mab_mas_cp(mast->bn, 0, mt_slots[mast->bn->type] - 1, mast->l, true);
3364 mas->offset = mast->bn->b_end - 1;
3369 * mast_fill_bnode() - Copy data into the big node in the subtree state
3370 * @mast: The maple subtree state
3371 * @mas: the maple state
3372 * @skip: The number of entries to skip for new nodes insertion.
3374 static inline void mast_fill_bnode(struct maple_subtree_state *mast,
3375 struct ma_state *mas,
3379 struct maple_enode *old = mas->node;
3380 unsigned char split;
3382 memset(mast->bn->gap, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->gap));
3383 memset(mast->bn->slot, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->slot));
3384 memset(mast->bn->pivot, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->pivot));
3385 mast->bn->b_end = 0;
3387 if (mte_is_root(mas->node)) {
3391 mat_add(mast->free, old);
3392 mas->offset = mte_parent_slot(mas->node);
3395 if (cp && mast->l->offset)
3396 mas_mab_cp(mas, 0, mast->l->offset - 1, mast->bn, 0);
3398 split = mast->bn->b_end;
3399 mab_set_b_end(mast->bn, mast->l, mast->l->node);
3400 mast->r->offset = mast->bn->b_end;
3401 mab_set_b_end(mast->bn, mast->r, mast->r->node);
3402 if (mast->bn->pivot[mast->bn->b_end - 1] == mas->max)
3406 mas_mab_cp(mas, split + skip, mt_slot_count(mas->node) - 1,
3407 mast->bn, mast->bn->b_end);
3410 mast->bn->type = mte_node_type(mas->node);
3414 * mast_split_data() - Split the data in the subtree state big node into regular
3416 * @mast: The maple subtree state
3417 * @mas: The maple state
3418 * @split: The location to split the big node
3420 static inline void mast_split_data(struct maple_subtree_state *mast,
3421 struct ma_state *mas, unsigned char split)
3423 unsigned char p_slot;
3425 mab_mas_cp(mast->bn, 0, split, mast->l, true);
3426 mte_set_pivot(mast->r->node, 0, mast->r->max);
3427 mab_mas_cp(mast->bn, split + 1, mast->bn->b_end, mast->r, false);
3428 mast->l->offset = mte_parent_slot(mas->node);
3429 mast->l->max = mast->bn->pivot[split];
3430 mast->r->min = mast->l->max + 1;
3431 if (mte_is_leaf(mas->node))
3434 p_slot = mast->orig_l->offset;
3435 mas_set_split_parent(mast->orig_l, mast->l->node, mast->r->node,
3437 mas_set_split_parent(mast->orig_r, mast->l->node, mast->r->node,
3442 * mas_push_data() - Instead of splitting a node, it is beneficial to push the
3443 * data to the right or left node if there is room.
3444 * @mas: The maple state
3445 * @height: The current height of the maple state
3446 * @mast: The maple subtree state
3447 * @left: Push left or not.
3449 * Keeping the height of the tree low means faster lookups.
3451 * Return: True if pushed, false otherwise.
3453 static inline bool mas_push_data(struct ma_state *mas, int height,
3454 struct maple_subtree_state *mast, bool left)
3456 unsigned char slot_total = mast->bn->b_end;
3457 unsigned char end, space, split;
3459 MA_STATE(tmp_mas, mas->tree, mas->index, mas->last);
3461 tmp_mas.depth = mast->l->depth;
3463 if (left && !mas_prev_sibling(&tmp_mas))
3465 else if (!left && !mas_next_sibling(&tmp_mas))
3468 end = mas_data_end(&tmp_mas);
3470 space = 2 * mt_slot_count(mas->node) - 2;
3471 /* -2 instead of -1 to ensure there isn't a triple split */
3472 if (ma_is_leaf(mast->bn->type))
3475 if (mas->max == ULONG_MAX)
3478 if (slot_total >= space)
3481 /* Get the data; Fill mast->bn */
3484 mab_shift_right(mast->bn, end + 1);
3485 mas_mab_cp(&tmp_mas, 0, end, mast->bn, 0);
3486 mast->bn->b_end = slot_total + 1;
3488 mas_mab_cp(&tmp_mas, 0, end, mast->bn, mast->bn->b_end);
3491 /* Configure mast for splitting of mast->bn */
3492 split = mt_slots[mast->bn->type] - 2;
3494 /* Switch mas to prev node */
3495 mat_add(mast->free, mas->node);
3497 /* Start using mast->l for the left side. */
3498 tmp_mas.node = mast->l->node;
3501 mat_add(mast->free, tmp_mas.node);
3502 tmp_mas.node = mast->r->node;
3504 split = slot_total - split;
3506 split = mab_no_null_split(mast->bn, split, mt_slots[mast->bn->type]);
3507 /* Update parent slot for split calculation. */
3509 mast->orig_l->offset += end + 1;
3511 mast_split_data(mast, mas, split);
3512 mast_fill_bnode(mast, mas, 2);
3513 mas_split_final_node(mast, mas, height + 1);
3518 * mas_split() - Split data that is too big for one node into two.
3519 * @mas: The maple state
3520 * @b_node: The maple big node
3521 * Return: 1 on success, 0 on failure.
3523 static int mas_split(struct ma_state *mas, struct maple_big_node *b_node)
3526 struct maple_subtree_state mast;
3528 unsigned char mid_split, split = 0;
3531 * Splitting is handled differently from any other B-tree; the Maple
3532 * Tree splits upwards. Splitting up means that the split operation
3533 * occurs when the walk of the tree hits the leaves and not on the way
3534 * down. The reason for splitting up is that it is impossible to know
3535 * how much space will be needed until the leaf is (or leaves are)
3536 * reached. Since overwriting data is allowed and a range could
3537 * overwrite more than one range or result in changing one entry into 3
3538 * entries, it is impossible to know if a split is required until the
3541 * Splitting is a balancing act between keeping allocations to a minimum
3542 * and avoiding a 'jitter' event where a tree is expanded to make room
3543 * for an entry followed by a contraction when the entry is removed. To
3544 * accomplish the balance, there are empty slots remaining in both left
3545 * and right nodes after a split.
3547 MA_STATE(l_mas, mas->tree, mas->index, mas->last);
3548 MA_STATE(r_mas, mas->tree, mas->index, mas->last);
3549 MA_STATE(prev_l_mas, mas->tree, mas->index, mas->last);
3550 MA_STATE(prev_r_mas, mas->tree, mas->index, mas->last);
3551 MA_TOPIARY(mat, mas->tree);
3553 trace_ma_op(__func__, mas);
3554 mas->depth = mas_mt_height(mas);
3555 /* Allocation failures will happen early. */
3556 mas_node_count(mas, 1 + mas->depth * 2);
3557 if (mas_is_err(mas))
3562 mast.orig_l = &prev_l_mas;
3563 mast.orig_r = &prev_r_mas;
3567 while (height++ <= mas->depth) {
3568 if (mt_slots[b_node->type] > b_node->b_end) {
3569 mas_split_final_node(&mast, mas, height);
3573 l_mas = r_mas = *mas;
3574 l_mas.node = mas_new_ma_node(mas, b_node);
3575 r_mas.node = mas_new_ma_node(mas, b_node);
3577 * Another way that 'jitter' is avoided is to terminate a split up early if the
3578 * left or right node has space to spare. This is referred to as "pushing left"
3579 * or "pushing right" and is similar to the B* tree, except the nodes left or
3580 * right can rarely be reused due to RCU, but the ripple upwards is halted which
3581 * is a significant savings.
3583 /* Try to push left. */
3584 if (mas_push_data(mas, height, &mast, true))
3587 /* Try to push right. */
3588 if (mas_push_data(mas, height, &mast, false))
3591 split = mab_calc_split(mas, b_node, &mid_split, prev_l_mas.min);
3592 mast_split_data(&mast, mas, split);
3594 * Usually correct, mab_mas_cp in the above call overwrites
3597 mast.r->max = mas->max;
3598 mast_fill_bnode(&mast, mas, 1);
3599 prev_l_mas = *mast.l;
3600 prev_r_mas = *mast.r;
3603 /* Set the original node as dead */
3604 mat_add(mast.free, mas->node);
3605 mas->node = l_mas.node;
3606 mas_wmb_replace(mas, mast.free, NULL);
3607 mtree_range_walk(mas);
3612 * mas_reuse_node() - Reuse the node to store the data.
3613 * @wr_mas: The maple write state
3614 * @bn: The maple big node
3615 * @end: The end of the data.
3617 * Will always return false in RCU mode.
3619 * Return: True if node was reused, false otherwise.
3621 static inline bool mas_reuse_node(struct ma_wr_state *wr_mas,
3622 struct maple_big_node *bn, unsigned char end)
3624 /* Need to be rcu safe. */
3625 if (mt_in_rcu(wr_mas->mas->tree))
3628 if (end > bn->b_end) {
3629 int clear = mt_slots[wr_mas->type] - bn->b_end;
3631 memset(wr_mas->slots + bn->b_end, 0, sizeof(void *) * clear--);
3632 memset(wr_mas->pivots + bn->b_end, 0, sizeof(void *) * clear);
3634 mab_mas_cp(bn, 0, bn->b_end, wr_mas->mas, false);
3639 * mas_commit_b_node() - Commit the big node into the tree.
3640 * @wr_mas: The maple write state
3641 * @b_node: The maple big node
3642 * @end: The end of the data.
3644 static inline int mas_commit_b_node(struct ma_wr_state *wr_mas,
3645 struct maple_big_node *b_node, unsigned char end)
3647 struct maple_node *node;
3648 unsigned char b_end = b_node->b_end;
3649 enum maple_type b_type = b_node->type;
3651 if ((b_end < mt_min_slots[b_type]) &&
3652 (!mte_is_root(wr_mas->mas->node)) &&
3653 (mas_mt_height(wr_mas->mas) > 1))
3654 return mas_rebalance(wr_mas->mas, b_node);
3656 if (b_end >= mt_slots[b_type])
3657 return mas_split(wr_mas->mas, b_node);
3659 if (mas_reuse_node(wr_mas, b_node, end))
3662 mas_node_count(wr_mas->mas, 1);
3663 if (mas_is_err(wr_mas->mas))
3666 node = mas_pop_node(wr_mas->mas);
3667 node->parent = mas_mn(wr_mas->mas)->parent;
3668 wr_mas->mas->node = mt_mk_node(node, b_type);
3669 mab_mas_cp(b_node, 0, b_end, wr_mas->mas, false);
3670 mas_replace(wr_mas->mas, false);
3672 mas_update_gap(wr_mas->mas);
3677 * mas_root_expand() - Expand a root to a node
3678 * @mas: The maple state
3679 * @entry: The entry to store into the tree
3681 static inline int mas_root_expand(struct ma_state *mas, void *entry)
3683 void *contents = mas_root_locked(mas);
3684 enum maple_type type = maple_leaf_64;
3685 struct maple_node *node;
3687 unsigned long *pivots;
3690 mas_node_count(mas, 1);
3691 if (unlikely(mas_is_err(mas)))
3694 node = mas_pop_node(mas);
3695 pivots = ma_pivots(node, type);
3696 slots = ma_slots(node, type);
3697 node->parent = ma_parent_ptr(
3698 ((unsigned long)mas->tree | MA_ROOT_PARENT));
3699 mas->node = mt_mk_node(node, type);
3703 rcu_assign_pointer(slots[slot], contents);
3704 if (likely(mas->index > 1))
3707 pivots[slot++] = mas->index - 1;
3710 rcu_assign_pointer(slots[slot], entry);
3712 pivots[slot] = mas->last;
3713 if (mas->last != ULONG_MAX)
3716 mas_set_height(mas);
3717 ma_set_meta(node, maple_leaf_64, 0, slot);
3718 /* swap the new root into the tree */
3719 rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
3723 static inline void mas_store_root(struct ma_state *mas, void *entry)
3725 if (likely((mas->last != 0) || (mas->index != 0)))
3726 mas_root_expand(mas, entry);
3727 else if (((unsigned long) (entry) & 3) == 2)
3728 mas_root_expand(mas, entry);
3730 rcu_assign_pointer(mas->tree->ma_root, entry);
3731 mas->node = MAS_START;
3736 * mas_is_span_wr() - Check if the write needs to be treated as a write that
3738 * @mas: The maple state
3739 * @piv: The pivot value being written
3740 * @type: The maple node type
3741 * @entry: The data to write
3743 * Spanning writes are writes that start in one node and end in another OR if
3744 * the write of a %NULL will cause the node to end with a %NULL.
3746 * Return: True if this is a spanning write, false otherwise.
3748 static bool mas_is_span_wr(struct ma_wr_state *wr_mas)
3751 unsigned long last = wr_mas->mas->last;
3752 unsigned long piv = wr_mas->r_max;
3753 enum maple_type type = wr_mas->type;
3754 void *entry = wr_mas->entry;
3756 /* Contained in this pivot */
3760 max = wr_mas->mas->max;
3761 if (unlikely(ma_is_leaf(type))) {
3762 /* Fits in the node, but may span slots. */
3766 /* Writes to the end of the node but not null. */
3767 if ((last == max) && entry)
3771 * Writing ULONG_MAX is not a spanning write regardless of the
3772 * value being written as long as the range fits in the node.
3774 if ((last == ULONG_MAX) && (last == max))
3776 } else if (piv == last) {
3780 /* Detect spanning store wr walk */
3781 if (last == ULONG_MAX)
3785 trace_ma_write(__func__, wr_mas->mas, piv, entry);
3790 static inline void mas_wr_walk_descend(struct ma_wr_state *wr_mas)
3792 wr_mas->type = mte_node_type(wr_mas->mas->node);
3793 mas_wr_node_walk(wr_mas);
3794 wr_mas->slots = ma_slots(wr_mas->node, wr_mas->type);
3797 static inline void mas_wr_walk_traverse(struct ma_wr_state *wr_mas)
3799 wr_mas->mas->max = wr_mas->r_max;
3800 wr_mas->mas->min = wr_mas->r_min;
3801 wr_mas->mas->node = wr_mas->content;
3802 wr_mas->mas->offset = 0;
3803 wr_mas->mas->depth++;
3806 * mas_wr_walk() - Walk the tree for a write.
3807 * @wr_mas: The maple write state
3809 * Uses mas_slot_locked() and does not need to worry about dead nodes.
3811 * Return: True if it's contained in a node, false on spanning write.
3813 static bool mas_wr_walk(struct ma_wr_state *wr_mas)
3815 struct ma_state *mas = wr_mas->mas;
3818 mas_wr_walk_descend(wr_mas);
3819 if (unlikely(mas_is_span_wr(wr_mas)))
3822 wr_mas->content = mas_slot_locked(mas, wr_mas->slots,
3824 if (ma_is_leaf(wr_mas->type))
3827 mas_wr_walk_traverse(wr_mas);
3833 static bool mas_wr_walk_index(struct ma_wr_state *wr_mas)
3835 struct ma_state *mas = wr_mas->mas;
3838 mas_wr_walk_descend(wr_mas);
3839 wr_mas->content = mas_slot_locked(mas, wr_mas->slots,
3841 if (ma_is_leaf(wr_mas->type))
3843 mas_wr_walk_traverse(wr_mas);
3849 * mas_extend_spanning_null() - Extend a store of a %NULL to include surrounding %NULLs.
3850 * @l_wr_mas: The left maple write state
3851 * @r_wr_mas: The right maple write state
3853 static inline void mas_extend_spanning_null(struct ma_wr_state *l_wr_mas,
3854 struct ma_wr_state *r_wr_mas)
3856 struct ma_state *r_mas = r_wr_mas->mas;
3857 struct ma_state *l_mas = l_wr_mas->mas;
3858 unsigned char l_slot;
3860 l_slot = l_mas->offset;
3861 if (!l_wr_mas->content)
3862 l_mas->index = l_wr_mas->r_min;
3864 if ((l_mas->index == l_wr_mas->r_min) &&
3866 !mas_slot_locked(l_mas, l_wr_mas->slots, l_slot - 1))) {
3868 l_mas->index = l_wr_mas->pivots[l_slot - 2] + 1;
3870 l_mas->index = l_mas->min;
3872 l_mas->offset = l_slot - 1;
3875 if (!r_wr_mas->content) {
3876 if (r_mas->last < r_wr_mas->r_max)
3877 r_mas->last = r_wr_mas->r_max;
3879 } else if ((r_mas->last == r_wr_mas->r_max) &&
3880 (r_mas->last < r_mas->max) &&
3881 !mas_slot_locked(r_mas, r_wr_mas->slots, r_mas->offset + 1)) {
3882 r_mas->last = mas_safe_pivot(r_mas, r_wr_mas->pivots,
3883 r_wr_mas->type, r_mas->offset + 1);
3888 static inline void *mas_state_walk(struct ma_state *mas)
3892 entry = mas_start(mas);
3893 if (mas_is_none(mas))
3896 if (mas_is_ptr(mas))
3899 return mtree_range_walk(mas);
3903 * mtree_lookup_walk() - Internal quick lookup that does not keep maple state up
3906 * @mas: The maple state.
3908 * Note: Leaves mas in undesirable state.
3909 * Return: The entry for @mas->index or %NULL on dead node.
3911 static inline void *mtree_lookup_walk(struct ma_state *mas)
3913 unsigned long *pivots;
3914 unsigned char offset;
3915 struct maple_node *node;
3916 struct maple_enode *next;
3917 enum maple_type type;
3926 node = mte_to_node(next);
3927 type = mte_node_type(next);
3928 pivots = ma_pivots(node, type);
3929 end = ma_data_end(node, type, pivots, max);
3930 if (unlikely(ma_dead_node(node)))
3933 if (pivots[offset] >= mas->index) {
3934 max = pivots[offset];
3937 } while (++offset < end);
3939 slots = ma_slots(node, type);
3940 next = mt_slot(mas->tree, slots, offset);
3941 if (unlikely(ma_dead_node(node)))
3943 } while (!ma_is_leaf(type));
3945 return (void *) next;
3953 * mas_new_root() - Create a new root node that only contains the entry passed
3955 * @mas: The maple state
3956 * @entry: The entry to store.
3958 * Only valid when the index == 0 and the last == ULONG_MAX
3960 * Return 0 on error, 1 on success.
3962 static inline int mas_new_root(struct ma_state *mas, void *entry)
3964 struct maple_enode *root = mas_root_locked(mas);
3965 enum maple_type type = maple_leaf_64;
3966 struct maple_node *node;
3968 unsigned long *pivots;
3970 if (!entry && !mas->index && mas->last == ULONG_MAX) {
3972 mas_set_height(mas);
3973 rcu_assign_pointer(mas->tree->ma_root, entry);
3974 mas->node = MAS_START;
3978 mas_node_count(mas, 1);
3979 if (mas_is_err(mas))
3982 node = mas_pop_node(mas);
3983 pivots = ma_pivots(node, type);
3984 slots = ma_slots(node, type);
3985 node->parent = ma_parent_ptr(
3986 ((unsigned long)mas->tree | MA_ROOT_PARENT));
3987 mas->node = mt_mk_node(node, type);
3988 rcu_assign_pointer(slots[0], entry);
3989 pivots[0] = mas->last;
3991 mas_set_height(mas);
3992 rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
3995 if (xa_is_node(root))
3996 mte_destroy_walk(root, mas->tree);
4001 * mas_wr_spanning_store() - Create a subtree with the store operation completed
4002 * and new nodes where necessary, then place the sub-tree in the actual tree.
4003 * Note that mas is expected to point to the node which caused the store to
4005 * @wr_mas: The maple write state
4007 * Return: 0 on error, positive on success.
4009 static inline int mas_wr_spanning_store(struct ma_wr_state *wr_mas)
4011 struct maple_subtree_state mast;
4012 struct maple_big_node b_node;
4013 struct ma_state *mas;
4014 unsigned char height;
4016 /* Left and Right side of spanning store */
4017 MA_STATE(l_mas, NULL, 0, 0);
4018 MA_STATE(r_mas, NULL, 0, 0);
4020 MA_WR_STATE(r_wr_mas, &r_mas, wr_mas->entry);
4021 MA_WR_STATE(l_wr_mas, &l_mas, wr_mas->entry);
4024 * A store operation that spans multiple nodes is called a spanning
4025 * store and is handled early in the store call stack by the function
4026 * mas_is_span_wr(). When a spanning store is identified, the maple
4027 * state is duplicated. The first maple state walks the left tree path
4028 * to ``index``, the duplicate walks the right tree path to ``last``.
4029 * The data in the two nodes are combined into a single node, two nodes,
4030 * or possibly three nodes (see the 3-way split above). A ``NULL``
4031 * written to the last entry of a node is considered a spanning store as
4032 * a rebalance is required for the operation to complete and an overflow
4033 * of data may happen.
4036 trace_ma_op(__func__, mas);
4038 if (unlikely(!mas->index && mas->last == ULONG_MAX))
4039 return mas_new_root(mas, wr_mas->entry);
4041 * Node rebalancing may occur due to this store, so there may be three new
4042 * entries per level plus a new root.
4044 height = mas_mt_height(mas);
4045 mas_node_count(mas, 1 + height * 3);
4046 if (mas_is_err(mas))
4050 * Set up right side. Need to get to the next offset after the spanning
4051 * store to ensure it's not NULL and to combine both the next node and
4052 * the node with the start together.
4055 /* Avoid overflow, walk to next slot in the tree. */
4059 r_mas.index = r_mas.last;
4060 mas_wr_walk_index(&r_wr_mas);
4061 r_mas.last = r_mas.index = mas->last;
4063 /* Set up left side. */
4065 mas_wr_walk_index(&l_wr_mas);
4067 if (!wr_mas->entry) {
4068 mas_extend_spanning_null(&l_wr_mas, &r_wr_mas);
4069 mas->offset = l_mas.offset;
4070 mas->index = l_mas.index;
4071 mas->last = l_mas.last = r_mas.last;
4074 /* expanding NULLs may make this cover the entire range */
4075 if (!l_mas.index && r_mas.last == ULONG_MAX) {
4076 mas_set_range(mas, 0, ULONG_MAX);
4077 return mas_new_root(mas, wr_mas->entry);
4080 memset(&b_node, 0, sizeof(struct maple_big_node));
4081 /* Copy l_mas and store the value in b_node. */
4082 mas_store_b_node(&l_wr_mas, &b_node, l_wr_mas.node_end);
4083 /* Copy r_mas into b_node. */
4084 if (r_mas.offset <= r_wr_mas.node_end)
4085 mas_mab_cp(&r_mas, r_mas.offset, r_wr_mas.node_end,
4086 &b_node, b_node.b_end + 1);
4090 /* Stop spanning searches by searching for just index. */
4091 l_mas.index = l_mas.last = mas->index;
4094 mast.orig_l = &l_mas;
4095 mast.orig_r = &r_mas;
4096 /* Combine l_mas and r_mas and split them up evenly again. */
4097 return mas_spanning_rebalance(mas, &mast, height + 1);
4101 * mas_wr_node_store() - Attempt to store the value in a node
4102 * @wr_mas: The maple write state
4104 * Attempts to reuse the node, but may allocate.
4106 * Return: True if stored, false otherwise
4108 static inline bool mas_wr_node_store(struct ma_wr_state *wr_mas)
4110 struct ma_state *mas = wr_mas->mas;
4111 void __rcu **dst_slots;
4112 unsigned long *dst_pivots;
4113 unsigned char dst_offset;
4114 unsigned char new_end = wr_mas->node_end;
4115 unsigned char offset;
4116 unsigned char node_slots = mt_slots[wr_mas->type];
4117 struct maple_node reuse, *newnode;
4118 unsigned char copy_size, max_piv = mt_pivots[wr_mas->type];
4119 bool in_rcu = mt_in_rcu(mas->tree);
4121 offset = mas->offset;
4122 if (mas->last == wr_mas->r_max) {
4123 /* runs right to the end of the node */
4124 if (mas->last == mas->max)
4126 /* don't copy this offset */
4127 wr_mas->offset_end++;
4128 } else if (mas->last < wr_mas->r_max) {
4129 /* new range ends in this range */
4130 if (unlikely(wr_mas->r_max == ULONG_MAX))
4131 mas_bulk_rebalance(mas, wr_mas->node_end, wr_mas->type);
4135 if (wr_mas->end_piv == mas->last)
4136 wr_mas->offset_end++;
4138 new_end -= wr_mas->offset_end - offset - 1;
4141 /* new range starts within a range */
4142 if (wr_mas->r_min < mas->index)
4145 /* Not enough room */
4146 if (new_end >= node_slots)
4149 /* Not enough data. */
4150 if (!mte_is_root(mas->node) && (new_end <= mt_min_slots[wr_mas->type]) &&
4151 !(mas->mas_flags & MA_STATE_BULK))
4156 mas_node_count(mas, 1);
4157 if (mas_is_err(mas))
4160 newnode = mas_pop_node(mas);
4162 memset(&reuse, 0, sizeof(struct maple_node));
4166 newnode->parent = mas_mn(mas)->parent;
4167 dst_pivots = ma_pivots(newnode, wr_mas->type);
4168 dst_slots = ma_slots(newnode, wr_mas->type);
4169 /* Copy from start to insert point */
4170 memcpy(dst_pivots, wr_mas->pivots, sizeof(unsigned long) * (offset + 1));
4171 memcpy(dst_slots, wr_mas->slots, sizeof(void *) * (offset + 1));
4172 dst_offset = offset;
4174 /* Handle insert of new range starting after old range */
4175 if (wr_mas->r_min < mas->index) {
4177 rcu_assign_pointer(dst_slots[dst_offset], wr_mas->content);
4178 dst_pivots[dst_offset++] = mas->index - 1;
4181 /* Store the new entry and range end. */
4182 if (dst_offset < max_piv)
4183 dst_pivots[dst_offset] = mas->last;
4184 mas->offset = dst_offset;
4185 rcu_assign_pointer(dst_slots[dst_offset], wr_mas->entry);
4188 * this range wrote to the end of the node or it overwrote the rest of
4191 if (wr_mas->offset_end > wr_mas->node_end || mas->last >= mas->max) {
4192 new_end = dst_offset;
4197 /* Copy to the end of node if necessary. */
4198 copy_size = wr_mas->node_end - wr_mas->offset_end + 1;
4199 memcpy(dst_slots + dst_offset, wr_mas->slots + wr_mas->offset_end,
4200 sizeof(void *) * copy_size);
4201 if (dst_offset < max_piv) {
4202 if (copy_size > max_piv - dst_offset)
4203 copy_size = max_piv - dst_offset;
4205 memcpy(dst_pivots + dst_offset,
4206 wr_mas->pivots + wr_mas->offset_end,
4207 sizeof(unsigned long) * copy_size);
4210 if ((wr_mas->node_end == node_slots - 1) && (new_end < node_slots - 1))
4211 dst_pivots[new_end] = mas->max;
4214 mas_leaf_set_meta(mas, newnode, dst_pivots, maple_leaf_64, new_end);
4216 mte_set_node_dead(mas->node);
4217 mas->node = mt_mk_node(newnode, wr_mas->type);
4218 mas_replace(mas, false);
4220 memcpy(wr_mas->node, newnode, sizeof(struct maple_node));
4222 trace_ma_write(__func__, mas, 0, wr_mas->entry);
4223 mas_update_gap(mas);
4228 * mas_wr_slot_store: Attempt to store a value in a slot.
4229 * @wr_mas: the maple write state
4231 * Return: True if stored, false otherwise
4233 static inline bool mas_wr_slot_store(struct ma_wr_state *wr_mas)
4235 struct ma_state *mas = wr_mas->mas;
4236 unsigned long lmax; /* Logical max. */
4237 unsigned char offset = mas->offset;
4239 if ((wr_mas->r_max > mas->last) && ((wr_mas->r_min != mas->index) ||
4240 (offset != wr_mas->node_end)))
4243 if (offset == wr_mas->node_end - 1)
4246 lmax = wr_mas->pivots[offset + 1];
4248 /* going to overwrite too many slots. */
4249 if (lmax < mas->last)
4252 if (wr_mas->r_min == mas->index) {
4253 /* overwriting two or more ranges with one. */
4254 if (lmax == mas->last)
4257 /* Overwriting all of offset and a portion of offset + 1. */
4258 rcu_assign_pointer(wr_mas->slots[offset], wr_mas->entry);
4259 wr_mas->pivots[offset] = mas->last;
4263 /* Doesn't end on the next range end. */
4264 if (lmax != mas->last)
4267 /* Overwriting a portion of offset and all of offset + 1 */
4268 if ((offset + 1 < mt_pivots[wr_mas->type]) &&
4269 (wr_mas->entry || wr_mas->pivots[offset + 1]))
4270 wr_mas->pivots[offset + 1] = mas->last;
4272 rcu_assign_pointer(wr_mas->slots[offset + 1], wr_mas->entry);
4273 wr_mas->pivots[offset] = mas->index - 1;
4274 mas->offset++; /* Keep mas accurate. */
4277 trace_ma_write(__func__, mas, 0, wr_mas->entry);
4278 mas_update_gap(mas);
4282 static inline void mas_wr_end_piv(struct ma_wr_state *wr_mas)
4284 while ((wr_mas->mas->last > wr_mas->end_piv) &&
4285 (wr_mas->offset_end < wr_mas->node_end))
4286 wr_mas->end_piv = wr_mas->pivots[++wr_mas->offset_end];
4288 if (wr_mas->mas->last > wr_mas->end_piv)
4289 wr_mas->end_piv = wr_mas->mas->max;
4292 static inline void mas_wr_extend_null(struct ma_wr_state *wr_mas)
4294 struct ma_state *mas = wr_mas->mas;
4296 if (mas->last < wr_mas->end_piv && !wr_mas->slots[wr_mas->offset_end])
4297 mas->last = wr_mas->end_piv;
4299 /* Check next slot(s) if we are overwriting the end */
4300 if ((mas->last == wr_mas->end_piv) &&
4301 (wr_mas->node_end != wr_mas->offset_end) &&
4302 !wr_mas->slots[wr_mas->offset_end + 1]) {
4303 wr_mas->offset_end++;
4304 if (wr_mas->offset_end == wr_mas->node_end)
4305 mas->last = mas->max;
4307 mas->last = wr_mas->pivots[wr_mas->offset_end];
4308 wr_mas->end_piv = mas->last;
4311 if (!wr_mas->content) {
4312 /* If this one is null, the next and prev are not */
4313 mas->index = wr_mas->r_min;
4315 /* Check prev slot if we are overwriting the start */
4316 if (mas->index == wr_mas->r_min && mas->offset &&
4317 !wr_mas->slots[mas->offset - 1]) {
4319 wr_mas->r_min = mas->index =
4320 mas_safe_min(mas, wr_mas->pivots, mas->offset);
4321 wr_mas->r_max = wr_mas->pivots[mas->offset];
4326 static inline bool mas_wr_append(struct ma_wr_state *wr_mas)
4328 unsigned char end = wr_mas->node_end;
4329 unsigned char new_end = end + 1;
4330 struct ma_state *mas = wr_mas->mas;
4331 unsigned char node_pivots = mt_pivots[wr_mas->type];
4333 if ((mas->index != wr_mas->r_min) && (mas->last == wr_mas->r_max)) {
4334 if (new_end < node_pivots)
4335 wr_mas->pivots[new_end] = wr_mas->pivots[end];
4337 if (new_end < node_pivots)
4338 ma_set_meta(wr_mas->node, maple_leaf_64, 0, new_end);
4340 rcu_assign_pointer(wr_mas->slots[new_end], wr_mas->entry);
4341 mas->offset = new_end;
4342 wr_mas->pivots[end] = mas->index - 1;
4347 if ((mas->index == wr_mas->r_min) && (mas->last < wr_mas->r_max)) {
4348 if (new_end < node_pivots)
4349 wr_mas->pivots[new_end] = wr_mas->pivots[end];
4351 rcu_assign_pointer(wr_mas->slots[new_end], wr_mas->content);
4352 if (new_end < node_pivots)
4353 ma_set_meta(wr_mas->node, maple_leaf_64, 0, new_end);
4355 wr_mas->pivots[end] = mas->last;
4356 rcu_assign_pointer(wr_mas->slots[end], wr_mas->entry);
4364 * mas_wr_bnode() - Slow path for a modification.
4365 * @wr_mas: The write maple state
4367 * This is where split, rebalance end up.
4369 static void mas_wr_bnode(struct ma_wr_state *wr_mas)
4371 struct maple_big_node b_node;
4373 trace_ma_write(__func__, wr_mas->mas, 0, wr_mas->entry);
4374 memset(&b_node, 0, sizeof(struct maple_big_node));
4375 mas_store_b_node(wr_mas, &b_node, wr_mas->offset_end);
4376 mas_commit_b_node(wr_mas, &b_node, wr_mas->node_end);
4379 static inline void mas_wr_modify(struct ma_wr_state *wr_mas)
4381 unsigned char node_slots;
4382 unsigned char node_size;
4383 struct ma_state *mas = wr_mas->mas;
4385 /* Direct replacement */
4386 if (wr_mas->r_min == mas->index && wr_mas->r_max == mas->last) {
4387 rcu_assign_pointer(wr_mas->slots[mas->offset], wr_mas->entry);
4388 if (!!wr_mas->entry ^ !!wr_mas->content)
4389 mas_update_gap(mas);
4393 /* Attempt to append */
4394 node_slots = mt_slots[wr_mas->type];
4395 node_size = wr_mas->node_end - wr_mas->offset_end + mas->offset + 2;
4396 if (mas->max == ULONG_MAX)
4399 /* slot and node store will not fit, go to the slow path */
4400 if (unlikely(node_size >= node_slots))
4403 if (wr_mas->entry && (wr_mas->node_end < node_slots - 1) &&
4404 (mas->offset == wr_mas->node_end) && mas_wr_append(wr_mas)) {
4405 if (!wr_mas->content || !wr_mas->entry)
4406 mas_update_gap(mas);
4410 if ((wr_mas->offset_end - mas->offset <= 1) && mas_wr_slot_store(wr_mas))
4412 else if (mas_wr_node_store(wr_mas))
4415 if (mas_is_err(mas))
4419 mas_wr_bnode(wr_mas);
4423 * mas_wr_store_entry() - Internal call to store a value
4424 * @mas: The maple state
4425 * @entry: The entry to store.
4427 * Return: The contents that was stored at the index.
4429 static inline void *mas_wr_store_entry(struct ma_wr_state *wr_mas)
4431 struct ma_state *mas = wr_mas->mas;
4433 wr_mas->content = mas_start(mas);
4434 if (mas_is_none(mas) || mas_is_ptr(mas)) {
4435 mas_store_root(mas, wr_mas->entry);
4436 return wr_mas->content;
4439 if (unlikely(!mas_wr_walk(wr_mas))) {
4440 mas_wr_spanning_store(wr_mas);
4441 return wr_mas->content;
4444 /* At this point, we are at the leaf node that needs to be altered. */
4445 wr_mas->end_piv = wr_mas->r_max;
4446 mas_wr_end_piv(wr_mas);
4449 mas_wr_extend_null(wr_mas);
4451 /* New root for a single pointer */
4452 if (unlikely(!mas->index && mas->last == ULONG_MAX)) {
4453 mas_new_root(mas, wr_mas->entry);
4454 return wr_mas->content;
4457 mas_wr_modify(wr_mas);
4458 return wr_mas->content;
4462 * mas_insert() - Internal call to insert a value
4463 * @mas: The maple state
4464 * @entry: The entry to store
4466 * Return: %NULL or the contents that already exists at the requested index
4467 * otherwise. The maple state needs to be checked for error conditions.
4469 static inline void *mas_insert(struct ma_state *mas, void *entry)
4471 MA_WR_STATE(wr_mas, mas, entry);
4474 * Inserting a new range inserts either 0, 1, or 2 pivots within the
4475 * tree. If the insert fits exactly into an existing gap with a value
4476 * of NULL, then the slot only needs to be written with the new value.
4477 * If the range being inserted is adjacent to another range, then only a
4478 * single pivot needs to be inserted (as well as writing the entry). If
4479 * the new range is within a gap but does not touch any other ranges,
4480 * then two pivots need to be inserted: the start - 1, and the end. As
4481 * usual, the entry must be written. Most operations require a new node
4482 * to be allocated and replace an existing node to ensure RCU safety,
4483 * when in RCU mode. The exception to requiring a newly allocated node
4484 * is when inserting at the end of a node (appending). When done
4485 * carefully, appending can reuse the node in place.
4487 wr_mas.content = mas_start(mas);
4491 if (mas_is_none(mas) || mas_is_ptr(mas)) {
4492 mas_store_root(mas, entry);
4496 /* spanning writes always overwrite something */
4497 if (!mas_wr_walk(&wr_mas))
4500 /* At this point, we are at the leaf node that needs to be altered. */
4501 wr_mas.offset_end = mas->offset;
4502 wr_mas.end_piv = wr_mas.r_max;
4504 if (wr_mas.content || (mas->last > wr_mas.r_max))
4510 mas_wr_modify(&wr_mas);
4511 return wr_mas.content;
4514 mas_set_err(mas, -EEXIST);
4515 return wr_mas.content;
4520 * mas_prev_node() - Find the prev non-null entry at the same level in the
4521 * tree. The prev value will be mas->node[mas->offset] or MAS_NONE.
4522 * @mas: The maple state
4523 * @min: The lower limit to search
4525 * The prev node value will be mas->node[mas->offset] or MAS_NONE.
4526 * Return: 1 if the node is dead, 0 otherwise.
4528 static inline int mas_prev_node(struct ma_state *mas, unsigned long min)
4533 struct maple_node *node;
4534 struct maple_enode *enode;
4535 unsigned long *pivots;
4537 if (mas_is_none(mas))
4543 if (ma_is_root(node))
4547 if (unlikely(mas_ascend(mas)))
4549 offset = mas->offset;
4554 mt = mte_node_type(mas->node);
4556 slots = ma_slots(node, mt);
4557 pivots = ma_pivots(node, mt);
4558 if (unlikely(ma_dead_node(node)))
4561 mas->max = pivots[offset];
4563 mas->min = pivots[offset - 1] + 1;
4564 if (unlikely(ma_dead_node(node)))
4572 enode = mas_slot(mas, slots, offset);
4573 if (unlikely(ma_dead_node(node)))
4577 mt = mte_node_type(mas->node);
4579 slots = ma_slots(node, mt);
4580 pivots = ma_pivots(node, mt);
4581 offset = ma_data_end(node, mt, pivots, mas->max);
4582 if (unlikely(ma_dead_node(node)))
4586 mas->min = pivots[offset - 1] + 1;
4588 if (offset < mt_pivots[mt])
4589 mas->max = pivots[offset];
4595 mas->node = mas_slot(mas, slots, offset);
4596 if (unlikely(ma_dead_node(node)))
4599 mas->offset = mas_data_end(mas);
4600 if (unlikely(mte_dead_node(mas->node)))
4606 mas->offset = offset;
4608 mas->min = pivots[offset - 1] + 1;
4610 if (unlikely(ma_dead_node(node)))
4613 mas->node = MAS_NONE;
4618 * mas_next_node() - Get the next node at the same level in the tree.
4619 * @mas: The maple state
4620 * @max: The maximum pivot value to check.
4622 * The next value will be mas->node[mas->offset] or MAS_NONE.
4623 * Return: 1 on dead node, 0 otherwise.
4625 static inline int mas_next_node(struct ma_state *mas, struct maple_node *node,
4628 unsigned long min, pivot;
4629 unsigned long *pivots;
4630 struct maple_enode *enode;
4632 unsigned char offset;
4633 unsigned char node_end;
4637 if (mas->max >= max)
4642 if (ma_is_root(node))
4649 if (unlikely(mas_ascend(mas)))
4652 offset = mas->offset;
4655 mt = mte_node_type(mas->node);
4656 pivots = ma_pivots(node, mt);
4657 node_end = ma_data_end(node, mt, pivots, mas->max);
4658 if (unlikely(ma_dead_node(node)))
4661 } while (unlikely(offset == node_end));
4663 slots = ma_slots(node, mt);
4664 pivot = mas_safe_pivot(mas, pivots, ++offset, mt);
4665 while (unlikely(level > 1)) {
4666 /* Descend, if necessary */
4667 enode = mas_slot(mas, slots, offset);
4668 if (unlikely(ma_dead_node(node)))
4674 mt = mte_node_type(mas->node);
4675 slots = ma_slots(node, mt);
4676 pivots = ma_pivots(node, mt);
4677 if (unlikely(ma_dead_node(node)))
4684 enode = mas_slot(mas, slots, offset);
4685 if (unlikely(ma_dead_node(node)))
4694 if (unlikely(ma_dead_node(node)))
4697 mas->node = MAS_NONE;
4702 * mas_next_nentry() - Get the next node entry
4703 * @mas: The maple state
4704 * @max: The maximum value to check
4705 * @*range_start: Pointer to store the start of the range.
4707 * Sets @mas->offset to the offset of the next node entry, @mas->last to the
4708 * pivot of the entry.
4710 * Return: The next entry, %NULL otherwise
4712 static inline void *mas_next_nentry(struct ma_state *mas,
4713 struct maple_node *node, unsigned long max, enum maple_type type)
4715 unsigned char count;
4716 unsigned long pivot;
4717 unsigned long *pivots;
4721 if (mas->last == mas->max) {
4722 mas->index = mas->max;
4726 slots = ma_slots(node, type);
4727 pivots = ma_pivots(node, type);
4728 count = ma_data_end(node, type, pivots, mas->max);
4729 if (unlikely(ma_dead_node(node)))
4732 mas->index = mas_safe_min(mas, pivots, mas->offset);
4733 if (unlikely(ma_dead_node(node)))
4736 if (mas->index > max)
4739 if (mas->offset > count)
4742 while (mas->offset < count) {
4743 pivot = pivots[mas->offset];
4744 entry = mas_slot(mas, slots, mas->offset);
4745 if (ma_dead_node(node))
4754 mas->index = pivot + 1;
4758 if (mas->index > mas->max) {
4759 mas->index = mas->last;
4763 pivot = mas_safe_pivot(mas, pivots, mas->offset, type);
4764 entry = mas_slot(mas, slots, mas->offset);
4765 if (ma_dead_node(node))
4779 static inline void mas_rewalk(struct ma_state *mas, unsigned long index)
4783 mas_set(mas, index);
4784 mas_state_walk(mas);
4785 if (mas_is_start(mas))
4793 * mas_next_entry() - Internal function to get the next entry.
4794 * @mas: The maple state
4795 * @limit: The maximum range start.
4797 * Set the @mas->node to the next entry and the range_start to
4798 * the beginning value for the entry. Does not check beyond @limit.
4799 * Sets @mas->index and @mas->last to the limit if it is hit.
4800 * Restarts on dead nodes.
4802 * Return: the next entry or %NULL.
4804 static inline void *mas_next_entry(struct ma_state *mas, unsigned long limit)
4807 struct maple_enode *prev_node;
4808 struct maple_node *node;
4809 unsigned char offset;
4813 if (mas->index > limit) {
4814 mas->index = mas->last = limit;
4820 offset = mas->offset;
4821 prev_node = mas->node;
4823 mt = mte_node_type(mas->node);
4825 if (unlikely(mas->offset >= mt_slots[mt])) {
4826 mas->offset = mt_slots[mt] - 1;
4830 while (!mas_is_none(mas)) {
4831 entry = mas_next_nentry(mas, node, limit, mt);
4832 if (unlikely(ma_dead_node(node))) {
4833 mas_rewalk(mas, last);
4840 if (unlikely((mas->index > limit)))
4844 prev_node = mas->node;
4845 offset = mas->offset;
4846 if (unlikely(mas_next_node(mas, node, limit))) {
4847 mas_rewalk(mas, last);
4852 mt = mte_node_type(mas->node);
4855 mas->index = mas->last = limit;
4856 mas->offset = offset;
4857 mas->node = prev_node;
4862 * mas_prev_nentry() - Get the previous node entry.
4863 * @mas: The maple state.
4864 * @limit: The lower limit to check for a value.
4866 * Return: the entry, %NULL otherwise.
4868 static inline void *mas_prev_nentry(struct ma_state *mas, unsigned long limit,
4869 unsigned long index)
4871 unsigned long pivot, min;
4872 unsigned char offset;
4873 struct maple_node *mn;
4875 unsigned long *pivots;
4884 mt = mte_node_type(mas->node);
4885 offset = mas->offset - 1;
4886 if (offset >= mt_slots[mt])
4887 offset = mt_slots[mt] - 1;
4889 slots = ma_slots(mn, mt);
4890 pivots = ma_pivots(mn, mt);
4891 if (unlikely(ma_dead_node(mn))) {
4892 mas_rewalk(mas, index);
4896 if (offset == mt_pivots[mt])
4899 pivot = pivots[offset];
4901 if (unlikely(ma_dead_node(mn))) {
4902 mas_rewalk(mas, index);
4906 while (offset && ((!mas_slot(mas, slots, offset) && pivot >= limit) ||
4908 pivot = pivots[--offset];
4910 min = mas_safe_min(mas, pivots, offset);
4911 entry = mas_slot(mas, slots, offset);
4912 if (unlikely(ma_dead_node(mn))) {
4913 mas_rewalk(mas, index);
4917 if (likely(entry)) {
4918 mas->offset = offset;
4925 static inline void *mas_prev_entry(struct ma_state *mas, unsigned long min)
4929 if (mas->index < min) {
4930 mas->index = mas->last = min;
4931 mas->node = MAS_NONE;
4935 while (likely(!mas_is_none(mas))) {
4936 entry = mas_prev_nentry(mas, min, mas->index);
4937 if (unlikely(mas->last < min))
4943 if (unlikely(mas_prev_node(mas, min))) {
4944 mas_rewalk(mas, mas->index);
4953 mas->index = mas->last = min;
4958 * mas_rev_awalk() - Internal function. Reverse allocation walk. Find the
4959 * highest gap address of a given size in a given node and descend.
4960 * @mas: The maple state
4961 * @size: The needed size.
4963 * Return: True if found in a leaf, false otherwise.
4966 static bool mas_rev_awalk(struct ma_state *mas, unsigned long size,
4967 unsigned long *gap_min, unsigned long *gap_max)
4969 enum maple_type type = mte_node_type(mas->node);
4970 struct maple_node *node = mas_mn(mas);
4971 unsigned long *pivots, *gaps;
4973 unsigned long gap = 0;
4974 unsigned long max, min;
4975 unsigned char offset;
4977 if (unlikely(mas_is_err(mas)))
4980 if (ma_is_dense(type)) {
4982 mas->offset = (unsigned char)(mas->index - mas->min);
4986 pivots = ma_pivots(node, type);
4987 slots = ma_slots(node, type);
4988 gaps = ma_gaps(node, type);
4989 offset = mas->offset;
4990 min = mas_safe_min(mas, pivots, offset);
4991 /* Skip out of bounds. */
4992 while (mas->last < min)
4993 min = mas_safe_min(mas, pivots, --offset);
4995 max = mas_safe_pivot(mas, pivots, offset, type);
4996 while (mas->index <= max) {
5000 else if (!mas_slot(mas, slots, offset))
5001 gap = max - min + 1;
5004 if ((size <= gap) && (size <= mas->last - min + 1))
5008 /* Skip the next slot, it cannot be a gap. */
5013 max = pivots[offset];
5014 min = mas_safe_min(mas, pivots, offset);
5024 min = mas_safe_min(mas, pivots, offset);
5027 if (unlikely((mas->index > max) || (size - 1 > max - mas->index)))
5030 if (unlikely(ma_is_leaf(type))) {
5031 mas->offset = offset;
5033 *gap_max = min + gap - 1;
5037 /* descend, only happens under lock. */
5038 mas->node = mas_slot(mas, slots, offset);
5041 mas->offset = mas_data_end(mas);
5045 if (!mte_is_root(mas->node))
5049 mas_set_err(mas, -EBUSY);
5053 static inline bool mas_anode_descend(struct ma_state *mas, unsigned long size)
5055 enum maple_type type = mte_node_type(mas->node);
5056 unsigned long pivot, min, gap = 0;
5057 unsigned char offset, data_end;
5058 unsigned long *gaps, *pivots;
5060 struct maple_node *node;
5063 if (ma_is_dense(type)) {
5064 mas->offset = (unsigned char)(mas->index - mas->min);
5069 pivots = ma_pivots(node, type);
5070 slots = ma_slots(node, type);
5071 gaps = ma_gaps(node, type);
5072 offset = mas->offset;
5073 min = mas_safe_min(mas, pivots, offset);
5074 data_end = ma_data_end(node, type, pivots, mas->max);
5075 for (; offset <= data_end; offset++) {
5076 pivot = mas_logical_pivot(mas, pivots, offset, type);
5078 /* Not within lower bounds */
5079 if (mas->index > pivot)
5084 else if (!mas_slot(mas, slots, offset))
5085 gap = min(pivot, mas->last) - max(mas->index, min) + 1;
5090 if (ma_is_leaf(type)) {
5094 if (mas->index <= pivot) {
5095 mas->node = mas_slot(mas, slots, offset);
5104 if (mas->last <= pivot) {
5105 mas_set_err(mas, -EBUSY);
5110 if (mte_is_root(mas->node))
5113 mas->offset = offset;
5118 * mas_walk() - Search for @mas->index in the tree.
5119 * @mas: The maple state.
5121 * mas->index and mas->last will be set to the range if there is a value. If
5122 * mas->node is MAS_NONE, reset to MAS_START.
5124 * Return: the entry at the location or %NULL.
5126 void *mas_walk(struct ma_state *mas)
5131 entry = mas_state_walk(mas);
5132 if (mas_is_start(mas))
5135 if (mas_is_ptr(mas)) {
5140 mas->last = ULONG_MAX;
5145 if (mas_is_none(mas)) {
5147 mas->last = ULONG_MAX;
5152 EXPORT_SYMBOL_GPL(mas_walk);
5154 static inline bool mas_rewind_node(struct ma_state *mas)
5159 if (mte_is_root(mas->node)) {
5169 mas->offset = --slot;
5174 * mas_skip_node() - Internal function. Skip over a node.
5175 * @mas: The maple state.
5177 * Return: true if there is another node, false otherwise.
5179 static inline bool mas_skip_node(struct ma_state *mas)
5181 if (mas_is_err(mas))
5185 if (mte_is_root(mas->node)) {
5186 if (mas->offset >= mas_data_end(mas)) {
5187 mas_set_err(mas, -EBUSY);
5193 } while (mas->offset >= mas_data_end(mas));
5200 * mas_awalk() - Allocation walk. Search from low address to high, for a gap of
5202 * @mas: The maple state
5203 * @size: The size of the gap required
5205 * Search between @mas->index and @mas->last for a gap of @size.
5207 static inline void mas_awalk(struct ma_state *mas, unsigned long size)
5209 struct maple_enode *last = NULL;
5212 * There are 4 options:
5213 * go to child (descend)
5214 * go back to parent (ascend)
5215 * no gap found. (return, slot == MAPLE_NODE_SLOTS)
5216 * found the gap. (return, slot != MAPLE_NODE_SLOTS)
5218 while (!mas_is_err(mas) && !mas_anode_descend(mas, size)) {
5219 if (last == mas->node)
5227 * mas_fill_gap() - Fill a located gap with @entry.
5228 * @mas: The maple state
5229 * @entry: The value to store
5230 * @slot: The offset into the node to store the @entry
5231 * @size: The size of the entry
5232 * @index: The start location
5234 static inline void mas_fill_gap(struct ma_state *mas, void *entry,
5235 unsigned char slot, unsigned long size, unsigned long *index)
5237 MA_WR_STATE(wr_mas, mas, entry);
5238 unsigned char pslot = mte_parent_slot(mas->node);
5239 struct maple_enode *mn = mas->node;
5240 unsigned long *pivots;
5241 enum maple_type ptype;
5243 * mas->index is the start address for the search
5244 * which may no longer be needed.
5245 * mas->last is the end address for the search
5248 *index = mas->index;
5249 mas->last = mas->index + size - 1;
5252 * It is possible that using mas->max and mas->min to correctly
5253 * calculate the index and last will cause an issue in the gap
5254 * calculation, so fix the ma_state here
5257 ptype = mte_node_type(mas->node);
5258 pivots = ma_pivots(mas_mn(mas), ptype);
5259 mas->max = mas_safe_pivot(mas, pivots, pslot, ptype);
5260 mas->min = mas_safe_min(mas, pivots, pslot);
5263 mas_wr_store_entry(&wr_mas);
5267 * mas_sparse_area() - Internal function. Return upper or lower limit when
5268 * searching for a gap in an empty tree.
5269 * @mas: The maple state
5270 * @min: the minimum range
5271 * @max: The maximum range
5272 * @size: The size of the gap
5273 * @fwd: Searching forward or back
5275 static inline void mas_sparse_area(struct ma_state *mas, unsigned long min,
5276 unsigned long max, unsigned long size, bool fwd)
5278 unsigned long start = 0;
5280 if (!unlikely(mas_is_none(mas)))
5289 mas->last = start + size - 1;
5297 * mas_empty_area() - Get the lowest address within the range that is
5298 * sufficient for the size requested.
5299 * @mas: The maple state
5300 * @min: The lowest value of the range
5301 * @max: The highest value of the range
5302 * @size: The size needed
5304 int mas_empty_area(struct ma_state *mas, unsigned long min,
5305 unsigned long max, unsigned long size)
5307 unsigned char offset;
5308 unsigned long *pivots;
5314 if (mas_is_start(mas))
5316 else if (mas->offset >= 2)
5318 else if (!mas_skip_node(mas))
5322 if (mas_is_none(mas) || mas_is_ptr(mas)) {
5323 mas_sparse_area(mas, min, max, size, true);
5327 /* The start of the window can only be within these values */
5330 mas_awalk(mas, size);
5332 if (unlikely(mas_is_err(mas)))
5333 return xa_err(mas->node);
5335 offset = mas->offset;
5336 if (unlikely(offset == MAPLE_NODE_SLOTS))
5339 mt = mte_node_type(mas->node);
5340 pivots = ma_pivots(mas_mn(mas), mt);
5342 mas->min = pivots[offset - 1] + 1;
5344 if (offset < mt_pivots[mt])
5345 mas->max = pivots[offset];
5347 if (mas->index < mas->min)
5348 mas->index = mas->min;
5350 mas->last = mas->index + size - 1;
5353 EXPORT_SYMBOL_GPL(mas_empty_area);
5356 * mas_empty_area_rev() - Get the highest address within the range that is
5357 * sufficient for the size requested.
5358 * @mas: The maple state
5359 * @min: The lowest value of the range
5360 * @max: The highest value of the range
5361 * @size: The size needed
5363 int mas_empty_area_rev(struct ma_state *mas, unsigned long min,
5364 unsigned long max, unsigned long size)
5366 struct maple_enode *last = mas->node;
5371 if (mas_is_start(mas)) {
5373 mas->offset = mas_data_end(mas);
5374 } else if (mas->offset >= 2) {
5376 } else if (!mas_rewind_node(mas)) {
5381 if (mas_is_none(mas) || mas_is_ptr(mas)) {
5382 mas_sparse_area(mas, min, max, size, false);
5386 /* The start of the window can only be within these values. */
5390 while (!mas_rev_awalk(mas, size, &min, &max)) {
5391 if (last == mas->node) {
5392 if (!mas_rewind_node(mas))
5399 if (mas_is_err(mas))
5400 return xa_err(mas->node);
5402 if (unlikely(mas->offset == MAPLE_NODE_SLOTS))
5405 /* Trim the upper limit to the max. */
5406 if (max <= mas->last)
5409 mas->index = mas->last - size + 1;
5412 EXPORT_SYMBOL_GPL(mas_empty_area_rev);
5414 static inline int mas_alloc(struct ma_state *mas, void *entry,
5415 unsigned long size, unsigned long *index)
5420 if (mas_is_none(mas) || mas_is_ptr(mas)) {
5421 mas_root_expand(mas, entry);
5422 if (mas_is_err(mas))
5423 return xa_err(mas->node);
5426 return mte_pivot(mas->node, 0);
5427 return mte_pivot(mas->node, 1);
5430 /* Must be walking a tree. */
5431 mas_awalk(mas, size);
5432 if (mas_is_err(mas))
5433 return xa_err(mas->node);
5435 if (mas->offset == MAPLE_NODE_SLOTS)
5439 * At this point, mas->node points to the right node and we have an
5440 * offset that has a sufficient gap.
5444 min = mte_pivot(mas->node, mas->offset - 1) + 1;
5446 if (mas->index < min)
5449 mas_fill_gap(mas, entry, mas->offset, size, index);
5456 static inline int mas_rev_alloc(struct ma_state *mas, unsigned long min,
5457 unsigned long max, void *entry,
5458 unsigned long size, unsigned long *index)
5462 ret = mas_empty_area_rev(mas, min, max, size);
5466 if (mas_is_err(mas))
5467 return xa_err(mas->node);
5469 if (mas->offset == MAPLE_NODE_SLOTS)
5472 mas_fill_gap(mas, entry, mas->offset, size, index);
5480 * mte_dead_leaves() - Mark all leaves of a node as dead.
5481 * @mas: The maple state
5482 * @slots: Pointer to the slot array
5483 * @type: The maple node type
5485 * Must hold the write lock.
5487 * Return: The number of leaves marked as dead.
5490 unsigned char mte_dead_leaves(struct maple_enode *enode, struct maple_tree *mt,
5493 struct maple_node *node;
5494 enum maple_type type;
5498 for (offset = 0; offset < mt_slot_count(enode); offset++) {
5499 entry = mt_slot(mt, slots, offset);
5500 type = mte_node_type(entry);
5501 node = mte_to_node(entry);
5502 /* Use both node and type to catch LE & BE metadata */
5506 mte_set_node_dead(entry);
5508 rcu_assign_pointer(slots[offset], node);
5515 * mte_dead_walk() - Walk down a dead tree to just before the leaves
5516 * @enode: The maple encoded node
5517 * @offset: The starting offset
5519 * Note: This can only be used from the RCU callback context.
5521 static void __rcu **mte_dead_walk(struct maple_enode **enode, unsigned char offset)
5523 struct maple_node *node, *next;
5524 void __rcu **slots = NULL;
5526 next = mte_to_node(*enode);
5528 *enode = ma_enode_ptr(next);
5529 node = mte_to_node(*enode);
5530 slots = ma_slots(node, node->type);
5531 next = rcu_dereference_protected(slots[offset],
5532 lock_is_held(&rcu_callback_map));
5534 } while (!ma_is_leaf(next->type));
5540 * mt_free_walk() - Walk & free a tree in the RCU callback context
5541 * @head: The RCU head that's within the node.
5543 * Note: This can only be used from the RCU callback context.
5545 static void mt_free_walk(struct rcu_head *head)
5548 struct maple_node *node, *start;
5549 struct maple_enode *enode;
5550 unsigned char offset;
5551 enum maple_type type;
5553 node = container_of(head, struct maple_node, rcu);
5555 if (ma_is_leaf(node->type))
5559 enode = mt_mk_node(node, node->type);
5560 slots = mte_dead_walk(&enode, 0);
5561 node = mte_to_node(enode);
5563 mt_free_bulk(node->slot_len, slots);
5564 offset = node->parent_slot + 1;
5565 enode = node->piv_parent;
5566 if (mte_to_node(enode) == node)
5569 type = mte_node_type(enode);
5570 slots = ma_slots(mte_to_node(enode), type);
5571 if ((offset < mt_slots[type]) &&
5572 rcu_dereference_protected(slots[offset],
5573 lock_is_held(&rcu_callback_map)))
5574 slots = mte_dead_walk(&enode, offset);
5575 node = mte_to_node(enode);
5576 } while ((node != start) || (node->slot_len < offset));
5578 slots = ma_slots(node, node->type);
5579 mt_free_bulk(node->slot_len, slots);
5582 mt_free_rcu(&node->rcu);
5585 static inline void __rcu **mte_destroy_descend(struct maple_enode **enode,
5586 struct maple_tree *mt, struct maple_enode *prev, unsigned char offset)
5588 struct maple_node *node;
5589 struct maple_enode *next = *enode;
5590 void __rcu **slots = NULL;
5591 enum maple_type type;
5592 unsigned char next_offset = 0;
5596 node = mte_to_node(*enode);
5597 type = mte_node_type(*enode);
5598 slots = ma_slots(node, type);
5599 next = mt_slot_locked(mt, slots, next_offset);
5600 if ((mte_dead_node(next)))
5601 next = mt_slot_locked(mt, slots, ++next_offset);
5603 mte_set_node_dead(*enode);
5605 node->piv_parent = prev;
5606 node->parent_slot = offset;
5607 offset = next_offset;
5610 } while (!mte_is_leaf(next));
5615 static void mt_destroy_walk(struct maple_enode *enode, struct maple_tree *mt,
5619 struct maple_node *node = mte_to_node(enode);
5620 struct maple_enode *start;
5622 if (mte_is_leaf(enode)) {
5623 node->type = mte_node_type(enode);
5628 slots = mte_destroy_descend(&enode, mt, start, 0);
5629 node = mte_to_node(enode); // Updated in the above call.
5631 enum maple_type type;
5632 unsigned char offset;
5633 struct maple_enode *parent, *tmp;
5635 node->slot_len = mte_dead_leaves(enode, mt, slots);
5637 mt_free_bulk(node->slot_len, slots);
5638 offset = node->parent_slot + 1;
5639 enode = node->piv_parent;
5640 if (mte_to_node(enode) == node)
5643 type = mte_node_type(enode);
5644 slots = ma_slots(mte_to_node(enode), type);
5645 if (offset >= mt_slots[type])
5648 tmp = mt_slot_locked(mt, slots, offset);
5649 if (mte_node_type(tmp) && mte_to_node(tmp)) {
5652 slots = mte_destroy_descend(&enode, mt, parent, offset);
5655 node = mte_to_node(enode);
5656 } while (start != enode);
5658 node = mte_to_node(enode);
5659 node->slot_len = mte_dead_leaves(enode, mt, slots);
5661 mt_free_bulk(node->slot_len, slots);
5665 mt_free_rcu(&node->rcu);
5667 mt_clear_meta(mt, node, node->type);
5671 * mte_destroy_walk() - Free a tree or sub-tree.
5672 * @enode - the encoded maple node (maple_enode) to start
5673 * @mn - the tree to free - needed for node types.
5675 * Must hold the write lock.
5677 static inline void mte_destroy_walk(struct maple_enode *enode,
5678 struct maple_tree *mt)
5680 struct maple_node *node = mte_to_node(enode);
5682 if (mt_in_rcu(mt)) {
5683 mt_destroy_walk(enode, mt, false);
5684 call_rcu(&node->rcu, mt_free_walk);
5686 mt_destroy_walk(enode, mt, true);
5690 static void mas_wr_store_setup(struct ma_wr_state *wr_mas)
5692 if (unlikely(mas_is_paused(wr_mas->mas)))
5693 mas_reset(wr_mas->mas);
5695 if (!mas_is_start(wr_mas->mas)) {
5696 if (mas_is_none(wr_mas->mas)) {
5697 mas_reset(wr_mas->mas);
5699 wr_mas->r_max = wr_mas->mas->max;
5700 wr_mas->type = mte_node_type(wr_mas->mas->node);
5701 if (mas_is_span_wr(wr_mas))
5702 mas_reset(wr_mas->mas);
5711 * mas_store() - Store an @entry.
5712 * @mas: The maple state.
5713 * @entry: The entry to store.
5715 * The @mas->index and @mas->last is used to set the range for the @entry.
5716 * Note: The @mas should have pre-allocated entries to ensure there is memory to
5717 * store the entry. Please see mas_expected_entries()/mas_destroy() for more details.
5719 * Return: the first entry between mas->index and mas->last or %NULL.
5721 void *mas_store(struct ma_state *mas, void *entry)
5723 MA_WR_STATE(wr_mas, mas, entry);
5725 trace_ma_write(__func__, mas, 0, entry);
5726 #ifdef CONFIG_DEBUG_MAPLE_TREE
5727 if (mas->index > mas->last)
5728 pr_err("Error %lu > %lu %p\n", mas->index, mas->last, entry);
5729 MT_BUG_ON(mas->tree, mas->index > mas->last);
5730 if (mas->index > mas->last) {
5731 mas_set_err(mas, -EINVAL);
5738 * Storing is the same operation as insert with the added caveat that it
5739 * can overwrite entries. Although this seems simple enough, one may
5740 * want to examine what happens if a single store operation was to
5741 * overwrite multiple entries within a self-balancing B-Tree.
5743 mas_wr_store_setup(&wr_mas);
5744 mas_wr_store_entry(&wr_mas);
5745 return wr_mas.content;
5747 EXPORT_SYMBOL_GPL(mas_store);
5750 * mas_store_gfp() - Store a value into the tree.
5751 * @mas: The maple state
5752 * @entry: The entry to store
5753 * @gfp: The GFP_FLAGS to use for allocations if necessary.
5755 * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
5758 int mas_store_gfp(struct ma_state *mas, void *entry, gfp_t gfp)
5760 MA_WR_STATE(wr_mas, mas, entry);
5762 mas_wr_store_setup(&wr_mas);
5763 trace_ma_write(__func__, mas, 0, entry);
5765 mas_wr_store_entry(&wr_mas);
5766 if (unlikely(mas_nomem(mas, gfp)))
5769 if (unlikely(mas_is_err(mas)))
5770 return xa_err(mas->node);
5774 EXPORT_SYMBOL_GPL(mas_store_gfp);
5777 * mas_store_prealloc() - Store a value into the tree using memory
5778 * preallocated in the maple state.
5779 * @mas: The maple state
5780 * @entry: The entry to store.
5782 void mas_store_prealloc(struct ma_state *mas, void *entry)
5784 MA_WR_STATE(wr_mas, mas, entry);
5786 mas_wr_store_setup(&wr_mas);
5787 trace_ma_write(__func__, mas, 0, entry);
5788 mas_wr_store_entry(&wr_mas);
5789 BUG_ON(mas_is_err(mas));
5792 EXPORT_SYMBOL_GPL(mas_store_prealloc);
5795 * mas_preallocate() - Preallocate enough nodes for a store operation
5796 * @mas: The maple state
5797 * @entry: The entry that will be stored
5798 * @gfp: The GFP_FLAGS to use for allocations.
5800 * Return: 0 on success, -ENOMEM if memory could not be allocated.
5802 int mas_preallocate(struct ma_state *mas, void *entry, gfp_t gfp)
5806 mas_node_count_gfp(mas, 1 + mas_mt_height(mas) * 3, gfp);
5807 mas->mas_flags |= MA_STATE_PREALLOC;
5808 if (likely(!mas_is_err(mas)))
5811 mas_set_alloc_req(mas, 0);
5812 ret = xa_err(mas->node);
5820 * mas_destroy() - destroy a maple state.
5821 * @mas: The maple state
5823 * Upon completion, check the left-most node and rebalance against the node to
5824 * the right if necessary. Frees any allocated nodes associated with this maple
5827 void mas_destroy(struct ma_state *mas)
5829 struct maple_alloc *node;
5830 unsigned long total;
5833 * When using mas_for_each() to insert an expected number of elements,
5834 * it is possible that the number inserted is less than the expected
5835 * number. To fix an invalid final node, a check is performed here to
5836 * rebalance the previous node with the final node.
5838 if (mas->mas_flags & MA_STATE_REBALANCE) {
5841 if (mas_is_start(mas))
5844 mtree_range_walk(mas);
5845 end = mas_data_end(mas) + 1;
5846 if (end < mt_min_slot_count(mas->node) - 1)
5847 mas_destroy_rebalance(mas, end);
5849 mas->mas_flags &= ~MA_STATE_REBALANCE;
5851 mas->mas_flags &= ~(MA_STATE_BULK|MA_STATE_PREALLOC);
5853 total = mas_allocated(mas);
5856 mas->alloc = node->slot[0];
5857 if (node->node_count > 1) {
5858 size_t count = node->node_count - 1;
5860 mt_free_bulk(count, (void __rcu **)&node->slot[1]);
5863 kmem_cache_free(maple_node_cache, node);
5869 EXPORT_SYMBOL_GPL(mas_destroy);
5872 * mas_expected_entries() - Set the expected number of entries that will be inserted.
5873 * @mas: The maple state
5874 * @nr_entries: The number of expected entries.
5876 * This will attempt to pre-allocate enough nodes to store the expected number
5877 * of entries. The allocations will occur using the bulk allocator interface
5878 * for speed. Please call mas_destroy() on the @mas after inserting the entries
5879 * to ensure any unused nodes are freed.
5881 * Return: 0 on success, -ENOMEM if memory could not be allocated.
5883 int mas_expected_entries(struct ma_state *mas, unsigned long nr_entries)
5885 int nonleaf_cap = MAPLE_ARANGE64_SLOTS - 2;
5886 struct maple_enode *enode = mas->node;
5891 * Sometimes it is necessary to duplicate a tree to a new tree, such as
5892 * forking a process and duplicating the VMAs from one tree to a new
5893 * tree. When such a situation arises, it is known that the new tree is
5894 * not going to be used until the entire tree is populated. For
5895 * performance reasons, it is best to use a bulk load with RCU disabled.
5896 * This allows for optimistic splitting that favours the left and reuse
5897 * of nodes during the operation.
5900 /* Optimize splitting for bulk insert in-order */
5901 mas->mas_flags |= MA_STATE_BULK;
5904 * Avoid overflow, assume a gap between each entry and a trailing null.
5905 * If this is wrong, it just means allocation can happen during
5906 * insertion of entries.
5908 nr_nodes = max(nr_entries, nr_entries * 2 + 1);
5909 if (!mt_is_alloc(mas->tree))
5910 nonleaf_cap = MAPLE_RANGE64_SLOTS - 2;
5912 /* Leaves; reduce slots to keep space for expansion */
5913 nr_nodes = DIV_ROUND_UP(nr_nodes, MAPLE_RANGE64_SLOTS - 2);
5914 /* Internal nodes */
5915 nr_nodes += DIV_ROUND_UP(nr_nodes, nonleaf_cap);
5916 /* Add working room for split (2 nodes) + new parents */
5917 mas_node_count(mas, nr_nodes + 3);
5919 /* Detect if allocations run out */
5920 mas->mas_flags |= MA_STATE_PREALLOC;
5922 if (!mas_is_err(mas))
5925 ret = xa_err(mas->node);
5931 EXPORT_SYMBOL_GPL(mas_expected_entries);
5934 * mas_next() - Get the next entry.
5935 * @mas: The maple state
5936 * @max: The maximum index to check.
5938 * Returns the next entry after @mas->index.
5939 * Must hold rcu_read_lock or the write lock.
5940 * Can return the zero entry.
5942 * Return: The next entry or %NULL
5944 void *mas_next(struct ma_state *mas, unsigned long max)
5946 if (mas_is_none(mas) || mas_is_paused(mas))
5947 mas->node = MAS_START;
5949 if (mas_is_start(mas))
5950 mas_walk(mas); /* Retries on dead nodes handled by mas_walk */
5952 if (mas_is_ptr(mas)) {
5955 mas->last = ULONG_MAX;
5960 if (mas->last == ULONG_MAX)
5963 /* Retries on dead nodes handled by mas_next_entry */
5964 return mas_next_entry(mas, max);
5966 EXPORT_SYMBOL_GPL(mas_next);
5969 * mt_next() - get the next value in the maple tree
5970 * @mt: The maple tree
5971 * @index: The start index
5972 * @max: The maximum index to check
5974 * Return: The entry at @index or higher, or %NULL if nothing is found.
5976 void *mt_next(struct maple_tree *mt, unsigned long index, unsigned long max)
5979 MA_STATE(mas, mt, index, index);
5982 entry = mas_next(&mas, max);
5986 EXPORT_SYMBOL_GPL(mt_next);
5989 * mas_prev() - Get the previous entry
5990 * @mas: The maple state
5991 * @min: The minimum value to check.
5993 * Must hold rcu_read_lock or the write lock.
5994 * Will reset mas to MAS_START if the node is MAS_NONE. Will stop on not
5997 * Return: the previous value or %NULL.
5999 void *mas_prev(struct ma_state *mas, unsigned long min)
6002 /* Nothing comes before 0 */
6004 mas->node = MAS_NONE;
6008 if (unlikely(mas_is_ptr(mas)))
6011 if (mas_is_none(mas) || mas_is_paused(mas))
6012 mas->node = MAS_START;
6014 if (mas_is_start(mas)) {
6020 if (mas_is_ptr(mas)) {
6026 mas->index = mas->last = 0;
6027 return mas_root_locked(mas);
6029 return mas_prev_entry(mas, min);
6031 EXPORT_SYMBOL_GPL(mas_prev);
6034 * mt_prev() - get the previous value in the maple tree
6035 * @mt: The maple tree
6036 * @index: The start index
6037 * @min: The minimum index to check
6039 * Return: The entry at @index or lower, or %NULL if nothing is found.
6041 void *mt_prev(struct maple_tree *mt, unsigned long index, unsigned long min)
6044 MA_STATE(mas, mt, index, index);
6047 entry = mas_prev(&mas, min);
6051 EXPORT_SYMBOL_GPL(mt_prev);
6054 * mas_pause() - Pause a mas_find/mas_for_each to drop the lock.
6055 * @mas: The maple state to pause
6057 * Some users need to pause a walk and drop the lock they're holding in
6058 * order to yield to a higher priority thread or carry out an operation
6059 * on an entry. Those users should call this function before they drop
6060 * the lock. It resets the @mas to be suitable for the next iteration
6061 * of the loop after the user has reacquired the lock. If most entries
6062 * found during a walk require you to call mas_pause(), the mt_for_each()
6063 * iterator may be more appropriate.
6066 void mas_pause(struct ma_state *mas)
6068 mas->node = MAS_PAUSE;
6070 EXPORT_SYMBOL_GPL(mas_pause);
6073 * mas_find() - On the first call, find the entry at or after mas->index up to
6074 * %max. Otherwise, find the entry after mas->index.
6075 * @mas: The maple state
6076 * @max: The maximum value to check.
6078 * Must hold rcu_read_lock or the write lock.
6079 * If an entry exists, last and index are updated accordingly.
6080 * May set @mas->node to MAS_NONE.
6082 * Return: The entry or %NULL.
6084 void *mas_find(struct ma_state *mas, unsigned long max)
6086 if (unlikely(mas_is_paused(mas))) {
6087 if (unlikely(mas->last == ULONG_MAX)) {
6088 mas->node = MAS_NONE;
6091 mas->node = MAS_START;
6092 mas->index = ++mas->last;
6095 if (unlikely(mas_is_none(mas)))
6096 mas->node = MAS_START;
6098 if (unlikely(mas_is_start(mas))) {
6099 /* First run or continue */
6102 if (mas->index > max)
6105 entry = mas_walk(mas);
6110 if (unlikely(!mas_searchable(mas)))
6113 /* Retries on dead nodes handled by mas_next_entry */
6114 return mas_next_entry(mas, max);
6116 EXPORT_SYMBOL_GPL(mas_find);
6119 * mas_find_rev: On the first call, find the first non-null entry at or below
6120 * mas->index down to %min. Otherwise find the first non-null entry below
6121 * mas->index down to %min.
6122 * @mas: The maple state
6123 * @min: The minimum value to check.
6125 * Must hold rcu_read_lock or the write lock.
6126 * If an entry exists, last and index are updated accordingly.
6127 * May set @mas->node to MAS_NONE.
6129 * Return: The entry or %NULL.
6131 void *mas_find_rev(struct ma_state *mas, unsigned long min)
6133 if (unlikely(mas_is_paused(mas))) {
6134 if (unlikely(mas->last == ULONG_MAX)) {
6135 mas->node = MAS_NONE;
6138 mas->node = MAS_START;
6139 mas->last = --mas->index;
6142 if (unlikely(mas_is_start(mas))) {
6143 /* First run or continue */
6146 if (mas->index < min)
6149 entry = mas_walk(mas);
6154 if (unlikely(!mas_searchable(mas)))
6157 if (mas->index < min)
6160 /* Retries on dead nodes handled by mas_next_entry */
6161 return mas_prev_entry(mas, min);
6163 EXPORT_SYMBOL_GPL(mas_find_rev);
6166 * mas_erase() - Find the range in which index resides and erase the entire
6168 * @mas: The maple state
6170 * Must hold the write lock.
6171 * Searches for @mas->index, sets @mas->index and @mas->last to the range and
6172 * erases that range.
6174 * Return: the entry that was erased or %NULL, @mas->index and @mas->last are updated.
6176 void *mas_erase(struct ma_state *mas)
6179 MA_WR_STATE(wr_mas, mas, NULL);
6181 if (mas_is_none(mas) || mas_is_paused(mas))
6182 mas->node = MAS_START;
6184 /* Retry unnecessary when holding the write lock. */
6185 entry = mas_state_walk(mas);
6190 /* Must reset to ensure spanning writes of last slot are detected */
6192 mas_wr_store_setup(&wr_mas);
6193 mas_wr_store_entry(&wr_mas);
6194 if (mas_nomem(mas, GFP_KERNEL))
6199 EXPORT_SYMBOL_GPL(mas_erase);
6202 * mas_nomem() - Check if there was an error allocating and do the allocation
6203 * if necessary If there are allocations, then free them.
6204 * @mas: The maple state
6205 * @gfp: The GFP_FLAGS to use for allocations
6206 * Return: true on allocation, false otherwise.
6208 bool mas_nomem(struct ma_state *mas, gfp_t gfp)
6209 __must_hold(mas->tree->lock)
6211 if (likely(mas->node != MA_ERROR(-ENOMEM))) {
6216 if (gfpflags_allow_blocking(gfp) && !mt_external_lock(mas->tree)) {
6217 mtree_unlock(mas->tree);
6218 mas_alloc_nodes(mas, gfp);
6219 mtree_lock(mas->tree);
6221 mas_alloc_nodes(mas, gfp);
6224 if (!mas_allocated(mas))
6227 mas->node = MAS_START;
6231 void __init maple_tree_init(void)
6233 maple_node_cache = kmem_cache_create("maple_node",
6234 sizeof(struct maple_node), sizeof(struct maple_node),
6239 * mtree_load() - Load a value stored in a maple tree
6240 * @mt: The maple tree
6241 * @index: The index to load
6243 * Return: the entry or %NULL
6245 void *mtree_load(struct maple_tree *mt, unsigned long index)
6247 MA_STATE(mas, mt, index, index);
6250 trace_ma_read(__func__, &mas);
6253 entry = mas_start(&mas);
6254 if (unlikely(mas_is_none(&mas)))
6257 if (unlikely(mas_is_ptr(&mas))) {
6264 entry = mtree_lookup_walk(&mas);
6265 if (!entry && unlikely(mas_is_start(&mas)))
6269 if (xa_is_zero(entry))
6274 EXPORT_SYMBOL(mtree_load);
6277 * mtree_store_range() - Store an entry at a given range.
6278 * @mt: The maple tree
6279 * @index: The start of the range
6280 * @last: The end of the range
6281 * @entry: The entry to store
6282 * @gfp: The GFP_FLAGS to use for allocations
6284 * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
6287 int mtree_store_range(struct maple_tree *mt, unsigned long index,
6288 unsigned long last, void *entry, gfp_t gfp)
6290 MA_STATE(mas, mt, index, last);
6291 MA_WR_STATE(wr_mas, &mas, entry);
6293 trace_ma_write(__func__, &mas, 0, entry);
6294 if (WARN_ON_ONCE(xa_is_advanced(entry)))
6302 mas_wr_store_entry(&wr_mas);
6303 if (mas_nomem(&mas, gfp))
6307 if (mas_is_err(&mas))
6308 return xa_err(mas.node);
6312 EXPORT_SYMBOL(mtree_store_range);
6315 * mtree_store() - Store an entry at a given index.
6316 * @mt: The maple tree
6317 * @index: The index to store the value
6318 * @entry: The entry to store
6319 * @gfp: The GFP_FLAGS to use for allocations
6321 * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
6324 int mtree_store(struct maple_tree *mt, unsigned long index, void *entry,
6327 return mtree_store_range(mt, index, index, entry, gfp);
6329 EXPORT_SYMBOL(mtree_store);
6332 * mtree_insert_range() - Insert an entry at a give range if there is no value.
6333 * @mt: The maple tree
6334 * @first: The start of the range
6335 * @last: The end of the range
6336 * @entry: The entry to store
6337 * @gfp: The GFP_FLAGS to use for allocations.
6339 * Return: 0 on success, -EEXISTS if the range is occupied, -EINVAL on invalid
6340 * request, -ENOMEM if memory could not be allocated.
6342 int mtree_insert_range(struct maple_tree *mt, unsigned long first,
6343 unsigned long last, void *entry, gfp_t gfp)
6345 MA_STATE(ms, mt, first, last);
6347 if (WARN_ON_ONCE(xa_is_advanced(entry)))
6355 mas_insert(&ms, entry);
6356 if (mas_nomem(&ms, gfp))
6360 if (mas_is_err(&ms))
6361 return xa_err(ms.node);
6365 EXPORT_SYMBOL(mtree_insert_range);
6368 * mtree_insert() - Insert an entry at a give index if there is no value.
6369 * @mt: The maple tree
6370 * @index : The index to store the value
6371 * @entry: The entry to store
6372 * @gfp: The FGP_FLAGS to use for allocations.
6374 * Return: 0 on success, -EEXISTS if the range is occupied, -EINVAL on invalid
6375 * request, -ENOMEM if memory could not be allocated.
6377 int mtree_insert(struct maple_tree *mt, unsigned long index, void *entry,
6380 return mtree_insert_range(mt, index, index, entry, gfp);
6382 EXPORT_SYMBOL(mtree_insert);
6384 int mtree_alloc_range(struct maple_tree *mt, unsigned long *startp,
6385 void *entry, unsigned long size, unsigned long min,
6386 unsigned long max, gfp_t gfp)
6390 MA_STATE(mas, mt, min, max - size);
6391 if (!mt_is_alloc(mt))
6394 if (WARN_ON_ONCE(mt_is_reserved(entry)))
6410 mas.last = max - size;
6411 ret = mas_alloc(&mas, entry, size, startp);
6412 if (mas_nomem(&mas, gfp))
6418 EXPORT_SYMBOL(mtree_alloc_range);
6420 int mtree_alloc_rrange(struct maple_tree *mt, unsigned long *startp,
6421 void *entry, unsigned long size, unsigned long min,
6422 unsigned long max, gfp_t gfp)
6426 MA_STATE(mas, mt, min, max - size);
6427 if (!mt_is_alloc(mt))
6430 if (WARN_ON_ONCE(mt_is_reserved(entry)))
6444 ret = mas_rev_alloc(&mas, min, max, entry, size, startp);
6445 if (mas_nomem(&mas, gfp))
6451 EXPORT_SYMBOL(mtree_alloc_rrange);
6454 * mtree_erase() - Find an index and erase the entire range.
6455 * @mt: The maple tree
6456 * @index: The index to erase
6458 * Erasing is the same as a walk to an entry then a store of a NULL to that
6459 * ENTIRE range. In fact, it is implemented as such using the advanced API.
6461 * Return: The entry stored at the @index or %NULL
6463 void *mtree_erase(struct maple_tree *mt, unsigned long index)
6467 MA_STATE(mas, mt, index, index);
6468 trace_ma_op(__func__, &mas);
6471 entry = mas_erase(&mas);
6476 EXPORT_SYMBOL(mtree_erase);
6479 * __mt_destroy() - Walk and free all nodes of a locked maple tree.
6480 * @mt: The maple tree
6482 * Note: Does not handle locking.
6484 void __mt_destroy(struct maple_tree *mt)
6486 void *root = mt_root_locked(mt);
6488 rcu_assign_pointer(mt->ma_root, NULL);
6489 if (xa_is_node(root))
6490 mte_destroy_walk(root, mt);
6494 EXPORT_SYMBOL_GPL(__mt_destroy);
6497 * mtree_destroy() - Destroy a maple tree
6498 * @mt: The maple tree
6500 * Frees all resources used by the tree. Handles locking.
6502 void mtree_destroy(struct maple_tree *mt)
6508 EXPORT_SYMBOL(mtree_destroy);
6511 * mt_find() - Search from the start up until an entry is found.
6512 * @mt: The maple tree
6513 * @index: Pointer which contains the start location of the search
6514 * @max: The maximum value to check
6516 * Handles locking. @index will be incremented to one beyond the range.
6518 * Return: The entry at or after the @index or %NULL
6520 void *mt_find(struct maple_tree *mt, unsigned long *index, unsigned long max)
6522 MA_STATE(mas, mt, *index, *index);
6524 #ifdef CONFIG_DEBUG_MAPLE_TREE
6525 unsigned long copy = *index;
6528 trace_ma_read(__func__, &mas);
6535 entry = mas_state_walk(&mas);
6536 if (mas_is_start(&mas))
6539 if (unlikely(xa_is_zero(entry)))
6545 while (mas_searchable(&mas) && (mas.index < max)) {
6546 entry = mas_next_entry(&mas, max);
6547 if (likely(entry && !xa_is_zero(entry)))
6551 if (unlikely(xa_is_zero(entry)))
6555 if (likely(entry)) {
6556 *index = mas.last + 1;
6557 #ifdef CONFIG_DEBUG_MAPLE_TREE
6558 if ((*index) && (*index) <= copy)
6559 pr_err("index not increased! %lx <= %lx\n",
6561 MT_BUG_ON(mt, (*index) && ((*index) <= copy));
6567 EXPORT_SYMBOL(mt_find);
6570 * mt_find_after() - Search from the start up until an entry is found.
6571 * @mt: The maple tree
6572 * @index: Pointer which contains the start location of the search
6573 * @max: The maximum value to check
6575 * Handles locking, detects wrapping on index == 0
6577 * Return: The entry at or after the @index or %NULL
6579 void *mt_find_after(struct maple_tree *mt, unsigned long *index,
6585 return mt_find(mt, index, max);
6587 EXPORT_SYMBOL(mt_find_after);
6589 #ifdef CONFIG_DEBUG_MAPLE_TREE
6590 atomic_t maple_tree_tests_run;
6591 EXPORT_SYMBOL_GPL(maple_tree_tests_run);
6592 atomic_t maple_tree_tests_passed;
6593 EXPORT_SYMBOL_GPL(maple_tree_tests_passed);
6596 extern void kmem_cache_set_non_kernel(struct kmem_cache *, unsigned int);
6597 void mt_set_non_kernel(unsigned int val)
6599 kmem_cache_set_non_kernel(maple_node_cache, val);
6602 extern unsigned long kmem_cache_get_alloc(struct kmem_cache *);
6603 unsigned long mt_get_alloc_size(void)
6605 return kmem_cache_get_alloc(maple_node_cache);
6608 extern void kmem_cache_zero_nr_tallocated(struct kmem_cache *);
6609 void mt_zero_nr_tallocated(void)
6611 kmem_cache_zero_nr_tallocated(maple_node_cache);
6614 extern unsigned int kmem_cache_nr_tallocated(struct kmem_cache *);
6615 unsigned int mt_nr_tallocated(void)
6617 return kmem_cache_nr_tallocated(maple_node_cache);
6620 extern unsigned int kmem_cache_nr_allocated(struct kmem_cache *);
6621 unsigned int mt_nr_allocated(void)
6623 return kmem_cache_nr_allocated(maple_node_cache);
6627 * mas_dead_node() - Check if the maple state is pointing to a dead node.
6628 * @mas: The maple state
6629 * @index: The index to restore in @mas.
6631 * Used in test code.
6632 * Return: 1 if @mas has been reset to MAS_START, 0 otherwise.
6634 static inline int mas_dead_node(struct ma_state *mas, unsigned long index)
6636 if (unlikely(!mas_searchable(mas) || mas_is_start(mas)))
6639 if (likely(!mte_dead_node(mas->node)))
6642 mas_rewalk(mas, index);
6646 void mt_cache_shrink(void)
6651 * mt_cache_shrink() - For testing, don't use this.
6653 * Certain testcases can trigger an OOM when combined with other memory
6654 * debugging configuration options. This function is used to reduce the
6655 * possibility of an out of memory even due to kmem_cache objects remaining
6656 * around for longer than usual.
6658 void mt_cache_shrink(void)
6660 kmem_cache_shrink(maple_node_cache);
6663 EXPORT_SYMBOL_GPL(mt_cache_shrink);
6665 #endif /* not defined __KERNEL__ */
6667 * mas_get_slot() - Get the entry in the maple state node stored at @offset.
6668 * @mas: The maple state
6669 * @offset: The offset into the slot array to fetch.
6671 * Return: The entry stored at @offset.
6673 static inline struct maple_enode *mas_get_slot(struct ma_state *mas,
6674 unsigned char offset)
6676 return mas_slot(mas, ma_slots(mas_mn(mas), mte_node_type(mas->node)),
6682 * mas_first_entry() - Go the first leaf and find the first entry.
6683 * @mas: the maple state.
6684 * @limit: the maximum index to check.
6685 * @*r_start: Pointer to set to the range start.
6687 * Sets mas->offset to the offset of the entry, r_start to the range minimum.
6689 * Return: The first entry or MAS_NONE.
6691 static inline void *mas_first_entry(struct ma_state *mas, struct maple_node *mn,
6692 unsigned long limit, enum maple_type mt)
6696 unsigned long *pivots;
6700 mas->index = mas->min;
6701 if (mas->index > limit)
6706 while (likely(!ma_is_leaf(mt))) {
6707 MT_BUG_ON(mas->tree, mte_dead_node(mas->node));
6708 slots = ma_slots(mn, mt);
6709 entry = mas_slot(mas, slots, 0);
6710 pivots = ma_pivots(mn, mt);
6711 if (unlikely(ma_dead_node(mn)))
6716 mt = mte_node_type(mas->node);
6718 MT_BUG_ON(mas->tree, mte_dead_node(mas->node));
6721 slots = ma_slots(mn, mt);
6722 entry = mas_slot(mas, slots, 0);
6723 if (unlikely(ma_dead_node(mn)))
6726 /* Slot 0 or 1 must be set */
6727 if (mas->index > limit)
6734 entry = mas_slot(mas, slots, 1);
6735 pivots = ma_pivots(mn, mt);
6736 if (unlikely(ma_dead_node(mn)))
6739 mas->index = pivots[0] + 1;
6740 if (mas->index > limit)
6747 if (likely(!ma_dead_node(mn)))
6748 mas->node = MAS_NONE;
6752 /* Depth first search, post-order */
6753 static void mas_dfs_postorder(struct ma_state *mas, unsigned long max)
6756 struct maple_enode *p = MAS_NONE, *mn = mas->node;
6757 unsigned long p_min, p_max;
6759 mas_next_node(mas, mas_mn(mas), max);
6760 if (!mas_is_none(mas))
6763 if (mte_is_root(mn))
6768 while (mas->node != MAS_NONE) {
6772 mas_prev_node(mas, 0);
6783 /* Tree validations */
6784 static void mt_dump_node(const struct maple_tree *mt, void *entry,
6785 unsigned long min, unsigned long max, unsigned int depth);
6786 static void mt_dump_range(unsigned long min, unsigned long max,
6789 static const char spaces[] = " ";
6792 pr_info("%.*s%lu: ", depth * 2, spaces, min);
6794 pr_info("%.*s%lu-%lu: ", depth * 2, spaces, min, max);
6797 static void mt_dump_entry(void *entry, unsigned long min, unsigned long max,
6800 mt_dump_range(min, max, depth);
6802 if (xa_is_value(entry))
6803 pr_cont("value %ld (0x%lx) [%p]\n", xa_to_value(entry),
6804 xa_to_value(entry), entry);
6805 else if (xa_is_zero(entry))
6806 pr_cont("zero (%ld)\n", xa_to_internal(entry));
6807 else if (mt_is_reserved(entry))
6808 pr_cont("UNKNOWN ENTRY (%p)\n", entry);
6810 pr_cont("%p\n", entry);
6813 static void mt_dump_range64(const struct maple_tree *mt, void *entry,
6814 unsigned long min, unsigned long max, unsigned int depth)
6816 struct maple_range_64 *node = &mte_to_node(entry)->mr64;
6817 bool leaf = mte_is_leaf(entry);
6818 unsigned long first = min;
6821 pr_cont(" contents: ");
6822 for (i = 0; i < MAPLE_RANGE64_SLOTS - 1; i++)
6823 pr_cont("%p %lu ", node->slot[i], node->pivot[i]);
6824 pr_cont("%p\n", node->slot[i]);
6825 for (i = 0; i < MAPLE_RANGE64_SLOTS; i++) {
6826 unsigned long last = max;
6828 if (i < (MAPLE_RANGE64_SLOTS - 1))
6829 last = node->pivot[i];
6830 else if (!node->slot[i] && max != mt_max[mte_node_type(entry)])
6832 if (last == 0 && i > 0)
6835 mt_dump_entry(mt_slot(mt, node->slot, i),
6836 first, last, depth + 1);
6837 else if (node->slot[i])
6838 mt_dump_node(mt, mt_slot(mt, node->slot, i),
6839 first, last, depth + 1);
6844 pr_err("node %p last (%lu) > max (%lu) at pivot %d!\n",
6845 node, last, max, i);
6852 static void mt_dump_arange64(const struct maple_tree *mt, void *entry,
6853 unsigned long min, unsigned long max, unsigned int depth)
6855 struct maple_arange_64 *node = &mte_to_node(entry)->ma64;
6856 bool leaf = mte_is_leaf(entry);
6857 unsigned long first = min;
6860 pr_cont(" contents: ");
6861 for (i = 0; i < MAPLE_ARANGE64_SLOTS; i++)
6862 pr_cont("%lu ", node->gap[i]);
6863 pr_cont("| %02X %02X| ", node->meta.end, node->meta.gap);
6864 for (i = 0; i < MAPLE_ARANGE64_SLOTS - 1; i++)
6865 pr_cont("%p %lu ", node->slot[i], node->pivot[i]);
6866 pr_cont("%p\n", node->slot[i]);
6867 for (i = 0; i < MAPLE_ARANGE64_SLOTS; i++) {
6868 unsigned long last = max;
6870 if (i < (MAPLE_ARANGE64_SLOTS - 1))
6871 last = node->pivot[i];
6872 else if (!node->slot[i])
6874 if (last == 0 && i > 0)
6877 mt_dump_entry(mt_slot(mt, node->slot, i),
6878 first, last, depth + 1);
6879 else if (node->slot[i])
6880 mt_dump_node(mt, mt_slot(mt, node->slot, i),
6881 first, last, depth + 1);
6886 pr_err("node %p last (%lu) > max (%lu) at pivot %d!\n",
6887 node, last, max, i);
6894 static void mt_dump_node(const struct maple_tree *mt, void *entry,
6895 unsigned long min, unsigned long max, unsigned int depth)
6897 struct maple_node *node = mte_to_node(entry);
6898 unsigned int type = mte_node_type(entry);
6901 mt_dump_range(min, max, depth);
6903 pr_cont("node %p depth %d type %d parent %p", node, depth, type,
6904 node ? node->parent : NULL);
6908 for (i = 0; i < MAPLE_NODE_SLOTS; i++) {
6910 pr_cont("OUT OF RANGE: ");
6911 mt_dump_entry(mt_slot(mt, node->slot, i),
6912 min + i, min + i, depth);
6916 case maple_range_64:
6917 mt_dump_range64(mt, entry, min, max, depth);
6919 case maple_arange_64:
6920 mt_dump_arange64(mt, entry, min, max, depth);
6924 pr_cont(" UNKNOWN TYPE\n");
6928 void mt_dump(const struct maple_tree *mt)
6930 void *entry = rcu_dereference_check(mt->ma_root, mt_locked(mt));
6932 pr_info("maple_tree(%p) flags %X, height %u root %p\n",
6933 mt, mt->ma_flags, mt_height(mt), entry);
6934 if (!xa_is_node(entry))
6935 mt_dump_entry(entry, 0, 0, 0);
6937 mt_dump_node(mt, entry, 0, mt_max[mte_node_type(entry)], 0);
6939 EXPORT_SYMBOL_GPL(mt_dump);
6942 * Calculate the maximum gap in a node and check if that's what is reported in
6943 * the parent (unless root).
6945 static void mas_validate_gaps(struct ma_state *mas)
6947 struct maple_enode *mte = mas->node;
6948 struct maple_node *p_mn;
6949 unsigned long gap = 0, max_gap = 0;
6950 unsigned long p_end, p_start = mas->min;
6951 unsigned char p_slot;
6952 unsigned long *gaps = NULL;
6953 unsigned long *pivots = ma_pivots(mte_to_node(mte), mte_node_type(mte));
6956 if (ma_is_dense(mte_node_type(mte))) {
6957 for (i = 0; i < mt_slot_count(mte); i++) {
6958 if (mas_get_slot(mas, i)) {
6969 gaps = ma_gaps(mte_to_node(mte), mte_node_type(mte));
6970 for (i = 0; i < mt_slot_count(mte); i++) {
6971 p_end = mas_logical_pivot(mas, pivots, i, mte_node_type(mte));
6974 if (mas_get_slot(mas, i)) {
6979 gap += p_end - p_start + 1;
6981 void *entry = mas_get_slot(mas, i);
6985 if (gap != p_end - p_start + 1) {
6986 pr_err("%p[%u] -> %p %lu != %lu - %lu + 1\n",
6988 mas_get_slot(mas, i), gap,
6992 MT_BUG_ON(mas->tree,
6993 gap != p_end - p_start + 1);
6996 if (gap > p_end - p_start + 1) {
6997 pr_err("%p[%u] %lu >= %lu - %lu + 1 (%lu)\n",
6998 mas_mn(mas), i, gap, p_end, p_start,
6999 p_end - p_start + 1);
7000 MT_BUG_ON(mas->tree,
7001 gap > p_end - p_start + 1);
7009 p_start = p_end + 1;
7010 if (p_end >= mas->max)
7015 if (mte_is_root(mte))
7018 p_slot = mte_parent_slot(mas->node);
7019 p_mn = mte_parent(mte);
7020 MT_BUG_ON(mas->tree, max_gap > mas->max);
7021 if (ma_gaps(p_mn, mas_parent_enum(mas, mte))[p_slot] != max_gap) {
7022 pr_err("gap %p[%u] != %lu\n", p_mn, p_slot, max_gap);
7026 MT_BUG_ON(mas->tree,
7027 ma_gaps(p_mn, mas_parent_enum(mas, mte))[p_slot] != max_gap);
7030 static void mas_validate_parent_slot(struct ma_state *mas)
7032 struct maple_node *parent;
7033 struct maple_enode *node;
7034 enum maple_type p_type = mas_parent_enum(mas, mas->node);
7035 unsigned char p_slot = mte_parent_slot(mas->node);
7039 if (mte_is_root(mas->node))
7042 parent = mte_parent(mas->node);
7043 slots = ma_slots(parent, p_type);
7044 MT_BUG_ON(mas->tree, mas_mn(mas) == parent);
7046 /* Check prev/next parent slot for duplicate node entry */
7048 for (i = 0; i < mt_slots[p_type]; i++) {
7049 node = mas_slot(mas, slots, i);
7051 if (node != mas->node)
7052 pr_err("parent %p[%u] does not have %p\n",
7053 parent, i, mas_mn(mas));
7054 MT_BUG_ON(mas->tree, node != mas->node);
7055 } else if (node == mas->node) {
7056 pr_err("Invalid child %p at parent %p[%u] p_slot %u\n",
7057 mas_mn(mas), parent, i, p_slot);
7058 MT_BUG_ON(mas->tree, node == mas->node);
7063 static void mas_validate_child_slot(struct ma_state *mas)
7065 enum maple_type type = mte_node_type(mas->node);
7066 void __rcu **slots = ma_slots(mte_to_node(mas->node), type);
7067 unsigned long *pivots = ma_pivots(mte_to_node(mas->node), type);
7068 struct maple_enode *child;
7071 if (mte_is_leaf(mas->node))
7074 for (i = 0; i < mt_slots[type]; i++) {
7075 child = mas_slot(mas, slots, i);
7076 if (!pivots[i] || pivots[i] == mas->max)
7082 if (mte_parent_slot(child) != i) {
7083 pr_err("Slot error at %p[%u]: child %p has pslot %u\n",
7084 mas_mn(mas), i, mte_to_node(child),
7085 mte_parent_slot(child));
7086 MT_BUG_ON(mas->tree, 1);
7089 if (mte_parent(child) != mte_to_node(mas->node)) {
7090 pr_err("child %p has parent %p not %p\n",
7091 mte_to_node(child), mte_parent(child),
7092 mte_to_node(mas->node));
7093 MT_BUG_ON(mas->tree, 1);
7099 * Validate all pivots are within mas->min and mas->max.
7101 static void mas_validate_limits(struct ma_state *mas)
7104 unsigned long prev_piv = 0;
7105 enum maple_type type = mte_node_type(mas->node);
7106 void __rcu **slots = ma_slots(mte_to_node(mas->node), type);
7107 unsigned long *pivots = ma_pivots(mas_mn(mas), type);
7109 /* all limits are fine here. */
7110 if (mte_is_root(mas->node))
7113 for (i = 0; i < mt_slots[type]; i++) {
7116 piv = mas_safe_pivot(mas, pivots, i, type);
7118 if (!piv && (i != 0))
7121 if (!mte_is_leaf(mas->node)) {
7122 void *entry = mas_slot(mas, slots, i);
7125 pr_err("%p[%u] cannot be null\n",
7128 MT_BUG_ON(mas->tree, !entry);
7131 if (prev_piv > piv) {
7132 pr_err("%p[%u] piv %lu < prev_piv %lu\n",
7133 mas_mn(mas), i, piv, prev_piv);
7134 MT_BUG_ON(mas->tree, piv < prev_piv);
7137 if (piv < mas->min) {
7138 pr_err("%p[%u] %lu < %lu\n", mas_mn(mas), i,
7140 MT_BUG_ON(mas->tree, piv < mas->min);
7142 if (piv > mas->max) {
7143 pr_err("%p[%u] %lu > %lu\n", mas_mn(mas), i,
7145 MT_BUG_ON(mas->tree, piv > mas->max);
7148 if (piv == mas->max)
7151 for (i += 1; i < mt_slots[type]; i++) {
7152 void *entry = mas_slot(mas, slots, i);
7154 if (entry && (i != mt_slots[type] - 1)) {
7155 pr_err("%p[%u] should not have entry %p\n", mas_mn(mas),
7157 MT_BUG_ON(mas->tree, entry != NULL);
7160 if (i < mt_pivots[type]) {
7161 unsigned long piv = pivots[i];
7166 pr_err("%p[%u] should not have piv %lu\n",
7167 mas_mn(mas), i, piv);
7168 MT_BUG_ON(mas->tree, i < mt_pivots[type] - 1);
7173 static void mt_validate_nulls(struct maple_tree *mt)
7175 void *entry, *last = (void *)1;
7176 unsigned char offset = 0;
7178 MA_STATE(mas, mt, 0, 0);
7181 if (mas_is_none(&mas) || (mas.node == MAS_ROOT))
7184 while (!mte_is_leaf(mas.node))
7187 slots = ma_slots(mte_to_node(mas.node), mte_node_type(mas.node));
7189 entry = mas_slot(&mas, slots, offset);
7190 if (!last && !entry) {
7191 pr_err("Sequential nulls end at %p[%u]\n",
7192 mas_mn(&mas), offset);
7194 MT_BUG_ON(mt, !last && !entry);
7196 if (offset == mas_data_end(&mas)) {
7197 mas_next_node(&mas, mas_mn(&mas), ULONG_MAX);
7198 if (mas_is_none(&mas))
7201 slots = ma_slots(mte_to_node(mas.node),
7202 mte_node_type(mas.node));
7207 } while (!mas_is_none(&mas));
7211 * validate a maple tree by checking:
7212 * 1. The limits (pivots are within mas->min to mas->max)
7213 * 2. The gap is correctly set in the parents
7215 void mt_validate(struct maple_tree *mt)
7219 MA_STATE(mas, mt, 0, 0);
7222 if (!mas_searchable(&mas))
7225 mas_first_entry(&mas, mas_mn(&mas), ULONG_MAX, mte_node_type(mas.node));
7226 while (!mas_is_none(&mas)) {
7227 MT_BUG_ON(mas.tree, mte_dead_node(mas.node));
7228 if (!mte_is_root(mas.node)) {
7229 end = mas_data_end(&mas);
7230 if ((end < mt_min_slot_count(mas.node)) &&
7231 (mas.max != ULONG_MAX)) {
7232 pr_err("Invalid size %u of %p\n", end,
7234 MT_BUG_ON(mas.tree, 1);
7238 mas_validate_parent_slot(&mas);
7239 mas_validate_child_slot(&mas);
7240 mas_validate_limits(&mas);
7241 if (mt_is_alloc(mt))
7242 mas_validate_gaps(&mas);
7243 mas_dfs_postorder(&mas, ULONG_MAX);
7245 mt_validate_nulls(mt);
7250 EXPORT_SYMBOL_GPL(mt_validate);
7252 #endif /* CONFIG_DEBUG_MAPLE_TREE */