1 // SPDX-License-Identifier: GPL-2.0+
3 * Maple Tree implementation
4 * Copyright (c) 2018-2022 Oracle Corporation
5 * Authors: Liam R. Howlett <Liam.Howlett@oracle.com>
6 * Matthew Wilcox <willy@infradead.org>
10 * DOC: Interesting implementation details of the Maple Tree
12 * Each node type has a number of slots for entries and a number of slots for
13 * pivots. In the case of dense nodes, the pivots are implied by the position
14 * and are simply the slot index + the minimum of the node.
16 * In regular B-Tree terms, pivots are called keys. The term pivot is used to
17 * indicate that the tree is specifying ranges, Pivots may appear in the
18 * subtree with an entry attached to the value where as keys are unique to a
19 * specific position of a B-tree. Pivot values are inclusive of the slot with
23 * The following illustrates the layout of a range64 nodes slots and pivots.
26 * Slots -> | 0 | 1 | 2 | ... | 12 | 13 | 14 | 15 |
28 * │ │ │ │ │ │ │ │ └─ Implied maximum
29 * │ │ │ │ │ │ │ └─ Pivot 14
30 * │ │ │ │ │ │ └─ Pivot 13
31 * │ │ │ │ │ └─ Pivot 12
39 * Internal (non-leaf) nodes contain pointers to other nodes.
40 * Leaf nodes contain entries.
42 * The location of interest is often referred to as an offset. All offsets have
43 * a slot, but the last offset has an implied pivot from the node above (or
44 * UINT_MAX for the root node.
46 * Ranges complicate certain write activities. When modifying any of
47 * the B-tree variants, it is known that one entry will either be added or
48 * deleted. When modifying the Maple Tree, one store operation may overwrite
49 * the entire data set, or one half of the tree, or the middle half of the tree.
54 #include <linux/maple_tree.h>
55 #include <linux/xarray.h>
56 #include <linux/types.h>
57 #include <linux/export.h>
58 #include <linux/slab.h>
59 #include <linux/limits.h>
60 #include <asm/barrier.h>
62 #define CREATE_TRACE_POINTS
63 #include <trace/events/maple_tree.h>
65 #define MA_ROOT_PARENT 1
69 * * MA_STATE_BULK - Bulk insert mode
70 * * MA_STATE_REBALANCE - Indicate a rebalance during bulk insert
71 * * MA_STATE_PREALLOC - Preallocated nodes, WARN_ON allocation
73 #define MA_STATE_BULK 1
74 #define MA_STATE_REBALANCE 2
75 #define MA_STATE_PREALLOC 4
77 #define ma_parent_ptr(x) ((struct maple_pnode *)(x))
78 #define ma_mnode_ptr(x) ((struct maple_node *)(x))
79 #define ma_enode_ptr(x) ((struct maple_enode *)(x))
80 static struct kmem_cache *maple_node_cache;
82 #ifdef CONFIG_DEBUG_MAPLE_TREE
83 static const unsigned long mt_max[] = {
84 [maple_dense] = MAPLE_NODE_SLOTS,
85 [maple_leaf_64] = ULONG_MAX,
86 [maple_range_64] = ULONG_MAX,
87 [maple_arange_64] = ULONG_MAX,
89 #define mt_node_max(x) mt_max[mte_node_type(x)]
92 static const unsigned char mt_slots[] = {
93 [maple_dense] = MAPLE_NODE_SLOTS,
94 [maple_leaf_64] = MAPLE_RANGE64_SLOTS,
95 [maple_range_64] = MAPLE_RANGE64_SLOTS,
96 [maple_arange_64] = MAPLE_ARANGE64_SLOTS,
98 #define mt_slot_count(x) mt_slots[mte_node_type(x)]
100 static const unsigned char mt_pivots[] = {
102 [maple_leaf_64] = MAPLE_RANGE64_SLOTS - 1,
103 [maple_range_64] = MAPLE_RANGE64_SLOTS - 1,
104 [maple_arange_64] = MAPLE_ARANGE64_SLOTS - 1,
106 #define mt_pivot_count(x) mt_pivots[mte_node_type(x)]
108 static const unsigned char mt_min_slots[] = {
109 [maple_dense] = MAPLE_NODE_SLOTS / 2,
110 [maple_leaf_64] = (MAPLE_RANGE64_SLOTS / 2) - 2,
111 [maple_range_64] = (MAPLE_RANGE64_SLOTS / 2) - 2,
112 [maple_arange_64] = (MAPLE_ARANGE64_SLOTS / 2) - 1,
114 #define mt_min_slot_count(x) mt_min_slots[mte_node_type(x)]
116 #define MAPLE_BIG_NODE_SLOTS (MAPLE_RANGE64_SLOTS * 2 + 2)
117 #define MAPLE_BIG_NODE_GAPS (MAPLE_ARANGE64_SLOTS * 2 + 1)
119 struct maple_big_node {
120 struct maple_pnode *parent;
121 unsigned long pivot[MAPLE_BIG_NODE_SLOTS - 1];
123 struct maple_enode *slot[MAPLE_BIG_NODE_SLOTS];
125 unsigned long padding[MAPLE_BIG_NODE_GAPS];
126 unsigned long gap[MAPLE_BIG_NODE_GAPS];
130 enum maple_type type;
134 * The maple_subtree_state is used to build a tree to replace a segment of an
135 * existing tree in a more atomic way. Any walkers of the older tree will hit a
136 * dead node and restart on updates.
138 struct maple_subtree_state {
139 struct ma_state *orig_l; /* Original left side of subtree */
140 struct ma_state *orig_r; /* Original right side of subtree */
141 struct ma_state *l; /* New left side of subtree */
142 struct ma_state *m; /* New middle of subtree (rare) */
143 struct ma_state *r; /* New right side of subtree */
144 struct ma_topiary *free; /* nodes to be freed */
145 struct ma_topiary *destroy; /* Nodes to be destroyed (walked and freed) */
146 struct maple_big_node *bn;
149 #ifdef CONFIG_KASAN_STACK
150 /* Prevent mas_wr_bnode() from exceeding the stack frame limit */
151 #define noinline_for_kasan noinline_for_stack
153 #define noinline_for_kasan inline
157 static inline struct maple_node *mt_alloc_one(gfp_t gfp)
159 return kmem_cache_alloc(maple_node_cache, gfp);
162 static inline int mt_alloc_bulk(gfp_t gfp, size_t size, void **nodes)
164 return kmem_cache_alloc_bulk(maple_node_cache, gfp, size, nodes);
167 static inline void mt_free_bulk(size_t size, void __rcu **nodes)
169 kmem_cache_free_bulk(maple_node_cache, size, (void **)nodes);
172 static void mt_free_rcu(struct rcu_head *head)
174 struct maple_node *node = container_of(head, struct maple_node, rcu);
176 kmem_cache_free(maple_node_cache, node);
180 * ma_free_rcu() - Use rcu callback to free a maple node
181 * @node: The node to free
183 * The maple tree uses the parent pointer to indicate this node is no longer in
184 * use and will be freed.
186 static void ma_free_rcu(struct maple_node *node)
188 node->parent = ma_parent_ptr(node);
189 call_rcu(&node->rcu, mt_free_rcu);
192 static void mas_set_height(struct ma_state *mas)
194 unsigned int new_flags = mas->tree->ma_flags;
196 new_flags &= ~MT_FLAGS_HEIGHT_MASK;
197 BUG_ON(mas->depth > MAPLE_HEIGHT_MAX);
198 new_flags |= mas->depth << MT_FLAGS_HEIGHT_OFFSET;
199 mas->tree->ma_flags = new_flags;
202 static unsigned int mas_mt_height(struct ma_state *mas)
204 return mt_height(mas->tree);
207 static inline enum maple_type mte_node_type(const struct maple_enode *entry)
209 return ((unsigned long)entry >> MAPLE_NODE_TYPE_SHIFT) &
210 MAPLE_NODE_TYPE_MASK;
213 static inline bool ma_is_dense(const enum maple_type type)
215 return type < maple_leaf_64;
218 static inline bool ma_is_leaf(const enum maple_type type)
220 return type < maple_range_64;
223 static inline bool mte_is_leaf(const struct maple_enode *entry)
225 return ma_is_leaf(mte_node_type(entry));
229 * We also reserve values with the bottom two bits set to '10' which are
232 static inline bool mt_is_reserved(const void *entry)
234 return ((unsigned long)entry < MAPLE_RESERVED_RANGE) &&
235 xa_is_internal(entry);
238 static inline void mas_set_err(struct ma_state *mas, long err)
240 mas->node = MA_ERROR(err);
243 static inline bool mas_is_ptr(struct ma_state *mas)
245 return mas->node == MAS_ROOT;
248 static inline bool mas_is_start(struct ma_state *mas)
250 return mas->node == MAS_START;
253 bool mas_is_err(struct ma_state *mas)
255 return xa_is_err(mas->node);
258 static inline bool mas_searchable(struct ma_state *mas)
260 if (mas_is_none(mas))
269 static inline struct maple_node *mte_to_node(const struct maple_enode *entry)
271 return (struct maple_node *)((unsigned long)entry & ~MAPLE_NODE_MASK);
275 * mte_to_mat() - Convert a maple encoded node to a maple topiary node.
276 * @entry: The maple encoded node
278 * Return: a maple topiary pointer
280 static inline struct maple_topiary *mte_to_mat(const struct maple_enode *entry)
282 return (struct maple_topiary *)
283 ((unsigned long)entry & ~MAPLE_NODE_MASK);
287 * mas_mn() - Get the maple state node.
288 * @mas: The maple state
290 * Return: the maple node (not encoded - bare pointer).
292 static inline struct maple_node *mas_mn(const struct ma_state *mas)
294 return mte_to_node(mas->node);
298 * mte_set_node_dead() - Set a maple encoded node as dead.
299 * @mn: The maple encoded node.
301 static inline void mte_set_node_dead(struct maple_enode *mn)
303 mte_to_node(mn)->parent = ma_parent_ptr(mte_to_node(mn));
304 smp_wmb(); /* Needed for RCU */
307 /* Bit 1 indicates the root is a node */
308 #define MAPLE_ROOT_NODE 0x02
309 /* maple_type stored bit 3-6 */
310 #define MAPLE_ENODE_TYPE_SHIFT 0x03
311 /* Bit 2 means a NULL somewhere below */
312 #define MAPLE_ENODE_NULL 0x04
314 static inline struct maple_enode *mt_mk_node(const struct maple_node *node,
315 enum maple_type type)
317 return (void *)((unsigned long)node |
318 (type << MAPLE_ENODE_TYPE_SHIFT) | MAPLE_ENODE_NULL);
321 static inline void *mte_mk_root(const struct maple_enode *node)
323 return (void *)((unsigned long)node | MAPLE_ROOT_NODE);
326 static inline void *mte_safe_root(const struct maple_enode *node)
328 return (void *)((unsigned long)node & ~MAPLE_ROOT_NODE);
331 static inline void *mte_set_full(const struct maple_enode *node)
333 return (void *)((unsigned long)node & ~MAPLE_ENODE_NULL);
336 static inline void *mte_clear_full(const struct maple_enode *node)
338 return (void *)((unsigned long)node | MAPLE_ENODE_NULL);
341 static inline bool mte_has_null(const struct maple_enode *node)
343 return (unsigned long)node & MAPLE_ENODE_NULL;
346 static inline bool ma_is_root(struct maple_node *node)
348 return ((unsigned long)node->parent & MA_ROOT_PARENT);
351 static inline bool mte_is_root(const struct maple_enode *node)
353 return ma_is_root(mte_to_node(node));
356 static inline bool mas_is_root_limits(const struct ma_state *mas)
358 return !mas->min && mas->max == ULONG_MAX;
361 static inline bool mt_is_alloc(struct maple_tree *mt)
363 return (mt->ma_flags & MT_FLAGS_ALLOC_RANGE);
368 * Excluding root, the parent pointer is 256B aligned like all other tree nodes.
369 * When storing a 32 or 64 bit values, the offset can fit into 5 bits. The 16
370 * bit values need an extra bit to store the offset. This extra bit comes from
371 * a reuse of the last bit in the node type. This is possible by using bit 1 to
372 * indicate if bit 2 is part of the type or the slot.
376 * 0x?00 = 16 bit nodes
377 * 0x010 = 32 bit nodes
378 * 0x110 = 64 bit nodes
380 * Slot size and alignment
382 * 0b?00 : 16 bit values, type in 0-1, slot in 2-7
383 * 0b010 : 32 bit values, type in 0-2, slot in 3-7
384 * 0b110 : 64 bit values, type in 0-2, slot in 3-7
387 #define MAPLE_PARENT_ROOT 0x01
389 #define MAPLE_PARENT_SLOT_SHIFT 0x03
390 #define MAPLE_PARENT_SLOT_MASK 0xF8
392 #define MAPLE_PARENT_16B_SLOT_SHIFT 0x02
393 #define MAPLE_PARENT_16B_SLOT_MASK 0xFC
395 #define MAPLE_PARENT_RANGE64 0x06
396 #define MAPLE_PARENT_RANGE32 0x04
397 #define MAPLE_PARENT_NOT_RANGE16 0x02
400 * mte_parent_shift() - Get the parent shift for the slot storage.
401 * @parent: The parent pointer cast as an unsigned long
402 * Return: The shift into that pointer to the star to of the slot
404 static inline unsigned long mte_parent_shift(unsigned long parent)
406 /* Note bit 1 == 0 means 16B */
407 if (likely(parent & MAPLE_PARENT_NOT_RANGE16))
408 return MAPLE_PARENT_SLOT_SHIFT;
410 return MAPLE_PARENT_16B_SLOT_SHIFT;
414 * mte_parent_slot_mask() - Get the slot mask for the parent.
415 * @parent: The parent pointer cast as an unsigned long.
416 * Return: The slot mask for that parent.
418 static inline unsigned long mte_parent_slot_mask(unsigned long parent)
420 /* Note bit 1 == 0 means 16B */
421 if (likely(parent & MAPLE_PARENT_NOT_RANGE16))
422 return MAPLE_PARENT_SLOT_MASK;
424 return MAPLE_PARENT_16B_SLOT_MASK;
428 * mas_parent_enum() - Return the maple_type of the parent from the stored
430 * @mas: The maple state
431 * @node: The maple_enode to extract the parent's enum
432 * Return: The node->parent maple_type
435 enum maple_type mte_parent_enum(struct maple_enode *p_enode,
436 struct maple_tree *mt)
438 unsigned long p_type;
440 p_type = (unsigned long)p_enode;
441 if (p_type & MAPLE_PARENT_ROOT)
442 return 0; /* Validated in the caller. */
444 p_type &= MAPLE_NODE_MASK;
445 p_type = p_type & ~(MAPLE_PARENT_ROOT | mte_parent_slot_mask(p_type));
448 case MAPLE_PARENT_RANGE64: /* or MAPLE_PARENT_ARANGE64 */
450 return maple_arange_64;
451 return maple_range_64;
458 enum maple_type mas_parent_enum(struct ma_state *mas, struct maple_enode *enode)
460 return mte_parent_enum(ma_enode_ptr(mte_to_node(enode)->parent), mas->tree);
464 * mte_set_parent() - Set the parent node and encode the slot
465 * @enode: The encoded maple node.
466 * @parent: The encoded maple node that is the parent of @enode.
467 * @slot: The slot that @enode resides in @parent.
469 * Slot number is encoded in the enode->parent bit 3-6 or 2-6, depending on the
473 void mte_set_parent(struct maple_enode *enode, const struct maple_enode *parent,
476 unsigned long val = (unsigned long)parent;
479 enum maple_type p_type = mte_node_type(parent);
481 BUG_ON(p_type == maple_dense);
482 BUG_ON(p_type == maple_leaf_64);
486 case maple_arange_64:
487 shift = MAPLE_PARENT_SLOT_SHIFT;
488 type = MAPLE_PARENT_RANGE64;
497 val &= ~MAPLE_NODE_MASK; /* Clear all node metadata in parent */
498 val |= (slot << shift) | type;
499 mte_to_node(enode)->parent = ma_parent_ptr(val);
503 * mte_parent_slot() - get the parent slot of @enode.
504 * @enode: The encoded maple node.
506 * Return: The slot in the parent node where @enode resides.
508 static inline unsigned int mte_parent_slot(const struct maple_enode *enode)
510 unsigned long val = (unsigned long)mte_to_node(enode)->parent;
512 if (val & MA_ROOT_PARENT)
516 * Okay to use MAPLE_PARENT_16B_SLOT_MASK as the last bit will be lost
517 * by shift if the parent shift is MAPLE_PARENT_SLOT_SHIFT
519 return (val & MAPLE_PARENT_16B_SLOT_MASK) >> mte_parent_shift(val);
523 * mte_parent() - Get the parent of @node.
524 * @node: The encoded maple node.
526 * Return: The parent maple node.
528 static inline struct maple_node *mte_parent(const struct maple_enode *enode)
530 return (void *)((unsigned long)
531 (mte_to_node(enode)->parent) & ~MAPLE_NODE_MASK);
535 * ma_dead_node() - check if the @enode is dead.
536 * @enode: The encoded maple node
538 * Return: true if dead, false otherwise.
540 static inline bool ma_dead_node(const struct maple_node *node)
542 struct maple_node *parent = (void *)((unsigned long)
543 node->parent & ~MAPLE_NODE_MASK);
545 return (parent == node);
548 * mte_dead_node() - check if the @enode is dead.
549 * @enode: The encoded maple node
551 * Return: true if dead, false otherwise.
553 static inline bool mte_dead_node(const struct maple_enode *enode)
555 struct maple_node *parent, *node;
557 node = mte_to_node(enode);
558 parent = mte_parent(enode);
559 return (parent == node);
563 * mas_allocated() - Get the number of nodes allocated in a maple state.
564 * @mas: The maple state
566 * The ma_state alloc member is overloaded to hold a pointer to the first
567 * allocated node or to the number of requested nodes to allocate. If bit 0 is
568 * set, then the alloc contains the number of requested nodes. If there is an
569 * allocated node, then the total allocated nodes is in that node.
571 * Return: The total number of nodes allocated
573 static inline unsigned long mas_allocated(const struct ma_state *mas)
575 if (!mas->alloc || ((unsigned long)mas->alloc & 0x1))
578 return mas->alloc->total;
582 * mas_set_alloc_req() - Set the requested number of allocations.
583 * @mas: the maple state
584 * @count: the number of allocations.
586 * The requested number of allocations is either in the first allocated node,
587 * located in @mas->alloc->request_count, or directly in @mas->alloc if there is
588 * no allocated node. Set the request either in the node or do the necessary
589 * encoding to store in @mas->alloc directly.
591 static inline void mas_set_alloc_req(struct ma_state *mas, unsigned long count)
593 if (!mas->alloc || ((unsigned long)mas->alloc & 0x1)) {
597 mas->alloc = (struct maple_alloc *)(((count) << 1U) | 1U);
601 mas->alloc->request_count = count;
605 * mas_alloc_req() - get the requested number of allocations.
606 * @mas: The maple state
608 * The alloc count is either stored directly in @mas, or in
609 * @mas->alloc->request_count if there is at least one node allocated. Decode
610 * the request count if it's stored directly in @mas->alloc.
612 * Return: The allocation request count.
614 static inline unsigned int mas_alloc_req(const struct ma_state *mas)
616 if ((unsigned long)mas->alloc & 0x1)
617 return (unsigned long)(mas->alloc) >> 1;
619 return mas->alloc->request_count;
624 * ma_pivots() - Get a pointer to the maple node pivots.
625 * @node - the maple node
626 * @type - the node type
628 * Return: A pointer to the maple node pivots
630 static inline unsigned long *ma_pivots(struct maple_node *node,
631 enum maple_type type)
634 case maple_arange_64:
635 return node->ma64.pivot;
638 return node->mr64.pivot;
646 * ma_gaps() - Get a pointer to the maple node gaps.
647 * @node - the maple node
648 * @type - the node type
650 * Return: A pointer to the maple node gaps
652 static inline unsigned long *ma_gaps(struct maple_node *node,
653 enum maple_type type)
656 case maple_arange_64:
657 return node->ma64.gap;
667 * mte_pivot() - Get the pivot at @piv of the maple encoded node.
668 * @mn: The maple encoded node.
671 * Return: the pivot at @piv of @mn.
673 static inline unsigned long mte_pivot(const struct maple_enode *mn,
676 struct maple_node *node = mte_to_node(mn);
677 enum maple_type type = mte_node_type(mn);
679 if (piv >= mt_pivots[type]) {
684 case maple_arange_64:
685 return node->ma64.pivot[piv];
688 return node->mr64.pivot[piv];
696 * mas_safe_pivot() - get the pivot at @piv or mas->max.
697 * @mas: The maple state
698 * @pivots: The pointer to the maple node pivots
699 * @piv: The pivot to fetch
700 * @type: The maple node type
702 * Return: The pivot at @piv within the limit of the @pivots array, @mas->max
705 static inline unsigned long
706 mas_safe_pivot(const struct ma_state *mas, unsigned long *pivots,
707 unsigned char piv, enum maple_type type)
709 if (piv >= mt_pivots[type])
716 * mas_safe_min() - Return the minimum for a given offset.
717 * @mas: The maple state
718 * @pivots: The pointer to the maple node pivots
719 * @offset: The offset into the pivot array
721 * Return: The minimum range value that is contained in @offset.
723 static inline unsigned long
724 mas_safe_min(struct ma_state *mas, unsigned long *pivots, unsigned char offset)
727 return pivots[offset - 1] + 1;
733 * mas_logical_pivot() - Get the logical pivot of a given offset.
734 * @mas: The maple state
735 * @pivots: The pointer to the maple node pivots
736 * @offset: The offset into the pivot array
737 * @type: The maple node type
739 * When there is no value at a pivot (beyond the end of the data), then the
740 * pivot is actually @mas->max.
742 * Return: the logical pivot of a given @offset.
744 static inline unsigned long
745 mas_logical_pivot(struct ma_state *mas, unsigned long *pivots,
746 unsigned char offset, enum maple_type type)
748 unsigned long lpiv = mas_safe_pivot(mas, pivots, offset, type);
760 * mte_set_pivot() - Set a pivot to a value in an encoded maple node.
761 * @mn: The encoded maple node
762 * @piv: The pivot offset
763 * @val: The value of the pivot
765 static inline void mte_set_pivot(struct maple_enode *mn, unsigned char piv,
768 struct maple_node *node = mte_to_node(mn);
769 enum maple_type type = mte_node_type(mn);
771 BUG_ON(piv >= mt_pivots[type]);
776 node->mr64.pivot[piv] = val;
778 case maple_arange_64:
779 node->ma64.pivot[piv] = val;
788 * ma_slots() - Get a pointer to the maple node slots.
789 * @mn: The maple node
790 * @mt: The maple node type
792 * Return: A pointer to the maple node slots
794 static inline void __rcu **ma_slots(struct maple_node *mn, enum maple_type mt)
798 case maple_arange_64:
799 return mn->ma64.slot;
802 return mn->mr64.slot;
808 static inline bool mt_locked(const struct maple_tree *mt)
810 return mt_external_lock(mt) ? mt_lock_is_held(mt) :
811 lockdep_is_held(&mt->ma_lock);
814 static inline void *mt_slot(const struct maple_tree *mt,
815 void __rcu **slots, unsigned char offset)
817 return rcu_dereference_check(slots[offset], mt_locked(mt));
821 * mas_slot_locked() - Get the slot value when holding the maple tree lock.
822 * @mas: The maple state
823 * @slots: The pointer to the slots
824 * @offset: The offset into the slots array to fetch
826 * Return: The entry stored in @slots at the @offset.
828 static inline void *mas_slot_locked(struct ma_state *mas, void __rcu **slots,
829 unsigned char offset)
831 return rcu_dereference_protected(slots[offset], mt_locked(mas->tree));
835 * mas_slot() - Get the slot value when not holding the maple tree lock.
836 * @mas: The maple state
837 * @slots: The pointer to the slots
838 * @offset: The offset into the slots array to fetch
840 * Return: The entry stored in @slots at the @offset
842 static inline void *mas_slot(struct ma_state *mas, void __rcu **slots,
843 unsigned char offset)
845 return mt_slot(mas->tree, slots, offset);
849 * mas_root() - Get the maple tree root.
850 * @mas: The maple state.
852 * Return: The pointer to the root of the tree
854 static inline void *mas_root(struct ma_state *mas)
856 return rcu_dereference_check(mas->tree->ma_root, mt_locked(mas->tree));
859 static inline void *mt_root_locked(struct maple_tree *mt)
861 return rcu_dereference_protected(mt->ma_root, mt_locked(mt));
865 * mas_root_locked() - Get the maple tree root when holding the maple tree lock.
866 * @mas: The maple state.
868 * Return: The pointer to the root of the tree
870 static inline void *mas_root_locked(struct ma_state *mas)
872 return mt_root_locked(mas->tree);
875 static inline struct maple_metadata *ma_meta(struct maple_node *mn,
879 case maple_arange_64:
880 return &mn->ma64.meta;
882 return &mn->mr64.meta;
887 * ma_set_meta() - Set the metadata information of a node.
888 * @mn: The maple node
889 * @mt: The maple node type
890 * @offset: The offset of the highest sub-gap in this node.
891 * @end: The end of the data in this node.
893 static inline void ma_set_meta(struct maple_node *mn, enum maple_type mt,
894 unsigned char offset, unsigned char end)
896 struct maple_metadata *meta = ma_meta(mn, mt);
903 * ma_meta_end() - Get the data end of a node from the metadata
904 * @mn: The maple node
905 * @mt: The maple node type
907 static inline unsigned char ma_meta_end(struct maple_node *mn,
910 struct maple_metadata *meta = ma_meta(mn, mt);
916 * ma_meta_gap() - Get the largest gap location of a node from the metadata
917 * @mn: The maple node
918 * @mt: The maple node type
920 static inline unsigned char ma_meta_gap(struct maple_node *mn,
923 BUG_ON(mt != maple_arange_64);
925 return mn->ma64.meta.gap;
929 * ma_set_meta_gap() - Set the largest gap location in a nodes metadata
930 * @mn: The maple node
931 * @mn: The maple node type
932 * @offset: The location of the largest gap.
934 static inline void ma_set_meta_gap(struct maple_node *mn, enum maple_type mt,
935 unsigned char offset)
938 struct maple_metadata *meta = ma_meta(mn, mt);
944 * mat_add() - Add a @dead_enode to the ma_topiary of a list of dead nodes.
945 * @mat - the ma_topiary, a linked list of dead nodes.
946 * @dead_enode - the node to be marked as dead and added to the tail of the list
948 * Add the @dead_enode to the linked list in @mat.
950 static inline void mat_add(struct ma_topiary *mat,
951 struct maple_enode *dead_enode)
953 mte_set_node_dead(dead_enode);
954 mte_to_mat(dead_enode)->next = NULL;
956 mat->tail = mat->head = dead_enode;
960 mte_to_mat(mat->tail)->next = dead_enode;
961 mat->tail = dead_enode;
964 static void mte_destroy_walk(struct maple_enode *, struct maple_tree *);
965 static inline void mas_free(struct ma_state *mas, struct maple_enode *used);
968 * mas_mat_free() - Free all nodes in a dead list.
969 * @mas - the maple state
970 * @mat - the ma_topiary linked list of dead nodes to free.
972 * Free walk a dead list.
974 static void mas_mat_free(struct ma_state *mas, struct ma_topiary *mat)
976 struct maple_enode *next;
979 next = mte_to_mat(mat->head)->next;
980 mas_free(mas, mat->head);
986 * mas_mat_destroy() - Free all nodes and subtrees in a dead list.
987 * @mas - the maple state
988 * @mat - the ma_topiary linked list of dead nodes to free.
990 * Destroy walk a dead list.
992 static void mas_mat_destroy(struct ma_state *mas, struct ma_topiary *mat)
994 struct maple_enode *next;
997 next = mte_to_mat(mat->head)->next;
998 mte_destroy_walk(mat->head, mat->mtree);
1003 * mas_descend() - Descend into the slot stored in the ma_state.
1004 * @mas - the maple state.
1006 * Note: Not RCU safe, only use in write side or debug code.
1008 static inline void mas_descend(struct ma_state *mas)
1010 enum maple_type type;
1011 unsigned long *pivots;
1012 struct maple_node *node;
1016 type = mte_node_type(mas->node);
1017 pivots = ma_pivots(node, type);
1018 slots = ma_slots(node, type);
1021 mas->min = pivots[mas->offset - 1] + 1;
1022 mas->max = mas_safe_pivot(mas, pivots, mas->offset, type);
1023 mas->node = mas_slot(mas, slots, mas->offset);
1027 * mte_set_gap() - Set a maple node gap.
1028 * @mn: The encoded maple node
1029 * @gap: The offset of the gap to set
1030 * @val: The gap value
1032 static inline void mte_set_gap(const struct maple_enode *mn,
1033 unsigned char gap, unsigned long val)
1035 switch (mte_node_type(mn)) {
1038 case maple_arange_64:
1039 mte_to_node(mn)->ma64.gap[gap] = val;
1045 * mas_ascend() - Walk up a level of the tree.
1046 * @mas: The maple state
1048 * Sets the @mas->max and @mas->min to the correct values when walking up. This
1049 * may cause several levels of walking up to find the correct min and max.
1050 * May find a dead node which will cause a premature return.
1051 * Return: 1 on dead node, 0 otherwise
1053 static int mas_ascend(struct ma_state *mas)
1055 struct maple_enode *p_enode; /* parent enode. */
1056 struct maple_enode *a_enode; /* ancestor enode. */
1057 struct maple_node *a_node; /* ancestor node. */
1058 struct maple_node *p_node; /* parent node. */
1059 unsigned char a_slot;
1060 enum maple_type a_type;
1061 unsigned long min, max;
1062 unsigned long *pivots;
1063 unsigned char offset;
1064 bool set_max = false, set_min = false;
1066 a_node = mas_mn(mas);
1067 if (ma_is_root(a_node)) {
1072 p_node = mte_parent(mas->node);
1073 if (unlikely(a_node == p_node))
1075 a_type = mas_parent_enum(mas, mas->node);
1076 offset = mte_parent_slot(mas->node);
1077 a_enode = mt_mk_node(p_node, a_type);
1079 /* Check to make sure all parent information is still accurate */
1080 if (p_node != mte_parent(mas->node))
1083 mas->node = a_enode;
1084 mas->offset = offset;
1086 if (mte_is_root(a_enode)) {
1087 mas->max = ULONG_MAX;
1096 a_type = mas_parent_enum(mas, p_enode);
1097 a_node = mte_parent(p_enode);
1098 a_slot = mte_parent_slot(p_enode);
1099 pivots = ma_pivots(a_node, a_type);
1100 a_enode = mt_mk_node(a_node, a_type);
1102 if (!set_min && a_slot) {
1104 min = pivots[a_slot - 1] + 1;
1107 if (!set_max && a_slot < mt_pivots[a_type]) {
1109 max = pivots[a_slot];
1112 if (unlikely(ma_dead_node(a_node)))
1115 if (unlikely(ma_is_root(a_node)))
1118 } while (!set_min || !set_max);
1126 * mas_pop_node() - Get a previously allocated maple node from the maple state.
1127 * @mas: The maple state
1129 * Return: A pointer to a maple node.
1131 static inline struct maple_node *mas_pop_node(struct ma_state *mas)
1133 struct maple_alloc *ret, *node = mas->alloc;
1134 unsigned long total = mas_allocated(mas);
1135 unsigned int req = mas_alloc_req(mas);
1137 /* nothing or a request pending. */
1138 if (WARN_ON(!total))
1142 /* single allocation in this ma_state */
1148 if (node->node_count == 1) {
1149 /* Single allocation in this node. */
1150 mas->alloc = node->slot[0];
1151 mas->alloc->total = node->total - 1;
1156 ret = node->slot[--node->node_count];
1157 node->slot[node->node_count] = NULL;
1163 mas_set_alloc_req(mas, req);
1166 memset(ret, 0, sizeof(*ret));
1167 return (struct maple_node *)ret;
1171 * mas_push_node() - Push a node back on the maple state allocation.
1172 * @mas: The maple state
1173 * @used: The used maple node
1175 * Stores the maple node back into @mas->alloc for reuse. Updates allocated and
1176 * requested node count as necessary.
1178 static inline void mas_push_node(struct ma_state *mas, struct maple_node *used)
1180 struct maple_alloc *reuse = (struct maple_alloc *)used;
1181 struct maple_alloc *head = mas->alloc;
1182 unsigned long count;
1183 unsigned int requested = mas_alloc_req(mas);
1185 count = mas_allocated(mas);
1187 reuse->request_count = 0;
1188 reuse->node_count = 0;
1189 if (count && (head->node_count < MAPLE_ALLOC_SLOTS)) {
1190 head->slot[head->node_count++] = reuse;
1196 if ((head) && !((unsigned long)head & 0x1)) {
1197 reuse->slot[0] = head;
1198 reuse->node_count = 1;
1199 reuse->total += head->total;
1205 mas_set_alloc_req(mas, requested - 1);
1209 * mas_alloc_nodes() - Allocate nodes into a maple state
1210 * @mas: The maple state
1211 * @gfp: The GFP Flags
1213 static inline void mas_alloc_nodes(struct ma_state *mas, gfp_t gfp)
1215 struct maple_alloc *node;
1216 unsigned long allocated = mas_allocated(mas);
1217 unsigned int requested = mas_alloc_req(mas);
1219 void **slots = NULL;
1220 unsigned int max_req = 0;
1225 mas_set_alloc_req(mas, 0);
1226 if (mas->mas_flags & MA_STATE_PREALLOC) {
1229 WARN_ON(!allocated);
1232 if (!allocated || mas->alloc->node_count == MAPLE_ALLOC_SLOTS) {
1233 node = (struct maple_alloc *)mt_alloc_one(gfp);
1238 node->slot[0] = mas->alloc;
1239 node->node_count = 1;
1241 node->node_count = 0;
1245 node->total = ++allocated;
1250 node->request_count = 0;
1252 max_req = MAPLE_ALLOC_SLOTS;
1253 if (node->node_count) {
1254 unsigned int offset = node->node_count;
1256 slots = (void **)&node->slot[offset];
1259 slots = (void **)&node->slot;
1262 max_req = min(requested, max_req);
1263 count = mt_alloc_bulk(gfp, max_req, slots);
1267 node->node_count += count;
1269 node = node->slot[0];
1270 node->node_count = 0;
1271 node->request_count = 0;
1274 mas->alloc->total = allocated;
1278 /* Clean up potential freed allocations on bulk failure */
1279 memset(slots, 0, max_req * sizeof(unsigned long));
1281 mas_set_alloc_req(mas, requested);
1282 if (mas->alloc && !(((unsigned long)mas->alloc & 0x1)))
1283 mas->alloc->total = allocated;
1284 mas_set_err(mas, -ENOMEM);
1288 * mas_free() - Free an encoded maple node
1289 * @mas: The maple state
1290 * @used: The encoded maple node to free.
1292 * Uses rcu free if necessary, pushes @used back on the maple state allocations
1295 static inline void mas_free(struct ma_state *mas, struct maple_enode *used)
1297 struct maple_node *tmp = mte_to_node(used);
1299 if (mt_in_rcu(mas->tree))
1302 mas_push_node(mas, tmp);
1306 * mas_node_count() - Check if enough nodes are allocated and request more if
1307 * there is not enough nodes.
1308 * @mas: The maple state
1309 * @count: The number of nodes needed
1310 * @gfp: the gfp flags
1312 static void mas_node_count_gfp(struct ma_state *mas, int count, gfp_t gfp)
1314 unsigned long allocated = mas_allocated(mas);
1316 if (allocated < count) {
1317 mas_set_alloc_req(mas, count - allocated);
1318 mas_alloc_nodes(mas, gfp);
1323 * mas_node_count() - Check if enough nodes are allocated and request more if
1324 * there is not enough nodes.
1325 * @mas: The maple state
1326 * @count: The number of nodes needed
1328 * Note: Uses GFP_NOWAIT | __GFP_NOWARN for gfp flags.
1330 static void mas_node_count(struct ma_state *mas, int count)
1332 return mas_node_count_gfp(mas, count, GFP_NOWAIT | __GFP_NOWARN);
1336 * mas_start() - Sets up maple state for operations.
1337 * @mas: The maple state.
1339 * If mas->node == MAS_START, then set the min, max and depth to
1343 * - If mas->node is an error or not MAS_START, return NULL.
1344 * - If it's an empty tree: NULL & mas->node == MAS_NONE
1345 * - If it's a single entry: The entry & mas->node == MAS_ROOT
1346 * - If it's a tree: NULL & mas->node == safe root node.
1348 static inline struct maple_enode *mas_start(struct ma_state *mas)
1350 if (likely(mas_is_start(mas))) {
1351 struct maple_enode *root;
1354 mas->max = ULONG_MAX;
1357 root = mas_root(mas);
1358 /* Tree with nodes */
1359 if (likely(xa_is_node(root))) {
1361 mas->node = mte_safe_root(root);
1367 if (unlikely(!root)) {
1368 mas->node = MAS_NONE;
1369 mas->offset = MAPLE_NODE_SLOTS;
1373 /* Single entry tree */
1374 mas->node = MAS_ROOT;
1375 mas->offset = MAPLE_NODE_SLOTS;
1377 /* Single entry tree. */
1388 * ma_data_end() - Find the end of the data in a node.
1389 * @node: The maple node
1390 * @type: The maple node type
1391 * @pivots: The array of pivots in the node
1392 * @max: The maximum value in the node
1394 * Uses metadata to find the end of the data when possible.
1395 * Return: The zero indexed last slot with data (may be null).
1397 static inline unsigned char ma_data_end(struct maple_node *node,
1398 enum maple_type type,
1399 unsigned long *pivots,
1402 unsigned char offset;
1404 if (type == maple_arange_64)
1405 return ma_meta_end(node, type);
1407 offset = mt_pivots[type] - 1;
1408 if (likely(!pivots[offset]))
1409 return ma_meta_end(node, type);
1411 if (likely(pivots[offset] == max))
1414 return mt_pivots[type];
1418 * mas_data_end() - Find the end of the data (slot).
1419 * @mas: the maple state
1421 * This method is optimized to check the metadata of a node if the node type
1422 * supports data end metadata.
1424 * Return: The zero indexed last slot with data (may be null).
1426 static inline unsigned char mas_data_end(struct ma_state *mas)
1428 enum maple_type type;
1429 struct maple_node *node;
1430 unsigned char offset;
1431 unsigned long *pivots;
1433 type = mte_node_type(mas->node);
1435 if (type == maple_arange_64)
1436 return ma_meta_end(node, type);
1438 pivots = ma_pivots(node, type);
1439 offset = mt_pivots[type] - 1;
1440 if (likely(!pivots[offset]))
1441 return ma_meta_end(node, type);
1443 if (likely(pivots[offset] == mas->max))
1446 return mt_pivots[type];
1450 * mas_leaf_max_gap() - Returns the largest gap in a leaf node
1451 * @mas - the maple state
1453 * Return: The maximum gap in the leaf.
1455 static unsigned long mas_leaf_max_gap(struct ma_state *mas)
1458 unsigned long pstart, gap, max_gap;
1459 struct maple_node *mn;
1460 unsigned long *pivots;
1463 unsigned char max_piv;
1465 mt = mte_node_type(mas->node);
1467 slots = ma_slots(mn, mt);
1469 if (unlikely(ma_is_dense(mt))) {
1471 for (i = 0; i < mt_slots[mt]; i++) {
1486 * Check the first implied pivot optimizes the loop below and slot 1 may
1487 * be skipped if there is a gap in slot 0.
1489 pivots = ma_pivots(mn, mt);
1490 if (likely(!slots[0])) {
1491 max_gap = pivots[0] - mas->min + 1;
1497 /* reduce max_piv as the special case is checked before the loop */
1498 max_piv = ma_data_end(mn, mt, pivots, mas->max) - 1;
1500 * Check end implied pivot which can only be a gap on the right most
1503 if (unlikely(mas->max == ULONG_MAX) && !slots[max_piv + 1]) {
1504 gap = ULONG_MAX - pivots[max_piv];
1509 for (; i <= max_piv; i++) {
1510 /* data == no gap. */
1511 if (likely(slots[i]))
1514 pstart = pivots[i - 1];
1515 gap = pivots[i] - pstart;
1519 /* There cannot be two gaps in a row. */
1526 * ma_max_gap() - Get the maximum gap in a maple node (non-leaf)
1527 * @node: The maple node
1528 * @gaps: The pointer to the gaps
1529 * @mt: The maple node type
1530 * @*off: Pointer to store the offset location of the gap.
1532 * Uses the metadata data end to scan backwards across set gaps.
1534 * Return: The maximum gap value
1536 static inline unsigned long
1537 ma_max_gap(struct maple_node *node, unsigned long *gaps, enum maple_type mt,
1540 unsigned char offset, i;
1541 unsigned long max_gap = 0;
1543 i = offset = ma_meta_end(node, mt);
1545 if (gaps[i] > max_gap) {
1556 * mas_max_gap() - find the largest gap in a non-leaf node and set the slot.
1557 * @mas: The maple state.
1559 * If the metadata gap is set to MAPLE_ARANGE64_META_MAX, there is no gap.
1561 * Return: The gap value.
1563 static inline unsigned long mas_max_gap(struct ma_state *mas)
1565 unsigned long *gaps;
1566 unsigned char offset;
1568 struct maple_node *node;
1570 mt = mte_node_type(mas->node);
1572 return mas_leaf_max_gap(mas);
1575 offset = ma_meta_gap(node, mt);
1576 if (offset == MAPLE_ARANGE64_META_MAX)
1579 gaps = ma_gaps(node, mt);
1580 return gaps[offset];
1584 * mas_parent_gap() - Set the parent gap and any gaps above, as needed
1585 * @mas: The maple state
1586 * @offset: The gap offset in the parent to set
1587 * @new: The new gap value.
1589 * Set the parent gap then continue to set the gap upwards, using the metadata
1590 * of the parent to see if it is necessary to check the node above.
1592 static inline void mas_parent_gap(struct ma_state *mas, unsigned char offset,
1595 unsigned long meta_gap = 0;
1596 struct maple_node *pnode;
1597 struct maple_enode *penode;
1598 unsigned long *pgaps;
1599 unsigned char meta_offset;
1600 enum maple_type pmt;
1602 pnode = mte_parent(mas->node);
1603 pmt = mas_parent_enum(mas, mas->node);
1604 penode = mt_mk_node(pnode, pmt);
1605 pgaps = ma_gaps(pnode, pmt);
1608 meta_offset = ma_meta_gap(pnode, pmt);
1609 if (meta_offset == MAPLE_ARANGE64_META_MAX)
1612 meta_gap = pgaps[meta_offset];
1614 pgaps[offset] = new;
1616 if (meta_gap == new)
1619 if (offset != meta_offset) {
1623 ma_set_meta_gap(pnode, pmt, offset);
1624 } else if (new < meta_gap) {
1626 new = ma_max_gap(pnode, pgaps, pmt, &meta_offset);
1627 ma_set_meta_gap(pnode, pmt, meta_offset);
1630 if (ma_is_root(pnode))
1633 /* Go to the parent node. */
1634 pnode = mte_parent(penode);
1635 pmt = mas_parent_enum(mas, penode);
1636 pgaps = ma_gaps(pnode, pmt);
1637 offset = mte_parent_slot(penode);
1638 penode = mt_mk_node(pnode, pmt);
1643 * mas_update_gap() - Update a nodes gaps and propagate up if necessary.
1644 * @mas - the maple state.
1646 static inline void mas_update_gap(struct ma_state *mas)
1648 unsigned char pslot;
1649 unsigned long p_gap;
1650 unsigned long max_gap;
1652 if (!mt_is_alloc(mas->tree))
1655 if (mte_is_root(mas->node))
1658 max_gap = mas_max_gap(mas);
1660 pslot = mte_parent_slot(mas->node);
1661 p_gap = ma_gaps(mte_parent(mas->node),
1662 mas_parent_enum(mas, mas->node))[pslot];
1664 if (p_gap != max_gap)
1665 mas_parent_gap(mas, pslot, max_gap);
1669 * mas_adopt_children() - Set the parent pointer of all nodes in @parent to
1670 * @parent with the slot encoded.
1671 * @mas - the maple state (for the tree)
1672 * @parent - the maple encoded node containing the children.
1674 static inline void mas_adopt_children(struct ma_state *mas,
1675 struct maple_enode *parent)
1677 enum maple_type type = mte_node_type(parent);
1678 struct maple_node *node = mas_mn(mas);
1679 void __rcu **slots = ma_slots(node, type);
1680 unsigned long *pivots = ma_pivots(node, type);
1681 struct maple_enode *child;
1682 unsigned char offset;
1684 offset = ma_data_end(node, type, pivots, mas->max);
1686 child = mas_slot_locked(mas, slots, offset);
1687 mte_set_parent(child, parent, offset);
1692 * mas_replace() - Replace a maple node in the tree with mas->node. Uses the
1693 * parent encoding to locate the maple node in the tree.
1694 * @mas - the ma_state to use for operations.
1695 * @advanced - boolean to adopt the child nodes and free the old node (false) or
1696 * leave the node (true) and handle the adoption and free elsewhere.
1698 static inline void mas_replace(struct ma_state *mas, bool advanced)
1699 __must_hold(mas->tree->lock)
1701 struct maple_node *mn = mas_mn(mas);
1702 struct maple_enode *old_enode;
1703 unsigned char offset = 0;
1704 void __rcu **slots = NULL;
1706 if (ma_is_root(mn)) {
1707 old_enode = mas_root_locked(mas);
1709 offset = mte_parent_slot(mas->node);
1710 slots = ma_slots(mte_parent(mas->node),
1711 mas_parent_enum(mas, mas->node));
1712 old_enode = mas_slot_locked(mas, slots, offset);
1715 if (!advanced && !mte_is_leaf(mas->node))
1716 mas_adopt_children(mas, mas->node);
1718 if (mte_is_root(mas->node)) {
1719 mn->parent = ma_parent_ptr(
1720 ((unsigned long)mas->tree | MA_ROOT_PARENT));
1721 rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
1722 mas_set_height(mas);
1724 rcu_assign_pointer(slots[offset], mas->node);
1728 mas_free(mas, old_enode);
1732 * mas_new_child() - Find the new child of a node.
1733 * @mas: the maple state
1734 * @child: the maple state to store the child.
1736 static inline bool mas_new_child(struct ma_state *mas, struct ma_state *child)
1737 __must_hold(mas->tree->lock)
1740 unsigned char offset;
1742 unsigned long *pivots;
1743 struct maple_enode *entry;
1744 struct maple_node *node;
1747 mt = mte_node_type(mas->node);
1749 slots = ma_slots(node, mt);
1750 pivots = ma_pivots(node, mt);
1751 end = ma_data_end(node, mt, pivots, mas->max);
1752 for (offset = mas->offset; offset <= end; offset++) {
1753 entry = mas_slot_locked(mas, slots, offset);
1754 if (mte_parent(entry) == node) {
1756 mas->offset = offset + 1;
1757 child->offset = offset;
1767 * mab_shift_right() - Shift the data in mab right. Note, does not clean out the
1768 * old data or set b_node->b_end.
1769 * @b_node: the maple_big_node
1770 * @shift: the shift count
1772 static inline void mab_shift_right(struct maple_big_node *b_node,
1773 unsigned char shift)
1775 unsigned long size = b_node->b_end * sizeof(unsigned long);
1777 memmove(b_node->pivot + shift, b_node->pivot, size);
1778 memmove(b_node->slot + shift, b_node->slot, size);
1779 if (b_node->type == maple_arange_64)
1780 memmove(b_node->gap + shift, b_node->gap, size);
1784 * mab_middle_node() - Check if a middle node is needed (unlikely)
1785 * @b_node: the maple_big_node that contains the data.
1786 * @size: the amount of data in the b_node
1787 * @split: the potential split location
1788 * @slot_count: the size that can be stored in a single node being considered.
1790 * Return: true if a middle node is required.
1792 static inline bool mab_middle_node(struct maple_big_node *b_node, int split,
1793 unsigned char slot_count)
1795 unsigned char size = b_node->b_end;
1797 if (size >= 2 * slot_count)
1800 if (!b_node->slot[split] && (size >= 2 * slot_count - 1))
1807 * mab_no_null_split() - ensure the split doesn't fall on a NULL
1808 * @b_node: the maple_big_node with the data
1809 * @split: the suggested split location
1810 * @slot_count: the number of slots in the node being considered.
1812 * Return: the split location.
1814 static inline int mab_no_null_split(struct maple_big_node *b_node,
1815 unsigned char split, unsigned char slot_count)
1817 if (!b_node->slot[split]) {
1819 * If the split is less than the max slot && the right side will
1820 * still be sufficient, then increment the split on NULL.
1822 if ((split < slot_count - 1) &&
1823 (b_node->b_end - split) > (mt_min_slots[b_node->type]))
1832 * mab_calc_split() - Calculate the split location and if there needs to be two
1834 * @bn: The maple_big_node with the data
1835 * @mid_split: The second split, if required. 0 otherwise.
1837 * Return: The first split location. The middle split is set in @mid_split.
1839 static inline int mab_calc_split(struct ma_state *mas,
1840 struct maple_big_node *bn, unsigned char *mid_split, unsigned long min)
1842 unsigned char b_end = bn->b_end;
1843 int split = b_end / 2; /* Assume equal split. */
1844 unsigned char slot_min, slot_count = mt_slots[bn->type];
1847 * To support gap tracking, all NULL entries are kept together and a node cannot
1848 * end on a NULL entry, with the exception of the left-most leaf. The
1849 * limitation means that the split of a node must be checked for this condition
1850 * and be able to put more data in one direction or the other.
1852 if (unlikely((mas->mas_flags & MA_STATE_BULK))) {
1854 split = b_end - mt_min_slots[bn->type];
1856 if (!ma_is_leaf(bn->type))
1859 mas->mas_flags |= MA_STATE_REBALANCE;
1860 if (!bn->slot[split])
1866 * Although extremely rare, it is possible to enter what is known as the 3-way
1867 * split scenario. The 3-way split comes about by means of a store of a range
1868 * that overwrites the end and beginning of two full nodes. The result is a set
1869 * of entries that cannot be stored in 2 nodes. Sometimes, these two nodes can
1870 * also be located in different parent nodes which are also full. This can
1871 * carry upwards all the way to the root in the worst case.
1873 if (unlikely(mab_middle_node(bn, split, slot_count))) {
1875 *mid_split = split * 2;
1877 slot_min = mt_min_slots[bn->type];
1881 * Avoid having a range less than the slot count unless it
1882 * causes one node to be deficient.
1883 * NOTE: mt_min_slots is 1 based, b_end and split are zero.
1885 while (((bn->pivot[split] - min) < slot_count - 1) &&
1886 (split < slot_count - 1) && (b_end - split > slot_min))
1890 /* Avoid ending a node on a NULL entry */
1891 split = mab_no_null_split(bn, split, slot_count);
1893 if (unlikely(*mid_split))
1894 *mid_split = mab_no_null_split(bn, *mid_split, slot_count);
1900 * mas_mab_cp() - Copy data from a maple state inclusively to a maple_big_node
1901 * and set @b_node->b_end to the next free slot.
1902 * @mas: The maple state
1903 * @mas_start: The starting slot to copy
1904 * @mas_end: The end slot to copy (inclusively)
1905 * @b_node: The maple_big_node to place the data
1906 * @mab_start: The starting location in maple_big_node to store the data.
1908 static inline void mas_mab_cp(struct ma_state *mas, unsigned char mas_start,
1909 unsigned char mas_end, struct maple_big_node *b_node,
1910 unsigned char mab_start)
1913 struct maple_node *node;
1915 unsigned long *pivots, *gaps;
1916 int i = mas_start, j = mab_start;
1917 unsigned char piv_end;
1920 mt = mte_node_type(mas->node);
1921 pivots = ma_pivots(node, mt);
1923 b_node->pivot[j] = pivots[i++];
1924 if (unlikely(i > mas_end))
1929 piv_end = min(mas_end, mt_pivots[mt]);
1930 for (; i < piv_end; i++, j++) {
1931 b_node->pivot[j] = pivots[i];
1932 if (unlikely(!b_node->pivot[j]))
1935 if (unlikely(mas->max == b_node->pivot[j]))
1939 if (likely(i <= mas_end))
1940 b_node->pivot[j] = mas_safe_pivot(mas, pivots, i, mt);
1943 b_node->b_end = ++j;
1945 slots = ma_slots(node, mt);
1946 memcpy(b_node->slot + mab_start, slots + mas_start, sizeof(void *) * j);
1947 if (!ma_is_leaf(mt) && mt_is_alloc(mas->tree)) {
1948 gaps = ma_gaps(node, mt);
1949 memcpy(b_node->gap + mab_start, gaps + mas_start,
1950 sizeof(unsigned long) * j);
1955 * mas_leaf_set_meta() - Set the metadata of a leaf if possible.
1956 * @mas: The maple state
1957 * @node: The maple node
1958 * @pivots: pointer to the maple node pivots
1959 * @mt: The maple type
1960 * @end: The assumed end
1962 * Note, end may be incremented within this function but not modified at the
1963 * source. This is fine since the metadata is the last thing to be stored in a
1964 * node during a write.
1966 static inline void mas_leaf_set_meta(struct ma_state *mas,
1967 struct maple_node *node, unsigned long *pivots,
1968 enum maple_type mt, unsigned char end)
1970 /* There is no room for metadata already */
1971 if (mt_pivots[mt] <= end)
1974 if (pivots[end] && pivots[end] < mas->max)
1977 if (end < mt_slots[mt] - 1)
1978 ma_set_meta(node, mt, 0, end);
1982 * mab_mas_cp() - Copy data from maple_big_node to a maple encoded node.
1983 * @b_node: the maple_big_node that has the data
1984 * @mab_start: the start location in @b_node.
1985 * @mab_end: The end location in @b_node (inclusively)
1986 * @mas: The maple state with the maple encoded node.
1988 static inline void mab_mas_cp(struct maple_big_node *b_node,
1989 unsigned char mab_start, unsigned char mab_end,
1990 struct ma_state *mas, bool new_max)
1993 enum maple_type mt = mte_node_type(mas->node);
1994 struct maple_node *node = mte_to_node(mas->node);
1995 void __rcu **slots = ma_slots(node, mt);
1996 unsigned long *pivots = ma_pivots(node, mt);
1997 unsigned long *gaps = NULL;
2000 if (mab_end - mab_start > mt_pivots[mt])
2003 if (!pivots[mt_pivots[mt] - 1])
2004 slots[mt_pivots[mt]] = NULL;
2008 pivots[j++] = b_node->pivot[i++];
2009 } while (i <= mab_end && likely(b_node->pivot[i]));
2011 memcpy(slots, b_node->slot + mab_start,
2012 sizeof(void *) * (i - mab_start));
2015 mas->max = b_node->pivot[i - 1];
2018 if (likely(!ma_is_leaf(mt) && mt_is_alloc(mas->tree))) {
2019 unsigned long max_gap = 0;
2020 unsigned char offset = 15;
2022 gaps = ma_gaps(node, mt);
2024 gaps[--j] = b_node->gap[--i];
2025 if (gaps[j] > max_gap) {
2031 ma_set_meta(node, mt, offset, end);
2033 mas_leaf_set_meta(mas, node, pivots, mt, end);
2038 * mas_descend_adopt() - Descend through a sub-tree and adopt children.
2039 * @mas: the maple state with the maple encoded node of the sub-tree.
2041 * Descend through a sub-tree and adopt children who do not have the correct
2042 * parents set. Follow the parents which have the correct parents as they are
2043 * the new entries which need to be followed to find other incorrectly set
2046 static inline void mas_descend_adopt(struct ma_state *mas)
2048 struct ma_state list[3], next[3];
2052 * At each level there may be up to 3 correct parent pointers which indicates
2053 * the new nodes which need to be walked to find any new nodes at a lower level.
2056 for (i = 0; i < 3; i++) {
2063 while (!mte_is_leaf(list[0].node)) {
2065 for (i = 0; i < 3; i++) {
2066 if (mas_is_none(&list[i]))
2069 if (i && list[i-1].node == list[i].node)
2072 while ((n < 3) && (mas_new_child(&list[i], &next[n])))
2075 mas_adopt_children(&list[i], list[i].node);
2079 next[n++].node = MAS_NONE;
2081 /* descend by setting the list to the children */
2082 for (i = 0; i < 3; i++)
2088 * mas_bulk_rebalance() - Rebalance the end of a tree after a bulk insert.
2089 * @mas: The maple state
2090 * @end: The maple node end
2091 * @mt: The maple node type
2093 static inline void mas_bulk_rebalance(struct ma_state *mas, unsigned char end,
2096 if (!(mas->mas_flags & MA_STATE_BULK))
2099 if (mte_is_root(mas->node))
2102 if (end > mt_min_slots[mt]) {
2103 mas->mas_flags &= ~MA_STATE_REBALANCE;
2109 * mas_store_b_node() - Store an @entry into the b_node while also copying the
2110 * data from a maple encoded node.
2111 * @wr_mas: the maple write state
2112 * @b_node: the maple_big_node to fill with data
2113 * @offset_end: the offset to end copying
2115 * Return: The actual end of the data stored in @b_node
2117 static noinline_for_kasan void mas_store_b_node(struct ma_wr_state *wr_mas,
2118 struct maple_big_node *b_node, unsigned char offset_end)
2121 unsigned char b_end;
2122 /* Possible underflow of piv will wrap back to 0 before use. */
2124 struct ma_state *mas = wr_mas->mas;
2126 b_node->type = wr_mas->type;
2130 /* Copy start data up to insert. */
2131 mas_mab_cp(mas, 0, slot - 1, b_node, 0);
2132 b_end = b_node->b_end;
2133 piv = b_node->pivot[b_end - 1];
2137 if (piv + 1 < mas->index) {
2138 /* Handle range starting after old range */
2139 b_node->slot[b_end] = wr_mas->content;
2140 if (!wr_mas->content)
2141 b_node->gap[b_end] = mas->index - 1 - piv;
2142 b_node->pivot[b_end++] = mas->index - 1;
2145 /* Store the new entry. */
2146 mas->offset = b_end;
2147 b_node->slot[b_end] = wr_mas->entry;
2148 b_node->pivot[b_end] = mas->last;
2151 if (mas->last >= mas->max)
2154 /* Handle new range ending before old range ends */
2155 piv = mas_logical_pivot(mas, wr_mas->pivots, offset_end, wr_mas->type);
2156 if (piv > mas->last) {
2157 if (piv == ULONG_MAX)
2158 mas_bulk_rebalance(mas, b_node->b_end, wr_mas->type);
2160 if (offset_end != slot)
2161 wr_mas->content = mas_slot_locked(mas, wr_mas->slots,
2164 b_node->slot[++b_end] = wr_mas->content;
2165 if (!wr_mas->content)
2166 b_node->gap[b_end] = piv - mas->last + 1;
2167 b_node->pivot[b_end] = piv;
2170 slot = offset_end + 1;
2171 if (slot > wr_mas->node_end)
2174 /* Copy end data to the end of the node. */
2175 mas_mab_cp(mas, slot, wr_mas->node_end + 1, b_node, ++b_end);
2180 b_node->b_end = b_end;
2184 * mas_prev_sibling() - Find the previous node with the same parent.
2185 * @mas: the maple state
2187 * Return: True if there is a previous sibling, false otherwise.
2189 static inline bool mas_prev_sibling(struct ma_state *mas)
2191 unsigned int p_slot = mte_parent_slot(mas->node);
2193 if (mte_is_root(mas->node))
2200 mas->offset = p_slot - 1;
2206 * mas_next_sibling() - Find the next node with the same parent.
2207 * @mas: the maple state
2209 * Return: true if there is a next sibling, false otherwise.
2211 static inline bool mas_next_sibling(struct ma_state *mas)
2213 MA_STATE(parent, mas->tree, mas->index, mas->last);
2215 if (mte_is_root(mas->node))
2219 mas_ascend(&parent);
2220 parent.offset = mte_parent_slot(mas->node) + 1;
2221 if (parent.offset > mas_data_end(&parent))
2230 * mte_node_or_node() - Return the encoded node or MAS_NONE.
2231 * @enode: The encoded maple node.
2233 * Shorthand to avoid setting %NULLs in the tree or maple_subtree_state.
2235 * Return: @enode or MAS_NONE
2237 static inline struct maple_enode *mte_node_or_none(struct maple_enode *enode)
2242 return ma_enode_ptr(MAS_NONE);
2246 * mas_wr_node_walk() - Find the correct offset for the index in the @mas.
2247 * @wr_mas: The maple write state
2249 * Uses mas_slot_locked() and does not need to worry about dead nodes.
2251 static inline void mas_wr_node_walk(struct ma_wr_state *wr_mas)
2253 struct ma_state *mas = wr_mas->mas;
2254 unsigned char count;
2255 unsigned char offset;
2256 unsigned long index, min, max;
2258 if (unlikely(ma_is_dense(wr_mas->type))) {
2259 wr_mas->r_max = wr_mas->r_min = mas->index;
2260 mas->offset = mas->index = mas->min;
2264 wr_mas->node = mas_mn(wr_mas->mas);
2265 wr_mas->pivots = ma_pivots(wr_mas->node, wr_mas->type);
2266 count = wr_mas->node_end = ma_data_end(wr_mas->node, wr_mas->type,
2267 wr_mas->pivots, mas->max);
2268 offset = mas->offset;
2269 min = mas_safe_min(mas, wr_mas->pivots, offset);
2270 if (unlikely(offset == count))
2273 max = wr_mas->pivots[offset];
2275 if (unlikely(index <= max))
2278 if (unlikely(!max && offset))
2282 while (++offset < count) {
2283 max = wr_mas->pivots[offset];
2286 else if (unlikely(!max))
2295 wr_mas->r_max = max;
2296 wr_mas->r_min = min;
2297 wr_mas->offset_end = mas->offset = offset;
2301 * mas_topiary_range() - Add a range of slots to the topiary.
2302 * @mas: The maple state
2303 * @destroy: The topiary to add the slots (usually destroy)
2304 * @start: The starting slot inclusively
2305 * @end: The end slot inclusively
2307 static inline void mas_topiary_range(struct ma_state *mas,
2308 struct ma_topiary *destroy, unsigned char start, unsigned char end)
2311 unsigned char offset;
2313 MT_BUG_ON(mas->tree, mte_is_leaf(mas->node));
2314 slots = ma_slots(mas_mn(mas), mte_node_type(mas->node));
2315 for (offset = start; offset <= end; offset++) {
2316 struct maple_enode *enode = mas_slot_locked(mas, slots, offset);
2318 if (mte_dead_node(enode))
2321 mat_add(destroy, enode);
2326 * mast_topiary() - Add the portions of the tree to the removal list; either to
2327 * be freed or discarded (destroy walk).
2328 * @mast: The maple_subtree_state.
2330 static inline void mast_topiary(struct maple_subtree_state *mast)
2332 MA_WR_STATE(wr_mas, mast->orig_l, NULL);
2333 unsigned char r_start, r_end;
2334 unsigned char l_start, l_end;
2335 void __rcu **l_slots, **r_slots;
2337 wr_mas.type = mte_node_type(mast->orig_l->node);
2338 mast->orig_l->index = mast->orig_l->last;
2339 mas_wr_node_walk(&wr_mas);
2340 l_start = mast->orig_l->offset + 1;
2341 l_end = mas_data_end(mast->orig_l);
2343 r_end = mast->orig_r->offset;
2348 l_slots = ma_slots(mas_mn(mast->orig_l),
2349 mte_node_type(mast->orig_l->node));
2351 r_slots = ma_slots(mas_mn(mast->orig_r),
2352 mte_node_type(mast->orig_r->node));
2354 if ((l_start < l_end) &&
2355 mte_dead_node(mas_slot_locked(mast->orig_l, l_slots, l_start))) {
2359 if (mte_dead_node(mas_slot_locked(mast->orig_r, r_slots, r_end))) {
2364 if ((l_start > r_end) && (mast->orig_l->node == mast->orig_r->node))
2367 /* At the node where left and right sides meet, add the parts between */
2368 if (mast->orig_l->node == mast->orig_r->node) {
2369 return mas_topiary_range(mast->orig_l, mast->destroy,
2373 /* mast->orig_r is different and consumed. */
2374 if (mte_is_leaf(mast->orig_r->node))
2377 if (mte_dead_node(mas_slot_locked(mast->orig_l, l_slots, l_end)))
2381 if (l_start <= l_end)
2382 mas_topiary_range(mast->orig_l, mast->destroy, l_start, l_end);
2384 if (mte_dead_node(mas_slot_locked(mast->orig_r, r_slots, r_start)))
2387 if (r_start <= r_end)
2388 mas_topiary_range(mast->orig_r, mast->destroy, 0, r_end);
2392 * mast_rebalance_next() - Rebalance against the next node
2393 * @mast: The maple subtree state
2394 * @old_r: The encoded maple node to the right (next node).
2396 static inline void mast_rebalance_next(struct maple_subtree_state *mast)
2398 unsigned char b_end = mast->bn->b_end;
2400 mas_mab_cp(mast->orig_r, 0, mt_slot_count(mast->orig_r->node),
2402 mast->orig_r->last = mast->orig_r->max;
2406 * mast_rebalance_prev() - Rebalance against the previous node
2407 * @mast: The maple subtree state
2408 * @old_l: The encoded maple node to the left (previous node)
2410 static inline void mast_rebalance_prev(struct maple_subtree_state *mast)
2412 unsigned char end = mas_data_end(mast->orig_l) + 1;
2413 unsigned char b_end = mast->bn->b_end;
2415 mab_shift_right(mast->bn, end);
2416 mas_mab_cp(mast->orig_l, 0, end - 1, mast->bn, 0);
2417 mast->l->min = mast->orig_l->min;
2418 mast->orig_l->index = mast->orig_l->min;
2419 mast->bn->b_end = end + b_end;
2420 mast->l->offset += end;
2424 * mast_spanning_rebalance() - Rebalance nodes with nearest neighbour favouring
2425 * the node to the right. Checking the nodes to the right then the left at each
2426 * level upwards until root is reached. Free and destroy as needed.
2427 * Data is copied into the @mast->bn.
2428 * @mast: The maple_subtree_state.
2431 bool mast_spanning_rebalance(struct maple_subtree_state *mast)
2433 struct ma_state r_tmp = *mast->orig_r;
2434 struct ma_state l_tmp = *mast->orig_l;
2435 struct maple_enode *ancestor = NULL;
2436 unsigned char start, end;
2437 unsigned char depth = 0;
2439 r_tmp = *mast->orig_r;
2440 l_tmp = *mast->orig_l;
2442 mas_ascend(mast->orig_r);
2443 mas_ascend(mast->orig_l);
2446 (mast->orig_r->node == mast->orig_l->node)) {
2447 ancestor = mast->orig_r->node;
2448 end = mast->orig_r->offset - 1;
2449 start = mast->orig_l->offset + 1;
2452 if (mast->orig_r->offset < mas_data_end(mast->orig_r)) {
2454 ancestor = mast->orig_r->node;
2458 mast->orig_r->offset++;
2460 mas_descend(mast->orig_r);
2461 mast->orig_r->offset = 0;
2465 mast_rebalance_next(mast);
2467 unsigned char l_off = 0;
2468 struct maple_enode *child = r_tmp.node;
2471 if (ancestor == r_tmp.node)
2477 if (l_off < r_tmp.offset)
2478 mas_topiary_range(&r_tmp, mast->destroy,
2479 l_off, r_tmp.offset);
2481 if (l_tmp.node != child)
2482 mat_add(mast->free, child);
2484 } while (r_tmp.node != ancestor);
2486 *mast->orig_l = l_tmp;
2489 } else if (mast->orig_l->offset != 0) {
2491 ancestor = mast->orig_l->node;
2492 end = mas_data_end(mast->orig_l);
2495 mast->orig_l->offset--;
2497 mas_descend(mast->orig_l);
2498 mast->orig_l->offset =
2499 mas_data_end(mast->orig_l);
2503 mast_rebalance_prev(mast);
2505 unsigned char r_off;
2506 struct maple_enode *child = l_tmp.node;
2509 if (ancestor == l_tmp.node)
2512 r_off = mas_data_end(&l_tmp);
2514 if (l_tmp.offset < r_off)
2517 if (l_tmp.offset < r_off)
2518 mas_topiary_range(&l_tmp, mast->destroy,
2519 l_tmp.offset, r_off);
2521 if (r_tmp.node != child)
2522 mat_add(mast->free, child);
2524 } while (l_tmp.node != ancestor);
2526 *mast->orig_r = r_tmp;
2529 } while (!mte_is_root(mast->orig_r->node));
2531 *mast->orig_r = r_tmp;
2532 *mast->orig_l = l_tmp;
2537 * mast_ascend_free() - Add current original maple state nodes to the free list
2539 * @mast: the maple subtree state.
2541 * Ascend the original left and right sides and add the previous nodes to the
2542 * free list. Set the slots to point to the correct location in the new nodes.
2545 mast_ascend_free(struct maple_subtree_state *mast)
2547 MA_WR_STATE(wr_mas, mast->orig_r, NULL);
2548 struct maple_enode *left = mast->orig_l->node;
2549 struct maple_enode *right = mast->orig_r->node;
2551 mas_ascend(mast->orig_l);
2552 mas_ascend(mast->orig_r);
2553 mat_add(mast->free, left);
2556 mat_add(mast->free, right);
2558 mast->orig_r->offset = 0;
2559 mast->orig_r->index = mast->r->max;
2560 /* last should be larger than or equal to index */
2561 if (mast->orig_r->last < mast->orig_r->index)
2562 mast->orig_r->last = mast->orig_r->index;
2564 * The node may not contain the value so set slot to ensure all
2565 * of the nodes contents are freed or destroyed.
2567 wr_mas.type = mte_node_type(mast->orig_r->node);
2568 mas_wr_node_walk(&wr_mas);
2569 /* Set up the left side of things */
2570 mast->orig_l->offset = 0;
2571 mast->orig_l->index = mast->l->min;
2572 wr_mas.mas = mast->orig_l;
2573 wr_mas.type = mte_node_type(mast->orig_l->node);
2574 mas_wr_node_walk(&wr_mas);
2576 mast->bn->type = wr_mas.type;
2580 * mas_new_ma_node() - Create and return a new maple node. Helper function.
2581 * @mas: the maple state with the allocations.
2582 * @b_node: the maple_big_node with the type encoding.
2584 * Use the node type from the maple_big_node to allocate a new node from the
2585 * ma_state. This function exists mainly for code readability.
2587 * Return: A new maple encoded node
2589 static inline struct maple_enode
2590 *mas_new_ma_node(struct ma_state *mas, struct maple_big_node *b_node)
2592 return mt_mk_node(ma_mnode_ptr(mas_pop_node(mas)), b_node->type);
2596 * mas_mab_to_node() - Set up right and middle nodes
2598 * @mas: the maple state that contains the allocations.
2599 * @b_node: the node which contains the data.
2600 * @left: The pointer which will have the left node
2601 * @right: The pointer which may have the right node
2602 * @middle: the pointer which may have the middle node (rare)
2603 * @mid_split: the split location for the middle node
2605 * Return: the split of left.
2607 static inline unsigned char mas_mab_to_node(struct ma_state *mas,
2608 struct maple_big_node *b_node, struct maple_enode **left,
2609 struct maple_enode **right, struct maple_enode **middle,
2610 unsigned char *mid_split, unsigned long min)
2612 unsigned char split = 0;
2613 unsigned char slot_count = mt_slots[b_node->type];
2615 *left = mas_new_ma_node(mas, b_node);
2620 if (b_node->b_end < slot_count) {
2621 split = b_node->b_end;
2623 split = mab_calc_split(mas, b_node, mid_split, min);
2624 *right = mas_new_ma_node(mas, b_node);
2628 *middle = mas_new_ma_node(mas, b_node);
2635 * mab_set_b_end() - Add entry to b_node at b_node->b_end and increment the end
2637 * @b_node - the big node to add the entry
2638 * @mas - the maple state to get the pivot (mas->max)
2639 * @entry - the entry to add, if NULL nothing happens.
2641 static inline void mab_set_b_end(struct maple_big_node *b_node,
2642 struct ma_state *mas,
2648 b_node->slot[b_node->b_end] = entry;
2649 if (mt_is_alloc(mas->tree))
2650 b_node->gap[b_node->b_end] = mas_max_gap(mas);
2651 b_node->pivot[b_node->b_end++] = mas->max;
2655 * mas_set_split_parent() - combine_then_separate helper function. Sets the parent
2656 * of @mas->node to either @left or @right, depending on @slot and @split
2658 * @mas - the maple state with the node that needs a parent
2659 * @left - possible parent 1
2660 * @right - possible parent 2
2661 * @slot - the slot the mas->node was placed
2662 * @split - the split location between @left and @right
2664 static inline void mas_set_split_parent(struct ma_state *mas,
2665 struct maple_enode *left,
2666 struct maple_enode *right,
2667 unsigned char *slot, unsigned char split)
2669 if (mas_is_none(mas))
2672 if ((*slot) <= split)
2673 mte_set_parent(mas->node, left, *slot);
2675 mte_set_parent(mas->node, right, (*slot) - split - 1);
2681 * mte_mid_split_check() - Check if the next node passes the mid-split
2682 * @**l: Pointer to left encoded maple node.
2683 * @**m: Pointer to middle encoded maple node.
2684 * @**r: Pointer to right encoded maple node.
2686 * @*split: The split location.
2687 * @mid_split: The middle split.
2689 static inline void mte_mid_split_check(struct maple_enode **l,
2690 struct maple_enode **r,
2691 struct maple_enode *right,
2693 unsigned char *split,
2694 unsigned char mid_split)
2699 if (slot < mid_split)
2708 * mast_set_split_parents() - Helper function to set three nodes parents. Slot
2709 * is taken from @mast->l.
2710 * @mast - the maple subtree state
2711 * @left - the left node
2712 * @right - the right node
2713 * @split - the split location.
2715 static inline void mast_set_split_parents(struct maple_subtree_state *mast,
2716 struct maple_enode *left,
2717 struct maple_enode *middle,
2718 struct maple_enode *right,
2719 unsigned char split,
2720 unsigned char mid_split)
2723 struct maple_enode *l = left;
2724 struct maple_enode *r = right;
2726 if (mas_is_none(mast->l))
2732 slot = mast->l->offset;
2734 mte_mid_split_check(&l, &r, right, slot, &split, mid_split);
2735 mas_set_split_parent(mast->l, l, r, &slot, split);
2737 mte_mid_split_check(&l, &r, right, slot, &split, mid_split);
2738 mas_set_split_parent(mast->m, l, r, &slot, split);
2740 mte_mid_split_check(&l, &r, right, slot, &split, mid_split);
2741 mas_set_split_parent(mast->r, l, r, &slot, split);
2745 * mas_wmb_replace() - Write memory barrier and replace
2746 * @mas: The maple state
2747 * @free: the maple topiary list of nodes to free
2748 * @destroy: The maple topiary list of nodes to destroy (walk and free)
2750 * Updates gap as necessary.
2752 static inline void mas_wmb_replace(struct ma_state *mas,
2753 struct ma_topiary *free,
2754 struct ma_topiary *destroy)
2756 /* All nodes must see old data as dead prior to replacing that data */
2757 smp_wmb(); /* Needed for RCU */
2759 /* Insert the new data in the tree */
2760 mas_replace(mas, true);
2762 if (!mte_is_leaf(mas->node))
2763 mas_descend_adopt(mas);
2765 mas_mat_free(mas, free);
2768 mas_mat_destroy(mas, destroy);
2770 if (mte_is_leaf(mas->node))
2773 mas_update_gap(mas);
2777 * mast_new_root() - Set a new tree root during subtree creation
2778 * @mast: The maple subtree state
2779 * @mas: The maple state
2781 static inline void mast_new_root(struct maple_subtree_state *mast,
2782 struct ma_state *mas)
2784 mas_mn(mast->l)->parent =
2785 ma_parent_ptr(((unsigned long)mas->tree | MA_ROOT_PARENT));
2786 if (!mte_dead_node(mast->orig_l->node) &&
2787 !mte_is_root(mast->orig_l->node)) {
2789 mast_ascend_free(mast);
2791 } while (!mte_is_root(mast->orig_l->node));
2793 if ((mast->orig_l->node != mas->node) &&
2794 (mast->l->depth > mas_mt_height(mas))) {
2795 mat_add(mast->free, mas->node);
2800 * mast_cp_to_nodes() - Copy data out to nodes.
2801 * @mast: The maple subtree state
2802 * @left: The left encoded maple node
2803 * @middle: The middle encoded maple node
2804 * @right: The right encoded maple node
2805 * @split: The location to split between left and (middle ? middle : right)
2806 * @mid_split: The location to split between middle and right.
2808 static inline void mast_cp_to_nodes(struct maple_subtree_state *mast,
2809 struct maple_enode *left, struct maple_enode *middle,
2810 struct maple_enode *right, unsigned char split, unsigned char mid_split)
2812 bool new_lmax = true;
2814 mast->l->node = mte_node_or_none(left);
2815 mast->m->node = mte_node_or_none(middle);
2816 mast->r->node = mte_node_or_none(right);
2818 mast->l->min = mast->orig_l->min;
2819 if (split == mast->bn->b_end) {
2820 mast->l->max = mast->orig_r->max;
2824 mab_mas_cp(mast->bn, 0, split, mast->l, new_lmax);
2827 mab_mas_cp(mast->bn, 1 + split, mid_split, mast->m, true);
2828 mast->m->min = mast->bn->pivot[split] + 1;
2832 mast->r->max = mast->orig_r->max;
2834 mab_mas_cp(mast->bn, 1 + split, mast->bn->b_end, mast->r, false);
2835 mast->r->min = mast->bn->pivot[split] + 1;
2840 * mast_combine_cp_left - Copy in the original left side of the tree into the
2841 * combined data set in the maple subtree state big node.
2842 * @mast: The maple subtree state
2844 static inline void mast_combine_cp_left(struct maple_subtree_state *mast)
2846 unsigned char l_slot = mast->orig_l->offset;
2851 mas_mab_cp(mast->orig_l, 0, l_slot - 1, mast->bn, 0);
2855 * mast_combine_cp_right: Copy in the original right side of the tree into the
2856 * combined data set in the maple subtree state big node.
2857 * @mast: The maple subtree state
2859 static inline void mast_combine_cp_right(struct maple_subtree_state *mast)
2861 if (mast->bn->pivot[mast->bn->b_end - 1] >= mast->orig_r->max)
2864 mas_mab_cp(mast->orig_r, mast->orig_r->offset + 1,
2865 mt_slot_count(mast->orig_r->node), mast->bn,
2867 mast->orig_r->last = mast->orig_r->max;
2871 * mast_sufficient: Check if the maple subtree state has enough data in the big
2872 * node to create at least one sufficient node
2873 * @mast: the maple subtree state
2875 static inline bool mast_sufficient(struct maple_subtree_state *mast)
2877 if (mast->bn->b_end > mt_min_slot_count(mast->orig_l->node))
2884 * mast_overflow: Check if there is too much data in the subtree state for a
2886 * @mast: The maple subtree state
2888 static inline bool mast_overflow(struct maple_subtree_state *mast)
2890 if (mast->bn->b_end >= mt_slot_count(mast->orig_l->node))
2896 static inline void *mtree_range_walk(struct ma_state *mas)
2898 unsigned long *pivots;
2899 unsigned char offset;
2900 struct maple_node *node;
2901 struct maple_enode *next, *last;
2902 enum maple_type type;
2905 unsigned long max, min;
2906 unsigned long prev_max, prev_min;
2914 node = mte_to_node(next);
2915 type = mte_node_type(next);
2916 pivots = ma_pivots(node, type);
2917 end = ma_data_end(node, type, pivots, max);
2918 if (unlikely(ma_dead_node(node)))
2921 if (pivots[offset] >= mas->index) {
2924 max = pivots[offset];
2930 } while ((offset < end) && (pivots[offset] < mas->index));
2933 min = pivots[offset - 1] + 1;
2935 if (likely(offset < end && pivots[offset]))
2936 max = pivots[offset];
2939 slots = ma_slots(node, type);
2940 next = mt_slot(mas->tree, slots, offset);
2941 if (unlikely(ma_dead_node(node)))
2943 } while (!ma_is_leaf(type));
2945 mas->offset = offset;
2948 mas->min = prev_min;
2949 mas->max = prev_max;
2951 return (void *)next;
2959 * mas_spanning_rebalance() - Rebalance across two nodes which may not be peers.
2960 * @mas: The starting maple state
2961 * @mast: The maple_subtree_state, keeps track of 4 maple states.
2962 * @count: The estimated count of iterations needed.
2964 * Follow the tree upwards from @l_mas and @r_mas for @count, or until the root
2965 * is hit. First @b_node is split into two entries which are inserted into the
2966 * next iteration of the loop. @b_node is returned populated with the final
2967 * iteration. @mas is used to obtain allocations. orig_l_mas keeps track of the
2968 * nodes that will remain active by using orig_l_mas->index and orig_l_mas->last
2969 * to account of what has been copied into the new sub-tree. The update of
2970 * orig_l_mas->last is used in mas_consume to find the slots that will need to
2971 * be either freed or destroyed. orig_l_mas->depth keeps track of the height of
2972 * the new sub-tree in case the sub-tree becomes the full tree.
2974 * Return: the number of elements in b_node during the last loop.
2976 static int mas_spanning_rebalance(struct ma_state *mas,
2977 struct maple_subtree_state *mast, unsigned char count)
2979 unsigned char split, mid_split;
2980 unsigned char slot = 0;
2981 struct maple_enode *left = NULL, *middle = NULL, *right = NULL;
2983 MA_STATE(l_mas, mas->tree, mas->index, mas->index);
2984 MA_STATE(r_mas, mas->tree, mas->index, mas->last);
2985 MA_STATE(m_mas, mas->tree, mas->index, mas->index);
2986 MA_TOPIARY(free, mas->tree);
2987 MA_TOPIARY(destroy, mas->tree);
2990 * The tree needs to be rebalanced and leaves need to be kept at the same level.
2991 * Rebalancing is done by use of the ``struct maple_topiary``.
2997 mast->destroy = &destroy;
2998 l_mas.node = r_mas.node = m_mas.node = MAS_NONE;
3000 /* Check if this is not root and has sufficient data. */
3001 if (((mast->orig_l->min != 0) || (mast->orig_r->max != ULONG_MAX)) &&
3002 unlikely(mast->bn->b_end <= mt_min_slots[mast->bn->type]))
3003 mast_spanning_rebalance(mast);
3005 mast->orig_l->depth = 0;
3008 * Each level of the tree is examined and balanced, pushing data to the left or
3009 * right, or rebalancing against left or right nodes is employed to avoid
3010 * rippling up the tree to limit the amount of churn. Once a new sub-section of
3011 * the tree is created, there may be a mix of new and old nodes. The old nodes
3012 * will have the incorrect parent pointers and currently be in two trees: the
3013 * original tree and the partially new tree. To remedy the parent pointers in
3014 * the old tree, the new data is swapped into the active tree and a walk down
3015 * the tree is performed and the parent pointers are updated.
3016 * See mas_descend_adopt() for more information..
3020 mast->bn->type = mte_node_type(mast->orig_l->node);
3021 split = mas_mab_to_node(mas, mast->bn, &left, &right, &middle,
3022 &mid_split, mast->orig_l->min);
3023 mast_set_split_parents(mast, left, middle, right, split,
3025 mast_cp_to_nodes(mast, left, middle, right, split, mid_split);
3028 * Copy data from next level in the tree to mast->bn from next
3031 memset(mast->bn, 0, sizeof(struct maple_big_node));
3032 mast->bn->type = mte_node_type(left);
3033 mast->orig_l->depth++;
3035 /* Root already stored in l->node. */
3036 if (mas_is_root_limits(mast->l))
3039 mast_ascend_free(mast);
3040 mast_combine_cp_left(mast);
3041 l_mas.offset = mast->bn->b_end;
3042 mab_set_b_end(mast->bn, &l_mas, left);
3043 mab_set_b_end(mast->bn, &m_mas, middle);
3044 mab_set_b_end(mast->bn, &r_mas, right);
3046 /* Copy anything necessary out of the right node. */
3047 mast_combine_cp_right(mast);
3049 mast->orig_l->last = mast->orig_l->max;
3051 if (mast_sufficient(mast))
3054 if (mast_overflow(mast))
3057 /* May be a new root stored in mast->bn */
3058 if (mas_is_root_limits(mast->orig_l))
3061 mast_spanning_rebalance(mast);
3063 /* rebalancing from other nodes may require another loop. */
3068 l_mas.node = mt_mk_node(ma_mnode_ptr(mas_pop_node(mas)),
3069 mte_node_type(mast->orig_l->node));
3070 mast->orig_l->depth++;
3071 mab_mas_cp(mast->bn, 0, mt_slots[mast->bn->type] - 1, &l_mas, true);
3072 mte_set_parent(left, l_mas.node, slot);
3074 mte_set_parent(middle, l_mas.node, ++slot);
3077 mte_set_parent(right, l_mas.node, ++slot);
3079 if (mas_is_root_limits(mast->l)) {
3081 mast_new_root(mast, mas);
3083 mas_mn(&l_mas)->parent = mas_mn(mast->orig_l)->parent;
3086 if (!mte_dead_node(mast->orig_l->node))
3087 mat_add(&free, mast->orig_l->node);
3089 mas->depth = mast->orig_l->depth;
3090 *mast->orig_l = l_mas;
3091 mte_set_node_dead(mas->node);
3093 /* Set up mas for insertion. */
3094 mast->orig_l->depth = mas->depth;
3095 mast->orig_l->alloc = mas->alloc;
3096 *mas = *mast->orig_l;
3097 mas_wmb_replace(mas, &free, &destroy);
3098 mtree_range_walk(mas);
3099 return mast->bn->b_end;
3103 * mas_rebalance() - Rebalance a given node.
3104 * @mas: The maple state
3105 * @b_node: The big maple node.
3107 * Rebalance two nodes into a single node or two new nodes that are sufficient.
3108 * Continue upwards until tree is sufficient.
3110 * Return: the number of elements in b_node during the last loop.
3112 static inline int mas_rebalance(struct ma_state *mas,
3113 struct maple_big_node *b_node)
3115 char empty_count = mas_mt_height(mas);
3116 struct maple_subtree_state mast;
3117 unsigned char shift, b_end = ++b_node->b_end;
3119 MA_STATE(l_mas, mas->tree, mas->index, mas->last);
3120 MA_STATE(r_mas, mas->tree, mas->index, mas->last);
3122 trace_ma_op(__func__, mas);
3125 * Rebalancing occurs if a node is insufficient. Data is rebalanced
3126 * against the node to the right if it exists, otherwise the node to the
3127 * left of this node is rebalanced against this node. If rebalancing
3128 * causes just one node to be produced instead of two, then the parent
3129 * is also examined and rebalanced if it is insufficient. Every level
3130 * tries to combine the data in the same way. If one node contains the
3131 * entire range of the tree, then that node is used as a new root node.
3133 mas_node_count(mas, 1 + empty_count * 3);
3134 if (mas_is_err(mas))
3137 mast.orig_l = &l_mas;
3138 mast.orig_r = &r_mas;
3140 mast.bn->type = mte_node_type(mas->node);
3142 l_mas = r_mas = *mas;
3144 if (mas_next_sibling(&r_mas)) {
3145 mas_mab_cp(&r_mas, 0, mt_slot_count(r_mas.node), b_node, b_end);
3146 r_mas.last = r_mas.index = r_mas.max;
3148 mas_prev_sibling(&l_mas);
3149 shift = mas_data_end(&l_mas) + 1;
3150 mab_shift_right(b_node, shift);
3151 mas->offset += shift;
3152 mas_mab_cp(&l_mas, 0, shift - 1, b_node, 0);
3153 b_node->b_end = shift + b_end;
3154 l_mas.index = l_mas.last = l_mas.min;
3157 return mas_spanning_rebalance(mas, &mast, empty_count);
3161 * mas_destroy_rebalance() - Rebalance left-most node while destroying the maple
3163 * @mas: The maple state
3164 * @end: The end of the left-most node.
3166 * During a mass-insert event (such as forking), it may be necessary to
3167 * rebalance the left-most node when it is not sufficient.
3169 static inline void mas_destroy_rebalance(struct ma_state *mas, unsigned char end)
3171 enum maple_type mt = mte_node_type(mas->node);
3172 struct maple_node reuse, *newnode, *parent, *new_left, *left, *node;
3173 struct maple_enode *eparent;
3174 unsigned char offset, tmp, split = mt_slots[mt] / 2;
3175 void __rcu **l_slots, **slots;
3176 unsigned long *l_pivs, *pivs, gap;
3177 bool in_rcu = mt_in_rcu(mas->tree);
3179 MA_STATE(l_mas, mas->tree, mas->index, mas->last);
3182 mas_prev_sibling(&l_mas);
3186 /* Allocate for both left and right as well as parent. */
3187 mas_node_count(mas, 3);
3188 if (mas_is_err(mas))
3191 newnode = mas_pop_node(mas);
3197 newnode->parent = node->parent;
3198 slots = ma_slots(newnode, mt);
3199 pivs = ma_pivots(newnode, mt);
3200 left = mas_mn(&l_mas);
3201 l_slots = ma_slots(left, mt);
3202 l_pivs = ma_pivots(left, mt);
3203 if (!l_slots[split])
3205 tmp = mas_data_end(&l_mas) - split;
3207 memcpy(slots, l_slots + split + 1, sizeof(void *) * tmp);
3208 memcpy(pivs, l_pivs + split + 1, sizeof(unsigned long) * tmp);
3209 pivs[tmp] = l_mas.max;
3210 memcpy(slots + tmp, ma_slots(node, mt), sizeof(void *) * end);
3211 memcpy(pivs + tmp, ma_pivots(node, mt), sizeof(unsigned long) * end);
3213 l_mas.max = l_pivs[split];
3214 mas->min = l_mas.max + 1;
3215 eparent = mt_mk_node(mte_parent(l_mas.node),
3216 mas_parent_enum(&l_mas, l_mas.node));
3219 unsigned char max_p = mt_pivots[mt];
3220 unsigned char max_s = mt_slots[mt];
3223 memset(pivs + tmp, 0,
3224 sizeof(unsigned long *) * (max_p - tmp));
3226 if (tmp < mt_slots[mt])
3227 memset(slots + tmp, 0, sizeof(void *) * (max_s - tmp));
3229 memcpy(node, newnode, sizeof(struct maple_node));
3230 ma_set_meta(node, mt, 0, tmp - 1);
3231 mte_set_pivot(eparent, mte_parent_slot(l_mas.node),
3234 /* Remove data from l_pivs. */
3236 memset(l_pivs + tmp, 0, sizeof(unsigned long) * (max_p - tmp));
3237 memset(l_slots + tmp, 0, sizeof(void *) * (max_s - tmp));
3238 ma_set_meta(left, mt, 0, split);
3243 /* RCU requires replacing both l_mas, mas, and parent. */
3244 mas->node = mt_mk_node(newnode, mt);
3245 ma_set_meta(newnode, mt, 0, tmp);
3247 new_left = mas_pop_node(mas);
3248 new_left->parent = left->parent;
3249 mt = mte_node_type(l_mas.node);
3250 slots = ma_slots(new_left, mt);
3251 pivs = ma_pivots(new_left, mt);
3252 memcpy(slots, l_slots, sizeof(void *) * split);
3253 memcpy(pivs, l_pivs, sizeof(unsigned long) * split);
3254 ma_set_meta(new_left, mt, 0, split);
3255 l_mas.node = mt_mk_node(new_left, mt);
3257 /* replace parent. */
3258 offset = mte_parent_slot(mas->node);
3259 mt = mas_parent_enum(&l_mas, l_mas.node);
3260 parent = mas_pop_node(mas);
3261 slots = ma_slots(parent, mt);
3262 pivs = ma_pivots(parent, mt);
3263 memcpy(parent, mte_to_node(eparent), sizeof(struct maple_node));
3264 rcu_assign_pointer(slots[offset], mas->node);
3265 rcu_assign_pointer(slots[offset - 1], l_mas.node);
3266 pivs[offset - 1] = l_mas.max;
3267 eparent = mt_mk_node(parent, mt);
3269 gap = mas_leaf_max_gap(mas);
3270 mte_set_gap(eparent, mte_parent_slot(mas->node), gap);
3271 gap = mas_leaf_max_gap(&l_mas);
3272 mte_set_gap(eparent, mte_parent_slot(l_mas.node), gap);
3276 mas_replace(mas, false);
3278 mas_update_gap(mas);
3282 * mas_split_final_node() - Split the final node in a subtree operation.
3283 * @mast: the maple subtree state
3284 * @mas: The maple state
3285 * @height: The height of the tree in case it's a new root.
3287 static inline bool mas_split_final_node(struct maple_subtree_state *mast,
3288 struct ma_state *mas, int height)
3290 struct maple_enode *ancestor;
3292 if (mte_is_root(mas->node)) {
3293 if (mt_is_alloc(mas->tree))
3294 mast->bn->type = maple_arange_64;
3296 mast->bn->type = maple_range_64;
3297 mas->depth = height;
3300 * Only a single node is used here, could be root.
3301 * The Big_node data should just fit in a single node.
3303 ancestor = mas_new_ma_node(mas, mast->bn);
3304 mte_set_parent(mast->l->node, ancestor, mast->l->offset);
3305 mte_set_parent(mast->r->node, ancestor, mast->r->offset);
3306 mte_to_node(ancestor)->parent = mas_mn(mas)->parent;
3308 mast->l->node = ancestor;
3309 mab_mas_cp(mast->bn, 0, mt_slots[mast->bn->type] - 1, mast->l, true);
3310 mas->offset = mast->bn->b_end - 1;
3315 * mast_fill_bnode() - Copy data into the big node in the subtree state
3316 * @mast: The maple subtree state
3317 * @mas: the maple state
3318 * @skip: The number of entries to skip for new nodes insertion.
3320 static inline void mast_fill_bnode(struct maple_subtree_state *mast,
3321 struct ma_state *mas,
3325 struct maple_enode *old = mas->node;
3326 unsigned char split;
3328 memset(mast->bn->gap, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->gap));
3329 memset(mast->bn->slot, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->slot));
3330 memset(mast->bn->pivot, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->pivot));
3331 mast->bn->b_end = 0;
3333 if (mte_is_root(mas->node)) {
3337 mat_add(mast->free, old);
3338 mas->offset = mte_parent_slot(mas->node);
3341 if (cp && mast->l->offset)
3342 mas_mab_cp(mas, 0, mast->l->offset - 1, mast->bn, 0);
3344 split = mast->bn->b_end;
3345 mab_set_b_end(mast->bn, mast->l, mast->l->node);
3346 mast->r->offset = mast->bn->b_end;
3347 mab_set_b_end(mast->bn, mast->r, mast->r->node);
3348 if (mast->bn->pivot[mast->bn->b_end - 1] == mas->max)
3352 mas_mab_cp(mas, split + skip, mt_slot_count(mas->node) - 1,
3353 mast->bn, mast->bn->b_end);
3356 mast->bn->type = mte_node_type(mas->node);
3360 * mast_split_data() - Split the data in the subtree state big node into regular
3362 * @mast: The maple subtree state
3363 * @mas: The maple state
3364 * @split: The location to split the big node
3366 static inline void mast_split_data(struct maple_subtree_state *mast,
3367 struct ma_state *mas, unsigned char split)
3369 unsigned char p_slot;
3371 mab_mas_cp(mast->bn, 0, split, mast->l, true);
3372 mte_set_pivot(mast->r->node, 0, mast->r->max);
3373 mab_mas_cp(mast->bn, split + 1, mast->bn->b_end, mast->r, false);
3374 mast->l->offset = mte_parent_slot(mas->node);
3375 mast->l->max = mast->bn->pivot[split];
3376 mast->r->min = mast->l->max + 1;
3377 if (mte_is_leaf(mas->node))
3380 p_slot = mast->orig_l->offset;
3381 mas_set_split_parent(mast->orig_l, mast->l->node, mast->r->node,
3383 mas_set_split_parent(mast->orig_r, mast->l->node, mast->r->node,
3388 * mas_push_data() - Instead of splitting a node, it is beneficial to push the
3389 * data to the right or left node if there is room.
3390 * @mas: The maple state
3391 * @height: The current height of the maple state
3392 * @mast: The maple subtree state
3393 * @left: Push left or not.
3395 * Keeping the height of the tree low means faster lookups.
3397 * Return: True if pushed, false otherwise.
3399 static inline bool mas_push_data(struct ma_state *mas, int height,
3400 struct maple_subtree_state *mast, bool left)
3402 unsigned char slot_total = mast->bn->b_end;
3403 unsigned char end, space, split;
3405 MA_STATE(tmp_mas, mas->tree, mas->index, mas->last);
3407 tmp_mas.depth = mast->l->depth;
3409 if (left && !mas_prev_sibling(&tmp_mas))
3411 else if (!left && !mas_next_sibling(&tmp_mas))
3414 end = mas_data_end(&tmp_mas);
3416 space = 2 * mt_slot_count(mas->node) - 2;
3417 /* -2 instead of -1 to ensure there isn't a triple split */
3418 if (ma_is_leaf(mast->bn->type))
3421 if (mas->max == ULONG_MAX)
3424 if (slot_total >= space)
3427 /* Get the data; Fill mast->bn */
3430 mab_shift_right(mast->bn, end + 1);
3431 mas_mab_cp(&tmp_mas, 0, end, mast->bn, 0);
3432 mast->bn->b_end = slot_total + 1;
3434 mas_mab_cp(&tmp_mas, 0, end, mast->bn, mast->bn->b_end);
3437 /* Configure mast for splitting of mast->bn */
3438 split = mt_slots[mast->bn->type] - 2;
3440 /* Switch mas to prev node */
3441 mat_add(mast->free, mas->node);
3443 /* Start using mast->l for the left side. */
3444 tmp_mas.node = mast->l->node;
3447 mat_add(mast->free, tmp_mas.node);
3448 tmp_mas.node = mast->r->node;
3450 split = slot_total - split;
3452 split = mab_no_null_split(mast->bn, split, mt_slots[mast->bn->type]);
3453 /* Update parent slot for split calculation. */
3455 mast->orig_l->offset += end + 1;
3457 mast_split_data(mast, mas, split);
3458 mast_fill_bnode(mast, mas, 2);
3459 mas_split_final_node(mast, mas, height + 1);
3464 * mas_split() - Split data that is too big for one node into two.
3465 * @mas: The maple state
3466 * @b_node: The maple big node
3467 * Return: 1 on success, 0 on failure.
3469 static int mas_split(struct ma_state *mas, struct maple_big_node *b_node)
3471 struct maple_subtree_state mast;
3473 unsigned char mid_split, split = 0;
3476 * Splitting is handled differently from any other B-tree; the Maple
3477 * Tree splits upwards. Splitting up means that the split operation
3478 * occurs when the walk of the tree hits the leaves and not on the way
3479 * down. The reason for splitting up is that it is impossible to know
3480 * how much space will be needed until the leaf is (or leaves are)
3481 * reached. Since overwriting data is allowed and a range could
3482 * overwrite more than one range or result in changing one entry into 3
3483 * entries, it is impossible to know if a split is required until the
3486 * Splitting is a balancing act between keeping allocations to a minimum
3487 * and avoiding a 'jitter' event where a tree is expanded to make room
3488 * for an entry followed by a contraction when the entry is removed. To
3489 * accomplish the balance, there are empty slots remaining in both left
3490 * and right nodes after a split.
3492 MA_STATE(l_mas, mas->tree, mas->index, mas->last);
3493 MA_STATE(r_mas, mas->tree, mas->index, mas->last);
3494 MA_STATE(prev_l_mas, mas->tree, mas->index, mas->last);
3495 MA_STATE(prev_r_mas, mas->tree, mas->index, mas->last);
3496 MA_TOPIARY(mat, mas->tree);
3498 trace_ma_op(__func__, mas);
3499 mas->depth = mas_mt_height(mas);
3500 /* Allocation failures will happen early. */
3501 mas_node_count(mas, 1 + mas->depth * 2);
3502 if (mas_is_err(mas))
3507 mast.orig_l = &prev_l_mas;
3508 mast.orig_r = &prev_r_mas;
3512 while (height++ <= mas->depth) {
3513 if (mt_slots[b_node->type] > b_node->b_end) {
3514 mas_split_final_node(&mast, mas, height);
3518 l_mas = r_mas = *mas;
3519 l_mas.node = mas_new_ma_node(mas, b_node);
3520 r_mas.node = mas_new_ma_node(mas, b_node);
3522 * Another way that 'jitter' is avoided is to terminate a split up early if the
3523 * left or right node has space to spare. This is referred to as "pushing left"
3524 * or "pushing right" and is similar to the B* tree, except the nodes left or
3525 * right can rarely be reused due to RCU, but the ripple upwards is halted which
3526 * is a significant savings.
3528 /* Try to push left. */
3529 if (mas_push_data(mas, height, &mast, true))
3532 /* Try to push right. */
3533 if (mas_push_data(mas, height, &mast, false))
3536 split = mab_calc_split(mas, b_node, &mid_split, prev_l_mas.min);
3537 mast_split_data(&mast, mas, split);
3539 * Usually correct, mab_mas_cp in the above call overwrites
3542 mast.r->max = mas->max;
3543 mast_fill_bnode(&mast, mas, 1);
3544 prev_l_mas = *mast.l;
3545 prev_r_mas = *mast.r;
3548 /* Set the original node as dead */
3549 mat_add(mast.free, mas->node);
3550 mas->node = l_mas.node;
3551 mas_wmb_replace(mas, mast.free, NULL);
3552 mtree_range_walk(mas);
3557 * mas_reuse_node() - Reuse the node to store the data.
3558 * @wr_mas: The maple write state
3559 * @bn: The maple big node
3560 * @end: The end of the data.
3562 * Will always return false in RCU mode.
3564 * Return: True if node was reused, false otherwise.
3566 static inline bool mas_reuse_node(struct ma_wr_state *wr_mas,
3567 struct maple_big_node *bn, unsigned char end)
3569 /* Need to be rcu safe. */
3570 if (mt_in_rcu(wr_mas->mas->tree))
3573 if (end > bn->b_end) {
3574 int clear = mt_slots[wr_mas->type] - bn->b_end;
3576 memset(wr_mas->slots + bn->b_end, 0, sizeof(void *) * clear--);
3577 memset(wr_mas->pivots + bn->b_end, 0, sizeof(void *) * clear);
3579 mab_mas_cp(bn, 0, bn->b_end, wr_mas->mas, false);
3584 * mas_commit_b_node() - Commit the big node into the tree.
3585 * @wr_mas: The maple write state
3586 * @b_node: The maple big node
3587 * @end: The end of the data.
3589 static noinline_for_kasan int mas_commit_b_node(struct ma_wr_state *wr_mas,
3590 struct maple_big_node *b_node, unsigned char end)
3592 struct maple_node *node;
3593 unsigned char b_end = b_node->b_end;
3594 enum maple_type b_type = b_node->type;
3596 if ((b_end < mt_min_slots[b_type]) &&
3597 (!mte_is_root(wr_mas->mas->node)) &&
3598 (mas_mt_height(wr_mas->mas) > 1))
3599 return mas_rebalance(wr_mas->mas, b_node);
3601 if (b_end >= mt_slots[b_type])
3602 return mas_split(wr_mas->mas, b_node);
3604 if (mas_reuse_node(wr_mas, b_node, end))
3607 mas_node_count(wr_mas->mas, 1);
3608 if (mas_is_err(wr_mas->mas))
3611 node = mas_pop_node(wr_mas->mas);
3612 node->parent = mas_mn(wr_mas->mas)->parent;
3613 wr_mas->mas->node = mt_mk_node(node, b_type);
3614 mab_mas_cp(b_node, 0, b_end, wr_mas->mas, false);
3615 mas_replace(wr_mas->mas, false);
3617 mas_update_gap(wr_mas->mas);
3622 * mas_root_expand() - Expand a root to a node
3623 * @mas: The maple state
3624 * @entry: The entry to store into the tree
3626 static inline int mas_root_expand(struct ma_state *mas, void *entry)
3628 void *contents = mas_root_locked(mas);
3629 enum maple_type type = maple_leaf_64;
3630 struct maple_node *node;
3632 unsigned long *pivots;
3635 mas_node_count(mas, 1);
3636 if (unlikely(mas_is_err(mas)))
3639 node = mas_pop_node(mas);
3640 pivots = ma_pivots(node, type);
3641 slots = ma_slots(node, type);
3642 node->parent = ma_parent_ptr(
3643 ((unsigned long)mas->tree | MA_ROOT_PARENT));
3644 mas->node = mt_mk_node(node, type);
3648 rcu_assign_pointer(slots[slot], contents);
3649 if (likely(mas->index > 1))
3652 pivots[slot++] = mas->index - 1;
3655 rcu_assign_pointer(slots[slot], entry);
3657 pivots[slot] = mas->last;
3658 if (mas->last != ULONG_MAX)
3661 mas_set_height(mas);
3663 /* swap the new root into the tree */
3664 rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
3665 ma_set_meta(node, maple_leaf_64, 0, slot);
3669 static inline void mas_store_root(struct ma_state *mas, void *entry)
3671 if (likely((mas->last != 0) || (mas->index != 0)))
3672 mas_root_expand(mas, entry);
3673 else if (((unsigned long) (entry) & 3) == 2)
3674 mas_root_expand(mas, entry);
3676 rcu_assign_pointer(mas->tree->ma_root, entry);
3677 mas->node = MAS_START;
3682 * mas_is_span_wr() - Check if the write needs to be treated as a write that
3684 * @mas: The maple state
3685 * @piv: The pivot value being written
3686 * @type: The maple node type
3687 * @entry: The data to write
3689 * Spanning writes are writes that start in one node and end in another OR if
3690 * the write of a %NULL will cause the node to end with a %NULL.
3692 * Return: True if this is a spanning write, false otherwise.
3694 static bool mas_is_span_wr(struct ma_wr_state *wr_mas)
3697 unsigned long last = wr_mas->mas->last;
3698 unsigned long piv = wr_mas->r_max;
3699 enum maple_type type = wr_mas->type;
3700 void *entry = wr_mas->entry;
3702 /* Contained in this pivot */
3706 max = wr_mas->mas->max;
3707 if (unlikely(ma_is_leaf(type))) {
3708 /* Fits in the node, but may span slots. */
3712 /* Writes to the end of the node but not null. */
3713 if ((last == max) && entry)
3717 * Writing ULONG_MAX is not a spanning write regardless of the
3718 * value being written as long as the range fits in the node.
3720 if ((last == ULONG_MAX) && (last == max))
3722 } else if (piv == last) {
3726 /* Detect spanning store wr walk */
3727 if (last == ULONG_MAX)
3731 trace_ma_write(__func__, wr_mas->mas, piv, entry);
3736 static inline void mas_wr_walk_descend(struct ma_wr_state *wr_mas)
3738 wr_mas->type = mte_node_type(wr_mas->mas->node);
3739 mas_wr_node_walk(wr_mas);
3740 wr_mas->slots = ma_slots(wr_mas->node, wr_mas->type);
3743 static inline void mas_wr_walk_traverse(struct ma_wr_state *wr_mas)
3745 wr_mas->mas->max = wr_mas->r_max;
3746 wr_mas->mas->min = wr_mas->r_min;
3747 wr_mas->mas->node = wr_mas->content;
3748 wr_mas->mas->offset = 0;
3749 wr_mas->mas->depth++;
3752 * mas_wr_walk() - Walk the tree for a write.
3753 * @wr_mas: The maple write state
3755 * Uses mas_slot_locked() and does not need to worry about dead nodes.
3757 * Return: True if it's contained in a node, false on spanning write.
3759 static bool mas_wr_walk(struct ma_wr_state *wr_mas)
3761 struct ma_state *mas = wr_mas->mas;
3764 mas_wr_walk_descend(wr_mas);
3765 if (unlikely(mas_is_span_wr(wr_mas)))
3768 wr_mas->content = mas_slot_locked(mas, wr_mas->slots,
3770 if (ma_is_leaf(wr_mas->type))
3773 mas_wr_walk_traverse(wr_mas);
3779 static bool mas_wr_walk_index(struct ma_wr_state *wr_mas)
3781 struct ma_state *mas = wr_mas->mas;
3784 mas_wr_walk_descend(wr_mas);
3785 wr_mas->content = mas_slot_locked(mas, wr_mas->slots,
3787 if (ma_is_leaf(wr_mas->type))
3789 mas_wr_walk_traverse(wr_mas);
3795 * mas_extend_spanning_null() - Extend a store of a %NULL to include surrounding %NULLs.
3796 * @l_wr_mas: The left maple write state
3797 * @r_wr_mas: The right maple write state
3799 static inline void mas_extend_spanning_null(struct ma_wr_state *l_wr_mas,
3800 struct ma_wr_state *r_wr_mas)
3802 struct ma_state *r_mas = r_wr_mas->mas;
3803 struct ma_state *l_mas = l_wr_mas->mas;
3804 unsigned char l_slot;
3806 l_slot = l_mas->offset;
3807 if (!l_wr_mas->content)
3808 l_mas->index = l_wr_mas->r_min;
3810 if ((l_mas->index == l_wr_mas->r_min) &&
3812 !mas_slot_locked(l_mas, l_wr_mas->slots, l_slot - 1))) {
3814 l_mas->index = l_wr_mas->pivots[l_slot - 2] + 1;
3816 l_mas->index = l_mas->min;
3818 l_mas->offset = l_slot - 1;
3821 if (!r_wr_mas->content) {
3822 if (r_mas->last < r_wr_mas->r_max)
3823 r_mas->last = r_wr_mas->r_max;
3825 } else if ((r_mas->last == r_wr_mas->r_max) &&
3826 (r_mas->last < r_mas->max) &&
3827 !mas_slot_locked(r_mas, r_wr_mas->slots, r_mas->offset + 1)) {
3828 r_mas->last = mas_safe_pivot(r_mas, r_wr_mas->pivots,
3829 r_wr_mas->type, r_mas->offset + 1);
3834 static inline void *mas_state_walk(struct ma_state *mas)
3838 entry = mas_start(mas);
3839 if (mas_is_none(mas))
3842 if (mas_is_ptr(mas))
3845 return mtree_range_walk(mas);
3849 * mtree_lookup_walk() - Internal quick lookup that does not keep maple state up
3852 * @mas: The maple state.
3854 * Note: Leaves mas in undesirable state.
3855 * Return: The entry for @mas->index or %NULL on dead node.
3857 static inline void *mtree_lookup_walk(struct ma_state *mas)
3859 unsigned long *pivots;
3860 unsigned char offset;
3861 struct maple_node *node;
3862 struct maple_enode *next;
3863 enum maple_type type;
3872 node = mte_to_node(next);
3873 type = mte_node_type(next);
3874 pivots = ma_pivots(node, type);
3875 end = ma_data_end(node, type, pivots, max);
3876 if (unlikely(ma_dead_node(node)))
3879 if (pivots[offset] >= mas->index)
3884 } while ((offset < end) && (pivots[offset] < mas->index));
3886 if (likely(offset > end))
3887 max = pivots[offset];
3890 slots = ma_slots(node, type);
3891 next = mt_slot(mas->tree, slots, offset);
3892 if (unlikely(ma_dead_node(node)))
3894 } while (!ma_is_leaf(type));
3896 return (void *)next;
3904 * mas_new_root() - Create a new root node that only contains the entry passed
3906 * @mas: The maple state
3907 * @entry: The entry to store.
3909 * Only valid when the index == 0 and the last == ULONG_MAX
3911 * Return 0 on error, 1 on success.
3913 static inline int mas_new_root(struct ma_state *mas, void *entry)
3915 struct maple_enode *root = mas_root_locked(mas);
3916 enum maple_type type = maple_leaf_64;
3917 struct maple_node *node;
3919 unsigned long *pivots;
3921 if (!entry && !mas->index && mas->last == ULONG_MAX) {
3923 mas_set_height(mas);
3924 rcu_assign_pointer(mas->tree->ma_root, entry);
3925 mas->node = MAS_START;
3929 mas_node_count(mas, 1);
3930 if (mas_is_err(mas))
3933 node = mas_pop_node(mas);
3934 pivots = ma_pivots(node, type);
3935 slots = ma_slots(node, type);
3936 node->parent = ma_parent_ptr(
3937 ((unsigned long)mas->tree | MA_ROOT_PARENT));
3938 mas->node = mt_mk_node(node, type);
3939 rcu_assign_pointer(slots[0], entry);
3940 pivots[0] = mas->last;
3942 mas_set_height(mas);
3943 rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
3946 if (xa_is_node(root))
3947 mte_destroy_walk(root, mas->tree);
3952 * mas_wr_spanning_store() - Create a subtree with the store operation completed
3953 * and new nodes where necessary, then place the sub-tree in the actual tree.
3954 * Note that mas is expected to point to the node which caused the store to
3956 * @wr_mas: The maple write state
3958 * Return: 0 on error, positive on success.
3960 static inline int mas_wr_spanning_store(struct ma_wr_state *wr_mas)
3962 struct maple_subtree_state mast;
3963 struct maple_big_node b_node;
3964 struct ma_state *mas;
3965 unsigned char height;
3967 /* Left and Right side of spanning store */
3968 MA_STATE(l_mas, NULL, 0, 0);
3969 MA_STATE(r_mas, NULL, 0, 0);
3971 MA_WR_STATE(r_wr_mas, &r_mas, wr_mas->entry);
3972 MA_WR_STATE(l_wr_mas, &l_mas, wr_mas->entry);
3975 * A store operation that spans multiple nodes is called a spanning
3976 * store and is handled early in the store call stack by the function
3977 * mas_is_span_wr(). When a spanning store is identified, the maple
3978 * state is duplicated. The first maple state walks the left tree path
3979 * to ``index``, the duplicate walks the right tree path to ``last``.
3980 * The data in the two nodes are combined into a single node, two nodes,
3981 * or possibly three nodes (see the 3-way split above). A ``NULL``
3982 * written to the last entry of a node is considered a spanning store as
3983 * a rebalance is required for the operation to complete and an overflow
3984 * of data may happen.
3987 trace_ma_op(__func__, mas);
3989 if (unlikely(!mas->index && mas->last == ULONG_MAX))
3990 return mas_new_root(mas, wr_mas->entry);
3992 * Node rebalancing may occur due to this store, so there may be three new
3993 * entries per level plus a new root.
3995 height = mas_mt_height(mas);
3996 mas_node_count(mas, 1 + height * 3);
3997 if (mas_is_err(mas))
4001 * Set up right side. Need to get to the next offset after the spanning
4002 * store to ensure it's not NULL and to combine both the next node and
4003 * the node with the start together.
4006 /* Avoid overflow, walk to next slot in the tree. */
4010 r_mas.index = r_mas.last;
4011 mas_wr_walk_index(&r_wr_mas);
4012 r_mas.last = r_mas.index = mas->last;
4014 /* Set up left side. */
4016 mas_wr_walk_index(&l_wr_mas);
4018 if (!wr_mas->entry) {
4019 mas_extend_spanning_null(&l_wr_mas, &r_wr_mas);
4020 mas->offset = l_mas.offset;
4021 mas->index = l_mas.index;
4022 mas->last = l_mas.last = r_mas.last;
4025 /* expanding NULLs may make this cover the entire range */
4026 if (!l_mas.index && r_mas.last == ULONG_MAX) {
4027 mas_set_range(mas, 0, ULONG_MAX);
4028 return mas_new_root(mas, wr_mas->entry);
4031 memset(&b_node, 0, sizeof(struct maple_big_node));
4032 /* Copy l_mas and store the value in b_node. */
4033 mas_store_b_node(&l_wr_mas, &b_node, l_wr_mas.node_end);
4034 /* Copy r_mas into b_node. */
4035 if (r_mas.offset <= r_wr_mas.node_end)
4036 mas_mab_cp(&r_mas, r_mas.offset, r_wr_mas.node_end,
4037 &b_node, b_node.b_end + 1);
4041 /* Stop spanning searches by searching for just index. */
4042 l_mas.index = l_mas.last = mas->index;
4045 mast.orig_l = &l_mas;
4046 mast.orig_r = &r_mas;
4047 /* Combine l_mas and r_mas and split them up evenly again. */
4048 return mas_spanning_rebalance(mas, &mast, height + 1);
4052 * mas_wr_node_store() - Attempt to store the value in a node
4053 * @wr_mas: The maple write state
4055 * Attempts to reuse the node, but may allocate.
4057 * Return: True if stored, false otherwise
4059 static inline bool mas_wr_node_store(struct ma_wr_state *wr_mas)
4061 struct ma_state *mas = wr_mas->mas;
4062 void __rcu **dst_slots;
4063 unsigned long *dst_pivots;
4064 unsigned char dst_offset;
4065 unsigned char new_end = wr_mas->node_end;
4066 unsigned char offset;
4067 unsigned char node_slots = mt_slots[wr_mas->type];
4068 struct maple_node reuse, *newnode;
4069 unsigned char copy_size, max_piv = mt_pivots[wr_mas->type];
4070 bool in_rcu = mt_in_rcu(mas->tree);
4072 offset = mas->offset;
4073 if (mas->last == wr_mas->r_max) {
4074 /* runs right to the end of the node */
4075 if (mas->last == mas->max)
4077 /* don't copy this offset */
4078 wr_mas->offset_end++;
4079 } else if (mas->last < wr_mas->r_max) {
4080 /* new range ends in this range */
4081 if (unlikely(wr_mas->r_max == ULONG_MAX))
4082 mas_bulk_rebalance(mas, wr_mas->node_end, wr_mas->type);
4086 if (wr_mas->end_piv == mas->last)
4087 wr_mas->offset_end++;
4089 new_end -= wr_mas->offset_end - offset - 1;
4092 /* new range starts within a range */
4093 if (wr_mas->r_min < mas->index)
4096 /* Not enough room */
4097 if (new_end >= node_slots)
4100 /* Not enough data. */
4101 if (!mte_is_root(mas->node) && (new_end <= mt_min_slots[wr_mas->type]) &&
4102 !(mas->mas_flags & MA_STATE_BULK))
4107 mas_node_count(mas, 1);
4108 if (mas_is_err(mas))
4111 newnode = mas_pop_node(mas);
4113 memset(&reuse, 0, sizeof(struct maple_node));
4117 newnode->parent = mas_mn(mas)->parent;
4118 dst_pivots = ma_pivots(newnode, wr_mas->type);
4119 dst_slots = ma_slots(newnode, wr_mas->type);
4120 /* Copy from start to insert point */
4121 memcpy(dst_pivots, wr_mas->pivots, sizeof(unsigned long) * (offset + 1));
4122 memcpy(dst_slots, wr_mas->slots, sizeof(void *) * (offset + 1));
4123 dst_offset = offset;
4125 /* Handle insert of new range starting after old range */
4126 if (wr_mas->r_min < mas->index) {
4128 rcu_assign_pointer(dst_slots[dst_offset], wr_mas->content);
4129 dst_pivots[dst_offset++] = mas->index - 1;
4132 /* Store the new entry and range end. */
4133 if (dst_offset < max_piv)
4134 dst_pivots[dst_offset] = mas->last;
4135 mas->offset = dst_offset;
4136 rcu_assign_pointer(dst_slots[dst_offset], wr_mas->entry);
4139 * this range wrote to the end of the node or it overwrote the rest of
4142 if (wr_mas->offset_end > wr_mas->node_end || mas->last >= mas->max) {
4143 new_end = dst_offset;
4148 /* Copy to the end of node if necessary. */
4149 copy_size = wr_mas->node_end - wr_mas->offset_end + 1;
4150 memcpy(dst_slots + dst_offset, wr_mas->slots + wr_mas->offset_end,
4151 sizeof(void *) * copy_size);
4152 if (dst_offset < max_piv) {
4153 if (copy_size > max_piv - dst_offset)
4154 copy_size = max_piv - dst_offset;
4156 memcpy(dst_pivots + dst_offset,
4157 wr_mas->pivots + wr_mas->offset_end,
4158 sizeof(unsigned long) * copy_size);
4161 if ((wr_mas->node_end == node_slots - 1) && (new_end < node_slots - 1))
4162 dst_pivots[new_end] = mas->max;
4165 mas_leaf_set_meta(mas, newnode, dst_pivots, maple_leaf_64, new_end);
4167 mas->node = mt_mk_node(newnode, wr_mas->type);
4168 mas_replace(mas, false);
4170 memcpy(wr_mas->node, newnode, sizeof(struct maple_node));
4172 trace_ma_write(__func__, mas, 0, wr_mas->entry);
4173 mas_update_gap(mas);
4178 * mas_wr_slot_store: Attempt to store a value in a slot.
4179 * @wr_mas: the maple write state
4181 * Return: True if stored, false otherwise
4183 static inline bool mas_wr_slot_store(struct ma_wr_state *wr_mas)
4185 struct ma_state *mas = wr_mas->mas;
4186 unsigned long lmax; /* Logical max. */
4187 unsigned char offset = mas->offset;
4189 if ((wr_mas->r_max > mas->last) && ((wr_mas->r_min != mas->index) ||
4190 (offset != wr_mas->node_end)))
4193 if (offset == wr_mas->node_end - 1)
4196 lmax = wr_mas->pivots[offset + 1];
4198 /* going to overwrite too many slots. */
4199 if (lmax < mas->last)
4202 if (wr_mas->r_min == mas->index) {
4203 /* overwriting two or more ranges with one. */
4204 if (lmax == mas->last)
4207 /* Overwriting all of offset and a portion of offset + 1. */
4208 rcu_assign_pointer(wr_mas->slots[offset], wr_mas->entry);
4209 wr_mas->pivots[offset] = mas->last;
4213 /* Doesn't end on the next range end. */
4214 if (lmax != mas->last)
4217 /* Overwriting a portion of offset and all of offset + 1 */
4218 if ((offset + 1 < mt_pivots[wr_mas->type]) &&
4219 (wr_mas->entry || wr_mas->pivots[offset + 1]))
4220 wr_mas->pivots[offset + 1] = mas->last;
4222 rcu_assign_pointer(wr_mas->slots[offset + 1], wr_mas->entry);
4223 wr_mas->pivots[offset] = mas->index - 1;
4224 mas->offset++; /* Keep mas accurate. */
4227 trace_ma_write(__func__, mas, 0, wr_mas->entry);
4228 mas_update_gap(mas);
4232 static inline void mas_wr_end_piv(struct ma_wr_state *wr_mas)
4234 while ((wr_mas->mas->last > wr_mas->end_piv) &&
4235 (wr_mas->offset_end < wr_mas->node_end))
4236 wr_mas->end_piv = wr_mas->pivots[++wr_mas->offset_end];
4238 if (wr_mas->mas->last > wr_mas->end_piv)
4239 wr_mas->end_piv = wr_mas->mas->max;
4242 static inline void mas_wr_extend_null(struct ma_wr_state *wr_mas)
4244 struct ma_state *mas = wr_mas->mas;
4246 if (mas->last < wr_mas->end_piv && !wr_mas->slots[wr_mas->offset_end])
4247 mas->last = wr_mas->end_piv;
4249 /* Check next slot(s) if we are overwriting the end */
4250 if ((mas->last == wr_mas->end_piv) &&
4251 (wr_mas->node_end != wr_mas->offset_end) &&
4252 !wr_mas->slots[wr_mas->offset_end + 1]) {
4253 wr_mas->offset_end++;
4254 if (wr_mas->offset_end == wr_mas->node_end)
4255 mas->last = mas->max;
4257 mas->last = wr_mas->pivots[wr_mas->offset_end];
4258 wr_mas->end_piv = mas->last;
4261 if (!wr_mas->content) {
4262 /* If this one is null, the next and prev are not */
4263 mas->index = wr_mas->r_min;
4265 /* Check prev slot if we are overwriting the start */
4266 if (mas->index == wr_mas->r_min && mas->offset &&
4267 !wr_mas->slots[mas->offset - 1]) {
4269 wr_mas->r_min = mas->index =
4270 mas_safe_min(mas, wr_mas->pivots, mas->offset);
4271 wr_mas->r_max = wr_mas->pivots[mas->offset];
4276 static inline bool mas_wr_append(struct ma_wr_state *wr_mas)
4278 unsigned char end = wr_mas->node_end;
4279 unsigned char new_end = end + 1;
4280 struct ma_state *mas = wr_mas->mas;
4281 unsigned char node_pivots = mt_pivots[wr_mas->type];
4283 if ((mas->index != wr_mas->r_min) && (mas->last == wr_mas->r_max)) {
4284 if (new_end < node_pivots)
4285 wr_mas->pivots[new_end] = wr_mas->pivots[end];
4287 if (new_end < node_pivots)
4288 ma_set_meta(wr_mas->node, maple_leaf_64, 0, new_end);
4290 rcu_assign_pointer(wr_mas->slots[new_end], wr_mas->entry);
4291 mas->offset = new_end;
4292 wr_mas->pivots[end] = mas->index - 1;
4297 if ((mas->index == wr_mas->r_min) && (mas->last < wr_mas->r_max)) {
4298 if (new_end < node_pivots)
4299 wr_mas->pivots[new_end] = wr_mas->pivots[end];
4301 rcu_assign_pointer(wr_mas->slots[new_end], wr_mas->content);
4302 if (new_end < node_pivots)
4303 ma_set_meta(wr_mas->node, maple_leaf_64, 0, new_end);
4305 wr_mas->pivots[end] = mas->last;
4306 rcu_assign_pointer(wr_mas->slots[end], wr_mas->entry);
4314 * mas_wr_bnode() - Slow path for a modification.
4315 * @wr_mas: The write maple state
4317 * This is where split, rebalance end up.
4319 static void mas_wr_bnode(struct ma_wr_state *wr_mas)
4321 struct maple_big_node b_node;
4323 trace_ma_write(__func__, wr_mas->mas, 0, wr_mas->entry);
4324 memset(&b_node, 0, sizeof(struct maple_big_node));
4325 mas_store_b_node(wr_mas, &b_node, wr_mas->offset_end);
4326 mas_commit_b_node(wr_mas, &b_node, wr_mas->node_end);
4329 static inline void mas_wr_modify(struct ma_wr_state *wr_mas)
4331 unsigned char node_slots;
4332 unsigned char node_size;
4333 struct ma_state *mas = wr_mas->mas;
4335 /* Direct replacement */
4336 if (wr_mas->r_min == mas->index && wr_mas->r_max == mas->last) {
4337 rcu_assign_pointer(wr_mas->slots[mas->offset], wr_mas->entry);
4338 if (!!wr_mas->entry ^ !!wr_mas->content)
4339 mas_update_gap(mas);
4343 /* Attempt to append */
4344 node_slots = mt_slots[wr_mas->type];
4345 node_size = wr_mas->node_end - wr_mas->offset_end + mas->offset + 2;
4346 if (mas->max == ULONG_MAX)
4349 /* slot and node store will not fit, go to the slow path */
4350 if (unlikely(node_size >= node_slots))
4353 if (wr_mas->entry && (wr_mas->node_end < node_slots - 1) &&
4354 (mas->offset == wr_mas->node_end) && mas_wr_append(wr_mas)) {
4355 if (!wr_mas->content || !wr_mas->entry)
4356 mas_update_gap(mas);
4360 if ((wr_mas->offset_end - mas->offset <= 1) && mas_wr_slot_store(wr_mas))
4362 else if (mas_wr_node_store(wr_mas))
4365 if (mas_is_err(mas))
4369 mas_wr_bnode(wr_mas);
4373 * mas_wr_store_entry() - Internal call to store a value
4374 * @mas: The maple state
4375 * @entry: The entry to store.
4377 * Return: The contents that was stored at the index.
4379 static inline void *mas_wr_store_entry(struct ma_wr_state *wr_mas)
4381 struct ma_state *mas = wr_mas->mas;
4383 wr_mas->content = mas_start(mas);
4384 if (mas_is_none(mas) || mas_is_ptr(mas)) {
4385 mas_store_root(mas, wr_mas->entry);
4386 return wr_mas->content;
4389 if (unlikely(!mas_wr_walk(wr_mas))) {
4390 mas_wr_spanning_store(wr_mas);
4391 return wr_mas->content;
4394 /* At this point, we are at the leaf node that needs to be altered. */
4395 wr_mas->end_piv = wr_mas->r_max;
4396 mas_wr_end_piv(wr_mas);
4399 mas_wr_extend_null(wr_mas);
4401 /* New root for a single pointer */
4402 if (unlikely(!mas->index && mas->last == ULONG_MAX)) {
4403 mas_new_root(mas, wr_mas->entry);
4404 return wr_mas->content;
4407 mas_wr_modify(wr_mas);
4408 return wr_mas->content;
4412 * mas_insert() - Internal call to insert a value
4413 * @mas: The maple state
4414 * @entry: The entry to store
4416 * Return: %NULL or the contents that already exists at the requested index
4417 * otherwise. The maple state needs to be checked for error conditions.
4419 static inline void *mas_insert(struct ma_state *mas, void *entry)
4421 MA_WR_STATE(wr_mas, mas, entry);
4424 * Inserting a new range inserts either 0, 1, or 2 pivots within the
4425 * tree. If the insert fits exactly into an existing gap with a value
4426 * of NULL, then the slot only needs to be written with the new value.
4427 * If the range being inserted is adjacent to another range, then only a
4428 * single pivot needs to be inserted (as well as writing the entry). If
4429 * the new range is within a gap but does not touch any other ranges,
4430 * then two pivots need to be inserted: the start - 1, and the end. As
4431 * usual, the entry must be written. Most operations require a new node
4432 * to be allocated and replace an existing node to ensure RCU safety,
4433 * when in RCU mode. The exception to requiring a newly allocated node
4434 * is when inserting at the end of a node (appending). When done
4435 * carefully, appending can reuse the node in place.
4437 wr_mas.content = mas_start(mas);
4441 if (mas_is_none(mas) || mas_is_ptr(mas)) {
4442 mas_store_root(mas, entry);
4446 /* spanning writes always overwrite something */
4447 if (!mas_wr_walk(&wr_mas))
4450 /* At this point, we are at the leaf node that needs to be altered. */
4451 wr_mas.offset_end = mas->offset;
4452 wr_mas.end_piv = wr_mas.r_max;
4454 if (wr_mas.content || (mas->last > wr_mas.r_max))
4460 mas_wr_modify(&wr_mas);
4461 return wr_mas.content;
4464 mas_set_err(mas, -EEXIST);
4465 return wr_mas.content;
4470 * mas_prev_node() - Find the prev non-null entry at the same level in the
4471 * tree. The prev value will be mas->node[mas->offset] or MAS_NONE.
4472 * @mas: The maple state
4473 * @min: The lower limit to search
4475 * The prev node value will be mas->node[mas->offset] or MAS_NONE.
4476 * Return: 1 if the node is dead, 0 otherwise.
4478 static inline int mas_prev_node(struct ma_state *mas, unsigned long min)
4483 struct maple_node *node;
4484 struct maple_enode *enode;
4485 unsigned long *pivots;
4487 if (mas_is_none(mas))
4493 if (ma_is_root(node))
4497 if (unlikely(mas_ascend(mas)))
4499 offset = mas->offset;
4504 mt = mte_node_type(mas->node);
4506 slots = ma_slots(node, mt);
4507 pivots = ma_pivots(node, mt);
4508 mas->max = pivots[offset];
4510 mas->min = pivots[offset - 1] + 1;
4511 if (unlikely(ma_dead_node(node)))
4519 enode = mas_slot(mas, slots, offset);
4520 if (unlikely(ma_dead_node(node)))
4524 mt = mte_node_type(mas->node);
4526 slots = ma_slots(node, mt);
4527 pivots = ma_pivots(node, mt);
4528 offset = ma_data_end(node, mt, pivots, mas->max);
4530 mas->min = pivots[offset - 1] + 1;
4532 if (offset < mt_pivots[mt])
4533 mas->max = pivots[offset];
4539 mas->node = mas_slot(mas, slots, offset);
4540 if (unlikely(ma_dead_node(node)))
4543 mas->offset = mas_data_end(mas);
4544 if (unlikely(mte_dead_node(mas->node)))
4550 mas->offset = offset;
4552 mas->min = pivots[offset - 1] + 1;
4554 if (unlikely(ma_dead_node(node)))
4557 mas->node = MAS_NONE;
4562 * mas_next_node() - Get the next node at the same level in the tree.
4563 * @mas: The maple state
4564 * @max: The maximum pivot value to check.
4566 * The next value will be mas->node[mas->offset] or MAS_NONE.
4567 * Return: 1 on dead node, 0 otherwise.
4569 static inline int mas_next_node(struct ma_state *mas, struct maple_node *node,
4572 unsigned long min, pivot;
4573 unsigned long *pivots;
4574 struct maple_enode *enode;
4576 unsigned char offset;
4580 if (mas->max >= max)
4585 if (ma_is_root(node))
4592 if (unlikely(mas_ascend(mas)))
4595 offset = mas->offset;
4598 mt = mte_node_type(mas->node);
4599 pivots = ma_pivots(node, mt);
4600 } while (unlikely(offset == ma_data_end(node, mt, pivots, mas->max)));
4602 slots = ma_slots(node, mt);
4603 pivot = mas_safe_pivot(mas, pivots, ++offset, mt);
4604 while (unlikely(level > 1)) {
4605 /* Descend, if necessary */
4606 enode = mas_slot(mas, slots, offset);
4607 if (unlikely(ma_dead_node(node)))
4613 mt = mte_node_type(mas->node);
4614 slots = ma_slots(node, mt);
4615 pivots = ma_pivots(node, mt);
4620 enode = mas_slot(mas, slots, offset);
4621 if (unlikely(ma_dead_node(node)))
4630 if (unlikely(ma_dead_node(node)))
4633 mas->node = MAS_NONE;
4638 * mas_next_nentry() - Get the next node entry
4639 * @mas: The maple state
4640 * @max: The maximum value to check
4641 * @*range_start: Pointer to store the start of the range.
4643 * Sets @mas->offset to the offset of the next node entry, @mas->last to the
4644 * pivot of the entry.
4646 * Return: The next entry, %NULL otherwise
4648 static inline void *mas_next_nentry(struct ma_state *mas,
4649 struct maple_node *node, unsigned long max, enum maple_type type)
4651 unsigned char count;
4652 unsigned long pivot;
4653 unsigned long *pivots;
4657 if (mas->last == mas->max) {
4658 mas->index = mas->max;
4662 pivots = ma_pivots(node, type);
4663 slots = ma_slots(node, type);
4664 mas->index = mas_safe_min(mas, pivots, mas->offset);
4665 count = ma_data_end(node, type, pivots, mas->max);
4666 if (ma_dead_node(node))
4669 if (mas->index > max)
4672 if (mas->offset > count)
4675 while (mas->offset < count) {
4676 pivot = pivots[mas->offset];
4677 entry = mas_slot(mas, slots, mas->offset);
4678 if (ma_dead_node(node))
4687 mas->index = pivot + 1;
4691 if (mas->index > mas->max) {
4692 mas->index = mas->last;
4696 pivot = mas_safe_pivot(mas, pivots, mas->offset, type);
4697 entry = mas_slot(mas, slots, mas->offset);
4698 if (ma_dead_node(node))
4712 static inline void mas_rewalk(struct ma_state *mas, unsigned long index)
4715 mas_set(mas, index);
4716 mas_state_walk(mas);
4717 if (mas_is_start(mas))
4722 * mas_next_entry() - Internal function to get the next entry.
4723 * @mas: The maple state
4724 * @limit: The maximum range start.
4726 * Set the @mas->node to the next entry and the range_start to
4727 * the beginning value for the entry. Does not check beyond @limit.
4728 * Sets @mas->index and @mas->last to the limit if it is hit.
4729 * Restarts on dead nodes.
4731 * Return: the next entry or %NULL.
4733 static inline void *mas_next_entry(struct ma_state *mas, unsigned long limit)
4736 struct maple_enode *prev_node;
4737 struct maple_node *node;
4738 unsigned char offset;
4742 if (mas->index > limit) {
4743 mas->index = mas->last = limit;
4749 offset = mas->offset;
4750 prev_node = mas->node;
4752 mt = mte_node_type(mas->node);
4754 if (unlikely(mas->offset >= mt_slots[mt])) {
4755 mas->offset = mt_slots[mt] - 1;
4759 while (!mas_is_none(mas)) {
4760 entry = mas_next_nentry(mas, node, limit, mt);
4761 if (unlikely(ma_dead_node(node))) {
4762 mas_rewalk(mas, last);
4769 if (unlikely((mas->index > limit)))
4773 prev_node = mas->node;
4774 offset = mas->offset;
4775 if (unlikely(mas_next_node(mas, node, limit))) {
4776 mas_rewalk(mas, last);
4781 mt = mte_node_type(mas->node);
4784 mas->index = mas->last = limit;
4785 mas->offset = offset;
4786 mas->node = prev_node;
4791 * mas_prev_nentry() - Get the previous node entry.
4792 * @mas: The maple state.
4793 * @limit: The lower limit to check for a value.
4795 * Return: the entry, %NULL otherwise.
4797 static inline void *mas_prev_nentry(struct ma_state *mas, unsigned long limit,
4798 unsigned long index)
4800 unsigned long pivot, min;
4801 unsigned char offset;
4802 struct maple_node *mn;
4804 unsigned long *pivots;
4813 mt = mte_node_type(mas->node);
4814 offset = mas->offset - 1;
4815 if (offset >= mt_slots[mt])
4816 offset = mt_slots[mt] - 1;
4818 slots = ma_slots(mn, mt);
4819 pivots = ma_pivots(mn, mt);
4820 if (offset == mt_pivots[mt])
4823 pivot = pivots[offset];
4825 if (unlikely(ma_dead_node(mn))) {
4826 mas_rewalk(mas, index);
4830 while (offset && ((!mas_slot(mas, slots, offset) && pivot >= limit) ||
4832 pivot = pivots[--offset];
4834 min = mas_safe_min(mas, pivots, offset);
4835 entry = mas_slot(mas, slots, offset);
4836 if (unlikely(ma_dead_node(mn))) {
4837 mas_rewalk(mas, index);
4841 if (likely(entry)) {
4842 mas->offset = offset;
4849 static inline void *mas_prev_entry(struct ma_state *mas, unsigned long min)
4853 if (mas->index < min) {
4854 mas->index = mas->last = min;
4855 mas->node = MAS_NONE;
4859 while (likely(!mas_is_none(mas))) {
4860 entry = mas_prev_nentry(mas, min, mas->index);
4861 if (unlikely(mas->last < min))
4867 if (unlikely(mas_prev_node(mas, min))) {
4868 mas_rewalk(mas, mas->index);
4877 mas->index = mas->last = min;
4882 * mas_rev_awalk() - Internal function. Reverse allocation walk. Find the
4883 * highest gap address of a given size in a given node and descend.
4884 * @mas: The maple state
4885 * @size: The needed size.
4887 * Return: True if found in a leaf, false otherwise.
4890 static bool mas_rev_awalk(struct ma_state *mas, unsigned long size)
4892 enum maple_type type = mte_node_type(mas->node);
4893 struct maple_node *node = mas_mn(mas);
4894 unsigned long *pivots, *gaps;
4896 unsigned long gap = 0;
4897 unsigned long max, min;
4898 unsigned char offset;
4900 if (unlikely(mas_is_err(mas)))
4903 if (ma_is_dense(type)) {
4905 mas->offset = (unsigned char)(mas->index - mas->min);
4909 pivots = ma_pivots(node, type);
4910 slots = ma_slots(node, type);
4911 gaps = ma_gaps(node, type);
4912 offset = mas->offset;
4913 min = mas_safe_min(mas, pivots, offset);
4914 /* Skip out of bounds. */
4915 while (mas->last < min)
4916 min = mas_safe_min(mas, pivots, --offset);
4918 max = mas_safe_pivot(mas, pivots, offset, type);
4919 while (mas->index <= max) {
4923 else if (!mas_slot(mas, slots, offset))
4924 gap = max - min + 1;
4927 if ((size <= gap) && (size <= mas->last - min + 1))
4931 /* Skip the next slot, it cannot be a gap. */
4936 max = pivots[offset];
4937 min = mas_safe_min(mas, pivots, offset);
4947 min = mas_safe_min(mas, pivots, offset);
4950 if (unlikely((mas->index > max) || (size - 1 > max - mas->index)))
4953 if (unlikely(ma_is_leaf(type))) {
4954 mas->offset = offset;
4956 mas->max = min + gap - 1;
4960 /* descend, only happens under lock. */
4961 mas->node = mas_slot(mas, slots, offset);
4964 mas->offset = mas_data_end(mas);
4968 if (!mte_is_root(mas->node))
4972 mas_set_err(mas, -EBUSY);
4976 static inline bool mas_anode_descend(struct ma_state *mas, unsigned long size)
4978 enum maple_type type = mte_node_type(mas->node);
4979 unsigned long pivot, min, gap = 0;
4980 unsigned char offset;
4981 unsigned long *gaps;
4982 unsigned long *pivots = ma_pivots(mas_mn(mas), type);
4983 void __rcu **slots = ma_slots(mas_mn(mas), type);
4986 if (ma_is_dense(type)) {
4987 mas->offset = (unsigned char)(mas->index - mas->min);
4991 gaps = ma_gaps(mte_to_node(mas->node), type);
4992 offset = mas->offset;
4993 min = mas_safe_min(mas, pivots, offset);
4994 for (; offset < mt_slots[type]; offset++) {
4995 pivot = mas_safe_pivot(mas, pivots, offset, type);
4996 if (offset && !pivot)
4999 /* Not within lower bounds */
5000 if (mas->index > pivot)
5005 else if (!mas_slot(mas, slots, offset))
5006 gap = min(pivot, mas->last) - max(mas->index, min) + 1;
5011 if (ma_is_leaf(type)) {
5015 if (mas->index <= pivot) {
5016 mas->node = mas_slot(mas, slots, offset);
5025 if (mas->last <= pivot) {
5026 mas_set_err(mas, -EBUSY);
5031 if (mte_is_root(mas->node))
5034 mas->offset = offset;
5039 * mas_walk() - Search for @mas->index in the tree.
5040 * @mas: The maple state.
5042 * mas->index and mas->last will be set to the range if there is a value. If
5043 * mas->node is MAS_NONE, reset to MAS_START.
5045 * Return: the entry at the location or %NULL.
5047 void *mas_walk(struct ma_state *mas)
5052 entry = mas_state_walk(mas);
5053 if (mas_is_start(mas))
5056 if (mas_is_ptr(mas)) {
5061 mas->last = ULONG_MAX;
5066 if (mas_is_none(mas)) {
5068 mas->last = ULONG_MAX;
5073 EXPORT_SYMBOL_GPL(mas_walk);
5075 static inline bool mas_rewind_node(struct ma_state *mas)
5080 if (mte_is_root(mas->node)) {
5090 mas->offset = --slot;
5095 * mas_skip_node() - Internal function. Skip over a node.
5096 * @mas: The maple state.
5098 * Return: true if there is another node, false otherwise.
5100 static inline bool mas_skip_node(struct ma_state *mas)
5102 unsigned char slot, slot_count;
5103 unsigned long *pivots;
5106 mt = mte_node_type(mas->node);
5107 slot_count = mt_slots[mt] - 1;
5109 if (mte_is_root(mas->node)) {
5111 if (slot > slot_count) {
5112 mas_set_err(mas, -EBUSY);
5118 mt = mte_node_type(mas->node);
5119 slot_count = mt_slots[mt] - 1;
5121 } while (slot > slot_count);
5123 mas->offset = ++slot;
5124 pivots = ma_pivots(mas_mn(mas), mt);
5126 mas->min = pivots[slot - 1] + 1;
5128 if (slot <= slot_count)
5129 mas->max = pivots[slot];
5135 * mas_awalk() - Allocation walk. Search from low address to high, for a gap of
5137 * @mas: The maple state
5138 * @size: The size of the gap required
5140 * Search between @mas->index and @mas->last for a gap of @size.
5142 static inline void mas_awalk(struct ma_state *mas, unsigned long size)
5144 struct maple_enode *last = NULL;
5147 * There are 4 options:
5148 * go to child (descend)
5149 * go back to parent (ascend)
5150 * no gap found. (return, slot == MAPLE_NODE_SLOTS)
5151 * found the gap. (return, slot != MAPLE_NODE_SLOTS)
5153 while (!mas_is_err(mas) && !mas_anode_descend(mas, size)) {
5154 if (last == mas->node)
5162 * mas_fill_gap() - Fill a located gap with @entry.
5163 * @mas: The maple state
5164 * @entry: The value to store
5165 * @slot: The offset into the node to store the @entry
5166 * @size: The size of the entry
5167 * @index: The start location
5169 static inline void mas_fill_gap(struct ma_state *mas, void *entry,
5170 unsigned char slot, unsigned long size, unsigned long *index)
5172 MA_WR_STATE(wr_mas, mas, entry);
5173 unsigned char pslot = mte_parent_slot(mas->node);
5174 struct maple_enode *mn = mas->node;
5175 unsigned long *pivots;
5176 enum maple_type ptype;
5178 * mas->index is the start address for the search
5179 * which may no longer be needed.
5180 * mas->last is the end address for the search
5183 *index = mas->index;
5184 mas->last = mas->index + size - 1;
5187 * It is possible that using mas->max and mas->min to correctly
5188 * calculate the index and last will cause an issue in the gap
5189 * calculation, so fix the ma_state here
5192 ptype = mte_node_type(mas->node);
5193 pivots = ma_pivots(mas_mn(mas), ptype);
5194 mas->max = mas_safe_pivot(mas, pivots, pslot, ptype);
5195 mas->min = mas_safe_min(mas, pivots, pslot);
5198 mas_wr_store_entry(&wr_mas);
5202 * mas_sparse_area() - Internal function. Return upper or lower limit when
5203 * searching for a gap in an empty tree.
5204 * @mas: The maple state
5205 * @min: the minimum range
5206 * @max: The maximum range
5207 * @size: The size of the gap
5208 * @fwd: Searching forward or back
5210 static inline void mas_sparse_area(struct ma_state *mas, unsigned long min,
5211 unsigned long max, unsigned long size, bool fwd)
5213 unsigned long start = 0;
5215 if (!unlikely(mas_is_none(mas)))
5224 mas->last = start + size - 1;
5232 * mas_empty_area() - Get the lowest address within the range that is
5233 * sufficient for the size requested.
5234 * @mas: The maple state
5235 * @min: The lowest value of the range
5236 * @max: The highest value of the range
5237 * @size: The size needed
5239 int mas_empty_area(struct ma_state *mas, unsigned long min,
5240 unsigned long max, unsigned long size)
5242 unsigned char offset;
5243 unsigned long *pivots;
5246 if (mas_is_start(mas))
5248 else if (mas->offset >= 2)
5250 else if (!mas_skip_node(mas))
5254 if (mas_is_none(mas) || mas_is_ptr(mas)) {
5255 mas_sparse_area(mas, min, max, size, true);
5259 /* The start of the window can only be within these values */
5262 mas_awalk(mas, size);
5264 if (unlikely(mas_is_err(mas)))
5265 return xa_err(mas->node);
5267 offset = mas->offset;
5268 if (unlikely(offset == MAPLE_NODE_SLOTS))
5271 mt = mte_node_type(mas->node);
5272 pivots = ma_pivots(mas_mn(mas), mt);
5274 mas->min = pivots[offset - 1] + 1;
5276 if (offset < mt_pivots[mt])
5277 mas->max = pivots[offset];
5279 if (mas->index < mas->min)
5280 mas->index = mas->min;
5282 mas->last = mas->index + size - 1;
5285 EXPORT_SYMBOL_GPL(mas_empty_area);
5288 * mas_empty_area_rev() - Get the highest address within the range that is
5289 * sufficient for the size requested.
5290 * @mas: The maple state
5291 * @min: The lowest value of the range
5292 * @max: The highest value of the range
5293 * @size: The size needed
5295 int mas_empty_area_rev(struct ma_state *mas, unsigned long min,
5296 unsigned long max, unsigned long size)
5298 struct maple_enode *last = mas->node;
5300 if (mas_is_start(mas)) {
5302 mas->offset = mas_data_end(mas);
5303 } else if (mas->offset >= 2) {
5305 } else if (!mas_rewind_node(mas)) {
5310 if (mas_is_none(mas) || mas_is_ptr(mas)) {
5311 mas_sparse_area(mas, min, max, size, false);
5315 /* The start of the window can only be within these values. */
5319 while (!mas_rev_awalk(mas, size)) {
5320 if (last == mas->node) {
5321 if (!mas_rewind_node(mas))
5328 if (mas_is_err(mas))
5329 return xa_err(mas->node);
5331 if (unlikely(mas->offset == MAPLE_NODE_SLOTS))
5335 * mas_rev_awalk() has set mas->min and mas->max to the gap values. If
5336 * the maximum is outside the window we are searching, then use the last
5337 * location in the search.
5338 * mas->max and mas->min is the range of the gap.
5339 * mas->index and mas->last are currently set to the search range.
5342 /* Trim the upper limit to the max. */
5343 if (mas->max <= mas->last)
5344 mas->last = mas->max;
5346 mas->index = mas->last - size + 1;
5349 EXPORT_SYMBOL_GPL(mas_empty_area_rev);
5351 static inline int mas_alloc(struct ma_state *mas, void *entry,
5352 unsigned long size, unsigned long *index)
5357 if (mas_is_none(mas) || mas_is_ptr(mas)) {
5358 mas_root_expand(mas, entry);
5359 if (mas_is_err(mas))
5360 return xa_err(mas->node);
5363 return mte_pivot(mas->node, 0);
5364 return mte_pivot(mas->node, 1);
5367 /* Must be walking a tree. */
5368 mas_awalk(mas, size);
5369 if (mas_is_err(mas))
5370 return xa_err(mas->node);
5372 if (mas->offset == MAPLE_NODE_SLOTS)
5376 * At this point, mas->node points to the right node and we have an
5377 * offset that has a sufficient gap.
5381 min = mte_pivot(mas->node, mas->offset - 1) + 1;
5383 if (mas->index < min)
5386 mas_fill_gap(mas, entry, mas->offset, size, index);
5393 static inline int mas_rev_alloc(struct ma_state *mas, unsigned long min,
5394 unsigned long max, void *entry,
5395 unsigned long size, unsigned long *index)
5399 ret = mas_empty_area_rev(mas, min, max, size);
5403 if (mas_is_err(mas))
5404 return xa_err(mas->node);
5406 if (mas->offset == MAPLE_NODE_SLOTS)
5409 mas_fill_gap(mas, entry, mas->offset, size, index);
5417 * mas_dead_leaves() - Mark all leaves of a node as dead.
5418 * @mas: The maple state
5419 * @slots: Pointer to the slot array
5421 * Must hold the write lock.
5423 * Return: The number of leaves marked as dead.
5426 unsigned char mas_dead_leaves(struct ma_state *mas, void __rcu **slots)
5428 struct maple_node *node;
5429 enum maple_type type;
5433 for (offset = 0; offset < mt_slot_count(mas->node); offset++) {
5434 entry = mas_slot_locked(mas, slots, offset);
5435 type = mte_node_type(entry);
5436 node = mte_to_node(entry);
5437 /* Use both node and type to catch LE & BE metadata */
5441 mte_set_node_dead(entry);
5442 smp_wmb(); /* Needed for RCU */
5444 rcu_assign_pointer(slots[offset], node);
5450 static void __rcu **mas_dead_walk(struct ma_state *mas, unsigned char offset)
5452 struct maple_node *node, *next;
5453 void __rcu **slots = NULL;
5457 mas->node = ma_enode_ptr(next);
5459 slots = ma_slots(node, node->type);
5460 next = mas_slot_locked(mas, slots, offset);
5462 } while (!ma_is_leaf(next->type));
5467 static void mt_free_walk(struct rcu_head *head)
5470 struct maple_node *node, *start;
5471 struct maple_tree mt;
5472 unsigned char offset;
5473 enum maple_type type;
5474 MA_STATE(mas, &mt, 0, 0);
5476 node = container_of(head, struct maple_node, rcu);
5478 if (ma_is_leaf(node->type))
5481 mt_init_flags(&mt, node->ma_flags);
5484 mas.node = mt_mk_node(node, node->type);
5485 slots = mas_dead_walk(&mas, 0);
5486 node = mas_mn(&mas);
5488 mt_free_bulk(node->slot_len, slots);
5489 offset = node->parent_slot + 1;
5490 mas.node = node->piv_parent;
5491 if (mas_mn(&mas) == node)
5492 goto start_slots_free;
5494 type = mte_node_type(mas.node);
5495 slots = ma_slots(mte_to_node(mas.node), type);
5496 if ((offset < mt_slots[type]) && (slots[offset]))
5497 slots = mas_dead_walk(&mas, offset);
5499 node = mas_mn(&mas);
5500 } while ((node != start) || (node->slot_len < offset));
5502 slots = ma_slots(node, node->type);
5503 mt_free_bulk(node->slot_len, slots);
5508 mt_free_rcu(&node->rcu);
5511 static inline void __rcu **mas_destroy_descend(struct ma_state *mas,
5512 struct maple_enode *prev, unsigned char offset)
5514 struct maple_node *node;
5515 struct maple_enode *next = mas->node;
5516 void __rcu **slots = NULL;
5521 slots = ma_slots(node, mte_node_type(mas->node));
5522 next = mas_slot_locked(mas, slots, 0);
5523 if ((mte_dead_node(next)))
5524 next = mas_slot_locked(mas, slots, 1);
5526 mte_set_node_dead(mas->node);
5527 node->type = mte_node_type(mas->node);
5528 node->piv_parent = prev;
5529 node->parent_slot = offset;
5532 } while (!mte_is_leaf(next));
5537 static void mt_destroy_walk(struct maple_enode *enode, unsigned char ma_flags,
5541 struct maple_node *node = mte_to_node(enode);
5542 struct maple_enode *start;
5543 struct maple_tree mt;
5545 MA_STATE(mas, &mt, 0, 0);
5547 if (mte_is_leaf(enode))
5550 mt_init_flags(&mt, ma_flags);
5553 mas.node = start = enode;
5554 slots = mas_destroy_descend(&mas, start, 0);
5555 node = mas_mn(&mas);
5557 enum maple_type type;
5558 unsigned char offset;
5559 struct maple_enode *parent, *tmp;
5561 node->slot_len = mas_dead_leaves(&mas, slots);
5563 mt_free_bulk(node->slot_len, slots);
5564 offset = node->parent_slot + 1;
5565 mas.node = node->piv_parent;
5566 if (mas_mn(&mas) == node)
5567 goto start_slots_free;
5569 type = mte_node_type(mas.node);
5570 slots = ma_slots(mte_to_node(mas.node), type);
5571 if (offset >= mt_slots[type])
5574 tmp = mas_slot_locked(&mas, slots, offset);
5575 if (mte_node_type(tmp) && mte_to_node(tmp)) {
5578 slots = mas_destroy_descend(&mas, parent, offset);
5581 node = mas_mn(&mas);
5582 } while (start != mas.node);
5584 node = mas_mn(&mas);
5585 node->slot_len = mas_dead_leaves(&mas, slots);
5587 mt_free_bulk(node->slot_len, slots);
5594 mt_free_rcu(&node->rcu);
5598 * mte_destroy_walk() - Free a tree or sub-tree.
5599 * @enode: the encoded maple node (maple_enode) to start
5600 * @mt: the tree to free - needed for node types.
5602 * Must hold the write lock.
5604 static inline void mte_destroy_walk(struct maple_enode *enode,
5605 struct maple_tree *mt)
5607 struct maple_node *node = mte_to_node(enode);
5609 if (mt_in_rcu(mt)) {
5610 mt_destroy_walk(enode, mt->ma_flags, false);
5611 call_rcu(&node->rcu, mt_free_walk);
5613 mt_destroy_walk(enode, mt->ma_flags, true);
5617 static void mas_wr_store_setup(struct ma_wr_state *wr_mas)
5619 if (unlikely(mas_is_paused(wr_mas->mas)))
5620 mas_reset(wr_mas->mas);
5622 if (!mas_is_start(wr_mas->mas)) {
5623 if (mas_is_none(wr_mas->mas)) {
5624 mas_reset(wr_mas->mas);
5626 wr_mas->r_max = wr_mas->mas->max;
5627 wr_mas->type = mte_node_type(wr_mas->mas->node);
5628 if (mas_is_span_wr(wr_mas))
5629 mas_reset(wr_mas->mas);
5637 * mas_store() - Store an @entry.
5638 * @mas: The maple state.
5639 * @entry: The entry to store.
5641 * The @mas->index and @mas->last is used to set the range for the @entry.
5642 * Note: The @mas should have pre-allocated entries to ensure there is memory to
5643 * store the entry. Please see mas_expected_entries()/mas_destroy() for more details.
5645 * Return: the first entry between mas->index and mas->last or %NULL.
5647 void *mas_store(struct ma_state *mas, void *entry)
5649 MA_WR_STATE(wr_mas, mas, entry);
5651 trace_ma_write(__func__, mas, 0, entry);
5652 #ifdef CONFIG_DEBUG_MAPLE_TREE
5653 if (mas->index > mas->last)
5654 pr_err("Error %lu > %lu %p\n", mas->index, mas->last, entry);
5655 MT_BUG_ON(mas->tree, mas->index > mas->last);
5656 if (mas->index > mas->last) {
5657 mas_set_err(mas, -EINVAL);
5664 * Storing is the same operation as insert with the added caveat that it
5665 * can overwrite entries. Although this seems simple enough, one may
5666 * want to examine what happens if a single store operation was to
5667 * overwrite multiple entries within a self-balancing B-Tree.
5669 mas_wr_store_setup(&wr_mas);
5670 mas_wr_store_entry(&wr_mas);
5671 return wr_mas.content;
5673 EXPORT_SYMBOL_GPL(mas_store);
5676 * mas_store_gfp() - Store a value into the tree.
5677 * @mas: The maple state
5678 * @entry: The entry to store
5679 * @gfp: The GFP_FLAGS to use for allocations if necessary.
5681 * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
5684 int mas_store_gfp(struct ma_state *mas, void *entry, gfp_t gfp)
5686 MA_WR_STATE(wr_mas, mas, entry);
5688 mas_wr_store_setup(&wr_mas);
5689 trace_ma_write(__func__, mas, 0, entry);
5691 mas_wr_store_entry(&wr_mas);
5692 if (unlikely(mas_nomem(mas, gfp)))
5695 if (unlikely(mas_is_err(mas)))
5696 return xa_err(mas->node);
5700 EXPORT_SYMBOL_GPL(mas_store_gfp);
5703 * mas_store_prealloc() - Store a value into the tree using memory
5704 * preallocated in the maple state.
5705 * @mas: The maple state
5706 * @entry: The entry to store.
5708 void mas_store_prealloc(struct ma_state *mas, void *entry)
5710 MA_WR_STATE(wr_mas, mas, entry);
5712 mas_wr_store_setup(&wr_mas);
5713 trace_ma_write(__func__, mas, 0, entry);
5714 mas_wr_store_entry(&wr_mas);
5715 BUG_ON(mas_is_err(mas));
5718 EXPORT_SYMBOL_GPL(mas_store_prealloc);
5721 * mas_preallocate() - Preallocate enough nodes for a store operation
5722 * @mas: The maple state
5723 * @gfp: The GFP_FLAGS to use for allocations.
5725 * Return: 0 on success, -ENOMEM if memory could not be allocated.
5727 int mas_preallocate(struct ma_state *mas, gfp_t gfp)
5731 mas_node_count_gfp(mas, 1 + mas_mt_height(mas) * 3, gfp);
5732 mas->mas_flags |= MA_STATE_PREALLOC;
5733 if (likely(!mas_is_err(mas)))
5736 mas_set_alloc_req(mas, 0);
5737 ret = xa_err(mas->node);
5745 * mas_destroy() - destroy a maple state.
5746 * @mas: The maple state
5748 * Upon completion, check the left-most node and rebalance against the node to
5749 * the right if necessary. Frees any allocated nodes associated with this maple
5752 void mas_destroy(struct ma_state *mas)
5754 struct maple_alloc *node;
5755 unsigned long total;
5758 * When using mas_for_each() to insert an expected number of elements,
5759 * it is possible that the number inserted is less than the expected
5760 * number. To fix an invalid final node, a check is performed here to
5761 * rebalance the previous node with the final node.
5763 if (mas->mas_flags & MA_STATE_REBALANCE) {
5766 if (mas_is_start(mas))
5769 mtree_range_walk(mas);
5770 end = mas_data_end(mas) + 1;
5771 if (end < mt_min_slot_count(mas->node) - 1)
5772 mas_destroy_rebalance(mas, end);
5774 mas->mas_flags &= ~MA_STATE_REBALANCE;
5776 mas->mas_flags &= ~(MA_STATE_BULK|MA_STATE_PREALLOC);
5778 total = mas_allocated(mas);
5781 mas->alloc = node->slot[0];
5782 if (node->node_count > 1) {
5783 size_t count = node->node_count - 1;
5785 mt_free_bulk(count, (void __rcu **)&node->slot[1]);
5788 kmem_cache_free(maple_node_cache, node);
5794 EXPORT_SYMBOL_GPL(mas_destroy);
5797 * mas_expected_entries() - Set the expected number of entries that will be inserted.
5798 * @mas: The maple state
5799 * @nr_entries: The number of expected entries.
5801 * This will attempt to pre-allocate enough nodes to store the expected number
5802 * of entries. The allocations will occur using the bulk allocator interface
5803 * for speed. Please call mas_destroy() on the @mas after inserting the entries
5804 * to ensure any unused nodes are freed.
5806 * Return: 0 on success, -ENOMEM if memory could not be allocated.
5808 int mas_expected_entries(struct ma_state *mas, unsigned long nr_entries)
5810 int nonleaf_cap = MAPLE_ARANGE64_SLOTS - 2;
5811 struct maple_enode *enode = mas->node;
5816 * Sometimes it is necessary to duplicate a tree to a new tree, such as
5817 * forking a process and duplicating the VMAs from one tree to a new
5818 * tree. When such a situation arises, it is known that the new tree is
5819 * not going to be used until the entire tree is populated. For
5820 * performance reasons, it is best to use a bulk load with RCU disabled.
5821 * This allows for optimistic splitting that favours the left and reuse
5822 * of nodes during the operation.
5825 /* Optimize splitting for bulk insert in-order */
5826 mas->mas_flags |= MA_STATE_BULK;
5829 * Avoid overflow, assume a gap between each entry and a trailing null.
5830 * If this is wrong, it just means allocation can happen during
5831 * insertion of entries.
5833 nr_nodes = max(nr_entries, nr_entries * 2 + 1);
5834 if (!mt_is_alloc(mas->tree))
5835 nonleaf_cap = MAPLE_RANGE64_SLOTS - 2;
5837 /* Leaves; reduce slots to keep space for expansion */
5838 nr_nodes = DIV_ROUND_UP(nr_nodes, MAPLE_RANGE64_SLOTS - 2);
5839 /* Internal nodes */
5840 nr_nodes += DIV_ROUND_UP(nr_nodes, nonleaf_cap);
5841 /* Add working room for split (2 nodes) + new parents */
5842 mas_node_count(mas, nr_nodes + 3);
5844 /* Detect if allocations run out */
5845 mas->mas_flags |= MA_STATE_PREALLOC;
5847 if (!mas_is_err(mas))
5850 ret = xa_err(mas->node);
5856 EXPORT_SYMBOL_GPL(mas_expected_entries);
5859 * mas_next() - Get the next entry.
5860 * @mas: The maple state
5861 * @max: The maximum index to check.
5863 * Returns the next entry after @mas->index.
5864 * Must hold rcu_read_lock or the write lock.
5865 * Can return the zero entry.
5867 * Return: The next entry or %NULL
5869 void *mas_next(struct ma_state *mas, unsigned long max)
5871 if (mas_is_none(mas) || mas_is_paused(mas))
5872 mas->node = MAS_START;
5874 if (mas_is_start(mas))
5875 mas_walk(mas); /* Retries on dead nodes handled by mas_walk */
5877 if (mas_is_ptr(mas)) {
5880 mas->last = ULONG_MAX;
5885 if (mas->last == ULONG_MAX)
5888 /* Retries on dead nodes handled by mas_next_entry */
5889 return mas_next_entry(mas, max);
5891 EXPORT_SYMBOL_GPL(mas_next);
5894 * mt_next() - get the next value in the maple tree
5895 * @mt: The maple tree
5896 * @index: The start index
5897 * @max: The maximum index to check
5899 * Return: The entry at @index or higher, or %NULL if nothing is found.
5901 void *mt_next(struct maple_tree *mt, unsigned long index, unsigned long max)
5904 MA_STATE(mas, mt, index, index);
5907 entry = mas_next(&mas, max);
5911 EXPORT_SYMBOL_GPL(mt_next);
5914 * mas_prev() - Get the previous entry
5915 * @mas: The maple state
5916 * @min: The minimum value to check.
5918 * Must hold rcu_read_lock or the write lock.
5919 * Will reset mas to MAS_START if the node is MAS_NONE. Will stop on not
5922 * Return: the previous value or %NULL.
5924 void *mas_prev(struct ma_state *mas, unsigned long min)
5927 /* Nothing comes before 0 */
5929 mas->node = MAS_NONE;
5933 if (unlikely(mas_is_ptr(mas)))
5936 if (mas_is_none(mas) || mas_is_paused(mas))
5937 mas->node = MAS_START;
5939 if (mas_is_start(mas)) {
5945 if (mas_is_ptr(mas)) {
5951 mas->index = mas->last = 0;
5952 return mas_root_locked(mas);
5954 return mas_prev_entry(mas, min);
5956 EXPORT_SYMBOL_GPL(mas_prev);
5959 * mt_prev() - get the previous value in the maple tree
5960 * @mt: The maple tree
5961 * @index: The start index
5962 * @min: The minimum index to check
5964 * Return: The entry at @index or lower, or %NULL if nothing is found.
5966 void *mt_prev(struct maple_tree *mt, unsigned long index, unsigned long min)
5969 MA_STATE(mas, mt, index, index);
5972 entry = mas_prev(&mas, min);
5976 EXPORT_SYMBOL_GPL(mt_prev);
5979 * mas_pause() - Pause a mas_find/mas_for_each to drop the lock.
5980 * @mas: The maple state to pause
5982 * Some users need to pause a walk and drop the lock they're holding in
5983 * order to yield to a higher priority thread or carry out an operation
5984 * on an entry. Those users should call this function before they drop
5985 * the lock. It resets the @mas to be suitable for the next iteration
5986 * of the loop after the user has reacquired the lock. If most entries
5987 * found during a walk require you to call mas_pause(), the mt_for_each()
5988 * iterator may be more appropriate.
5991 void mas_pause(struct ma_state *mas)
5993 mas->node = MAS_PAUSE;
5995 EXPORT_SYMBOL_GPL(mas_pause);
5998 * mas_find() - On the first call, find the entry at or after mas->index up to
5999 * %max. Otherwise, find the entry after mas->index.
6000 * @mas: The maple state
6001 * @max: The maximum value to check.
6003 * Must hold rcu_read_lock or the write lock.
6004 * If an entry exists, last and index are updated accordingly.
6005 * May set @mas->node to MAS_NONE.
6007 * Return: The entry or %NULL.
6009 void *mas_find(struct ma_state *mas, unsigned long max)
6011 if (unlikely(mas_is_paused(mas))) {
6012 if (unlikely(mas->last == ULONG_MAX)) {
6013 mas->node = MAS_NONE;
6016 mas->node = MAS_START;
6017 mas->index = ++mas->last;
6020 if (unlikely(mas_is_none(mas)))
6021 mas->node = MAS_START;
6023 if (unlikely(mas_is_start(mas))) {
6024 /* First run or continue */
6027 if (mas->index > max)
6030 entry = mas_walk(mas);
6035 if (unlikely(!mas_searchable(mas)))
6038 /* Retries on dead nodes handled by mas_next_entry */
6039 return mas_next_entry(mas, max);
6041 EXPORT_SYMBOL_GPL(mas_find);
6044 * mas_find_rev: On the first call, find the first non-null entry at or below
6045 * mas->index down to %min. Otherwise find the first non-null entry below
6046 * mas->index down to %min.
6047 * @mas: The maple state
6048 * @min: The minimum value to check.
6050 * Must hold rcu_read_lock or the write lock.
6051 * If an entry exists, last and index are updated accordingly.
6052 * May set @mas->node to MAS_NONE.
6054 * Return: The entry or %NULL.
6056 void *mas_find_rev(struct ma_state *mas, unsigned long min)
6058 if (unlikely(mas_is_paused(mas))) {
6059 if (unlikely(mas->last == ULONG_MAX)) {
6060 mas->node = MAS_NONE;
6063 mas->node = MAS_START;
6064 mas->last = --mas->index;
6067 if (unlikely(mas_is_start(mas))) {
6068 /* First run or continue */
6071 if (mas->index < min)
6074 entry = mas_walk(mas);
6079 if (unlikely(!mas_searchable(mas)))
6082 if (mas->index < min)
6085 /* Retries on dead nodes handled by mas_prev_entry */
6086 return mas_prev_entry(mas, min);
6088 EXPORT_SYMBOL_GPL(mas_find_rev);
6091 * mas_erase() - Find the range in which index resides and erase the entire
6093 * @mas: The maple state
6095 * Must hold the write lock.
6096 * Searches for @mas->index, sets @mas->index and @mas->last to the range and
6097 * erases that range.
6099 * Return: the entry that was erased or %NULL, @mas->index and @mas->last are updated.
6101 void *mas_erase(struct ma_state *mas)
6104 MA_WR_STATE(wr_mas, mas, NULL);
6106 if (mas_is_none(mas) || mas_is_paused(mas))
6107 mas->node = MAS_START;
6109 /* Retry unnecessary when holding the write lock. */
6110 entry = mas_state_walk(mas);
6115 /* Must reset to ensure spanning writes of last slot are detected */
6117 mas_wr_store_setup(&wr_mas);
6118 mas_wr_store_entry(&wr_mas);
6119 if (mas_nomem(mas, GFP_KERNEL))
6124 EXPORT_SYMBOL_GPL(mas_erase);
6127 * mas_nomem() - Check if there was an error allocating and do the allocation
6128 * if necessary If there are allocations, then free them.
6129 * @mas: The maple state
6130 * @gfp: The GFP_FLAGS to use for allocations
6131 * Return: true on allocation, false otherwise.
6133 bool mas_nomem(struct ma_state *mas, gfp_t gfp)
6134 __must_hold(mas->tree->lock)
6136 if (likely(mas->node != MA_ERROR(-ENOMEM))) {
6141 if (gfpflags_allow_blocking(gfp) && !mt_external_lock(mas->tree)) {
6142 mtree_unlock(mas->tree);
6143 mas_alloc_nodes(mas, gfp);
6144 mtree_lock(mas->tree);
6146 mas_alloc_nodes(mas, gfp);
6149 if (!mas_allocated(mas))
6152 mas->node = MAS_START;
6156 void __init maple_tree_init(void)
6158 maple_node_cache = kmem_cache_create("maple_node",
6159 sizeof(struct maple_node), sizeof(struct maple_node),
6164 * mtree_load() - Load a value stored in a maple tree
6165 * @mt: The maple tree
6166 * @index: The index to load
6168 * Return: the entry or %NULL
6170 void *mtree_load(struct maple_tree *mt, unsigned long index)
6172 MA_STATE(mas, mt, index, index);
6175 trace_ma_read(__func__, &mas);
6178 entry = mas_start(&mas);
6179 if (unlikely(mas_is_none(&mas)))
6182 if (unlikely(mas_is_ptr(&mas))) {
6189 entry = mtree_lookup_walk(&mas);
6190 if (!entry && unlikely(mas_is_start(&mas)))
6194 if (xa_is_zero(entry))
6199 EXPORT_SYMBOL(mtree_load);
6202 * mtree_store_range() - Store an entry at a given range.
6203 * @mt: The maple tree
6204 * @index: The start of the range
6205 * @last: The end of the range
6206 * @entry: The entry to store
6207 * @gfp: The GFP_FLAGS to use for allocations
6209 * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
6212 int mtree_store_range(struct maple_tree *mt, unsigned long index,
6213 unsigned long last, void *entry, gfp_t gfp)
6215 MA_STATE(mas, mt, index, last);
6216 MA_WR_STATE(wr_mas, &mas, entry);
6218 trace_ma_write(__func__, &mas, 0, entry);
6219 if (WARN_ON_ONCE(xa_is_advanced(entry)))
6227 mas_wr_store_entry(&wr_mas);
6228 if (mas_nomem(&mas, gfp))
6232 if (mas_is_err(&mas))
6233 return xa_err(mas.node);
6237 EXPORT_SYMBOL(mtree_store_range);
6240 * mtree_store() - Store an entry at a given index.
6241 * @mt: The maple tree
6242 * @index: The index to store the value
6243 * @entry: The entry to store
6244 * @gfp: The GFP_FLAGS to use for allocations
6246 * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
6249 int mtree_store(struct maple_tree *mt, unsigned long index, void *entry,
6252 return mtree_store_range(mt, index, index, entry, gfp);
6254 EXPORT_SYMBOL(mtree_store);
6257 * mtree_insert_range() - Insert an entry at a give range if there is no value.
6258 * @mt: The maple tree
6259 * @first: The start of the range
6260 * @last: The end of the range
6261 * @entry: The entry to store
6262 * @gfp: The GFP_FLAGS to use for allocations.
6264 * Return: 0 on success, -EEXISTS if the range is occupied, -EINVAL on invalid
6265 * request, -ENOMEM if memory could not be allocated.
6267 int mtree_insert_range(struct maple_tree *mt, unsigned long first,
6268 unsigned long last, void *entry, gfp_t gfp)
6270 MA_STATE(ms, mt, first, last);
6272 if (WARN_ON_ONCE(xa_is_advanced(entry)))
6280 mas_insert(&ms, entry);
6281 if (mas_nomem(&ms, gfp))
6285 if (mas_is_err(&ms))
6286 return xa_err(ms.node);
6290 EXPORT_SYMBOL(mtree_insert_range);
6293 * mtree_insert() - Insert an entry at a give index if there is no value.
6294 * @mt: The maple tree
6295 * @index : The index to store the value
6296 * @entry: The entry to store
6297 * @gfp: The FGP_FLAGS to use for allocations.
6299 * Return: 0 on success, -EEXISTS if the range is occupied, -EINVAL on invalid
6300 * request, -ENOMEM if memory could not be allocated.
6302 int mtree_insert(struct maple_tree *mt, unsigned long index, void *entry,
6305 return mtree_insert_range(mt, index, index, entry, gfp);
6307 EXPORT_SYMBOL(mtree_insert);
6309 int mtree_alloc_range(struct maple_tree *mt, unsigned long *startp,
6310 void *entry, unsigned long size, unsigned long min,
6311 unsigned long max, gfp_t gfp)
6315 MA_STATE(mas, mt, min, max - size);
6316 if (!mt_is_alloc(mt))
6319 if (WARN_ON_ONCE(mt_is_reserved(entry)))
6335 mas.last = max - size;
6336 ret = mas_alloc(&mas, entry, size, startp);
6337 if (mas_nomem(&mas, gfp))
6343 EXPORT_SYMBOL(mtree_alloc_range);
6345 int mtree_alloc_rrange(struct maple_tree *mt, unsigned long *startp,
6346 void *entry, unsigned long size, unsigned long min,
6347 unsigned long max, gfp_t gfp)
6351 MA_STATE(mas, mt, min, max - size);
6352 if (!mt_is_alloc(mt))
6355 if (WARN_ON_ONCE(mt_is_reserved(entry)))
6369 ret = mas_rev_alloc(&mas, min, max, entry, size, startp);
6370 if (mas_nomem(&mas, gfp))
6376 EXPORT_SYMBOL(mtree_alloc_rrange);
6379 * mtree_erase() - Find an index and erase the entire range.
6380 * @mt: The maple tree
6381 * @index: The index to erase
6383 * Erasing is the same as a walk to an entry then a store of a NULL to that
6384 * ENTIRE range. In fact, it is implemented as such using the advanced API.
6386 * Return: The entry stored at the @index or %NULL
6388 void *mtree_erase(struct maple_tree *mt, unsigned long index)
6392 MA_STATE(mas, mt, index, index);
6393 trace_ma_op(__func__, &mas);
6396 entry = mas_erase(&mas);
6401 EXPORT_SYMBOL(mtree_erase);
6404 * __mt_destroy() - Walk and free all nodes of a locked maple tree.
6405 * @mt: The maple tree
6407 * Note: Does not handle locking.
6409 void __mt_destroy(struct maple_tree *mt)
6411 void *root = mt_root_locked(mt);
6413 rcu_assign_pointer(mt->ma_root, NULL);
6414 if (xa_is_node(root))
6415 mte_destroy_walk(root, mt);
6419 EXPORT_SYMBOL_GPL(__mt_destroy);
6422 * mtree_destroy() - Destroy a maple tree
6423 * @mt: The maple tree
6425 * Frees all resources used by the tree. Handles locking.
6427 void mtree_destroy(struct maple_tree *mt)
6433 EXPORT_SYMBOL(mtree_destroy);
6436 * mt_find() - Search from the start up until an entry is found.
6437 * @mt: The maple tree
6438 * @index: Pointer which contains the start location of the search
6439 * @max: The maximum value to check
6441 * Handles locking. @index will be incremented to one beyond the range.
6443 * Return: The entry at or after the @index or %NULL
6445 void *mt_find(struct maple_tree *mt, unsigned long *index, unsigned long max)
6447 MA_STATE(mas, mt, *index, *index);
6449 #ifdef CONFIG_DEBUG_MAPLE_TREE
6450 unsigned long copy = *index;
6453 trace_ma_read(__func__, &mas);
6460 entry = mas_state_walk(&mas);
6461 if (mas_is_start(&mas))
6464 if (unlikely(xa_is_zero(entry)))
6470 while (mas_searchable(&mas) && (mas.index < max)) {
6471 entry = mas_next_entry(&mas, max);
6472 if (likely(entry && !xa_is_zero(entry)))
6476 if (unlikely(xa_is_zero(entry)))
6480 if (likely(entry)) {
6481 *index = mas.last + 1;
6482 #ifdef CONFIG_DEBUG_MAPLE_TREE
6483 if ((*index) && (*index) <= copy)
6484 pr_err("index not increased! %lx <= %lx\n",
6486 MT_BUG_ON(mt, (*index) && ((*index) <= copy));
6492 EXPORT_SYMBOL(mt_find);
6495 * mt_find_after() - Search from the start up until an entry is found.
6496 * @mt: The maple tree
6497 * @index: Pointer which contains the start location of the search
6498 * @max: The maximum value to check
6500 * Handles locking, detects wrapping on index == 0
6502 * Return: The entry at or after the @index or %NULL
6504 void *mt_find_after(struct maple_tree *mt, unsigned long *index,
6510 return mt_find(mt, index, max);
6512 EXPORT_SYMBOL(mt_find_after);
6514 #ifdef CONFIG_DEBUG_MAPLE_TREE
6515 atomic_t maple_tree_tests_run;
6516 EXPORT_SYMBOL_GPL(maple_tree_tests_run);
6517 atomic_t maple_tree_tests_passed;
6518 EXPORT_SYMBOL_GPL(maple_tree_tests_passed);
6521 extern void kmem_cache_set_non_kernel(struct kmem_cache *, unsigned int);
6522 void mt_set_non_kernel(unsigned int val)
6524 kmem_cache_set_non_kernel(maple_node_cache, val);
6527 extern unsigned long kmem_cache_get_alloc(struct kmem_cache *);
6528 unsigned long mt_get_alloc_size(void)
6530 return kmem_cache_get_alloc(maple_node_cache);
6533 extern void kmem_cache_zero_nr_tallocated(struct kmem_cache *);
6534 void mt_zero_nr_tallocated(void)
6536 kmem_cache_zero_nr_tallocated(maple_node_cache);
6539 extern unsigned int kmem_cache_nr_tallocated(struct kmem_cache *);
6540 unsigned int mt_nr_tallocated(void)
6542 return kmem_cache_nr_tallocated(maple_node_cache);
6545 extern unsigned int kmem_cache_nr_allocated(struct kmem_cache *);
6546 unsigned int mt_nr_allocated(void)
6548 return kmem_cache_nr_allocated(maple_node_cache);
6552 * mas_dead_node() - Check if the maple state is pointing to a dead node.
6553 * @mas: The maple state
6554 * @index: The index to restore in @mas.
6556 * Used in test code.
6557 * Return: 1 if @mas has been reset to MAS_START, 0 otherwise.
6559 static inline int mas_dead_node(struct ma_state *mas, unsigned long index)
6561 if (unlikely(!mas_searchable(mas) || mas_is_start(mas)))
6564 if (likely(!mte_dead_node(mas->node)))
6567 mas_rewalk(mas, index);
6571 void mt_cache_shrink(void)
6576 * mt_cache_shrink() - For testing, don't use this.
6578 * Certain testcases can trigger an OOM when combined with other memory
6579 * debugging configuration options. This function is used to reduce the
6580 * possibility of an out of memory even due to kmem_cache objects remaining
6581 * around for longer than usual.
6583 void mt_cache_shrink(void)
6585 kmem_cache_shrink(maple_node_cache);
6588 EXPORT_SYMBOL_GPL(mt_cache_shrink);
6590 #endif /* not defined __KERNEL__ */
6592 * mas_get_slot() - Get the entry in the maple state node stored at @offset.
6593 * @mas: The maple state
6594 * @offset: The offset into the slot array to fetch.
6596 * Return: The entry stored at @offset.
6598 static inline struct maple_enode *mas_get_slot(struct ma_state *mas,
6599 unsigned char offset)
6601 return mas_slot(mas, ma_slots(mas_mn(mas), mte_node_type(mas->node)),
6607 * mas_first_entry() - Go the first leaf and find the first entry.
6608 * @mas: the maple state.
6609 * @limit: the maximum index to check.
6610 * @*r_start: Pointer to set to the range start.
6612 * Sets mas->offset to the offset of the entry, r_start to the range minimum.
6614 * Return: The first entry or MAS_NONE.
6616 static inline void *mas_first_entry(struct ma_state *mas, struct maple_node *mn,
6617 unsigned long limit, enum maple_type mt)
6621 unsigned long *pivots;
6625 mas->index = mas->min;
6626 if (mas->index > limit)
6631 while (likely(!ma_is_leaf(mt))) {
6632 MT_BUG_ON(mas->tree, mte_dead_node(mas->node));
6633 slots = ma_slots(mn, mt);
6634 pivots = ma_pivots(mn, mt);
6636 entry = mas_slot(mas, slots, 0);
6637 if (unlikely(ma_dead_node(mn)))
6641 mt = mte_node_type(mas->node);
6643 MT_BUG_ON(mas->tree, mte_dead_node(mas->node));
6646 slots = ma_slots(mn, mt);
6647 entry = mas_slot(mas, slots, 0);
6648 if (unlikely(ma_dead_node(mn)))
6651 /* Slot 0 or 1 must be set */
6652 if (mas->index > limit)
6658 pivots = ma_pivots(mn, mt);
6659 mas->index = pivots[0] + 1;
6661 entry = mas_slot(mas, slots, 1);
6662 if (unlikely(ma_dead_node(mn)))
6665 if (mas->index > limit)
6672 if (likely(!ma_dead_node(mn)))
6673 mas->node = MAS_NONE;
6677 /* Depth first search, post-order */
6678 static void mas_dfs_postorder(struct ma_state *mas, unsigned long max)
6681 struct maple_enode *p = MAS_NONE, *mn = mas->node;
6682 unsigned long p_min, p_max;
6684 mas_next_node(mas, mas_mn(mas), max);
6685 if (!mas_is_none(mas))
6688 if (mte_is_root(mn))
6693 while (mas->node != MAS_NONE) {
6697 mas_prev_node(mas, 0);
6708 /* Tree validations */
6709 static void mt_dump_node(const struct maple_tree *mt, void *entry,
6710 unsigned long min, unsigned long max, unsigned int depth);
6711 static void mt_dump_range(unsigned long min, unsigned long max,
6714 static const char spaces[] = " ";
6717 pr_info("%.*s%lu: ", depth * 2, spaces, min);
6719 pr_info("%.*s%lu-%lu: ", depth * 2, spaces, min, max);
6722 static void mt_dump_entry(void *entry, unsigned long min, unsigned long max,
6725 mt_dump_range(min, max, depth);
6727 if (xa_is_value(entry))
6728 pr_cont("value %ld (0x%lx) [%p]\n", xa_to_value(entry),
6729 xa_to_value(entry), entry);
6730 else if (xa_is_zero(entry))
6731 pr_cont("zero (%ld)\n", xa_to_internal(entry));
6732 else if (mt_is_reserved(entry))
6733 pr_cont("UNKNOWN ENTRY (%p)\n", entry);
6735 pr_cont("%p\n", entry);
6738 static void mt_dump_range64(const struct maple_tree *mt, void *entry,
6739 unsigned long min, unsigned long max, unsigned int depth)
6741 struct maple_range_64 *node = &mte_to_node(entry)->mr64;
6742 bool leaf = mte_is_leaf(entry);
6743 unsigned long first = min;
6746 pr_cont(" contents: ");
6747 for (i = 0; i < MAPLE_RANGE64_SLOTS - 1; i++)
6748 pr_cont("%p %lu ", node->slot[i], node->pivot[i]);
6749 pr_cont("%p\n", node->slot[i]);
6750 for (i = 0; i < MAPLE_RANGE64_SLOTS; i++) {
6751 unsigned long last = max;
6753 if (i < (MAPLE_RANGE64_SLOTS - 1))
6754 last = node->pivot[i];
6755 else if (!node->slot[i] && max != mt_node_max(entry))
6757 if (last == 0 && i > 0)
6760 mt_dump_entry(mt_slot(mt, node->slot, i),
6761 first, last, depth + 1);
6762 else if (node->slot[i])
6763 mt_dump_node(mt, mt_slot(mt, node->slot, i),
6764 first, last, depth + 1);
6769 pr_err("node %p last (%lu) > max (%lu) at pivot %d!\n",
6770 node, last, max, i);
6777 static void mt_dump_arange64(const struct maple_tree *mt, void *entry,
6778 unsigned long min, unsigned long max, unsigned int depth)
6780 struct maple_arange_64 *node = &mte_to_node(entry)->ma64;
6781 bool leaf = mte_is_leaf(entry);
6782 unsigned long first = min;
6785 pr_cont(" contents: ");
6786 for (i = 0; i < MAPLE_ARANGE64_SLOTS; i++)
6787 pr_cont("%lu ", node->gap[i]);
6788 pr_cont("| %02X %02X| ", node->meta.end, node->meta.gap);
6789 for (i = 0; i < MAPLE_ARANGE64_SLOTS - 1; i++)
6790 pr_cont("%p %lu ", node->slot[i], node->pivot[i]);
6791 pr_cont("%p\n", node->slot[i]);
6792 for (i = 0; i < MAPLE_ARANGE64_SLOTS; i++) {
6793 unsigned long last = max;
6795 if (i < (MAPLE_ARANGE64_SLOTS - 1))
6796 last = node->pivot[i];
6797 else if (!node->slot[i])
6799 if (last == 0 && i > 0)
6802 mt_dump_entry(mt_slot(mt, node->slot, i),
6803 first, last, depth + 1);
6804 else if (node->slot[i])
6805 mt_dump_node(mt, mt_slot(mt, node->slot, i),
6806 first, last, depth + 1);
6811 pr_err("node %p last (%lu) > max (%lu) at pivot %d!\n",
6812 node, last, max, i);
6819 static void mt_dump_node(const struct maple_tree *mt, void *entry,
6820 unsigned long min, unsigned long max, unsigned int depth)
6822 struct maple_node *node = mte_to_node(entry);
6823 unsigned int type = mte_node_type(entry);
6826 mt_dump_range(min, max, depth);
6828 pr_cont("node %p depth %d type %d parent %p", node, depth, type,
6829 node ? node->parent : NULL);
6833 for (i = 0; i < MAPLE_NODE_SLOTS; i++) {
6835 pr_cont("OUT OF RANGE: ");
6836 mt_dump_entry(mt_slot(mt, node->slot, i),
6837 min + i, min + i, depth);
6841 case maple_range_64:
6842 mt_dump_range64(mt, entry, min, max, depth);
6844 case maple_arange_64:
6845 mt_dump_arange64(mt, entry, min, max, depth);
6849 pr_cont(" UNKNOWN TYPE\n");
6853 void mt_dump(const struct maple_tree *mt)
6855 void *entry = rcu_dereference_check(mt->ma_root, mt_locked(mt));
6857 pr_info("maple_tree(%p) flags %X, height %u root %p\n",
6858 mt, mt->ma_flags, mt_height(mt), entry);
6859 if (!xa_is_node(entry))
6860 mt_dump_entry(entry, 0, 0, 0);
6862 mt_dump_node(mt, entry, 0, mt_node_max(entry), 0);
6864 EXPORT_SYMBOL_GPL(mt_dump);
6867 * Calculate the maximum gap in a node and check if that's what is reported in
6868 * the parent (unless root).
6870 static void mas_validate_gaps(struct ma_state *mas)
6872 struct maple_enode *mte = mas->node;
6873 struct maple_node *p_mn;
6874 unsigned long gap = 0, max_gap = 0;
6875 unsigned long p_end, p_start = mas->min;
6876 unsigned char p_slot;
6877 unsigned long *gaps = NULL;
6878 unsigned long *pivots = ma_pivots(mte_to_node(mte), mte_node_type(mte));
6881 if (ma_is_dense(mte_node_type(mte))) {
6882 for (i = 0; i < mt_slot_count(mte); i++) {
6883 if (mas_get_slot(mas, i)) {
6894 gaps = ma_gaps(mte_to_node(mte), mte_node_type(mte));
6895 for (i = 0; i < mt_slot_count(mte); i++) {
6896 p_end = mas_logical_pivot(mas, pivots, i, mte_node_type(mte));
6899 if (mas_get_slot(mas, i)) {
6904 gap += p_end - p_start + 1;
6906 void *entry = mas_get_slot(mas, i);
6910 if (gap != p_end - p_start + 1) {
6911 pr_err("%p[%u] -> %p %lu != %lu - %lu + 1\n",
6913 mas_get_slot(mas, i), gap,
6917 MT_BUG_ON(mas->tree,
6918 gap != p_end - p_start + 1);
6921 if (gap > p_end - p_start + 1) {
6922 pr_err("%p[%u] %lu >= %lu - %lu + 1 (%lu)\n",
6923 mas_mn(mas), i, gap, p_end, p_start,
6924 p_end - p_start + 1);
6925 MT_BUG_ON(mas->tree,
6926 gap > p_end - p_start + 1);
6934 p_start = p_end + 1;
6935 if (p_end >= mas->max)
6940 if (mte_is_root(mte))
6943 p_slot = mte_parent_slot(mas->node);
6944 p_mn = mte_parent(mte);
6945 MT_BUG_ON(mas->tree, max_gap > mas->max);
6946 if (ma_gaps(p_mn, mas_parent_enum(mas, mte))[p_slot] != max_gap) {
6947 pr_err("gap %p[%u] != %lu\n", p_mn, p_slot, max_gap);
6951 MT_BUG_ON(mas->tree,
6952 ma_gaps(p_mn, mas_parent_enum(mas, mte))[p_slot] != max_gap);
6955 static void mas_validate_parent_slot(struct ma_state *mas)
6957 struct maple_node *parent;
6958 struct maple_enode *node;
6959 enum maple_type p_type = mas_parent_enum(mas, mas->node);
6960 unsigned char p_slot = mte_parent_slot(mas->node);
6964 if (mte_is_root(mas->node))
6967 parent = mte_parent(mas->node);
6968 slots = ma_slots(parent, p_type);
6969 MT_BUG_ON(mas->tree, mas_mn(mas) == parent);
6971 /* Check prev/next parent slot for duplicate node entry */
6973 for (i = 0; i < mt_slots[p_type]; i++) {
6974 node = mas_slot(mas, slots, i);
6976 if (node != mas->node)
6977 pr_err("parent %p[%u] does not have %p\n",
6978 parent, i, mas_mn(mas));
6979 MT_BUG_ON(mas->tree, node != mas->node);
6980 } else if (node == mas->node) {
6981 pr_err("Invalid child %p at parent %p[%u] p_slot %u\n",
6982 mas_mn(mas), parent, i, p_slot);
6983 MT_BUG_ON(mas->tree, node == mas->node);
6988 static void mas_validate_child_slot(struct ma_state *mas)
6990 enum maple_type type = mte_node_type(mas->node);
6991 void __rcu **slots = ma_slots(mte_to_node(mas->node), type);
6992 unsigned long *pivots = ma_pivots(mte_to_node(mas->node), type);
6993 struct maple_enode *child;
6996 if (mte_is_leaf(mas->node))
6999 for (i = 0; i < mt_slots[type]; i++) {
7000 child = mas_slot(mas, slots, i);
7001 if (!pivots[i] || pivots[i] == mas->max)
7007 if (mte_parent_slot(child) != i) {
7008 pr_err("Slot error at %p[%u]: child %p has pslot %u\n",
7009 mas_mn(mas), i, mte_to_node(child),
7010 mte_parent_slot(child));
7011 MT_BUG_ON(mas->tree, 1);
7014 if (mte_parent(child) != mte_to_node(mas->node)) {
7015 pr_err("child %p has parent %p not %p\n",
7016 mte_to_node(child), mte_parent(child),
7017 mte_to_node(mas->node));
7018 MT_BUG_ON(mas->tree, 1);
7024 * Validate all pivots are within mas->min and mas->max.
7026 static void mas_validate_limits(struct ma_state *mas)
7029 unsigned long prev_piv = 0;
7030 enum maple_type type = mte_node_type(mas->node);
7031 void __rcu **slots = ma_slots(mte_to_node(mas->node), type);
7032 unsigned long *pivots = ma_pivots(mas_mn(mas), type);
7034 /* all limits are fine here. */
7035 if (mte_is_root(mas->node))
7038 for (i = 0; i < mt_slots[type]; i++) {
7041 piv = mas_safe_pivot(mas, pivots, i, type);
7043 if (!piv && (i != 0))
7046 if (!mte_is_leaf(mas->node)) {
7047 void *entry = mas_slot(mas, slots, i);
7050 pr_err("%p[%u] cannot be null\n",
7053 MT_BUG_ON(mas->tree, !entry);
7056 if (prev_piv > piv) {
7057 pr_err("%p[%u] piv %lu < prev_piv %lu\n",
7058 mas_mn(mas), i, piv, prev_piv);
7059 MT_BUG_ON(mas->tree, piv < prev_piv);
7062 if (piv < mas->min) {
7063 pr_err("%p[%u] %lu < %lu\n", mas_mn(mas), i,
7065 MT_BUG_ON(mas->tree, piv < mas->min);
7067 if (piv > mas->max) {
7068 pr_err("%p[%u] %lu > %lu\n", mas_mn(mas), i,
7070 MT_BUG_ON(mas->tree, piv > mas->max);
7073 if (piv == mas->max)
7076 for (i += 1; i < mt_slots[type]; i++) {
7077 void *entry = mas_slot(mas, slots, i);
7079 if (entry && (i != mt_slots[type] - 1)) {
7080 pr_err("%p[%u] should not have entry %p\n", mas_mn(mas),
7082 MT_BUG_ON(mas->tree, entry != NULL);
7085 if (i < mt_pivots[type]) {
7086 unsigned long piv = pivots[i];
7091 pr_err("%p[%u] should not have piv %lu\n",
7092 mas_mn(mas), i, piv);
7093 MT_BUG_ON(mas->tree, i < mt_pivots[type] - 1);
7098 static void mt_validate_nulls(struct maple_tree *mt)
7100 void *entry, *last = (void *)1;
7101 unsigned char offset = 0;
7103 MA_STATE(mas, mt, 0, 0);
7106 if (mas_is_none(&mas) || (mas.node == MAS_ROOT))
7109 while (!mte_is_leaf(mas.node))
7112 slots = ma_slots(mte_to_node(mas.node), mte_node_type(mas.node));
7114 entry = mas_slot(&mas, slots, offset);
7115 if (!last && !entry) {
7116 pr_err("Sequential nulls end at %p[%u]\n",
7117 mas_mn(&mas), offset);
7119 MT_BUG_ON(mt, !last && !entry);
7121 if (offset == mas_data_end(&mas)) {
7122 mas_next_node(&mas, mas_mn(&mas), ULONG_MAX);
7123 if (mas_is_none(&mas))
7126 slots = ma_slots(mte_to_node(mas.node),
7127 mte_node_type(mas.node));
7132 } while (!mas_is_none(&mas));
7136 * validate a maple tree by checking:
7137 * 1. The limits (pivots are within mas->min to mas->max)
7138 * 2. The gap is correctly set in the parents
7140 void mt_validate(struct maple_tree *mt)
7144 MA_STATE(mas, mt, 0, 0);
7147 if (!mas_searchable(&mas))
7150 mas_first_entry(&mas, mas_mn(&mas), ULONG_MAX, mte_node_type(mas.node));
7151 while (!mas_is_none(&mas)) {
7152 MT_BUG_ON(mas.tree, mte_dead_node(mas.node));
7153 if (!mte_is_root(mas.node)) {
7154 end = mas_data_end(&mas);
7155 if ((end < mt_min_slot_count(mas.node)) &&
7156 (mas.max != ULONG_MAX)) {
7157 pr_err("Invalid size %u of %p\n", end,
7159 MT_BUG_ON(mas.tree, 1);
7163 mas_validate_parent_slot(&mas);
7164 mas_validate_child_slot(&mas);
7165 mas_validate_limits(&mas);
7166 if (mt_is_alloc(mt))
7167 mas_validate_gaps(&mas);
7168 mas_dfs_postorder(&mas, ULONG_MAX);
7170 mt_validate_nulls(mt);
7175 EXPORT_SYMBOL_GPL(mt_validate);
7177 #endif /* CONFIG_DEBUG_MAPLE_TREE */